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A B S T R A C T

Modelling anisotropic flow in rocks requires their full permeability tensor. While theories derived from the
upscaling of Stokes flow to Darcy’s law may justify the tensor symmetry, homogenisations from micro-scale
rock samples often return a non-zero level of asymmetry. Since most studies dismiss these controversial
observations as numerical errors, this contribution looks more closely at the physical possibility of such
behaviour. Asymmetry of the permeability tensor, which induces a rotatory flow, is manifested at the
micro-scale by tortuous streamlines. Conversely, when considering a larger scale – above the Representative
Elementary Volume for permeability – these tortuous paths do not statistically affect the flow direction any
longer. At this point, the homogenisation of Stokes flow to Darcy’s law reaches its domain of validity. We
show that the asymmetry in the permeability tensor vanishes for this scale separation, regardless of the choice
of boundary conditions unlike previously thought, if the boundary layer effect is disregarded.
1. Introduction

Permeability is arguably the most important rock property to de-
termine for subsurface energy and resources engineering applications,
for example in the fields of groundwater resources, petroleum en-
gineering or geothermal energy, which all critically depend on the
behaviour of fluid flow through porous rocks. In its most generic form,
the permeability of an anisotropic medium is expressed as a tensor,
yet it has for a long time been mostly characterised by its diagonal
components only, defined in the oil and gas industry as horizontal and
vertical permeabilities. The possibility of determining its off-diagonal
components was only enabled much later with the development of
Digital Rock Physics (see Dvorkin et al., 2008; Blunt et al., 2013).
This approach allows to numerically determine the rock permeability
through upscaling of the flow simulated in a Representative Elementary
Volume (REV) from its digitalised microstructure. Note that reaching
REV of the permeability tensor implies convergence of each of its
components. Every component of the tensor can be derived by imposing
some flow in a specific direction and measuring the resulting effective
permeability along one of the three axes. This workflow provides the
full permeability tensor, which is necessary for modelling anisotropic
flow occurring in unconventional resources for instance.

On top of the flow anisotropy observed in some porous media, an
even more remarkable aspect has sometimes been detected during the

∗ Corresponding author at: Civil Engineering and Geosciences, Delft University of Technology, Delft, Netherlands.
E-mail address: m.lesueur@tudelft.nl (M. Lesueur).

evaluation of the permeability tensor: its asymmetry. This was reported
for instance on cross-bedded reservoirs (Zijl and Stam, 1992; King,
1993), fracture networks (Long et al., 1982; Sagar and Runchal, 1982;
Baghbanan and Jing, 2007; Lang et al., 2014; Sedaghat et al., 2019)
or rock microstructures (Manwart et al., 2002; Guibert et al., 2015a,b;
Thovert and Mourzenko, 2020).

However, this observation raises controversy. Indeed, it has been
shown from homogenisation theories, such as those based on asymp-
totic expansions (Auriault, 1991; Auriault et al., 2000), that the per-
meability, defined by Darcy’s law, has to be symmetric, provided
that scale separation is satisfied (Lasseux and Valdés-Parada, 2017).
Thereby, the asymmetry of the permeability tensor is often regarded as
a numerical error stemming from the homogenisation procedure. For
example, Guibert et al. (2015a) showed for a periodic synthetic porous
medium that most classic boundary conditions result in permeability
asymmetry. For this reason, numerical modellers have been develop-
ing methods to remove or at least reduce this asymmetry (Sanchez-
Palencia, 1982; Durlofsky, 1991; Lang et al., 2014; Guibert et al.,
2015a; Gerke et al., 2019). They most often amount to enforcing the as-
sumptions underpinning homogenisation (even though they may not be
satisfied in reality), for instance by enforcing periodicity of the numer-
ical domain through translation or symmetrisation, or by employing
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periodic boundary conditions. Note that the classical set-up is meant to
reproduce the experimental conditions of the experimental permeame-
ter, i.e. with no-slip boundary conditions on the external boundaries.
Periodic boundary conditions can either be imposed on symmetric
domains or embedded subdomains, the latter being a technique that
embeds the domain in an equivalently permeable medium (Stroud,
1998; Guibert et al., 2015a) onto which periodic boundary conditions
are applied. In that case, while periodicity is not completely ensured in
the embedded subdomain, asymmetry is greatly reduced. Guibert et al.
(2015a) and Gerke et al. (2019) propose a review of these different
methods.

