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Abstract
We analyze the internal representations that deep Reinforcement Learning (RL) agents form of their
environments and whether these representations correspond to what such agents should ideally learn.
The purpose of this comparison is both a better understanding of why certain algorithms or network
architectures perform better than others and the development of methods that specifically target dis-
crepancies between what is and what should be learned. The concept of ideal representation we utilize
is based on stochastic bisimulation and bisimulation metrics, which are measures of whether and to
which degree states are behaviorally similar, respectively. Learning an internal representation in which
states are equivalent if and only if they are bisimilar and in which distances between non-equivalent
states are proportional to how behaviorally similar the states are has several desirable theoretical prop-
erties. Yet, we show empirically that the extent to which such a representation is learned in practice
depends on several factors and that a precise such representation is not created in any case. We fur-
ther provide experimental results that suggest that learning a representation that is close to this target
internal state representation during training may improve upon the learning speed and consistency,
and doing so by the end of training upon generalization.
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1
Introduction

Recent years have seen a surge of algorithms and architectures for deepReinforcement Learning (RL),
many of which have shown remarkable success for various problems. Yet, little work has attempted
to relate the performance of these algorithms and architectures to what the resulting deep RL agents
actually learn, and whether this corresponds to what they should ideally learn. Such a comparison may
allow for both an improved understanding of why certain algorithms or network architectures perform
better than others and the development of methods that specifically address discrepancies between
what is and what should be learned. This thesis thus explores experimentally the internal state rep-
resentations a deep RL agent creates of its environment to see whether these are in line with our
theoretical expectations. Moreover, we empirically validate the usefulness of our concept of ideal inter-
nal state representation with regards to learning speed and generalization and develop a method that
allows deep RL agents to learn closer to what they should.

1.1. Learning What to Attend to
When we speak of what a deep RL agent learns, we mean the internal representation that a neural
network forms of the environment. That is, the activation patterns that arise in each neural network layer
as the result of feeding observations or observation histories to the network. Thereby, if observations
with different values for a feature are mapped to the same activation, the agent does not attend to the
feature and the feature hence cannot inform the agent’s action choice. For example, a firefighter robot
may map the observations ”smoke above blue house” and ”smoke above orange house” to the same
activation, thus ignoring the colors of the houses. Similarly, if the agent learns to pay attention to a
past observation, it distinguishes histories of interactions with the environment that differ in whether or
not they contain this observation. For instance, a firefighter robot could disregard whether or not it has
encountered a stray dog before seeing a burning house.

Why does a deep RL agent need to learn what to attend to?
The perceptions or observations the agent receives from its environment through sensors can be limited
in two non-exclusive ways:

• In the first scenario, the observations contain redundant or superfluous information that is not
necessary to learn to act optimally in the environment. For example, a firefighter robot does not
have to consider the colors of the cars in front of a house when deciding whether to extinguish a
fire, yet its camera may supply this information. In such a case, an agent with limited computa-
tional and memory resources needs to disregard the colors of cars and pay selective attention to
solely relevant features [42].

• In the second scenario, each single observation does not contain enough information to learn
to act successfully based on this observation alone. A firefighter robot that looks at the wall of
a house, for instance, does not know based on seeing this wall whether or not there is a fire in
this house. In such a case, an agent suffers from the hidden state problem, which can often be
solved by keeping a memory of previous interactions with the environment [42]. For example,

1



2 1. Introduction

the firefighter robot may still have the previous observation of smoke above the house’s roof in
memory.

While these two scenarios appear very different at first glance, they actually are closely related
[42]. In both cases, an agent with limited computational and memory resources needs to learn which
features of its previous and current perceptions to pay attention to. When paying attention to a feature,
an agent distinguishes observations with different values for this feature, and the combination of all
such distinctions an agent makes forms its internal state space or internal state representation. This
internal state representation may consist of multiple internal states, and each observation or history of
observations from the environment is mapped to exactly one internal state. As multiple (histories of)
observations can bemapped to the same internal state if they differ in solely a superfluous feature value
or irrelevant past observation, the internal state representation is an abstraction of the state space of
the environment and each state in the internal state representation is an abstract state.

What should a deep RL agent ideally learn to attend to?
There are several criteria that the internal state representation formed by a deep RL agent should
ideally meet:

• The internal state representation should allow the agent to learn to act optimally in a domain. If
the internal state representation enables the agent to predict both the next reward and the next
state for each action based on the internal state that an observation (history) is mapped to, the
internal state representation is said to be Markov and the agent is guaranteed to find the optimal
action for each observation (history).

• To minimize the amount of data, time and memory required for training, the internal state repre-
sentation should have as few internal states as possible during training. More precisely, rather
than allowing the prediction of all features of next states, the state representation solely has to
enable the prediction of relevant features of next states. Relevant features thereby are those that
are necessary to in turn predict the reward and relevant features of next states. For example,
if the colors of houses are not important, the colors should be ignored. Hence, observations of
houses differing solely in a house’s color should be mapped to the same activation pattern. This
is especially important for domains with high-dimensional observations such as images.

• The created internal state representation should allow the agent to quickly adapt to rewards or
transition probabilities slightly different from those experienced during training, as long as the
modifications to the transition and reward functions do not cause formerly irrelevant features to
be relevant. In robotics problems, for instance, domain shifts may arise [29].

• Since transition and reward functions are commonly estimated, we would like the formed internal
state representation to be relatively insensitive to minor approximation errors. Consequently, we
would like the Euclidean distances between internal states to correspond to how ”behaviorally
different” [11] the (histories of) observations mapped to those internal states are.

The criterion of allowing for the prediction of the reward and of relevant features of next states is met
by the coarsest Markov state representation. It maps (histories of) observations to the same internal
state if and only if they have the same expected reward and the same transition distribution over all
other internal states for all actions. Thus, it is the smallest state space that still allows for the prediction
of the next reward and the next state [21]. Finally, as long as modifications to the transition and reward
functions do not cause states with the same rewards and transition distribution over all other internal
states on the original domain to behave differently, the coarsest Markov state representation for the
original domain is sufficient to learn to act optimally in such a modified domain.

Yet, the coarsest Markov state representation by itself does not fulfill the criterion that Euclidean
distances between internal states should be proportional to how behaviorally different the (histories of)
observations mapped to those internal states are. This is the case, because the notion of coarsest
Markov state representation stems from the context of state abstraction and thus does not impose any
specific distances between internal states. To obtain such Euclidean distances, we make use of bisim-
ulation metrics [12], which are indeed measures of how behaviorally similar states are. More precisely,
we want Euclidean distances to correspond to the distances assigned by a specific bisimulation metric,
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which gives a distance of zero to states if and only if they are mapped to the same internal state in the
coarsest Markov state representation. For ease of notation, we will refer to the resulting state repre-
sentation simply as the coarsest Markov state representation throughout our work. Yet, it is important
to keep in mind that this state representation has specific Euclidean distances between internal states,
unlike the coarsest Markov state representation as it is defined in the context of state abstraction.

Why do we want to know what a deep RL agent learns?
In recent years, state-of-the-art RL approaches in various research areas such as drug design [49],
autonomous helicopter flight [45] and financial trading systems [6] commonly make use of neural net-
works. The main reasons for the popularity of neural networks are that they learn features directly from
data and allow for end-to-end learning, thus rendering feature engineering unnecessary and reducing
the need for domain knowledge [37]. Especially, the fact that neural networks can extract effective low-
dimensional features from high-dimensional data such as images and speech has enabled the scaling
of RL algorithms to problems with large state or action spaces [3]. However, the end-to-end character
and flexibility of neural networks often make it difficult to understand what exactly a neural network is
learning.

As a consequence, designing a network architecture and training hyperparameters tends to resem-
ble ”alchemy” rather than science [37], and even successful RL agents sometimes overfit to the training
data instead of learning what we would like them to learn. Regarding the former, some approaches
that learn neural network architectures [66] or quickly test candidate architectures with random weights
[56] exist in the context of classification and could potentially be extended to RL, but such methods
do not provide thorough insights into why one architecture may be more effective than another. Thus,
the hope is that by understanding better what deep RL agents learn, we can make a more informed
decision on how to design and train them.

1.2. Research Objective
Our research is structured along two primary questions:

1. Which internal state representations do deep RL agents form during training and how similar are
these to the coarsest Markov state representation?

2. To which degree is creating internal state representations that are similar to the coarsest Markov
state representation useful in practice?

To answer the first research question, we look at the internal state representations learned by deep
RL agents at various stages during training and under different training conditions, and compare them
to the coarsest Markov state representation. Moreover, to elucidate the usefulness of learning internal
state representations that are similar to the coarsest Markov state representation in practice for the
second research question, we strive to answer the following two sub-questions:

2a. To which degree does creating internal state representations that are more similar to the coarsest
Markov state representation during training improve upon the learning speed and consistency of
deep RL agents?

2b. To which extent does learning internal state representations that are more similar to the coarsest
Markov state representation by the end of training lead to improved generalization?

To respond to these two sub-questions, we compare the learning speeds and consistencies and the
generalization performances of neural networks with hidden-layer representations that differ in how
similar to the coarsest Markov state representation they are, while controlling for other factors.

1.3. Related Work
Exploring what deep RL agents learn. The primary objective of our research is to contribute to inter-
preting what and how deep RL agents learn. Related work in this regard is the one by [30], which argues
that non-stationarity may hurt generalization, especially when it occurs at the beginning of training. Yet,
the authors do not specifically explore which internal state representations are formed at various stages
during training to possibly explain these observations. To determine what an agent has learned, we
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propose using several measures based on bisimulation metrics that denote how Markov an internal
state representation is with respect to different model components. Other research has suggested to
employ saliency maps [23] or t-SNE plots [44, 64] to visualize what an agent has learned, the latter
of which we also utilize as supporting evidence. These approaches result in figures that are easy to
understand, but they do not produce measures to effectively summarize the characteristics of an in-
ternal state representation. Thus, to compare state representations present at different points during
training, one has to look at multiple images and deduce based on domain knowledge what an agent
has learned. Moreover, while plotting predicted state-action values for certain states during training as
in the work of [44] allows to easily track the development throughout training, doing so does not incor-
porate knowledge about the entire internal state representation. Lastly, to the best of our knowledge,
no other work has previously computed how similar to the coarsest Markov state representation an
internal state representation is to gain insights into the learning process.

State abstraction. Our computation of behavioral similarity is based on the notion of stochastic bisim-
ulation [21] and bisimulation metrics [12], which were originally introduced in the context of state ab-
straction for fully observable environments. Stochastic bisimulation regards states as equivalent or
bisimilar if and only if they have the same reward and the same transition distribution over all other
state equivalence classes for all actions. Bisimulation metrics, on the other hand, are perceivable as
a quantitative version of stochastic bisimulation in that they assign a distance of zero only to bisimilar
states and that if the parameters of two bisimilar states are altered on a small scale, the metric distance
between the two states will stay small.

Representation learning based on bisimulation metrics. We design an auxiliary loss based on
bisimulation metrics to learn more useful internal state representations. In this context, the work most
closely related to ours is the concurrent research by [64], which also proposes learning internal state
representations based on bisimulation metrics. Yet, while the authors of [64] suggest to create an in-
ternal state representation in which distances between states correspond to how behaviorally different
they are under an optimal policy, we propose to take all actions into consideration. Thus, a represen-
tation that is learned by means of the approach of [64] is no finer than one that is formed when using
our auxiliary loss. The former therefore is sufficient to learn an optimal policy for only a subset of the
changes made to the reward and the transition function that still allow for generalization based on the
representation that we propose to learn. Moreover, [64] calculate behavioral similarity based on the
latent space by assuming deterministic rewards and Gaussian transitions. As we compute behavioral
similarity based on the true reward and transition functions, we make no such assumptions. Yet, the
approach by [64] is more scalable to large domains, both because the computation time is lower and
because the resulting state representation is no larger than the one formed by means of our method.
Another related work is the one by [20], which also introduces an auxiliary loss based on bisimulation
metrics. However, the Euclidean distances between states in the state representations learned by
means of the auxiliary loss of [20] provide an upper bound to bisimulation metric-based distances. In
our proposed state representation, on the other hand, the Euclidean distances are exactly proportional
to the distances assigned by bisimulation metrics. Lastly, bisimulation metrics are costly to exactly
compute in practice, as they require an enumeration of the state space and knowledge of the reward
and transition functions. Therefore, the authors of [59] propose to employ the more general notion
of MDP homomorphism metrics for representation learning. MDP homomorphism metrics differ from
bisimulation metrics in that actions are also abstracted such that the effects of actions are maintained.

Representation learning based on other notions. The auxiliary loss we design introduces a bias to
the learning process. Several other approaches to bias the representation learning of deep RL agents
have been proposed in the literature. For example, the works of [31] and [17] put forward auxiliary
losses based on predicting the next reward or the discount factor. Such methods tend to be successful
in practice, but do not have strong theoretical foundations. Furthermore, rather than biasing the learning
of deep neural networks by means of auxiliary losses, other work has proposed different models to learn
more useful representations such as by incorporating ideas from symbolic reasoning [19]. For instance,
the work of [55] constrains neural networks to capture typical characteristics of relational reasoning,
which is the reasoning about the relations between objects and their characteristics. Another approach
to learning more useful representations is to specifically focus on factors that may hurt generalization.
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For example, the research by [30] improves generalization by reducing the non-stationarity an agent
encounters during training. Moreover, the authors of [29] adapt several regularization techniques from
the context of classification that are based on injecting noise during training to RL.

Transfer learning. Part of our work empirically investigates whether transferring representations that
are more similar to the coarsest Markov state representation from a source domain to a related domain,
which has different reward or transition functions but the same state-action space and a subset of the
relevant features1 of the original domain, improves upon the learning speed and accuracy on the related
domain. Thus, we are concerned with whether the specific knowledge gathered from one domain in
form of the coarsest Markov state representation can be employed to bias the learning process on a new
task, thereby reducing the amount of data and time required for learning the new task [35]. Methods to
accomplish such a knowledge transfer differ with respect to the number of source tasks used to bias the
learning on a target task, the differences between the source and target tasks, the type of knowledge
that is transferred, and the goal of the knowledge transfer [35]. A comprehensive survey of approaches
to transfer learning can be found in [35]. Yet, to the best of our knowledge, no previous research has
empirically tested the usefulness of learning the coarsest Markov state representation on an original
domain with regards to generalization to a related domain with different reward or transition functions
but a subset of the relevant features of the original domain.

1.4. Contributions
We split our contributions into methodological and experimental ones. Our methodological contribu-
tions are as follows:

• We propose using correlation coefficients based on bisimulation metrics to measure how similar
to the coarsest Markov state representation an internal state representation is. These correlation
coefficients also allow to specifically determine whether an internal state representation is Markov
with respect to the rewards or Markov with respect to the transitions2 (Chapter 3).

• We introduce an auxiliary loss that pushes a neural network to learn an internal state represen-
tation that is similar to the coarsest Markov state representation in a network layer (Chapter 4).

We further provide experimental contributions:

• We identify three overlapping learning phases that together make up the learning process of deep
RL agents using model-free Q-learning agents as example. Thereby, it is during the second
learning phase that internal state representations become increasingly similar to the coarsest
Markov state representation. We also point out several factors that impact this learning process
(Chapter 3).

• We show that learning a hidden-layer representation that is more similar to the coarsest Markov
state representation during training can speed up the learning process and cause good solutions
to be found more reliably (Chapter 4).

• We demonstrate that learning a hidden-layer representation that is more similar to the coarsest
Markov state representation by the end of training leads to improved generalization to new irrele-
vant feature values. Creating such a representation also enables better generalization to related
domains with modified reward or transition functions, as long as the modifications do not render
formerly irrelevant features relevant (Chapter 5).

1Recall that we define relevant features as those that are needed to predict the reward and relevant features of next states.
2A state representation that is Markov with respect to the reward is one in which knowledge of previous internal states does
not lead to a more accurate prediction of the next reward [42]. The definition of Markov with respect to the transition proceeds
analogously.
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1.5. Outline
The remainder of this work is organized as follows. In Chapter 2, we outline important background
information with respect to the algorithms and terminology that we utilize. Our main results and the
corresponding methodologies are subsequently described in Chapters 3, 4 and 5. Thereby, Chapter
3 sheds light on what deep RL agents learn and how similar the internal state representations are to
the coarsest Markov state representation, and Chapters 4 and 5 investigate the usefulness of learning
hidden-layer representations that are similar to the coarsest Markov state representation with regards to
learning speed and generalization, respectively. Finally, Chapter 6 provides a summary of our findings
and directions for future work.



