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Abstract

Interactive proof assistants such as Agda have powerful applications in proving the
correctness of software. Non-terminating programs, such as those containing infinite
loops, result in execution paths of infinite length, which can introduce challenges when
reasoning about such programs. Agda, as a total language, relies on the concept of
coinduction for reasoning about potentially infinite structures. Mutiple methods for
coinduction exist in Agda, each with difficulties related to usage or soundness. To
evaluate these limitations, I implement traces and semantics for a simple imperative
programming language, While, using Agda’s various methods of coinduction. The
different encodings are compared in their abilities and limitations, and from this I
identify areas for improvement in Agda’s coinduction support.

1 Introduction
Infinite loops occur frequently when programming. Oftentimes, they are seen as a nuisance
— a bug to be removed. However, in many critical applications, programs are required to
be non-terminating. These applications include operating systems and industrial control,
such as nuclear control systems [San11]. Clearly, the correctness of programs serving such
important purposes is critical, and the ability to verify this correctness is a desirable aim.

Interactive proof assistants serve as a powerful tool in the field of computer science,
allowing for the formal verification of programs as well as verification of mathematical proofs,
with existing use in industry for critical applications such as aerospace control and chip
design [Geu09]. However, there exists a gap caused by many interactive proof assistants, such
as Agda, being total — meaning that any computation must provably terminate [Tur04].
Total languages require special consideration for reasoning about potentially infinite or cyclic
structures, such as the traces arising from non-terminating program execution, in order to
satisfy totality. These cyclic structures may be modeled and reasoned about through the
concept of coinduction, the dual of mathematical induction [San11]. Coinduction, compared
to mathematical induction, is a relatively recent area of study with the concept becoming
relevant in the field of computer science as late as 1991 [Geu09]. Agda has support for
coinductive reasoning, yet this support is not as well developed or understood as the support
for induction [CA18]. This limitation makes it more difficult to verify properties of non-
terminating programs.

My research aims to explore support for coinduction in Agda through implementing coin-
ductive trace semantics for a simple imperative programming language. A program trace
describes the progression of states a program passes through during its evaluation. Cycles
can easily arise in such a trace, most clearly in cases of infinite loops. This makes traces a
strong candidate for modeling coinductively, something which has already been described in
literature. Nakata and Uustalu have formalized a coinductive trace semantics for While in
Coq, from which much of my research is based [NU09]. Leroy and Grall implement a coin-
ductive semantics for a call-by-value functional language, also in Coq [LG09]. Anacona et
al. describe the use of corules for generalized inference systems, ultimately implementing a
trace semantics for a Java-like language with I/O functionality [ADZ18]. Earlier research by
Schmidt used coinduction for modeling big-step semantics of trace-based abstract interpret-
ation [Sch98]. The commonality between such existing work is that it models these traces
on paper exclusively or formalizes them in a different proof assistant such as Coq/Rocq. As
such, the relevant gap in current research concerns how, and to what extent, these existing
models may be adapted for use in Agda. The central question answered by my research con-
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cerns evaluation of the different ways (potentially infinite) program traces may be modeled
in Agda. I compare the approaches in their capabilities and limitations in terms of the
ability to reason about properties arising from traces under each approach. Additionally,
my research identifies areas where Agda may be improved in order to increase the ease with
which coinductive reasoning can be done.

The main contribution of my research is in the findings and challenges encountered
through implementing coinductive traces in Agda. Traces and their semantics were im-
plemented for each of Agda’s three methods of coinduction, and experiments using these
encodings aimed to further identify gaps in the usability of their respective coinduction
styles. I demonstrate problems associated with these styles — for example, I demonstrate
a proof which I believe cannot be implemented using Agda’s guarded coinduction1 and my
interpretation of the limitations causing this problem.2 Further research should use this
gained experience in order to improve support for the modeling of coinductive structures in
Agda, with the eventual goal of expanding the practical capabilities and flexibility of Agda
as an interactive proof assistant.

An overview of the relevant background and methodology is provided in section 3. Sec-
tion 4 describes the trace representations implemented during the research. These imple-
mentations are then compared in section 5 through analysis of their capabilities and limita-
tions. The research concludes with a discussion of potential improvements to the coinduction
support of Agda based on the insights gained during the experimentation.

2 Responsible Research
While my research does not utilize data or produce an application intended for wider use,
there are still ethical considerations which must be taken into account:

2.1 Reproducibility
Reproducibility of results is essential for ensuring that invalid results are not accepted into
the scientific community. The current state of reproducibility has been called a crisis, with
the central cause, according to the Yale Law School Roundtable on Data and Code Shar-
ing, being the sheer amount of data or code required to produce research in computer
science, as contrasted against research where the information required for reproduction can
be contained in the article body [The10]. The Roundtable has further established a set of
recommendations to address this, which I have endeavored to fulfil in my own research, to
the extent that each recommendation is relevant. I summarize the relevant considerations
below.

• Code Availability: Recommendation 1 stipulates that code should be made publicly
available. My complete work is available in a Git repository hosted at https://
github.com/clairradiant/cse3000-agda-traces.

• Licensing: As directed by recommendation 4, my code is licensed under an open
source license, namely MIT, to enable code reuse.

• Versioning: In order to avoid problems arising from tools and libraries my research
depends on changing over time, I have declared the versions of relevant tools (Agda,

1See section 5.3.
2Discussed in sections 6.3 and 6.5.1, and appendix A.
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agda-stdlib) in the README of the repository and created a Dockerfile defining an
environment containing the correct versions of these tools. This ensures that my code
can be used in the future and mirrors the instructions of recommendation 3.

2.2 Use of Generative AI
Generative AI in the form of Large Language Models can serve as a valuable tool in the
production of research. However, care must be taken when using these tools. AI models
such as ChatGPT are prone to numerous types of errors, termed hallucinations, including
errors in logic, reasoning, and reproduction of facts [Sun+24]. For this reason, my use of
generative AI in the project was limited.

My primary use of generative AI in the project was for obtaining an abstract under-
standing of concepts in Agda as well as Coq. If there was a concept or proof I encountered
in my work that I did not understand, this is an instance where I may decide to apply AI
to ask it to explain the concept, if it was something that would be difficult to search via
traditional means. I also used generative AI to help think of ideas in creative applications,
such as brainstorming ideas for a visualization to represent an infinite while loop, and for
explaining abstract LATEX concepts. To mitigate the risks associated with AI hallucination,
I did not ask the AI to generate code for use in my repository or text for use in this report.
No AI-generated or AI-edited code or text appears in the output of my research, nor did
AI provide results analysis which was used to guide my conclusions. For the purpose of
transparency, a listing of prompts given to AI may be found in appendix C.

