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In the last decade, pseudospectral methods have become popular for solving optimal control problems.
Pseudospectral methods do not need prior knowledge about the optimal control structure and are thus
very flexible for problems with complex path constraints, which are common in optimal train control, or
train trajectory optimization. Practical optimal train control problems are nonsmooth with discontinuities
in the dynamic equations and path constraints corresponding to gradients and speed limits varying along
the track. Moreover, optimal train control problems typically include singular solutions with a vanish-
ing Hessian of the associated Hamiltonian. These characteristics make these problems hard to solve and
also lead to convergence issues in pseudospectral methods. We propose a computational framework that
connects pseudospectral methods with Pontryagin’s Maximum Principle allowing flexible computations,
verification and validation of the numerical approximations, and improvements of the continuous solu-
tion accuracy. We apply the framework to two basic problems in optimal train control: minimum-time
train control and energy-efficient train control, and consider cases with short-distance regional trains and
long-distance intercity trains for various scenarios including varying gradients, speed limits, and sched-
uled running time supplements. The framework confirms the flexibility of the pseudospectral method
with regards to state, control and mixed algebraic inequality path constraints, and is able to identify
conditions that lead to inconsistencies between the necessary optimality conditions and the numerical
approximations of the states, costates, and controls. A new approach is proposed to correct the discrete
approximations by incorporating implicit equations from the optimality conditions. In particular, the is-
sue of oscillations in the singular solution for energy-efficient driving as computed by the pseudospectral
method has been solved.
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1. Introduction

Optimal control theory is widely applied in different fields to
find the controls that minimize a cost functional subject to dy-
namic constraints, path constraints and boundary conditions. One
of the applications of optimal control theory is minimum-time train
control (MTTC) with the aim to compute the minimum time be-
tween two train stops. Another important application is energy-
efficient train control (EETC) or also referred to as energy-efficient
train trajectory optimization, with the aim to minimize total traction
energy. The train controls consist of traction and braking. These
optimal train control problems are highly complex in practice with
discontinuous dynamic equations, pure state and control algebraic
inequality constraints, and mixed state-control algebraic inequal-
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ity constraints. Moreover, the solution to the EETC problem gen-
erally contains singular arcs. Hence, solving optimal train control
problems is quite challenging, and specifically EETC problems. Most
research on optimal train control has focused on the application
of Pontryagin’s Maximum Principle (PMP) (Pontryagin, Boltyanskii,
Gambkrelidze, & Mishchenko, 1962). The application of this theory
leads to the optimal driving regimes consisting of maximum ac-
celeration, cruising, coasting and maximum braking. The challenge
is to determine the optimal switching structure with the exact
switching points as well as the optimal sequence of the driving
regimes. Scheepmaker, Goverde, and Kroon (2017) provided a re-
cent extensive literature review on EETC. One of the conclusions
was that the pseudospectral method was a promising approach
to solve generic EETC problems with varying track gradients and
speed limits. In this paper, we further explore the Radau pseu-
dospectral method to optimal train control based on structured
numerical experiments that are assessed on consistency with the
optimality conditions obtained by the PMP. We identify numerical
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inaccuracies due to convergence issues, discretization and oscillat-
ing singular control, and propose a new approach based on com-
bining underdetermined implicit equations from the PMP with the
pseudospectral approximate solutions to get accurate continuous
optimal control solutions.

Optimal control problems can be solved by indirect and direct
methods (Betts, 2010; Rao, 2014). An indirect method derives the
necessary optimality conditions based on PMP, which leads to a
two-point boundary value problem (BVP) in the states and ad-
joint costates that needs to be solved by numerical methods (Ross,
2005). These methods thus indirectly solve the original optimal
control problem by solving an associated BVP. In general, however,
the BVP is hard to solve, as it is very sensitive to the initial guesses
for the unknown (costate) boundary conditions and a priori knowl-
edge of the switching structure of the inequality path constraints
is required. Therefore, most indirect methods use (heuristic) con-
structive methods to find (sub)optimal driving strategies based on
the PMP optimality conditions, with (linearity) simplifications or
assumptions on driving regimes (e.g. no coasting, no cruising be-
low the speed limit). Most papers on optimal train control used
indirect methods based on PMP optimality conditions (Albrecht,
Howlett, Pudney, Vu, & Zhou, 2016a; 2016b; Howlett & Pudney,
1995; Khmelnitsky, 2000; Liu & Golovitcher, 2003). For the energy-
efficient train control problem, algebraic formulae for the costate
along sections with constant gradient can be derived, which led
to efficient real-time algorithms (Albrecht et al., 2016a; 2016b;
Howlett, Pudney, & Vu, 2009; Liu & Golovitcher, 2003). In addition,
many heuristic methods have been applied using implicit knowl-
edge of the optimal control structure, for example Chevrier, Pelle-
grini, and Rodriguez (2013), Sicre, Cucala, and Fernandez-Cardador
(2014) and Haabhr, Pisinger, and Sabbaghian (2017). For more details
and references, see Scheepmaker et al. (2017).

On the other hand, direct solution methods transcribe
the infinite-dimensional optimal control problem into a finite-
dimensional nonlinear programming (NLP) problem using colloca-
tion of the differential equations and the integral objective func-
tional. The resulting NLP problem is then solved using efficient
nonlinear optimization algorithms (Betts, 2010). This direct ap-
proach can be used for highly complex problems, since there is no
need to derive the first-order necessary optimality conditions, they
are less sensitive to initial solutions, and no a priory knowledge is
needed of the active and inactive inequality path constraints. In the
optimal train control literature direct methods have been used only
recently. Most approaches are based on pseudospectral methods
(Scheepmaker & Goverde, 2016; Wang & Goverde, 2016a; 2016b;
2017; 2019; Wang, De secondchutter, Van den Boom, & Ning,
2013; Ye & Liu, 2016; 2017). Wang et al. (2013); Wang, DeSchut-
ter, Van den Boom, and Ning (2014) also applied a mixed-integer
linear programming (MILP) approach using piecewise affine func-
tions. At this stage the computation times for the direct method
are not competitive with the computation times for the indirect
methods that are currently used for on-board calculations.

Over the past two decades, pseudospectral methods have be-
come popular for solving optimal control problems within partic-
ular the aerospace domain (Garg et al., 2010; Ross & Karpenko,
2012). A pseudospectral method discretizes the state and control
and then transcribes the continuous-time optimal control prob-
lem to a finite-dimensional NLP that is solved using established
NLP solvers. In a pseudospectral method the state and control are
approximated by global polynomials at collocation points using
a basis of Lagrange (or Chebyshev) polynomials. Typical colloca-
tion points are Legendre-Gauss (LG), Legendre-Gauss-Lobatto (LGL),
and Legendre-Gauss-Radau (LGR) points (Garg et al., 2010; Ross &
Karpenko, 2012). These points are obtained from the roots of a Leg-
endre polynomial and/or its derivatives. They are all defined on the
domain [—1, 1] but differ in that the LG points include neither of
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the endpoints, the LGR points include one endpoint, and the LGL
points include both endpoints. Different pseudospectral methods
have been developed based on the collocation points: the Gauss
(LG) pseudospectral methods (Benson, Huntington, Thorvaldsen, &
Rao, 2006; Rao et al., 2010), the Legendre (LGL) pseudospectral
methods (Elnagar, Kazemi, & Razzaghi, 1995; Fahroo & Ross, 2001;
Gong, Fahroo, & Ross, 2008a; Ross & Fahroo, 2004), and the Radau
(LGR) speudospectral methods (Garg et al., 2011). The differences
between the methods lie in the the degree of the Lagrange poly-
nomial, the boundary condition and the typical problem horizon
(Garg et al., 2009; Ross & Karpenko, 2012). The use of global poly-
nomials together with Gaussian quadrature collocation points pro-
vides accurate approximations that converge exponentially fast for
smooth problems (Garg et al., 2010). For optimal control problems
with discontinuities in the constraints the problem can be par-
titioned into multiple phases, where the phase boundaries (also
called mesh points or knots) can be chosen at the points of dis-
continuities (Betts, 2010). In these multiple-phase optimal control
problems, each phase is solved with a separate set of collocation
points, while additional linking conditions glue the variables of the
adjacent phases together (Darby, Garg, & Rao, 2011a; Darby, Hager,
& Rao, 2011b; Patterson, Hager, & Rao, 2015; Patterson & Rao, 2014;
Rao et al., 2010; Ross & Fahroo, 2004). Hence, with multiple phases
the state is approximated by multiple polynomials that are linked
at the phase boundaries.

The pseudospectral methods can also compute estimations of
the continuous costates based on the associated Lagrange multipli-
ers computed for the discretized NLP problem (Darby et al., 2011a;
Fahroo & Ross, 2001; Garg et al., 2011; 2010). For the Gauss and
Radau pseudospectral methods the discrete approximations are ob-
tained directly by a transformation of the Lagrange mutipliers us-
ing the quadrature weights of the collocation points. For the Legen-
dre pseudospectral methods the discrete costates are not uniquely
determined and need a closure condition related to the transver-
sality conditions of the necessary optimality conditions for the
continuous optimal control problem (Fahroo & Ross, 2001; Garg
et al, 2010; Gong, Ross, Kang, & Fahroo, 2008b). The covector
mapping principle for the Legendre Pseudospectral method then
states that these multipliers of the discretized NLP problem con-
verge to the costates of the discretized necessary optimality con-
ditions (Gong et al., 2008a; Gong et al., 2008b; Ross & Karpenko,
2012). Comparative studies showed that the Radau pseudospectral
method provides the most accurate results, including the costates,
with a fast convergence rate (Garg, 2011; Garg et al., 2009; Hunt-
ington, 2007). Moreover, the LGR collocation points are most suit-
able for multiple-phase optimal control problems since they in-
clude one endpoint per phase, and thus all phase boundaries are
collocation points corresponding to discontinuities in the input
data. Together, the LGR collocation points thus cover all phases and
their boundaries except the terminal point which is however esti-
mated well by the state approximations. The Radau pseudospectral
method is implemented in the MATLAB toolbox GPOPS (General
Pseudospectral OPtimal Control Software) (Rao et al., 2010), which
we used in this paper for the experiments.

The pseudospectral method works well for smooth problems,
but the optimal train control problems may be nonsmooth in prac-
tice due to infrastructural constraints. In particular, the varying
slopes of the railway tracks are usually modelled as piecewise con-
stant gradients resulting in a discontinuous dynamic equation, and
varying speed limits along the track result in discontinuous state
inequality path constraints that may lead to discontinuous costate
functions (Bryson & Ho, 1975). Moreover, the optimal train con-
trol problems have a Hamiltionian that is linear in the control and
thus has a zero Hessian. This may cause singular arcs for which
no explicit analytical expressions can be derived from the neces-
sary optimality conditions and for which the pseudospectral so-
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lutions show oscillating control and state behaviour. Furthermore,
stop distances may be very long with possibly many fluctuations
in gradients and speed limits leading to many phases of the re-
sulting multiple-phase optimal control problem with as many inte-
rior state equality constraints. The literature on optimal train con-
trol using pseudospectral methods indeed shows irregularities in
the control and/or state profile plots that need to be understood
before these methods can be used in practice (Wang & Goverde,
2016a; 2019; Ye & Liu, 2016; 2017). Ye and Liu (2017) compared the
pseudospectral method with a heuristic solution method consisting
of an NLP problem formulation based on closed-form expressions
for each driving regime obtained with some simplifying assump-
tions. For one case the pseudospectral method found the same en-
ergy consumption, despite some fluctuations in the singular cruis-
ing regime. In a second case study the heuristic method found a
solution with less energy consumption and they concluded that it
is quite difficult to choose appropriate parameters of GPOPS to en-
sure convergence within acceptable tolerances. Wang et al. (2013,
2014) compared a pseudospectral method with an MILP method.
The pseudospectral method provided solutions with the least en-
ergy but was much slower than the MILP method. However, the
MILP model showed a rough approximation while the pseudospec-
tral method gave smooth results, which raises the question how
accurate the pseudospectral must be: with less collocation points
the pseudospectral method is faster and may still perform bet-
ter, or the other way around, enforcing a higher accuracy of the
MILP model will increase its computation time. Wang and Goverde
(2016a) and Ye and Liu (2016, 2017) observed strong oscillating be-
haviour in both the control and state for the singular solution cor-
responding to a nonsmooth approximation of the cruising regime.
Zhong, Lin, Loxton, and Teo (2019) modelled the optimal train con-
trol problem as an optimal switching control problem. They divide
the track into a finite number of segments of constant gradient and
speed limit similar to a multi-phase optimal control problem, and
then use control parametrization and time-scaling to obtain an ap-
proximate finite-dimensional nonlinear programming problem. The
traction and braking control are approximated as piecewise con-
stant functions where the switching times and jumps are the deci-
sion variables. They compared their algorithm with a pseudospec-
tral method using GPOPS. The computation times are comparable
and their solution does not show singular control oscillations, al-
though the traction and braking control are now approximate step
functions. Instead, the pseudospectral method shows accurate con-
tinuous traction control except for the singular control oscillations.
Chen and Biegler (2016) proposed a nested direct transcription
optimization method for solving singular optimal control prob-
lems. The nonlinear programming problem resulting from the di-
rect transcription is decomposed into an inner and outer problem.
In the inner problem moving finite elements are used to find accu-
rate switching times and additional monotonic control constraints
on each finite element guarantee a low-order control. ‘Pseudomul-
tipliers are introduced that reconstruct the necessary optimality
conditions for the singular optimal control in the outer problem.
In this paper, we propose a computational evaluation frame-
work where the PMP is applied to verify, validate and improve
pseudospectral solutions to optimal train control problems. It
is based on the costate approximations that the pseudospectral
methods provide next to the controls and states. This can be ex-
ploited to analyse the pseudospectral results using the necessary
optimality conditions of the original continuous optimal control
problem. It is shown that there are inconsistencies due to the
discretization of the continuous problem. The solutions can how-
ever be corrected using analytical results from the PMP analysis
in a postprocessing step resulting in feasible continuous solutions
satisfying the optimality conditions. We consider both the MTTC
and EETC problems as examples, and exclude regenerative brak-
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ing. However, the proposed approach can be applied to any op-
timal train control problem formulation. The paper thereby gives
the following contributions to the literature:

1. A computational framework connects the pseudospectral

method with Pontryagin’s Maximum Principle.