2
Background

This chapter provides background information on the primary concepts that are important for this work.
These are the coarsest Markov state representation in Section 2.1, fully and partially observableMarkov
decision processes in Sections 2.2 and 2.3, deep reinforcement learning in Section 2.4, state abstrac-
tion in Section 2.5, stochastic bisimulation and bisimulation metrics in Sections 2.6 and 2.7, and the
t-SNE algorithm in Section 2.8.

2.1. Learning the Coarsest Markov State Representation
We suppose and experimentally verify in Chapters 4 and 5 that a deep RL agent should ideally learn an
internal state representation in a hidden layer that is similar to the coarsest Markov state representation.
In the context of state abstraction, the term coarsest Markov state representation refers to the unique
abstraction of the state space that considers states as equivalent if and only if they have the same
reward and the same transition distribution over all other state equivalence classes for all actions [21].
Yet, we use this term to refer to a state representation in which all Euclidean distances between states
correspond to how ”behaviorally different” [11] those states are. Notice that the coarsest Markov state
representation as it is described in the context of state abstraction does not impose specific distances
between non-equivalent states. This means that only the Euclidean distances of states mapped to the
same internal state correspond to how behaviorally different those states are.

More precisely, we would like the Euclidean distances between internal states to be proportional
to the bisimulation metric-based distances assigned to states. Bisimulation metrics1 are based on
the notion of stochastic bisimulation [21], which considers states as equivalent if and only if they are
mapped to the same abstract state in the unique coarsest Markov state representation2. Such states
that are equivalent under the notion of stochastic bisimulation are called bisimilar. Bisimulation metrics
can be regarded as a quantitative version of stochastic bisimulation in that they assign a distance of
zero only to bisimilar states and that if the parameters of two bisimilar states are altered on a small
scale, the metric distance between the two states will stay small. Thereby, a bisimulation metric that
is based on the Kantorovich distance3 considers states as equivalent if and only if they are bisimilar,
and it is thus this specific bisimulation metric that we would like Euclidean distances between states to
correspond to4.

The theoretical advantages of learning a hidden-layer representation that is similar to the coarsest
Markov state representation are as follows:

• The coarsest Markov state representation is the smallest state representation that still allows for
the prediction of the reward and the next state [21]. If an agent can predict the next reward and the
next state, it is guaranteed to find an optimal policy based on (histories of) observations. Notice
that while representing an optimal policy may require solely an abstraction of the state space

1See Section 2.7 for more information on bisimulation metrics.
2See Section 2.6 for details on stochastic bisimulation.
3The Kantorovich distance is also called Wasserstein distance, Monge-Kantorovich distance, Kantorovich-Rubinstein distance
or earth mover’s distance.

4Section 2.7.1 contains further information on this bisimulation metric.

7



8 2. Background

that is coarser than the coarsest Markov state representation, a representation that suffices to
represent an optimal policy is not necessarily sufficient for learning an optimal policy [42]5.

• The coarsest Markov state representation does not distinguish states based on features that are
irrelevant for predicting the next reward and internal state. Thus, a policy learned based on this
representation generalizes to different values for such features.

• As long as a subset of the features required for predicting the reward and the next internal state for
an original domain is sufficient for predicting the reward and the next internal state after modifying
the reward or the transition function, the coarsest Markov state representation for the original
domain suffices to learn the Q-values of a thus modified domain.

• Making the Euclidean distances between internal states proportional to how behaviorally differ-
ent states are renders the formed representation less sensitive to small estimation errors if the
transition or reward functions are approximated.

Chapters 4 and 5 empirically show that learning a hidden-layer representation that is similar to
the coarsest Markov state representation may improve upon both the learning speed and consistency
on a single domain and the generalization to new superfluous feature values and modified reward
and transition functions. Yet, while learning the coarsest Markov state representation is useful for
generalization purposes and has strong theoretical properties, the coarsest Markov state representation
may still contain too many states to render learning feasible for very large domains. Moreover, it may
make more distinctions of states than would be necessary to represent the optimal policy at test time.
Therefore, if low memory requirements of the learned model are important and strong generalization
abilities are not needed, learning a coarser abstraction of the state space than the coarsest Markov
state representation may be beneficial.

2.2. Markov Decision Process
A Markov Decision Process (MDP) is a tuple ⟨𝑆, 𝐴, 𝑃, 𝑅⟩ where 𝑆 is a finite state space, 𝐴 is a finite
action space, 𝑃 ∶ 𝑆 × 𝐴 → Π(𝑆) is the transition function such that 𝑃(𝑠ᖣ|𝑠, 𝑎) ∈ [0, 1] is the probability
of arriving in state 𝑠ᖣ after taking action 𝑎 in state 𝑠, and 𝑅 ∶ 𝑆 × 𝐴 → ℝ is the reward function such
that 𝑅(𝑠, 𝑎) is the instant reward for taking action 𝑎 in state 𝑠6. 𝑆 and 𝐴 are commonly referred to as
describing the model shape, whereas 𝑃 and 𝑅 are model parameters. Together, the model shape and
the model parameters define a full MDP model. Note that the Markov property holds for the transitions
and the rewards, because the state and reward at time 𝑡 only depend on the state and action at time
𝑡 − 1 and not on the history of previous states or actions.

MDPs are a common choice for solving sequential decision problems in fully observable, stochastic
environments in which the Markov property holds for transitions and rewards and rewards are assumed
to be additive [53]. A deterministic policy 𝜋 ∶ 𝑆 → 𝐴 is a mapping from states to actions, whereas a
stochastic policy 𝜋 ∶ 𝑆 → Π(𝐴) generates a probability distribution over actions. The goal in Markov
Decision Problems typically is to learn a (potentially stochastic) optimal policy 𝜋∗ that maximizes the
expected cumulative (discounted) reward for acting in a given environment. One distinguishes finite-
horizon and discounted infinite-horizon models depending on whether the time for acting is known and
fixed to be 𝑇 or assumed to be infinite [33]. In the former case, one seeks a policy to maximize

𝐸[
ፓ

∑
፭
𝑟፭]

and in the discounted infinite-horizon case, one aims at maximizing

𝐸[
ጼ

∑
፭
𝛾፭𝑟፭], (2.1)

5Refer to Section 2.5 for more information on different levels of abstracting the state space.
6Some works use a different notation for the reward function in which the reward may depend only on the current state or also
on the state ፬ᖤ the agent arrives at [21]. Such different notations do not radically change the problem [53].
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where 0 ≤ 𝛾 < 1 is a discount factor that determines how much rewards obtained in the distant future
are valued compared to rewards collected in the near future. In the discounted infinite-horizon case,
an optimal stationary policy always exists, which means that the optimal action to take in a state does
not depend on the time 𝑡. In finite-horizon models, however, such a policy is not guaranteed to exist,
as the optimal action to take in a state may depend on the remaining amount of time. In the sequel, we
assume a discounted infinite-horizon MDP unless otherwise noted.

For each policy 𝜋, 𝑉(𝑠) is the state value function that denotes the expected cumulative reward
(see Equation 2.1) that is obtained by following 𝜋 from state 𝑠 and 𝑄(𝑠, 𝑎) is the state-action value
function that describes the expected cumulative reward for taking action 𝑎 in state 𝑠 and executing 𝜋
thereafter. The state value function and state-action value function of an optimal policy 𝜋∗ are denoted
by 𝑉∗(𝑠) and 𝑄∗(𝑠, 𝑎), respectively, where 𝑉∗ = 𝑚𝑎𝑥𝑉 and 𝑄∗ = 𝑚𝑎𝑥𝑄 [36]. If the whole model
is given or estimated from samples, dynamic programming algorithms such as value iteration or policy
iteration can be employed to exactly compute an optimal policy for an MDP. Both value iteration and
policy iteration can be executed in polynomial time for a fixed 𝛾, but the number of iterations needed for
value iteration may scale with ኻ

ኻዅ᎐ 𝑙𝑜𝑔(
ኻ
ኻዅ᎐ ) [39]. Value iteration thereby has a complexity of 𝑂(|𝐴||𝑆|

ኼ)
per iteration [39], and each iteration of policy iteration consists of a policy improvement and a value
determination step, whereby the former can be performed in 𝑂(|𝐴||𝑆|ኼ) and the latter in 𝑂(|𝑆|ኽ).

If no full model is given and only samples of the form ⟨𝑠, 𝑎, 𝑟⟩7 are available, a model-free algorithm
such as Q-learning [62] or SARSA [52] may be used to determine a policy instead of estimating the
model parameters and then applying model-based approaches8. In Q-learning, 𝑄∗(𝑠, 𝑎) is approxi-
mated independently of the policy followed by means of this update equation:

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼(𝑟 + 𝛾𝑚𝑎𝑥ፚᖤ∈ፀ𝑄(𝑠ᖣ, 𝑎ᖣ) − 𝑄(𝑠, 𝑎)), (2.2)

where 0 ≤ 𝛼 < 1 is the learning rate. Q-learning converges as long as all state-action pairs are always
updated [57]. Note that model-free approaches such as Q-learning and SARSA can also be employed
based on samples collected by sampling from a model.

2.3. Partially Observable Markov Decision Process
APartially ObservableMarkov Decision Process (POMDP) is a tuple ⟨𝑆, 𝑂, 𝐴, 𝑅, 𝑃፨ , 𝑃ፚ⟩where 𝑆 is a finite
set of states, 𝑂 is a finite set of observations, 𝐴 is a set of actions, 𝑅 ∶ 𝑆 × 𝐴 → ℝ is the reward function
such that 𝑅(𝑠, 𝑎) is the instant reward for taking action 𝑎 in state 𝑠, 𝑃፨ ∶ 𝑆×𝐴 → Π(𝑂) is the observation
function such that 𝑃፨(𝑜|𝑠ᖣ, 𝑎) ∈ [0, 1] denotes the probability of observing observation 𝑜 after taking
action 𝑎 and reaching state 𝑠ᖣ, and 𝑃ፚ ∶ 𝑆 × 𝐴 → Π(𝑠) is the transition function such that 𝑃ፚ(𝑠ᖣ|𝑠, 𝑎)
∈ [0, 1] is the probability of arriving in state 𝑠ᖣ after taking action 𝑎 in state 𝑠. Unless otherwise noted we
make the assumption of an infinite-horizon POMDP where future rewards are discounted geometrically
with a discount factor of 0 ≤ 𝛾 < 1.

Evidently, a POMDP model has the same components as an MDP model, supplemented by the
set of observations 𝑂 and the observation function 𝑃፨. The reason is that, unlike in an MDP, the
agent cannot directly observe the current state as the observations are not Markovian. Consequently,
a POMDP can be seen as too coarse of an abstraction in that the hidden state has been abstracted
away or the observations have been grouped into too coarse equivalence classes. Thus, while the
typical goal still is to find an optimal policy 𝜋∗ that maximizes the expected cumulative discounted sum
of rewards, such an optimal policy of a POMDP may employ the entire history of interactions with the
environment to select the next action [43], whereas the optimal policy of an MDP requires solely the
current state.

One common approach for acting optimally in a POMDP is for the agent to maintain an internal
belief state 𝑏, which is a probability distribution over the states such that 𝑏(𝑠) denotes the probability
that the current state is state 𝑠. Once the agent makes observation 𝑜 after executing action 𝑎, a new
belief 𝑏ᖣ(𝑠ᖣ) for some state 𝑠ᖣ ∈ 𝑆 can be computed from 𝑏(𝑠) if the full POMDP model is known [33]:

𝑏ᖣ(𝑠ᖣ) = 𝑃፨(𝑜|𝑠ᖣ, 𝑎) ∑፬∈ፒ 𝑃ፚ(𝑠ᖣ|𝑠, 𝑎)𝑏(𝑠)
∑፬ᖤ∈ፒ 𝑃፨(𝑜|𝑠ᖣ, 𝑎) ∑፬∈ፒ 𝑃ፚ(𝑠ᖣ|𝑠, 𝑎)𝑏(𝑠)

. (2.3)

7Many algorithms work with ⟨፬, ፚ, ፫, ፬ᖤ⟩- or ⟨፬, ፚ, ፫, ፬ᖤ , ፚᖤ⟩-samples. Clearly, a sequence of ⟨፬, ፚ, ፫⟩-tuples can be formed to take
either format.

8See [53] for details on model-free algorithms.
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Since this belief state is a sufficient statistic for the agent’s history of interactions with the environment
and its initial belief state, a POMDP can be reduced to a continuous MDP in which the fully observable
states are the internal belief states9.

Both value iteration and policy iteration can theoretically be applied to this continuous belief-state
MDP. Thereby, the optimal value function with finite horizon 𝑡 of a POMDP is piecewise linear and
convex and can be described as themaximum of 𝑘 |𝑆|-dimensional 𝛼-vectors, which are linear functions
that represent the value of a specific policy over 𝑡 time steps:

𝑉∗(𝑏) = 𝑚𝑎𝑥።ኻ,...,፤(𝑏𝛼።). (2.4)

Based on the 𝑡-step value function, new vectors to represent the value function for 𝑡 + 1 time steps
can be found and the value function of an infinite-horizon POMDP can be approximated with arbitrary
precision by a finite set of 𝛼-vectors [61]. Value iteration can be used to compute 𝑉∗, however, value
iteration algorithms often make use of pruning operations due to the large number of (|𝐴||ፎ|)፭ 𝛼-vectors
[24]10. This means that dominated 𝛼-vectors, which are vectors that do not impact the value function,
are deleted. Yet, even when including pruning, exact value iteration can solely be used to solve small
POMDPs. Similarly, exact policy iteration to find the optimal policy of a POMDP is only applicable to
problems with tens of states [24]11.

2.4. Deep Reinforcement Learning
Deep RL methods approximate one or multiple RL components, such as the state value function, the
state-action value function, the policy, or the transition or reward functions, by means of deep neural
networks [37]. This work uses deep Q-learning, which means that the Q-function is approximated via
a deep neural network. Note that standard Q-learning assumes that the Q-function learned by the
agent can be stored exactly in a table. However, for domains with large state spaces, this typically
is impossible. For instance, if the problem at hand is to assemble a machine that consists of 1, 000
parts and to track whether each of these parts are available, the standard representation would consist
of 2ኻኺኺኺ states [21]. Thus, for such problems, methods other than tables are used to represent the
Q-function. Since 𝑄∗(𝑠, 𝑎) may not be representable by the chosen representation, employing such
representations is called function approximation.

The most simple form of function approximation is linear function approximation. Linear function
approximation approaches are those that abstract the space of all (value) functions 𝑓 ∈ ℝ|ፒ| to the
space of functions that can be represented as a weighted linear combination of 𝐼 basis functions:

𝑓 =∑
።∈ፈ
𝑤።𝜙። ,

where 𝑤። is the weight assigned to basis function 𝜙። [41]. In linear value function approximation for
MDPs, a value function thus is approximately described by such a weighted linear combination of
features. In the context of POMDPs, however, the 𝛼-vectors a value function is based on are linearly
approximated, since a value function of a POMDP is piecewise linear and convex (see Equation 2.4).

Compared to linear function approximators, non-linear ones allow for more flexible forms of ab-
straction. A common non-linear approach for abstracting (value) functions is to use neural networks.
One reason for the increasingly widespread use of neural networks is that they learn their parameters
directly from the data without any need for feature engineering. In addition, they are so flexible that
even a simple feed-forward neural network with at least one non-linear hidden layer can represent an
arbitrarily accurate approximation of any function, provided that it contains a sufficient number of hid-
den units [22]. Nevertheless, small networks that are fast to train are desirable in practice, and the fact
that data is limited means that not all parameters are necessarily perfectly estimated.

2.4.1. Network Architectures
This work makes use of two types of neural networks for approximately representing Q-functions, one
for fully and one for partially observable environments. These two types are described subsequently.
9Note that the states in an MDP can be seen as belief states in which (፬ᑚ)  ኻ for exactly one state ፬ᑚ ∈ ፒ and (፬ᑛ)  ኺ for all
፬ᑛᐵᑚ ∈ ፒ [53].

10One example of a value iteration algorithm that uses pruning is the incremental pruning algorithm. See Section 2.1 in [24] for
details.

11See Section 2.2 in [24] for details on policy iteration in POMDPs.
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Deep Q-Network. The Deep Q-network (DQN) proposed by [44] requires sequences of the form
⟨𝑠፭ , 𝑎፭ , 𝑟፭ , 𝑠፭ዄኻ⟩, where 𝑠፭ is a stack of𝑚 frames, to learn the parameters 𝜃 of a deep Convolutional Neu-
ral Network (CNN)12 that represents an approximately optimal state-action value function 𝑄(𝑠, 𝑎|𝜃).
Importantly, whereas the Atari environments the DQN-agent was originally tested on are partially ob-
servable given a single observation, they are considered fully observable given the stack of 𝑚 = 4
past frames that are fed into the DQN-agent at each time step. The DQN-agent could thus be seen
as operating in a partially observable environment and keeping a memory of the past 𝑚 observations.
However, the method assumes the state to be fully observable via the input.