3 Background

3.1 Program Traces
Program traces describe the progression of states a program passes through during its eval-
uation. A trace can be described as a non-empty colist (list of potentially infinite length)
of states, entirely encapsulating the progression of variables during a program’s execution.
Each state is a complete view of the value each variable takes at each step of the compu-
tation. In the sample program illustrated by figure 1, a trace from a starting state x := 0
would take the form

x = 0 ⇒ x = 1 ⇒ x = 2 ⇒ x = 3 ⇒ ...

under the assumption that the variable with identifier 0 is referred to by x. Traces may be
more complex, involving multiple variables, and they may be terminating or non-terminating.
Often, for terminating programs, the final state is of particular interest, representing the
result of a computation. Traces of non-terminating programs, such as those which infinitely
loop, have no final state and so properties of the trace as a whole are considered.

In my research, I consider the traces of an imperative language called While. While is
a simple subset of C with support for variable assignment, conditional statements, sequen-
tial execution, and while loops. I chose to use While as the language I modeled in order
to maintain a reasonable scope for the project, enabling exploration of the different modes
of coinduction in Agda. Using While introduced some limitations, however. As While is
a deterministic language, certain interesting properties of traces are not available. Traces
are often used in concurrency theory for reasoning about behavior of concurrent processes
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[San11], but While lacks a concept of concurrency. Further, While lacks a concept of in-
teractivity through I/O. In practical applications, user input will change the behavior of
the system, and this creates interesting considerations for program verification that can be
reasoned about using traces. This is especially relevant for non-terminating applications,
such as operating systems, which do not produce an end result and terminate but instead
continuously react to input. Despite these limitations, While enables reasoning about some
interesting properties of basic programs and their traces. Concretely, I attempt to verify
three types of property in my research:

1. Proofs that the variables in a trace satisfy a specific property.

2. Proofs that a statement (program) results in a specific trace.

3. A proof that the language is deterministic.

These properties are of particular interest because they combine to provide a complete
description of the function of a program. We can say, for example, that a given statement
will always (property 3) produce a specific trace (property 2), and this trace infinitely
produces the sequence of natural numbers (property 1), essentially giving us a guarantee of
the overall behavior of the program. Despite While lacking features which would allow for
verification of larger, practical applications, the chosen properties still serve as a proof-of-
concept for analysis of non-terminating programs via their traces which may be extended
to a more complex language in future research.

loop : Stmt
loop = Swhile

(λ _ → 1)
(Sassign 0 (λ st → st 0 + 1))

(a) A statement defining a while loop whose condition
is always 1 (true) and whose body adds one to the
variable at location 0.

while (1 ) {
x = x + 1 ;

}

(b) C equivalent of loop.

Figure 1: Statement describing an infinite loop increasing the value of a variable by one in each
loop, and its C equivalent.

My implementation of traces and semantics for While in Agda follows the work done by
Nakata and Uustalu in Coq [NU09]. A summary of the syntax implemented is described
by figure 2. The language assumes the presence of expressions without side effects, which
are represented by lambda expressions in Agda. States are modeled as functions from
identifiers to values. Concretely, this is a function N → N. For the purpose of conditions
in if statements and while loops, expressions evaluating to zero are considered false, and
expressions evaluating to nonzero values are considered true.

The connection between statements, starting states, and traces, is defined by the se-
mantics of the language. I implement a semantics equivalent to the big-step relational
semantics implemented by Nakata and Uustalu. The semantics are split into an inductive
and coinductive part — exec, relating a statement and starting state to a trace, and execseq,
relating a statement and partial trace to a combined trace of running the statement from
the end of the partial trace. Individual trace implementations are discussed in section 4 and
discussion of experiments demonstrating the chosen properties is present in section 5.
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data Stmt : Set where
Sskip : Stmt
Sassign : Id → Expr → Stmt
Sseq : Stmt → Stmt → Stmt
Sifthenelse : Expr → Stmt → Stmt → Stmt
Swhile : Expr → Stmt → Stmt

(a) Statements defined as an Agda data type. As an ex-
ample, SWhile models a while loop, taking an expression
(Expr) as the loop condition and statement (Stmt) as the
loop body.

Id : Set
Id = N

Val : Set
Val = N

State : Set
State = Id → Val

Expr : Set
Expr = State → Val

(b) Supporting definitions re-
quired for statements.

Figure 2: Definition of statements as an Agda data type

3.2 Agda Coinduction
As a total language, Agda guarantees that all computations will terminate and outuput
a value and as a result enjoys a closer connection between mathematics and code [Tur04].
However, totality introduces the restriction that potentially infinite data must be considered
carefully in order to not allow potentially non-terminating computation over these infinite
structures. Coinduction is the tool employed by languages such as Agda to counter this
problem [VW19]. Agda supports multiple methods for performing coinduction, each of
which is briefly described in the following sections. Each method of coinduction serves the
purpose of guaranteeing productivity, defined as the requirement that any finite piece of
the output is computable in only a finite number of steps [VW19] — essentially, the next
“step” can always be made. In the example of an infinite sequence of values (referred to as a
stream), productivity means that the next value can always be taken, even though the end
of the structure is never reached.

3.2.1 Musical Coinduction

Musical coinduction involves the explicit use of “delay” and “force” operators when reasoning
about coinductive structures. It is considered “old” and discouraged compared to the other
methods of coinduction [Agd24].

The notation provides two functions: “delay” (represented by ♯), converting an element
of a type to its delayed counterpart, and “force” (represented by ♭), converting a delayed
expression to its value. The type of a delayed computation is represented by ∞. Using
musical notation requires manual consideration of when types must be delayed in order to
ensure productivity for the purposes of the termination checker. Specifically, corecursive
calls can only occur within usages of a constructor which contains a delayed type [VW19].
These delays inform Agda where laziness in evaluation can occur, allowing for reasoning
to be done over coinductive types without necessitating the full unfolding of the type’s
(potentially infinite) structure.

