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A B S T R A C T   

In the design of steel structures, optimization methods can find minimum weight solutions. However, the so-
lutions tend to have a high diversity of profiles, thereby raising costs. Grouping methods provide a solution by 
limiting the number of unique profiles, while still providing an optimal solution. This study proposes a new 
grouping method and compares its performance to that of existing methods in eight benchmark problems. In 
current practice, the grouping is mostly performed manually, relying on an engineer’s expertise. This technique 
requires no additional calculations but fails in finding a light or cheap structure. In general, all other grouping 
methods perform better than manual grouping. Out of the compared methods, the cardinality constraints method 
finds the lightest solutions. However, this method requires solving a big optimization problem, thereby 
increasing computational costs and the variance in the outcome. The new method, ‘the fully stressed combi-
natorial search’, groups members by a combinatorial search, which evaluates the estimated weight of a restricted 
set of groupings based on the weight per unit length of the members of a fully stressed design. Subsequently, 
optimization of a small search space finds the corresponding optimum profiles. These steps are repeated, in 
which the fully stressed design uses the result of the previous optimization as its reference design. The loop 
repeats until the grouping is unchanged, or the result becomes less optimal. This new method finds similar results 
as the cardinality constraints with less finite element evaluations and higher consistency in the results upon 
repetition of the analysis.   

1. Introduction 

In the design of steel structures, optimization methods can find the 
lightest solution, given a certain profile database. However, optimized 
solutions tend to have a high diversity of profiles, increasing the cost of 
the structure. By reducing the number of distinct profiles in the final 
design by grouping profiles or members, the cost is reduced, according 
to the principle of commonality [1,2]. However, the exact cost savings 
from limiting the number of profiles are hard to quantify, which makes it 
difficult to cover the principle of commonality in the objective function 
of an optimization problem [3]. Grouping methods provide a solution by 
forcing the number of distinct profiles to a desired value. 

The most popular method is to manually group members, and let an 
optimization method find the optimal profiles [1,3,4]. Biedermann and 

Grierson [5] proposed to replace this manual process by a neural 
network. However, this grouping is strongly dependent on the engi-
neer’s expertise. Another possibility provided by Biedermann and 
Grierson [6] is to group members based on their length. However, the 
length of a member cannot represent the full structural response. A 
different approach was taken by Templemann [3] who proposed to solve 
the grouping problem by reducing the profile database manually to the 
number of desired profiles. Again, the optimality of this method is 
strongly dependent on the engineer’s expertise. 

The structural behavior has been taken into account by several au-
thors [7,8] by evaluating the axial force of a uniform design. For these 
methods, the full range of forces is divided into the desired number of 
groups. Toğan and Daloğlu [9] also showed an adaptation of this method 
by considering the slenderness ratio for compressive beams. Finally, 

Abbreviations: ROT, Rules of thumb grouping method; AF, Axial force grouping method; AF+S, Axial force and slenderness grouping method; CC, Cardinality 
constraints grouping method; UCS, Ungrouped combinatorial search grouping method; FSCS, Fully stressed combinatorial search grouping method. 
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Mashayekhi, Salajegheh and Dehghani [10] proposed to group members 
based on their internal axial force, but separate the least-loaded beams 
in each group. All these methods cannot group tensile and compressive 
members together in one group, as buckling behavior is present in 
compressive members. Furthermore, these methods are not applicable to 
frame structures, as moment and shear forces influence the optimum 
result. 

A thirds class of grouping methods adapt the optimisation method to 
limit the number of distinct profiles. Barbosa and Lemonge [4] proposed 
to adapt the encoding of the problem by adding cardinality constraints. 
In doing so, the optimization methods is altered to a search space which 
only contains designs which have as maximum the number of desired 
groups. This concept shows close resemblance with the research per-
formed by Reitman and Hall [11]. They showed that an heuristic 
approach, in which the grouping or reduced element set is chosen before 
the optimization of element sizes starts, cannot find the optimum result. 
Conclusively, the two separate problems should be combined in one 
optimization problem. The cardinality constraints method does so by 
changing the encoding of the problem, thereby altering the search space. 
Barbosa and Lemonge [4] also proposed the option to add an inequality 
constraint on the number of groups, while Kanno [12] proposed an 
addition of an equality constraint. These constraints make all undesired 
designs unfeasible. Finally, adaption of the objective function is also an 
option, as proposed by Galante and Oñate [13], and Shea, Cagan and 
Fenves [14]. Although all methods which change the optimization 
procedure do not exclude the global grouped optimum in their search 
space, the search space can be large. This leads to an optimization 
problem which is hard to solve and requires many computations. 

The last class of grouping methods performs an ungrouped optimi-
zation first, which provides the basis for grouping. Templemann [3] 
proposed to use a rounding procedure, Provatidis and Ventsanos [2] 
grouped members based on the mean value and standard deviation of 
their unit weight per length, Adeli and Sarma [15] proposed a procedure 
using a multi-criteria cost-optimisation model, and Walls and Elvin [1] 
proposed to evaluate a reduced set of potential groupings. As forces are 
redistributed and displacements change with these alternations of the 
ungrouped optimum, no guarantee is given that the optimum grouped 
solution can be found. Moreover, the ungrouped optimization is a big 
optimization problem which is hard to solve. 

This research proposes a new grouping method which can find or 
approach the optimum grouped solution, while keeping the number of 
computations low. 