The framework is applied to compute, validate and improve so-

lutions to optimal train control problems.

3. Structured experiments illustrate the impact of stop distances,
varying speed limits and gradients, and running time supple-
ments.

. Convergence issues are identified for discontinuous state con-
straints (speed limits) and dynamic equations (gradients) with
big jumps.

5. Known computational issues of the pseudospectral method re-

garding singular solutions are solved by a hybrid approach us-
ing Pontryagin’s Maximum Principle.

2.

The paper is structured as follows. Section 2 defines the MTTC
and EETC problems and derives their necessary optimality condi-
tions by application of the PMP. This reflects the traditional indi-
rect optimal train control solution approach. Then, the numerical
pseudospectral method is introduced in Section 3. Section 4 pro-
poses the computational evaluation framework that combines PMP
and the pseudospectral method to verify and validate the solu-
tions obtained from the pseudospectral methods. Section 5 ap-
plies the computational framework to the MTTC and EETC prob-
lems for various structured scenarios and identifies the incon-
stistencies of the approximated pseudospectral solutions with the
PMP. Section 6 then discusses the numerical challenges of the dis-
cretized pseudospectral solutions and proposes a postprocessing
step to obtain feasible continuous solutions by exploiting knowl-
edge from the PMP. Section 7 ends the paper with the conclusions.

2. The optimal train control problems and necessary optimality
conditions

This section gives the problem formulations of the optimal con-
trol problem for both the EETC and MTTC, and derives necessary
conditions for optimality by application of the PMP (Lewis, Vrabie,
& Syrmos, 2012; Pontryagin et al., 1962; Ross, 2015). First, the EETC
problem is discussed and afterwards the MTTC problem. The prob-
lem formulations consider distance as independent variable rather
than time, because discontinuity points associated with changes in
gradients and speed limit are naturally given in terms of distance
(Scheepmaker & Goverde, 2015; Scheepmaker et al., 2017; Wang &
Goverde, 2016a). To focus on the essence of the optimal control
problems, we do not consider the effect of regenerative braking
and we model the train without loss of generality as a point mass
(Briinger & Dahlhaus, 2014; Howlett & Pudney, 1995). The applica-
tion of the PMP to optimal train control problems is not new, but is
included here to make the paper self-contained. The derived equa-
tions from the necessary optimality conditions will be used in the
rest of the paper. Other papers that also give in-depth derivations
of the optimality conditions by applying PMP consider slightly dif-
ferent problem formulations, such as energy and time as state
variables (Khmelnitsky, 2000), normalized control variables (Liu
& Golovitcher, 2003), and a different objective function including
regenerative braking (Albrecht et al., 2016a; 2016b). Howlett and
Pudney (1995) considers various problem formulations with exten-
sive derivations. Obviously the optimal control structure is always
the same but the algebraic expressions of the optimality conditions
depend on the specific problem formulation, and these are used
later in the paper in connection to the pseudospectral solutions.

In our problem formulation we model a typical maximum trac-
tion force as function of speed using a pure control constraint and
a mixed state-control constraint. In addition, static speed limits are
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Umax

Constant part

Hyperbolic part

Mass-specific force /' [m/s*]

0 Vi Vo

Speed v [m/s]

Fig. 1. Typical traction force-speed diagram with a constant and hyperbolic part.

formulated as pure state constraints. The problem formulation thus
includes all types of algebraic path constraints (state, control, and
mixed constraints), which will be used later to analyse their im-
pact on the pseudospectral solution method.

2.1. Energy-efficient train control

We consider the problem of finding the optimal control for a
train run between two stops in a given scheduled time T such that
the total traction energy (J [m2/s2]) is minimized. This can be for-
mulated as the following constrained optimal control problem:

Minimize | = f 7wt (s)ds, 1)
subject to the c:nstraints

(0 = 155 @)
i) = M £ 3)
Ut ()u(s) < Pmax (4)
0 < v(s) < Umax(s) (5)
— Unin < U(S) < Umax (6)
£(s0) = 0.£(55) = T, 0(S0) = 0, v(s) = 0,50 = 0,57 =S, (7)

where the independent variable is distance s [m], the state vari-
ables are time t [s] and speed v [m/s], f =dt/ds and ¥ = dv/ds
denote the derivatives of the state variables with respect to the
independent variable s, and the control variable u [m/s?] is the
mass-specific applied force u(s) = F(s)/(pm), i.e., the applied force
divided by total mass including a rotating-mass factor p [-], con-
sisting of a traction part u*(s) and a braking part u=(s). The
control is bounded between a maximum specific braking rate
—Upmin = —Fnin/ (om) and a maximum specific traction force umax =
Fnax/(pm). Moreover, the mass-specific traction power p=utv
[m?/s3] is limited by a maximum mass-specific power pmax. Hence,
the maximum traction force is a function of speed consisting of a
constant and hyperbolic part which is illustrated in the traction-
speed diagram of Fig. 1. It follows that the control variable is
bounded by u € U(V) = [—Upjip, Min(Umax, Pmax/V)]. We assumed a
constant maximum braking force as this was the only braking data
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available. Note that based on the definition of the control vari-
able, traction and braking control cannot be used at the same
time. We use the notation u*(s) = max(u(s),0) >0 and u=(s) =
min(u(s), 0) < 0 so that u(s) = u(s) + u=(s). The resistance forces
consist of a mass-specific train resistance r(v) = R(v)/(pm) [m/s?]
and a mass-specific line resistance g(s) = G(s)/(om) [m/s2]. The
train resistance is defined by the Davis equation r(v) =rg +1rv+
rv2, with non-negative coefficients rg,r; >0 and r, > 0 (Davis,
1926). The line resistance g(s) is defined as the specific gravity
force due to track gradients. It is assumed that tracks have piece-
wise constant gradients. Note that on uphill slopes g(s) > 0 and on
downhill slopes g(s) < 0. In addition, line resistance may have an
additional nonnegative term due to curvature which also depends
on the location of the curves. Finally, the speed is bounded above
by a speed limit vmax(s), which is assumed piecewise constant.

Next, we derive the necessary optimality conditions using the
PMP. For this, define the Hamiltonian H [m/s2] as

Moy )»z(u—r(v)—g(s))’ (8)
v v

where A [m?/s3] and X, [m/s] are the costate variables, which are
also functions of the independent variable s. Note that the Hamil-
tonian depends on distance s via the line resistance g(s), which
is a piecewise constant function of distance. For sections of con-
stant gradient the Hamiltonian is independent on s and thus con-
stant over distance, i.e. dH/ds = 0, although the Hamiltonian may
have jumps at the points where the gradient changes and thus
become piecewise constant. Also jumps in the costate may lead
to jumps in the Hamiltonian. To take into account the additional
(mixed) state and control path constraints (4)-(6), we define the
augmented Hamiltonian A [m/s?] as the Lagrangian of the Hamil-
tonian as follows:

H(t, v, A, Mg, o, 1, 8) =H + g (Umax — 1) + 2 (U + Upin)
+ U3 (pmax - U+V) + H«4(Vmax - v)1 (9)

where 11 [-], 2 [-], i3 [s/m] and 4 [1/s] are the Lagrange multi-
pliers, with p; > 0 (i=1,...,4). The costates A; and A, satisfy the
differential equations A (s) = —dH/dt and A, (s) = —dH/dv, which
gives

A(s)=0

H(t, v, A, Ao, u,8) = —ut +

(10)

M+ VA" (V) + A (u —T(V) — &(5))
2

From the first equation follows immediately that A;(s) = A; is con-
stant. Note that these dynamic equations (10),(11) together with
the state equations (2),(3) define a BVP with four differential equa-
tions in the states and costates and four fixed (begin and final)
endpoints for the states given in (7). Therefore, the endpoints for
the costates are free.

According to the PMP the optimal control maximizes the Hamil-
tonian (Pontryagin et al., 1962). Therefore, the optimal control is
defined by

ii(s) = arg maUx H(E(s), D(s), 5»1 (s), 5»2 ), u,s),

Aa(s) =

+ psut 4 g (11)

(12)

where (£, 7) and (5»1, 12) are the state and costate trajectories cor-
responding to the optimal control trajectory ii. Moreover, the max-
imized Hamiltonian is independent on u and thus constant when it
is also independent on s. In our case the Hamiltonian depends on
distance s through the piecewise constant gradient g(s), and also
the control, state and costate trajectories may depend on s through
the state constraint (5) if the speed limit vmax(s) is not constant.
Hence, on intervals with constant g(s) = g- and Vmax(S) = Vmax.r,
there exists a constant ¢ such that

H(E(), 7(5), A1 (5), Aa(s), (5)) = 9. (13)
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Note that the Hamiltonian (8) is piecewise linear in the control u,
and can be split into traction and braking parts as

(% ~Du+ M—Mr(l]/})—?»zg(S) ifu=0

ifu<0.
(14)
The optimal control u that maximizes the Hamiltonian thus de-

pends on the sign of u and the relative value of speed v and the
costate A, which gives five cases:

HEV A 2 Us) =50 o -hae)
Aoy 4 Mhar@)-hop()

1. If A, > v then u must be maximal.

2. If Ay =v then u € [0, umax] is undetermined (1st singular solu-
tion).

If0<Ay <vthenu=0.

If A, =0 then [—uy,, 0] is undetermined (2nd singular solu-
tion).

. If A, < 0 then u must be minimal.

3.
4.

To find a full characterization of the optimal control and asso-
ciated state and costate trajectories, we apply the Karush-Kuhn-
Tucker (KKT) conditions on the augmented Hamiltonian (9). These
conditions consist of the stationary and complementary conditions
associated to H (Bertsekas, 1999). The complementary slackness
conditions on the path constraints are y; >0, i=1,...,4, and

MZ(U + umin) = 07
M4 (Vmax — V) = 0.

M1 (Umax —u) =0,
M3 (Pmax — U™ V) =0, (15)
Note that up =0 if u>0, and likewise p=pu3=0 if u<0.
The stationary condition states that 0H/du = 0, where the partial
derivative of the augmented Hamiltonian can be split in two ac-
cording to the sign of the control variable and does not exist at

u = 0 due to the discontinuity of H at u = 0. The stationary condi-
tion can then be derived as

ifu>0
ifu<0,

{1 +%2 g — =0

2 4pp=0

and it is undefined for u = 0.
Based on the PMP and KKT conditions we can now characterize

each of the five driving regimes depending on the costate A, as
follows:

(16)

1. Maximum acceleration (MA). The first case is A, > v with u
maximal. In this case, the stationary condition (16) gives wuq +
U3V =—1+Ay/v >0 and thus @, > 0 or u3 > 0. Therefore, ei-
ther u = umax Or U = Pmax/V. Note that u = umax and u = pmax/V
cannot hold both at the same time except at one point v; =
Pmax/Umax Since the hyperbolic function is decreasing in v.
Hence, t = Umax (V) = min(Umax, Pmax/V), Which specifies max-
imum traction, and @1 and w3 can be expressed in terms of v
and A, using the stationary condition (16) with either 3 =0
or ;1 = 0. In addition, during this maximal acceleration regime
the speed bound v = vmax cannot be maintained except at a
single point, so w4 =0. This completely defines the costate
equation(11).

