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A B S T R A C T

Long-term water resource management involving multipurpose coordination requires robust decision-making in 
water infrastructure cases to cope with various types of uncertainties. Traditional robust optimization methods 
generally do not explicitly propagate input or parametric uncertainties into estimates of the robustness of so-
lutions, which limits their ability to address uncertainty comprehensively across solution spaces. In this study, we 
introduce an explicit robust decision-making framework that blends multiobjective search, probabilistic analysis 
of robustness, and diagnostic verification tools to identify robust optimal solutions to external uncertainty. The 
proposed framework is illustrated on four diverse robustness formulations, which capture a wide variety of 
stakeholder attitudes from highly risk-averse to risk-neutral, for the primary operating objectives (hydropower 
production, water diversion, and hydrological alteration degree) in China’s Hanjiang cascade reservoir system. 
By analyzing the Pareto front propagated from inflow uncertainty, it is found that optimal robust policies with a 
significantly higher degree of hydrological alteration are preferred in most formulations to achieve relatively 
lower joint uncertainty of hydropower and water diversion. These policies also yield sufficiently stable model 
performance in the case of an out-of-sample streamflow set during diagnostic verification. Furthermore, a 
comparative analysis of four different formulations suggests that a composite normalized robustness indicator 
(NRI) developed in this study to integrate various robustness metrics can achieve an effective balance for all 
considered objectives. These findings highlight the benefits of explicit robust optimization for managing hy-
drological uncertainties in multipurpose cascade reservoirs.

1. Introduction

Persistent hydrometeorological variability at both intra-annual and 
interannual scales poses a significant challenge to water resource man-
agement. This challenge is particularly acute in developing countries, 
which rely heavily on water-related industries for socioeconomic 
development but often have inadequate infrastructural capacities to 
adapt to variable hydrological conditions (Jaiswal et al., 2021). The 
involvement of multiparty water interests is also expected to exacerbate 
the challenge, as it is often difficult to reach consensus on reallocating 
water resources across multiple sectors. To mitigate or even overcome 
the negative impacts of water conflicts associated with regional hydro-
logical changes, it is urgent to explore more innovative water 

management policies (McPhail et al., 2021; Yu et al., 2023).
In this context, robust multipurpose operation of reservoirs has 

received attention in the past decade since multiple reservoirs have been 
built in many large river basins to regulate flows. Robust optimization 
operations can reap tremendous profits without additional engineering 
investments (He et al., 2022b). It strives to develop robust operating 
policies to achieve multifaceted water resource objectives while 
ensuring minimal discrepancies between the expected and actual con-
sequences in plausible future states. Giuliani and Castelletti (2016)
designed specific types of robust policies based on Gaussian radial basis 
function (RBF) approximators for Lake Como in Italy. Wang et al. (2023)
improved the robustness of dam infrastructure by updating the oper-
ating diagram to better accommodate deep uncertainties arising from 
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climate change and the electricity market. These findings indicated that 
robust operating policies could help mitigate certain changes in the 
hydrological cycle, especially when compared to conventional policies 
derived from historical observations that yield poor performance in 
possible future scenarios. However, the primary goals are often associ-
ated with developing state-of-the-art modeling approaches or policy 
styles, and the effects of the problem formulation chosen on the out-
comes of alternative policies and subsequent assessments of optimal 
solutions are rarely considered (Wu et al., 2023). McPhail et al. (2018)
found that some robustness problem formulations would miss all 
optimal decision-relevant solutions. This phenomenon has inspired 
reservoir managers to investigate various problem formulations in the 
participatory planning process to identify the most robust and optimal 
policies considering diverse stakeholder perceptions.

The common types of robustness formulations include expectation, 
regret-based, higher-order moment (e.g., variance and skewness), and 
satisficing formulations (McPhail et al., 2018). These formulations 
capture a gradient of stakeholder risk preferences across scenarios from 
highly risk-averse (e.g., min-max regret) to risk-neutral (e.g., expected 
value). For a specific case, the problem framework stakeholders estab-
lish had better consider all relevant formulations that can effectively 
reflect their risk attitudes (Kwakkel et al., 2016; Marquez Calvo, 2020). 
It is also essential to reevaluate the performance of the resulting policies 
associated with each formulation in other rival formulations to mitigate 
unintended systematic biases (Quinn et al., 2017). Building on this 
principle, Bonham et al. (2024) conducted an experiment in the Colo-
rado River Basin using a comprehensive robustness analysis framework 
encompassing expectation, regret-based and satisficing robustness 
metrics to evaluate the potential performance of Lake Mead shortage 
policies over future scenarios. Ultimately, they identified a policy with 
balanced performance across all metrics. However, this approach will 
inevitably increase computational demands, particularly as the number 
of robustness metrics to be evaluated grows. Recent studies in water 
fields have begun to explore composite robustness metrics to tackle 
these challenges (Sunkara et al., 2023; Zhang et al., 2024b). These 
metrics aim to simultaneously account for multiple robustness aspects 
within a single evaluative framework, thereby reducing redundant cal-
culations and improving consistency across evaluations. The develop-
ment of such a comprehensive robustness metric is of paramount 
importance, not only to mitigate computational burdens but also to 
enhance the applicability of robustness analyses in complex, 
scenario-rich decision-making environments. Under this background, 
we first used a composite normalized robustness index (NRI) we devel-
oped as one of the robustness optimization objectives, which can theo-
retically integrate all robustness metrics to evaluate the effectiveness of 
our robust framework.

Moreover, an effective optimization method is deemed critical to 
accommodate such a constructive robustness framework. Given the 
high-dimensional and stochastic nature of robust control problems, a 
viable method is favored if it can mitigate the curse of dimensionality 
from reservoir number and exogenous uncertainty. Quinn et al. (2019)
demonstrated the effectiveness of Evolutionary Multiobjective Direct 
Policy Search (EMODPS) combined with multiobjective evolutionary 
algorithms (MOEAs) in addressing hydrological variability for robust 
management of food-energy-water conflicts. Recent advancements in 
our computational power to solve multiobjective optimization problems 
(He et al., 2022a) have significantly expanded the applicability of a large 
number of EMODPS implementations, enabling its broader integration 
within the robustness framework.

In this study, we adopt a variant of robust optimization and proba-
bilistic analysis of robustness (ROPAR) (Marquez and Solomatine, 2019) 
for our EMODPS-based robustness optimization. Unlike other common 
implicit algorithms (e.g., implicit robust optimization (Quinn et al., 
2017) or smoothing optimization (Kapelan et al., 2005)) that embed the 
impact of uncertainty into a single Pareto front, ROPAR describes the 
uncertainty of outcomes in terms of an explicit visualization of all Pareto 

front distributions. ROPAR allows for a fuller exploration of the Pareto 
solution space and can approximate objective robustness through solu-
tion clouds (Marquez and Solomatine, 2019). Zhang et al. (2024b)
applied ROPAR to a classical two-objective water resource allocation 
system that achieved a robust trade-off between water deficit and 
ecological needs. However, in cases with more water interests involved, 
it remains doubtful whether an extended ROPAR algorithm can have 
value for decision-makers. Overall, we develop an explicit 
decision-making framework that considers diverse robustness formula-
tions to identify robust policies by tackling the following questions: (1) 
How effective is our explicit multi-dimensional optimization framework 
in finding robust policies, particularly in the NRI-dominated robustness 
formulation? (2) How does our presented robustness method differ from 
other representative robust optimization methods?