This paper first illustrates the optimization and grouping problem in 
Section 2. Section 3 proposes the new grouping method, which is 
compared with a selection of existing grouping methods in Section 4. 
Section 5 discusses the new method and the results, followed by con-
clusions in Section 6. 

2. Problem description 

In this paper we search for a method to select the steel profiles for a 
truss or frame structure with given geometry and load. We assume that 
the cost of the structure can be reduced by limiting the number of 
distinct profiles in the structure and that the weight of the structure is 
the main cost driver for a given number of groups. 

2.1. Optimization problem 

The structural design optimization problem consists of minimizing 
the weight of the structure: 

min(W) =
∑l

i=1
AiLiρi (1)  

with l the number of members, and Ai, Li, ρi the area, length and density 
of a member i. The profiles of the l members are variable. For a profile 

database of size m, the total search space of the optimization problem is 
ml. 

For truss structures, the design is set to normal stress constraints: 

σi

σmax
⩽1 (2)  

in which σi is the stress in a certain member, and σmax the allowable 
stress. The allowable stress are given by yield stress and buckling stress: 

σbuckling =
r2π2E

L2 (3)  

with r the radius of gyration, E the Young’s modulus and L the length of 
an element. For problems in which the profiles are specified in area only, 
the radius of gyration is estimated as r =

̅̅̅̅̅̅
4A

√
. 

For frame structures, the stress limits are specified from AISC-LFRD 
requirements [16]: 

Pu

φPn
+

8
9

(
Mux

φbMnx
+

Muy

φbMny

)

⩽1 for
Pu

φPn
⩾0.2

Pu

2φPn
+

8
9

(
Mux

φbMnx
+

Muy

φbMny

)

⩽1 for
Pu

φPn
< 0.2

(4)  

with Puk the required axial tensile strength, Pn the nominal tensile 
strength, Mux and Muy the required flexural strength in two directions, 
Mnx and Mny the nominal flexural strength in two directions, φ the tensile 
strength reduction factor (0.9) and φb the flexural resistance reduction 
factor (0.9). For the determination of the nominal compressive strength, 
the effective length factor as approximated by Dumonteil [17] is used: 

K =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1.6GAGB + 4(GA + GB) + 7.5
GA + GB + 7.5

√

(5)  

in which GA and GB are the stiffness ratios of columns and girders at the 
end joints of an element. 

Furthermore, displacement constraints are set: 

di

dmax
⩽1 (6)  

with di the displacement of a certain part of the structure and dmax the 
allowable displacement. Both stresses and displacements are calculated 
with the finite element method (FEM). 

In a realistic structural design setting, more elaborate design con-
straints need to be considered. However, the precise selection of con-
straints does not affect the performance of the grouping methods 
investigated in this study. 

2.2. Grouped optimization problem 

Solving the grouped optimization problem consists of (1) grouping l 
members of a structure, to k groups, and (2) selecting the desired 
number of k profiles from a profile database of size m. These two sub-
problems are strongly linked. If the number of profiles is to be exactly 
equal to k, the first subproblem has N1 solutions: 

N1 =

{
l
k

}

=
1

k(k − 1)⋯1
∑k

i=0
( − 1)i

(
k
i

)

(k − i)l (7)  

as defined by the Stirling number of the second kind [18]. The second 
problem has N2 solutions: 

N2 =

(
m
k

)

=
m(m − 1)⋯(m − k + 1)

k(k − 1)⋯1
(8)  

by definition of the binomial coefficient. The optimum grouped solution 
is one of the Ntotal possibilities: 
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Ntotal = N1⋅N2 (9)  

with N1 and N2 as defined by Eqs. (7) and (8). 
The methods which apply grouping before optimization solve the 

first problem by an additional analysis. This reduces the search space of 
optimization to mk options, which includes solutions which have less 
than the desired number of profiles and is therefore bigger than N2. On 
the other hand, the method of Templemann [3] manually reduces the 
number of profiles m in the second subproblem to k profiles, resulting in 
an optimization search space of kl options. Again, the search space in-
cludes solutions which have less than the desired number of profiles and 
is bigger than N1. However, in both cases not all Ntotal grouped solutions 
are included in the search space because of the heuristic solving of one of 
the subproblems. This leads to a potential exclusion of the optimum 
grouped solution. 

For the methods which change the optimization process to solve the 
grouping problem, both subproblem are solved indirectly during the 
optimization process. Therefore, at least all Ntotal grouped solutions are 
included in the search space, guaranteeing the inclusion of the optimum 
grouped solution. The cardinality constraint method of Barbosa and 
Lemonge [4] leads to a search space of mk ∙ kl solutions. However, this 
search space includes duplicate designs as well as designs with a smaller 
number of groups than the desired number. Therefore, the search space 
is larger than Ntotal. The search space of the cardinality constraint 
method can even grow larger than the ungrouped search space of ml 

when increasing the number of groups. Specifically, mk ∙ kl > ml if: 

k >

l⋅W
(

m⋅ln(m)

l

)

ln(m)
(10)  

where W(z) is the Lambert W function [19]. For the benchmark prob-
lems as presented in Section 4, this inequality holds from k = 7 for the 
72-bar truss tower and from k = 8 for the 112-bar truss dome. The other 
methods that are applied during the optimization process change the 
objective or constraint functions, thereby having no influence on the 
original search space of ml. All Ntotal grouped solutions are included but 
only a small part of the search space is part of the desired or feasible 
Ntotal solutions. 

