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Synopsis: Most methods for the design and analysis of reinforced concrete slabs for punching are based on 6 

experiments on slab-column connections, reflecting the situation in building slabs. Slab-column connections with 7 

unbalanced moments have also been studied in the past. Experiments indicate that the accuracy of models for 8 

asymmetrically loaded slabs is lower than for symmetrically loaded slabs. In this paper, the difference in accuracy 9 

between test predictions for symmetrically and asymmetrically loaded slabs is tackled. A plastic model, the 10 

Extended Strip Model, is proposed. The results of maximum loads according to this model are compared to 11 

experimental results of symmetrically and asymmetrically loaded slabs. The comparison between the proposed 12 

Extended Strip Model and the experimental results shows that the model has a consistent performance for both 13 

symmetrically and asymmetrically loaded slabs. Moreover, the model has as an advantage that it combines the 14 

failure modes of flexure, shear and punching. The proposed model can be used for the analysis of slabs. In particular, 15 

it can be used for the assessment of existing slab bridges subjected to concentrated live loads.  16 
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INTRODUCTION 17 

Because of constraints in space and available loading, punching of slabs is typically studied with slab-column 18 

connections (ASCE-ACI Task Committee 426, 1974). This type of test setup reflects the situation in building slabs. 19 

As a result, the available code equations are either (semi-)empirical methods derived from a statistical analysis of 20 

slab-column connection tests, or based on mechanical models, verified with slab-column connection tests. 21 

For the one-way shear capacity of beams, the situation is similar. Experiments are typically carried out on 22 

small, slender, heavily reinforced concrete beams tested in three- or four-point bending (Reineck et al., 2013). The 23 

available code equations are either (semi-)empirical methods derived from a statistical analysis of these tests, or 24 

based on mechanical models and verified with the available tests. 25 

When the shear capacity of reinforced concrete slab bridges is assessed, both the beam shear (one-way shear) 26 

and punching shear (two-way shear) capacity under the combination of distributed dead loads and the prescribed 27 

live loads (typically distributed lane loads and concentrated loads from the design truck or tandem) need to be 28 

verified. This loading situation is different from a slab-column connection or simplified beam shear test setup, and is 29 

an asymmetrical loading situation because of the different positions of the design trucks or tandems over the lanes.  30 

An asymmetrical loading condition that is studied for building slabs is the case of slab-column connections 31 

with unbalanced moments (Barzegar et al., 1991), reflecting the loading situation at edge and corner columns. The 32 

unbalanced moment is then considered to cause a contribution to the occurring shear stresses on the punching 33 

perimeter that needs to be summed with the direct shear stress on the punching perimeter, and the code methods 34 

reflect this approach.  35 

  36 

RESEARCH SIGNIFICANCE 37 

The presented study considers the shear capacity of symmetrically and asymmetrically loaded reinforced 38 

concrete slabs. Traditionally, the shear capacity is considered as the one-way shear capacity and the two-way shear 39 

capacity separately. In this paper, a plastic model is described, the Extended Strip Model, and the applicability to 40 

both symmetrically and asymmetrically loaded reinforced concrete slabs is highlighted. Experimental results show 41 

the validity of the presented model. 42 

 43 

LITERATURE REVIEW 44 

Existing methods for the shear capacity of slabs 45 

One-way shear models — The shear capacity of beams without transverse reinforcement (the situation that 46 

occurs when considering the one-way shear capacity of slabs) has been fiercely debated over the past century, and a 47 

multitude of (semi-)empirical and mechanical models have been developed. The code provisions, which result from 48 

semi-empirical models based on a statistical analysis, will be discussed in the next section. In this section, 49 

mechanical models are discussed.  50 

The first approach is the Modified Compression Field Theory (Vecchio and Collins, 1986), which has been 51 

adopted into the Canadian building provisions CSA A23.3 (Canadian Standards Association, 2004), AASHTO 52 

LRFD Code (AASHTO, 2015) and the fib Model Code (fib, 2012), replacing in these codes the semi-empirical 53 

formulations with a mechanical model for the first time. In the Modified Compression Field Theory and the 54 

Simplified Modified Compression Field Theory (Bentz et al., 2006), the constitutive relations of cracked concrete 55 

are used, based on average stresses and strains. For members without transverse reinforcement, concrete tension ties 56 
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resulting from aggregate interlock action are used (Adebar and Collins, 1996). These equations were derived from 1 

testing concrete panels subjected to in-plane shear and axial stresses in a panel tester (Collins et al., 1996), instead of 2 

testing beams in shear, and the resulting method has shown to lead to good results when verified in beam shear tests 3 

(Collins et al., 2015). Models that are based on the same principle are fixed-angle softened-truss models and 4 

rotating-angle softened-truss models (Hsu, 1996). 5 

A second approach is the Critical Shear Crack Theory (Muttoni and Schwartz, 1991), which has been 6 

developed for both one-way and two-way shear. The basic assumption of this theory is that the shear strength of 7 

members without transverse reinforcement is governed by the width and roughness of a shear crack, which develops 8 

through the inclined compression strut carrying the shear. For one-way shear, the failure criterion is based on the 9 

proportionality between the width of the critical shear crack and the strain at a control depth (Muttoni and Ruiz, 10 

2008). The width of the critical shear crack is considered to be influenced by the aggregate size and the spacing 11 

between the layers of reinforcement. 12 

A third family of approaches are based on the theory of plasticity. Models based on the lower bound theorem 13 

of plasticity are strut-and-tie models (Schlaich et al., 1987). For the application to one-way shear in members 14 

without transverse reinforcement, concrete tension ties need to be developed based on the mechanisms of shear 15 

transfer (Reineck, 2010). For this case, a combination of the effect of aggregate interlock, dowel action, and residual 16 

tension across the crack can be considered. Models based on the upper bound theorem of plasticity consider a 17 

mechanism, consisting of yield lines and/or plastic hinges. For shear, the yield line of a critical shear crack can be 18 

studied (Nielsen and Hoang, 2011). 19 

A fourth family of approaches study the shear transfer mechanisms on a so-called “concrete tooth”. The tooth 20 

is the part between two flexural cracks, which looks like a concrete cantilever fixed in the compression zone and 21 

loaded by horizontal forces resulting from bond (Kani, 1964). These models also showed for the first time that shear 22 

transfer can be separated into beam shear and arching action, and used this observation to explain the experimentally 23 

observed “valley of diagonal failure.”  24 

A final group of methods is based on fracture mechanics, and study both stress-strain relations as well as 25 

tensile stress-crack opening relations (Niwa, 1997). The failure criterion is then related to tensile stresses, and 26 

expressed as a function of the maximum aggregate size and the fracture energy (Walraven, 2007). A model 27 