. Cruising by partial traction (CR1). The second case is the singu-
lar solution with A, = v and u € [0, umax]. In this case, the sta-
tionary condition (16) reads i1 + u3v =0 and therefore u; =
3 = 0. Moreover, since A,(s) =v(s) on a nontrivial interval,
we must have )'\2(5) =1v(s). From (3) and (11), we can then
derive ¥2(u4 +1'(v)) + A4 = 0. This equation has a unique so-
lution v, which can be proved as follows. If we view the
left-hand side as a function h(v), and recalling that r(v)
is a quadratic function of speed with in particular r'(v) =
1 +2rv >0, (V) =2r, > 0, and third derivative r® (v) =0,
then W (V) = 2vpy + 20 (V) + 2" () >0 and h" (V) =24 +
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2r' (v) + 4vr” (v) > 0. Hence, h(v) is an increasing convex func-
tion, which has a unique root h(v¢) = 0 for v. > 0, if any. Now
assume that v; < vmax and so p4 = 0. Then the cruising speed
must satisfy

v2r' (V) + A1 =0, (17)

which has a unique solution v, if A; < 0. Moreover, the maxi-
mized Hamiltonian value condition (13) applied to this case for
an interval with constant g(s) = g then gives

v’ (W) + () +8+¢9 =0 (18)

with ¢ piecewise constant negative in congruence to g(s), and
thus the Hamiltonian is negative (H = ¢ < 0). If on the other
hand v(s) = vmax on a nontrivial interval then w4 is determined
as flg = —Aq/Vhax — I’ (Umax) which gives cruising at the maxi-
mal speed vmax as the unique solution. Note that also in this
case Aq < 0 must hold. In conclusion, this case corresponds to
a constant cruising speed v(s) = min(v¢, Vmax) With v the so-
lution to (17). This implies that ¥/(s) = 0 and thus u(s) =r(v) +
g(s), i.e., the traction force equals the total resistance force to
maintain the cruising speed. This case thus reduces to finding
a solution v, and Aq to (17).

. Coasting (CO). In the third case A, € (0,v) and u=0. Since
u(s) =0 the complementary slackness conditions give wq =
U2 = 3 =0 and also p4 = 0 since speed changes without trac-
tion effort due to the resistance, and, therefore, will not stay
at the speed limit for a nontrivial interval. This completely de-
fines the costate equation (11). Note that the rare case of r(v) =
—g(s) for some interval reduces to case 2 or 4 with cruising at
zero traction u(s) = 0.

. Cruising by partial braking (CR2). The fourth case is the sec-
ond singular solution with A, =0 and u € [—upy;,, 0]. The sta-
tionary condition (16) now gives i, =0, and also (1 = u3 =0
since u < 0. For the nontrival case that A, = 0 on some interval,
we must have i, = 0. Thus from (11) we get A;/v2 + g =0.
If g =0 then also A; =0 and by (8) also ¢ =0. However,
both A; and ¢ should be negative otherwise other regimes
would be prohibited, so w4 > 0. Therefore, v(s) = Vmax with
W4 = —A1/V2,. Hence, partial braking is optimal only when
cruising at the speed limit with u(s) = r(Vmax) + g(s), which
can occur only on downward slopes with —up;, — (Vmax) <
8(s) < —1(Vmax)-

. Maximum braking (MB) In the final case A, < 0 with u minimal.
The stationary condition (16) now gives p, = —A,/v > 0 and,
therefore, u = —uy;,. The special case that v = vpax Over a non-
trivial interval, i.e., g(5) = —Upi, — '(Vmax) is part of the fourth
case (with full braking). Hence, the costate equation (11) ap-
plies with w4 =0, and also u3 = 0 since u < 0.

The above analysis thus leads to the following optimal control
structure:

Umax (V(5)) if A2(s) >v(s)  (MA)
r((s)) +g(s) € [0, umax] if A2(s) =v(s)  (CR1)
i(s)=40 0<Xy(s) <v(s) (CO)
T (Vmax (5)) +&(S) € [~Unmin, 0] if A2(s) =0 (CR2)
~Upnin if A5(s) <0 (MB).
(19)

The optimal energy-efficient train control thus consists of maxi-
mum traction force umax(v) for maximum acceleration (MA), par-
tial traction to counterbalance the resistance forces and cruise at
an optimal cruising speed min(vc, Vmax) (CR1), zero traction u =0
for coasting (CO) (i.e., rolling without using the engine or brakes
of the train), partial braking to cruise at the maximum speed on
a sufficiently downward slope (CR2), and full braking force for
maximum braking (MB). The key challenge is to find the optimal
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switching points between the different driving regimes and the or-
der of the regimes to determine the optimal driving strategy. For a
simple flat track (zero gradient), no speed limit, and sufficient run-
ning time supplement, the optimal driving strategy is given by the
sequence MA-CR1-CO-MB or MA-CO-MB if the speed limit cannot
be reached within the given time. Note that running time supple-
ments are the extra running times above the technical minimum
running time included in the timetable to deal with variations
in the running time or to recover from small delays. If the train
runs punctual, they can be used for energy-efficient train driving
(Scheepmaker & Goverde, 2015).

Note that the dynamic equations (2) and (3) are not defined
at zero speed. In practice, we use slightly positive speeds at the
end points to avoid the divide by zero issue and correct the total
distance and time accordingly. From Pontryagins Maximum Prin-
ciple it is known that a train starts with maximum acceleration
and ends with maximum braking, so this control can be simply
extrapolated from/to zero. For our case studies the error is less
than 25 cm or 1 s at the start and end point. In this paper, we
ignored this error, which is well within the practical stopping ac-
curacy. Likewise, for the minimum-time train control of the next
subsection.

2.2. Minimum-time train control

The aim of the MTTC problem is to minimize the total running
time of a train, so the train should arrive as early as possible at
the next station at the minimized time t(sf). This objective J [s]
can be formulated as
Minimize | = t(sy), (20)
subject to the constraints (2)-(6) and the endpoint conditions

t(so) = 0,v(sp) = 0,v(sp) = 0,50 = 0,57 =S,

while the final time t(sf) is free.

The PMP analysis is similar to Section 2.1 and, therefore, we
focus on the main points here only. The Hamiltonian H [s/m] and
augmented Hamiltonian H [s/m] are defined as

H(E 0. 0y dgo 11, ) = /\71 n kz(u—r(;/) —g(S))’

(21)

(22)

I:I(l', VA1, Ao, i1, 8) = H+ g (Umax — U) + o (U + Upin)
+ W3 (Pmax — UTV) + (g (Vmax — V), (23)

where A; [-] and A, [s?/m] are the costate functions of the inde-
pendent variable s, and pq [s3/m?], uy [s3/m?], us [s*/m3] and
Mg [s2/m2], u; =0 (i=1...,4), are the Lagrange multipliers as-
sociated to the path constraints. Again the Hamiltonian is piece-
wise constant with possible jumps at the distances s where the
gradient g(s) or speed limit vmax(s) change, and (13) also holds
for this Hamiltonian. The costates A; and A, satisfy the differen-
tial equations A;(s) = —~9H/0t and A,(s) = —0H/dv, which gives
A1 =0 and thus A{(s) = A; as in the EETC case, and

A+ VA (V) + A (u —1(v) — &(5))

v2

However, different from the EETC case, the final conditions for the
states are not all fixed now, since the final time t(sy) is free. The
transversality conditions now specify a fixed value for the final
time of the associated costate Aq. This can be found by considering
the endpoint Lagrangian E [s] defined as

E(t(sp). v(sp), sp) = —t(sp) + y1v(sp) + ya(sp = S), (25)
where y; and y, are Lagrange multipliers, with the complementary
slackness conditions y;v(sf) = 0 and y,(sy —S) = 0. The transver-
sality conditions state that A;(sy) = BE'/Bt(sf) = —1 and therefore

5\2 (s) = + psut + (s (24)
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we now obtain A; = —1. Likewise, A,(sy) = 81::/81/(sf) = y1 and for
the value of the maximized Hamiltonian at the endpoint s, we get
H[sf] = _aE/asf = —,, which however does not give any new in-
formation.

The Hamiltonian is again linear in the control u with coeffi-
cient A,/v. The optimal control u that maximizes this Hamilto-
nian therefore depends on the sign of the costate A,, and must
be maximal for A, > 0, is undetermined for A, =0, and is mini-
mal for A, < 0. The KKT conditions for the augmented Hamiltonian
(23) give the same complementary slackness conditions (15) on the
path constraints with u; >0, i=1,...,4, as the EETC case, while
the stationary conditions with dH/du = 0 now become

{)3—#1—#31}:0
24py=0

ifu>0

26
ifu<o, (26)

and is undefined for u = 0. Like the EETC case, we have u, =0
for u >0, and pq = 3 =0 for u < 0. We can now characterize the
three driving regimes depending on the sign of the costate A, us-
ing the results of the PMP and KKT conditions.

1. Maximum acceleration (MA). In the first case, A, >0 and u >
0. Then (26) gives q+ U3V = ’\72 >0 and thus pq >0 or
M3 > 0. So either u = umax Or U= pmax/V, and therefore u =
Umax (V) = min(Umax, Pmax/V), Which specifies that maximum
traction needs to be applied. In addition, during a maximal ac-
celeration regime the speed bound v = vpax cannot be main-
tained except at a single point, so @4 = 0. The multiplier w3 is
either zero or equal to w3 = A,/v? using (26) with w@q = 0. This
completely defines the costate equation (24).

. Cruising (CR). The second case is the singular solution with A, =
0 and u € [—Upin, Umax]. With Ay =0, (26) specifies p1 = uy =
3 = 0 for both u > 0 and u < 0. The Hamiltonian (22) now be-
comes H = A;/v(s) = —1/v(s). Moreover, A, = 0 on a nontrivial
interval and then 4 = 1/v2 using (24). In particular, this im-
plies that 14 > 0 and therefore, v = vmax. Hence, this case cor-
responds to cruising at the maximum speed vmax with control
u(s) = r(Vmax) + &(S) € [—Upmin, Umax] to mMaintain the maximum
speed. The control can be anything from full to partial trac-
tion or braking depending on the value of the resistance and
gradient at vmax. Moreover, the Hamiltonian value is fixed at
H=—1/vmax < 0.

. Maximum braking (MB) In the final case, A, < 0 and u < 0. Now
(26) gives (y = —Ay/v > 0 and therefore u = —uy,;,. The special
case that v = vmax over a nontrivial interval is part of the 2nd
case (with full braking). Hence, p4 =0, and also @3 = 0 since
u < 0, which completely defines the costate equation (24). Fi-
nally, from (22) follows that H = ¢ < 0 since both costates are
smaller than zero.

The above analysis thus leads to the optimal control structure

Umax (V(S)) if A2(s) >0 (MA)
U(s) = { r(Wmax(s)) +&(s)  if A2(s) =0  (CR) (27)
~Upin if A2(s) <0 (MB).

So, the traction and braking efforts are as high as possible to keep
the train at its maximum speeds as long as possible, which indeed
generates the minimal running time. No time is wasted on coasting
in this case.

3. Pseudospectral method

In this section, the train trajectory optimization is formulated
as a multiple-phase optimal control problem (Betts, 2010; Darby
et al,, 2011a) and then discretized according to the Radau pseu-
dospectral method (Garg, 2011; Garg et al., 2009; Rao et al., 2010).
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Fig. 2. Illustration of phases in the multiple-phase optimal control problem.

The Radau pseudospecral method is implemented in the MATLAB
toolbox GPOPS, which we use as solver for the MTTC and EETC
problems.

A multiple-phase optimal control problem is one where the tra-
jectory consists of a collection of phases. Simply speaking, a phase
is any segment of the complete trajectory. In general, any particular
phase of an optimal control problem has a cost functional, dynamic
constraints, path constraints, and boundary conditions. However,
the models used to quantitatively describe the trajectory may be
different in different phases of the trajectory. The complete tra-
jectory is then obtained by properly linking adjacent phases via
linkage conditions. Similarly, the total cost functional is the sum of
the cost functionals over each phase. The optimal trajectory is then
found by minimizing the total cost functional subject to the con-
straints within each phase and the linkage constraints connecting
adjacent phases.

The multiple-phase optimal control problem described in the
previous section is now transcribed to a discrete NLP via an ex-
tension of the single-phase Radau pseudospectral method. Pseu-
dospectral methods are orthogonal collocation methods using
global poynomials. A collocation method can be used for the nu-
merical solution of ordinary differential equations and integral
equations. The idea is to choose a finite-dimensional space of can-
didate solutions (here polynomials) and a number of points in
the domain (called collocation points), and to select that solu-
tion which satisfies the given equation at the collocation points.
The Radau pseudospectral method uses the Legendre-Gauss-Radau
(LGR) points plus additionally the final point. The resulting NLP can
then be solved by one of the many well developed nonlinear opti-
mization algorithms.

3.1. Multiple-phase optimal control problem formulation

The optimal train control problems can be formulated as
finite-horizon multiple-phase optimal control problems (Wang &
Goverde, 2016a). The running section from the departure point to
the arrival point is then divided into a finite number of segments
by the critical points of speed limits, gradients and curves, and
each of these segments is called a “phase”. Fig. 2 gives an illustra-
tion, where the running section is divided into six phases. Within
each phase, the gradient and speed limit are constant, but their
values may be different over the various phases.