To answer these questions, we choose a cascade reservoir system in 
the Hanjiang River basin in China as our case study. The remainder of 
this article is structured as follows. In section 2, a brief description of the 
study basin is given, and the associated model profile is introduced. The 
procedures of our robust decision-making framework are elaborated in 
section 3. In section 4, an analysis of how ROPAR policies designed with 
different formulations perform in plausible future states is provided. 
Finally, the main conclusions are presented in section 5, along with a 
discussion of potential prospects.

2. Case study

2.1. Hanjiang River basin

As the largest tributary of the Yangtze River, the Hanjiang River 
encompasses a catchment area of 159,000 km2, with a river length of 
1577 km. It serves as a vital socioeconomic resource for this developing 
nation. A series of water conservancy facilities, such as the middle route 
of the south-to-north water transfer (MSWT) project and some reser-
voirs, have been built in the river system to facilitate water resource 
development. Specifically, an official water diversion diagram in the 
basin was customized by the Ministry of Water Resources of China to 
alleviate water shortages in the North China Plain (MWR, 2016). As 
shown in Fig. 1, the diagram is divided into five different zones. Each 
zone has a corresponding preset value for water diversion discharge, 
namely, 420 m3/s for Zone I, 350 m3/s for Zone II, 300 m3/s for Zone III, 
260 m3/s for Zone IV, and 135 m3/s for Zone V. Note that this portion of 
diversion discharge is conveyed through some special pipelines instead 
of flowing into the turbines at Danjiangkou Reservoir (Fig. 2(b)). 
Consequently, diversion of water through the MSWT project and maxi-
mization of hydropower benefits in the river system are two competing 
objectives.

Fig. 1. Water diversion diagram of the Danjiangkou Reservoir for the Middle 
Route of the South-to-North Water Transfer (MSWT) project.
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Apart from these two operating objectives, river system managers are 
concerned with the impact of flow regime alteration in recent years, as 
anthropogenic disturbances have been found to negatively affect 
riverine ecosystems (He et al., 2023). A substantial transregional water 
diversion can considerably diminish downstream water volume, 
resulting in a poor performance on the Indicators of Hydrological 
Alteration (IHA) that reflects overall ecological conditions (Zhang et al., 
2024a). In this study, we investigate whether improved multireservoir 
operation in the Hanjiang River basin can effectively reconcile the 
multisectoral demands among transregional water diversion, hydro-
power production, and environmental conservation.

2.2. Model profile

The Ankang and Danjiangkou Reservoirs are connected in series 
along the main stem (Fig. 2(a)). The annual runoff varies greatly, with 
coefficient of variation (CV) values of 0.29 and 0.32 (Fig. 2(c)), 
respectively. To utilize these unevenly distributed water resources, the 
cascade reservoirs have a total storage capacity of 36.38 billion m3 and a 
total power capacity of 1750 MW. The upstream Ankang (Ak) Reservoir 
primarily serves for hydropower generation. The downstream Dan-
jiangkou (Djk) Reservoir involves more industry and domestic uses. The 
combined reservoir system is designed to resist floods during the flood 

season, alleviate water supply deficits during the dry season, and 
improve hydropower production as well as the ecological environment 
between seasons. More details of these reservoirs are shown in Table 1.

In this model, flows through the Hanjiang River basin, mainly 
considering flows through the reservoirs, river channel, and canal of the 
MSWT project, are simulated. The volume of storage si

t of these reser-

Fig. 2. (a) Map of the Hanjiang River basin; (b) Schematization of the main components of the basin model; (c) Annual inflow volumes of the Ankang (Ak) and 
Danjiangkou (Djk) Reservoirs during 1991–2020.

Table 1 
Characteristic parameters of the Ankang and Danjiangkou Reservoirs.

Reservoir characteristics Unit Ankang Danjiangkou

Total storage capacity billion 
m3

3.34 33.04

Flood control capacity in summer/ 
autumn

billion 
m3

0.36 14.10/11.10

Crest elevation m 338.0 176.6
Normal water level m 330.0 170.0
Flood-limited water level in summer/ 

autumn
m 325.0 160.0/163.5

Dead water level m 305.0 150.0
Maximum power capability MW 850 900
Primary function – HG, FC FC, WD, HG, & ER 

a

a FC, WD, HG and ER represent flood control, water diversion, hydropower 
generation and ecological regulation, respectively.
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voirs at time t+1 is estimated by the physical mass balance equation: 

sAk
t+1 = sAk

t +
(
qAk

t − rAk
t
)

⋅ Δt − ESAk
t (1) 

sDjk
t+1 = sDjk

t +
(
qDjk

t − Ra,d
t − rDjk

t
)

⋅ Δt − ESDjk
t (2) 

where qi
t and ri

t are the inflow and actual release of the ith reservoir 
during the time interval [t, t+1), respectively, Ra,d

t and ESi
t are the actual 

diversion discharge and water loss (e.g., evaporation and infiltration) of 
the ith reservoir during this time interval, respectively, Δt is the time 
step. Three operating objectives are summarized in Table 2: (1) hydro-
power output at each time step is calculated with the output equation 
ηi

t = min
(
9.81γiQi

tHi
t ,Pi

max
)
, where the function min ( ⋅) refers to taking 

the minimum value, γi is the power coefficient, Qi
t is the power release, 

Hi
t is the hydraulic head, and Pi

max is the maximum allowable output, (2) 
water diversion volume is aggregated by actual diversion flow Ra,d

t , and 

(3) the degree of hydrological alteration, D =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
H
∑

D2
h

√

(further details 
in Section 3.1.1 and Supplementary Text S2), arising from reservoir 
operations is determined from actual Danjiangkou Reservoir release 
sequences rDjk

i .
Since it is unrealistic and unsafe to assume that future streamflow 

will not deviate from historical observations (Giuliani et al., 2016), we 
perform a systematic simulation over N = 300 ensemble members and T 
= 30 years (i.e., 300 unique 30-year streamflow sequences) for syn-
thetically generated hydrological series. Here, we assume hydrologic 
stationarity in the synthetic flows since the Mann-Kendall tendency of 
historical series is insignificant at a significance level of p < 0.05 (Fig. 2
(c)). First, we simultaneously generate monthly flows using a Cholesky 
decomposition of resampled historical flows, maintaining spatial and 
autocorrelation as per Kirsch et al. (2013). Second, we disaggregate 
monthly flows into 10-day flows using Nowak et al. (2010)’s 
nearest-neighbor approach, which preserves synthetic monthly totals 
based on the probabilistic selection of the k nearest neighbors in the 
historical monthly record and proportional scaling of historical 10-day 
flows at each site. The validation of these synthetic flows is provided 
in the Supplementary Material.