Enforcing periodicity in that fashion is, however, artificial, since in-
duced by special numerical treatments. Specifically, Gerke et al. (2019)
showed that these numerical schemes could not reproduce the natural
conditions that would surround the rock sample considered, and even
alter the real flow magnitude or direction. Furthermore, Thovert and
Mourzenko (2020) showed that all boundary conditions only affect
a finite layer at the boundary of the computational domain. Based
on this concept, the consideration of a subdomain away from this
boundary layer is the safest practice to remove the artificial boundary
effect. Going further, Thovert and Mourzenko (2020) proved that ho-
mogenisation procedures run on such a subdomain resulted in the same
permeability tensor regardless of the boundary conditions employed.
Interestingly in that case, the homogenised tensor was shown to re-
main asymmetric, reinforcing the idea that the numerical periodicity
enforced is artificial.

Rather than looking at permeability tensor asymmetry from a nu-
merical error perspective, we propose to focus on its physical implica-
tion: the flow becomes rotatory, i.e. follows curved streamlines. Indeed,
it was derived by Stokes (1851) in the context of heat conduction, and
reminded by Truesdell (1984, p. 113), that the flow due to a gradient
driving force follows curved streamlines whenever the antisymmetric
part of the associated diffusion tensor is non-zero. Such rotatory flow
can also directly be induced by the rotation of the porous medium,
whereby fictitious forces (Coriolis, centrifugal, Euler) appear at the
pore scale. The homogenisation of the latter through asymptotic expan-
sion yields a non-zero 𝐾𝑎 (Auriault et al., 2000). A rotatory Darcy flow
can also occur when the microstructure lacks reflectional symmetry,
as conceived of by Koch and Brady (1987) (wherein the gradient of
pressure is replaced by a gradient of concentration).

Considering the dependency of permeability on the physical length-
scale of interest, it is common to see permeability values converge
with increasing sample size as it reaches the REV at that scale, when
scale separation is met, before diverging again when the sample size
increases past the threshold marking the start of the next length-
scale (Veveakis and Regenauer-Lieb, 2015). As such, permeability stud-
ies are usually confined to specific scales, either focusing on the micro-
structure (∼ 𝜇𝑚), rock plugs (∼ 𝑐𝑚) or fractured media (∼ ℎ𝑚).
Interestingly, the presence of asymmetry in the permeability tensor is
already an accepted concept in hydrogeology at that larger scale, like in
cross-bedded reservoirs or fracture networks as mentioned previously.
Additionally, some studies showed that this asymmetry vanishes when
reaching the REV size (Long et al., 1982; Baghbanan and Jing, 2007;
Pouya and Fouché, 2009). The deviation from the classical symmet-
ric Darcy law is therefore attributed to violating the homogenisation
assumptions, i.e. scale separation and domain’s periodicity or, equiv-
alently for homogenisation purposes, randomness (Auriault, 1991).
At the micro-scale, however, since permeability asymmetry has tra-
ditionally been considered as an error, this type of analysis is simply
missing.

In this contribution, we propose to fill in this gap and study per-
meability asymmetry for porous media at the micro-scale, where scale
separation is not guaranteed since we operate too close to the grain
length-scale. We suggest observing the asymmetry from a new perspec-
tive, away from artificial boundaries and look at the parameters of
the homogenisation procedure that can influence it. Those parametric
studies are first made for simpler porous media in Section 2. Then, the
expected theoretical behaviour is assessed on real rock microstructures
2

in Section 3. t
2. Theoretical study

Grain shape, including roughness, has a strong influence on perme-
ability estimation from rock microstructures (Beard and Weyl, 1973;
Cox and Budhu, 2008; Torskaya et al., 2013). Sources of heterogeneity
such as this one could also be expected to produce or increase the
asymmetry of the permeability tensor. In this first section, we check
therefore for the presence of asymmetry on simple structures where this
particular feature is excluded, which can only be achieved in a Random
Close Packing (RCP) of perfectly round spheres.