Shown in figure 3 is an example of a stream using musical coinduction. A stream consists
of its head and the delayed remainder of the stream. Note that without the musical notation
introducing the concept of delays, evaluating a stream would require infinitely unfolding
its structure, entailing searching for a base case which does not exist and failing Agda’s
termination checker.
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data Stream (A : Set a) : Set a where
_::_ : (x : A) (xs : ∞ (Stream A)) → Stream A

(a) Definition of the Stream type. A stream is constructed as
a pair of an element and a delayed remainder of the stream.

zeroes : Stream N
zeroes = 0 :: ♯ zeroes

(b) Infinite stream of zeroes. The
head of the stream is zero, and the tail
is a delayed ♯ evaluation of the stream
itself.

Figure 3: Musical stream definition and example.

3.2.2 Guarded Coinduction

Guarded coinduction relies on the use of coinductive record types. Where a typical inductive
data type will be defined by its constructors — the functions used to create elements of the
type, coinductive records are defined by their destructors, or what can be observed about
the type. Coinductive records can be instantiated using copattern matching. The technique
of copattern matching is described by Abel et al. [Abe+13].

An example of a stream using guarded coinduction is shown in figure 4. Here, a stream
is defined by its head, a value, and tail, another stream. A stream of infinitely repeating
numbers can be defined via copattern matching. Despite the structure being infinite in size,
the computation is guarded by the copattern matching, ensuring that the next step of the
computation can always be computed, satisfying productivity.

record Stream (A : Set a) : Set a where
coinductive
field

head : A
tail : Stream A

open Stream

(a) Definition of a Stream as a coinductive record. The
stream consists of a head, an element, and a tail, the
remainder of the stream.

zeroes : Stream N
zeroes .head = 0
zeroes .tail = zeroes

(b) Infinite stream of zeroes defined
using copattern matching. The head
of the stream is always zero, and the
tail is the stream itself.

Figure 4: Guarded coinductive record stream definition and example.

3.2.3 Sized Types

Sized types introduce the concept of “sizes” to types. A size represents an upper bound on
the number of unfoldings a structure can undergo [VW19]. Concretely, a sized list 1 :: 2
:: [] has size greater than 1 :: [] due to being made up of an additional constructor. Agda
represents sizes using the types Size and Size< i , where for all j : Size< i , j < i [Abe16].
To support coinduction, Agda has a size ∞ of potentially infinitely deep structures which
satisfies i : Size< ∞ for all i [VW19].

Sizes guide the termination checker by allowing recursive calls which operate on a size
strictly smaller than the current call, replacing the need for the strict criteria of syntactic
guardedness [Abe16]. This requirement is seen in the example of a stream in figure 5. In
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particular, indexing on the size i as seen in 5b is a useful pattern, allowing Agda to infer
that a recursive call can take on a size less than the current size.

Sized types are known to have inconsistencies related to ∞ , particularly the notion that
∞ satisfies Size< ∞. [Cha21]. These inconsistencies allow for the derivation of contradictions
in some cases [Abe17]. Resolution of these inconsistencies is still an open issue, and as a
result sized types are no longer considered part of “safe” Agda [Coc21].

record Thunk {ℓ} (F : SizedSet ℓ) (i : Size) : Set ℓ where
coinductive
field force : {j : Size< i} → F j

open Thunk

data Stream (A : Set a) (i : Size) : Set a where
_::_ : A → Thunk (Stream A) i → Stream A i

(a) Definition of a Stream using sized types. The reduc-
tion in size is encoded by the force field of Thunk. A
Thunk represents a delayed computation and can be cre-
ated with a copattern matching lambda, seen in figure 5b.

zeroesBad : Stream N ∞
zeroesBad = 0 :: ( λ where .force → zeroesBad )

zeroes : ∀ {i} → Stream N i
zeroes = 0 :: (λ where .force → zeroes)

(b) Infinite stream of zeroes, showing the size
reduction criteria. zeroesBad is rejected by the
termination checker because the definition of
size ∞ makes a recursive call of size ∞, and
∞ ≮ ∞.3Indexing on the size, as in zeroes al-
lows Agda to see that the recursive call operates
on a smaller size.

Figure 5: Sized types stream definition and example.

4 Encodings
My research implemented traces and semantics in each of Agda’s three types of coinduction.
Each encoding is discussed below, with particular attention drawn to differences arising from
the different methods of coinduction.

4.1 Musical Coinduction
The first encoding implemented over the course of the research was done in Musical notation,
as the most “natural” translation from the work of Nakata and Uustalu in Coq to Agda.
A definition of traces and their bisimilarity is presented in figure 6. Bisimilarity is used as
the equivalence relation over coinductive structures as structural equality would require a
complete unfolding of the potentially infinite structure [Tur04].

I consider the encoding rather “natural” in that instances are constructed in a similar
method to a non-coinductive list, either being an instance of tcons or tnil, with the exception
that tnil takes a State due to the stipulation that traces are non-empty. Bisimilarity follows
the structure of the trace — a trace consisting of a tnil is bisimilar to another tnil containing
the same state, and given a (delayed) proof two traces are bisimilar, extending each trace
with a state via tcons preserves bisimilarity. The remaining part of the encoding concerns
the relational semantics of the language. An account of the semantics can be found in
appendix B.1.

3Note that the failure here is in termination checking, not in type checking. ∞ is a term of Size< ∞.
Certain definitions involving ∞ < ∞ will (erroneously) be accepted by termination checking [Abe17].
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data Trace1 : Set where
tnil : State → Trace1
tcons : State → ∞ Trace1 → Trace1

(a) Definition of Trace1. A trace is constructed
from a single state (tnil) or by prepending a
state to the delayed remainder of a trace, which
may be infinite (tcons).

data _≈_ : Rel Trace1 Level.zero where
tnil : ∀ {st} → (tnil st) ≈ (tnil st)
tcons : ∀ {st tr1 tr2}
→ ∞ (♭ tr1 ≈ ♭ tr2)
→ (tcons st tr1) ≈ (tcons st tr2)

(b) Definition of bisimilarity for Trace1. tnil states
that two traces consisting of the same single state are
bisimilar, and tcons states that two bisimilar traces
may be prepended with another state.

Figure 6: Musical encoding of traces and bisimilarity.

4.2 Guarded Coinduction
My research using Agda’s guarded coinduction led to two different possible encodings. Both
encodings resulted in a result not suitable for the proofs I was able to define using the other
methods, but the encodings are still discussed here.