3. Methodology

In this section, the EMODPS method is used to identify robust 
operating policies across four robustness problem formulations. As 
illustrated in Fig. 3, the main modules include: (1) problem formulation 
focusing on the robustness of system objectives, particularly the NRI- 
dominated formulation, (2) parameterization of reservoir operating 
policies, (3) explicit robust optimization of these policies, and (4) 
diagnostic verification of the optimized policies. Each module is detailed 
in the subsequent subsections.

3.1. Problem formulations with different robustness objectives

Different robustness formulations reflecting different decision- 
makers’ attitudes may lead to different or even contradictory decisions. 
Referring to Quinn et al. (2017), we develop four candidate formulations 

representing a range of stakeholder risk preferences: (1) expected value 
(EV), (2) second-worst (SW), (3) expected value & standard deviation of 
water diversion (EV&SDWD), and (4) expected value & normalized 
robustness indicator of water diversion (EV&NRIWD). These formula-
tions can represent a broad spectrum of attitudes, from highly 
risk-averse to risk-neutral.

In each formulation, the simulation of operating policies is per-
formed over N ensemble members and T years of synthetic flows, with 
each T-year simulation starting on May 1st, the first day of the monsoon 
season, and ending on April 30th. The general mathematical formula for 
assessing the performance of the dth objective across the nth member of 
T-year simulations (Jd(n)) is shown below. 

Jd(n) = Ψd
Y∈(1,...T)

[
Φd

t∈(1,...,36)[gd(t,Y, n)]
]
, n ∈ (1, ...,N) (3) 

where gd(t,Y, n) is the dth objective of the nth ensemble member in the 
tth period of the Yth year, Φd is an operator for the aggregation of 
gd(t,Y, n) within an annual operating horizon (t ∈ 1,...,36), e.g., the sum 
(Σ), and Ψd is a statistic used to filter the noise over ensemble members, 
e.g., the mean or the 90th percentile. The optimal operating policy p*

θ 
satisfies the high-dimensional objective optimization condition, which is 
described below. 

p*
θ = arcmax Jpθ (4) 

where θ is a vector of decision variables describing the operating policy 
set pθ (defined in section 3.2) and Jpθ is the objective vector of 
[
JHydro(pθ), JWD(pθ), − JEco Alt(pθ)

]T, where JEco Alt with a negative sign 
indicates that a smaller value is preferred (see details in Supplementary 
Text S2). More descriptions for each optimization objective under each 
formulation are provided in sub-sections 3.1.1–3.1.4.

3.1.1. Expected value (EV) formulation
The EV formulation, known as Laplace’s principle of insufficient 

reason (Laplace and Simon, 1951), assumes a risk-neutral operator who 
is concerned with the average performance of operating objectives 
across plausible future states. In the EV, the first objective, JEV

Hydro, in-
volves maximizing annual average hydropower production, which 
supports the goal of the Central China State Grid to generate cleaner 
hydropower to substitute for nonrenewable fossil fuels. The EV optimi-
zation of hydropower is performed across a 300-member ensemble over 
30 years of simulation (ΦHydro =

∑36
t=1 and ΨHydro = ET). A simulation 

period of 30 years is set to ensure that enough hydrological regimes are 
considered to generate optimal policies that can be generalized to un-
known hydrological conditions. An ensemble of 300 simulations over 30 
years can provide adequate flow samples for the reasonable perfor-
mance of optimal policies during a potential long-term planning period 
(Labadie, 2004). For cascade reservoirs, we maximize hydropower 
generation rather than revenue because the local electricity market is 
regulated by the government and energy is sold at a fixed price of 0.21 
RMB/kWh. The maximization of both is essentially the same once the 
price is fixed.

The second objective, JEV
WD, involves maximizing the annual average 

water diversion volume. As with hydropower, the operator is set to 
ΦWD =

∑36
t=1, and ΨWD = ET over each ensemble member of the syn-

thetically generated streamflow series. It assumes that the operators 
expect the MSWT project to play a long-term role in relieving water 
shortages in the North China Plain (Long et al., 2020). The market price 
of water diversion from MSWT is 0.13 RMB/m3.

The final objective of this formulation, JEV
Eco Alt , is to minimize the 

degree of hydrological alteration. Unlike the first two cumulative opti-
mization objectives, this objective requires the altered streamflow con-
dition (reservoir outflow) to be as consistent as possible with the natural 
condition (natural inflow). From a quantitative perspective, the IHA 
index that describes flow regimes based on magnitude, duration time, 

Table 2 
Three operating objectives of the cascade-reservoir system.

Objective Unit Calculating equation Key variable a

Hydropower generation kWh
∑

min
(
9.81γiQi

tHi
t ,Pi

max
)

Qi
t

Water diversion m3 ∑
Ra,d

t Ra,d
t

Hydrologic alteration degree –
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
H
∑

D2
h

√
rDjk
t

a "Key variable" refers to the critical variable that directly determines the 
corresponding operating objective performance in the cascade-reservoir system.
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the timing of extreme flows, and frequency, can be used for this objec-
tive (Mohanty and Tare, 2022). The IHA parameters are listed in 
Table S1, and JEV

Eco Alt is calculated with Eq. (S2). The corresponding 
operator ΦEco Alt is related to annual outflow sequences ({ ⋅}), and the 
statistic ΨEco Alt is set to a time series over T consecutive years ({ ⋅}).

3.1.2. Second-worst (SW) formulation
The SW formulation targets the tail performance of the system. The 

concept was first proposed by Savage (1951), who assumed a risk-averse 
attitude that guarantees a certain security level even in case of extremely 
adverse scenarios. It should be noted that unlike a traditional worst-case 
(WC) formulation consisting of a 9000-member ensemble and 1-year 
simulations, we keep its synthetic hydrology same as in EV. The moti-
vations are threefold: (1) comparisons of these formulations can focus on 
the specific optimization policies themselves if the same synthetic hy-
drological series are used; (2) The SW across 30 years could be more 
stable than worst-case (WC) in the same sampling size, where the latter 
has a higher sampling variance and may be unbounded. Prior studies 
re-evaluated the policies derived from SW and WC, respectively, on an 
out-of-sample streamflow set, and the results indicated that policies 
from WC cannot be effectively generalized (Giuliani et al., 2018; Quinn 
et al., 2017); and (3) aggregating objectives over the 30-year simulation 
is more appropriate for long-term reservoir management, especially for 
hydrological streamflow alteration that is of little significance in 1-year 
simulations.

In the SW formulation, we calculate annual hydropower generation 
and water diversion volume for each year within each ensemble mem-
ber, i.e., Φ =

∑36
t=1. We then maximize the corresponding objective 

values in the SW case over 30 years (i.e., Ψ = quantileT,sw{Φ}), which is 
equivalent to maximizing the values over a 29-year return period. 
JSW

Eco Alt is the same as that in EV because hydrological alteration is a long- 
term ongoing process.