(Gastebled and May, 2001) based on the assumption that the release of the main reinforcement by splitting controls 28 

the opening and extension of the diagonal crack was developed. According to this model, once splitting has started, 29 

the reinforcement bar loses its bond with the concrete, reducing the tensile stiffness, and resulting in opening and 30 

extending of the diagonal crack. Then, the fundamental relation of fracture mechanics is used to describe a splitting 31 

failure.  32 

 33 

Two-way shear models — The mechanics behind two-way shear have been a popular research topic over the 34 

past century. The same mechanisms of shear transfer occur as for one-way shear, but the situation is even more 35 

complex as a result of the combined flexural and diagonal tensile cracking and the three-dimensional nature of the 36 

problem (Park and Gamble, 2000). Virtually all experimental results of punching tests have been executed on slab-37 

column connections, where the slab is not extended past its line of contraflexure. When extending these results to 38 

bridge deck slabs subjected to concentrated wheel loads, it must be noted that the principal shear forces and 39 

moments are not rotationally symmetric (Rombach and Latte, 2009). 40 

A first group of punching models are based on limiting the shear stress on a critical perimeter. These models 41 

are used in most design codes. The shape of the punching perimeter is determined by taking a certain distance away 42 

from the loaded area. This distance is based on experimentally observed punching failure cones. However, it is 43 

known (Menétrey, 2002) that the angle of inclination is mostly a function of the interaction between shear and 44 

flexure. Angles of 30
o
 indicate predominantly shear failures and angles of 90

o
 indicate pure flexure. The models 45 

from Eurocode 2 and ACI 318-14, which will be discussed in the next section, are based on limiting the shear stress 46 

on a critical perimeter. 47 

A second group are plasticity-based models. Three-dimensional strut-and–tie models are available 48 

(Alexander and Simmonds, 1987), yet experiments showed that the compressive arches are curved instead of 49 

straight. Therefore, the Bond Model or Strip Model (Alexander and Simmonds, 1992) was developed. This model 50 

combines arching action in strips extending from the column, a limiting one-way shear on the interface between 51 

strips and slab quadrants, and two-way flexure inside slab quadrants. The Strip Model was developed for concentric 52 

punching shear, but has been extended to asymmetric loading situations with the Extended Strip Model (Lantsoght 53 

et al., (in review)). The Extended Strip Model will be discussed later in this paper. A model based on the upper 54 

bound theorem of plasticity, studying the slab portion outside the shear crack and bound by this crack, radial cracks, 55 

and the line of contraflexure, is available as well (Kinnunen and Nylander, 1960). Over the past years, this model 56 
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has been extended and improved, among others by using a failure criterion based on fracture mechanics (Hallgren, 1 

1996), and by incorporating compressive membrane action (Wei, 2008). 2 

As mentioned with the one-way shear models, the Critical Shear Crack Theory is also suitable for two-way 3 

shear. For two-way shear, the width of the critical shear crack is considered a function of the slab rotation (Muttoni, 4 

2008). The two-way shear approach from the Critical Shear Crack Theory is implemented in the fib Model Code 5 

2010 (fib, 2012). The method can be extended for asymmetric loading conditions without changing the failure 6 

criterion, but the load-rotation relationship for that situation should then be derived by integration of the moment-7 

curvature relation of the slab. The shear stresses on the perimeter will also not be uniform, with certain parts of the 8 

perimeter reaching their limiting stress before other parts (Sagaseta et al., 2011), and the stresses along the perimeter 9 

need to be integrated. For complex situations, such as reinforced concrete slab bridges subjected to concentrated 10 

wheel loads, non-linear finite element models are necessary to determine the load-rotation relationship of the slab 11 

(Falbr, 2011). The method then requires significant computational time and power. 12 

Because of the complex mechanics of punching, often finite element models are used. These models range 13 

from simple elastic plate models to sophisticated nonlinear models that account for discrete cracks and describe the 14 

nonlinear behavior of the materials. The fib Model Code (fib, 2012) describes the use of finite element models as the 15 

highest Level of Approximation for punching. Further research (Belletti et al., 2015) showed that a combination of a 16 

crack model and a model consisting of layers of shells can be combined with the Critical Shear Crack Theory (as 17 

described in the fib Model Code) to reach the highest Level of Approximation, and to determine both the shear and 18 

flexural capacities of the studied structural element. 19 

Beam analogy methods (Park and Gamble, 2000) have also been developed for punching. These models 20 

require the study of slab strips (beams) subjected to bending moment, torsional moment, and a shear force, 21 

combined with redistribution between the strips. The large number of possible limiting strength combinations makes 22 

these methods time-consuming and confusing.  23 

 24 

Code provisions 25 

Eurocode 2 — The beam shear (one-way shear) provisions from NEN-EN 1992-1-1:2005 (CEN, 2005) are 26 

semi-empirical formulas. Since slab bridges do not have stirrups, only the shear resistance of structural members 27 

without stirrups is discussed here. This shear resistance is determined as follows: 28 

    
1/3

, , 1 1100Rd c Rd c l ck cp w l min cp w lV C k f k b d v k b d               (1) 29 

200
1 2.0

l

k
d

        (2) 30 

with: 31 

VRd,c the design shear capacity in [kN]; 32 

k the size effect factor, with dl in [mm]; 33 

ρl the flexural reinforcement ratio; 34 

fck the characteristic cylinder compressive strength of the concrete in [MPa]; 35 

k1 0.15; 36 

σcp the axial stress on the cross-section in [MPa]; 37 

bw the web width of the section in [m]; 38 

dl the effective depth to the main flexural reinforcement in [mm]. 39 

According to the Eurocode procedures, the values of CRd,c and vmin may be chosen nationally. The default values are 40 

CRd,c = 0.18/γc with γc=1.5 in general and vmin (fck in [MPa]): 41 
3/2 1/20.035min ckv k f  in [MPa]    (3) 42 

NEN-EN 1992-1-1:2005 §6.2.2 (6) accounts for the influence of the shear span to depth ratio on direct load transfer. 43 

The contribution of a load applied within a distance 0.5dl ≤ av ≤  2dl from the edge of a support to the shear force VEd 44 

may be multiplied by the reduction factor β = av/2dl. In that clause of the code, the distance av is considered as the 45 

distance between the face of the load and the face of the support, or the center of the support for flexible supports. 46 

 The punching shear (two-way shear) provisions from NEN-EN 1992-1-1:2005 (CEN, 2005) follow a 47 

similar format as the beam shear provisions. The design punching shear capacity is calculated as follows: 48 

 
1/3

, , 1 1100Rd c Rd c l ck cp min cpv C k f k v k                (4) 49 

with 50 

0.02l lx ly     the geometric reinforcement ratio; 51 
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ρlx, ρly relate to the bonded tension steel x- and y-directions respectively. The values ρlx and ρly should be calculated 1 

as mean values taking into account a slab width equal to the column width plus 3d each side. 2 

All other parameters are determined in the same way as for the one-way shear provisions.  3 

The shear stress vEd (in [MPa]) on the perimeter should not exceed vRd,c. The stress vEd can be calculated in a 4 

simplified manner as: 5 

 Ed

Ed pu

i

V
v

u d
  (5) 6 

with 7 

VEd the shear force in [kN]; 8 

ui the perimeter of the critical section in [m]; 9 

d the effective depth, determined as the average of the effective depth to the longitudinal reinforcement and 10 

the effective depth to the transverse reinforcement, in [mm]; 11 

βpu a correction factor, approximate values are: 12 

  internal column: βpu = 1.15; 13 

  edge column: βpu = 1.4; 14 

  corner column: βpu = 1.5. 15 

A more detailed method for asymmetric loading conditions determines vEd as follows: 16 

1Ed i
Ed pu pu

i

V u
v k e

u d W

 
  