4.2.1 Coinductive Record 1

The first coinductive record encoding, which I refer to as Trace2, stems from an adaptation
of the work on colists done by Abel et al. [Abe+13]. Traces are modeled as a mutual
inductive data type and coinductive record. The inductive type provides a similar interface
to non-coinductive lists in its constructors, much the same as the musical encoding discussed
in 4.1. The record provides the coinductive part and allows Agda to ensure guardedness via
use of copattern matching.

The definition of the inductive part rTrace2 takes the same shape as the definition of
Trace1, with rTrace2 corresponding to Trace1 and Trace2 corresponding to the lifted type
∞ Trace1. Bisimilarity takes a similar approach, having an inductive part r≈ operating on
rTrace2 and coinductive part ≈ operating on Trace2.

data rTrace2 : Set where
tnil : State → rTrace2
tcons : State → Trace2 → rTrace2

record Trace2 : Set where
coinductive
constructor mkTr
field

out : rTrace2

(a) Trace definition using mutual induction
(via rTrace2) and coinductive record (via
Trace2). Instances of Trace2 can be destruc-
ted by projecting on out and pattern matching
on the constructors of rTrace2.

data _r≈_ : Rel rTrace2 Level.zero where
tnil : ∀ {st}
→ (tnil st) r≈ (tnil st)

tcons : ∀ {st tr1 tr2} → tr1 ≈ tr2
→ (tcons st tr1) r≈ (tcons st tr2)

record _≈_ (tr1 tr2 : Trace2) : Set where
coinductive
constructor mkBisim
field

p : (out tr1) r≈ (out tr2)

(b) Bisimilarity of Trace2, mirroring the structure of
the trace encoding itself.

Figure 7: Mutual induction and coinduction definition of traces and their bisimilarity using coin-
ductive records.
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4.2.2 Coinductive Record 2

The second coinductive record encoding attempted in my research follows the colist rep-
resentation described by Ciccone [Cic20]. In this represenation, a trace is modeled as a
coinductive record containing two fields: hd, a State present at the head of the trace, and tl,
a Maybe Trace3. The Maybe type encodes the fact that the tail of the trace may either be
nothing, indicating that the trace ends, or contain another trace, indicating continuation.
I found this encoding unsuitable for the experiments attempted on the other encodings.
Discussion of the limitations of Trace3 may be found in appendix B.2.

record Trace3 : Set where
coinductive
constructor mkTr
field

hd : State
tl : Maybe Trace3

(a) Definition of Trace3. The trace consists of
a head and a tail. The head is a state, and
the tail is either the remainder of the trace,
or nothing. The “choice” between the two is
encoded by the Maybe type.

record _≈_ (tr1 tr2 : Trace3) : Set where
coinductive
field

hd : hd tr1 ≡ hd tr2
tl : (tl tr1 ≡ nothing × tl tr2 ≡ nothing)

·∪
∃ {A = (Trace3 × Trace3)} λ x → (
tl tr1 ≡ just (proj1 x)
×
tl tr2 ≡ just (proj2 x)
×
(proj1 x) ≈ (proj2 x))

(b) Definition of bisimilarity over Trace3. The head
is a proof that the heads of the two traces are equal.
The tail is a proof that either both tails are empty, or
each a trace which is bisimilar to the other.

Figure 8: Definition and bisimilarity for Trace3.

4.3 Sized Types
The sized implementation of traces extends a natural inductive definition of lists with sizes
and Thunks. A Thunk, whose definition is shown in figure 5a, encodes a delayed computation
and enforces the size-shrinking constraint. As can be seen in figure 9, the type of a trace is
indexed by an i : Size. A (potentially infinite) trace has size bounded only by ∞, and so
would have type Trace4 ∞. Instantiating a Thunk is more verbose than the musical delay ♯,
requiring a copattern matching lambda, visible in figure 5b. exec and execseq are also both
indexed by Size. Notably, exec is sized despite not directly using coinduction or Thunk in
order to allow tracking of size reduction for its uses of execseq.

data Trace4 (i : Size) : Set where
tnil : State → Trace4 i
tcons : State
→ Thunk Trace4 i
→ Trace4 i

(a) Definition of Trace4. The Thunk in the
tcons case encodes the size-reduction con-
straint on the structure.

data Bisim (i : Size) : Rel (Trace4 ∞) Level.zero where
tnil : ∀ {st} → Bisim i (tnil st) (tnil st)
tcons : ∀ {st tr1 tr2}
→ Thunk (λ s → Bisim s (force tr1) (force tr2)) i
→ Bisim i (tcons st tr1) (tcons st tr2)

(b) Definition of bisimilarity over Trace4.

Figure 9: Definition and bisimilarity for Trace4.
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Table 1: Summary of the suitability of each encoding for each experiment type.

Type Encoding
Proof

Trace Program Language

Musical Trace1 ✓ ✓ ✓

Guarded
Trace2 ✓ ✓ ✗

Trace3 ✗ ✗ ✗

Sized Trace4 ✓ ✓ ✓

5 Experiments
My work performing experiments using the encodings discussed in section 4 can broadly be
broken into three categories:

• Proofs that individual (infinite) traces satisfy a property.

• Proofs that individual programs satisfy a given (infinite) trace.

• A proof that the semantics define a deterministic language.

Each type of experiment was applied to each attempted encoding. Table 1 summarizes the
results of each experiment for each encoding.

5.1 Trace-Property Satisfaction
The first proof type I considered aimed at proving properties of the variables described by
traces. An example of such a property is “this trace produces, infinitely, the set of natural
numbers, increasing by one every two states.”4 This property is exactly the property I
attempted to prove for a trace in each encoding described in section 4.

In Agda, this proof takes the form of a term of a data type encoding that a variable in
a trace is always incrementing in this “wait-step-wait” pattern. This type is coinductively
defined, as it reasons about an infinte trace. This predicate defined using musical coinduction
can be seen in figure 10. A term of this type, incrementingAlwaysIncrements : increasing 0 0
incrementingtrace, is interpreted as “the variable at location 0 begins with value zero in trace
incrementingtrace, and follows the progression of increasing by one every two states.”