Specifically, ⟨𝑠፭ , 𝑎፭ , 𝑟፭ , 𝑠፭ዄኻ⟩-tuples are stored in an experience replay memory at each time step 𝑡.
Then, during each learning iteration, samples 𝑠, 𝑎, 𝑟, 𝑠ᖣ ∼ 𝑈(𝐷) are drawn from the experience replay
memory uniformly at random to perform a Q-learning update. Each iteration 𝑖 of Q-learning thereby
aims at minimizing the following loss via Stochastic Gradient Descent (SGD)13:

𝐿።(𝜃።) = 𝔼፬,ፚ,፫,፬ᖤ∼ፔ(ፃ)[(𝑟 + 𝛾𝑚𝑎𝑥ፚᖤ𝑄(𝑠ᖣ, 𝑎ᖣ|𝜃ዅ። ) − 𝑄(𝑠, 𝑎|𝜃።))
ኼ], (2.5)

where 𝜃ዅ። are the parameters of a target network, which are only updated with the main Q-network’s
parameters every 𝑐 steps. Using an experience replay memory and a target network serves to improve
learning stability. This is important, because Q-learning with non-linear function approximators is not
guaranteed to be stable due to correlations between subsequent observations as well as between the
Q-values and the target values.

Experimental results by [44] on Atari games reveal that states generating similar observations as
well as those that lead to comparable expected rewards obtain similar abstract representations based
on the network’s activations. Together with the fact that the DQN-agent learns good policies in several
Atari games, this suggests that the DQN-agent can extract the most relevant information from the high-
dimensional observations. Yet, no bounds regarding the quality of the policy or value function found
via the DQN-agent exist.

Deep Recurrent Q-Network. Since the optimal policy of a POMDP may utilize the entire history of
interactions with the environment to select the next action, neural network architectures for POMDPs
commonly make use of a Recurrent Neural Network (RNN). RNNs are neural networks for processing
sequential data which keep an internal state ℎ፭, which summarizes task-relevant information from the
past sequence of data up to time 𝑡 [22]. The output of an RNN at time 𝑡 then is a function of the new
data at time 𝑡 and the internal state at time 𝑡−1. There are several ways for representing and updating
such an internal state and consequently there are several types of RNNs. For example, one common
architecture is a Long Short-Term Memory (LSTM) model, which was designed to be able to remember
sequence parts from a more distant past [22]14.

The Deep Recurrent Q-network (DRQN) approach by [25] is designed for POMDPs. It replaces
the first fully connected layer of the DQN-agent by an LSTM layer to introduce a more flexible form of
memory, which can theoretically remember arbitrarily long sequences of observations15. In the DRQN-
agent, the function 𝑄(𝑜፭ , ℎ፭ዅኻ|𝜃) is thus approximated rather than the function 𝑄(𝑠፭ , 𝑎፭|𝜃) as in the
DQN-agent, where ℎ፭ዅኻ = 𝐿𝑆𝑇𝑀(ℎ፭ዅኼ, 𝑜፭ዅኻ) is the output of the LSTM layer at the previous time step
[65]. To this end, the DRQN-agent is trained via sequences of the form ⟨𝑜፭ , 𝑎፭ , 𝑟፭ , 𝑜፭ዄኻ⟩ that are sampled
from an experience replay memory.

Experimental results by [25] on a flickering version of an Atari domain, in which each frame is ob-
scured with a certain probability, indicate that the DRQN-agent is able to detect important components

12See [22] for details on CNNs.
13Rather than using the entire available dataset to compute the loss as in gradient descent, stochastic gradient descent utilizes
solely small batches of training data to estimate the loss. Importantly, the batch size is kept fixed as the amount of training
data increases. Since the computational cost per model update thus does not depend on the size of the training dataset and
SGD tends to converge before all training samples have been sampled for large datasets, SGD is commonly used for large
datasets. However, the number of updates required to obtain convergence typically increases for larger datasets. Besides
using pure SGD, adaptive learning rate optimization algorithms such as the Adam algorithm [34] are also popular for training
neural networks. Such algorithms can be seen as extensions to SGD that are intended to combat the variance resulting from
estimating the loss via mini batches instead of the entire training dataset. Refer to Chapter 5.9 in [22] for details.

14For more detailed information on RNNs see [22].
15The original DQN-agent takes a stack of ፦ frames as input, which can be seen as utilizing a memory of fixed length ፦.
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such as the velocity of objects in the game. This suggests that the internal state of the LSTM effec-
tively summarizes past experience. However, the authors do not find a systematic advantage of using
a recurrent network over stacking the input frames as in the DQN-agent across several tested flickering
Atari games. Specifically, when granting a DQN- and a DRQN-agent access to the same number of
past observations, no agent generally outperforms the other. Nevertheless, the DRQN-agent is found
to generalize better to flickering versions of Atari games when trained on fully observable versions than
the DQN-agent. This indicates that a recurrent layer may offer some robustness to missing information.
Finally, this approach also does not provide theoretical guarantees regarding the quality of the learned
approximate state-action value function.

2.5. State Abstraction
An RL agent with limited capacity needs to abstract the ground state space when forming an internal
state representation. Formally, state abstraction methods group ground states into equivalence classes
so that the value function takes on a constant value on all states within the same equivalence class [41].
To render solving problemswith large state spaces computationally tractable, several approaches to ab-
stract a given state representation have been proposed in the literature. Such abstraction approaches
differ in how much information of the original model the resulting abstract representation maintains.
Ideally, one wants to obtain the unique coarsest representation that is still Markovian [21], which is the
model with the minimal Markovian state space. Yet, it may not be possible to find this minimal model
efficiently. In the context of factored MDPs, for instance, [21] show that given a number 𝑛 that is repre-
sented in unary notation, deciding whether the minimal model of a factored MDP has exactly 𝑛 states if
one knows that it has 𝑛 or fewer states is NP-hard. Moreover, the coarsest Markovian representation
may still be too large to allow for efficient planning, thus necessitating an even coarser abstraction.

In the area of MDPs, [36] distinguish state abstraction techniques depending on which of the com-
ponents of the original MDP are maintained in the abstract representation. Letting 𝑀 = ⟨𝑆, 𝐴, 𝑃, 𝑅⟩
denote the abstract MDP that results from the original MDP 𝑀 after applying the abstraction function
𝜙 ∶ 𝑆 → 𝑆, 𝜙(𝑠) ∈ 𝑆 the abstract state the ground state 𝑠 is mapped to, and 𝜙ዅኻ(𝑠) for 𝑠 ∈ 𝑆 the set
of ground states that are grouped in the abstract state 𝑠, the following five levels of abstractions are
identified by [36]:

1. In a model-irrelevance abstraction 𝜙፦፨፝፞፥, all states that are grouped in the same equivalence
class have the same reward and transition functions so that the one-step model is maintained.
Thus, if 𝜙፦፨፝፞፥(𝑠ኻ) = 𝜙፦፨፝፞፥(𝑠ኼ), 𝑅(𝑠ኻ, 𝑎) = 𝑅(𝑠ኼ, 𝑎) ∀𝑎 ∈ 𝐴 and ∑፬ᖤ∈ᎫᎽᎳᑞᑠᑕᑖᑝ(፬) 𝑃(𝑠

ᖣ|𝑠ኻ, 𝑎) =
∑፬ᖤ∈ᎫᎽᎳᑞᑠᑕᑖᑝ(፬) 𝑃(𝑠

ᖣ|𝑠ኼ, 𝑎) ∀𝑎 ∈ 𝐴, ∀𝑠 ∈ 𝑆.
2. In a 𝑄-irrelevance abstraction 𝜙ፐᒕ , the state-action value function is preserved for all policies.

Hence, if 𝜙ፐᒕ(𝑠ኻ) = 𝜙ፐᒕ(𝑠ኼ), then 𝑄(𝑠ኻ, 𝑎) = 𝑄(𝑠ኼ, 𝑎) ∀𝑎 ∈ 𝐴.
3. In a 𝑄∗-irrelevance abstraction 𝜙ፐ∗ , the optimal state-action value function from the ground model

is maintained. Therefore, if 𝜙ፐ∗(𝑠ኻ) = 𝜙ፐ∗(𝑠ኼ), then 𝑄∗(𝑠ኻ, 𝑎) = 𝑄∗(𝑠ኼ, 𝑎) ∀𝑎 ∈ 𝐴.
4. In an 𝑎∗-irrelevance abstraction 𝜙ፚ∗ , the optimal action and its value are preserved. Thus, if
𝜙ፚ∗(𝑠ኻ) = 𝜙ፚ∗(𝑠ኼ), then 𝑄∗(𝑠ኻ, 𝑎∗) = 𝑚𝑎𝑥ፚ𝑄∗(𝑠ኻ, 𝑎) = 𝑚𝑎𝑥ፚ𝑄∗(𝑠ኼ, 𝑎) = 𝑄∗(𝑠ኼ, 𝑎∗), where 𝑎∗ ∈ 𝐴
is the optimal action in the equivalence class of 𝑠ኻ and 𝑠ኼ.

5. In a 𝜋∗-irrelevance abstraction 𝜙∗ , only the optimal action is preserved. That is, if 𝜙∗(𝑠ኻ) =
𝜙∗(𝑠ኼ), then 𝑄∗(𝑠ኻ, 𝑎∗) = 𝑚𝑎𝑥ፚ𝑄∗(𝑠ኻ, 𝑎) and 𝑚𝑎𝑥ፚ𝑄∗(𝑠ኼ, 𝑎) = 𝑄∗(𝑠ኼ, 𝑎∗), where 𝑎∗ ∈ 𝐴 is the
optimal action in the equivalence class of 𝑠ኻ and 𝑠ኼ.

Regarding the relationship between these levels of abstraction, [36] show that for any MDP it holds
that 𝜙ኺ ⪰ 𝜙፦፨፝፞፥ ⪰ 𝜙ፐᒕ ⪰ 𝜙ፐ∗ ⪰ 𝜙ፚ∗ ⪰ 𝜙∗ , where 𝜙ኺ is the ground representation with 𝑆 = 𝑆. This
partial ordering implies that 𝜙ኺ results in the finest representation, whereas 𝜙∗ causes the coarsest
representation. Moreover, each abstraction level can be seen as a special case of all those abstraction
levels that lead to a coarser representation.

When performing an abstraction, one would like to maintain optimality of planning and improve
computational efficiency as much as possible. Regarding the impacts of these levels of abstraction on
the optimality of planning, [36] lay out that the optimal abstract policy 𝜋∗ is optimal in the ground MDP
for 𝜙፦፨፝፞፥, 𝜙ፐᒕ , 𝜙ፐ∗ , and 𝜙ፚ∗ , but that this is not always the case for 𝜙∗ . Furthermore, the authors
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demonstrate that for 𝜙፦፨፝፞፥, 𝜙ፐᒕ , 𝜙ፐ∗ , and 𝜙ፚ∗ , model-based RL will converge to a value function
whose greedy policy is optimal in the ground MDP, as long as each state in the ground model is given a
fixed weight in the abstract model. The same convergence result also holds for Q-learning with a fixed
policy. Yet, the convergence of model-based RL and of Q-learning with a fixed policy is not guaranteed
for 𝜙∗ . Hence, all discussed levels of abstraction but 𝜙∗ preserve sufficient information to generally
enable optimal planning in the ground MDP. However, the authors’ experiments in four domains with
400 to 1,024 states reveal that of the levels of abstraction with guaranteed optimality, only 𝜙ፚ∗ results
in a useful reduction in the size of the state space.

Application to internal state representations of neural networks. These levels of state abstraction
do not impose any Euclidean distances between abstract states. Thus, applied to the latent representa-
tions of neural networks, they solely consider which states are mapped to exactly the same activations
in a network layer. Our concept of ideal internal state representation, however, takes the Euclidean
distances of the activations of all states into consideration. Therefore, when we speak of the coarsest
Markov state representation in this work, we mean a state representation in which states are mapped
to the same activation pattern if and only if they are mapped to the same abstract state in the coarsest
Markov state representation as it is defined in the context of state abstraction, and where Euclidean
distances between abstract states are proportional to how behaviorally similar those states are. Sim-
ilarly, with 𝑄∗-irrelevance abstraction we mean the coarsest 𝑄∗-irrelevance abstraction in which the
Euclidean distances between abstract states are proportional to the Euclidean distances between the
corresponding Q-values. Yet, it is important to keep in mind that depending on the hidden layer size of a
neural network, it may not be possible to create such representations exactly. This is, for example, the
case for a 𝑄∗-irrelevance abstraction when the hidden layer size is smaller than the number of actions
and the Q-values do not have an intrinsic dimensionality16 lower than the number of actions.

2.6. Stochastic Bisimulation
The notion of stochastic bisimulation [21] stems from the field of state abstraction. It groups states into
the same equivalence class, or ”block”, if and only if they have the same reward and the same transition
distribution over all other blocks for all actions. In other words, states are considered equivalent if and
only if they are mapped to the same abstract state in the coarsest Markov state representation. Such
equivalent states are called bisimilar. Thus, an abstract representation that is equivalent to the ground
representation under the notion of stochastic bisimulation is the result of an exact model-irrelevance
abstraction 𝜙፦፨፝፞፥.

2.7. Bisimulation Metrics
Based on the notion of stochastic bisimulation for MDPs defined in the previous section, bisimulation
metrics have been proposed by [12]. In the following, these metrics and ways to compute them are
discussed for finite MDPs and for MDPs with infinite state spaces in Section 2.7.1 and Section 2.7.2,
respectively. Notice that this work utilizes bisimulation metrics for finite MDPs as well as for MDPs with
infinite state spaces, since the latter can be used to represent POMDPs.

2.7.1. Bisimulation Metrics for Finite MDPs
The work of [12] presents two bisimulation metrics17 that measure how similar the transition and reward
functions of two states in a finite MDP are. Stochastic bisimulation can be used like a metric that
assigns a distance of 0 to all bisimilar states and a distance of 1 to all other states. Consequently,
these bisimulation metrics are perceivable as a quantitative version of stochastic bisimulation in that
they assign a distance of 0 only to bisimilar states and that if the parameters of two bisimilar states are
altered on a small scale, the metric distance between the two states will stay small.

Specifically, [12] introduce a general form for bisimulation metrics that measure the distance be-

16A dataset ∈ ℝᑕ has an intrinsic dimensionality of ፦ ጾ ፝ if ፦ free variables suffice to (approximately) represent the dataset
[58].

17In fact, the proposed metrics are pseudometrics as two distinct points can have a distance of ኺ. Based on a pseudometric,
one can obtain an equivalence relation by stating that two points are equivalent if they have a distance of ኺ [13]. Since [12]
simply use the term ”metrics,” the same naming convention is followed here to avoid confusion.
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tween two states 𝑠 and 𝑠ᖣ:

𝑑(𝑠, 𝑠ᖣ) = 𝑚𝑎𝑥ፚ∈ፀ(𝑐ፑ|𝑅(𝑠, 𝑎) − 𝑅(𝑠ᖣ, 𝑎)| + 𝑐ፓ𝑑ፏ(𝑃(𝑠, 𝑎), 𝑃(𝑠ᖣ, 𝑎))), (2.6)

where 𝑑ፏ is a probability metric18. 𝑐ፑ and 𝑐ፓ are two positive one-bounded constants that determine
the weight given to the difference concerning the reward functions compared to the one assigned to
the difference between the transition functions. Based on this general form, the authors propose two
bisimulation metrics 𝑑ፓፕ and 𝑑፟።፱:

• The bisimulation metric 𝑑ፓፕ(𝑠, 𝑠ᖣ) is obtained by letting 𝑑ፏ in Equation 2.6 be the total-variation
probability semimetric19 𝑇ፓፕ:

𝑑ፓፕ(𝑠, 𝑠ᖣ) = 𝑚𝑎𝑥ፚ∈ፀ(𝑐ፑ|𝑅(𝑠, 𝑎) − 𝑅(𝑠ᖣ, 𝑎)| + 𝑐ፓ𝑇ፓፕ(𝑃(𝑠, 𝑎), 𝑃(𝑠ᖣ, 𝑎))). (2.7)

The total-variation distance between the transition functions of states 𝑠 and 𝑠ᖣ is:

𝑇ፓፕ(𝑃(𝑠, 𝑎), 𝑃(𝑠ᖣ, 𝑎)) =
1
2 ∑
፬ᑚ∈ፒ

|𝑃(𝑠።|𝑠, 𝑎) − 𝑃(𝑠።|𝑠ᖣ, 𝑎)|. (2.8)

• The bisimulation metric 𝑑፟።፱(𝑠, 𝑠ᖣ) is the least fixed point of iteratively solving Equation 2.6 with
the Kantorovich distance 𝑇ፊ(𝑑)20 as the probability metric 𝑑ፏ. More precisely:

𝑑፟።፱ =∐
፭∈ℕ

𝑑፭ , (2.9)

where 𝑑ኺ is the everywhere-zero metric and 𝑑፭, 𝑡 > 0, is given by:

𝑑፭(𝑠, 𝑠ᖣ) = 𝑚𝑎𝑥ፚ∈ፀ(𝑐ፑ|𝑅(𝑠, 𝑎) − 𝑅(𝑠ᖣ, 𝑎)| + 𝑐ፓ𝑇ፊ(𝑑፭ዅኻ)(𝑃(𝑠, 𝑎), 𝑃(𝑠ᖣ, 𝑎))). (2.10)

𝑇ፊ(𝑑) depends on a semimetric 𝑑 on the state space 𝑆 that assigns a distance of at most 1 to
states. In the case of finite MDPs, 𝑇ፊ(𝑑) reduces to the following linear program:

𝑇፤(𝑑)(𝑃, 𝑄) = 𝑚𝑎𝑥፮Ꮃ , ..., ፮|ᑊ|
|ፒ|

∑
።ኻ
(𝑃(𝑠።) − 𝑄(𝑠።))𝑢። (2.11)

𝑠.𝑡. 𝑢። − 𝑢፣ ≦ 𝑑(𝑠። , 𝑠፣) ∀𝑖, 𝑗
0 ≤ 𝑢። ≤ 1 ∀𝑖,

where 𝑃 and 𝑄 are two state probability functions.