3. New grouped optimization method 

A new grouped optimization method is proposed which reduces the 
search spaces by providing a better estimation for the first subproblem 
than existing methods, followed by an optimization on the second sub-
problem in a small search space. This first subproblem is solved by a 
combinatorial search, in which members are grouped based on their 
weight per unit length of a fully stressed design. In doing so, only a small 
but favorable part of all possible N1 options are considered. In the case of 
static determinate structures without displacement constraints, the op-
timum solution is found with the combinatorial search. In other cases, 
only the grouping of members of the combinatorial search is used as a 
possible solution to the first subproblem, and the corresponding opti-
mum profiles of the second subproblem are found by solving a reduced 
optimization problem, with a design space of size mk, including all N2 
options. As the fully stressed design is dependent on an initial design, 
which influences the force distribution and global displacements of the 
structure, the process is repeated to include these effects on the grouping 
and corresponding profiles. The framework of this method, the fully 
stressed combinatorial search (FSCS), is shown in Fig. 1. 

3.1. Fully stressed design 

The fully stressed design is the design with for each member indi-
vidually the lowest allowable weight. For the first iteration, the heaviest 
profile of the profile database is initially assigned to all members. For 

other iterations, the initial design is the result of the grouped optimi-
zation from the previous iteration. For each member, the profile list is 
evaluated from the lightest to the heaviest member, while the other 
members are equal to the initial design. The first profile for which the 
design satisfies all stress and displacement constraints is chosen. In ef-
fect, the maximum number of FEM calculations for the fully stressed 
design is NFS,max: 

NFS,max = m⋅l (11) 

Fig. 1. Framework fully stressed combinatorial search. Dashed steps are not 
applied for static determinate structures without displacement constraints. 
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The actual number of FEM calculations is less as for each member not 
the full list of profiles is analyzed, but only up to the first feasible profile. 
The collection of all individual best profiles together is the output of the 
fully stressed design. 

An example for the fully stressed design in the first iteration in case of 
a 117-bar braced frame is shown in Fig. 2a. Details of this frame are 
given in Section 4.3. The figure shows a high diversity in member 
thicknesses. In this figure, the thickness of members represents their 
weight per unit length, while members with the same resulting profile 
have the same color. 

3.2. Combinatorial search 

The combinatorial search groups members based on their unit 
weight per length, solving the first grouping subproblem. It takes as 
input the fully stressed design and evaluates the weight of a reduced set 
of Ntotal: only combinations are evaluated in which the profiles are 
increased in weight to k distinct limit profiles. It is identical to the 
combinatorial search proposed by Walls and Elvin [1], which is one 
possible solution procedure of the standardization problems proposed 
by Reitmann [20] and Reitmann and Brent Hall [11]. 

The combinatorial search evaluates the weight of NCS options: 

NCS =

(
n − 1
k − 1

)

=
(n − 1)(n − 2)⋯(n − k + 1)

(k − 1)(k − 2)⋯1
(12)  

by definition of the binomial coefficient in which n is the number of 
distinct profiles {p1, p2, … pn} in the fully stressed design, which is equal 
or less than m. The algorithm for defining the combinations is shown in 
Table 1, in which the profiles are sorted from heavy to light: weight p1 >

weight p2 > …> weight pn. 
Structural performance is ensured by assigning the heaviest profile in 

a group to the entire group. For each combination, the weight is eval-
uated and the grouping with the lowest total weight is the result of the 
combinatorial search. 

An example for optimum grouping following from the combinatorial 
search in case of the 117-bar braced frame is shown in Fig. 2b. The figure 
shows that both the columns and bracings are grouped in three groups, 
while the beams are all grouped in one group. In this figure members 
with the same member group have the same color, while the thickness 
has no meaning. 

3.3. Reduced optimization problem 

For statically determinate structures without displacement con-
straints, the resulting grouping is the optimum solution for the first 
subproblem and the corresponding k limit profiles are the optimum 
profiles of the second subproblem. In that case, the fully stressed 
combinatorial search method does not require the application of an 
optimization method. 

For other structures, the profile selection for the given grouping is 
updated in an optimization step, as the k limit profiles might not be 
optimal. Only the grouping of members from the combinatorial is used 
in this optimization. This leads to a relatively small search space of mk 

options. As the grouping is performed separate of the profile selection, 
the optimum grouped solution might be excluded. 

An example for optimum grouped design in case of the 117-bar 
braced is shown in Fig. 2c. The figure shows the optimum thicknesses 
for each of the member groups. In this figure, the thickness of members 
represents their weight per unit length, while members within a member 
group have the same color. 

3.4. Convergence criteria 

The loop of the FSCS incorporates the effect of the initial design of 
the fully stressed design on static indeterminate structures, which 

Fig. 2. Example fully stressed combinatorial search for 117-bar braced frame in 
first iteration. 
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changes the grouping of members during the iterations. The loop is 
stopped when one of two convergence criteria are met:  

1. The grouping of members as a result of the combinatorial search is 
unchanged with respect to the previous iteration.  

2. The weight of the optimum solution is higher than the weight of the 
previous iteration. 

For both convergence criteria, the grouped optimum design of the 
previous iteration is the final grouped design. For the 117 bar braced 
frame example, the final grouped design with a weight of 24779 kg is 
shown in Fig. 13. 

4. Numerical experiments 

In this study, the new FSCS method is compared to a selection of the 
grouping methods proposed in literature for eight benchmark problems. 
The optimization in all methods is performed with a genetic algorithm 
and the structures are evaluated on basic stress and displacement 
constraints. 