As proofs of this type are reducible to proofs about properties of colists, it is unsurprising
that given the existing use of colists in Agda, my research was able to create these proofs in
each encoding for which they were attempted.5

5.2 Program-Trace Satisfaction
The second type of proof explored in my research was proofs, using the semantics, that a
given program satisfies a given trace. That is, the execution of the program under a starting

4Justification for incrementing happening every two “steps” is provided in section 5.2
5As noted in section 4.2.2, my work on Trace3 stopped after implementing the trace and its bisimilarity

relation, due to the cumbersome nature of working with the encoding. I postulate that this proof is still
possible for this trace type given the work done by Ciccone on the colist encoding on which Trace3 is based,
but this was not attempted in my research.
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data increasing : Id → Val → Trace1 → Set where
increasingCons : {id : Id} {v : Val} {st : State} {tr tr1 : Trace1}
→ st id ≡ v
→ tr1 ≈ tcons st (♯ (tcons st (♯ tr)))
→ ∞ (increasing id (suc v) tr)
→ increasing id v tr1

Figure 10: Agda data type encoding the “increasing every two steps” property for traces, using
musical coinduction. The proof may only be constructed through its constructor increasingCons,
taking proofs that the variable in a state st takes the expected value v , that a trace tr1 takes two
steps in this state and continues on to trace tr , and that tr satisfies this predicate for the next value
of v as a lifted (delayed) proof.

state will result in exactly a specific trace. A proof of this type has the type exec. For
programs which do not terminate, these proofs will necessarily be coinductive, relying on
the coinductive part of the semantics execseq. For example, consider proof : exec program
fromState trace, where proof is a proof that program, run starting at fromState results in trace.
Writing such a proof essentially involves writing out the execution path of the program using
the different cases of exec. To define “success” for this proof type, I attempted to implement
a proof exloopincrementing for each encoding type, encoding that the program Swhile (λ
_ → 1) (Sassign 0 add1), intuitively understood as a while loop with a condition always
evaluating to 1 (true) whose body increments the variable at position 0 at each iteration,
starting from a state where this variable begins with value zero, results in a trace where 0
begins with value zero and increments by one each two “steps” of the trace.6 An example
of this proof type for the encoding Trace1 may be found in appendix B.3. This proof type
was successful for Trace1, Trace2, and Trace4. This result is more notable than that of 5.1
as it depends on the semantics in addition to traces, essentially introducing another “layer”
of coinductive structure to reason about.

5.3 Language Proof: Determinism
Where the previous two experiments have focused on properties of individual traces and
programs, this type concerns the language as a whole. Given that While has no operations
which can introduce nondeterminism such as concurrency or randomness, it is a natural
conclusion that the language is deterministic. Concretely defined, determinism states that if
one executes a statement from a given starting state twice, the resulting two traces from the
executions must be the same.7 This property was proven in Coq by Nakata and Uustalu in
their work with While [NU09]. My proof follows the reasoning set down in theirs, translated
into Agda. In Agda, this proof takes the form of a function execDeterministic : {s : Stmt}
{st : State} {tr1 tr2 : Trace} → exec s st tr1 → exec s st tr2 → tr1 ≈ tr2. Implementation
of this proof involves multiple helper lemmas, for example proving that execseq is also
deterministic or proving determinism specifically for the SWhile case. Due to the complexity
of the proof, this experiment took the majority of the time in my research and revealed the
most limitations with Agda’s support for coinduction.

This proof was successful for Trace1 and Trace4 and attempted but unsuccessful for
Trace2. Specifically, Trace2 became stuck at the first helper lemma execseqDeterministic0.

6Each increment happens after two “steps” due to one step being taken to evaluate the loop condition,
and another to assign the variable.

7When considering coinductive traces, “the same” is taken to mean bisimilarity.
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The underlying limitations are discussed further in section 6.3. Implementation for Trace4
was significantly smoother than for Trace1 due to the lack of the strict condition of guarded-
ness described in section 6.3, even allowing for one helper lemma to be dropped entirely.

6 Agda Insights
In implementing the encodings and experiments, various complications and insights arising
from Agda’s limitations around coinduction became apparent. In some cases, these limita-
tions led me to determine that an encoding is not suitable for use in Agda in the current
state. Some complications arose in regards to specific encodings, and some points apply
to coinduction in Agda as a whole. These difficulties are discussed here with the goal of
suggesting ways that coinduction support in Agda can be improved.

6.1 Documentation
Documentation around coinduction in Agda is very limited. The official documentation for
coinduction offers limited examples of how to use the different types of coinduction. Of-
ten, I found in my research that the best way to learn was to analyze the implementation
of structures in the Agda standard library, essentially working backwards from an under-
standing of specific implementations to a general understanding of the methods of applying
the techniques used in the implementations. Perhaps most egregiously, the main page for
coinduction on Agda’s documentation does not describe sized types at all, only linking to
a stub article presenting an example of the usage of Sized types [Agd24]. Learning about
the constructs Size and Size<, as well as how sized types may be used, was only possible
through reading the Agda standard library code and published literature which used sized
types.

6.2 Error Messages
While working with coinduction in Agda, error messages are frequent, and often difficult to
interpret. Particularly, when facing issues with termination checking, Agda will highlight
any call that can form a part of a non-terminating computation. This makes it difficult
to identify which call is actually causing the problem, often necessitating commenting out
parts of code one-by-one to find the problem. Additionally, when encountering unification
problems, as shown in figure 13, the error message does not make the underlying problem
(indexing on the result of function application) clear. This makes it necessary to seek out
external resources to identify the root cause of problems, making debugging a more involved
process than if the error messages could guide a user towards a solution more directly.

6.3 Guardedness
Guardedness is used as the productivity condition for both the musical and guarded coin-
ductive record methods of coinduction. Guardedness demands that a guarded call have no
non-constructor function between the left-hand side of the function and a corecursive call
[DA10]. This condition is too strict, and can exclude productive definitions. Consider the
minimized example over coinductive natural numbers presented in figure 11. inf is accepted
as productive by the termination checker, because only a constructor appears before the
corecrusive call. It is clear that each “step” of the definition can be unfolded one call to suc
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further. However, Agda rejects the definition of infBad due to the call to id. However, I
argue that infBad is clearly still productive — id does nothing to the data, and as such is
essentially removable. Indeed, this example passes termination checking with sized types,
as sized types do not use guardedness as the criterion for productivity.8 The effect of this
limitation is that special care must be taken to ensure guardedness, sometimes requiring
the use of additional helper lemmas. In one case, described in appendix A, this limitation
contributed to making an experiment infeasible.

mutual
data CoNr : Set where

zero : CoNr
suc : CoN → CoNr

record CoN : Set where
coinductive
field

out : CoNr

(a) Example datastructure mirroring the encod-
ing of Trace2, the conaturals (potentially infinite
natural numbers).

id : ∀ {a} {A : Set a} → A → A
id x = x

inf : CoN
inf .out = suc inf

infBad : CoN
infBad .out = id (suc infBad )

(b) inf is accepted by the termination checker,
but infBad is rejected due to the presence of a
non-constructor function before the corecursive
call, despite the function id having no effect.