3.1.3. Expected value and standard deviation of water diversion 
(EV&SDWD) formulation

The EV&SDWD formulation offers a compromise between the risk- 
neutral EV and risk-averse SW formulations, with an additional 
perspective on the interannual variability of water diversion volume 
across multiple scenarios. It is designed to meet the national strategic 
requirement for the region, ensuring a stable water supply capability 
(Long et al., 2020). In the traditional optimization literature, it has long 
been acknowledged that there are often contradictory interactions be-
tween zero-order moment (mean) and high-order moments (e.g., vari-
ance and skewness) of stochastic performance measures (Pinto et al., 

2019). Therefore, decision-makers are sometimes willing to sacrifice 
exceptionally good years of water diversion if long-term management 
policies can mitigate exposure to drought-induced diversion losses. In 
water-related fields, these concerns have been eliminated by including 
measures of variability other than expectation, either as additional 
objective functions related to the robustness of multiobjective optimi-
zation (Roach et al., 2016), as constraints (Deb and Gupta, 2006), or 
through comparisons of the cumulative distribution functions of alter-
natives (Marquez Calvo, 2020). In this formulation, we take the first 
method and explicitly quantify the relationship between maximizing the 
expected value of the annual water diversion volume and minimizing its 
standard deviation by adding an extra objective to the EV formulation: 
JEV&SDWD

SDWD 
(Φ =

∑36
t=1 and Ψ = stdT). All other objectives and constraints 

are the same as those in the EV formulation.

3.1.4. Expected value and normalized robustness indicator of water 
diversion (EV&NRIWD) formulation

The final formulation we propose here is to develop a composite NRI, 
which is designed to simultaneously optimize the SW and SD metrics for 
water diversion. This formulation replaces the optimization objective 
JEV&SDWD

SDWD 
in EV&SDWD with JEV&NRIWD

NRIWD
, while keeping all other objectives 

identical. For the SW and SD metrics of water diversion, there are two 
options for obtaining NRI: linear weighting or by measuring the 
Euclidean distance from the origin in the space of the two metrics. We 
use the first easy-to-calculate approach to aggregate the NRI, as shown 
in Eq. (5). 

NRIWD(x)= (NormSWWD(x)+NormSDWD(x)) /2 (5) 

where SWWD and SDWD are assumed to be equally important. The NRI 
varies from 0 to 1; the larger the value is, the more robust the corre-
sponding solution x is. The normalization of the two metrics (NormSWWD 
and NormSDWD) is performed as follows. 

NormSWWD(x)=
SWWD(x) − min(SWWD)

max(SWWD) − min(SWWD)
(6) 

NormSDWD(x)=
max(SDWD) − SDWD(x)

max(SDWD) − min(SDWD)
(7) 

where max(SWWD) and min(SWWD) are the preset maximum and mini-
mum thresholds of SW water division, respectively, max(SDWD) and 
min(SDWD) are the maximum and minimum possible standard deviations 
of water division, respectively. Another general type of satisficing 
robustness formulation is not considered here because it refers to deci-
sion-maker’s tendency to seek outcomes with acceptable performance 

Fig. 3. Main modules for identifying robust operating policies via the EMODPS method.
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relative to a threshold. However, the adaptation of our reservoir regu-
lation has no cost, and consequently, the decision-makers will naturally 
adapt to achieve optimal performance.

A summary of these objective calculations for each formulation is 
given in Table 3.

3.2. RBF-based reservoir operating policies

To best meet all the objectives defined in sub-sections 3.1.1-3.1.4, we 
need to specify a form of operating policy that describes release decision 
as a function of time-varying inputs. We determine RBFs because of their 
reported scalability with respect to the state-decision space and past 
observed success in generating policies that can be effectively validated 
with out-of-sample sets (Giuliani et al., 2016; Quinn et al., 2019). The 
RBF-based policy representation is expressed in Eq. (8), where ui

t is the 
policy-designated release for the ith reservoir at time t (normalized to [0, 
1]), 

(
Xi

t
)

m is the value of the mth of M time-varying inputs at time t for 
the ith reservoir (normalized to [0, 1]), and wi

k, ci
k,m, and bi

k,m are the 
weights, centers, and radii of K RBFs associated with the ith reservoir, 
respectively. 

ui
t =

∑K

k=1

wi
k exp

[

−
∑M

m=1

((
Xi

t
)

m − ci
k,m

)2

bi
k,m

]

(8) 

where wi
k ∈ [0, 1] with 

∑K
k wi

k = 1 ∀i, ci
k,m ∈ [ − 1,1], and bk,m ∈ (0,1

]
. We 

model reservoir releases using 3 inputs: reservoir storage, reservoir 
inflow and time within a water year. The number of RBFs, K, is deter-
mined by an exhaustive search process, i.e., increasing K until the in-
dicator (e.g., hypervolume) of the Pareto front of traditional 
deterministic optimization does not significantly change (see Text S3 for 
more details).

3.3. The multiobjective ROPAR algorithm

The ROPAR algorithm, first proposed by Marquez and Solomatine 
(2019) for two-objective robust optimization, enables an explicit visu-
alization of uncertainty propagation from model inputs to the outputs of 
optimal solutions. It can discover robust solution clouds through prob-
abilistic analysis. Here, it is adopted and extended to solve our robust 
three-objective optimization after validating against a benchmark 

function (see Text S4). The procedure of the ROPAR algorithm is shown 
in Fig. 4, and the main steps are summarized below. 

Step 1: For uncertain inputs ε (specifically, reservoir inflow in this 
study), they are randomly generated N times to form an ensemble of 
N members. For each deterministic member εn (n = 1, 2, ...,N), the 
corresponding Pareto-optimal subset Fn is determined through in-
dividual multiobjective optimization, where Fn denotes the vector of 

all objective functions 
(

f1,n, ..., fr,n
)

.

Step 2: Initially, select an objective function fi (i ∈ [1, 2, ...r]); it is 
designated as the nonpivotal objective function, while the remaining 
objectives (or parts thereof) are considered pivotal. Choose an 
arbitrary level L for the nonpivotal function, and then select a solu-
tion closest to this level from each Pareto set Fn to construct the 
candidate solution set Λ.
Step 3: Build an empirical distribution based on the values of the 
pivotal functions from the members of set Λ. The empirical distri-
bution can be used to approximate the joint probability density 
function (pdf) characterizing the uncertainty of the pivotal functions 
at the chosen level L. A narrower empirical distribution indicates less 
sensitivity of the pivotal objectives to stochastic inputs, thereby 
signifying greater robustness.
Step 4: Repeat steps 2–3 with various levels L to replace the candi-
date set Λ, until finding the optimal level of the nonpivotal function, 
characterized by the minimum variance of the empirical distribu-
tion, which mathematically quantifies the narrowness described in 
Step 3.
Step 5: Create the final set Λʹ once the final level L is determined. Λʹ 

should contain one optimal solution from every Fn with the final 
level L.
Step 6 (optional): Select another objective function to be nonpivotal 
and (parts of) others to be pivotal. Repeat steps 2–5 to expand Λʹ until 
all nonpivotal objectives are traversed.
Step 7: Finally, the robust solution is determined from Λʹ by 
measuring certain aggregation criteria of pivotal functions over the 
N-member ensemble, such as the aggregated economic benefit of 
hydropower generation and water diversion in this study.