4.1. Genetic algorithm 

A genetic algorithm [21] is used to solve the optimization problem. A 
real-valued encoding is used [22], with a tournament selection for 
constraint handling [23], Laplace crossover [24] and power mutation 
[25]. As the optimization problem differs per benchmark problem and 
method, the population size, elite ratio, number of generations to 
convergence and number of repetitions of the optimization are varied in 
the experiments, based on the experience of the authors. As these vari-
ations influence the comparison criteria of the grouping methods, the 
options are chosen such that a fair comparison was possible. 

Because of the stochastic behavior of the genetic algorithm, each 
analysis is unique and the resulting optimum weight might differ when 
the analysis is repeated, especially for optimization problems with many 
members or available profiles. To check whether the global optimum is 
found, the analysis is repeated multiple times, as is the custom. How-
ever, repeating the analysis may be impractical for application as the 
computational effort can become high. Therefore, a measure for judging 
how well a given method is able to find a low-weight solution in a single 
run is included in the comparison by defining a certainty-criterium. This 
certainty is the percentage of how many times the optimization con-
verges to the lowest optimum weight found, divided by the total number 
of analyses. Even when the certainty of finding the optimum is low, the 
performance of the algorithm is considered good if near-optimum so-
lutions are still found in many cases. Therefore, for solutions in which 
this certainty is low, the estimated density function of the final weights 
is plotted using a kernel estimation. This kernel density estimation is 
similar to a histogram but smoother, which allows an easier identifica-
tion of typical converging values. The kernel density function is gener-
ated by summing up kernel function centered around final weights [26]. 
The probability density function is defined as an function of the weight 

w: 

fn,h(w) =
1
nh

∑n

i=1
K
(w − wi

h

)
(13)  

where n is the number of feasible searches, h is the bandwidth set to a 
value of the lowest optimum weight divided by 200. wi are the 
converged feasible optimum weights and K(z) is the normal kernel 
function defined by: 

K(z) =
1̅̅
̅

2
√

π
e−

1
2z2 (14)  

4.2. Selection of existing grouping methods 

A selection of existing grouping methods is made in this paper. 
Furthermore, the ungrouped optimization problem (NG) is solved as 
well to show the added weight of grouping. 

The method which performs a manual grouping based on rules of 
thumb (ROT) is the first method of the comparison. The grouping is 
taken from literature, or defined by the authors by the given rules of 
thumb [3]. 

Four different variations of the method which perform grouping 
based on the axial force distribution of a uniform design (AF) are 
implemented: the first procedure (AF1) divides the full range of internal 
forces into equally spaced intervals, the second procedure (AF2) divides 
both the compressive and tensile range of internal forces into equally 
spaced intervals separately, the third procedure (AF3) is equal to the 
second procedure, but a separate group is added for members which are 
in a 10% axial force range around no axial force, and finally the fourth 
procedure (AF4) divides the range of absolute internal forces into 
equally spaced intervals. 

The method which is similar to AF, but groups compressive members 
based on their slenderness (AF + S), is implemented in two similar 
procedures: the first procedure (AF + S1) groups both full the axial force 
and slenderness range in equally spaced intervals, while the second 
procedure (AF + S2) adds a separate group for the 10% range of axial 
force around zero axial force. 

Furthermore, the method which adapts the encoding of the structure 
by adding cardinality constraints (CC) is treated. 

Finally, the method which groups members with a combinatorial 
search of the ungrouped design (UCS) is treated. The input ungrouped 
design is the lightest optimum solution of NG. The number of FEM 
evaluations of this analysis is included in the number of FEM evaluations 
of UCS. 

4.3. Results 

For each grouping method the lowest optimum weight, consistency 
in results and number of FEM evaluations are evaluated. The number of 
FEM evaluations represents the mean of all runs and includes the FEM 
evaluations required by both the grouping method and the optimization 
method. 

Table 1 
Resulting groups for combinatorial search algorithm of determining NCS possible combinations with grouping of n profiles { p1, p2, … pn} to k groups, with weight p1 >

weight p2 >… > weight pn. Adaptation of table from Walls and Elvin [1].  

Combination p1 p2 ∙∙∙ pk-2 pk-1 pk pk+1 pk+2 ∙∙∙ pn-2 pn–1 pn 

1 1 2 ∙∙∙ k − 2 k − 1 k k k ∙∙∙ k k k 
2 1 2 ∙∙∙ k − 2 k − 1 k − 1 k k ∙∙∙ k k k 
⋮  ⋮  ⋮   ⋮  ⋮  ⋮  ⋮  ⋮   ⋮  ⋮  ⋮  
n -k + 1 1 2 ∙∙∙ k − 2 k − 1 k − 1 k − 1 k − 1 ∙∙∙ k − 1 k − 1 k 
n - k + 2 1 2 ∙∙∙ k − 2 k − 2 k − 1 k k ∙∙∙ k k k 
n - k + 3 1 2 ∙∙∙ k − 2 k − 2 k − 1 k − 1 k ∙∙∙ k k k 
⋮  ⋮  ⋮   ⋮  ⋮  ⋮  ⋮  ⋮   ⋮  ⋮  ⋮  

NCS 1 1 ∙∙∙ 1 1 1 1 1 ∙∙∙ k − 2 k − 1 k  
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Besides the weight and performance criteria, this paper graphically 
shows the resulting design of FSCS. In these figures, the thickness of 
members represents their weight per unit length, and their colors the 
group of the member. 