 
     (6) 17 

with 18 

kpu a parameter, equal to 0.6 when the column has a square cross-section; 19 

epu the eccentricity ratio, determined by the eccentricity between the center of the load and the center of gravity 20 

of the area within the perimeter; 21 

W corresponds to a distribution of shear on the punching parameter, which can be determined  for a 22 

rectangular column as: 23 

 
2

21

1 2 2 14 16 2
2

c
W c c c d d dc      (7) 24 

with 25 

c1 the column dimension parallel to the eccentricity of the load; 26 

c2 the column dimension perpendicular to the eccentricity of the load. 27 

It should be noted that the determination of epu is an approximation, and that, to determine the true 28 

eccentricity, a nonlinear finite element analysis should be carried out. The eccentricity should then be determined as 29 

the ratio of the design moment MEd and the design shear force VEd.  30 

The critical perimeter is taken at 2d from the loaded area. Around rectangular loaded areas, rounded 31 

corners are used for the perimeter. For loads close to the support (within a distance 0.5d ≤ av ≤  2d), the design shear 32 

capacity can be increased with 2d/av, and the perimeter ui is based on the distance av instead of a distance 2d. Eq. (7) 33 

for loads close to the support (within a distance 0.5d ≤ av ≤  2d), becomes: 34 
2

21

1 2 2 12 4
2

v v v

c
W c c c a a a c          (8) 35 

 36 

ACI 318-14 — The beam shear (one-way shear) provisions from ACI 318-14 (ACI Committee 318, 2014) 37 

are also semi-empirical formulas. The shear capacity Vc in [kN] is determined for normal weight concrete (λ = 1) as 38 

follows (in SI-units, fc’ in MPa, 1 MPa = 145 psi): 39 

 ' ' '0.16 17 0.16 17 0.29u l

c c l w l c l w l c w l

u

V d
V f b d f b d f b d

M
 

 
     
 

  (9) 40 

with 41 

fc’ the specified concrete compressive strength in [MPa], and the limit of 'cf is 100 psi (8.3 MPa); 42 

ρl the longitudinal reinforcement ratio; 43 

Vu the sectional shear force in [kN]; 44 

Mu the sectional moment; where Mu occurs simultaneously with Vu at the section considered in [kNmm]; 45 
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dl the effective depth to the longitudinal reinforcement in [mm]; 1 

bw the web width in [m]. 2 

ACI 318-14 recommends the use of nonlinear analysis or strut-and-tie models for members with concentrated loads 3 

within a distance twice the member depth from the support.  4 

 Likewise, the punching shear (two-way shear) provisions from ACI 318-14 are semi-empirical formulas. 5 

The nominal punching shear capacity Vc in [kN] for normal weight concrete (λ = 1) is determined as follows (in SI-6 

units, fc’ in MPa, 1 MPa = 145 psi): 7 

 

'

'

'
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f b d
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V f b d
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
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 (10) 8 

with 9 

βpun the ratio of the long side to the short side of the column, concentrated load or reaction area; 10 

bo the perimeter of the critical section for shear, taken at a distance d/2 away from the periphery of the loaded 11 

area, in [m]; 12 

αs 40 for interior columns, 30 for edge columns, 20 for corner columns; 13 

d the average of the effective depth to the longitudinal reinforcement and the effective depth to the transverse 14 

reinforcement, in [mm]; 15 

fc’ the specified concrete compressive strength, in [MPa], and the limit of 'cf is 100 psi (8.3 MPa). 16 

The punching shear capacity is compared to the shear stress on the critical perimeter. This critical perimeter is taken 17 

at d/2 from the periphery of the loaded area, as was determined in seminal punching shear experiments (Moe, 1961). 18 

The idea behind the ACI equations for punching shear is that the shear stress on the punching perimeter will be 19 

limited, so that a ductile flexural failure will always occur before a brittle shear failure.  20 

For eccentric loading conditions, the shear stress on the critical perimeter is composed of the direct shear 21 

vug and a contribution to the shear stress from the unbalanced moments, γvMsc, see Figure 1. The total maximum 22 

factored shear stress on the perimeter is then calculated as the largest absolute value of: 23 

 ,

v sc AB

u AB ug

c

M c
v v

J


   (11) 24 

 ,

v sc CD

u CD ug

c

M c
v v

J


   (12) 25 

with 26 

vug the factored shear stress determined at the centroidal axis of the critical section: 27 

 u

ug

o

V
v

b d
  (13) 28 

Vu the factored shear force determined at the centroidal axis of the critical section; 29 

γv a parameter that determines the fraction of moment transferred by eccentricity of shear: 30 

 1v f    (14) 31 
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2

1

2
1

3

f
b

b

 
 

  
 

 (15) 32 

b1 dimension of the critical section bo measured in the direction of the span for which moments are 33 

determined; 34 
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b2 dimension of the critical section bo measured in the direction perpendicular to b1; 1 

Msc the factored slab moment that is resisted by the column at a joint; 2 

Jc a property of the assumed critical section analogous to the polar moment of inertia. ACI 318-14 R8.4.4.2.3 3 

gives an expression for an internal column, and mentions that similar equations can be developed for edge 4 

and corner columns. 5 

The distances cAB and cCD are as shown in Figure 1. Figure 1 also shows the combination of the shear contributions 6 

of direct shear and unbalanced moment from Eqs. (14) and (15). This proposed simplified method is based on 7 

experimental observations (Hanson and Hanson, 1968). However, revisiting these test results (Alexander and 8 

Simmonds, 2003) showed that the contribution of unbalanced moments is lower than calculated with this method. 9 

 10 

 11 
Figure 1 – Determination of governing factored shear stress from the combination of direct shear and 12 

unbalanced moments: (a) for an interior column; (b) for an edge column. 13 
 14 

AVAILABLE EXPERIMENTS 15 

Short description of slab shear experiments  16 

The analysis is carried out based on the slab shear experiments from Delft University of Technology 17 

(Lantsoght et al., 2013; Lantsoght et al., 2015). The slabs that are modeled are half-scale models of reinforced 18 

concrete solid slab bridges tested in the Stevin II Laboratory. The slabs are 5 m × 2.5 m × 0.3 m (16.4 ft × 8.2 ft × 19 

1.0 ft) and are placed in a test setup as shown in Figure 2. The load is applied through a steel plate of 200 mm × 200 20 

mm (7.87 in × 7.87 in) or 300 mm ×  300 mm (11.81 in × 11.81 in). The position of the load can be altered along the 21 

width and length of the slab. In the width direction, the load can be placed in the middle of the slab (position M as 22 

shown in Figure 2) or at 438 mm (17.22 in) from the edge (position E as shown in Figure 2). In the length direction, 23 



 8 

 

the load is either placed at a center-to-center distance to the support of a = 600 mm (23.62 in) or a = 400 mm (15.75 1 

in). Slabs S1 – S14 are supported by an HEM 300 beam (with a width of 300 mm = 11.81 in), with a layer of 2 

plywood and felt on top (see Figure 2). Slabs S15 – S18 are supported by 3 elastomeric bearings across the width, 3 

with dimensions of 350 mm × 280 mm × 45 mm (13.78 in × 11.02 in × 1.77 in) and with a compression stiffness of 4 

2361 kN/mm (13480 kip/in). To model the behavior of continuous slabs, prestressing bars are used close to support 5 

2 (sup 2 in Figure 2) to restrain the rotation of the slab. As a result, a moment is created over support 2, resulting in 6 

the same situation as in a multiple-span bridge.  7 

 8 

 9 
Figure 2 – Test setup for slab shear experiments: (a) with line supports; (b) supported by elastomeric 10 

bearings. Units: mm; 1 mm = 0.04 in. 11 
 12 

In this paper, the main focus is on the slabs subjected to a single concentrated load placed close to the support 13 

(first series of experiments from the slab shear tests, S1 – S18), to evaluate how suitable the analyzed methods are 14 

for determining the shear capacity of asymmetrically loaded slabs. Slabs S1 to S18 from the slab shear experiments 15 

are analyzed here. An overview of the properties of these slabs is given in Table 1, using the following parameters: 16 

fc,cube  the measured mean cube compressive strength at the age of testing; 17 

fct,meas  the mean measured splitting tensile strength tested on cubes at the age of testing; 18 