Figure 11: Minimized example showing the strictness of guardedness as a criteria for productivity.

6.4 Musical: Delay Application in Types
As noted by the documentation on musical coinduction, a known limitation is that indexing
types on applications of delay ♯ should be avoided [Agd24]. Consider the example in figure
12a. To avoid applying delay in the type of suc, as in the case of ≈bad, it is necessary to lift
n and m so that they can be given to suc without delays. This is to prevent similar problems
related to indexing on function applicaton seen in section 6.5.1. I refer to this restriction as
the need to “move the music left” in a definition. In figure 12b, tr had to be introduced and
made bisimilar to the result of the execution, so that the result could be constructed with
the use of delay without indexing the type of execWhileFalse on this application of delay.
This limitation increases the complexity of defining types using musical coinduction.

6.5 Coinductive Records
6.5.1 Unification Under Function Application

Indexing types on the result of function application is a known cause of unification problems
in Agda, with general advice being to only use variables and constructors in indices of data
types [Coc17]. However, the use of mutual induction and coinduction in the encoding of
Trace2 and related types necessitates that the coinductive part of bisimilarity indexing on
the result of out, as can be seen in figure 7. These unification problems restrict Agda’s
knowledge when destructing terms of these types. The effects of this limitation can be seen
in the example described in appendix A.

8The example shown in figure 11 as well as an equivalent example using sized types which passes the
termination checker are both present in the repository as the modules TermCheck and TermCheckSized.

13



data _≈bad_ : CoN → CoN → Set where
zero : zero ≈bad zero
suc : {n m : CoN}
→ ∞ (n ≈bad m)
→ suc (♯ n) ≈bad suc (♯ m)

data _≈good_ : CoN → CoN → Set where
zero : zero ≈good zero
suc : {n m : ∞ CoN}
→ ∞ (♭ n ≈good ♭ m)
→ suc n ≈good suc m

(a) Example showing bisimilarity over the
conaturals both with and without ♯ in the
type of suc.

data exec : Stmt → State → Trace1 → Set where
execWhileFalse :

{c : Expr} {st : State} {tr : Trace1} (b : Stmt)
→ isTrue (c st) ≡ false
→ tr ≈ (tcons st (♯ tnil st))
→ exec (Swhile c b) st tr

(b) Example of the limitation necessitating a different
definition in the semantics. Here, to avoid use of ♯ in
the type of execWhileFalse, tr has to be introduced
and defined bisimilar to the trace that should result
from this call.

Figure 12: Examples of avoiding the application of delay in types.

6.5.2 Pattern Matching

Agda does not allow pattern matching on the fields of coinductive records. As such, to
destruct an instance of a coinductive record it is necessary to project on its field and use
a with-abstraction to pattern match on the result. This limitation often leads to multiple
nested layers of with-abstraction, increasing the verbosity of proofs and making them more
time consuming to write.

6.6 Summary
My findings regarding the different methods of coinduction in Agda may be summarized for
each coinduction type as follows:

1. Musical coinduction, despite its success in my experimentation, suffered from proofs
being made more cumbersome by restrictions on delay application in types and the
strictness of guardedness.

2. Guarded coinduction using coinductive records is poorly suited to my application. For
Trace2, the limitations which prevented complete implementation of the experiments
were a combination of the strictness of guardedness as well as limitations surrounding
unification under function application. For Trace3, the verbosity introduced by the
need to account for a potential end to a trace made working with the encoding im-
practical. I conclude that guarded coinduction in Agda is poorly suited to applications
such as mine involving nested layers of coinductive records which necessarily have the
concept of “choice”, understood as having multiple possible constructors in an induct-
ive setting. Either a more refined criteria for guardedness, if possible, or improvement
of Agda’s ability to unify under function application (or specifically under projection)
would allow for proofs such as the experiments attempted in my research to succeed.

3. Sized types were the best suited to my application, having the smoothest experience
in implementing the experiments I attempted. However, this method suffered the
most from a lack of documentation, which initially discouraged me from attempting
an encoding using sized types. Additionally, the known issues with soundness of sized
types discussed in 3.2.3 serve as a limitation of trust in the correctness of the proofs.
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7 Conclusions and Future Work
My research attempted to use the three methods of coinduction (musical, guarded, and
sized) available in Agda to encode coinductive program traces and their semantics. To this
end, I implemented traces and semantics for While, a simple imperative language, following
the work of Nakata and Uustalu in Coq. Subsequently, I used the encodings to perform
experiments, attempting to prove properties of traces, programs, and the language as a
whole. This work revealed limitations present in Agda’s coinduction support.

Musical coinduction, despite being considered the “old” way of performing coinduction,
had success in my experimentation. Its closeness to typical inductive data types worked well
for my colist-based trace representation. However, limitations were still present in musical
coinduction, particularly related to reasoning about guardedness and avoiding indexing on
delays introducing additional complexity.

Guarded coinduction experienced more difficulties in use. Encodings either modeled the
“choice” between constructors poorly (as in the case of Trace3) or experienced a combination
of limitations due to unification under function application and strict guardedness criteria
that made some experiments not feasible (as in the case of Trace2). This led me to conclude
that guarded coinduction is poorly suited for my application at this time. Future work
exploring methods of improving unification under fields of coinductive records, identifying
cases which lack guardedness but are still productive, or exploration into alternative methods
of modeling colist-like structures using guarded coinduction may help to fill this gap.

Sized types presented the smoothest experience of implementation with the least battles
with the termination checker. It is for this reason that I consider it regrettable that sized
types have the most lacking documentation of the three coinduction methods in my opinion,
only earning a link to a stub article on the main coinduction documentation page. I was
initially discouraged from attempting to use sized types by this disparity in documentation.

More generally, improvements to documentation would benefit all three of the coinduc-
tion methods, in addition to clearer error messages. Clearer examples in the document-
ation, rather than exclusively in the implementation of the standard library, may make
getting started with coinduction more accessible. Improvements to error messages, partic-
ularly around unification issues and termination checking, would help to make debugging
coinductive definitions less cumbersome.