𝑑፟።፱ assigns a distance of 0 to states if and only if they are bisimilar. Thus, it is this specific bisimulation
metric that we ideally want Euclidean distances between states in an internal state representation to
be proportional to. 𝑑ፓፕ, on the other hand, attributes a distance of 0 only to states whose reward and
transition functions are equal with respect to all other states in the input MDP, which is a more restrictive
version of bisimulation [14]. Hence, 𝑑፟።፱ ≤ 𝑑ፓፕ.

2.7.1.1 Exact Computation
The bisimulation metric 𝑑ፓፕ for two states can be obtained by simply computing Equation 2.7 a single
time, which has a complexity of 𝑂(|𝐴||𝑆|). The bisimulation metric 𝑑፟።፱(𝑠, 𝑠ᖣ), however, is the least fixed
point of iteratively solving Equation 2.10, beginning with 𝑑ኺ as the everywhere-zero metric. For each
iteration 𝑡 > 0, 𝑇ፊ(𝑑፭ዅኻ)(𝑃(𝑠። , 𝑎), 𝑃(𝑠፣ , 𝑎)) has to be computed for the transition functions 𝑃(𝑠። , 𝑎) and
𝑃(𝑠፣ , 𝑎) of all pairs of states 𝑠። , 𝑠፣, 𝑖 ≠ 𝑗, for each action 𝑎 ∈ 𝐴. This computation can be achieved via
a minimum cost flow solver, such as the one described in Section D.3.2 in the Appendix, and requires
18A probability metric ”is a metric on a suitable set of probability distributions in some measurable space ፒ” [32].
19In contrast to a metric, a semimetric does not necessarily satisfy the triangle inequality.
20The Kantorovich metric is a probability semimetric and is also called Wasserstein metric or Monge–Kantorovich metric.
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a transportation network to be created. To this end, two copies of each state are made, whereby one
copy serves as a demand node and the other copy as a supply node. Thereby, the supply of the supply
node and the demand of the demand node for state 𝑠፤ are given by:

𝑠𝑢𝑝𝑝𝑙𝑦፤ = 𝑃(𝑠፤|𝑠። , 𝑎),
𝑑𝑒𝑚𝑎𝑛𝑑፤ = 𝑃(𝑠፤|𝑠፣ , 𝑎).

Moreover, there is an arc from every supply node to every demand node, and this arc has a cost that
is equal to the distance between the corresponding states based on 𝑑፭ዅኻ. The resulting transportation
network is depicted in Figure 2.1.

Figure 2.1: The transportation network to compute ፓᑂ(፝ᑥᎽᎳ)(ፏ(፬ᑚ , ፚ), ፏ(፬ᑛ , ፚ)) for the transition functions of states ፬ᑚ and ፬ᑛ for
action ፚ, whereby arcs are labeled with their costs. ፓᑂ(፝ᑥᎽᎳ)(ፏ(፬ᑚ , ፚ), ፏ(፬ᑛ , ፚ)) is equal to the cost of the flow with minimum cost
for this network.

A minimum cost flow solver computes for this transportation network the flow of minimum total cost.
A flow thereby is a set of quantities transported across the arcs such that the sum of quantities arriving
at a demand node 𝑣 is equal to its demand and the sum of quantities leaving each supply node 𝑢 is
equal to its supply:

𝑠𝑢𝑝𝑝𝑙𝑦፤ = 𝑃(𝑠፤|𝑠። , 𝑎) =
|ፒ|ዅኻ

∑
፥ኺ

𝑓(𝑢፤ , 𝑣፥) ∀ 𝑘 ∈ {0, ..., |𝑆| − 1}

𝑑𝑒𝑚𝑎𝑛𝑑፤ = 𝑃(𝑠፤|𝑠፣ , 𝑎) =
|ፒ|ዅኻ

∑
፥ኺ

𝑓(𝑢፥ , 𝑣፤) ∀ 𝑘 ∈ {0, ..., |𝑆| − 1},

where 𝑓(𝑢፤ , 𝑣፥) is the quantity transported from the supply node of state 𝑠፤ to the demand node of state
𝑠፥. The cost of such a flow is the sum of the products of the quantities transported across arcs and the
corresponding arc costs:

∑
፤,፥∈{ኺ, ..., |ፒ|ዅኻ}

𝑓(𝑢፤ , 𝑣፥)𝑑፭ዅኻ(𝑠፤ , 𝑠፥). (2.12)

𝑇ፊ(𝑑፭)(𝑃(𝑠። , 𝑎), 𝑃(𝑠፣ , 𝑎)) then is equal to the cost of the flow with minimum total cost.
The pseudocode for computing 𝑑፟።፱ based on solving these transportation networks is shown in

Algorithm 1. Precisely calculating 𝑑፟።፱ is infeasible for problems with large state spaces, as the runtime
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Algorithm 1 Computation of 𝑑፟።፱(𝑠። , 𝑠፣) ∀𝑠። , 𝑠፣ ∈ 𝑆
Require: ⟨𝑆, 𝐴, 𝑅, 𝑃, 𝛾⟩ with 𝑅 and 𝑃 as matrices, precision 𝜆
1: 𝑑 ← [0] {Initialize pairwise distances of all states to 0}
2: 𝑇 ← ⌈ ፥፧(᎘)፥፧(᎐) ⌉ {Number of iterations to guarantee precision 𝜆}
3: for 𝑡 ← 0 to 𝑇 − 1 do
4: 𝑑፭ ← 𝑑
5: for 𝑖 ← 0 to |𝑆| − 2 do
6: for 𝑗 ← 𝑖 + 1 to |𝑆| − 1 do
7: 𝑑𝑖𝑠𝑡፦ፚ፱ ← 0 {Largest distance between 𝑠። and 𝑠፣ for any 𝑎 ∈ 𝐴}
8: for 𝑎 ∈ 𝐴 do
9: 𝑇ፊ ← 𝑇ፊ(𝑑)(𝑃[𝑠። , 𝑎], 𝑃[𝑠፣ , 𝑎]) {Computed with min. cost flow solver}
10: 𝑑𝑖𝑠𝑡፦ፚ፱ ← 𝑚𝑎𝑥(𝑑𝑖𝑠𝑡፦ፚ፱ , (1 − 𝛾)|𝑅[𝑠። , 𝑎] − 𝑅[𝑠፣ , 𝑎]| + 𝛾𝑇ፊ)
11: end for
12: 𝑑፭[𝑠። , 𝑠፣] ← 𝑑𝑖𝑠𝑡፦ፚ፱
13: 𝑑፭[𝑠፣ , 𝑠።] ← 𝑑𝑖𝑠𝑡፦ፚ፱
14: end for
15: end for
16: 𝑑 ← 𝑑፭
17: end for
18: return 𝑑

complexity of computing 𝑑፟።፱ with a guaranteed precision of 𝜆 is 𝑂(|𝐴||𝑆|ኾ𝑙𝑜𝑔|𝑆|
፥፧ ᎘
፥፧ ᑋ

). This complexity
stems from determining the minimum cost flow of a transportation network during each iteration 𝑡 for all
pairs of states and for each action 𝑎 ∈ 𝐴. Solving the transportation network thereby can be achieved
in 𝑂(|𝑆|ኼ𝑙𝑜𝑔 |𝑆|). Furthermore, ⌈ ፥፧ ᎘፥፧ ᑋ

⌉ iterations guarantee that 𝑑፟።፱ is calculated with a precision of 𝜆.

2.7.1.2 Other Approaches to Compute 𝑑፟።፱
Besides the original exact algorithm by [12] to compute 𝑑፟።፱ discussed in the previous section, several
other algorithms have been proposed that address some of the issues of the exact algorithm. For
example, the on-the-fly methods by [9] target the problem that the exact algorithm compares all pairs
of states at every iteration and guarantees convergence solely if those comparisons are performed
exactly. Other approximate algorithms for calculating 𝑑፟።፱ are the statistical sampling approach by [14],
the asynchronous algorithm by [4], the extension to [4] that makes use of approximants exploiting the
state space structure by [5], and the approach for deterministic MDPs using neural networks by [8]. In
our work, we solely make use of the approximation algorithm by [8] besides the original exact algorithm
by [12]. We employ the approximation approach by [8], because it is applicable to both continuous and
discrete MDPs. Thus, it can also be utilized to efficiently approximate 𝑑፟።፱ based on the belief states
corresponding to action-observation histories from deterministic POMDPs. This algorithm therefore is
briefly discussed next.

Approximation of 𝑑፟።፱ via neural networks. In [8], the authors present an approach to calculating
𝑑፟።፱ for deterministic MDPs with both finite and continuous state spaces via neural networks. We use
this algorithm to efficiently approximate 𝑑፟።፱ for MDPs as well as based on belief states for POMDPs.
The proposedmethod is based on sampling transition pairs {⟨𝑠, 𝑎, 𝑅(𝑠, 𝑎), 𝑁(𝑠, 𝑎)⟩, ⟨𝑠ᖣ, 𝑎, 𝑅(𝑠ᖣ, 𝑎), 𝑁(𝑠ᖣ, 𝑎)⟩}
from a distribution 𝐷, where 𝑁(𝑠, 𝑎) is the deterministic next state after taking action 𝑎 in state 𝑠. For
example, one may sample transitions uniformly at random from a replay memory. The authors show
that if one samples such transition pairs, an iterative procedure starting with 𝑑ኺ as the everywhere-zero
metric and with the following update converges to 𝑑፟።፱ almost surely as 𝑡 → ∞ in the tabular case21:

𝑑፭(𝑠። , 𝑠፣) ← {
𝑚𝑎𝑥(𝑑፭ዅኻ(𝑠። , 𝑠፣), |𝑅(𝑠። , 𝑎) − 𝑅(𝑠፣ , 𝑎)| 𝑖𝑓 𝑠። = 𝑠, 𝑠፣ = 𝑠ᖣ,
+𝛾𝑑፭ዅኻ(𝑁(𝑠። , 𝑎), 𝑁(𝑠፣ , 𝑎)))

𝑑፭ዅኻ(𝑠። , 𝑠፣) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
21Refer to Theorem 4 in [8] for the proof.
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Thus, after sampling a transition pair {⟨𝑠, 𝑎, 𝑅(𝑠, 𝑎), 𝑁(𝑠, 𝑎)⟩, ⟨𝑠ᖣ, 𝑎, 𝑅(𝑠ᖣ, 𝑎), 𝑁(𝑠ᖣ, 𝑎)⟩} for iteration 𝑡, only
the distance between 𝑠 and 𝑠ᖣ is updated. For all other pairs of states, the distance from iteration 𝑡 − 1
is copied.

Based on this finding, the authors propose an approximation algorithm for 𝑑፟።፱ that uses neural
networks. This approximation approach makes use of an online network22 𝜓᎕ with parameters 𝜃 and
a target network 𝜓᎕Ꮍ with parameters 𝜃ዅ. Both 𝜓᎕ and 𝜓᎕Ꮍ take as input the concatenated state
representations of two states 𝑠 and 𝑠ᖣ and output an approximation to 𝑑፟።፱(𝑠, 𝑠ᖣ). The target objective
at iteration 𝑡 for a sampled transition pair {⟨𝑠, 𝑎, 𝑅(𝑠, 𝑎), 𝑁(𝑠, 𝑎)⟩, ⟨𝑠ᖣ, 𝑎, 𝑅(𝑠ᖣ, 𝑎), 𝑁(𝑠ᖣ, 𝑎)⟩} is as follows if
𝑠 ≠ 𝑠ᖣ:

𝑇᎕Ꮍᑥ (𝑠, 𝑠
ᖣ, 𝑎) = 𝑚𝑎𝑥(|𝑅(𝑠, 𝑎) − 𝑅(𝑠ᖣ, 𝑎)| + 𝛾𝜓᎕Ꮍᑥ ([𝜙(𝑁(𝑠, 𝑎)), 𝜙(𝑁(𝑠

ᖣ, 𝑎))]), 𝜓᎕Ꮍᑥ ([𝜙(𝑠), 𝜙(𝑠
ᖣ)])), (2.13)

where 𝜙 ∶ 𝑆 → ℝ፤ is a k-dimensional representation of the state space and [.] denotes concatenation.
Whenever 𝑠 = 𝑠ᖣ, the target objective is equal to 0.

For a single transition pair, the loss 𝐿፬,፬ᖤ ,ፚ is:

𝐿፬,፬ᖤ ,ፚ = 𝐸ፃ(𝑇᎕Ꮍᑥ (𝑠, 𝑠
ᖣ, 𝑎) − 𝜓᎕ᑥ([𝜙(𝑠)], 𝜙(𝑠ᖣ)]))

ኼ
. (2.14)

In our work, however, we make use of mini batches of 𝑏 transitions for the approximation algorithm. In
that case, the authors of [8] specify the analogous loss as so:

𝐿፭(𝜃፭) = 𝔼ፃ[𝑊 ⊗ (𝑇 − 𝜓᎕ᑥ(𝑆ኼ))
ኼ], (2.15)

where 𝑆ኼ ∈ ℝ××ኼ፤ contains the concatenations of the representations of all pairs of states in the mini
batch,𝑊 is a mask that ensures that the actions for pairs of transitions are the same,⊗ stands for the
Hadamard product23, and 𝜓(𝑋) denotes that 𝜓 is applied to each element of matrix 𝑋. Furthermore,
the matrix 𝑇 is defined as follows:

𝑇 = (1 − 𝐼) ⊗𝑚𝑎𝑥(𝑅ኼ + 𝛾𝛽𝜓᎕Ꮍᑥ (𝑁
ኼ), 𝛽𝜓᎕Ꮍᑥ (𝑆

ኼ)), (2.16)

where 𝐼 is the identity matrix, 𝑁ኼ ∈ ℝ××ኼ፤ contains the concatenations of the representations of
all pairs of next states in the mini batch, 𝑅ኼ ∈ ℝ× is a matrix with the absolute reward differences,
and 𝛽 is a stability parameter that is initialized to 0 and incremented towards a maximum of 1 every
time the target network is updated. The multiplication by (1 − 𝐼) ensures that exact targets of 0 are
given for 𝑑(𝑠, 𝑠) rather than approximations. Notice thus that the only difference between Equations
2.14 and 2.15, besides the use of multiple transition pairs for a single update in the latter, is that the
stability parameter 𝛽 is added when mini batches are used. The pseudocode for the computation of
the approximation 𝑑ᖤ፟።፱ to 𝑑፟።፱ for all 𝑠, 𝑠ᖣ ∈ 𝑆 via the proposed algorithm is given in Algorithm 2.