The benchmark problems were selected from studies on structural 
optimization problems. These studies mostly treated none or only a 
single grouping method while the possible optimum solution to be found 
is dependent on the grouping method used. Furthermore, varying con-
straints were used in these studies. Therefore, the only meaningful 
comparison that can be presented in this paper is a comparison of the 
performance of grouping methods, not a comparison of the found opti-
mum solutions with respect to other optimum solutions in literature. It is 
expected that the conclusions of the comparison are identical when the 
problems are analyzed with other optimization algorithms, as the 
characteristics of the search space are unchanged. 

4.3.1. 18-bar cantilever truss beam 
The 18-bar cantilever truss beam is a statically determinate structure 

without displacement constraints and with a yield stress of 172 MPa. It is 
loaded on its top nodes. For each member, 25 profiles are available. 

As this structure is a statically determinate structure, the optimum 
design with a given grouping can be found without optimization; only 
one FEM evaluations is required and the certainty is 100%. For CC, the 
grouping is variable, therefore it requires application of an optimization 
methods with multiple FEM evaluations and variance in results. 

The problem was solved for four groups. The grouping of ROT was 
taken from Salajagheh and Vanderplaats [27]: a group for the bottom 
members, a group for the top members, the verticals, and the diagonals. 

The results, which are shown in Table 2, indicated that FSCS, CC and 
UCS were able to find the optimum result. ROT, AF and AF + S 
converged to a structure with a higher weight because of the inability of 
this method to combine both tension and compression member in one 
group properly. 

The optimum grouped solution, which is shown in Fig. 4, groups 
members in a way that is clearly different from what is obtained with 
rule of thumb considerations: compressive, tensile and diagonal mem-
bers are grouped in a way that is not obvious with any degree of engi-
neering experience. The heavier result using ROT is shown in Fig. 3. 

4.3.2. 65-bar truss beam 
The 65-bar truss beam is a statically determinate structure with a 

displacement constraint of 60 mm at midspan and a yield stress limit of 
350 MPa. It is loaded downwards on its top nodes with a ULS and SLS 
load case. For each member, 42 equal leg angle profiles are available. 

The problem was solved for four groups. The grouping of ROT was 
taken from Walls and Elvin [1]: a group for the bottom members, a 
group for the top members, the verticals, and the diagonals. 

It was found that the UCS and CC both converged to a similar 
grouped solution, as shown Table 3. However, UCS required more FEM 
evaluations because of the need of an ungrouped optimization. 
Furthermore, while the certainty of UCS was reasonable, the certainty of 

NG was low, thereby decreasing the practical applicability of UCS. 
Similarly, CC had a low certainty of finding this solution. The distribu-
tion of these weights is plotted in Fig. 6, showing that the NG results are 
consistently better than those from CC. FSCS found a slightly higher 
weight solution, but with much less FEM evaluations and a high cer-
tainty. This resulting design is shown in Fig. 5. The solution of ROT, AF 
and AF + S converged to higher weights. 

4.3.3. 72-bar truss tower 
The 72-bar truss tower is a statically indeterminate structure with 

displacement constraints of 6.35 mm at the top nodes in all directions 
and a yield stress of 172 MPa [28]. It is loaded in two load cases, one 
vertically downwards, and another one diagonally on the tower. For 
each member, 25 profiles are available. The final solution is required to 
be symmetrical. 

In this study, the problem was solved for 4 groups. For the ROT 
grouping the following members are grouped: all verticals, all diagonals 
in the outer planes, all diagonals in the floor planes and all horizontals. 

The experiments, of which the result are shown in Table 4, found that 
CC and FSCS converged to the same solution, while FSCS did that with 
the lowest number of FEM evaluations. 

The resulting design is shown in Fig. 7. UCS found a slightly higher- 
weight solution. ROT, AF and AF + S converged to a structure with a 
high weight, although AF + S2 did fairly well. 

4.3.4. 112-bar truss dome 
The 112-bar truss dome is a statically determinate structure with 

displacement constraints and a yield stress of 150 MPa [29]. The top 
node and four free-spanning nodes should not displace more than 20 

Table 2 
Results 18-bar truss cantilever beam.  

Method Weight (kg) Certainty (%) FEM evaluations 

NG 1855 100 1 
ROT 2836 100 1 
AF1 2704 100 1 
AF2 2433 100 1 
AF3 2605 100 1 
AF4 3113 100 1 
AF + S1 2492 100 1 
AF + S2 2677 100 1 
CC 2201 15 26,250 
UCS 2201 100 1 
FSCS 2201 100 1  

Fig. 3. Result ROT 18-bar cantilever truss.  

Fig. 4. Result FSCS 18-bar cantilever truss.  

Table 3 
Results 65-bar truss beam.  

Method Weight (kg) Certainty (%) FEM evaluations 

NG 1270 0.40 156,024 
ROT 1577 80 5021 
AF1 1429 77 6743 
AF2 1445 100 8017 
AF3 1568 40 9025 
AF4 1491 100 9718 
AF + S1 1658 100 8995 
AF + S2 1621 100 8281 
CC 1375 0.52 96,560 
UCS 1374 45 159,015 
FSCS 1395 80 9803  

Fig. 5. Result FSCS 65-bar truss beam.  