ρl  the amount of longitudinal reinforcement; 19 

ρt  the amount of transverse reinforcement; 20 

a  the center-to-center distance between the load and the support; 21 

dl  the effective depth to the longitudinal reinforcement; 22 

M/E  position of the load as shown in Figure 2; 23 

zload  the size of the side of the square loading plate used to transfer the load from the jack to the slab; 24 
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Age  the age of the slab at the first test. 1 

All slabs are 300 mm (11.81 in) thick. The effective depth to the longitudinal reinforcement, dl, equals 265 2 

mm (10.43 in) for slabs S1 – S14, and dl = 255 mm (10.04 in) for S15 – S18. The effective depth to the transverse 3 

reinforcement, dt, equals 250 mm (9.84 in) for S1 – S14 and dt = 232.5 mm (9.15 in) for S15 – S18. The resulting 4 

reinforcement ratios are given in Table 1. Slabs S1-S10 and S15-S18 are reinforced with deformed bars of steel 5 

S500. The measured capacities are fym = 542 MPa (78.61 ksi) for the mean yield strength and fum = 658 MPa (95.44 6 

ksi) for the mean ultimate strength for the 20 mm diameter bars (diameter of 0.79 in, closest to a #6 bar), and fym = 7 

537 MPa (77.89 ksi); fum = 628 MPa (91.08 ksi) for the 10 mm bars (diameter of 0.39 in, closest to a #3 bar). Slabs 8 

S11-S14 are reinforced with plain bars with measured properties fym = 601 MPa (87.17 ksi) and fum = 647 MPa 9 

(93.84 ksi) for the 20 mm (0.79 in) diameter bars, and fym = 635 MPa (92.10 ksi) and fum = 700 MPa (101.53 ksi) for 10 

the 10 mm diameter bars. An overview of the results of the individual experiments is given in Table 2. Glacial river 11 

aggregates with a maximum diameter of 16 mm (0.63 in) are used. 12 

 13 

Table 1 – Overview of tested slabs. Conversion: 1 MPa = 145 psi, 1 mm = 0.04 in. 14 
 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

Comparison between slab shear experiments and code models 37 

An overview of all experiments, and the calculated governing load effects and capacities, is given in Table 2. 38 

In this table, the following parameters are given: 39 

Test name of the experiment, SxTy, with x the slab number (properties see Table 1) and y the number 40 

of the test on this slab. Either two experiments were carried out (one at each support in position 41 

M), or four (two at each support in position E); 42 

br distance between the center of the load and the edge of the slab in the width direction; 43 

SS/CS experiment close to the simple support (SS) or continuous support (CS), see Figure 2; 44 

Pu the maximum value of the concentrated load during the experiment; 45 

Mode the observed failure mode in the experiment: 46 

 WB: wide beam shear failure, indicated by inclined cracks on the bottom – the inclined crack is 47 

not necessarily visible on the side face of the member; 48 

 P: punching shear failure; 49 

 B: beam shear failure with visible shear crack on the side face; 50 

SF: failure by punching of the bearing of the support (for the slabs supported by discrete 51 

elastomeric bearings); 52 

Fpres  the force in the prestressing bars; 53 

Vexp the sectional shear force caused by the concentrated load, the self-weight of the slab, and the force 54 

in the prestressing bars; 55 

Slab 

nr. 

fc,cube 

(MPa) 

fct,meas  

(MPa) 

ρl 

(%) 

ρt 

(%) 

a/dl M/E zload 

(mm) 

Age 

(days) 

S1 35.8 3.1 0.996 0.132 2.26 M 200  28 

S2 34.5 2.9 0.996 0.132 2.26 M 300 56 

S3 51.6 4.1 0.996 0.258 2.26 M 300  63 

S4 50.5 4.1 0.996 0.182 2.26 E 300  76 

S5 46.2 3.6 0.996 0.258 1.51 M 300 31 

S6 48.2 3.9 0.996 0.258 1.51 E 300  41 

S7 82.1 6.2 0.996 0.258 2.26 E 300  83 

S8 77.0 6.0 0.996 0.258 2.26 M 300  48 

S9 81.7 5.8 0.996 0.258 1.51 M 200  77 

S10 81.6 5.8 0.996 0.258 1.51 E 200  90 

S11 54.9 4.2 1.375 0.358 2.26 M 200 90 

S12 54.8 4.2 1.375 0.358 2.26 E 200 97 

S13 51.9 4.2 1.375 0.358 1.51 M 200 91 

S14 51.3 4.2 1.375 0.358 1.51 E 200 110 

S15 52.2 4.2 1.035 1.078 2.35 M 200 71 

S16 53.5 4.4 1.035 1.078 2.35 E 200 85 

S17 49.4 3.7 1.035 1.078 1.57 M 200 69 

S18 52.1 4.5 1.035 1.078 1.57 E 200 118 
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βVexp the sectional shear force caused by the concentrated load, the self-weight of the slab, and the force 1 

in the prestressing bars, for which the loads within 0.5dl ≤ av ≤ 2dl are reduced with the factor β = 2 

av/2dl according to the Eurocode shear provisions; 3 

VACI the shear capacity according to the ACI 318-14 code; 4 

VRc the shear capacity according to Eurocode 2; 5 

vE the governing shear stress on the punching perimeter according to Eurocode 2; 6 

vu the governing shear stress (from direct shear and unbalanced moment) on the punching perimeter 7 

according to ACI 318-14; 8 

vRc the punching shear capacity according to Eurocode 2; 9 

vc the punching shear capacity according to ACI 318-14. 10 

 11 

Table 2 – Overview of test results and calculated capacities: analysis with the shear and punching 12 

provisions of Eurocode 2 and ACI 318-14. Conversion: 1 mm = 0.04 in; 1 kN = 0.225 kip; 1 MPa = 145 psi. 13 

Test br SS/CS Pu Mode Fpres Vexp βVexp VACI VRc vE vu vRc vc 

 
(mm) (kN) (kN) (kN) (kN) (kN) (kN) (MPa) (MPa) (MPa) (MPa) 