Assume that the running section is divided into phases
[s(()r),s;r)], with s(()r) and s}”, sf)r) <s§f), denoting the initial and

359

terminal location of phase re {1,...,R}. The train departs from
the initial point sé” of phase 1, and arrives at the terminal point
S}R) of phase R. Within phase r, the state vector consists of time
and speed xM (s) = [t™(s), v® (s)]’, and the control vector is the
mass-specific applied force u(™ (s). Moreover, denote the boundary
points of a phase r as xé” =xM (sg)) and x}r) = x0 sy,

The multiple-phase optimal control problem can now be formu-
lated as minimizing the cost functional

R
Minimize | = Y E® (xf)r),sg),x}”,s}”)

r=1

0
+ /mf FO(x7(s), u(s),s) ds, (28)
So
subject to the dynamic constraints
X0 (s) = fO(x0(s). u"(s).s).  r=1,....R (29)
the path constraints
h™ (x(’) (s),u” (s),s) >0, r=1,....R, (30)
the linkage conditions
(1) () H(r+1) (r+1)
1O s0x sy =0,  r=1,....R-1, (31)
and the boundary (or endpoint) conditions
1) (1) ,R®) R)
e(xp. 5o, x5 )=0. (32)

Note that the path constraints are inequalities over the phases
and the linkage conditions are equality constraints on the phase
boundaries.

For the EETC problem the cost functional is given by E = 0 and
FO@®) = y+t™ with ut® = max(u®, 0), and for the MTTC prob-
lem these are E(M (x(()”,x}”) = t}” - tér) and F™ = 0. The dynamic
and path constraints are given for both problems by (2)-(6), i.e.,

i ™ (s) — 1O (y® _on7
FO(D (). u(s).5) = v(r)l(s),“ ®) rv(r()lzs)(S)) g }

and

[ Pmax — Ut ()™ (s)
) (s)

Vi — v () |

u () + Umin

Umax — U (s)

h (x0(5), u®(s), s) =




RM.P. Goverde, G.M. Scheepmaker and P. Wang

where g(") represents the lme resistance due to the constant gra-
dient within phase r, and vmax is the constant speed limit within
phase r. The linkage conditions are

(r+1) ,(r) (r+1) (1)

—t vy’ — Vg S

()
(£ Vg Sy
which make sure that the speed profile over the entire running
section is continuous. The boundary conditions for the EETC prob-
lem are e(x(l) s(l) X(R) S(R)) [t“) (1) (1) t(R) T, U(R) S}R)
(R))

l(r)(x(r) S(r) X(r+1) s(r+1))

S) and for the M”ITC problem they are e(x(l) (1), X;
(1) ,(1) (1) (R) (R)

[ty vy .o Vg ,sf ) _S)’ with final time ty free.

3.2. Legendre-Gauss—-Radau discretization

The Radau pseudospectral method is a pseudospectral method
with the Legendre-Gauss-Radau points as collocation points (Garg,
2011; Garg et al., 2009). Pseudospectral methods are defined on
the domain [—1, 1]. Therefore, the first step in a pseudospectral
method is to map the physical domain [so, s¢] to the computational
domain [-1, 1]. For a multiple-phase optimal control problem, the
physical variable s € [s”) (r)] in each phase is transformed to the

computational variable U(” € [-1, 1] by means of the affine trans-
formation

25 — (s;r) +s)

() _
O =5 o (33)
f 0
Note this implies do ™ /ds = 2/(5}” —s(()r)) for r=1,...,R Con-
(r) (r) s(r)_sm
versely, we obtain s(c ") = L2 4 L 0 50,

Next, the state vector function x®(s(c)) is approximated
by a polynomial X (c) with a basis of global Lagrange in-
terpolating polynomials L(r) (o) over N;+1 discretization points

(ol(r), 02”), .. (” "41) in each phase r in terms of o as
Ny+1
X0 (s(0) X" (o) =Y XL (o). (34)

i=1

where X =X (0" and
Ny+1 _ U(r)
() _ Jj
L") = H S g0
j=1j# i j

For the Radau pseudospectral method, the discretization points are

the LGR collocation points (ol(r) o)’ .,J,\(,:)) and the additional
point a,\(,ri] =1, where N; is the number of LGR points within
phase r. "The LGR points are defined as the N; zeros of the sum

of the Legendre polynomials of degree N; and N; — 1. It includes
the initial point O’l(r) = —1, but not the final point. Therefore, for
the state approximation at the final point, the additional point

,\(,rfr] =1 is added. Note that Ll.(r) (ak(r)) satisfy the Kronecker delta
condition Li(r) (ak(r)) =8 fork=1,....N;+1, with 8y =1 if i=k
and J;, =0 if i # k. Hence, at the discretization points ak(”, we
have x™ (s(ok('))) :le'). Moreover, we define Ulf') as the approxi-
mation of the control at each point ok(r), fork=1,...,N;

The derivative of x(")(s) is approximated by the derivative of the

polynomial approximation, which gives in each phase r,
Nr+1 .

> XL (o).

i=1

X0 (s(0) X" (o) =

Now define the non-square N; x (N; + 1) Radau pseudospectral dif-
ferentiation matrix in phase r,

DY =L"(0"), k=1, N.i=1,....N+]1,

_ sé’“)]/,
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with the derivatives of LV) (o) evaluated at the LGR points o =

(r) . Then the dynamic constraint (29) is approximated at the LGR

pomts ak(r) by the algebraic equations

Ny+1 S(r) _ S(()r)
M)y () _ @) (@ g @Y _
> DX 5" (XU, ") =0, (35)
i=1
fork=1,....,N,,r=1,...,R.

The cost function is approximated using the LGR quadrature as

()
0

N, (r)

)+Zf

where Fk(r) =F® (Xk(r),Uk(r),ok(r)) is the cost evaluated at the kth

collocation point in phase r, wl(:) is the quadrature weight asso-
ciated with the kth LGR collocation point of phase r, and for the

(1) (1) (r) M) Wi (r)
MTTC problem E® (X;" X 1) = Xn1 1 —Xp with X} the 1st

(T(r) Vk(r )). Note that for the optimal

train control problem X(r) is a matrix with rows Xi(r) correspond-
ing to the discretization points and thus the columns correspond
to the approximation vectors of the state variables.

Furthermore, the path constraints, linkage conditions and
boundary conditions are discretized at the LGR points as

: (36)

R
_ "y WO E®
J=2 BV (67X W'k,

(time) component of X(r)

hOx" .U o)>0 k=1.... N.r=1...R (37)

l(r)(X[\(Jrlr]7 o.f\(]ri]ﬁx(rﬂ)?o.l(rﬂ)) =0, r=1,...,R—-1, (38)
1) (1) (R) (R)

e(X;"”, oV, X\, on) = 0. (39)

The multlple—phase optimal control problem is now converted
to the discrete nonlinear programming problem to minimize
(36) subject to (35), (37)-(39), where the decision variables are
(X(” (r) 1) and (U<’) U(r ), r=1,...,R. Necessary opti-
mahty COIldlthIlS for the NLP problem (35)- (39) can be obtained
by the associated KKT conditions including the corresponding La-
grangian multipliers. Let A denote the Lagrange multipliers as-
sociated to the discretized dynamic equation (35), i.e., A®™ is an
Nr x 2 matrix whose columns correspond to the Lagrange multi-
plier vectors of the two columns in X representing the state ap-
proximations. Then the approximation of the costate vector A(") in
the discretization point a(r) is given as (Garg et al., 2011)

(r) /W(r)
DT A (UN

where D, N1 denotes the transposed last column of the differentia-
tion matrix D, which can be shown to be equal to the (transposed)
negative sum of the first N; columns of D (Garg et al.,, 2011).

Note that s(o,\(,:zrl) :s(af”l)) for r=1,...,R—1 in the dis-
cretized multiple-phase optimal control problem using LGR col-
location points, and the linking conditions take care that the as-
sociated state and control variables are consistent. Hence, the
multiple-phase Radau pseudospectral method computes in essence
the state, costate and control values at N =3YF N, different
points, along with the state and costate values at the final point.
The value of the control at the final point U,\(,Rll must be ex-
trapolated separately, which is also implemented in GPOPS. Thus,
the multiple-phase Radau pseudospectral method computes state,
costate and control vectors of dimension N+ 1 corresponding to

the values (Xk(r), A,(p, U(r)) at the N+ 1 successive points s(ok(”),
k=1,...,N,, r=1...,R, and s(o,\(,Ril) with sg = s(ol(l)) and sy =

S(O‘(R)1) Thus, over the physical domain the dlSCl‘EtlZEd solution
can f)e denoted as {(X;, A;. U;) = (x(s;), A(s;), u(s;) | i= ., N}.

k=1,...,N;

40
k=N;+1, (40)

A0 (s(o ")) = {
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Boundary Value Indirect collocation Primal Dual
Problem Problem
P(x,u, 1) Convergence (N — o) Py(X,U,A)
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Optimal Control Convergence (N — o) NLP
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P(x,w) Direct collocation Py(X,U)

Fig. 3. Computational evaluation framework for pseudospectral optimal control with Pontryagin’s Maximum Principle.

4. The pseudospectral computational evaluation framework

In this section, we propose a computational evaluation frame-
work to verify, validate and improve pseudospectral solutions for
optimal train control problems. It is based on the costate approxi-
mations that the pseudospectral methods provide next to the con-
trols and states. These can be exploited to analyse the results using
the necessary optimality conditions of the original continuous op-
timal control problem.

Fig. 3 illustrates the approach, which was inspired by Ross and
Karpenko (2012). Here, (x,u,A) represent the continuous state,
control and costate functions, respectively, and (X,U, A) the dis-
crete approximations. The indirect method is clockwise: the origi-
nal optimal control problem P(x, u) (lower-left box) is dualized to
a BVP P(x,u, A) (upper-left box) with the adjoint dynamic equa-
tion of the costate A by application of the PMP (and additional
Karush-Kuhn-Tucker conditions for the path constraints). This pro-
cedure was demonstrated in Section 2. The resulting BVP P(x, u, A)
can then be discretized by collocation of the dynamic equations
and additional path and control constraints enforced on the N dis-
cretization points, which is indicated as indirect collocation in the
figure (upper-horizontal arcs). However, such algorithms are very
sensitive to the initial guesses of the (costate) variables. Moreover,
the implicit control function, discontinuities, and the a priori un-
known switching structure of the inequality path constraints make
these problems very hard to solve by generic BVP solvers. Still,
dedicated algorithms have been developed for the EETC problem
expoiting algebraic formulae for the costate along sections with
constant gradient, which led to very fast algorithms (Albrecht et al.,
2016a; 2016b; Howlett et al., 2009; Liu & Golovitcher, 2003). In ad-
dition, an MTTC algorithm is straightforward with the knowledge
of the optimal control structure without the need for solving the
costate dynamic equations.

On the other hand, counterclockwise is the direct pseudospec-
tral method as described in Section 3: the original optimal control
problem P(x, u) is transcribed into a discrete NLP problem Py (X, U)
using the LGR collocation points, where N denotes the total num-
ber of collocation points (lower-right box). This NLP problem is
then solved by an NLP algorithm, which gives the optimal state
and control vectors that can be transformed back to approximate
solutions of the continuous optimal control problem. The higher
the number of discretization points N the more accurate is the ap-
proximation of the continuous functions (x, u), although the high-
order global polynomials already generate good approximations for
smaller grid sizes to smooth problems. The NLP algorithms also
compute the associated Lagrange multipliers A and thus actu-
ally solve the discrete primal-dual problem Py(X,U, A) with both
discrete state and costate vectors (upper-right box). This solution
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(X,U, A) can then be transformed to approximations of the solu-
tion to the continuous BVP P(x,u, A). Then the optimality condi-
tions represented by P(x, u, A) (upper-left box) can be checked to
confirm convergence of the optimal state and control of the orig-
inal optimal control problem P(x, u). Identified issues of the solu-
tion (x, u, A) could be improved by increasing the number of collo-
cation points N but this increases the computation time. Alterna-
tively, the discrete approximation (X,U, A) could be corrected to
a feasible continuous solution (x, u, A) using information from the
continuous PMP combined with additional computed values by the
pseudospectral method, such as A; and ¢. This leads to a postpro-
cessing step to the pseudospectral method, which we will explore
in Section 6.

In Section 2, we derived necessary optimality conditions in
terms of costate variables by application of the PMP (left-upwards
arrow). This PMP analysis provides important generic knowledge
that can be used to evaluate a solution found by any method. For
the EETC problem the main results can be summarized as follows:

1. The Hamiltonian is negative and constant on phases with con-
stant gradient and speed limit, ¢ < 0.

2. The costate associated with time is a negative constant, A; < O.

3. The optimal control structure depends on the relative values of
speed v and costate A, according to (19).

. The singular solutions correspond to a constant cruising speed,
with either v = A, (CR1) or A, = 0 (CR2).