2.1. Material and methods

In order to obtain results representative of the porous medium
selected, we need to consider a number of spheres in our computational
domain large enough to reach the REV size of permeability. Using the
OpenMC package (Romano et al., 2015), we generate a 3D sample
that contains in average 80 spheres of constant radius per direction.
We assume this amount to be past REV size for permeability, which is
verified in the following subsections. In order to reduce the memory
consumption of simulations on such a large sample, we consider only
a 2D cross section of the RCP. Marafini et al. (2020) showed that
the added flow path connectivity obtained when considering the third
dimension only amounts to decreasing the size of the REV. Still, the
nature of the flow remains unchanged and a 2D analysis remains suf-
ficient to investigate the asymmetry evolution until REV. The selected
slice is meshed with triangles in Gmsh (Geuzaine and Remacle, 2009)
at a given mesh resolution. The cross section obtained can be observed
in Fig. 1, with the sliced spheres appearing in white.

The permeability tensor is obtained from the homogenisation of
Stokes flow, solved within the pore space of the RCP (Lesueur et al.,
2017). At the pore–grain interface, classic no-slip boundary conditions
are imposed. The selection of the external boundary conditions has
been shown by Thovert and Mourzenko (2020) not to influence the
results. Therefore, we decide to specifically enforce slip boundary
conditions – i.e. the normal component of the fluid velocity at the
boundary is null – on the walls to revisit a set of boundary conditions
from the study of Guibert et al. (2015a), for which the symmetry of the
permeability tensor was never reached, even for a periodic synthetic
porous medium at REV. Two Stokes simulations are needed to obtain
every component of the permeability tensor (in 2D), i.e. one for each
direction (x and 𝑦 indicated respectively by exponents 1 and 2). The
flow is resulting from a pressure gradient imposed across the domain,
denoted respectively as ∇𝑃 1

𝑥 and ∇𝑃 2
𝑦 for the two simulations, following

otations from Guibert et al. (2015a). The velocity field simulated
ith the pressure gradient ∇𝑃 1

𝑥 can be visualised in Fig. 1. For each
imulation, every directional component of that velocity field is aver-
ged volumetrically (denoted by ⟨⋅⟩), providing overall the four values
⟨𝑣1𝑥⟩, ⟨𝑣

1
𝑦⟩) and (⟨𝑣2𝑥⟩, ⟨𝑣

2
𝑦⟩). Similarly, we also average the pressure

radient in the transversal direction, from which we can extract ∇𝑃 1
𝑦

and ∇𝑃 2
𝑥 . The full permeability tensor is then obtained using all these

quantities by formulating Darcy’s law, as
(

𝐾𝑥𝑥 𝐾𝑥𝑦
𝐾𝑦𝑥 𝐾𝑦𝑦

)

(

∇𝑃 1
𝑥 ∇𝑃 2

𝑥
∇𝑃 1

𝑦 ∇𝑃 2
𝑦

)

= 𝜇
(

⟨𝑣1𝑥⟩ ⟨𝑣2𝑥⟩
⟨𝑣1𝑦⟩ ⟨𝑣2𝑦⟩

)

. (1)

e note that the velocity in Eq. (1) refers to the superficial velocity,
hich is obtained by multiplying the velocity field obtained with the

imulation of Stokes flow by the porosity.
For Eq. (1) to yield values of permeability, the meshed pore space

eeds to be above the percolation threshold. For the purpose of this
tudy, it is unnecessary to compute that threshold precisely and perco-
ation is more simply assessed by comparing the pressure gradient on
he subsample with the average value for all simulations on that sam-
le. When the pressure gradient of a sub-sample is too far away from

he average value, percolation is deemed not to exist. For each sample
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analysed in this work, the cut-off values were selected by plotting the
distribution of pressure gradients for all subsamples considered, which
showed clear discrepancies (and often a gap) between the values close
to the average and the extremum values.