2.7.2. Bisimulation Metrics for MDPs with Infinite State Spaces
In [15], the notion of bisimulation metrics from [12, 14] is extended to MDPs with infinite state spaces,
which includeMDPs with continuous state spaces. Under the assumption that the rewards are bounded
and vary continuously and that the transition probabilities are continuous, [15] show that the bisimulation
metrics are also continuous in the transition and reward probabilities and bound the optimal value of
states in a continuous fashion. While our work does not directly use MDPs with infinite state spaces, we
compute bisimulation metrics for the belief states of POMDPs. Recall that a POMDP can be regarded
as a continuous MDP whose states are belief states. To calculate 𝑑፟።፱ based on belief states, we
employ the approximation algorithm by [8] that is described in the previous section in the context of
finite MDPs. The reason for utilizing this approximation algorithm is that computing 𝑑፟።፱ exactly faces
similar runtime challenges as in the case of finite MDPs. Furthermore, a Monte Carlo approximation
scheme for 𝑑፟።፱ by [13] is not scalable to large domains.
22The term online network is used to denote that the parameters of this network are updated each iteration, whereas those of
the target network are updated solely every  iterations. The reason for utilizing an online and a target network is to foster
learning stability just as in the context of deep Q-learning (see Section 2.4.1).

23The Hadamard product of two matrices ፀ and ፁ with the same dimensions is a matrix ፂ such that ፂᑚ,ᑛ  ፀᑚ,ᑛ ⋅ ፁᑚ,ᑛ.
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Algorithm 2 Computation of 𝑑ᖤ፟።፱(𝑠, 𝑠ᖣ) ∀𝑠, 𝑠ᖣ ∈ 𝑆
Require: Replay memory 𝑀 with transitions {⟨𝑠, 𝑎, 𝑅(𝑠, 𝑎), 𝑁(𝑠, 𝑎)⟩}, discount factor 𝛾, online network

𝜓᎕, target network 𝜓᎕Ꮍ , number of episodes 𝑇, target network update frequency 𝑐, increment for
stability parameter 𝛽።፧, batch size 𝑏, state representation 𝜙 ∶ 𝑆 → ℝ፤

1: 𝛽 ← 0 {Initialize stability parameter}
2: for 𝑡 ← 0 to 𝑇 − 1 do
3: if 𝑡 % 𝑐 = 0 then
4: 𝛽 ← 𝑚𝑎𝑥(1, 𝛽 + 𝛽።፧)
5: 𝜃ዅ ← 𝜃 {Update target network}
6: end if
7: 𝐵 ← sample of 𝑏 transitions from 𝑀
8: 𝑆ኼ ← concatenations of representations of all pairs of states in 𝐵
9: 𝑁ኼ ← concatenations of representations of all pairs of next states in 𝐵
10: 𝑡ኻ ← 𝛽𝜓᎕Ꮍ(𝑆ኼ)
11: 𝑅ኼ ← absolute reward differences |𝑅(𝑠, 𝑎) − 𝑅(𝑠ᖣ, 𝑎)| for all pairs of states 𝑠, 𝑠ᖣ in 𝐵
12: 𝑡ኼ ← 𝑅ኼ + 𝛾𝛽𝜓᎕Ꮍ(𝑁ኼ)
13: 𝑇 ← (1 − 𝐼) ⊗𝑚𝑎𝑥(𝑡ኻ, 𝑡ኼ) {𝐼 is identity matrix}
14: 𝑊 ← action mask to ensure matching actions for transition pairs
15: 𝑜𝑢𝑡𝑝𝑢𝑡_𝑐𝑢𝑟𝑟 ← 𝜓᎕(𝑆ኼ)
16: 𝐿 ← 𝑀𝑆𝐸𝑙𝑜𝑠𝑠(𝑊 ⊗ 𝑇,𝑊 ⊗ 𝑜𝑢𝑡𝑝𝑢𝑡_𝑐𝑢𝑟𝑟)
17: 𝜃 ← update of 𝜃 based on 𝐿
18: end for
19: 𝑑ᖤ፟።፱ ← 0 {Matrix with pairwise distances of states}
20: for 𝑖 ← 0 to |𝑆| − 2 do
21: for 𝑗 ← 𝑖 + 1 to |𝑆| − 1 do
22: 𝑑ᖤ፟።፱[𝑖, 𝑗] ← 𝜓᎕([𝜙(𝑠።), 𝜙(𝑠፣)])
23: 𝑑ᖤ፟።፱[𝑗, 𝑖] ← 𝑑

ᖤ
፟።፱[𝑖, 𝑗]

24: end for
25: end for
26: return 𝑑ᖤ፟።፱
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2.8. t-Distributed Stochastic Neighbor Embedding
t-Distributed Stochastic Neighbor Embedding (t-SNE) is a non-linear technique for visualizing high-
dimensional data in a two- or three-dimensional space that can capture both local and global structure
such as clusters [40]. The ability to maintain both local and global information is an important difference
to other dimensionality reduction techniques. For example, linear dimensionality reduction methods
such as Principal Component Analysis (PCA) [26] focus on preserving large distances, and other non-
linear approaches such as Sammon mapping [54] can maintain the local but not the global structure
[40]. We employ the t-SNE algorithm to visualize the internal state representations learned by deep RL
agents.

t-SNE operates by minimizing discrepancies between similarities in the original high-dimensional
space and similarities in the low-dimensional space. First, Euclidean distances between data points in
the original high-dimensional space are converted to similarities. Specifically, the symmetric similarity
𝑝።፣ of datapoints 𝑥። and 𝑥፣ is given by

𝑝።፣ = 𝑝፣። =
𝑝።|፣ + 𝑝፣|።
2𝑛 ,

where 𝑛 is the total number of datapoints. This symmetric similarity is a combination of the asymmetric
similarities 𝑝።|፣ and 𝑝፣|። to ensure that the low-dimensional locations of outliers in the high-dimensional
space also impact the cost function. The asymmetric similarity 𝑝፣|። of datapoint 𝑥፣ to datapoint 𝑥። in the
high-dimensional space thereby is given by:

𝑝፣|። =
𝑒𝑥𝑝(−||𝑥። − 𝑥፣||ኼ/2𝜎ኼ። )

∑፤ጽ። 𝑒𝑥𝑝(−||𝑥። − 𝑥፤||ኼ/2𝜎ኼ። )
.

Hence, 𝑝፣|። is the probability that 𝑥፣ is selected as the neighbor of 𝑥። if neighbors are chosen based on
their probability density under a Gaussian that is centered at 𝑥። and has variance 𝜎።. Each 𝜎። thereby
is determined via binary search such that the following holds:

𝑃𝑒𝑟𝑝(𝑃።) = 2ፇ(ፏᑚ),

where 𝑃። is the probability distribution over all other datapoints induced by 𝜎።, 𝑃𝑒𝑟𝑝(𝑃።) is the perplexity
chosen by the user and 𝐻(𝑃።) is the bit-based entropy of 𝑃።. The perplexity is perceivable as a smooth
measure of the effective number of neighboring datapoints taken into consideration. Common settings
for the perplexity are values between 5 and 50, but the algorithm is rather insensitive to different choices
[40]. In our experiments, we use a default perplexity value of 30, but also utilize some other values to
verify the patterns we observe.

Second, the Euclidean distance between the low-dimensional locations 𝑦። and 𝑦፣ of datapoints 𝑥።
and 𝑥፣ is transformed to a symmetric similarity as so:

𝑞።፣ = 𝑞፣። =
(1 + ||𝑦። − 𝑦፣||ኼ)ዅኻ

∑፤ጽ፥(1 + ||𝑦፤ − 𝑦፥||ኼ)ዅኻ
.

Hence, instead of a Gaussian distribution, a Student-t distribution with one degree of freedom is uti-
lized to compute similarities in the low-dimensional space. The reason for this is that the heavy-tailed
character of the Student-t distribution helps to ameliorate the crowding problem. This problem arises,
because an insufficient amount of area is available in a two-dimensional space to depict moderately
far apart datapoints compared to the amount of area that is available for visualizing nearby datapoints.
In addition, the density of a point under a Student-t distribution can be computed much quicker than
under a Gaussian distribution due to the lack of an exponential.

Based on the aforementioned similarities, t-SNE uses gradient descent to minimize the Kullback-
Leibler (KL) divergence between the joint probability distributions 𝑃 and 𝑄:

𝐾𝐿(𝑃||𝑄) =∑
።
∑
፣
𝑝።፣𝑙𝑜𝑔

𝑝።፣
𝑞።፣
.

To further improve the visualizations, gradient descent is supplemented by early compression and early
exaggeration. The former adds an 𝐿ኼ-penalty to the objective function that is proportional to the sum
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of squared distances of the low-dimensional points from the origin, and thus compels datapoints in the
low-dimensional space to remain close together at the beginning. Early exaggeration, on the other
hand, is achieved by multiplying all 𝑝።፣ values by some factor 𝑟 > 1 such as 4 during the first iterations.
This causes clusters in the data to form widely separated clusters in the low-dimensional space. Since
this objective function is not convex, multiple optimization parameters need to be determined and the
outcome of the algorithm can be different for each execution. However, experimental results on a
variety of datasets suggest that the same optimization parameter settings can be appropriate for several
datasets and that the final KL divergence does not differ much between runs [40].

2.8.1. Using t-SNE to Interpret Data
While t-SNE is very useful to analyze structures in high-dimensional data, there are several aspects
one has to pay attention to when deriving insights from t-SNE plots [63]:

1. For some datasets, successive executions of the algorithm do not always lead to the same result.
The authors of [63] show that different runs yield different global shapes for data in the shape of
a trefoil knot, but that similar outcomes are obtained for more simple datasets.

2. The algorithm strives to obtain roughly equally sized clusters, which means that it may expand
denser clusters and contract less dense ones.

3. Seeing correct distances between clusters in a t-SNE plot makes it necessary to fine-tune the
perplexity value or may not be possible at all. Even clusters that have very different distances
between them in the original high-dimensional space may look equidistant in a t-SNE plot.

4. Not all clusters in a t-SNE plot are meaningful. Even if the data to be visualized is drawn from a
high-dimensional unit Gaussian distribution, distinct clusters may appear in t-SNE plots.

Thus, it is good practice to try a few different perplexity values and to run the algorithm multiple times
with the same hyperparameter settings to get an idea of the reproducibility of the algorithm’s result.
Section C.6 in the Appendix exemplarily shows the impact of different perplexity values on the t-SNE
plot of the activations states are mapped to in the hidden layer of a 2-layer DQN.



3
Characteristics of Internal State

Representations During Learning
The black-box nature of neural networks makes it hard to comprehend what deep RL agents learn and
whether this is in line with what we ideally would want them to learn. Intuitively, a deeper understand-
ing of what such agents learn should thus enable us to comprehend to a higher degree why certain
algorithms or network architectures perform better than others and to develop methods that specifically
target discrepancies between what is and what should be learned. When we speak of what a deep RL
agent learns, we thereby mean the internal state representations that it forms of its environment. Such
an internal state representation is the combination of all distinctions the agent makes for the obser-
vations it receives from its environment and may consist of multiple internal states. Each observation
(history) from the environment is mapped to exactly one internal state. For example, if a firefighter robot
has learned to not distinguish observations based on the color of a house, it may map the observa-
tions ”smoke above blue house” and ”smoke above orange house” to the internal state ”smoke above
house” and the house color thus cannot inform the agent’s action choice. In a neural network, an in-
ternal state representation exists in each network layer as the combination of the activations (histories
of) observations are mapped to.

What should a deep RL agent ideally learn? To minimize the amount of data, time and memory
required for training, an agent should ideally form an internal state representation that is as small as
possible while still allowing the agent to learn to act optimally in a domain. In addition, the learned inter-
nal state representations should at test time enable an agent to generalize to new values of irrelevant
features and to quickly adapt to modifications to the rewards or transition probabilities, as long as these
modifications do not make previously irrelevant features relevant. These two aspects are important,
because high-dimensional observations such as images render it infeasible to train an agent with all
possible feature values, and some applications, such as in robotics, may feature domain shifts. Lastly,
since rewards and transition probabilities are commonly approximated, the representation should be
relatively insensitive to small estimation errors. A state representation that satisfies these criteria is the
coarsest Markov state representation and it is hence this specific state representation that lies at the
heart of our work1. In this representation, Euclidean distances between states are proportional to how
behaviorally similar the states are, which is measured by the bisimulation metric 𝑑፟።፱2.

Why may a deep RL agent not learn what it should ideally learn? Practically, however, an agent
may not learn the coarsest Markov state representation. This is due to several reasons, among which
are the following:
1Recall that our definition of the coarsest Markov state representation differs from the one used in the context of state abstraction.
In state abstraction, the coarsest Markov state representation merely is the representation that regards states as equivalent if
and only if they are bisimilar and thus does not impose any distances between internal states. See Section 2.1 for details on
the coarsest Markov state representation as it is defined in our work.

2Refer to Section 2.7.1 for more information on this bisimulation metric.
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• The state space may be small compared to the capacity of the agent. In this case, the agent can
precisely store relevant information for each single state, which renders any abstraction of the
state space unnecessary. Even if some abstraction occurs, one state equivalence class under
the notion of stochastic bisimulation could be distributed over multiple internal states.

• The output layer of a Q-learning agent has to group states together that have the same expected
cumulative reward for taking any action 𝑎 ∈ 𝐴 and executing an optimal policy afterwards. In this
form of abstract state representation called 𝑄∗-irrelevance abstraction, even states that are not
bisimilar may be considered equivalent3. This also implies that the representations learned in
hidden layers might just fall between the encoding of the input and a 𝑄∗-irrelevance abstraction.

The purpose of the experiments in this chapter therefore is to explore the internal state represen-
tations formed in the network layers of deep RL agents during training. Thereby, we are especially
interested in how similar to the coarsest Markov state representation the internal state representations
are. To this end, we analyze the process by which the internal state representations are learned and
the factors that impact this process in Section 3.2. All of our experiments in this chapter are performed
for model-free Q-learning agents for fully observable domains, but initial results for partially observable
domains are provided in Chapter B in the Appendix. Note that while we investigate the internal state
representations in both hidden and output layers, especially the hidden-layer representations are of
interest, as the output layer of a Q-learning agent is constrained to learn to represent the Q-values.
Our experimental approach is laid out in more detail in Section 3.1.

3.1. Methodology

Figure 3.1: Flow-chart of the experiments we conduct for a neural network for the first research question. The actions colored in
orange are performed solely for fully observable domains.

We train neural networks for approximately representing Q-functions as described in Section 2.4.1
for several fully and partially observable domains. For the fully observable domains, we thereby add
a superfluous feature to the observations so that the observations contain more information than is
necessary. For our experiments, we use different network architectures and types of state encoding to
explore the impact of these factors on the learning process. For each network architecture, state en-
coding and domain, we compute bisimulation-based correlation coefficients for each training episode
and network layer. These correlation coefficients measure how similar to the coarsest Markov state
representation and more specifically how Markov with respect to the rewards and transitions an inter-
nal state representation is4. We also create t-SNE plots5 of internal state representations to intuitively
3When we use the term ፐ∗-irrelevance abstraction in our work, we mean the coarsest ፐ∗-irrelevance abstraction in which the
Euclidean distances between abstract states are proportional to the Euclidean distances between the corresponding Q-values.
Note that a ፐ∗-irrelevance abstraction as defined in the context of state abstraction does not impose any Euclidean distances
between abstract states. Refer to Section 2.5 for more information on a ፐ∗-irrelevance abstraction in state abstraction.

4A state representation that is Markov with respect to the reward is one in which knowledge of past states does not allow for a
more accurate prediction of the next reward [42]. The definition of Markov with respect to the transitions proceeds analogously.

5Refer to Section 2.8 for more information on the t-SNE algorithm.
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visualize what an agent has learned. A flow-chart for the set of experiments conducted for a neural net-
work for this research question is depicted in Figure 3.1. Subsequently, we provide detailed information
on the computed correlation coefficients, domains, state encoding, network architectures and training
procedure, and the t-SNE visualizations that we create for the internal state representations learned
by agents in fully observable domains. Our precise methodology and results for partially observable
domains are discussed in Chapter B in the Appendix.