The implementation of ROPAR employs MOEAs as its core optimizer 
in full multiobjective optimization. Among these MOEAs, the non-
dominated sorting genetic algorithm version III (NSGA-III) (Deb and 
Jain, 2014) has gained recent prominence for its exceptional search 
capabilities, especially in high-dimensional optimization space (Dariane 
et al., 2021). It exploits global probabilistic operators for mating, mu-
tation, and selection processes, and incorporates the concept of refer-
ence points to preserve solution diversity. Specifically, NSGA-III is 
applied to optimize policy parameters, setting the hyperparameter 
values to 200 for population size and 1000 for the number of 
generations.

3.4. Diagnostic verification of optimized policies

The final module of EMODPS focuses on the diagnostic validation of 
optimized policies from section 3.3. It involves two main aspects: (1) re- 
evaluating these control policies against an out-of-sample set of plau-
sible streamflow ensembles, and (2) contrasting them with those 
generated using common robust techniques to highlight their differ-
ences. In addressing the first case, we generated an expanded ensemble 
of stochastic streamflow, comprising 3000 members of 30-year synthetic 
streamflow, which is ten times the number of ensemble members used 
during optimization. ROPAR policies are considered truly robust if they 
achieve optimal results in re-evaluation akin to those in optimization, i. 
e., achieving the optimal pivotal objective performance and maintaining 
a narrow joint pdf.

We also assess the performance of robust optimal policies from each 

Table 3 
Summary of the four formulations considered in this study.

Formulation Original 
reference

Objective Scenario Φ Ψ

EV
Laplace and 
Simon (1951)

JEV
Hydro All ∑36

t=1
ET

JEV
WD All ∑36

t=1
ET

JEV
Eco Alt All {⋅} {⋅}

SW
Savage (1951) JSW

Hydro Second 
worst

∑36
t=1

QuantileT, 

SW

JSW
WD Second 

worst

∑36
t=1

QuantileT, 

SW

JSW
Eco Alt All {⋅} {⋅}

EV&SDWD Quinn et al. 
(2017)

JEV&SDWD
Hydro

All ∑36
t=1

ET

JEV&SDWD
WD

All ∑36
t=1

ET

JEV&SDWD
Eco Alt

All {⋅} {⋅}

JEV&SDWD
SDWD

All ∑36
t=1

stdT

EV&NRIWD Marquez Calvo, 
2020

JEV&NRIWD
Hydro

All ∑36
t=1

ET

JEV&NRIWD
WD All ∑36

t=1
ET

JEV&NRIWD
Eco Alt

All {⋅} {⋅}

JEV&NRIWD
NRIWD

All ∑36
t=1

NRI
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problem formulation in achieving the objectives of the other formula-
tions. By observing almost unchanged performance in the objective 
across various formulations, we gain insight into the stability of a spe-
cific robustness objective even when it is not considered in the formu-
lation. Additionally, an analysis of the system’s state behavior helps us 
understand why the same operating objectives respond differently to 
uncertain inflows under robust policies derived from different problem 
formulations.

For the second case, we benchmark against two other robustness 
optimization methods, previously applied by Quinn et al. (2017) and 
Watson and Kasprzyk (2017). Quinn et al. (2017)’s method is 
emblematic of Implicit Robust Optimization (IRO), which embeds the 
impact of uncertainty in a single Pareto front. Compared with IRO, 
ROPAR is associated with a higher computational burden because it 
performs full optimization for each sampled uncertainty realization but 
allows explicit propagation of uncertainty to the final solutions to be 
monitored. The method by Watson and Kasprzyk (2017), known as 
multi-scenario multi-objective robust decision making (Multi-scenario 
MORDM), shares similarities with ROPAR in treating each ensemble 
scenario independently. However, it differs in its approach to robustness 
metrics, favoring post-optimization analysis over ROPAR’s direct opti-
mization strategy. One of our aims is to demonstrate ROPAR’s benefits 
over these traditional methods.

4. Results

4.1. Robust policies established with ROPAR

The Pareto front for each problem formulation is presented in the 
multidimensional objective space in Fig. 5. Each point signifies an 
optimal policy. Notably, the additional water diversion metric of inter-
est, beyond the expected values, in both the EV&SDWD formulation 
(Fig. 5(c)) and the EV&NRIWD formulation (Fig. 5(d)), is manifested 
through color in the visual three-dimensional space.

In Fig. 5(a) - 5(d), a significant nonlinear tradeoff is observed be-
tween water diversion volume and hydrologic alteration degree. This 
tradeoff is quantifiable by the slope of the solution set in these two di-
mensions, where minor changes in hydrologic alteration markedly 
impact water diversion fluctuations. The tradeoff between alteration 
degree and hydropower generation is comparatively weak, and the 
tradeoff between water diversion and hydropower is the least signifi-
cant. Crucially, substantial water diversion from this basin greatly dis-
rupts the downstream water requirements, contrasting with the 
regulated water by reservoirs for hydropower, which is smoothly 
released downstream. In Fig. 5(b) - 5(d), the distribution of the upper 
solutions mirrors that in Fig. 5(a), but the bottom solutions are clustered 
in one block. Minor reservoir disturbances, such as an alteration degree 
near 0.25, lead to a more competitive generation-supply relationship. 

Fig. 4. Procedure of the robust multiobjective optimization and probabilistic analysis (ROPAR) algorithm for a general robust optimization problem.

Fig. 5. Pareto frontier approximations for the formulations: (a) EV; (b) SW; (c) EV&SDWD; (d) EV&NRIWD. In Fig. 5(c) and (d), the performance of the fourth objective 
performance is represented by color. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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Additionally, the magnitudes of the SW hydropower generation and 
water supply in Fig. 5(b) do not differ much from expected values, 
suggesting that the outcomes do not vary dramatically among years.

To further illustrate how the distribution of ROPAR solutions can 
serve as a preliminary indicator of solution robustness, we selected Fig. 5
(a) and (b) for detailed analysis, while Fig. 5(c) and (d) were omitted due 
to their similarity. In Fig. 5(a), the EV solutions cluster in the upper 
objective space and disperse in the lower space. This distribution in-
dicates that policies with higher alteration are more effective in 
enhancing the adaptability of water diversion and hydropower genera-
tion to an uncertain external environment. The empirical distribution 
patterns of pivotal functions at two different levels of alteration (the 
nonpivotal function in our study), as illustrated in Fig. 6(a) and (c), 
further corroborate this insight. For a high alteration degree of 0.65, 
there is a 70% probability that the expected outcomes for hydropower 
and water diversion will fall within [5.32, 6.05] billion kWh and [6.08, 
7.70] billion m3, respectively, displaying a ’thin and tall’ joint pdf. Less 

variability is observed for hydropower compared to water diversion. 
With a lower alteration degree of 0.25, the 70% confidence intervals for 
hydropower and water diversion in Fig. 6(c) are [4.56, 5.67] billion kWh 
and [3.01, 4.50] billion m³, respectively, with a ’short and fat’ joint pdf. 
It results in an estimated annual economic loss of ~530 million RMB 
compared to the high-alteration alternative. However, the variability in 
water diversion is narrower in this formulation due to the generally 
lower water levels in the Danjiangkou Reservoir.