By definition a permeability tensor 𝐊 is asymmetric if there exists a
pair of indices (𝑖, 𝑗) where 𝐾𝑖𝑗 ≠ 𝐾𝑗𝑖. In order to study the evolution of
this property in digital rocks, it is convenient to define a quantitative
asymmetry index. In this article, we use the normalised asymmetry
vector whose components are defined as
𝐾𝑖𝑗 −𝐾𝑗𝑖

2 𝐾𝑚𝑒𝑎𝑛
, 𝑓𝑜𝑟 𝑖 > 𝑗. (2)

he vector is normalised by 𝐾𝑚𝑒𝑎𝑛 which is the mean of the diagonal
omponents of the permeability tensor (shortened to mean permeability
n the rest of the paper). In 2D, this is a scalar for (𝑖, 𝑗) = (𝑥, 𝑦).

In 3D, it is a vector of 𝑥𝑦, 𝑥𝑧 and 𝑦𝑧 components. A scalar index
can easily be derived subsequently by taking the norm of that vector.
For instance, Thovert and Mourzenko (2020) defines it as ∑

𝑖<𝑗 [(𝐾𝑖𝑗 −
𝐾𝑗𝑖)∕2]2. While such an index has the advantage of being a scalar that
captures the magnitude of the asymmetry in any dimension, we find
it more convenient in our study to work with the vector itself. Indeed,
its components can be positive or negative and the sign indicates the
direction towards which the flow is deviated by the rotational element.
In the rest of the paper for simplification, the term K-asymmetry will
refer directly to the component(s) of the vector of the asymmetry of
the permeability tensor.

As Thovert and Mourzenko (2020) demonstrated, one should check
the extent of the boundary effect in the sample to carefully select a
size fraction of the computational domain on which to postprocess
the results, i.e. homogenise the permeability tensor. For that purpose,
the permeability computed on the RCP sample presented in Fig. 1
(normalised by the final value) is plotted versus the size fraction of
the computational domain considered for the homogenisation (growing
from the centre of the full sample) in Fig. 2a. Note that the RCP
is isotropic so we can plot directly the mean permeability instead
of one specific diagonal component. Similarly to what was observed
by Thovert and Mourzenko (2020), the permeability displays a clear
change of behaviour past the consideration of a volume fraction larger
than ∼90%. After having reached a constant value, a sharp increase
is noticed until considering the full computational domain. We can
therefore confirm the existence of a boundary layer, in which boundary
effects can be perceived. Consequently, we recommend like Thovert
and Mourzenko (2020) to postprocess results on a fraction of the total
computational domain for more representative results. In this article,
we select a maximum of 90% of the domain.

For that same RCP sample, Fig. 2b shows the corresponding K-
asymmetry, which displays stronger variations than the mean perme-
ability. It even changes sign sporadically and finally fluctuates around
a non-zero value. If this result can be trusted, it would confirm the ob-
servation of K-asymmetry in digital rocks, and we could declare that its
existence is not due to any grain shape heterogeneity as we considered
an idealisation of porous media with perfectly round spheres. In the fol-
lowing section, we therefore investigate whether the K-asymmetry ob-
served can be attributed to a simple numerical error, as it is commonly
believed in the literature.

2.2. Mesh convergence

It is important to differentiate the various levels of convergence
involved in this study. The first, at the highest level, refers to the
physical size of the sample analysed and is used to identify the REV
size, i.e. the minimum number of spheres required in the case of a
RCP, for the property of interest to be representative. The second level
corresponds to the mesh resolution used to simulate a given sample,
i.e. to the number of numerical elements used for a fixed number of
spheres in the case a RCP. In the third level we regroup all the numer-
3

ical parameters related to the numerical convergence of the simulator
towards a solution, for a fixed physical size of the sample and given
mesh resolution. In this contribution, all simulations were run using an
absolute tolerance of 1e-9 on the residual to assess convergence, which
ensures a satisfactory rigour level for the third level. Before searching
for the REV size (first level), mesh convergence has to be established for
accurate results (second level). The resolution of the mesh is increased
directly via the length of the triangles in Gmsh. Fig. 3a shows the
evolution of the mean permeability with the number of elements in the
mesh. We observe visually an asymptotic convergence and set the mesh
convergence at 5M (5e6) elements since it falls below one percent of
deviation from the value with twice as many elements.

In parallel, Fig. 3b displays the evolution of the K-asymmetry with
the mesh convergence and shows that the K-asymmetry rapidly con-
verges to its final value. In our study it is already reached below
1M elements. We note that the final value obtained after removing
numerical error, i.e. after having reached mesh convergence is not null.
This proves that the K-asymmetry is not linked to a numerical error as
commonly believed.