3.1.1. Correlation Coefficients
The Pearson correlation coefficient is a measure of the linear correlation between two variables. We
calculate Pearson correlation coefficients based on bisimulation metrics as well as some other mea-
sures on the one hand and the Euclidean distances between the activations states are mapped to in
a network layer on the other hand. Letting 𝑑፞፮፥(𝑠። , 𝑠፣) denote the Euclidean distance of the activa-
tions 𝑠። and 𝑠፣ are mapped to and 𝑑፦(𝑠። , 𝑠፣) the distance of 𝑠። and 𝑠፣ for some, in our case typically
bisimulation-based, measure, the Pearson correlation coefficient 𝑟 ᑖᑦᑔᑝ ,፝ᑞ is:

𝑟 ᑖᑦᑔᑝ ,፝ᑞ =
∑|ፒ|ዅኼ።ኺ ∑|ፒ|ዅኻ፣።ዄኻ(𝑑፞፮፥(𝑠። , 𝑠፣) − 𝑑፞፮፥)(𝑑፦(𝑠። , 𝑠፣) − 𝑑፦)

√∑|ፒ|ዅኼ።ኺ ∑|ፒ|ዅኻ፣።ዄኻ(𝑑፞፮፥(𝑠። , 𝑠፣) − 𝑑፞፮፥)ኼ√∑
|ፒ|ዅኼ
።ኺ ∑|ፒ|ዅኻ፣።ዄኻ(𝑑፦(𝑠። , 𝑠፣) − 𝑑፦)ኼ

, (3.1)

where . denotes an average. Note that |ፒ|(|ፒ|ዅኻ)ኼ samples are used for the computation.

3.1.1.1 Correlation Coefficients Based on Bisimulation Metrics
We compute correlation coefficients based on both bisimulation metrics and bisimulation metric com-
ponents. The reasoning for also calculating component measures is twofold. First, the bisimulation
distance between two states is a weighted sum of the distance of their reward functions and the dis-
tance of their transition functions. The weights for these two components typically are set to 1 − 𝛾 and
𝛾, respectively [12]. Yet, the discount factor 𝛾 is in some sense arbitrary, as many domains have no
fixed 𝛾 associated with them and a neural network may learn successfully for multiple different values
for 𝛾. Thus, by calculating the component measures rather than the composed bisimulation metric, the
problem of choosing an appropriate value for 𝛾 is avoided. Second, calculating the component mea-
sures allows to distinguish when the state representation becomes approximately Markov with respect
to the next state from when the state representation approximately allows the prediction of the next
reward. When evaluating the results based on these component measures, however, it is important to
remember that the predictability of the next reward typically only contributes by a very small amount to
the bisimulation metrics as high values for 𝛾 are common.

These are the correlation coefficients that are based on exact (components of) bisimulationmetrics6:

1. 𝑐ፊ(፝ᑗᑚᑩ).

• Definition. This is the Pearson correlation coefficient between the bisimulation metric 𝑑፟።፱
on the one hand and the Euclidean distances between the activations the states are mapped
to in a neural network layer on the other hand. 𝑑፟።፱ is not only dependent on the transition
functions of states, but also on their reward functions and the discount factor 𝛾7. As Eu-
clidean distances in the coarsest Markov state representation are proportional to distances
assigned by 𝑑፟።፱, 𝑐ፊ(፝ᑗᑚᑩ) is a measure of whether a state representation is similar to the
coarsest Markov state representation.

• Computation. Computing 𝑐ፊ(፝ᑗᑚᑩ) requires the calculation of 𝑑፟።፱ as the least fixed point of
Equation 2.6 with 𝑑ፏ = 𝑇ፊ(𝑑). We compute this least fixed point exactly for all our domains8.

6Additionally, we originally computed another bisimulation-based correlation coefficient, ᑂ, which proved not to be useful and
is described in Section D.1.2 in the Appendix.

7This dependence on the reward function and the discount factor originally motivated us to compute the correlation coefficient
ᑂ as described in Section D.1.2 in the Appendix.

8This computation is expensive. For Gridworld 5x5 with the state space augmented by means of the superfluous feature value
and thus a state space size of ኺኺ, calculating ፝ᑗᑚᑩ exactly takes several days on CPUs of the TU Delft HPC cluster. Of
course, we could simplify the computations based on our domain knowledge that all states that differ only in the superfluous
feature value are bisimilar and hence have the same values for ፝ᑗᑚᑩ for all other states, but such domain knowledge may not
be available in practice.

http://insy.ewi.tudelft.nl/content/hpc-cluster
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The pseudocode for the computation of 𝑑፟።፱ is given in Algorithm 1 in Section 2.7.1.1. Af-
terwards, the Pearson correlation coefficient is determined as defined in Equation 3.1.

2. 𝑐ፑ፞፰.

• Definition. This is the Pearson correlation coefficient between the maximum absolute reward
distances of the states on the one hand and the Euclidean distances between the activations
the states are mapped to in a neural network layer on the other hand. Note that the absolute
reward distance of states is a component of the bisimulation metrics (see Equation 2.6). A
high value for 𝑐ፑ፞፰ indicates that there is one cluster in the space of activations for each
set of states that have the same immediate rewards for all actions, and that the Euclidean
distances between those clusters correspond to how different the immediate rewards are.

• Computation. The maximum absolute reward distance between states 𝑠። and 𝑠፣ is given by:

𝑚𝑎𝑥ፚ∈ፀ|𝑅(𝑠። , 𝑎) − 𝑅(𝑠፣ , 𝑎)|. (3.2)

After the calculation of the pairwise maximum absolute reward distances between states
and the pairwise Euclidean distances of the activations states are mapped to, the Pearson
correlation coefficient is computed (see Equation 3.1).

3. 𝑐ፓፕ.

• Definition. This is the Pearson correlation coefficient between the maximum total-variation
distances 𝑇ፓፕ of the transition functions of the states on the one hand (see Equation 2.8)
and the Euclidean distances between the activations the states are mapped to in a neural
network layer on the other hand. Recall that the total-variation distance of the transition
function of states is a component of the bisimulation metric 𝑑ፓፕ (see Equation 2.7). A high
value for 𝑐ፓፕ indicates that there exist clusters in the latent space for all states that have the
same transition probabilities for all actions, and that the Euclidean distances between those
clusters are proportional to how different the transition probabilities are9. 𝑐ፓፕ can thus be
seen as a measure of how well a state representation allows for the prediction of the next
state in the input MDP10.

• Computation. Computing 𝑇ፓፕ for a pair of states 𝑠።, 𝑠፣ and an action 𝑎 requires summing
the absolute distances between the probabilities of transitioning from 𝑠። and 𝑠፣ to each state
after taking 𝑎. Afterwards, the maximum over all actions is taken when calculating 𝑐ፓፕ. The
pseudocode for this is given in Algorithm 3 and the subsequent computation of the Pearson
correlation coefficient is defined in Equation 3.1.

Algorithm 3 Computation of 𝑚𝑎𝑥ፚ∈ፀ(𝑇ፓፕ(𝑃(𝑠። , 𝑎), 𝑃(𝑠፣ , 𝑎))) for 𝑠። , 𝑠፣ ∈ 𝑆
Require: 𝑆, 𝐴, 𝑃(𝑠።) (transition function of 𝑠። ∀𝑎 ∈ 𝐴), 𝑃(𝑠፣) (transition function of 𝑠፣ ∀𝑎 ∈ 𝐴)
1: 𝑇_𝑇𝑉፦ፚ፱ ← 0
2: for 𝑎 ∈ 𝐴 do
3: 𝑇_𝑇𝑉፦ፚ፱ ← 𝑚𝑎𝑥(𝑇_𝑇𝑉፦ፚ፱ ,

ኻ
ኼ ∑፬∈ፒ |𝑃(𝑠|𝑠። , 𝑎) − 𝑃(𝑠|𝑠፣ , 𝑎)|)

4: end for
5: return 𝑇_𝑇𝑉፦ፚ፱

We calculate these (components of) bisimulation metrics based on the exact tabular reward and tran-
sition functions of a domain. However, Section C.2 in the Appendix also analyzes the impact of using
empirical reward and transition functions for 𝑐ፑ፞፰ and 𝑐ፓፕ instead.

Furthermore, we compute a correlation coefficient based on approximate bisimulation metrics for
some experiments:
9Since ፓᑋᑍ is a probability semimetric, it does not necessarily fulfill the triangle inequality. Therefore, it may not be possible to
create a state representation in which all Euclidean distances between the activations of states are precisely proportional to
ፓᑋᑍ.

10The next state in the input MDP is not necessarily the same as the next internal state of an internal state representation.
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4. 𝑐፝ᖤᑗᑚᑩ .

• Definition. This is the coefficient of the correlation between the distances of the states with
respect to an approximation of 𝑑፟።፱ on the one hand and the Euclidean distances between
the activations the states are mapped to in a neural network layer on the other hand. We
compare using 𝑐፝ᖤᑗᑚᑩ to utilizing 𝑐ፊ(፝ᑗᑚᑩ) in Section C.3 in the Appendix, since 𝑑፟።፱ is very
costly to exactly compute in practice.

• Computation. 𝑑፟።፱ is approximated by means of the algorithm by [8] described in Section
2.7.1.211. The precise hyperparameter values used for the approximation algorithm are
given in Section D.1.1 in the Appendix and the computation of the Pearson correlation co-
efficient is defined in Equation 3.1.

3.1.1.2 Other Correlation Coefficients
For some experiments, we also compute the following correlation coefficients, which are not based on
bisimulation metrics:

1. 𝑐ፄ. This is the coefficient of the correlation between the Euclidean distances of the encoded states
on the one hand and the Euclidean distances between the activations the states are mapped to
in a neural network layer on the other hand. In domains where states with similar encodings are
not behaviorally similar, one would expect 𝑐ፄ to be lower at the end than at the start of training if
a representation that is similar to the coarsest Markov state representation is learned.

2. 𝑐ፐ∗ . This is the Pearson correlation coefficient between the maximum absolute distances of states
with respect to 𝑄∗ on the one hand and the Euclidean distances between the activations the states
are mapped to in a neural network layer on the other hand. The maximum absolute distance with
respect to 𝑄∗ for two states 𝑠። and 𝑠፣ is given by:

𝑚𝑎𝑥ፚ∈ፀ|𝑄∗(𝑠። , 𝑎) − 𝑄∗(𝑠፣ , 𝑎)|. (3.3)

This correlation coefficient is computed to determine how close to a 𝑄∗-irrelevance abstraction12
the learned state representation of a deep RL agent is. However, notice that calculating 𝑐ፐ∗
exactly for large domains is intractable, as it requires knowing the Q-values.

3.1.2. Domains
Our primary experiments are conducted on four fully observable domains, which are the deterministic
4x4 and 8x8 FrozenLake domains from OpenAI Gym and two of the Gridworld domains used in [14].
For each of these domains, one noise dimension is added to the observations to obtain observations
with redundant information. This superfluous feature is uniformly at random given one of five possible
values13.

3.1.2.1 Deterministic FrozenLake
The deterministic FrozenLake domains from OpenAI Gym consist of a grid that contains a start state,
a goal state, frozen states and holes. Stepping into a hole as well as exceeding 200 steps or reaching
the goal state end an episode. The agent can choose from the actions {𝑁𝑜𝑟𝑡ℎ, 𝑆𝑜𝑢𝑡ℎ, 𝐸𝑎𝑠𝑡, 𝑊𝑒𝑠𝑡} at
each non-terminal state. State transitions are deterministic. In the original implementation, a reward of
1 is received for reaching the goal state, and a reward of 0 for all other state-action combinations. To
obtain more diverse values for the reward distances of states, the implementation is adapted for this
work in that a reward of −1 is given for falling into a hole.
11Note that while the algorithm by [8] is designed only for deterministic MDPs, our fully observable domains are stochastic only
in the sense that the superfluous feature value of a state is sampled randomly. Thus, the superfluous feature can be seen as
noise just as in the experiments conducted by [8] on a 31-state MDP.

12Recall that when we use the term ፐ∗-irrelevance abstraction in our work, we mean the coarsest ፐ∗-irrelevance abstraction
in which the Euclidean distances between states are proportional to the Euclidean distances between the corresponding Q-
values.

13More information on the superfluous feature is provided in Section 3.1.3.
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FrozenLake 4x4. The deterministic 4x4 FrozenLake domain consists of a 4x4 grid as depicted in
Figure 3.2a. Since there are 11 non-terminal ground states and 5 values for the superfluous feature, a
network has found an optimal policy when 55 optimal actions have been learned. Yet, as the start state
is fixed and any optimal path from the start to the goal state covers only 6 non-terminal states, learning
30 optimal actions can already mean that an agent always reaches the goal state (see Figure 3.2b).

(a) (b)
Figure 3.2: a) Deterministic 4x4 FrozenLake domain. The start state is denoted by S, the goal state by G, frozen states by F,
and holes by H. b) Optimal actions for each non-terminal state.

FrozenLake 8x8. The deterministic 8x8 FrozenLake domain consists of an 8x8 grid as depicted in
Figure 3.3a. An optimal policy has been achieved when 265 optimal actions have been learned, as
there are 53 non-terminal ground states and 5 possible values for the superfluous feature. Yet, since
the shortest paths from the start to the goal state require solely 14 actions, learning 70 optimal actions
can already mean that an agent always arrives at the goal state (see Figure 3.3b).

(a) (b)
Figure 3.3: a) Deterministic 8x8 FrozenLake domain from OpenAI Gym. The start state is denoted by S, the goal state by G,
frozen states by F, and holes by H. b) Optimal actions for each non-terminal state.

3.1.2.2 Gridworld
Gridworld 3x3 and 5x5. The Gridworld domains used by [14] consist of a 3x3 or 5x5 grid, whereby
the state is a combination of the agent’s position on the grid and its orientation (see Figure 3.4). The
ground state space thus has a dimensionality of 36 for the 3x3 Gridworld, for instance. The agent can
choose from the actions {𝑓𝑜𝑟𝑤𝑎𝑟𝑑, 𝑟𝑜𝑡𝑎𝑡𝑒} at each time point. 𝑟𝑜𝑡𝑎𝑡𝑒 changes the agent’s orientation
clockwise and 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 deterministically moves the agent one step forward if possible. A reward of 1
is obtained for reaching the goal grid location in the center of the grid and a reward of 0 for all other
state-action combinations. The start state is chosen uniformly at random from all non-terminal states
and performing 100 actions or reaching a goal state end an episode. We implemented these Gridworld
domains in the GridWorldSingle package.

Gridworld 3x3 (Aug). Since it holds for the FrozenLake and Gridworld domains that states are bisim-
ilar if and only if they have the same Q-values, we perform experiments with an augmented Gridworld

https://gym.openai.com/envs/FrozenLake-v0/
https://gym.openai.com/envs/FrozenLake8x8-v0/
https://github.com/nelealbers/gridworld
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3x3 domain in which states with the same Q-values are not necessarily bisimilar. Specifically, we copy
all non-terminal states of the Gridworld 3x3 domain and create an additional terminal state, resulting in a
ground state space dimensionality of 69. For each state copy, the transition and reward probabilities for
the optimal action are equal to the ones of the corresponding original state. Taking a non-optimal action
𝑎 in the copy of state 𝑠, however, leads to a reward of 𝑄∗(𝑠, 𝑎) and a transition to the new terminal state.
Thus, the 𝑄∗(𝑠, 𝑎)-values of the copied states are equal to the ones of the original states for all actions,
but the transition probabilities differ. Note that a 𝑄∗-irrelevance abstraction would map each copied
state to the same activation as the corresponding original state, whereas the coarsest Markov state
abstraction would map an original state and its copy to distinct activations. This augmented Gridworld
3x3 domain is referred to as Gridworld 3x3 (Aug).

(a) (b)
Figure 3.4: Gridworld 3x3 domain. a) Environment grid. For each grid location, four triangles represent the possible orientations
of the agent. The start state is chosen uniformly at random from all non-terminal states and the goal states are denoted by G. b)
Optimal actions for all non-terminal states. Arrows indicate that the optimal action is to move forward, whereas a circle signifies
that the optimal action is to rotate clockwise.

3.1.3. State Encoding
We make use of different forms of state encoding, the reason for which is twofold. First, research in
the context of classification suggests that the classification performance of a neural network strongly
depends on the pre-processing of the input data, including the scaling and encoding of categorical
and continuous variables [10, 16, 50]. Thus, the state representation a deep RL learns may also be
contingent on the way the states are encoded. Second, each form of state encoding has an inherent
correlation with respect to the bisimulation-based measures based on whether states that are close
with respect to a measure are encoded in similar ways. This may impact whether the coarsest Markov
state representation is learned. Intuitively, encoding bisimilar states in similar ways may make it more
likely that a DQN creates the coarsest Markov state representation in one of its layers than one-hot
encoding all states, for example.

Ground state encoding. The ground state is either one-hot encoded or encoded via features. These
two forms of ground state encoding are referred to by (OH) and (F), respectively. For the FrozenLake
4x4 domain, a ground state is specified via the x- and y-coordinates of the grid location if it is encoded
via features. For the Gridworld 3x3 domain, we use the x- and y-coordinates and the orientation as
features. For the other domains, we always one-hot encode the ground state. Notice that when the
ground states are one-hot encoded, there is a Pearson correlation coefficient of 0 between the Eu-
clidean distances of the encoded ground states and the bisimulation-based measures, whereas this is
not necessarily the case for the feature-based encoding. However, one-hot encoding greatly increases
the dimensionality of the input and hence is feasible only for moderately-sized state spaces.