5. In the singular solution CR1, the optimal cruising speed v. can
be determined from either A; or ¢ using (17) or (18), while the
(constrained) cruising speed is v(s) = min(Vc, Vmax(s)).

. In the singular solution CR2, the cruising speed is Vmax.

Likewise, for the MTTC problem the main PMP results can be
summarized as:

1. The Hamiltonian is negative and constant on phases with con-
stant gradient and speed limit, ¢ < 0.
2. The costate associated with time is constant and fixed, A; = —1.
3. The optimal control structure depends on the sign of cospeed
Ay according to (27).
. The singular solutions correspond to a cruising speed vmax and
Ay =0.

In Section 5, we will apply the pseudospectral method to solve
the optimal train control problems MTTC and ETTC for various sce-
narios and verify consistency with the necessary optimality condi-
tions as summarized above. Then in Section 6 we use the analyti-
cal results from the PMP analysis to correct the inconsistencies in
the discrete pseudospectral solutions to obtain feasible continuous
solutions that satisfy the optimality conditions.
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Table 1

Basic parameters of the Intercity and Sprinter trains (NS, 2017).
Characteristic Intercity Sprinter
Train mass m [t] 391 198
Rotating mass factor p [-] 1.06 1.06
Maximum traction power Ppax [kW] 2157 1918
Maximum traction force Fpnax [kN] 214 170
Maximum braking deceleration —uy;, [m/s?] —-0.66 -0.8
Maximum speed limit ¥max [km/h] 140 140

Train resistance R(v) [kN] (v: [km/h])

5.8584 4 0.0206v + 0.001v?

1.3961 + 0.0145v + 0.0007v2

5. Computational results

This section applies the pseudospectral computational frame-
work of Fig. 3 in a structured experimental study considering a
range of operational scenarios of the optimal train control prob-
lems. In particular, we will apply the pseudospectral method to
numerically compute the optimal train control problems directly,
via the right loop P(x,u) — Py(X,U) — Py(X,U, A) — P(x,u, A), and
then compare the computed solutions with the optimality condi-
tions obtained via the straight arc P(x, u) — P(x, u, ). The purpose
of these experiments is both practical and theoretical. On the prac-
tical side, we consider the following research question: how do
the optimal driving strategies change depending on varying oper-
ational parameters, such as gradients, speed limits, and running
time supplements? On the theoretical side, we want to answer
the research question: how does the performance of the pseu-
dospectral method depend on varying operational parameters, in
terms of accuracy of the (state, costate and control) trajectories
and computation time? Moreover, to improve the identified ac-
curacy problems we consider a third research question: how can
the computational framework improve the solution quality of the
optimal train control problems? Section 5.1 introduces the case
study and scenarios. Sections 5.2-5.5 consider the various struc-
tured experiments varying one operational parameter at a time,
while Section 5.6 considers the real-life case. A solution approach
to the identified issues of the discrete approximations is provided
in Section 6.

5.1. Description of case study and scenarios

The case studies are based on the Dutch railway line from
Utrecht Central (Ut) station to 's-Hertogenbosch (Ht) station with
trains from the Netherlands Railways (NS). We consider an Inter-
city (IC) train running over the entire distance of 50 km from Ut-
Ht, and a regional or Sprinter (SPR) train running over the last
10 km distance from the last short stop Zaltbommel (Zbm) to Ht.
The IC trains use a composition of VIRM-6 rolling stock and the
Sprinter trains use an SLT-6 train composition. The static parame-
ters of the two train types are listed in Table 1. The mass-specific
train related parameters in Eqs. (3)-(6), i.e., Pmax, Umax and r(v),
are computed by dividing the corresponding values in Table 1 by
the total mass, including rotating mass factor. We consider various
scenarios in order to investigate the effect of varying speed lim-
its, gradients, and running time on the driving strategy and the
pseudospectral convergence. The reference scenario is a level track
with a single speed limit of 140 km/h (38.89 m/s), and 15% run-
ning time supplement for the EETC cases. The varying parameters
of the scenarios are carefully selected to analyse a wide range of
conditions and thus include gradients with steep uphill and down-
hill sections, slight to severe speed restrictions, and running time
supplements ranging from zero to relative big allowances. The 15%
running time supplement is relatively high but it refers to flat track
without speed restrictions, while speed restrictions and some gra-
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dients lead to increased running times. With this choice all scenar-
ios have feasible scheduled running times.

We consider the following scenarios with a mix of MTTC and
EETC problems and IC and SPR trains:

1. Reference scenarios: fixed speed limit (140 km/h), flat track,

and 15% running time supplement for EETC.

Varying speed limits: 10 km segment with a restricted speed of

120, 110, 100 km/h (EETC for IC only).

. Varying (steep) gradients: 10 km segment with gradient of 10%,
5%, 0%, —5%, —10% (EETC for IC only).

. Varying running time supplements: 0%, 2%, 5%, 10%, 15%, 20%
(EETC only).

. Real-life cases: actual varying speed limits and gradients for
SPR and IC, and 10% supplement for EETC.

2.

Note that the running time supplements only apply to the EETC
problem. The results of varying speed limits and gradients are sim-
ilar for the IC and SPR trains, so we only present the IC trains. In
total, we analyse 25 scenarios. From a theoretical perspective, the
reference scenarios focus on the main optimal train control prob-
lem with smooth state, control and mixed state-control path con-
straints. The 2nd class of scenarios considers discontinuous state
constraints and the 3rd class of scenarios considers discontinuities
in the dynamic equation. The 4th class of scenarios focuses on the
interaction between regimes when more or less time is available
for energy-efficient driving. The real-life cases combine the first
three scenarios with the real varying gradient profile and speed
limits.

We use the MATLAB toolbox GPOPS version 4.1 as the pseu-
dospectral solver (Rao et al., 2010). GPOPS approximates the states,
controls, and costates as functions of distance, as well as the
Hamiltonian values, and thus closes the numerical solution loop
via the discrete approximation from P(x, u) to P(x, u, ). We aimed
at using the same fixed number of collocation points for each
phase in all structured scenarios. By trial and error, we found
N =200 to be a good trade-off between computation time and so-
lution quality. In one case (SPR MTTC), we increased this number
(to N =235) to get a better solution accuracy while the compu-
tation time was still fast (within 2 s). For the real-life cases, the
number of phases is very high (78 and 38 for the IC and SPR, re-
spectively), so in these scenarios we let GPOPS decide on the opti-
mal number of collocation points per phase by exploiting the hp-
adaptive pseudospectral method functionality with 1 or 3 mesh it-
erations, which then adjusts the number of collocation points in
each phase to improve the solution quality. This resulted in 9 to
24 collocation points per phase. As initial guesses, we provide the
known parameters such as the initial and final position, and the
lower and upper bounds on time, speed and control.

Table 2 summarizes the results for all 25 scenarios. A first in-
spection of the optimality conditions confirms negative Hamilto-
nian values ¢ <0 and a constant negative costate A; <0 in all
cases. Moreover, for the MTTC scenarios A; = —1. In the scenar-
ios with the varying speed limits and/or gradients the Hamiltonian
is piecewise constant over the phases, which is also as expected.
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Table 2
Main pseudospectral results of the various scenarios (energy saving w.r.t. MTTC, speed limit reference scenario is 38.89 m/s).
Scenario Fig Trip Energy Energy Max R N Costate Hamiltonian Comp
time usage saving speed M 1) time
[s] [kWh] [%] [m/s] [s]
Reference IC MTTC 4 1340 447.21 - 38.89 1 200 -1 -0.026 0.82
Reference IC EETC 5 1541 323.98 27.56 35.12 1 200 -2.93 -0.142 21.36
Reference SPR MTTC 6 278 75.09 - 38.89 1 235 -1 -0.025 1.22
Reference SPR EETC 7 320 42.96 42.79 36.03 1 200 —6.09 -0.241 14.23
Var. speed limit IC (120 km/h) 8a 1541 324.04 27.54 35.68 3 3x200 -3.06 -0.146 129.62
Var. speed limit IC (110 km/h) 8b 1541 327.32 26.81 37.07 3 3x200 -3.43 -0.156, —-0.161, —0.156 117.43
Var. speed limit IC (100 km/h) 8¢ 1541 338.16 24.38 38.89 3 3x200 -4.75 -0.191, -0.214, —-0.191 90.23
Var. gradient IC (-0.01) 9a 1541 218.81 51.07 38.89 3 3x200 -3.47 -0.157, -0.101, —-0.157 136.40
Var. gradient IC (—0.005) 9b 1541 269.64 39.70 35.14 3 3x200 -2.93 —-0.142, —0.093, —0.142 336.43
Var. gradient IC (+0.005) 9c¢ 1541 382.23 14.53 35.13 3 3x200 -2.93 —-0.142, -0.191, —-0.142 135.35
Var. gradient IC (4+0.01) 9d 1541 437.16 2.24 35.06 3 3x200 -2.91 —0.142, —-0.240, —0.142 163.41
Var. running time IC (2%) 10 1367 411.84 7.91 38.89 1 200 -10.38 -0.334 10.50
Var. running time IC (5%) 10 1407 380.27 14.97 38.89 1 200 —4.55 -0.184 14.11
Var. running time IC (10%) 10 1474 352.06 21.28 37.20 1 200 -3.46 -0.157 17.68
Var. running time IC (15%) 10 1541 323.98 27.56 35.12 1 200 -2.93 -0.142 21.36
Var. running time IC (20%) 10 1608 303.05 32.24 33.32 1 200 -2.51 -0.130 17.29
Var. running time SPR (2%) 11 284 63.14 15.91 38.89 1 200 —18.96 —-0.568 15.87
Var. running time SPR (5%) 11 292 56.15 25.22 38.89 1 200 -11.43 -0.375 16.89
Var. running time SPR (10%) 11 306 48.63 35.24 37.85 1 200 -7.83 —-0.285 18.76
Var. running time SPR (15%) 11 320 42.96 42.79 36.03 1 200 —-6.09 -0.241 14.23
Var. running time SPR (20%) 11 334 39.12 47.90 34.69 1 200 —5.08 -0.214 16.85
Real-life MTTC IC Ut-Ht 12 1619 325.68 - 38.89 78 9-24 -1 pwc <0 57.09
Real-life EETC IC Ut-Ht 13 1781 188.79 42.03 37.89 78 9-20 -3.02 pwc <0 202.53
Real-life MTTC SPR Zbm-Ht 14 529 65.51 - 38.89 38 9-20 -1 pwc <0 35.42
Real-life EETC SPR Zbm-Ht 15 582 36.76 43.89 35.26 38 9-20 —4.33 pwc <0 63.24

Legend: pwc = piecewise constant, R = Number of phases, N = Number of collocation points per phase

In the next sections, we consider each set of scenarios with the
focus on the optimal control structure and the singular solutions
depending on the value of the costate A, relative to speed and/or
zero.

5.2. Reference scenario

This subsection describes the results of the reference scenario
for both the Intercity and the Sprinter train. The reference is a flat
track with a fixed speed limit of 140 km/h and for the EETC case
15% running time supplement with respect to the computed min-
imum running time. With the reference scenario we analyse the
consistency of the driving behavior of both trains with the nec-
essary optimality conditions for the MTTC and EETC problems de-
rived in Section 2. Table 2 summarizes the quantitative results. The
resulting diagrams of the IC train can be found in Fig. 4 (MTTC)
and Fig. 5 (EETC), and the results of the SPR train are shown in
Fig. 6 (MTTC) and Fig. 7 (EETC).

The MTTC driving strategy for the IC leads to the fastest run-
ning time of 1340 s, but also to the highest energy consumption
of 447 kWh (see Table 2). The computation time is 0.82 s for this
scenario. If we have a closer look at the results of the MTTC driv-
ing strategy for the IC train of Fig. 4, we can see that the optimal
driving strategy consists of maximum acceleration, cruising at the
speed limit, and maximum braking. The costate A, behaves accord-
ing to the optimal control structure (27). During maximum acceler-
ation, the costate variable A, is bigger than zero, during the cruis-
ing phase it is equal to zero, and during maximum braking it is
smaller than zero. The Hamiltonian remains constant as required,
except at the endpoints where it deviates. The control, state and
costate are continuous at the end points, which implies that the
Hamiltonian should also be continuous. The deviations are at the
level of the 3rd decimal so they can be caused by numerical er-
rors. We observe the same errors at the endpoints of the Hamil-
tonian in the other scenarios, so we indeed believe that these are
caused by numerical errors rather than the solutions of the state,
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control or costate variables. This holds for all scenarios below as
well, so in the remainder we will discard these discontinuities at
the endpoints.