T.R. van Woudenberg and F.P. van der Meer                                                                                                                                                                                             



Engineering Structures 249 (2021) 113299

7

mm. The structure is loaded downwards. For each member, 43 pipe 
sections are available. 

The problem was solved for 3 groups in this study. For the ROT 
grouping the following members are grouped: all horizontal beams, all 
diagonal bracings, all members which run directly from a support to the 
middle node. Furthermore, a point-symmetrical grouping was enforced 
in all methods, limiting the number of unique members to 16. 

CC found the lowest-weight solution as is shown in Table 5. How-
ever, it required many FEM evaluations with a low certainty, as shown 
with the broad distribution of optimum weights in Fig. 9. FSCS found a 
slightly heavier optimum, but with higher certainty and less FEM 

evaluations. This solution is shown in Fig. 8. UCS performed third best in 
terms of weight, but the certainty of the ungrouped solution was low and 
the number of total FEM evaluations high. ROT, AF and AF + S 
converged to a structure with a higher weight. This time, AF + S2 is 
among the worst performing methods for finding a low weight optimum. 

4.3.5. 160-bar truss tower 
The 160-bar truss dome is a statically indeterminate structure with 

displacement constraints and a yield stress of 147.15 MPa [30]. Both the 
top node and the nodes which connect to the electricity cables are 
allowed to displace no more than 80 mm. The structure is loaded in eight 
load cases, considering self-weight, wind, snapping of different cables 
and end tower conditions. For each member, 42 equal leg angles are 
available. 

The problem was solved for 6 groups. The grouping of ROT was 
defined as follows: all vertical beams up to the 6th floor, all verticals and 
horizontal beams from the 7th to the 9th floor, all vertical and horizontal 
beams from the 10th to the 12th floor, all bracings up to the 6th floor, all 
verticals and horizontal bracings from the 7th to 12th floor, and all 
beams of the outriggers. Furthermore, a symmetric grouping was 
enforced for each floor level in all methods. 

CC and FSCS found similar low-weight solution, close to the NG 
optimum, as shown in Table 6. However, FSCS required much less FEM 
evaluations and had a higher certainty. Furthermore, the range of so-
lutions of FSCS was much smaller than the range of solution of CC, as 
shown in Fig. 11. The FSCS-design is shown in Fig. 10. UCS found a 
slightly higher weight but required many FEM evaluations, and again 
ROT, AF and AF + S converged to a structure with a higher weight. 

4.3.6. 15-bar unbraced frame 
The 15-bar unbraced frame structure has a yield stress of 248 MPa 

and is loaded both vertically and horizontally [31]. In plane, the effec-
tive length factor follows from Eq. (5). Out-of-plane, the effective length 

Fig. 6. Distribution optimum weight 65-bar truss beam CC and NG method.  

Table 4 
Results 72-bar truss tower.  

Method Weight (kg) Certainty (%) FEM evaluations 

NG 269 38 112,053 
ROT 401 100 3414 
AF1 381 100 5330 
AF2 401 100 5938 
AF3 381 100 4912 
AF4 413 100 5824 
AF + S1 371 100 5596 
AF + S2 315 100 5216 
CC 286 100 156,322 
UCS 301 100 117,496 
FSCS 286 100 3391  

Fig. 7. Result FSCS and CC 72-bar truss tower.  

Table 5 
Results 112-bar truss dome.  

Method Weight (kg) Certainty (%) FEM evaluations 

NG 2163 0.50 62,266 
ROT 3595 50 1692 
AF1 2587 50 2887 
AF2 2713 75 3036 
AF3 3592 100 3064 
AF4 2580 100 2183 
AF + S1 2673 80 3030 
AF + S2 3536 100 3264 
CC 2310 1.0 45,974 
UCS 2501 78 63,996 
FSCS 2457 60 4206  

Fig. 8. Top-view result FSCS 112-bar truss dome.  
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factor for the beams and columns is 1/6 and 1, respectively. For each 
beam, 283 W-sections can be chosen, and for each column the choice is 
limited to 18 W10 sections. 

The problem was solved for 2 groups for columns and 1 for beams. 
The grouping of ROT had a group for the outer columns and a group for 
the inner columns. 

The results, shown in Table 7, found that the CC performs best with 
low computational effort. FSCS found a heavier solution, but with more 
certainty and slightly less FEM evaluations, of which the design is shown 
in Fig. 12. On the other hand, UCS converged to a suboptimal solution 
and required more computational effort. ROT found the worst solution, 
although the difference in weight the other grouped solutions remains 
small for this case. 

4.3.7. 117-bar braced frame 
The 117-bar braced frame structure is an adaption of the structure 

proposed by Walls and Elvin [1]. It has a yield stress of 350 MPa and it is 
loaded both vertically and horizontal and a drift of 9 mm is allowed 
between two floors. In-plane, the effective length factor follows from Eq. 
(5) for the beams and columns, and it equals 1/6 for the bracings. Out- 
of-plane, the effective length factor for the bracings and beams is 1/6 
and for the columns it is 1. For each beam 20 UB sections are available, 
15 UC sections for the columns, and 10 equal leg angles for the bracings. 

The problem was solved for 1 group for the beams, 3 groups for the 
columns, and 3 groups for the bracings. The grouping of ROT was based 
on the original manual grouping by Walls and Elvin [1]: bracings and 
columns in three consecutive stories. 