The joint pdfs of the pivotal hydropower and water diversion out-
comes in SW at alteration degrees of 0.65 and 0.25 are depicted in Fig. 6
(e) and (g), respectively. The 70% confidence intervals for hydropower 
at these alteration levels are [3.91, 4.63] and [2.86, 4.10] billion kWh, 
and those for water diversion are [4.12, 5.84] and [1.80, 2.50] billion 
m3, respectively. A single solution was randomly selected from each of 
Fig. 6(a), (c), 6(e), and 6(g) to represent the validation of the ROPAR 
probability. These were fed back into the synthetically optimized hy-
drological series, with the statistical results presented in Fig. 6(b), (d), 6 
(f), and 6(h), respectively. The marginal distributions shapes closely 
align with those of the pdfs projected onto the coordinate axes in the left 
column of Fig. 6. Furthermore, we find that these scatter plots in Fig. 6
(d) and (h) exhibit good correlations in the absence of strong human 
interventions.

To identify robust solutions for each formulation, we select the level 
of 0.25 as the nonpivotal alteration degree in the SW formulation and 
0.65 for other formulations to form the respective candidate set Λʹ, 
which corresponds to relatively narrow empirical pdfs of pivotal ob-
jectives across the synthetic hydrological ensemble (shown in Fig. 5(a)-5 
(d)). The objective results for Λʹ are then reported in Fig. 7a–d using 
parallel axes plots for clarity. These plots label an alternative solution as 
a shaded line that intersects each vertical axis at the value achievable 
across the synthetically optimized hydrological series. The axes are 
oriented such that the optimal direction is upward. All lines are shaded 
with respect to the hydropower objective performance, with darker 
shades indicating higher yields. The ideal solution for each set in Fig. 7 is 
therefore a dark horizontal line on the top of each axis. However, these 
lines commonly intersect between pairs of vertical axes, as superior 
performance for one objective comes at the cost of inferior performance 
for the other. Only a few solutions (dark lines) can achieve excellent 
power generation and moderate water supply at relatively mild degrees 
of alteration. The final robust optimal solution for each problem 
formulation is determined from these possible solutions, in reference to 
the local government’s water management measures that aim to maxi-
mize the total economic benefit of pivotal hydropower and water supply 
(as detailed in section 3.1.1). The performance is summarized in Table 4, 
and it is observed that the robust EV&NRIWD solution p*

θ(EV&NRIWD) we 
develop performs well, relative to other solutions across all considered 
objectives.

4.2. Verification of robust policies

The robust solutions from Table 4 were diagnosed using the out-of- 
sample streamflow set, with the results detailed in Table 5 and Fig. 8. 
Table 5 provides a 70% probability interval for the marginal distribution 
of the joint pdf across two different streamflow sets. The similarity in 
probability intervals between the optimization and out-of-sample sets 
indicates that the original probability analysis used in ROPAR was 
appropriate and reliable. In the SW formulation, hydropower variability 
exhibits some fluctuation; however, these are not substantial, particu-
larly when compared to a worst-case formulation, where our tests 
revealed more severe deterioration in variability with larger sample 
sizes. The other water diversion metrics in the EV&SDWD and EV&NRIWD 
formulations exhibit reliable behavior, although they are not used as 
pivotal functions in determining robust solutions.

Fig. 8 provides the deterministic results for robust optimal policies 
across the hydrological ensemble series. This is drawn by evaluating 

Fig. 6. Probability density functions (pdfs) of annual hydropower generation 
and water diversion. (a)–(d) are for the EV formulation, and (e)–(h) are for the 
SW formulation. (a) and (c), (e) and (g): joint empirical pdfs of solutions (based 
on a two-dimensional plane) for alteration degrees of 0.65 and 0.25, with 
marginal pdfs projected onto two coordinate axes; (b) and (d), (f) and (h): 
hydropower generation and water diversion distributions of randomly picked 
solutions over the synthetically optimized streamflow series.
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annual performance with the operator corresponding to each subplot. 
The first row shows the three EV objectives, while the second and third 
rows show the SW objectives and the additional water diversion metrics. 
To further validate the robustness framework’s precision, robust control 
policies with expected alteration degrees of 0.35, 0.45, and 0.55 iden-
tified by ROPAR are examined. These policies are represented by points 
within the subplots that are positioned on the X-axis according to the 
objective values reached during the optimization set, and on the Y-axis 
according to the values reached in the out-of-sample validation set. Each 
subplot is oriented with the top-right corner denoting the optimal di-
rection. Solutions that maintain consistent values during optimization 
and validation phases are aligned near the 1:1 line, marked by a black 
dashed line. A solution’s performance is considered improved if it is 

located above this line during re-evaluation, and diminished if it falls 
below. Furthermore, Fig. 8 sheds light on the most suitable formulation 
for our case study. If the points derived from the proposed problem 
formulation consistently occupy the top-right regions across all subplots, 
specific attention to the formulation is warranted.

The deterministic results further confirm the consistency of the 
proposed framework, as evidenced by the clustering of most solutions 
near the 1:1 dashed line in Fig. 8, albeit with a few demonstrating 
improved or diminished performance upon re-evaluation. In Fig. 8(c), 
the points are concentrated around a few specific spots, illustrating that 
robust solutions reflect the overall long-term hydrological alteration 
degree well. Notably, annual average hydropower for these solutions, 
with alteration degrees ranging from 0.35 to 0.65, shows modest 

Fig. 7. Statistical results for all alternatives in the candidate set Λʹ: (a) EV formulation, (b) SW formulation, (c) EV&SDWD formulation, and (d) EV&NRIWD 
formulation.

Table 4 
Simulation performance of the identified robust solutions for each of the four problem formulations with synthetically optimized streamflow series.

Solutions Expected hydropower 
(billion kWh)

Expected water 
diversion (billion m3)

Alteration 
degree (− )

Second-worst hydropower 
(billion kWh)

Second-worst water 
diversion (billion m3)

SDWD 

(billion m3)
NRIWD 

(− )

p*
θ(EV) 5.49 7.80 0.65 3.42 2.98 1.44 0.63

p*
θ(SW) 5.12 2.81 0.25 3.05 1.56 0.60 0.55

p*
θ(EV&SDWD) 5.91 6.15 0.63 3.49 3.08 0.95 0.75

p*
θ(EV&NRIWD) 5.74 6.45 0.62 3.46 3.71 0.81 0.84

Table 5 
70% probability intervals for some objectives under the robust policies using both optimization and validation streamflow sets.