S1T1 1250 SS 954 WB 163 799 679 458 343 1.02 2.76 0.85 1.80 

S1T2 1250 CS 1023 WB 138 912 784 458 343 1.10 3.09 0.85 1.80 

S2T1 1250 SS 1374 WB + P 280 1129 848 450 384 1.44 3.25 0.95 1.77 

S2T4 1250 CS 1421 WB 330 1276 985 450 384 1.49 3.57 0.95 1.77 

S3T1 1250 SS 1371 WB 252 1131 851 550 439 1.43 3.25 1.21 2.17 

S3T4 1250 CS 1337 WB + B 287 1199 925 550 439 1.40 3.36 1.21 2.17 

S4T1 438 SS 1160 WB + B 203 964 727 494 333 1.92 2.91 1.14 2.17 

S4T2 438 SS 1110 WB + B 187 925 698 494 333 1.83 2.79 1.14 2.17 

S5T1 1250 CS 1804 WB + B 235 1679 681 338 329 2.85 4.67 2.37 2.09 

S5T4 1250 SS 1755 WB + B 280 1544 573 338 329 2.77 4.36 2.37 2.09 

S6T1 438 CS 1446 WB + B 183 1353 552 347 279 3.11 3.90 2.41 2.14 

S6T2 438 CS 1423 WB + B 213 1337 550 347 279 3.06 3.85 2.41 2.14 

S6T4 438 SS 1366 WB + B 195 1213 457 347 279 2.94 3.57 2.41 2.14 

S6T5 438 SS 1347 WB + B 245 1187 442 347 279 2.90 3.51 2.41 2.14 

S7T1 438 SS 1121 WB + P + B 217 929 700 623 389 1.85 2.81 1.41 2.73 

S7T2 438 CS 1172 WB + P + B 197 1046 807 623 389 1.94 3.06 1.41 2.73 

S7T3 438 CS 1136 WB + P + B 227 1021 789 623 389 1.88 2.98 1.41 2.73 

S7T5 438 SS 1063 WB + P + B 157 891 673 623 389 1.76 2.68 1.41 2.73 

S8T1 1250 SS 1481 WB + B 233 1226 923 672 502 1.55 3.52 1.38 2.65 

S8T2 1250 CS 1356 WB + B 278 1213 936 672 502 1.42 3.40 1.38 2.65 

S9T1 1250 SS 1523 WB + P 175 1355 640 440 331 2.49 4.62 2.26 2.73 

S9T4 1250 CS 1842 WB + P 255 1717 851 440 331 3.02 5.77 2.26 2.73 

S10T1 438 SS 1320 WB + P + B 162 1177 557 442 320 2.80 3.78 2.27 2.74 

S10T2 438 SS 1116 WB + P + B 173 994 470 442 320 2.36 3.19 2.27 2.74 

S10T4 438 CS 1511 WB + (B) 252 1422 712 442 320 3.20 4.46 2.27 2.74 

S10T5 438 CS 1454 WB + B 235 1368 685 442 320 3.08 4.29 2.27 2.74 

S11T1 1250 SS 1194 WB + P 165 998 848 567 441 1.28 3.45 1.23 2.23 

S11T4 1250 CS 958 WB + P 307 886 766 567 441 1.03 2.97 1.23 2.23 

S12T1 438 SS 931 WB + B + P 162 780 663 509 349 1.54 2.56 1.22 2.23 

S12T2 438 SS 1004 P 173 839 712 509 349 1.66 2.76 1.22 2.23 

S12T4 438 CS 773 WB + P + B 147 705 608 509 349 1.28 2.23 1.22 2.23 

S12T5 438 CS 806 WB + B 158 735 633 509 349 1.33 2.32 1.22 2.23 

S13T1 1250 SS 1404 WB + P 157 1253 593 351 317 2.30 4.26 2.16 2.17 

S13T4 1250 CS 1501 WB + P 240 1411 706 351 317 2.46 4.73 2.16 2.17 

S14T1 438 SS 1214 WB + P + B 133 1088 518 349 305 2.57 3.48 2.16 2.16 

S14T2 438 SS 1093 WB + P + B 162 975 462 349 305 2.32 3.13 2.16 2.16 

S14T4 438 CS 1282 WB + P + B 187 1207 605 349 305 2.72 3.79 2.16 2.16 

S14T5 438 CS 1234 WB + P + B 142 1157 578 349 305 2.61 3.64 2.16 2.16 

S15T1 1250 CS 1040 WB + B + SF 245 944 685 445 337 1.37 3.39 1.67 2.18 
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S15T4 1250 SS 1127 WB + SF 158 944 670 445 337 1.49 3.47 1.67 2.18 

S16T1 438 SS 932 WB + B 188 776 551 440 283 1.78 2.69 1.69 2.21 

S16T2 438 SS 815 WB + B 208 675 479 440 283 1.56 2.34 1.69 2.21 

S16T4 438 CS 776 WB + B + SF 235 723 528 440 283 1.48 2.38 1.69 2.21 

S16T5 438 CS 700 WB + B + SF 198 653 478 440 283 1.34 2.15 1.69 2.21 

S17T1 1250 CS 1365 WB + SF 208 1285 449 252 261 3.05 4.58 3.77 2.18 

S17T4 1250 SS 1235 WB + SF 118 1109 357 252 261 2.76 4.01 3.77 2.18 

S18T1 438 SS 1157 WB + B + SF 170 1031 328 251 260 2.91 3.48 3.76 2.18 

S18T2 438 SS 1079 WB + B 213 954 300 251 260 2.71 3.23 3.76 2.18 

S18T4 438 CS 1122 WB + B + SF 167 1062 375 251 260 2.82 3.49 3.76 2.18 

S18T5 438 CS 1104 WB  + B + SF 190 1050 373 251 260 2.77 3.44 3.76 2.18 

 1 

Discussion of results of symmetrical and asymmetrical loading 2 

An overview of the results of the comparison between asymmetrically loaded slabs and the shear and 3 

punching provisions is given in Figure 3. The 45
o
 line indicates the values for which the predicted and tested 4 

sectional shear forces or shear stresses are identical. Marks above this line indicate conservative predictions, while 5 

marks below this line indicate that the code provision overestimates the capacity of the element. From Figure 3, it 6 

can be seen that, in general, the code provisions are conservative. The lowest total average can be observed for the 7 

punching provisions of Eurocode 2. However, in a typical analysis, it would be found that the shear capacity is 8 

critical, and that shear failure would occur before punching failure. Compared to the experiments, the ACI 9 

provisions for shear and punching lead to a large scatter, whereas the results from Eurocode 2 show less scatter. In 10 

general, the results also show that extrapolating the shear and punching provisions from the codes to the application 11 

of slab bridges subjected to concentrated wheel loads results in larger scatter than when analyzing slab-column 12 

connections or beam shear tests in four point bending. The code equations are thus less suitable for asymmetrical 13 

loading situations.  14 

The statistical analysis (with AVG = average, STD = standard deviation, and COV = coefficient of 15 

variation) is given in Table 3. In this Table, the following subsets of data are analysed: 16 

- S1-S18: all experiments of slabs subjected to a single concentrated load close to the support; 17 

- M: all experiments for which the concentrated load is placed in the middle of the width; 18 

- E: all experiments for which the concentrated load is placed close to the edge; 19 

- S1-S6: all experiments on normal strength concrete slabs supported by line supports ; 20 

- S7-S10: all experiments on high strength concrete slabs; 21 

- S11-S14: all experiments on slabs with plain reinforcement bars: 22 

- S15-S18: all experiments on slabs supported by elastomeric bearings.  23 

From the results in Table 3, it can be seen that both ACI 318-14 and Eurocode 2 indicate that these slabs 24 

would fail in beam shear before punching shear. Comparing the average values for loading situation “M” and 25 

loading situation “E” also shows that all methods (except the Eurocode punching provisions) give less conservative 26 

values as the loading situation becomes more asymmetric. The coefficient of variation on the shear prediction of 27 

ACI 318-14 is very large, and indicates that the shear provisions from ACI 318-14 are not very suitable for 28 

extrapolation to the shear capacity of slabs under concentrated loads. However, Figure 3a indicates that ACI 318-14 29 

gives conservative estimates for all experiments. The results of the comparison between the tested and predicted 30 

values with ACI 318-14 shows that the average tested-to-predicted value is lower for slabs of high strength concrete 31 

than for slabs of normal strength concrete, for slabs with plain reinforcement bars as compared to slabs with ribbed 32 

reinforcement bars, and for slabs supported by line supports as compared to slabs supported by discrete elastomeric 33 

bearings. 34 

Of the analysed methods, the Eurocode one-way shear predictions give the lowest coefficient of variation. 35 