FSCS found the best solution, with few FEM evaluations and 100% 
certainty, as shown in Table 8. The corresponding design is shown in 
Fig. 13. CC converged to a higher weight, with more FEM evaluations 
and a low certainty, as shown in Fig. 14. UCS found the second-best 
solution but required many FEM evaluations. Again, ROT resulted in 
the worst solution. 

4.3.8. 147-bar frame 
The 147-bar frame structure is a 3D-frame structure [32]. It has a 

yield stress of 248.2 MPa and it is braced in one direction and unbraced 
in the other direction. The beams are orientated with their strong axis in 
the unbraced direction. In this direction, the effective length factor 
follows from Eq. (5) for the columns. The effective length factor of the 

Fig. 9. Distribution optimum weight 112-bar truss dome CC and NG method.  

Table 6 
Results 160-bar truss tower.  

Method Weight (kg) Certainty (%) FEM evaluations 

NG 871 0.58 1,767,347 
ROT 1015 86 37,411 
AF1 982 43 56,359 
AF2 982 55 49,218 
AF3 943 83 47,469 
AF4 988 100 38,016 
AF + S1 1164 60 26,432 
AF + S2 975 67 33,069 
CC 881 0.37 1,253,812 
UCS 893 50 1,813,070 
FSCS 883 3.4 367,705  

Fig. 10. Side-view result FSCS 160-bar truss tower.  

Fig. 11. Distribution optimum weight 160-bar truss tower CC, NG and 
FSCS method. 

Table 7 
Results 15-bar unbraced frame.  

Method Weight (kg) Certainty (%) FEM evaluations 

NG 7699 14 28,948 
ROT 8124 100 3122 
CC 8014 21 12,843 
UCS 8093 57 32,230 
FSCS 8081 100 5998  
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bracings and beams is 1. In the braced direction, all effective length 
factors are 1. Furthermore, it is loaded both vertically and horizontally 
in both directions. The maximum displacement is 30 mm at the top floor 
and the drift between two floors is limited to 1/400 times the floor 
height. 25 W-profiles are available for each of the members. 

The problem was solved for 6 groups. The grouping of ROT was 
chosen as follows: the corner and side columns in the first floor, the 
corner and side columns in the upper two floors, inner columns in the 
first floor, inner column in the upper two floor, all beams, all bracings. 

CC converged to the best solution, as is shown in Table 9. However, 
the certainty of reaching this solution was low, and many FEM evalua-
tion were required. FSCS required less FEM evaluations and found a 
slightly heavier solution, of which the resulting design is shown in 
Fig. 15. Furthermore, although its certainty was low, the bandwidth of 
its solutions was much smaller than the one of CC, as shown in Fig. 16. 
UCS found a solution which required many FEM evaluations. As in the 
other frame problems, ROT resulted in the worst solution. 

4.4. Varying number of groups 

In the previous analyses, the number of groups was fixed. Solving the 
problem for multiple number of groups allows an engineer to make a 
well-argued trade-off between costs and number of groups; for any 
number of groups the added weight compared to the ungrouped solution 
can be found. When applied to cost optimization problems, the global 
cost optimum can be found by evaluating the coast of each of the opti-
mum solutions with different number of groups. 

To illustrate how grouped optimization methods can be used to find a 
cost optimum by sweeping through a range of numbers of groups, the 
18-bar cantilever truss problem is revisited with different numbers of 
groups. Fig. 17 shows the optimum weight found with FSCS for the 18- 
bar cantilever truss from 1 to 12 groups. 12 groups is the number of 
profiles in the ungrouped optimization problem, any forced higher 
number of groups is suboptimal in weight. It is observed that the weight 
decreases drastically when introducing the first groups, after which 
further weight reduction from adding more groups is limited. The cor-
responding designs for 2, 4, 6 and 9 groups are shown as well. 

With a suitable cost function, it is conceptually possible to formulate 
a global cost optimization problem where the number of groups is 
optimized for the same time as the grouping. However, the search space 
for the resulting problem would be intractably large. As application of 
grouping methods reduces the search space drastically, the subdivision 
of the optimization problem allows to find the global optimum with a 
lower computation effort and with high certainty. 

5. Discussion 

The new grouping method uses a fully stressed design and combi-
natorial search in its grouping process. For big problems with many 
members or a big profile database, both analyses can result in many 
computations, reducing the efficiency of this method and leading to a 
poor scalability: the number of FEM calculations per fully stressed 
design scales by Eq. (11), the number of weight calculations in the 
combinatorial search increases given by Eq. (12) and the size of the 
optimization problem scales by an growing m in mk. Nonetheless, single- 
variable optimization methods can be applied for each beam in the fully 
stressed design. Similarly, optimization and simplification methods are 
proposed in literature to prevent evaluation of all combinations of the 
combinatorial search [1,11], while this evaluation is already a cheap 
computational evaluation only involving a summation and multiplica-
tion of the weight per unit length of members with their lengths. The 

Fig. 12. Result FSCS 15-bar unbraced frame.  

Table 8 
Results 117-bar frame.  

Method Weight (kg) Certainty (%) FEM evaluations 

NG 22,657 0.98 182,181 
ROT 26,190 100 7251 
CC 25,004 0.72 114,166 
UCS 24,793 100 189,099 
FSCS 24,779 100 21,732  

Fig. 13. Result FSCS 117-bar frame structure.  

Fig. 14. Distribution optimum weight 117-bar frame CC and NG method.  Table 9 
Results 147-bar frame.  