Solutions Alteration degree Objective Optimization set Validation set

Lower limit Upper limit Band width Lower limit Upper limit Band width

p*
θ(EV) 0.65 JEV

Hydro (billion kWh) 5.25 5.74 0.49 5.25 5.75 0.50

JEV
WD (billion m3) 7.44 8.13 0.69 7.45 8.16 0.71

p*
θ(SW) 0.25 JSW

Hydro (billion kWh) 3.31 3.91 0.60 3.30 3.94 0.64

JSW
WD (billion m3) 1.72 2.12 0.40 1.74 2.14 0.40

p*
θ(EV&SDWD) 0.63 JEV&SDWD

Hydro (billion kWh) 5.64 6.18 0.54 5.65 6.18 0.53

JEV&SDWD
WD (billion m3) 5.95 6.36 0.41 5.94 6.36 0.42

JEV&SDWD
SDWD 

(billion m3) 0.73 1.16 0.43 0.73 1.16 0.43

p*
θ(EV&NRIWD) 0.62 JEV&NRIWD

Hydro (billion kWh) 5.48 5.97 0.49 5.49 5.99 0.50

JEV&NRIWD
WD (billion m3) 6.27 6.64 0.37 6.26 6.65 0.39

JEV&NRIWD
NRIWD 

(− ) 0.77 0.92 0.15 0.76 0.92 0.16
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variation; this is evident from the clustering of points in the top-right 
corner of Fig. 8(a), suggesting a negligible impact on expected hydro-
power generation due to hydrological alterations. Conversely, the 
dispersion of points in Fig. 8(b) implies a greater influence of hydro-
logical alterations on expected water diversion volumes. From an eco-
nomic perspective, decision-makers favor high-alteration solutions, yet 
they must account for the adverse effects of these EV solutions on the 
standard deviation of water diversion, as shown in Fig. 8(f). Incorpo-
rating objectives related to interannual variability, such as the first- 
order moment of water diversion, allows high-alteration solutions to 
be more stable, albeit with some performance trade-offs with expected 
performance. The results align with Quinn et al. (2017), who demon-
strated that water optimization problems factoring in the standard de-
viation of benefits in their objective functions yield more satisfactory 
policies. Moreover, the max-min criterion, a nonnegligible robustness 
metric in practical engineering (Maier et al., 2016), shows superior 
performance in the SW formulation compared to the EV&SDWD formu-
lation. This criterion, when combined with other robustness metrics 
through our proposed NRI, can enhance outcomes. As observed in Fig. 8
(g), the optimal NRI reaches 0.84, corresponding to an SW annual water 
diversion of 3.71 billion m3 and a standard deviation of 0.81 billion m3. 
These represent improvements of 24.5% and 43.7%, respectively, over 
the EV formulation, but incur an additional cost of approximately 123 
million RMB.

The final component of the first verification module involves eval-
uating the time-varying probabilistic behavior of the reservoir system 
under these robust ROPAR policies. Fig. 9 presents the likelihood of 
various reservoir water levels across the validation flow set in 

logarithmic space. The colors red, yellow, and blue correspond to high, 
moderate, and low probabilities, respectively. Across all solutions, water 
levels are maintained below flood control limits and within permissible 
operating ranges. However, the overall shapes of these time-varying pdfs 
show significant differences. Tracing the highest probability streak in 
red, Fig. 9(c) and (d) reveal that under the robust SW policy, Ankang 
Reservoir water level remains consistently high throughout the year. 
This elevation aids power generation and diminishes downstream flow 
to the Danjiangkou Reservoir, particularly after the monsoon season, 
leading to lower water levels in Danjiangkou with restricted diversion. 
In Fig. 9(a)-9(b), the robust EV policy, targeting high flow alteration, 
will improve water diversion volume primarily by raising Danjiangkou 
Reservoir water level during the nonflood season, which inevitably 
lowers the water level at Ankang Reservoir. Affected by intensive human 
interventions, interannual water level variations in both reservoirs 
exhibit high uncertainty, with yellow and red colors (moderate to high 
probability) over the entire feasible interval. The compromise EV&N-
RIWD formulation demonstrates more balanced behavior than the first 
two strategies. The Ankang Reservoir water level in the red high- 
probability region (Fig. 9(e)) remains high from May to September 
due to monsoonal rainfall. With the significant decrease in precipitation 
at the end of the rainy season, the Ankang Reservoir water level begins 
to drop but remains moderate during the dry season. It ensures that the 
Danjiangkou Reservoir water level is in the upper middle zone in Fig. 9
(f) for sufficient water diversion via the MSWT project.

Fig. 8. Validation of robust solutions for each considered formulation (each subplot is oriented such that the optimal direction is toward the upper-right corner).
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4.3. Comparison with other representative optimization methods

In this section, an in-depth analysis of ROPAR against other repre-
sentative optimization methods is given in terms of the computational 
cost and optimization results. Given that all optimization methods 
require model runs, the computational cost of these methods is 
expressed by the total number of function evaluations (NFE), assuming 
the same cost for a single function evaluation.

The NFE of ROPAR primarily entails the generation of Pareto fronts 
(Step 1 in section 3.3) and the determination of the robust solution 
(Steps 2–7). As the stopping criterion for obtaining one Pareto front set 
in our study is to reach a prespecified number (ne) of evaluations of the 
objective functions, the NFE for full Pareto optimization is derived as 
N*ne, where N is the number of samples with the uncertain input. To 
find the robust solution from the set of N solutions at level L, the number 
of remaining model runs is N*N. If analyses are performed for several 
(nl) levels of nonpivotal functions, the remaining NFE is nl*N2. Conse-
quently, the total NFE of all ROPAR steps is N*ne + nl*N2. The IRO 
method (Quinn et al., 2017) uses a mean operator to filter each synthetic 
ensemble in a round of optimization, requiring only ne evaluations of the 
objective function. However, each evaluation of the objective function 
requires N executions of the complex operating model (equal to the 
number of input samples). As such, the NFE of IRO is N*ne. Note that the 
value of ne is usually set large enough for the algorithm to converge, and 
the additional term nl*N2 in ROPAR can be disregarded if ne ≫ nl*N. 
Multi-scenario MORDM performs the same full Pareto optimization 
procedure as ROPAR. The NFE of this part is N*ne if the number of its 
reference scenarios is the same as ROPAR for a fair comparison (Watson 
and Kasprzyk, 2017). In its subsequent post-optimization analysis, each 
candidate solution for each scenario is fed into the N-scenario ensemble 
for robustness evaluation. The NFE of this part is pop*N2, where pop is 
the population size of NSGA-III. The total NFE of Multi-scenario MORDM 
is therefore N*ne+ pop*N2. All these NFEs are close, and the efficiency of 
all methods can be improved with parallelized versions. In the ensemble 

member loop of a parallel ROPAR, each deterministic NSGA-III can be 
run independently by using a cluster of several computers or cloud 
computing services.