Again, the average tested-to-predicted value is lower for the slabs of high strength concrete than for slabs with 36 

normal strength concrete, and for slabs with plain reinforcement bars as compared to slabs with deformed 37 

reinforcement bars. The tested-to-predicted value for slabs supported by elastomeric bearings is also smaller than for 38 

slabs on line supports, because of the load reduction factor β.  39 

 The punching shear capacity from ACI 318-14, with the governing shear stress on the punching perimeter 40 

caused by direct shear and unbalanced moment, has a lower coefficient of variation for slabs under concentrated 41 

loads close to supports than the one-way shear capacity. Again, the tested-to-predicted values for normal strength 42 

concrete are higher than for high strength concrete, and lower for plain reinforcement bars as compared to deformed 43 
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bars. The tested-to-predicted values for the punching capacity are lower on average for slabs supported by bearings 1 

than for slabs on line supports. 2 

 3 

 4 
Figure 3 – Comparison between experiments on asymmetrically loaded slabs and code provisions: (a) 5 

ACI 318-14 shear provisions; (b) ACI 318-14 punching provisions; (c) Eurocode 2 shear provisions; (d) 6 

Eurocode 2 punching provisions. Conversion: 1 kN = 0.225 kip; 1 MPa = 145 psi. 7 
 8 

 For the Eurocode 2 results, the coefficient of variation is larger on the tested-to-predicted results for 9 

punching than for shear. The average value of the tested-to-predicted ratio is closer to 1, indicating a closer 10 

prediction of the experimental results. However, using Eurocode 2 would have indicated shear failure before 11 

punching failure. The tested-to-predicted ratios with the Eurocode 2 formula have a similar average for loading 12 

situation “M” and “E”, indicating that the way Eurocode 2 takes varying degrees of asymmetry into account for 13 

punching is better than the other shear and punching models under consideration. Again, the tested-to-predicted 14 

value is higher on average for the slabs with normal strength concrete as compared to slabs with high strength 15 

concrete. The average tested-to-predicted ratio is lower for the slabs reinforced with plain bars as compared to slabs 16 

with deformed bars. For the slabs supported by elastomeric bearings, the Eurocode 2 provisions for punching of the 17 

load are unconservative. However, it must be noted that an assessment based on Eurocode 2 would have predicted 18 

shear failure before punching failure, and that in the experiments punching of the elastomeric bearings were 19 

observed as a secondary failure mode.  20 

The results from Table 3 can be compared to values from the literature. For the ACI 318-14 formula, 21 

originally recommended in 1962 (ACI-ASCE Committee 326, 1962), the tested-to-predicted value was 1.076 with a 22 

coefficient of variation of 15.8%. For this analysis, the results of 194 beams failing in shear were used. Later, it was 23 

shown that this formula becomes unsafe when extrapolated to deep members and lightly reinforced members 24 

(Collins et al., 2008). 25 

For the Eurcode 2 shear formula (previously used in the Model Code 1990 (CEB-FIP, 1993)), an average 26 

tested-to-predicted value of 0.92 with a standard deviation of 0.12 and a coefficient of variation of 13% was found 27 

(König and Fischer, 1995). For this comparison, a database of experiments on beams failing in shear was used.  28 
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The Eurocode 2 punching expression resulted in a mean tested-to-predicted ratio of 1.01 with a standard 1 

deviation of 0.14 and a coefficient of variation of 14%, whereas the ACI 318-14 expression resulted in a mean of 2 

1.54, a standard deviation of 0.32 and a coefficient of variation of 21% (Gardner, 2011). The experiments for both 3 

these comparisons are taken from the fib punching database (fib Task Group on Utilisation of concrete tension in 4 

design, 2001).  5 

 6 

Table 3 – Statistical analysis of comparison between experimental results, and shear and punching provisions 7 

from ACI 318-14 and Eurocode 2. 8 

 S1-S18 M E S1-S6 S7-S10 S11-S14 S15-S18 

Vexp/ VACI AVG 2.71 2.91 2.58 2.95 2.34 2.47 3.04 

STD 1.09 1.19 1.02 1.08 0.82 1.00 1.36 

COV (%) 40.3 41.0 39.5 36.4 35.2 40.4 44.8 

βVexp/ VRc AVG 1.87 2.00 1.79 2.02 1.95 1.86 1.63 

STD 0.29 0.28 0.27 0.26 0.28 0.18 0.30 

COV (%) 15.6 14.2 15.2 12.8 14.5 9.8 18.2 

vu/vc AVG 1.52 1.75 1.37 1.71 1.37 1.50 1.47 

STD 0.34 0.30 0.28 0.27 0.33 0.37 0.33 

COV (%) 22.5 17.3 20.4 15.9 24.5 24.4 22.6 

vE/vRc AVG 1.14 1.11 1.16 1.33 1.24 1.13 0.82 

STD 0.24 0.22 0.25 0.18 0.14 0.14 0.10 

COV (%) 20.8 20.1 21.4 13.7 10.9 12.1 12.0 

Pexp/PESM AVG 1.61 1.64 1.58 1.67 1.59 1.59 1.56 

STD 0.21 0.23 0.20 0.20 0.20 0.20 0.26S 

COV (%) 13.3 14.0 12.8 11.9 12.4 12.7 16.6 

 9 

The results in Table 3 show that the ACI 318-14 shear expression underestimates the capacity of slabs under 10 

concentrated loads close to supports more than beams, but also has a much larger coefficient of variation. As such, it 11 

can be concluded that the formula gives a (very) conservative estimate of the shear capacity of slabs under 12 

concentrated loads close to supports, but might not be suitable for extrapolation to this loading case. For the shear 13 

formula from Eurocode 2, the coefficient of variation of the slab shear and beam shear experiments is comparable. 14 

The large difference is in the average tested-to-predicted value, which turns out to be much larger for slabs than for 15 

beams. This observation can be explained by the ability of slabs to activate transverse distribution (Lantsoght et al., 16 

in press), resulting in larger shear capacities than beams.  The results of the ACI 318-14 punching shear equation is 17 

similar when compared to the fib punching database as well as when compared to the slab shear experiments. This 18 

observation might indicate that the simple method from Figure 1 for asymmetrically loaded slabs leads to an 19 

acceptable estimate of the punching shear capacity. However, it must be noted that the coefficient of variation of the 20 

tested-to-predicted ratio in Table 3 is still rather large. Finally, comparing the results of the analysis of the fib 21 

punching database with regard to the performance of the Eurocode 2 punching formula to the results of the analysis 22 

of the slab shear experiments shows that the average tested-to-predicted values are of a similar magnitude. However, 23 

the coefficient of variation becomes larger for the slab shear experiments, indicating that not all parameters 24 

considered in the experiments are reflected by the Eurocode 2 punching equation in a correct manner. 25 

Similar observations were made when comparing different finite element models. For loading cases with 26 

loads at an asymmetric position with respect to both axis of symmetry of the slab,  the prediction with the finite 27 

element model was farther away from the experimental result than for the case with a load at an asymmetric position 28 

with respect to only one axis of symmetry of the slab (Lantsoght et al., 2016b). 29 

 30 

EXTENDED STRIP MODEL 31 

Description of model 32 

The Extended Strip Model is the application to slabs under concentrated loads close to supports 33 

(asymmetrically loaded slabs) of the Bond Model or Strip Model for concentric punching shear (Alexander and 34 

Simmonds, 1992). With the Strip Model, a slab-column connection is subdivided into quadrants and strips, see 35 

Figure 4. The strips work in arching action, whereas the quadrants work in two-way flexure. The governing stress is 36 

the stress at the interface between the strips and the quadrants, which can be quantified as the one-way shear stress. 37 