The EETC driving strategy for the IC generates an energy sav-
ing of about 28% compared to the MTTC driving strategy. The run-
ning time exploits the full 15% running time supplement. The re-
sults are computed in 22 s. Fig. 5 shows that the Hamiltonian is
constant, and the optimal driving strategy consists of maximum
acceleration, cruising below the speed limit, coasting, and maxi-
mum braking, although also a partial acceleration can be observed
at the end of the maximum acceleration regime where the speed
profile is still slightly increasing towards the cruising speed. Also
the braking regime at the end shows some oscillations rather than
full braking. The Hamiltonian shows here also some more devia-
tions, which might indicate that these oscillations are not optimal.
The costate variable A, behaves according to the derived control
structure (19), since A, is bigger than speed v during maximum
acceleration, equal to the speed v during cruising, between zero
and speed v during coasting, and smaller than zero during maxi-
mum braking. The costate A, also equals speed during the ‘partial
acceleration’, which thus should correspond to the singular cruis-
ing regime. The effect of partial acceleration on the total energy
consumption is less than 2% compared to full maximum acceler-
ation. The control plot shows oscillations during cruising below
the speed limit, in which the partial traction is approximated by
alternating between zero and some positive traction. It is known
from the literature that the pseudospectral methods suffer from
this oscillating behavior for singular solutions in the interior of
the state inequality path constraints, i.e., cruising below the speed
limit (Scheepmaker & Goverde, 2016; Wang & Goverde, 2016a; Ye
& Liu, 2016), since the control solution is here not uniquely deter-
mined. Howlett and Pudney (1995) proved that an optimal cruis-
ing speed can be approximated by (short) sequences of maximum
traction and coasting with the same energy consumption as cruis-
ing at the optimal cruising speed. However, the pseudospectral
method switches at successive collocation points using an appro-
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Fig. 5. Trajectories for the Intercity train with the energy-efficient driving strategy.

priate traction rather than finding the optimal switching points
and switching between zero and maximum traction. A closer look
at the control plot shows that the initial oscillating behaviour cor-
responding to the ‘partial acceleration’ part has a slightly higher
amplitude in agreement with a higher maximum traction for lower
speeds. So GPOPS has difficulties with the convergence of the con-
trol approximation at the beginning of the singular solution. Note
that this oscillating control behaviour did not occur in the MTTC
case. The essential difference is that in the MTTC case the singu-
lar solution occurred at an active state inequality path constraint,
i.e.,, where the optimal cruising speed equals the maximum speed
limit. This is a much easier case since the optimal cruising speed
is then fixed.

The MTTC driving strategy of the SPR train consist of maximum
acceleration, cruising at the speed limit and maximum braking (see
Fig. 6), like the IC train. The total distance of cruising is shorter
for the SPR train, due to the shorter total distance between the
two stops. The results are in line with the necessary optimality
conditions. The costate variable A, behaves according to optimal
control structure (27) although the control shows some unstable
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behaviour around the switching point from maximum acceleration
to cruising. The Hamiltonian remains constant except for a small
interval at the start. The same is observed in the Hamiltonian of
the Sprinter EETC case. Experiments showed that slight changes to
the scheduled running time T resulted in different deviations in
the Hamiltonian in this interval suggesting that GPOPS has small
numerical precision errors in computing the Hamiltonian in this
region. In contrast, the states and costates are smooth while the
control is also continuous. Table 2 indicates that the total amount
of traction energy for this scenario is about 75 kWh. The results
are computed within 2 s.

Finally, the EETC driving strategy for the SPR train with 15%
running time supplements leads to a driving strategy without
cruising, since the distance between the stops is too short to reach
the optimal cruising speed, see Fig. 7. Therefore, only maximum
acceleration, coasting and maximum braking are applied. Indeed,
the EETC driving strategy for short distances with sufficient run-
ning time supplements consists of one acceleration to the opti-
mal coasting speed after which the train coasts until a final brak-
ing regime to come to a standstill just in time. This is a gen-
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eral energy-efficient driving strategy for urban trains (Scheepmaker
et al., 2017). The costate A, exceeds speed v if the train applies
maximum acceleration, is between speed v and zero if the train
is coasting, and below zero if the train applies maximum braking.
These conditions are in line with the optimal control structure (19).
Finally, the Hamiltonian remains constant. The total energy con-
sumption of the EETC driving strategy of the SPR train is about 43%
lower compared to the MTTC driving strategy (see Table 2). Finally,
the results are generated in 15 s.

In summary, the results of the reference scenario are largely
consistent with the necessary optimality conditions, except for the
singular solution of the long distance IC train with an oscillating
control approximating cruising by partial traction-coasting pairs,
and some oscillation in the braking regime. The singular solution
also starts a little bit too early where the speed still gradually in-
creases until it oscillates around the optimal cruising speed. Al-
ternating maximum acceleration and coasting is the optimal driv-
ing strategy for diesel-electric trains with finite discrete throttle
settings (Howlett, 1996; 2000; Howlett & Pudney, 1995). For elec-
tric trains with continuous traction settings a constant traction ac-
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cording to the resistance forces is preferred from the viewpoint of
driver workload and comfort, or an approximation with maximum
traction-coast bang-bang control. The oscillating control computed
by the pseudospectral method therefore must be understood as an
approximation of the cruising speed only and not as the optimal
control. This is discussed in more detail in Section 6. Finally, the
MTTC problem is solved within seconds while the EETC problem
takes more time. Clearly, the EETC problem is more involved as it
needs to find the optimal cruising speed and coasting point.

5.3. Varying speed limits

This section considers the scenarios with varying speed limits
causing discontinuous state path constraints (5). We only consider
the EETC driving strategy with 15% running time supplements, and
only the IC train since the results of the IC and SPR train are simi-
lar. In these scenarios we insert a speed restriction over the stretch
between 25 km and 35 km. We gradually decrease the speed limit
between these points from 140 to 120, 110 and 100 km/h. The
resulting diagrams of the speed, costate, control and Hamiltonian
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Fig. 8. Trajectories for the Intercity train with varying speed limits.

can be found in Fig. 8. The quantitative results are summarized in
Table 2.

Fig. 8a shows the case where the speed limit between 25 km
and 35 km is reduced to 120 km/h. The train applies maximum
acceleration followed by cruising at an optimal speed below the
speed limit, and then coasts before the speed restriction until the
restricted speed is reached, which is then maintained until the end
of the speed restriction after which the train accelerates maximally
again to the optimal cruising speed, followed by coasting, and fi-
nally maximum braking. In the singular solutions, again an oscil-
lating control is observed that approximates an optimal ‘free’ cruis-
ing speed below the speed limit, and also the singular solution at
the restricted speed limit shows oscillating control to cruise below
the restricted speed. Note that the cruising speeds before and af-
ter the speed restriction are the same, which is in line with the
EETC theory that the optimal cruising speed is equal for each sec-
tion (Howlett, 2016). The beginning of the singular solutions start
again a bit too early with the oscillating speed creeping towards
the optimal cruising speed, as we have observed in the IC EETC ref-
erence case. The costate A, is consistent with the optimal control
structure (19), however, it has now a jump at the begin and end
of the speed restriction (this is more pronounced with the lower
speed restrictions). Hence, the discontinuities in the pure state in-
equality path constraint for speed v, where the upper limit jumps
from 140 km/h down to 120 km/h and back to 140 km/h, cause
discontinuities to the costate A,. The value of the Hamiltonian re-
mains constant over the complete trajectory. Table 2 shows that
the speed restriction requires slightly more energy compared with
the EETC reference case for the IC. The computation time increases
to 130 s.

When the speed of the restriction is further reduced to
110 km/h and 100 km/h, the singular solution at the restricted
speed limit consists of the optimal traction to cruise at the re-
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stricted speed, see Fig. 8b and 8c. The reduced speed leads to
a longer running time over the speed restriction, which absorbs
some of the running time supplement and less time is available
before and after the speed restriction. As a result the optimal
cruising speed goes up and coasting starts a bit earlier. In the
100 km/h scenario the cruising regime after the speed restriction
takes longer before coasting can start since more time is wasted
at the speed restriction. The cruising speeds before and after the
speed restriction increase to the speed limit for lower restricted
speeds, although the control plot of the 100 km/h case still shows
oscillating control, so the computed cruising speed is here actu-
ally a bit below the speed limit and is approximated by oscil-
lations. The jumps in the costate A, at the speed limit changes
are now clearly visible. Now also the Hamiltonians are discontinu-
ous with a different value during the speed restriction, and equal
ones for the first and third phase (see the values in Table 2). This
is in line with the necessary optimality conditions described in
Section 2.1. For big jumps in state constraints the costate approx-
imation of A, may no longer be accurate around the discontinu-
ity (Darby et al., 2011a). For bigger speed drops (not shown here),
Ay actually drops below zero although the train is coasting and
not braking, so in these cases the KKT multiplier of the NLP solver
no longer converges to the continuous costate around the speed
jumps. Table 2 shows that more energy is required for decreasing
speed restrictions. The computation time for these scenarios are
about 117 and 90 s.

In summary, discontinuous state path constraints (varying
speed limits) may cause discontinuities in the costate A, and
the Hamiltonian value at the positions of the state jumps (speed
changes). This is in line with the necessary optimality conditions
described in Section 2.1. However, the approximation A, may no
longer converge for big jumps in the state path constraints, and
even become negative which could lead to erroneous conclusions
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about the driving regime. Nevertheless, the state approximation
behaved well around the nonsmooth state inequality constraints,
and is not affected by the unstable control approximation at the
jump points. Moreover, we observe that the oscillations of the sin-
gular control disappear when the speed restriction is further from
the optimal cruising speed. Therefore, we hypothesize that the nu-
merical issues of the singular control depend on the gap between
the optimal cruising speed and the (local) speed limit for given
collocation points. In Fig. 8a this gap is apparently not big enough
for the speed restriction, while in Fig. 8b it is.

5.4. Varying gradients

This section considers varying gradients instead of a flat track,
causing a discontinuous state equation (3). Since the results of IC
and SPR train are similar, we only consider scenarios with the IC
train, because these include the more complex regime of cruising
at an optimal cruising speed below the speed limit in the EETC
driving strategy. In these scenarios we consider a (steep) downhill
slope or (steep) uphill slope between the distance from 25 km to
35 km. We will analyse them from less to more steep in the or-
der -5%, -10%, 5% and 10%. The results can be found in Table 2 and
Fig. 9. Note that in the figure the scenarios are ordered by increas-
ing gradient.

Fig. 9b shows the results of a slight negative (downhill) gra-
dient of —5% (0.005) between 25 km and 35 km. Because of the
negative gradient, the train can apply cruising with less traction
force to remain at the optimal cruising speed. The costate and con-
trol behave according to the optimal control structure, besides the
slight increasing speed phenomenon at the beginning of the singu-
lar cruising, and the oscillating control approximating the cruising
regime. The state and costate also show a small bump at the gradi-
ent jumps. The Hamiltonian is piecewise constant with a jump at
the gradient (less negative), which is as expected from Eq. (8) of
the Hamiltonian which includes the gradient. The energy savings
are higher than the reference scenario, due to the downhill slope.
Finally, the computation time is quite long with about 336 s so
GPOPS has difficulties to find the optimal control that smoothes
the effect of the gradient.

The scenario of the steep negative gradient of —10% (0.01) is
shown in Fig. 9a. Here the section is so steep that the speed of
the train increases, although it is coasting (zero traction). There-
fore, the train starts to coast well before the downhill section to
decrease speed before reaching the downhill slope and be able
to stay below the speed limit on the negative slope where the
speed gradually increases by the gravity forces. The coasting point
has been optimized such that the train reaches the speed limit
just at the bottom of the downhill section, and then continues
with coasting until the optimal cruising speed is reached again.
The optimal cruising speeds before and after the slope are in-
creased to deal with the time loss during the long coasting regime
before the slope. The costate A, is in accordance with the opti-
mal control structure (19), except around the gradient area. The
approximated costate starts decreasing at the coasting point and
keeps decreasing until a big discontinuity at the end of the slope
where it jumps up to the speed limit to start cruising at the speed
limit. But the costate even decreases below zero over a long dis-
tance, which would suggest maximum braking although the con-
trol shows coasting (zero traction). So the discontinuity of the dy-
namic equation causes an inaccurate approximation of the real op-
timal continuous costate A,. Nevertheless, the control and state
show a correct behaviour. The Hamiltonian is piecewise constant
with a less negative value on the slope, which is also as expected.
Finally, a strange braking behaviour is observed at the end where
the control shows a bang-bang control with maximum braking-
coasting on a small distance although the costate is negative, so
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GPOPS has a difficulty here with determining the control. Under
the optimal control the train should start braking a bit later and
then maintain maximum braking until standstill, which means that
the coasting should also start a bit later to arrive on time. The
grid from the collocation points however limits the position of the
switching points. From the state approximation, we can derive the
energy consumption, which might be a bit too optimistic since
coasting starts a bit too early. The steep downhill slope leads to
more energy savings compared to the EETC reference scenario and
the less steep slope scenario of the IC train. Table 2 indicates that
the energy savings increased considerably to 51%. The computation
time of this scenario is 136 s.