The limitations of my research primarily stem from time limitations and relative inex-
perience in utilizing coinduction. For example, I elected to not pursue experimentation on
the trace encoding Trace3 in order to preserve time for other coinduction methods due to the
difficulty of working with Trace3. Additionally, while I have attempted to verify my claims
that difficulties encountered in my research represent limitations inherent to the coinduc-
tion implementations in Agda, through the use of minimized examples and comparison to
known existing limitations, the possibility remains that workarounds exist which I was un-
able to identify in my research. Future research should aim to assess the extent to which
the limitations I identify are legitimate shortcomings of Agda.

My research regarding coinductive traces and their semantics in Agda provides an ex-
ploration into the capabilities and limitations of coinduction in Agda. Future work in the
area may utilize these limitations I have identified to improve this coinduction support, with
the aim of making coinduction a more accessible part of Agda. Given the wide applications
of infinite structures [San11], improvement to coinduction in Agda will improve its versatil-
ity as an interactive proof assistant, potentially allowing the verification of larger, practical
non-terminating programs.
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A Example: Trace2 Stuck Proof
This section describes a concrete example of a proof which I believe was made infeasible
due to the combination of the restrictions described in sections 6.3 and 6.5.1. The proof of
determinism for Trace2 became stuck at the helper lemma execseqDeterministic0.

I begin by considering the effects of the limitation described by section 6.5.1. Consider
the example depicted in figure 13. Here, tnil? has type out tr1 r≈ out tr2. Additionally,
res1 has type tr1 ≈ mkTr (tnil st) and res2 has type tr2 ≈ mkTr (tnil st1). Given this, and
the hypothesis tr1 ≈ tr2, it should be obvious that the only shape tnil? can take is tnil.
However, attempting to case split on tnil? results on an error arising from an unsolved
unification. The problem can be worked around through manual application of symmetry
and transitivity of the known bisimilarities such that tnil? has a shape with tnil on both
sides.

execseqDeterministic0 : {s : Stmt} {tr1 tr2 tr3 tr4 : Trace2}
→ tr1 ≈ tr2 → execseq s tr1 tr3 → execseq s tr2 tr4 → tr3 ≈ tr4

execseqDeterministic0 tr1≈tr2 exs1 exs2 ._≈_.p with (execseq.p exs1) | execseq.p (exs2)
... | rexecseqNil res1 ex1 | rexecseqNil res2 ex2 with _≈_.p tr1≈tr2
... | tnil? = {! !}

-- Remaining cases omitted for brevity

I’m not sure if there should be a case for the constructor tnil, because I get stuck when trying to solve the
following unification problems (inferred index ?

= expected index):

tnil st2
?
= Trace2.out tr5

tnil st2
?
= Trace2.out tr5

when checking that the expression ? has type Trace2.out tr3 r≈ Trace2.out tr4

Figure 13: Example showing a case where Agda is unable to unify under funciton application and
resulting error message. Attempting to case split on tnil? results in the shown error message, even
though it is “clear” that tnil is the only possible case for tnil? .

The necessity of this workaround additionally means that absurd cases must be proven
manually. For example, in the case of execseqDeterministic0 where we have one execseq in
the rexecseqNil case and one in the rexecseqCons case, we have tr1 ≈ mkTr (tnil st) and tr2
≈ mkTr (tcons st2 tr3). Given tr1 ≈ tr2 it should be clear that this case must be absurd,
as there is no way for a trace constructed by tcons to be the same as one constructed by
tnil. Indeed, when pattern matching using musical coinduction or sized types, Agda is able
to automatically exclude this case. Yet, due to the limitations on unification it is necessary
to apply the workaround to “show” Agda that this case must be absurd, increasing proof
complexity.

However, this issue goes beyond the nuisance of proving absurd cases. The limitation
described above can combine with the strictness of guardedness described in section 6.3 to
create an unfillable hole. While the criteria for guardeness is not unique to coinductive
records — the same criteria applies to musical coinduction — the need to use function
application to reshape variables to help with unification can create problems unique to

18

https://doi.org/10.4230/LIPICS.FSCD.2019.32
https://doi.org/10.4230/LIPICS.FSCD.2019.32
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2019.32
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2019.32


guarded coinduction. This occurred in the double rexecseqCons case of execseqDeterministic0.
The hole had shape out tra r≈ out trb. Following the proofs laid out by Nakata and Uustalu,
the hole must be filled by an application of tcons containing a corecursive call. However,
Agda cannot “see” that the hole can be filled with tcons due to constraints of unifying under
function application. Using the knowledge available at this point in the proof, it is possible to
again use symmetry and transitivity to define a function reshape that fills the hole and takes
an argument tcons st trc r≈ tcons st trd, which can now be filled with tcons and the recursive
call. Yet, the application of reshape means that the call is not guarded and as such does
not pass termination checking. I argue that the definition is still productive, only applying
symmetry and transitivity to what is otherwise a guarded call, but due to the combination
of restrictions to unification and guardedness checking, I was unable to fill this hole in a
way accepted by Agda. As such, the proof of determinism for the semantics of Trace2 failed.
The attempted implementation is preserved in the repository in BigRel2.agda.

B Additional Figures and Technical Discussion
This section contains additional implementation discussion which I consider interesting but
is not strictly necessary for understanding of the report body.