The maximum load at the slab-column connection is then found by summing the contributions of the four radial 38 

strips. 39 
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Applying the Strip Model to asymmetric loading cases such as a concentrated load on a slab requires a few 1 

extensions to the model. First of all, because of the positions of the load and supports (a situation as shown for 2 

example in Figure 2), the sectional shear force will not be identical at both faces of the loaded area. Therefore, one 3 

side will reach the limiting shear stress on the interfaces while the other side will be subjected to a lower shear 4 

stress. Failure then will not occur at all four strip interfaces at the same time, but instead just at the strip interfaces 5 

subjected to the largest shear stresses. 6 

 7 

 8 

 9 
Figure 4 – Layout of quadrants and strips (Alexander and Simmonds, 1992). 10 

 11 

The Extended Strip Model takes into account the increase in capacity caused by the compression strut (or 12 

arch) that occurs between the applied load and the support for loads close to the support. The capacity of the strip 13 

between the load and the support can be enhanced, and the factor used for this magnification is as determined by 14 

Regan for parts of a punching perimeter close to supports (Regan, 1982). Additionally, the effect of torsion needs to 15 

be taken into account (Valdivieso et al., 2016). 16 

For concentrated loads on continuous slabs, the reinforcement resisting the tension caused by the hogging 17 

moment will be activated in the region between the load and the support. Therefore, the capacity of the strips in this 18 

region will be increased. The capacity will not be determined purely by the sum of the sagging moment and hogging 19 

moment capacities, but instead is governed by the sum of the sagging moment capacity and a fraction of the hogging 20 

moment capacity. This fraction is taken as the ratio of the support moment to the span moment for the considered 21 

loading case (Lantsoght et al., (in review)). 22 

The effect of torsion on asymmetrically loaded slabs becomes considerable as the asymmetry increases. For 23 

the slab shear experiments (Figure 2), the loading situation “E” is asymmetric in both the length and width direction, 24 

and the loading situation “M” only in the length direction. The relative effect of the torsional moments will thus be 25 

larger for loading situation “E”. When the torsional moments become larger, the capacity of the strip-quadrant 26 

interfaces will be smaller as a result of shear-torsion interaction. Therefore, a reduction factor was built into the 27 

model, which reduces the capacity of the strips when the torsional moment is relative larger with respect to the 28 

bending moment. This study was based on a sensitivity study with linear finite element models (Valdivieso et al., 29 

2016).  30 

Another effect that occurs for loads placed close to the slab edge, is that the length of the strip geometrically 31 

available can be smaller than the loaded strip length used for finding the most unfavorable loading situation on the 32 

strip. For these cases, the loaded strip length must be limited to the actual maximum strip length available. This 33 

reduction is the application of the so-called “edge effect” (Lantsoght et al., (in review)). 34 

For slabs supported by bearings, the increase in capacity for loads placed close to the support is less, as the 35 

reduced support length allows for less anchorage of the strut.  For slabs reinforced with plain bars, the reduction of 36 

the bond between the steel and the concrete will lead to a slightly smaller shear capacity for the interface between 37 

the strips and the quadrants. A factor 0.7 was proposed for this effect. This factor was determined empirically to take 38 

into account the lower bond between the concrete and the plain reinforcement bars, reducing the shear capacity at 39 
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the interface between the strips and quadrants. A correction for the size effect was also added to the model, and the 1 

effect of self-weight can be subtracted from the shear stress at the interface between the quadrants and strips, for the 2 

interfaces in the span direction (Lantsoght, 2016). A full description of the model, as well as a step-by-step 3 

explanation of the procedure, is given elsewhere (Lantsoght et al., (in review)).  The method can also be applied for 4 

the assessment of existing slab bridges (Lantsoght et al., 2016a). The resulting equations for the Extended Strip 5 

Model are: 6 
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 12 

with 13 

Px the capacity of a strip in the longitudinal direction, in [N]; 14 

Psup the capacity of a strip between the load and the support in the longitudinal direction, in [N], with Eq. (17) 15 

for slabs supported by line supports and Eq. 18 for slabs on discrete bearings; 16 

Py the capacity of a strip in the transverse direction, in [N]; 17 

Pedge the capacity of a strip between the load and the free edge in the transverse direction, in [N]; 18 

βt factor for the effect of torsion, derived from linear finite element models (unitless) (Valdivieso et al., 2016): 19 

0.8 r
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     (21) 20 

a the center-to-center distance between the load and the support, in [mm]; 21 

dl the effective depth to the longitudinal reinforcement, in [mm]; 22 

br the distance between the center of the load and the free edge, in [mm]; 23 

b the width of the slab, in [mm]; 24 

Msag,x the sagging moment capacity of the longitudinal reinforcement, in [Nmm]: 25 
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Mhog,x the hogging moment capacity of the longitudinal reinforcement, in [Nmm]: 27 
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Msag,y the sagging moment capacity of the transverse reinforcement, in [Nmm]: 29 
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Mhog,y the hogging moment capacity of the transverse reinforcement, in [Nmm]: 31 
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Ms.x the bending moment capacity of the longitudinal reinforcement, in [Nmm]: 33 

, , ,s x sag x moment hog xM M M        (26) 34 
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Ms.x the bending moment capacity of the transverse reinforcement, in [Nmm]: 1 

, , ,s y sag y moment hog yM M M       (27) 2 

ρsag,x the reinforcement ratio of the longitudinal sagging moment reinforcement (unitless); 3 

ρhog,x the reinforcement ratio of the longitudinal hogging moment reinforcement (unitless); 4 

ρsag,y the reinforcement ratio of the transverse sagging moment reinforcement (unitless); 5 

ρhog,y the reinforcement ratio of the transverse hogging moment reinforcement (unitless); 6 

dl’ the effective depth to the longitudinal hogging moment reinforcement, in [mm]; 7 

dt the effective depth to the transverse sagging moment reinforcement, in [mm]; 8 

dt’ the effective depth to the transverse hogging moment reinforcement, in [mm]; 9 

lspan the span length, in [mm]; 10 

fyk the characteristic yield strength of the steel, in [MPa]; 11 

fck the characteristic concrete compressive strength, in [MPa]; 12 

λmoment the ratio of support moment to span moment under the considered loading case, λmoment = Msup/Mspan 13 

(unitless); 14 

wACI,x the shear capacity of the interface between the quadrant and strip in the x-direction, taking the size effect 15 

into account, in [N/mm = kN/m]: 16 
1

3

,

100
0.166ACI x t ck

mm
w d f

d

 
  

 
     (28) 17 

wACI,y the shear capacity of the interface between the quadrant and strip in the y-direction, in [N/mm = kN/m]: 18 
1

3

,y

100
0.166ACI l ck

mm
w d f

d

 
  

 
     (29) 19 

d the average of the effective depth in the longitudinal and transverse direction, in [mm]; 20 

βsup  the factor for loads close to supports when discrete supports are used (unitless): 21 
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     (30) 22 

L the length between points of contraflexure, in [mm]; 23 

aM the distance between the load and the support or between the load and the point of contraflexure, whichever 24 

is nearer, in [mm]; 25 

vDL shear force on the interface between the load and the support caused by the self-weight of the slab, in 26 

[N/mm]; 27 

ledge the distance between the free edge and the face of the load, in [mm]; 28 

lw the loaded length of the strip, in [mm]: 29 
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     (31) 30 

 31 

Comparison between Extended Strip Model and asymmetrically loaded slabs 32 

The slab shear experiments are compared to the Extended Strip Model. The maximum load in the experiment 33 

is shown as Pexp and the maximum concentrated loads as calculated with the Extended Strip Model is given as PESM. 34 