The effect of a slight positive (uphill) gradient of 5% (0.005) can
be seen in Fig. 9c. The train maintains its optimal cruising speed
over the uphill slope by applying more traction with oscillating
control between two positive values to counter the higher resis-
tance forces. The train already applies more traction slightly before
the uphill slope, which causes a short peak in the speed. At the
end of the section the speed drops shortly below the optimal cruis-
ing speed, which is caused by decreasing the traction again. The
costate A, behaves in accordance to the optimal control structure.
The Hamiltonian is piecewise constant with discontinuities where
the gradient changes. The Hamiltonian value is a bit lower over the
uphill slope. The energy saving is less compared to the EETC ref-
erence scenario, due to the extra traction on the uphill slope (see
Table 2). The computation time of this scenario is 135 s.

On the steep positive gradient of 10% (0.01), we see in Fig. 9d
that the train has to apply maximum acceleration and still loses
speed. Therefore, the train increases traction just before the slope
and keeps at the maximum traction until after the slope when it
has accelerated again to the optimal cruising speed. The costate
Ao and the control are perfectly in line with the optimal control
structure (19). The Hamiltonian is again piecewise constant with
jumps at the changes of the gradient. By applying the EETC driving
strategy the total energy is slightly smaller than the MTTC driv-
ing strategy of the IC reference scenario (see Table 2). The model
results are computed within 163 s.

In summary, the experiments of the varying gradients (with
jumps in the dynamic constraint) indicate that the EETC anticipates
by adapting the control before the change of gradients. For a steep
downhill slope where the gravity force exceeds the train resistance
and the train accelerates despite zero traction, the optimal con-
trol starts coasting in advance such that the speed at the end of
the slope is exactly the speed limit and then continuous coasting
until the optimal cruising speed is reached again. For a steep up-
hill slope where the maximum traction is not sufficient to avoid
slowing down, the train starts maximum acceleration before the
slope and keeps this regime until after the slope when it is back
to its optimal cruising speed. The Hamiltonian is piecewise con-
stant with discontinuities at the gradient jumps. For steep negative
gradients the costate A, is not accurately approximated before the
gradient jump, and also the control has difficulties to converge to
the optimal control in the final braking regime. This may lead to
an early coasting point that is corrected by additional coasting in
the braking regime to arrive on time. Downhill slopes result in ad-
ditional energy savings, while uphill slopes consume more energy.
The varying gradients (discontinuous dynamic constraint) lead to
higher computation times than the varying speed limits (discon-
tinuous state path constraints).

5.5. Varying running time supplements

This subsection considers the effect of different running times
T on the optimal EETC driving strategies by varying the amount
of running time supplement, both for the IC and SPR train. The
running time supplements are varied over 0%, 2%, 5%, 10%, 15%
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Fig. 9. Trajectories for the Intercity train with varying gradients (remark: gradients are indicative).

and 20%. The results are summarized in Table 2, and illustrated
in Figs. 10 and 11 for the IC train and SPR train, respectively. The
relation between energy consumption and total running time is
also visualized in an energy-time diagram, which is shown on the
right in the figures. The energy-time curve gives a Pareto frontier,
which can be used to evaluate the solutions of a multiple-objective
timetable problem (Dominguez, Fernandez, Cucala, & Lukaszewicz,
2011).

The results for the IC train in Fig. 10 show two phenomena.
First, for small supplements the optimal cruising speed equals the
speed limit and a little supplement reduces the cruising regime
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quickly with an earlier switching point to coasting. Then from
some sufficient supplement the optimal cruising speed starts de-
creasing below the speed limit and the switch to coasting starts
later again. More supplement also leads to a later switch to braking
at a lower speed. The energy savings increase up to 32% for 20%
running time supplements compared to zero supplement. From the
energy-time diagram, we see that the relative energy savings de-
crease for increasing supplement, i.e.,, adding supplement in the
beginning leads to more energy savings than further increasing the
supplement by the same amount later (convex curve). The approxi-
mations are consistent with the EETC optimal control structure, ex-
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Fig. 11. Speed trajectories for the Sprinter train with varying running times (left) and energy-time diagram (right).

cept for the early start of the singular solution with the oscillating
control similar to the EETC IC reference case with 15% supplement.
The computation times vary between 10 s and 22 s.

The results for the SPR train in Fig. 11 show that with more
running time supplement the coasting point is earlier, and with
sufficient supplement the speed limit is no longer reached and the
cruising regime is dismissed. In those cases, the optimal control
switches from maximum acceleration to coasting, as was also seen
in the SPR EETC reference case corresponding to the 15% supple-
ment. The braking also starts later from a lower speed when more
supplement is added. This behavior is in line with the optimal
strategy for short distance trains consisting of maximum acceler-
ation, coasting, and maximum braking (Scheepmaker et al., 2017).
Again, the energy-time curve is convex with decreasing energy sav-
ings for increasing running time supplements. The energy savings
increase up to 48% for 20% running time supplement compared to
zero supplement. The computations are perfectly consistent with
the EETC optimal control structure, similar to the EETC SPR refer-
ence case with 15% supplement. The computation time of the SPR
train scenarios range between 15 s and 19 s.

In conclusion, increasing running times lead to extra energy
savings for the EETC driving strategy with decreasing relative sav-
ings for increasing supplements as can be shown in an energy-time
curve. The initial savings are very steep which reduces for higher
supplements. When the optimal cruising speed is restricted by the
speed limit for small supplements, coasting starts earlier for in-
creasing supplements. Then for long distances and sufficient sup-
plement (IC), the optimal cruising speed drops below the speed
limit and coasting starts later again. For short distances and suf-
ficient supplement (SPR), the optimal cruising speed is no longer
reached and the optimal control switches from maximum acceler-
ation to coasting directly. In all cases, more supplement leads to
a later switch to braking from a lower speed. The pseudospectral
method does not experience additional difficulties with respect to
the EETC reference scenarios.
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5.6. Real-life scenarios

The final scenarios are real-life cases of the IC and SPR trains.
These cases include multiple speed limit changes as well as varying
gradients caused by for example bridges, fly-overs and dive-unders.
The applied running time supplement for the EETC scenarios is 10%
of the computed minimum running time.

The results for the IC train between Ut and Ht are shown in
Fig. 12 (MTTC) and Fig. 13 (EETC), and are summarized in Table 2.
These figures indicate that the driving strategies behave according
to the necessary optimality conditions. The minimum-time opti-
mal control consists of maximum acceleration and cruising at the
speed limit with partial traction or braking following the vary-
ing gradient resistances. Where a speed limit drops, the train uses
maximum braking, cruising at the restricted speed limit, and maxi-
mum acceleration again after the speed limit increases. At the end,
the train applies maximum braking in order to stop. The costate
Ay also behaves according to the optimal control structure. Note
that we did not include A, in the real-life speed-distance profiles
for clarity of the pictures. The Hamiltonian is piecewise constant
with jumps where a speed limit or gradient changes. The costate
A1 = —1. The computation time is 57 s.

The EETC driving strategy for the IC includes coasting regimes
before speed limit reductions, which shortens the cruising and the
braking regimes, and looks reasonable. The Hamiltonian is piece-
wise constant and the costate A; is constant. The costate A, also
behaves according to the control structure. The EETC driving strat-
egy with 10% running time supplements saves 42% in energy con-
sumption compared to the MTTC driving strategy. The computation
time of 203 s is quite high, due to the increased complexity of the
varying speed limits and gradients.

The SPR real-life scenarios are shown in Fig. 14 (MTTC) and
Fig. 15 (EETC), and are summarized in Table 2. The results corre-
spond largely with the necessary optimality conditions. The MTTC
driving strategy follows mainly the fastest running profile, with



R.M.P. Goverde, G.M. Scheepmaker and P. Wang European Journal of Operational Research 292 (2021) 353-375

I

40

v

gradient energy

—_
[
S

Speed [m/s]
—_ N W
o (=) (=) (=)

:

Energy [kwh]
s 3
o o

0 10 20 30 40 0 10 20 30 40
Distance [km] Distance [km]
1 5
u Hamiltonian

Control [m/s?]
& o
W (=) wn
Hamiltonian

(=)
|

]

L

|

i\
R

|
o F

20 30 40 0 10 20 30 40
Distance [km] Distance [km]

=

1

Fig. 12. Trajectories for the Intercity train with the minimum-time driving strategy on Ut-Ht (gradients indicative).

40
300
= 30 =
E E
£ 20 v = 200
3 2
g 10 gradient @
D 5 100
0 energy
0
0 10 20 30 40 0 10 20 30 40
Distance [km] Distance [km]
1 5
_ u Hamiltonian
N% 0.5 _g
c
° 0 T 'J\\ g Oof—————r — ——]
€ &
o 0.5 T
-1 -5
0 10 20 30 40 0 10 20 30 40

Distance [km] Distance [km]

Fig. 13. Trajectories for the Intercity train with the energy-efficient driving strategy on Ut-Ht (gradients indicative).

40
60
T 30 g
E 20 1 = 40 energy
3 v T 5
8 . | 1S
(% 10 gradient L‘:Cjzo
0 M
0
36 38 40 42 44 46 48 36 38 40 42 44 46 48
Distance [km] Distance [km]
1 2
_ u Hamiltonian
= 5
5 0 = 0 -
£ § -~
o 05 L -1 -
-1 -2
36 38 40 42 44 46 48 36 38 40 42 44 46 48
Distance [km] Distance [km]

Fig. 14. Trajectories for the Sprinter train with the minimum-time driving strategy on Zbm-Ht (gradients indicative).

370



RM.P. Goverde, G.M. Scheepmaker and P. Wang

40
— 30
@
E 2 ]
© \Y%
[0]
2 10 gradient 1
n
0 J'I_r‘—’—‘—ﬂ_ﬂ_p—'“—'JH_

36 38 40 42 44 46 48
Distance [km]
1
— u
“w 05
E
° 0 | —
<
8 -05
-1
36 38 40 42 44 46 48
Distance [km]

European Journal of Operational Research 292 (2021) 353-375

60
=
E
= 40
>
<)
:CjZ() energy
0
36 3832 40 42 44 46 48
Distance [km]
2
Hamiltonian
c 1
o
s
= 0 S —
é — S
©
T -
-2
36 38 40 42 44 46 48
Distance [km]

Fig. 15. Trajectories for the Sprinter train with the energy-efficient driving strategy on Zbm-Ht (gradients indicative).

maximum acceleration, cruising at the speed limit, maximum brak-
ing to decrease to the speed restriction, then an odd small coast-
ing regime followed by cruising at the restricted speed, and max-
imum braking to standstill. The small coasting regime occurs at
a flat track just before the speed restriction between two nega-
tive gradient sections. GPOPS thus has difficulties with the linkage
conditions between these phases to brake correctly just before the
speed restriction. The costate A; = —1. The control in the cruising
phases follows correctly the gradient resistance profile. The Hamil-
tonian is also piecewise constant following the discontinuities. The
computation time is 36 s.

The SPR EETC driving strategy shows maximum acceleration
followed by a short cruising regime and then a long coasting
regime where the speed is influenced by the gradient profile. Then
the control shows some unstable behaviour before the big speed
restriction where the braking is interrupted with a coasting regime
on the flat track part, similar to the MTTC. Note that the en-
ergy consumption is zero for both coasting and braking. Finally,
the train cruises at the restricted speed, followed by coasting and
maximum braking. The Hamiltonian is piecewise constant and the
costate Aq is constant. The energy saving of the 10% running time
supplement is computed as 44%. The computation time of the EETC
model is about 63 s.

Based on the real-life case study it can be concluded that
convergence issues may occur near big jumps in the state path
constraints (speed restrictions) and dynamic equations (gradients),
causing nonoptimal correcting behaviour of the control approxi-
mations (see Section 6). This coincides with the conclusions from
Sections 5.3 and 5.4.

6. Solution to the singular oscillations

The previous section presented the results of the pseudospec-
tral computations and compared them with the expectations from
the PMP necessary optimality conditions. The computational re-
sults of the MTTC problems showed a good agreement with the
PMP analysis and the computations were also very fast. In these
cases, the optimal control structure is quite simple with running
as fast as posssible where always an inequality constraint is ac-
tive: either maximum traction force, maximum speed, or maxi-
mum braking. Also the EETC scenarios for the short-distance SPR
train were in agreement with the PMP analysis without any major
issues. In these cases, the maximum speed was either restricted
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by the speed limit or the train had to start coasting already before
reaching the speed limit. The computational results for the EETC
scenarios of the long-distance IC train, however, showed some dis-
agreements with the PMP analysis, and therefore a larger range of
scenarios were presented to analyse the impact of additional con-
traints to the computational results. The main difficulty of the IC
EETC scenarios is the singular solution. Section 2.1 proved from the
PMP conditions that the singular solution should correspond to a
cruising regime in which an optimal cruising speed is maintained
by partial traction. The pseudospectral method, however, computed
an oscillating (discretized) control where the control jumps be-
tween two values over the successive collocation points, result-
ing also in oscillating behaviour of the state and costate trajecto-
ries. In this section, we analyse this behaviour in more detail and
show that the oscillations should be understood as a discrete ap-
proximation of high-order global polynomials over the correspond-
ing phases. Chen and Biegler (2016) added monotonic constraints
to the control discretization to force low-order control profiles of
the discrete approximation. A similar approach could also been
done here, but this would mean an add-on to the pseudospectral
method and, therefore, it would loose its appeal as a generic solver.
Thus, we propose a new hybrid approach that combines the pseu-
dospectral method and the PMP to compute accurate singular con-
trol solutions.