Superfluous feature encoding. In addition to these two forms of encoding the ground states, we
perform experiments with three different ways of encoding the superfluous feature:

1. The superfluous feature is uniformly at random given one of 5 possible values between 0 and 4.
Especially in the case of one-hot encoded states, this leads to a significantly different scale for
the superfluous feature compared to the features encoding the ground state. Since the feature
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Figure 3.5: Different ways of encoding ground state ዃ with a superfluous feature value of ኾ in the FrozenLake 4x4 domain.
Ground state: (OH) and (F) signify that the ground state is one-hot encoded and encoded via features, respectively. Superflu-
ous feature: No extension means that the superfluous feature is given a value from {ኺ, ኻ, ኼ, ኽ, ኾ}, (N) denotes that the superfluous
feature and the features encoding the ground state are subsequently scaled to the interval [ኺ, ኻ], and (F-OH) expresses that the
superfluous feature value is one-hot encoded.

values impact the weight updates during gradient descent, thismay cause someweights to update
faster than others. Yet, it is interesting to observe whether a DQN learns to map states with
solely different values for the superfluous feature to similar activations in this case, as with a
randomweight initialization such states are initially mapped to activations with comparatively large
Euclidean distances between them. When one-hot encoding the ground states, for instance, the
Euclidean distance between the activations the encoded states 𝑠ኻ = [0, 1, 1] and 𝑠ኼ = [0, 1, 3],
which belong to the same ground state [0, 1], are mapped to will tend to be larger at the beginning
of training than the one between the activations that 𝑠ኻ and 𝑠ኽ = [1, 0, 1], which belong to different
ground states but have the same superfluous feature value, are mapped to.

2. The superfluous feature is randomly given one of 5 possible values between 0 and 4 and both the
features encoding the ground state and the superfluous feature are subsequently scaled to the
interval [0, 1]14. This encoding ensures that the features do not have different scales. Yet, two
states that differ merely in the superfluous feature value are already mapped to comparatively
similar activations by the initial DQN, which means that the network has to do less work to group
such states together. When one-hot encoding the ground states, for example, the Euclidean
distance between the activations the encoded states 𝑠ኻ = [0, 1, 0.25] and 𝑠ኼ = [0, 1, 0.75], which
belong to the same ground state [0, 1], are mapped to will tend to already be smaller at the
beginning of training than the one between the activations that the encoded states 𝑠ኻ and 𝑠ኽ =
[1, 0, 0.25], which belong to different ground states but have the same value for the superfluous
feature, are mapped to. This form of superfluous feature encoding is denoted by (N).

3. The superfluous feature is randomly given one of 5 possible values between 0 and 4 and the
superfluous feature is subsequently one-hot encoded. This encoding is solely utilized for one-hot
encoded ground states and combines the advantages of the previous two forms of superfluous
feature encoding when it comes to studying whether a DQN forms the coarsest Markov state rep-
resentation. The reasons are that all features of the encoding have the same scale and that states
corresponding to the same ground state are not already mapped closer together than states be-
longing to different ground states at the beginning of training. The states from the example above
now would be encoded as 𝑠ኻ = [0, 1, 0, 1, 0, 0, 0], 𝑠ኼ = [0, 1, 0, 0, 0, 1, 0] and 𝑠ኽ = [1, 0, 0, 1, 0, 0, 0].
This means that the activations that 𝑠ኻ and 𝑠ኼ are mapped to do not tend to be closer in Euclidean
distance than the ones 𝑠ኻ and 𝑠ኽ are mapped to at the beginning of training. We denote this type
of superfluous feature encoding by (F-OH).

14Disparate results exist in the literature as to whether scaling of the input to the interval [ኺ, ኻ] or to [ዅኻ,ዄኻ] is more effective
for neural networks [10, 16]. The interval [ኺ, ኻ] is chosen for this work, because if the ground state is one-hot encoded, the
resulting encoding still one-hot encodes the ground state and thus is more comparable to the other forms of state encoding
that we experiment with.
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In total, we employ 5 different types of state encoding for the Gridworld 3x3 and FrozenLake 4x4
domains and 3 ways of encoding states for the Gridworld 5x5 and FrozenLake 8x8 domains. Notice
that the location-based encoding of ground states is used solely for the Gridworld 3x3 and FrozenLake
4x4 domains. The 5 types of state encoding are visualized in Figure 3.5.

3.1.4. DQN Implementation and Training
2- and 4-layer DQNs with hidden layers of sizes 1 to 50 are trained for each domain and for the pre-
viously described different types of state encoding. The correlation coefficients are thereby computed
for each training episode. In addition, we test the networks and compute the number of optimal actions
learned after each training episode. Based on these experiments, we use the following terminology
when referring to different hidden layer sizes for a network:

• Just-right hidden layer size. This is the smallest hidden layer size for which a network converges
to the optimal policy at least one time out of 5 times in our experiments.

• Larger-than-necessary hidden layer sizes. These are all hidden layer sizes larger than the small-
est hidden layer size for which a network converges to the optimal policy at least one out of 5
times in our experiments.

• Sufficiently large hidden layer sizes. These are all hidden layer sizes that allow a DQN to converge
to the optimal policy at least one out of 5 times in our experiments.

Furthermore, we say that the test rewards have converged when an agent arrives at a goal state for
each test episode at the end of training. The detailed training procedure and network architectures are
described in Section D.2 in the Appendix.

3.1.5. t-SNE Visualization
To visualize internal state representations, we create t-SNE plots as explained in Section 2.8 with a
default perplexity value of 3015. Thereby, the activations of all states belonging to the same ground
state are drawn in the same color. Specifically, this means that the activations of all states that differ
solely in the superfluous feature value are depicted in the same color.

FrozenLake. For the FrozenLake domains, states corresponding to ground states with similar best
and worst actions are further depicted in similar colors. For example, all ground states with the optimal
action ”down” and the worst action ”right” in the FrozenLake 8x8 domain are drawn in a shade of
yellow (see Figure 3.6b). In addition, all states corresponding to holes in the FrozenLake domains are
visualized in a shade of blue or purple and those corresponding to the start and goal state in dark and
bright green, respectively. Notice that all terminal states both are bisimilar and have the sameQ-values.
The precise coloring schemes are shown in Figure 3.6.

(a) FrozenLake 4x4. (b) FrozenLake 8x8.
Figure 3.6: Colors used for each ground state of the FrozenLake domains in t-SNE plots. All states corresponding to holes are
depicted in a shade of blue or purple, the start state in dark green and the goal state in bright green. All other states are colored
so that states with similar best and worst actions have similar colors. Note that the ground states colored in white for FrozenLake
8x8 are not bisimilar.

15Section C.6 in the Appendix exemplarily shows the impact of different perplexity values on the t-SNE plot of the activations
states are mapped to in the hidden layer of a 2-layer DQN and justifies our setting of ኽኺ.
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Gridworld. For the Gridworld domains, states corresponding to ground states with the same se-
quence of optimal actions until reaching a goal state, which both are bisimilar and have the same
Q-values, are further shown in the same color. For instance, all ground states from which the agent
most quickly reaches a goal state via the actions ⟨𝑟𝑜𝑡𝑎𝑡𝑒, 𝑟𝑜𝑡𝑎𝑡𝑒, 𝑟𝑜𝑡𝑎𝑡𝑒, 𝑓𝑜𝑟𝑤𝑎𝑟𝑑⟩ are visualized in
red for the Gridworld 3x3 domain (see Figure 3.7a). If too many different colors would be required to
distinguish all groups of ground states with the same future optimal action sequences, only a selected
number of such groups is highlighted and the remaining ones are visualized in white. For the aug-
mented Gridworld 3x3 domain, all states corresponding to copied ground states are further depicted
in slightly paler colors than states belonging to the corresponding original ground states as shown in
Figure 3.7b. Moreover, states corresponding to the additional terminal state are drawn in white. The
exact coloring schemes are depicted in Figure 3.7.

(a) Gridworld 3x3. (b) Gridworld 3x3 (Aug) - Copied
states.

(c) Gridworld 5x5.

Figure 3.7: Colors used for each ground state of the Gridworld domains in the t-SNE plots. For each grid location, four triangles
represent the possible orientations of the agent. A circle denotes that the optimal action in a state is ፫፨፭ፚ፭፞ and arrows that the
optimal action is ፟፨፫፰ፚ፫፝. All ground states drawn in the same color are bisimilar unless they are drawn in white.

3.2. Results
To answer the question of what a DQN learns during training, we identify and describe three learning
phases for the hidden- and output-layer representations of DQNs in Section 3.2.1. Furthermore, we
examine several factors that impact the internal state representations formed during these three phases
in Section 3.2.2. We for sake of simplicity look at 2-layer DQNs by default, yet also explore the impact
of using three rather than a single hidden layer.

3.2.1. Learning Process
Figure 3.8 exemplarily shows for a 2-layer DQN for the Gridworld 3x3 (OH)(F-OH) domain that the
learning process of DQNs consists of three overlapping learning phases for the hidden and output
layers:
1. States are grouped based on multi-step rewards. This process is visualized by the initial steep

increase and subsequent step-wise decrease in the reward-based correlation coefficient 𝑐ፑ፞፰.
2. The internal state representations become more similar to the coarsest Markov state represen-

tation and more Markov with respect to the transition function. This pattern is mirrored by the
increase in the correlation coefficients based on 𝑑፟።፱ and 𝑇ፓፕ, 𝑐ፊ(፝ᑗᑚᑩ) and 𝑐ፓፕ, at the beginning
of training.

3. States are increasingly clustered based on Q-values, as visualized by the step-wise increase in
the 𝑄∗-based correlation coefficient, 𝑐ፐ∗ , after an initial plateau.

In the following, we will discuss each of these three phases using a 2-layer DQN for the Gridworld 3x3
(OH)(F-OH) domain as primary example.

3.2.1.1 Learning Phase 1
Since the target network provides the estimates of the Q-values of next states during training, it is not
surprising that the activations of states with the same 𝑛 + 1-step rewards tend to be grouped together,
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Figure 3.8: Correlation coefficients and t-SNE plots of the activations the states are mapped to during training for the layers of a
2-layer DQN for the Gridworld 3x3 (OH)(F-OH) domain. The hidden layer size is equal to ኺ and the target network is updated
every ኺ training episodes. The t-SNE coloring scheme is shown at the top.

where 𝑛 is the number of times the target network has been updated. For example, Figure 3.8 shows
that a 2-layer DQN for the Gridworld 3x3 (OH)(F-OH) domain forms a separate cluster for the states
whose activations are colored in dark green while the target network has not yet been updated. This
is the case, because those states have an immediate reward of 1 for one action whereas all other
states have an immediate reward of 0 for all actions. Once the target network has been updated once,
separate clusters are also created for the states whose activations are drawn in dark pink, because
those states have a non-zero two-step reward for one action. This pattern of grouping states based
on 𝑛 + 1-step rewards can nicely be measured by the reward-based correlation coefficient 𝑐ፑ፞፰. The
reason is that 𝑐ፑ፞፰ takes on the highest value if states are distinguished solely based on immediate
rewards and progressively lower values whenmore distinctions are made. This behavior is visualized in
Figure 3.8, where 𝑐ፑ፞፰ quickly increases to a value near 1 at the beginning of training and subsequently
decreases for each of the first 4 times that the target network is updated16.

3.2.1.2 Learning Phase 2
Figure 3.8 depicts that the formed first- and second-layer representations become progressively more
Markov with respect to the transition function and closer to the coarsest Markov state representation,
indicated by 𝑐ፓፕ and 𝑐ፊ(፝ᑗᑚᑩ) respectively, at the beginning of training. This intuitively makes sense,
because as DQNs learn to output multi-step rewards, they also need to represent the transition function
in someway. For instance, t-SNE plots 2 in Figure 3.8 visualize that before the target network is updated
for the first time, most terminal states, which are drawn in bright green, already form a distinct cluster.
This occurs despite the fact that the immediate rewards for all actions are equal to 0 for the terminal
states just like for all other states whose activations are not shown in dark green. Hence, the DQN has
16In the Gridworld 3x3 domain, at most  steps are needed to reach a goal state from any state under ∗. So when the target
network has been updated ኾ times, the targets during training are based on  steps and thus significantly different from ኺ for
each state’s optimal action. Once the target network is updated one more time, the DQN converges to the true Q-values, as
Q-values are based on at most ዀ transitions for this domain.
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not only learned to represent the immediate rewards for the states whose activations are colored in
dark green, but also the transition function.
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Figure 3.9: Mean ᑋᑍ and ᑂ(ᑕᑗᑚᑩ) for the layers of 2-layer DQNs with a hidden layer size of ዂ for the Gridworld 3x3 (OH)(F-OH)
domain. Values are based on  repetitions and ዃ%-confidence intervals are shown. The term input layer refers to the state
encoding.

The first-layer representation tends to be more Markov with respect to the transition function
and closer to the coarsest Markov state representation than both the encoding of the input
and the output-layer representation. It is therefore not the case that the first layer just forms a
representation that falls between the encoding of the input and the representation learned by the output
layer. This is visualized exemplarily in Figure 3.9 for a 2-layer DQN with a hidden layer size of 8 for the
Gridworld 3x3 (OH)(F-OH) domain, where 𝑐ፓፕ and 𝑐ፊ(፝ᑗᑚᑩ) are typically higher in the first than in the
input17 and output layers18. The higher values of 𝑐ፓፕ and 𝑐ፊ(፝ᑗᑚᑩ) in the first network layer compared
to the output layer largely stem from different distances between the abstract states that are created.
For instance, Figure 3.10 shows that once the target network has been updated twice for the Gridworld
3x3 (OH)(F-OH) domain, the same clusters of states are present in the first and the output layer. Due
to the higher value for 𝑐ፊ(፝ᑗᑚᑩ) in the first than in the second layer, the inter-cluster distances in the
first layer are thus based more on bisimilarity and less on multi-step rewards than in the output layer19.
Furthermore, the higher value for 𝑐ፓፕ in the first layer additionally results from slightly less similar
activations for bisimilar states from different ground states in the first than in the output layer20. For
example, the dark pink and black clusters in Figure 3.10a are made up of 4 sub-clusters, one for each
ground state.

Supporting evidence. We provide experimental results for three more domains in Section A.1.1.1.
Moreover, one might argue that the observation that the internal state representations become more
similar to the coarsest Markov state representation during this phase of training is solely the byproduct
of clustering states based on multi-step rewards or the result of the way a domain is explored. We thus
conducted further experiments, which show that the hidden- and output-layer state representations
also become more similar to the coarsest Markov state representation during this phase of learning
in a domain in which states with the same Q-values are not necessarily bisimilar, and when a fixed
replay memory is used during training in Sections A.1.1.2 and A.1.1.3. Furthermore, the first-layer
representation tends to also be more similar to the coarsest Markov state representation and more
Markov with respect to the transition function than the ones in subsequent hidden layers as discussed
17The term input layer refers to the state encoding. There are hence no weights to tune for this layer.
18In addition, Figure A.24 in the Appendix makes clear for the Gridworld 3x3 (OH)(F-OH) domain that the peak first-layer values
of ᑋᑍ and ᑂ(ᑕᑗᑚᑩ) are on average higher than the ones in the output layer and the constant input-layer values for all just-right
and larger-than-necessary hidden layer sizes. Note that looking at the mean peak values of ᑋᑍ and ᑂ(ᑕᑗᑚᑩ) is useful for
a Gridworld domain, because the peaks occur for both layers at similar times during the beginning of training and ᑋᑍ and
ᑂ(ᑕᑗᑚᑩ) subsequently decrease (see Figure 3.9).

19One could be tempted to draw this conclusion based on the inter-cluster distances in the t-SNE plots in Figure 3.10 alone. For
instance, the activations drawn in black and dark pink are very similar compared to the other activations in the output but not
the first layer. While the states corresponding to black and dark pink activations have very similar two-step rewards compared
to the other states, they do not have relatively low distances with respect to ፝ᑗᑚᑩ or ፓᑋᑍ compared to the other states. Yet, the
distances between well separated clusters in t-SNE plots are not necessarily meaningful as discussed in Section 2.8.