The statistical parameters are given in Table 3. The first conclusion that can be drawn from the results in Table 3 is 35 

that the Extended Strip Model gives a better prediction of the experiments than the code provisions, as the lowest 36 

coefficient of variation is obtained. Comparing the results from the column with loading cases “M” and “E” shows 37 

that the difference is rather small. The tested-to-predicted ratio is slightly smaller for the loading case “E”, but the 38 

difference between loading cases “M” and “E” is almost negligible. For the reference subset, slabs S1-S6, the 39 

Extended Strip Model results in the lowest coefficient of variation.  40 

For the high strength concrete slabs, the tested-to-predicted ratio is only marginally smaller, indicating that 41 

the model reflects the influence of the concrete compressive strength correctly. For the slabs reinforced with plain 42 
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bars, wACI,x from Eq. (28) and wACI,y from Eq. (29) the shear strength needs to be multiplied with a factor 0.7. This 1 

factor was determined empirically to take into account the lower bond between the concrete and the plain 2 

reinforcement bars, reducing the shear capacity at the interface between the strips and quadrants. The results in 3 

Table 3 indicate that this choice leads to good results.  4 

For the slabs supported by elastomeric bearings, the increase in capacity of the strip between the load and the 5 

support needs to be calculated with βsup from Eq. (30). The statistical parameters of the tested-to-predicted results for 6 

S15-S18 show that this subset results in the largest coefficient of variation. An element of empiricism in the 7 

Extended Strip Model when applied to slabs on discrete bearings is the use of βsup.  8 

A graphical overview of the comparison between the Extended Strip Model and the test results, as well as the 9 

histogram of the tested-to-predicted ratios, is given in Figure 5. The results from this histogram show that the 5% 10 

lower bound is larger than 1, so that the method is suitable for design, and the results from Figure 5a show that the 11 

trend of the tested-to-predicted ratios is parallel with the 45
0
 line. This observation indicates that the range of 12 

parameters that is studied in the experiments is represented well by the model, an observation that could not be made 13 

for the code provisions, shown in Figure 2, except perhaps for the Eurocode punching provisions. 14 

 15 

 16 
Figure 5 --  Comparison between slab shear experiments and Extended Strip Model: (a) overview; (b) 17 

histogram. Conversion: 1 kN = 0.225 kip. 18 
 19 

DISCUSSION  20 

Whereas most beam shear and punching shear provisions from the governing codes were developed for 21 

symmetric loading cases, and lead to increasing levels of inaccuracy for loading cases that are more and more 22 

asymmetric, the (Extended) Strip Model performs equally well for symmetric and asymmetric loading cases. The 23 

original Strip Model (or Bond Model) for concentric punching shear was developed for a symmetric loading case. 24 

With a few modifications and extensions to the model to make it applicable to asymmetric loading cases, it was 25 



 18 

 

shown that the Extended Strip Model leads to satisfactory results when compared to experimental results of slabs 1 

failing in shear. 2 

One of the strengths of the Extended Strip Model is that it combines two-way flexure, beam shear, and 3 

punching shear. For typical bridge deck slabs subjected to concentrated wheel loads, the failure mechanism tends to 4 

be a combination of flexure, beam shear, and punching shear. The model is thus suitable to study such complex 5 

loading cases. 6 

The Extended Strip Model currently has a few elements of empiricism: 7 

 the shear capacity of the interface between the quadrants and strips (Eqs. (28) and (29)) uses the 8 

limiting shear strength from ACI 318-14; 9 

 the size effect factor on the shear capacity of the interface between the quadrants and strips is 10 

empirical; 11 

 the reduction (using a factor of 0.7) of the shear capacity of the interface between the quadrants and 12 

strips for slabs reinforced with plain bars is empirical; 13 

 the factor βsup for slabs supported by discrete bearings is determined empirically. 14 

The limiting shear strength from ACI 318-14 also includes the upper limit to 'cf of 100 psi (8.3 MPa), until 15 

further experimental evidence can be used to investigate the need for this upper limit. Another limitation of the 16 

Extended Strip Model is that it requires yielding of the reinforcement at the ultimate limit state. For slabs with heavy 17 

flexural reinforcement in which a shear failure occurs before yielding of the steel, the model cannot be used. 18 

Practical cases of slabs do not have this type of reinforcement, but sometimes slabs tested in laboratories are heavily 19 

reinforced to make sure the slab fails in punching or shear before it fails in flexure. 20 

 21 

SUMMARY AND CONCLUSIONS  22 

Reinforced concrete slabs are subjected to asymmetric loading cases when unbalanced moments occur in 23 

buildings at the slab-column connection, and in bridges subjected to concentrated live loads. The majority of the 24 

existing code equations were derived either based on experiments on symmetric loading cases, or were derived as 25 

mechanical models, but then compared and fitted to experiments on symmetric loading cases. Asymmetrically 26 

loaded slabs tested in laboratories are limited to slab-column connections with an unbalanced moment, not 27 

extending past the point of contraflexure. 28 

In this paper, asymmetrically loaded slabs are studied. Experiments on slabs under a single concentrated load 29 

applied close to the support are used for the analysis. The experimental results are compared to the capacities as 30 

predicted by Eurocode 2 and ACI 318-14. Both codes would conservatively predict a one-way shear failure to occur 31 

before two-way shear failure in the tested slabs. The overall best prediction is delivered by the one-way shear 32 

provisions from Eurocode 2, which gives the lowest coefficient of variation. The large average value of the tested-33 

to-predicted ratio however indicates the large conservativism of the method. In general, the coefficients of variation 34 

of the tested-to-predicted ratios when comparing the slab shear experiments to the predicted values from Eurocode 2 35 

and ACI 318-14 are larger than when the punching provisions are compared to slab-column connection tests, or 36 

when the beam shear provisions are compared to beam shear tests, as reported in the literature.  37 

The Extended Strip Model, an extension of the Strip Model or Bond Model for concentric punching shear, is 38 

suitable to determine the maximum load on asymmetrically loaded reinforced concrete slabs. The model combines 39 

two-way flexure, one-way shear, and two-way shear, and as such, the model is suitable for more complex loading 40 

cases, e.g. slab bridges subjected to concentrated wheel loads, which fail in a combination of flexure, one-way shear, 41 

and two-way shear. For asymmetric loading cases, the effect of torsion, which reduces the capacity, needs to be 42 

taken into account. For loads close to the free edge, the edge effect needs to be considered, i.e. it needs to be studied 43 

if the entire loaded length of the strip between the load and the free edge can develop. The effect of different 44 

reinforcement ratios in the longitudinal and transverse direction should be considered, as well as the shear and 45 

moment diagrams occurring for the asymmetric loading situation. The model is also extended with empirically 46 

determined parameters for slabs reinforced with plain bars and slabs supported by discrete bearings. 47 

When the Extended Strip Model is compared with the experimental results from slabs subjected to 48 

symmetrical loading conditions, it is found that the model leads to a good and conservative prediction of the 49 

maximum load that can be applied to a slab. The coefficient of variation of the tested-to-predicted results is lower 50 

than with any of the studied code methods, and the model gives consistent statistical parameters across different 51 

subsets of the experimental data. It can thus be concluded that the Extended Strip Model, which is simple enough for 52 

hand calculations, gives a good prediction of the capacity of asymmetrically loaded reinforced concrete slabs, when 53 

a concentrated load is used. 54 

 55 
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