The pseudospectral method approximates the partial traction
force corresponding to the optimal cruising speed by switching
between two alternating values around the optimal traction over
the successive collocation points. As can be observed from Figs. 5,
8 and 9, the lower value is mostly 0 m/s? and the upper value
a (slightly varying) positive value. The only exception is the sce-
nario of Fig. 9¢, where the control oscillates between two pos-
itive values, including the upper bound on the control. In this
case, the traction is more than half the control upper bound and
can thus not be approximated by an oscillating control including
zero traction. Note that the energy consumption is computed as
a weighted sum over the (positive) control values at the colloca-
tion points. Hence, on a singular arc the oscillations approximate
the cost by a weighted mean over successive collocation points. In
other words, the discretized control values are not uniquely deter-
mined for the singular solution. When increasing the number of
collocation points the magnitude of the jumps stay approximately
the same, which makes sense when one of any two successive val-
ues is fixed to either the lower or upper bound. However, when
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Fig. 17. Trajectories for the Intercity train with the energy-efficient driving strategy using the hybrid approach.

increasing the number of collocation points N — oo, it becomes
clear that this is not a realistic traction control since the trac-
tion can not switch this fast between two values. The oscillating
control should therefore be replaced by a low-order control rep-
resentation corresponding to a feasible optimal traction with the
same energy consumption as the discrete control approximation
computed by the pseudospectral method. Likewise, the state and
costate should be replaced by a low-order representation in the
singular solution. In fact, from the PMP we know that the singu-
lar solution corresponds to a cruising regime with constant cruis-
ing speed and equal costate A,, so on the corresponding colloca-
tion points we must have v(s) = A,(s) = v, with associated opti-
mal control u(s) =r(vc) + g(s).

The optimal cruising speed can be computed from (17) and
(18) depending implicitly on A; and ¢, respectively. Fig. 16 shows
the analytical cruising speed as functions of A; and ¢ for both
the SPR and IC trains. Note that the PMP analysis does not pro-
vide a closed-form analytical expression for either A; or ¢, and
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in fact, the implicit equations are underdetermined, i.e., there are
two nonlinear equations in three unknowns A{, ¢ and v.. However,
when one of the unknowns is given, the other two can also be
determined. The pseudospectral method computes both 1; and ¢,
and thus we can also compute the corresponding optimal cruising
speed using the implicit equations (17) and (18). In Fig. 16, the cir-
cles correspond to the resulting cruising speed v, for the computed
A1 and ¢ for the eight IC EETC scenarios where the cruising speed
stayed below the speed limit, while the black stars correspond to
the real-life IC EETC scenario. For each scenario, the values of XA;
and ¢ computed by the pseudospectral method show a good fit
to the analytical optimal cruising speed curves. Note also that the
values of A; and ¢ in Table 2 for the SPR EETC scenarios all cor-
respond to optimal cruising speeds above the speed limit so that
they indeed were never reached. Fig. 16 indicates that the optimal
cruising speed is a decreasing concave function of either A; or g,
with more negative values of A; and ¢ corresponding to higher
cruising speeds. The sensitivity of the cruising speed increases for
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small absolute values of A; and ¢, which however correspond to
extremely high running time supplements. For example, the exces-
sive running time supplement of 20% in the IC and SPR case stud-
ies correspond to a cruising speed of 33.32 m/s and 34.69 m/s, re-
spectively, which are far away from the sensitive area. Since A; is
a constant, it is recommended to use (17) for computing the op-
timal cruising speed based on the computed value of A; by the
pseudospectral method. The computed value of ¢ can be used for
checking the accuracy together with the gradient profile.

The singular solution can thus be obtained by a combination
of the PMP and the pseudospectral method using the following
algorithm.

1. Apply the multiple-phase pseudospectral method to
find the optimal value A;, and the discretized solution
{(t(s). v(sp). Az (sp). u(s)) | i € {0,.... N} with N= 3% | Ny,

. Find the optimal cruising speed v, by solving the implicit equa-
tion (17) for given A, using any root-finding algorithm (e.g. the
MATLAB function fzero).

. Detect singular solutions associated to discretization points s;
with |v(s;) — A2 (S;)| < € for some small € (e.g. ¢ = 0.01).

. On the singular points set v(s;) = min(ve, Vmax(5;)). Ao (s;) =
min(Ve, Vmax (S;)), u(s;) = r(min(ve, Vmax(s;))) + &(s;)-

Fig. 17 shows the trajectories of the reference IC EETC sce-
nario using the hybrid approach, cf. Fig. 5 for the original pseu-
dospectral solution. Note that the solution satisfies the PMP op-
timality conditions as can be observed from the plots. For the IC
EETC reference scenario the cruising speed computed by the pseu-
dospectral method is approximately 35.12 m/s, i.e., the discrete
control approximation fluctuates around this value, while the an-
alytical optimal cruising speed for the computed A; = —2.9256 is
ve = 35.10 m/s2. For this speed ¢ = —0.1423 using (18), while the
pseudospectral method computed an approximation of —0.1422
(with some slight fluctuations around the fourth decimal). This
A1 = —2.9256 corresponds to 15% running time supplement over
the minimum running time. In Table 2, we can see that decreasing
the supplement leads to more negative A; (larger absolute value)
corresponding to a higher cruising speed. This makes sense as less
time is available to reach the destination and so the train must
run faster. When reducing the speed restriction, we also observe
an increasing |A{| indicating that less supplement is available and
the optimal cruising speed thus increases where possible. A speed
restriction of 110 km/h reduces the running time supplement to
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about 10% and a lower speed limit of 100 km/h further reduces
the supplement to less than 5%. The steep negative gradient of
—10% also leads to a more negative A; = —3.4671. In this case,
the cruising speed increases to compensate for the long coasting
before, over and after the downhill slope. Fig. 18 shows the cor-
rected trajectories for this scenario using the hybrid method, cf.
Fig. 9a for the original pseudospectral solution. For the real-life
IC EETC scenario Aq = —3.0222, which corresponds to an optimal
cruising speed of v, = 35.50 m/s (127.8 km/h), and ¢ = —0.1450 on
flat track, see the black stars in Fig. 16.

Replacing the pseudospectral solution of the trajectories in the
cruising regime by the analytical solution from the implict equa-
tion(17) for the computed A; also solves the ‘partial acceleration’
issue at the beginning of the cruising regime. The exact switch-
ing point from the acceleration regime to the cruising regime
can be computed as the point where the maximum acceleration
curve reaches the analytical cruising speed. The braking regime
also shows some oscillations between zero and maximum brak-
ing. These inaccuracies can be explained from the discretization.
The distribution of LGR collocation points over the total distance
is fixed for each N. The optimal switching point from maximum
acceleration to cruising (or coasting) is usually not located exactly
at a collocation point, which thus generates an approximation er-
ror. Likewise for the other switching points from cruising to coast-
ing and from coasting to braking. Since the total running time is
fixed and included as a hard condition, the pseudospectral method
compensates the imprecision of the discretization by a nonoptimal
partial traction regime over a number of collocation points before
reaching the real optimal cruising speed regime. And likewise, a
partial braking regime at the end compensates for the imprecision
of the switching point from coasting to braking. This inaccuracy
can be solved by increasing the number of collocation points but
this increases the computation time. An alternative is to add ex-
tra phases around the switching points in a second iteration of
the pseudospectral method, which thus gives a finer collocation
grid to better determine the optimal switching points. For a maxi-
mum braking regime also another postprocessing approach can be
used based on the PMP. The exact switching point to the maximum
braking regime can be computed as the point where the coasting
speed curve reaches the maximum braking curve (calculated back-
wards), and thus removing any partial braking within the braking
phase. Any accuracy error due to the collocation grid for the coast-
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ing and braking points can be corrected by optimizing the switch-
ing point from cruising to coasting such that the total running time
equals the scheduled running time T. The main challenge of find-
ing the optimal cruising speed v, is however solved by the pseu-
dospectral method via the computed value of the costate A4.

7. Conclusions

In this paper we applied the pseudospectral method to two op-
timal train control problems with speed and time as state func-
tions of distance. We proposed a framework connecting the pseu-
dospectral method with the PMP and showed that the pseudospec-
tral solutions were in general consistent with the necessary opti-
mality conditions but also identified some convergence issues. The
main advantage of using the pseudospectral method is that no a
priori knowledge is needed about the optimal control structure. We
first applied the PMP to both the EETC and MTTC problem, provid-
ing the necessary optimality conditions. The necessary conditions
provide information about the optimal control structure in terms
of speed and the costate A, associated to speed, as well as charac-
teristics of the costate A; associated to time and the Hamiltonian
value. These were used to validate and correct the solutions com-
puted by the pseudospectral method.

We used the MATLAB toolbox GPOPS where the Radau pseu-
dospectral method with multiple-phases is implemented to solve
the optimal control problems. Within each phase the gradients
and speed limits remain constant. We applied our framework to
various scenarios for both Intercity and Sprinter trains. The pseu-
dospectral method works well for the MTTC problem, and also for
the EETC problem when either (1) the cruising regime is absent
due to a short distance or sufficient time supplement in which
cases the optimal control switches from acceleration directly to
coasting before reaching the optimal cruising speed; or (2) the
speed limit becomes active before reaching the theoretical opti-
mal cruising speed. However, the pseudospectral method has nu-
merical issues with singular cruising solutions when the optimal
cruising speed is below the speed limit or close above the speed
limit depending on the number of collocation points. These cruis-
ing regimes are approximated by oscillations over the successive
collocation points with alternating partial-zero traction or partial-
full traction regimes and may start a bit too early before reach-
ing the cruising speed. Also the final maximum baking regime
may start with partial braking before full braking and likewise the
switch from cruising to coasting may suffer from a small section
of inaccurate partial traction. In these cases, the optimal switching
points are located between the collocation points and therefore the
offset of the optimal switching point needs to be corrected by a
small regime of some appropriate non-optimal control values. In-
creasing the number of collocation points can correct this at the
cost of higher computation time. Furthermore, discontinuities in
the dynamic equation (gradients) or state path constraint (speed
limits) lead to a discontinuous costate A, with jumps at the points
of discontinuities. For big negative jumps in the dynamic equation
or state path constraint the costate A, may not always be approx-
imated correctly and the optimal control structure is violated be-
fore the discontinuities, while also the control may have difficulties
to converge. So care has to be taken in using the costate and con-
trol around serious discontinuities.

The approximate oscillating singular solutions can be corrected
in a postprocessing step using an implicit nonlinear equation from
Pontryagin’s Maximum Principle. This implicit equation is under-
determined but the unknown A; is computed as part of the pseu-
dospectral solution. With this value of A;, the optimal cruising
speed can be computed numerically from the implicit nonlinear
equation using a root-finding algorithm. Possibly corrected by an
active speed limit, the constant cruising speed can replace the nu-

374

European Journal of Operational Research 292 (2021) 353-375

merical approximations of the state v and costate A, at the collo-
cation points in the singular solution directly. The optimal control
can then also be derived analytically from the cruising speed using
the dynamic equation in equilibrium.

In the optimal control structure, the optimal cruising control
would have to adjust at each gradient change which may result
in some time delay unless the gradient profile is perfectly known
and the control acts perfectly in line with it. In practice, the driver
or an automatic speed control system will adaptively control the
traction to hold the cruising speed and thus respond to changes in
resistance, such as changes in gradients, curves and wind speed.
The optimal control structure (19) is thus an open-loop control
that provides a feedforward reference train trajectory. More impor-
tant are the associated speed trajectory and driving regimes that a
driver or speed control system can use as target. So rather than im-
plementing the theoretical control (19), the actual maximum trac-
tion and maximum (service) braking should be used, as well as
the proper traction control that maintains the cruising speed and
in essence equals the actual resistance forces.

We conclude that the Radau pseudospectral method provides
a direct general and flexible means to solve optimal train con-
trol problems, especially when the optimal control structure is
not known beforehand (more complex situations with many con-
straints). Combining the pseudospectral solution with key equa-
tions from the necessary optimality conditions of Pontryagin’s
Maximum Principle improves the solution inaccuracy due to the
discretization. Our paper also advocates solid verification and vali-
dation. A lot of literature on optimal train control applies heuristics
without proper verification or validation of the resulting solutions.
A comparison to the PMP necessary optimality conditions as done
in this paper is highly recommendable. However, this is mathemat-
ically demanding and is also less powerful when the costates are
not computed. An alternative approach is to use the pseudospec-
tral method with available software like GPOPS to compare the so-
lutions and improve algorithms. This paper can then be used as a
guideline where to be careful in the interpretation of the results of
the pseudospectral method.
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