2.3. Representative elementary volume

Having confirmed the mesh convergence, we now search for the
REV of permeability for the RCP. The REV is obtained when the mean
permeability converges to a fixed value with increasing the sampling
size. For this, a subsample of the computational domain of Fig. 1
is selected at a given position in the sample. Properties needed to
solve for Eq. (1) are averaged on this subsample, and the full tensor
of permeability is calculated. The process is repeated after increasing
the subsample size until it reaches the full sample size. In order to
improve the statistical representativeness, the process is repeated from
different starting positions in the sample. We select growing subsamples
from the centre and the four corners (outside the boundary layer).
Unfortunately, an overlap of the different subsamples considered exists
past a subdomain relative size of ≈0.45. Furthermore, at a subdomain
size of 0.9, every subsample is the same. In order to keep statistical
representativeness in the study, a second RCP is considered, generated
exactly in the same manner with a different seed. Another set of
curves is computed and added to the existing pool. From the obtained
dataset, the average of the mean permeability and its fluctuations
(range of values) are plotted in Fig. 4a. Past a size of 0.2, we observe
that fluctuations consistently decrease with increasing subsample size.
This regime corresponds to the scale of Statistical REV (Zhang et al.,
2000), where the fluctuations are bounded and some interpretations
can already be made. Eventually, the REV size is obtained above a
size fraction of 0.75, after which the fluctuations in magnitude are
negligible.

The corresponding evolution of the K-asymmetry is plotted in
Fig. 4b. The K-asymmetry displays a behaviour similar to the mean
permeability, converging rapidly to a steady value, which seems to be
zero, or is at least undeniably negligible at the scale of the non-zero K-
asymmetry of Fig. 4b. Given the ongoing narrowing of the fluctuation
cone at a size of 0.9, the REV seems not to have been reached yet, but
it is expected to occur soon after.

Interestingly, while we confirmed the existence of K-asymmetry
in porous media at the micro-scale from the computation on one
sample of RCP, shown in Fig. 2, we demonstrate that the average
value when considering a large number of samples is zero, proving
the statistical non-existence of the K-asymmetry in porous media. This
result allows to reconcile those previous observations of K-asymmetry
in porous media with upscaling theories where we find it verified for
an REV of the porous medium. Note that reaching that size is also a
necessary assumption for the validity of Stokes flow homogenisation to
Darcy’s law. Furthermore, we obtain a symmetric permeability tensor
for a set of boundary conditions previously shown to only produce K-
asymmetry (Guibert et al., 2015a), which proves that the issue is not

about enforcing the periodicity with special numerical methods but
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Fig. 1. Fluid velocity magnitude in a 2D cross section of a random close packing of spheres. The cross section cuts through 7100 spheres.
Fig. 2. Evolution of the mean permeability and K-asymmetry on subsamples growing from the centre position, for two RCP samples, including the one of Fig. 1.
instead, to assess the homogenised permeability tensor away from the
boundaries.

This result can be understood in light of the flow rotation added by
the K-asymmetry. In a random medium such as the RCP, the chances
that the tortuous flow path through the structure generates a slight
rotation towards either one direction or the other (corresponding to
either positive or negative values of the K-asymmetry) are equal. This
means that given a large enough number of samples considered, the
average K-asymmetry should be null and that the value for a sample
that comprise a statistically large number of spheres should also be null.
At the micro-scale, the rotatory character of the flow is shown by the
4

evolution of the averaged local vorticity (see Fig. A.8) which displays
a larger amplitude at subsample sizes where K-asymmetry is consider-
able and decreases with increasing size. This illustrates intuitively the
theoretical point that K-asymmetry induces rotatory flow.