B.1 Semantics Example
Figure 14 presents an overview of the semantics as implemented for the encoding of Trace1.
As discussed in section 3.1, the semantics consist of two parts, exec, relating statements
and starting states to the resulting trace, and execseq, responsible for relating a statement
from a starting trace. exec and execseq are defined via mutual induction and coinduction.
Complete semantics implementations for each encoding (except Trace3, which did not have
semantics implemented) may be found in the BigRel family of modules in the repository.

data exec : Stmt → State → Trace1 → Set where
execWhileLoop :

{c : Expr} {b : Stmt}
{st : State} (tr tr′ : Trace1)
→ (isTrue (c st)) ≡ true
→ execseq b (tcons st (♯ tnil st)) tr
→ execseq (Swhile c b) tr tr′
→ exec (Swhile c b) st tr′

(a) Encoding of exec with example case for a
looping while loop. Intuitively, the definition
says that given a proof that the condition of the
loop is true in the state, a proof that executing
the body after the “step” added to the trace as a
result of checking the condition9results in a trace
tr , and a proof that executing the while loop at
the end of this trace results in another trace tr′,
then executing the while statement from the cur-
rent state results in this trace tr′.

data execseq : Stmt → Trace1 → Trace1 → Set where
execseqNil : {st : State} {s : Stmt} {tr : Trace1}
→ exec s st tr
→ execseq s (tnil st) tr

execseqCons : {s : Stmt}
(st : State) (tr tr′ : ∞ Trace1)
→ ∞ (execseq s (♭ tr) (♭ tr′))
→ execseq s (tcons st tr) (tcons st tr′)

(b) Encoding of execseq, stating that executing a
statement from the end of a given trace results in
another trace. The case execseqNil states that given
a proof (exec) executing s from st results in tr , then
sequentially executing s from a state containing only
st results in tr . execseqCons encodes that an execseq
may always be extended with an additional “step”
consisting of a state. This execseq is delayed with ∞
to ensure guardedness.

Figure 14: Musical encoding of exec and execseq.

9Justification for guard checking adding to the trace is described by Nakata and Uustalu [NU09].
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B.2 Analysis of Trace3

This section provides an analysis of the challenges encountered when working with Trace3,
the encoding described by section 4.2.2. The encoding is illustrated in figure 8.

While the definition of Trace3 itself is relatively readable, bisimilarity is where the prob-
lems inherent to the encoding begin to present themselves. The type of bisimilarity is now
significantly more complex, as compared to other encodings. The head hd is a simple proof
that the heads of the two traces are equal, but the tail tl is more difficult to decipher.
Arising from the choice of the trace either continuing or not, tl is a sum type (denoted by
·∪) indicating that terms of the type can be one of two options. The first option is a pair
(product type, ×) of proofs that the tail of each trace is empty by being equal to the nothing
constructor of Maybe. The second option is a dependent product type corresponding to
existential quantification, ∃, encoding that two traces exist which are the tails of the traces
we are comparing and are themselves bisimilar.

The definition of bisimilarity already begins to provide a hint as to the challenges asso-
ciated with this encoding. The “choice” introduced by a trace potentially ending, and the
resulting ·∪ type, makes the type of bisimilarity and reasoning about bisimilarity cumber-
some. Working with an instance of bisimilarity involves projecting on tl and then matching
on its subtypes, resulting on deep pattern matching on the constructors of the sum and
product types in order to get access to each subfield. This makes it difficult to keep track of
all the necessary cases and what each case represents. As an example of this challenge, in
proving that bisimilarity is a setoid, proof of transitivity is required. That is, given tr1 ≈ tr2
and tr2 ≈ tr3 it can be concluded tr1 ≈ tr3. In other encodings, this proof is quite simple,
taking less than ten simple lines of Agda. However, under this encoding the proof took 34
lines with deep pattern matching, manual proof of absurd cases, and manual application
of injectivity of just.10 My results reflect those of Ciccone, who concluded that colists rep-
resented as coinductive records scale poorly [Cic20]. Due to these difficulties encountered
before even the semantics were implemented, I elected to not pursue this encoding further
and focus efforts elsewhere.

10Setoid instances for all encodings can be found in MusicalTraces.agda, GuardedTraces.agda, and
SizedTraces.agda in the repository.
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B.3 Example Proof of Trace Satisfaction
Figure 15 shows a proof of the trace satisfaction property for an program describing an
infinitely incrementing trace, using musical coinduction. This property is discussed in section
5.2.

exloopincrementing : exec (Swhile (λ _ → 1) (Sassign 0 add1)) startState incrementingtrace
exloopincrementing = forever startState

where
forever : (st : State) → exec (Swhile (λ _ → 1) (Sassign 0 add1)) st (incrementingFrom st)
forever st = execWhileLoop

(tcons st (♯ (tcons st (♯ (tnil (update 0 (add1 st) st))))))
_
_≡_.refl
(execseqCons st _ _ (♯ execseqNil (execAssign (tcons (♯ tnil)))))
(execseqCons st _ _ (♯ (execseqCons st _ _ (♯ (execseqNil (forever (next st)))))))

Figure 15: Example showing satisfaction of an infinite trace for a program which loops forever,
adding one to the variable at position 0. incrementingtrace starts with 0 having value zero, then
increasing by one every two states. The helper function forever creates the execution path coin-
ductively, incrementally proving that each successive sub-trace is satisfied by the next application
of execWhileLoop.11

11Not all helper functions are shown here. The proof, complete with all helper definitions, is present in
the repository.
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C Use of Generative AI
As discussed in section 2, my use of generative AI was limited to gaining an understanding
of concepts in Agda, comprehending proofs written in Coq, asking abstract questions about
LATEX, and brainstorming ideas for creative visualizations. In table 2 I provide a listing of
prompts used in the project to illustrate my use of AI.

Table 2: Listing of prompts given to ChatGPT

Prompt

How can I visualize the idea of a non-terminating while loop in an attention-grabbing way?
I’m making an academic poster about program traces for potentially non-terminating
computations.

How can I read this proof written in Coq using the ssreflect library? [excerpt of proof
from Nakata and Uustalu]

In agda, is there a way to shorten a lambda definition of the form x -> x + 1?

I’m working with Agda. I have x1 == x2, x3 == x4 (propositional equality) and x1 REL
x3, how can I then write x2 REL x4?

How can I have subfigures in latex?
Follow-up prompts:
• What are the [b] and [htbp] optoins in the example you showed?
• Can I have the subfigures automatically figure out their width?
• How can I get the "append" symbol in latex, represented in ascii by "::"?

Please provide an explanation of this proof in Coq. I find the syntax difficult to under-
stand, coming from Agda. [excerpt of proof from Nakata and Uustalu]
Follow-up prompts:
• Explain the variable destructions in the helper lemma COINDHYP2. All the different
"h3" "H0" are difficult for me to follow.
• In the step - by apply bisim_reflexive. (* Tnil st1 ~ Tnil st1 *), how does proving
that then prove that tr3 ~ tr4? Why does this work without requiring a recursive call?
• Can you provide a more in depth view of the variables for the outer lemma now that
I have the inner helper lemma?

What is the citation style that has author initials and a year in square brackets, such as
[SPB99] ?

What is the symbol ℓ in Latex? I’m using the amsmath package for math symbols, if
that’s relevant.
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