Method Weight (kg) Certainty (%) FEM evaluations 

NG 24,464 0.96 203,038 
ROT 30,380 67 4076 
CC 25,656 1 122,616 
UCS 26,976 100 207,193 
FSCS 26,020 1.3 38,911  
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increase in size of the optimization problem is seen with other grouping 
methods as well, reducing efficiency by increasing the number of finite 
element evaluations. For the cases discussed in this paper the number of 
finite element evaluations of the optimization algorithm exceeds that of 
the fully stressed design and combinatorial search. Furthermore, the 
resulting search space of the fully stressed combinatorial search is al-
ways smaller than that of the grouping methods which are applied 

during optimization, which led to a lower number of finite element 
calculations and higher certainty with the proposed method for the cases 
investigated in this study. Finally, for the special case of statically 
determinate structures without displacement constraints, the fully 
stressed combinatorial search does not require a computationally heavy 
optimization algorithm, ensuring the global optimum solution with high 
efficiency. 

Whereas the fully stressed combinatorial search takes the heaviest 
possible profiles as an initial reference design, adopting a different 
uniform initial reference design gave a slightly lighter optimum design 
in a preliminary phase of this study. This difference was found to be 
marginal, but a non-uniform design might result in an even lighter op-
timum design. On the other hand, this may require engineering judge-
ment which limits the applicability of the method. 

For the manual grouping method, only one grouping possibility per 
benchmark problem was used. These groupings were taken from liter-
ature, or the authors came up with those using their own engineering 
experience. Another engineer might choose to group members differ-
ently. However, given the high number of possible solutions, it is ex-
pected that the non-manual grouping methods outperform most 
engineers by identifying non-intuitive but favorable groupings. 

The ability to find the optimum value and the corresponding 
required number of finite element evaluations are strongly influenced by 
the choice for the optimization method and its settings; another opti-
mization method or change in options changes the results and the per-
formance. However, the variety of optimization methods and variations 
is endless, and each problem and grouping method requires varying the 
options. This makes it impossible to compare the grouping methods 
independent of the options for the optimization method. Still, it is ex-
pected that the relative performance of the different grouping methods 
does not change much when using a different optimization method, 
because the size of the search space shows a similar trend as the number 
of required finite element evaluations. 

For the comparison of grouping methods, only problems with a fixed 
geometry were analyzed in size optimization problems. Nonetheless, the 
grouping methods are also applicable to shape optimization and topo-
logical optimization problems, but these optimization problems intro-
duce a much bigger search space and have an additional requirement of 
repetitive grouping. The search space is enhanced by addition of the 
coordinates of the nodes, the number of nodes, and the connectivity of 
the nodes to the design variables. As this leads to a new optimization 
problem, the efficiency of the grouping methods on these problems 
cannot be prospected. Furthermore, the grouping methods should at 
least alter and evaluate the grouping multiple times, as a changing ge-
ometry has significant influence on the force distribution and optimal 

Fig. 15. Result FSCS 147-bar frame.  

Fig. 16. Distribution optimum weight 147-bar truss dome CC, NG and 
FSCS method. 

Fig. 17. Results FSCS 18-bar cantilever truss for 1 to 12 distinct profile groups with corresponding designs for 2, 4, 6 and 9 groups.  
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grouping. This requirement is met by only a few methods. The fully 
stressed combinatorial search does so by a few iterations of both fully 
stressed design, combinatorial search and reduced optimization. The 
grouping methods which change the optimization process also obey the 
requirement as these methods have a varying grouping during a single 
optimization run. 

The proposed fully stressed combinatorial search method could be 
applied to a continuous sizing problem by using continuous dimensions 
instead of discrete dimensions from a profile database. In the proposed 
method, finding the fully stressed design does not necessarily need 
continuous dimensions as an input: whether the fully stressed design 
came from continuous or from discrete dimensions, its results are 
gathered in groups in the combinatorial search, after which the di-
mensions are optimized per group to continuous values. 

For application to multi-objective optimization it should be noted 
that the fully stressed design and combinatorial search require a desir-
able order of profiles. For weight optimization, and to some extent for 
cost optimization, the order is light to heavy, but the objectives of a 
multi-objective optimization might require a different or contradicting 
order of profiles. Other methods which apply grouping during the 
optimization process are not depending on such an order. 

6. Conclusion 

In this paper, a new method, the fully stressed combinatorial search, 
is proposed and tested for grouping in steel skeletal structures. In 
comparison with other existing methods, it is found that the new method 
consistently finds low weight solutions with limited computational 
effort. 

Manual grouping is the simplest method to apply, but its perfor-
mance is strongly dependent on the experience of the engineer. For truss 
structures, the methods which group members based on axial force 
perform better but cannot find the global optimum due to the inability of 
combining compressive and tensile members. Lighter designs are found 
for several cases with the cardinality constraints method and for two 
cases also with the ungrouped combinatorial search, although these 
methods require many finite element evaluations. Finally, the new 
method converges to designs with similar low weights, while requiring 
much less finite element evaluations. 

Grouped optimization methods can be used for global cost optimi-
zation by embedding the procedure in a loop varying the number of 
groups. In such scenario, where the grouped optimization needs to be 
performed multiple times to identify a global cost optimum, the pro-
posed method is particularly beneficial in its efficiency and consistency 
upon repetition. 

7. Datasets 

The input data and datasets generated during the current study are 
available in the 4TU.ReserachData repository: https://doi.org/10.4121/ 
12718790.v3. 
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