3. Application to real microstructures

The previous section predicted the expected theoretical behaviour of
granular porous media regarding the K-asymmetry. We now verify for
real rocks if the natural heterogeneities, mostly included within grain
shape properties, may change the results.
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Fig. 3. Mesh convergence of the mean permeability of the 2D cross section shown in Fig. 1. The corresponding K-asymmetry is plotted in comparison.
Fig. 4. REV convergence of the mean permeability and the K-asymmetry, for two RCP samples, including the one of Fig. 1. The range of values in each plot is highlighted in
grey and the average value is plotted in red. The convergence is assessed by increasing the size fraction of the domain considered.
With this purpose in mind, this section focuses on the study of
real rocks, digitised. The process of digital rock reconstruction applied
follows Lesueur et al. (2017). Pixel data of a stack of segmented 2D
microCT scan images of rock is translated to a 3D structured mesh of
the rock’s pore space onto which flow simulations can be run.

We consider two samples, selected on purpose at the two extremes
of natural heterogeneity. The first one is the LV60 A sandpack (Im-
perial College Consortium On Pore-Scale Modelling, 2014b), shown in
Fig. 5a. Sandpacks are made of real grains of sands artificially con-
solidated. While the grains themselves present classic heterogeneities
of roughness and non-sphericity, the little consolidation pressure does
not trigger much deformation of the grains. Being a monomineralic
material, grain shape and size also remains fairly homogeneous. The
pore space that can be observed in the figure is entirely connected
throughout. As typical of sandpacks, Mostaghimi et al. (2012) showed
that the LV60 A is essentially isotropic. On the other end of the
spectrum, we selected a C2 carbonate (Imperial College Consortium
On Pore-Scale Modelling, 2014a). Carbonate rocks are most commonly
known for their high heterogeneity and this is displayed in Fig. 5b.
Grain shapes and sizes vary considerably and the pore space displays
many zones of non-connected porosity neighbouring large pores.

For these samples, we perform an REV convergence analysis, using
the same approach described in Section 2.3. We perform the simu-
lations with a mesh size twice the resolution of the image following
the recommendation of Guibert et al. (2015b) for adequate mesh
convergence. Similarly to the previous study, we consider two spa-
tially independent samples for statistical representativeness. On each,
four subsamples are selected for the analysis, growing from different
corners (namely left-bottom-back/right-top-back/left-top-front/right-
bottom-front). Again, an overlap starts at a subdomain relative size of
≈0.45, which will be discussed in the interpretation of the results.

Results for the LV60 A sandpack are plotted in Fig. 6. REV is globally
eached past 0.8 after which the amplitude of permeability variation
emains constant. We note that variations of the order of 10% are still
5

resent compared to the perfect convergence of the RCP which can
be explained by the natural heterogeneity of the medium. The values
of permeability match with the ones obtained by Mostaghimi et al.
(2012) with a similar method, where REV convergence was assessed
at 1.1 mm (equivalent to a subdomain size fraction of 0.75 on Fig. 6).
The three corresponding asymmetries (𝑥𝑦, 𝑥𝑧 and 𝑦𝑧) are plotted in
Fig. 6b. When the subdomains considered are too small, i.e. inferior
to 0.1, the K-asymmetry values are random because the subsamples
often do not percolate. However, past this threshold, a more regular
cone of convergence is observed and each of the components reaches
an REV at a final value close to zero. Note that the difference to zero
could be an artefact due to the lack of data at high subdomain size
fraction and therefore of statistical representation. Despite the REV
value approaching zero as predicted by the RCP, we note that the cone
of convergence of the K-asymmetry presents an amplitude five times
bigger than the one of the RCP. We can conclude that heterogeneities
of grain shape increase the magnitude of the K-asymmetry.

Results for the C2 carbonate are plotted in Fig. 7. Since the carbon-
ate is not necessarily isotropic, we evaluate the permeability indepen-
dently in its three directions instead of considering the mean value of
the tensor’s diagonal components. The most noticeable difference with
the RCP and the sandpack is that some carbonate subsamples still do
not percolate at a size fraction of 0.75. Therefore, a cone of convergence
does not exist until then and the window remaining between 0.75 to
0.9 is at that point too small to predict any convergence. Still, the
final value of permeability obtained in the x-direction matches the one
from Mostaghimi et al. (2012). Mostaghimi et al. (2012) themselves
did not find any REV for the sample even at a size of 1.6 mm. The
corresponding K-asymmetry also differs from the RCP and the sand-
pack. The K-asymmetry starts to stabilise only past a size fraction of
0.5. At this point, the envelope of K-asymmetry values has an amplitude
five times larger than the sandpack’s when its K-asymmetry stabilised
(at a size fraction of 0.3 on Fig. 6). The range of K-asymmetry then
narrows down slowly until the consideration of the full domain, noting
that the overlapping of subsamples past 0.7 should dissuade us from