Regarding the optimization outcomes, the IRO solutions lack a clear 
visual representation that could elucidate which Pareto direction offers 
greater robustness (detailed in Text S4). In the EV&NRIWD problem 
formulation, we select a solution from the IRO’s single Pareto front that 
is closest to a hydrological degree of 0.62. This level matches the 

Fig. 9. Probabilistic trajectories of the water levels in the cascade reservoir system for three selected robust solutions from the EV (a–b), SW (c–d) and EV&NRIWD 
(e–f) formulations.

Fig. 10. Hydropower generation, water diversion and NRI performance ach-
ieved through the optimal IRO solution (black circle) and the robust candidate 
set Λʹ (red circles) identified in the EV&NRIWD formulation by ROPAR. (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.)
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hydrological degree of the ROPAR solution p*
θ(EV&NRIWD), thereby 

serving as a fair comparison of methods. Fig. 10 illustrates the perfor-
mance results for hydropower, water diversion and NRI estimates of the 
IRO solution (black circle) and robust candidate set Λʹ (red circles) 
identified in EV&NRIWD by ROPAR. Depending on each synthetic 
member of the validation set, the ROPAR solutions in Λʹ might produce 
co-benefits or degrade performance compared to the IRO solution. Of 
the results, 20% of the 300 alternatives in the white region show 
improved performance for all operating objectives. For the remaining 
solutions, performance typically improves for one objective but de-
teriorates for the others (e.g., the yellow region accounting for 79% of 
the robust candidates). Similar findings are observed in the other three 
problem formulations as well (refer to Text S5), further substantiating 
ROPAR’s superiority over IRO with comparable NFEs.

When employing the three operating objectives from the EV formu-
lation alongside the NRI as a robustness metric, the Pareto fronts in the 
first EV problem formulation in section 4.1 can offer alternative candi-
dates for Multi-scenario MORDM. Following the approach of Watson 
and Kasprzyk (2017), we re-evaluated all alternatives in Fig. 5(a) 
focusing solely on the NRI robustness metric. The solution yielding the 
highest NRI is identified as the final policy for Multi-scenario MORDM. 
This policy exhibits a hydrological alteration degree of 0.53, showing a 
bias compared to the ROPAR solution p*

θ(EV&NRIWD), and reveals a 
broader joint pdf for hydropower and water diversion, with 70% con-
fidence intervals of [4.91, 5.53] billion kWh and [5.05, 5.66] billion m³, 
respectively. The optimal NRI stands at 0.78, corresponding to the sec-
ond worst, and the standard deviation of water diversion being 3.37 and 
0.85 billion m3, respectively. All water diversion performances and ex-
pected hydropower generation of Multi-scenario MORDM fall short of 
those in p*

θ(EV&NRIWD). This comparative underperformance of 
Multi-scenario MORDM against ROPAR underscores the importance of 
developing our NRI-based robustness formulation.

5. Discussion and conclusions

The substantial uncertainty associated with the future state of the 
world will make the long-term planning and management of water 
resource systems challenging. To address this issue, advanced robust 
optimization techniques are critical in identifying policies that are 
insensitive to variations in exogenous disturbances. In this context, we 
utilize and improve the EMODPS method, which not only facilitates an 
explicit visualization of model uncertainty propagation with the ROPAR 
algorithm developed by Marquez and Solomatine (2019), but also en-
ables the generalization of policies through the integration of an addi-
tional out-of-sample verification module. Furthermore, we develop four 
different robustness problem formulations to explore the implications of 
various stakeholder objectives. With a specific case illustration of the 
cascade reservoirs in the Hanjiang River basin in China, some important 
conclusions are drawn. 

(1) The ROPAR algorithm combined with EMODPS performs a full 
multiobjective optimization method to explicitly describe how 
uncertainty is propagated to the Pareto-optimal solutions and 
allows for subsequent probabilistic analyses. It is possible to 
intuitively identify solution sets with different levels of robust-
ness to input uncertainty and to select robust solutions according 
to the preferences of decision-makers. In our four robustness 
formulations with hydrological alteration degree serving as the 
nonpivotal function, we find that two different extremes 
(approximately 0.65 and 0.25, respectively) are preferred for 
minimizing uncertainty in pivotal functions (i.e., hydropower 
and water diversion).

(2) Through an additional verification module with an out-of-sample 
streamflow set, the optimal ROPAR policies have been validated 
robust. However, different quantitative formulations of operating 

objectives in the reservoir system may yield different results in 
policy extraction. Among the four problem formulations, our 
developed NRI-based formulation (i.e., EV&NRIWD) can success-
fully integrate various robustness metrics, thereby achieving an 
effective balance among all considered objectives.

(3) Taking two common optimization methods (i.e., IRO and Multi- 
scenario MORDM) as benchmarks, we perform a systematic 
analysis of them and ROPAR in terms of both computational costs 
and optimization results. The comparison shows that ROPAR 
outperforms them in finding more robust solutions, and the 
computational cost in its design can be reduced by processing 
each member of the considered ensembles in parallel.

In summary, these findings provide critical insights into how ROPAR 
within the EMODPS framework can facilitate explicit tradeoffs among 
multiobjective cascade reservoir operations. Yet, due to limitations in 
the length of the paper, several intriguing results were not fully 
explored. For instance, in our EV formulation, with increasing water 
diversion volumes, the variability of hydropower generation was un-
expectedly narrower compared to water diversion. This could be 
attributed to frequent fluctuations in the Danjiangkou Reservoir’s water 
level across different division zones (as shown in Figs. 1 and 9(b)), which 
affect the quantities of diverted and discharged water, while hydro-
power generation is only constrained by maximum and minimum output 
limits. Future research could focus on deconstructing the robust oper-
ating policy to analyze the sensitivity of different objectives to each 
input variable (Quinn et al., 2019). Additionally, the robustness of our 
ROPAR policies requires reevaluation in broader sampled scenarios for 
nonstationary inflow changes, even considering more deeply uncertain 
factors associated with cascade reservoir systems (Bertoni et al., 2019). 
To address this, more plausible future scenario generators, such as those 
incorporating variability in streamflow generator parameters, should be 
integrated within our explicit optimization framework. Finally, devel-
oping more prescriptive formulations of robustness metrics for operating 
objectives can further improve the effectiveness of robust optimization 
endeavors and acceptance of results by decision-makers.
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Software and data availability

Raw streamflow data can be accessed from the Hydrological Bureau 
of the Yangtze Water Resources Commission of China (http://www.cjh. 
com.cn). The open-source Kirsch-Nowak Streamflow Generator code 
using python language (version 3.10) can be founded in Github: https 
://github.com/julianneq/Kirsch-Nowak_Streamflow_Generator. Our 
ROPAR algorithm code using the Matlab language can be found in the 
website: https://zenodo.org/records/13932517. Author’s experimental 
environment was as follows. 

— OS: Windows 11
— CPU: Intel(R) Core (TM) i7-9700 3.00 GHz
— RAM: 64.00 GB
— GPU: NVIDIA GeForce RTX 3090

Data Availability Statement

See link in "Software and data availability".
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