over-interpreting those results. Indeed, the final value obtained on a full
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Fig. 5. Pore space of the LV60 A sandpack (left) and C2 carbonate (right) samples.
Fig. 6. REV convergence of the mean permeability and the K-asymmetry, for two sandpack samples, including the one of Fig. 5a. The full cubic sample has a size of 1.5 mm.
For visualisation purposes, only the range of K-asymmetry values for the 𝑥𝑦 component is plotted.
Fig. 7. REV convergence of the permeability in the x-direction and the K-asymmetry, for two carbonate samples, including the one of Fig. 5b. The full cubic sample has a size
of 1.14 mm. For visualisation purposes, only the range of K-asymmetry values for the 𝑥𝑦 component is plotted.
domain analysis reduces down to a statistic from two samples. While
we can assess without a doubt that the K-asymmetry average value has
stabilised, an REV of K-asymmetry has definitely not been reached and
no prediction can be made on the size of the REV. Interestingly, the
final value corresponds to 50 times the one of the sandpack and 150
times of the RCP.

In conclusion, this analysis shows that the K-asymmetry of real
rocks – when it exists – still vanishes past the REV size. Yet, natural
heterogeneities such as grain shape and size distribution contribute to
a large K-asymmetry increase up to that point.

4. Conclusion

When scale separation is not present, asymmetry of the permeability
tensor at the micro-scale is meant to exist. The physical justification lies
6

in the fact that tortuous paths through discretised grains can randomly
affect the flow direction. With proper homogenisation, we recover
the symmetry at REV size, which reconciles with upscaling theories,
since statistically speaking, asymmetry has equal chances to produce
a deviation in any direction. This was demonstrated in our statistical
study where the average value of asymmetry remained approximately
null, enveloped by a cone of convergence narrowing down to zero as it
reaches the REV size. We note that the REV size of asymmetry may be
larger than the REV size of the diagonal components of the permeability
tensor, as it also depends on the off-diagonal components.

This study puts to rest the concept that asymmetry is purely a nu-
merical error. Even though individual components of the permeability
tensor follow a normal mesh convergence, the asymmetry itself does
not necessarily decrease when numerical error is reduced. Even though
asymmetry can be numerically reduced with finer meshes because
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Fig. A.8. REV convergence of the flow local vorticity for two RCP samples, including
the one of Fig. 1, computed for one of the flow directions. The range of values in each
plot is highlighted in grey and the average value is plotted in red.

individual components of the permeability tensor follow a normal mesh
convergence, its existence below REV size is natural. Still, even with a
supposedly unfavourable type of boundary conditions prescribed (Guib-
ert et al., 2015a), we prove that the symmetry is recovered at REV
size — away from the boundary as Thovert and Mourzenko (2020)
recommends. Based on the latter study, we suggest this result holds
for any type of boundary conditions. As detailed in this work, the
existence of an anti-symmetric part of the permeability tensor indicates
that the domain considered may simply not satisfy scale separation
and/or representativeness. Numerical homogenisation methods trying
to force the symmetry may hide the fact that either some fundamental
REV assumptions behind Darcy’s law are not always satisfied or the
boundary layer is mistakenly included. As detailed in this work, the
existence of an anti-symmetric part of the permeability tensor indicates
that the domain considered may simply not satisfy scale separation
and/or representativeness.

Finally, the presence of natural heterogeneities in rocks such as
grain shape and size was shown to drastically increase the asymmetry
compared to an assemblage of perfectly round spheres. However, that
asymmetry still vanishes past the REV size. Interestingly, as we transi-
tion through the scales, asymmetry may reappear due to the presence of
new heterogeneities in the rock (Veveakis and Regenauer-Lieb, 2015),
such as fractures, as it was shown that fracture networks can produce
asymmetrical permeability tensor as well.
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Appendix. Vorticity

To evaluate the rotatory character of the flow, we compute the
local vorticity of the fluid velocity field and plot the statistical REV
convergence of its averaged magnitude in Fig. A.8.
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