20Recall that ᑋᑍ measures how well the next state of the input MDP can be predicted and not necessarily how well next abstract
states under the notion of bisimulation can be predicted.
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(a) First layer. (b) Output layer.
Figure 3.10: t-SNE plots of the activations states are mapped to in the layers of a 2-layer DQN with a hidden layer size of ኽ
for the Gridworld 3x3 (OH)(F-OH) domain after training episode ኻኼ. At this point during training, the target network has been
updated twice.

in Section A.1.1.4. Lastly, Section A.1.1.5 demonstrates that both 𝑐ፊ(፝ᑗᑚᑩ) and 𝑐፝ᖤᑗᑚᑩ , the latter of which
is much faster to compute, enable insights into how similar to the coarsest Markov state representation
an internal state representation is.

3.2.1.3 Learning Phase 3
While states are increasingly clustered based on bisimilarity in the network layers during the second
learning phase, states are at some point progressively grouped by Q-values rather than bisimilarity.
Generally, forming a 𝑄∗-irrelevance abstraction leads to an increase in 𝑐ፐ∗ . This is depicted in Figure
3.8, where 𝑐ፐ∗ begins to increase again near training episode 150 after largely plateauing beforehand.
Ultimately, 𝑐ፐ∗ reaches a value near 1 in both network layers when the DQN converges to the optimal
policy21. At the same time, the value for 𝑐ፊ(፝ᑗᑚᑩ) decreases for this domain as the inter-cluster distances
become more and more different from those of the coarsest Markov state representation22. This is
visualized in Figure 3.8, where 𝑐ፊ(፝ᑗᑚᑩ) begins to decrease exactly when 𝑐ፐ∗ increases again. The final
internal state representations present at the end of training are therefore less similar to the coarsest
Markov state representation for this domain than they were during the second phase of learning.

3.2.2. Factors Impacting the Internal State Representations
Several factors impact which internal state representations are formed in the layers of DQNs. We dis-
cuss factors that influence the representations in all layers during the first and third learning phases in
Section 3.2.2.1 and Section 3.2.2.2, respectively, and aspects impacting the hidden-layer state repre-
sentation during the last two learning phases in Section 3.2.2.3.

3.2.2.1 Internal State Representations During Learning Phase 1
Whether and how quickly effective hidden- and output-layer representations are created during the first
learning phase is contingent on the available data and the hidden layer size.

Available data. While the same pattern of grouping states based on 𝑛 + 1-step rewards is visible for
a 2-layer DQN for the Gridworld 5x5 (OH)(F-OH) domain as depicted in Figure A.1 in the Appendix,
the process of learning is slightly different for the FrozenLake domains. Figure 3.11 shows that it takes
longer to fully group states based on immediate rewards at the beginning of training for the FrozenLake
8x8 (OH)(F-OH) domain. The reason for this is the existence of non-goal terminal states, which make
it more difficult to explore states farther away from the fixed start state. Therefore, only states with the
same immediate rewards that are relatively close to the start state are initially grouped together. Yet,
once sufficient data on states closer to the goal state is available, the activations of all states are also
increasingly clustered based on 𝑛 + 1-step rewards. This is visualized by the step-like decrease in the
21However, ᑈ∗ is not exactly equal to ኻ for a ፐ∗-irrelevance abstraction, as it only captures the maximum absolute distance in
Q-values for any action and hence not the differences in Q-values for all actions.

22Note that as states are bisimilar if and only if they have the sameQ-values in the Gridworld 3x3 domain, the clusters themselves
of the coarsest Markov state representation and of a ፐ∗-irrelevance abstraction are equal.
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reward-based correlation coefficient, 𝑐ፑ፞፰, after an initial peak in Figure 3.1123. Consequently, as a
network can only effectively cluster states based on multi-step rewards when data on many states is
available, a good exploration strategy at the beginning of training is important.

Figure 3.11: Correlation coefficients and t-SNE plots of the activations the states are mapped to for the layers of a 2-layer DQN
for the FrozenLake 8x8 (OH)(F-OH) domain. The hidden layer size is equal to ኺ.

Figure 3.12: Correlation coefficients and t-SNE plots of the activations the states are mapped to for the layers of a 2-layer DQN
for the Gridworld 3x3 (OH) domain. The hidden layer size is equal to ኻ.

23In the FrozenLake 8x8 domain, Q-values are based on at most ኻ transitions, which roughly corresponds to the number of
target network updates for which ᑉᑖᑨ decreases after its initial peak in Figure 3.11.
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Hidden layer size. If the hidden layer size is very small, states may solely be grouped based on
rewards that take a limited number of steps into consideration. For instance, Figure 3.12 shows that a
2-layer DQN with a hidden layer size of 1 for the Gridworld 3x3 (OH) domain does not succeed at fully
clustering states based on more than two-step rewards in its two layers. Instead, after grouping states
based on one- and two-step rewards and partially based on three-step rewards, states are largely
clustered based on immediate rewards again. The latter is indicated by the separate cluster for the
states whose activations are depicted in dark green in t-SNE plot 5 in Figure 3.12 and the accompanying
high value of 𝑐ፑ፞፰. As will be discussed in Section 3.2.2.3, a hidden layer size of 1makes it impossible
to form close to the coarsest Markov state representation or close to a 𝑄∗-irrelevance abstraction in the
first layer, which explains this phenomenon. Hence, to enable clustering of states based on multi-step
rewards, it is important to choose a sufficiently large hidden layer size.

3.2.2.2 Internal State Representations During Learning Phase 3
The extent to which the internal state representations in hidden and output layers are similar to the
coarsest Markov state representation during learning phase 3 and at the end of training depends on
domain characteristics. For example, even though states are bisimilar if and only if they have the
same Q-values in both FrozenLake 8x8 and Gridworld 3x3, the internal state representations become
progressively more similar to the coarsest Markov state representation during the third learning phase
for FrozenLake 8x8, but increasingly less similar for the Gridworld 3x3 domain. This is visualized in
Figure 3.13, where 𝑐ፊ(፝ᑗᑚᑩ) increases towards the end of training in the layers of a 2-layer DQN for the
FrozenLake 8x8 domain, but ultimately decreases in the layers of a 2-layer DQN for the Gridworld 3x3
domain. This is the case, because the inter-cluster distances of a 𝑄∗-irrelevance abstraction and the
coarsest Markov state representation are more similar for FrozenLake 8x8 than for Gridworld 3x3.
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(a) FrozenLake 8x8 (OH)(F-OH).
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(b) Gridworld 3x3 (OH)(F-OH).
Figure 3.13: Mean ᑉᑖᑨ, ᑂ(ᑕᑗᑚᑩ), ᑋᑍ and ᑈ∗ in each layer with ዃ%-confidence intervals for a 2-layer DQN for different
domains. Values are based on  repetitions. The hidden layer size is equal to ኺ.

Besides 𝑐ፊ(፝ᑗᑚᑩ), the values of the other correlation coefficients for a 𝑄∗-irrelevance abstraction also
are domain-dependent. This is mirrored by the mean values of the correlation coefficients in the output
layers at the end of training in Figure 3.13, because the output layer of a DQN ultimately creates a 𝑄∗-
irrelevance abstraction if possible. Hence, based on the values of the bisimulation-based correlation
coefficients alone, one cannot determine the degree to which a 𝑄∗-irrelevance abstraction has been
formed. Moreover, computing the bisimulation-based correlation coefficients does not allow drawing
conclusions as to whether a DQN has discovered or converged to the optimal policy as discussed in
Section A.1.3 in the Appendix.
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3.2.2.3 Hidden-layer State Representations During Learning Phases 2 and 3
The discussion of the three learning phases shows that learning phases 2 and 3 are the phases during
which the degrees to which the internal state representations are similar to the coarsest Markov state
representation change. Thereby, especially the representations in hidden layers are of interest, since
the output layer of a DQN is constrained to learn to represent the Q-values. We find that several factors
impact what kind of internal state representation a DQN learns in its hidden layers during these phases.
More precisely, the representations in hidden layers become closer to the coarsest Markov state rep-
resentation, and are subsequently further abstracted towards a 𝑄∗-irrelevance abstraction, to an extent
that depends on the necessity, difficulty and feasibility of forming such representations. Among the
factors impacting the necessity, difficulty and feasibility are the network capacity as expressed by the
hidden layer size and the number of hidden layers, the state space size and the state encoding. In the
following, we will use the first layer of a 2-layer DQN for the Gridworld 3x3 domain as primary exam-
ple to illustrate our claims. Supporting evidence based on the FrozenLake 4x4, FrozenLake 8x8 and
Gridworld 5x5 domains is given in Section A.1.2 in the Appendix.
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Figure 3.14: Mean peak ᑂ(ᑕᑗᑚᑩ), ᑋᑍ and ᑈ∗ in the first layer with ዃ%-confidence intervals for each hidden layer size for a
2-layer DQN for the Gridworld 3x3 (OH)(F-OH) domain. Values are based on  repetitions. The first and second vertical line
indicate the smallest hidden layer sizes for which the test rewards converge and the network converges to the optimal policy,
respectively, at least one out of  times.

Necessity. The extent to which the first-layer representation becomes similar to the coarsest Markov
state representation during training and is subsequently further abstracted towards a 𝑄∗-irrelevance
abstraction depends on the degree to which this is required for the network to be able to learn the true
Q-values, which is contingent on the network capacity24. Both the hidden layer size and the number of
hidden layers influence the capacity of a network, whereby a network’s flexibility is higher for larger and
more hidden layers. Below, we discuss the impact of the hidden layer size and the number of hidden
layers on the formed first-layer state representation.

• Similarity to a 𝑄∗-irrelevance abstraction. The lower the hidden layer size, the more similar to
a 𝑄∗-irrelevance abstraction of the state space does the first layer need to form during the third
learning phase to allow the network to converge to the true Q-values. This becomes evident in
Figure 3.14, which depicts the peak values of the correlation coefficients for the Gridworld 3x3
(OH)(F-OH) domain for various hidden layer sizes. Recall that the peak value for 𝑐ፐ∗ is attained
at the end of training for the Gridworld domains. Thus, these figures allow us to conclude that 𝑐ፐ∗
takes on the highest value in the first layer at the end of training for hidden layer sizes that are
just large enough to enable the DQN to converge to the optimal policy, and progressively lower
values for larger hidden layer sizes. A similar observation can be made for the Gridworld 5x5
domain and the FrozenLake domains in Figures A.9 and A.1025, respectively, in the Appendix.

• Similarity to the coarsest Markov state representation. The first-layer representation also
tends to become more similar to the coarsest Markov state representation during the second
learning phase when the network’s flexibility is lower. For example, Figure 3.14 shows that the

24While one could thus assume that computing the correlation coefficients allows drawing conclusions regarding the adequacy
of a network’s capacity, Section A.1.4 in the Appendix demonstrates that this is not the case.

25Notice that this figure shows the final values of the correlation coefficients at the end of training instead of the peak values,
because the peak value for ᑈ∗ for the FrozenLake 8x8 domain does not necessarily occur at the end of training.
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Training episode ኼ. Training episode . Training episode ኻኼ.
(a) ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞  ኽ.

Training episode ኼ. Training episode . Training episode ኻኼ.
(b) ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞  ኺ.
Figure 3.15: t-SNE plots of the activations the states are mapped to for the first layers of 2-layer DQNs with different hidden layer
sizes for the Gridworld 3x3 (OH)(F-OH) domain. Since the target network is updated every ኺ episodes for this domain, it has
been updated ኺ, ኻ and ኼ times at training episodes ኼ,  and ኻኼ, respectively.

mean peak value of 𝑐ፊ(፝ᑗᑚᑩ) in the first layer of a 2-layer DQN for the Gridworld 3x3 (OH)(F-
OH) domain is lower for much larger-than-necessary hidden layer sizes than for just-right and
slightly larger ones. As depicted in Figure 3.15 for 2-layer DQNs for the Gridworld 3x3 (OH)(F-
OH) domain, the decreasing extent to which the first-layer representation becomes similar to the
coarsest Markov state representation for larger hidden layer sizes is due to both bisimilar states
from different ground states and bisimilar states differing solely in the superfluous feature value
being mapped to less similar activations26. Similarly, the first-layer representation of a 2-layer
DQN becomes close to the coarsest Markov state representation to higher degrees than the one
of a 4-layer DQN for just-right hidden layer sizes (see Figure 3.16).
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(a) 2-layer DQN.
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(b) 4-layer DQN.
Figure 3.16: Mean peak ᑂ(ᑕᑗᑚᑩ), ᑋᑍ and ᑈ∗ in the first layer with ዃ%-confidence intervals for each hidden layer size for a 2-
and a 4-layer DQN for the Gridworld 3x3 (OH)(F-OH) domain. Values are based on  repetitions. The first and second vertical
line indicate the smallest hidden layer sizes for which the test rewards converge and the network converges to the optimal policy,
respectively, at least one out of  times.

Yet, while increasing the network capacity generally causes the first-layer representation to be-
26Recall that always ኾ ground states are bisimilar in the Gridworld 3x3 domain. There tend to be single clusters for the states
corresponding to such ኾ ground states in Figure 3.15a. The t-SNE plots in Figure 3.15b, however, typically contain clearly
distinct clusters for each ground state or even for states belonging to the same ground state.
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come less similar to the coarsest Markov state representation, using network capacities slightly
larger than necessary can lead to the first-layer representation becoming more similar to the
coarsest Markov state representation. This is, for example, the case for larger-than-necessary
hidden layer sizes when employing three rather than a single hidden layer. The reason is that the
first-layer representation needs to be abstracted towards a 𝑄∗-irrelevance abstraction to a lesser
extent for 4- than for 2-layer DQNs, and the first layer of a 4-layer DQN can thus form a represen-
tation that is more similar to the coarsest Markov state representation (see Figure 3.17). Thus,
using slightly larger-than-necessary network capacities may allow the first-layer representation
to become more similar to the coarsest Markov state representation.
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(a) 2-layer DQN.
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(b) 4-layer DQN.
Figure 3.17: Mean ᑂ(ᑕᑗᑚᑩ), ᑋᑍ and ᑈ∗ for the first layers of 2- and 4-layer DQNs with a hidden layer size of ኾ for the Gridworld
3x3 (OH)(F-OH) domain. Values are based on  repetitions and ዃ%-confidence intervals are shown.

• Variability. A higher network capacity additionally leads to more variability in the learned first-
layer representation. The reason is that aspects such as the initialization of the weights and the
order in which transitions are sampled from the replay memory during training have a stronger
impact on the first-layer representation when the network capacity is larger. This becomes evident
when comparing the standard deviations of the correlation coefficients for 2- and 4-layer DQNs
in Figures 3.16 and 3.17.

Difficulty. For larger-than-necessary hidden layer sizes, the difficulty of the problem also impacts
which first-layer state representations are created. In our experiments, we varied the state encoding
and used domains with different state space sizes. Thereby, we discovered that when the state en-
coding or the state space size render it more difficult to form a first-layer state representation that is
similar to the coarsest Markov state representation and such a representation is not required due to a
network’s larger-than-necessary capacity, such a representation is learned to a lesser extent. Similar
observations hold for a 𝑄∗-irrelevance abstraction. We discuss the impact of the state encoding and
the state space size below.
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(a) Gridworld 3x3 (OH)(N).
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(b) Gridworld 3x3 (OH)(F-OH).
0 10 20 30 40 50

Hidden Layer Size

0.0

0.2

0.4

0.6

0.8

1.0

Pe
ak

 c
or

re
la

tio
n 

co
ef

fic
ie

nt

(c) Gridworld 3x3 (OH).
Figure 3.18: Mean peak ᑂ(ᑕᑗᑚᑩ), ᑋᑍ and ᑈ∗ in the first layer with ዃ%-confidence intervals for each hidden layer size for a
2-layer DQN for the Gridworld 3x3 domain with different forms of state encoding. Values are based on  repetitions. The first
and second vertical line indicate the smallest hidden layer sizes for which the test rewards converge and the network converges
to the optimal policy, respectively, at least one out of  times.

• State encoding. The first-layer representation becomes most similar to the coarsest Markov
state representation and ultimately to a 𝑄∗-irrelevance abstraction for larger-than-necessary hid-
den layer sizes for the (OH)(N) state encoding, followed by the (OH)(F-OH) encoding and finally
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by the (OH) encoding. This can be seen from the mean peak values for 𝑐ፊ(፝ᑗᑚᑩ), 𝑐ፓፕ and 𝑐ፐ∗ in Fig-
ure 3.1827. As visualized in Figure 3.19, this can be attributed to the first-layer representations
at the beginning of training as well as the input-layer representations28. While states differing
solely in the superfluous feature value are already mapped to very similar activations in the initial
first-layer and the input-layer representation for the (OH)(N) encoding, the activations of states
corresponding to the same ground state have relatively large Euclidean distances in the initial
first-layer and the input-layer representation for the (OH) encoding. Moreover, the Euclidean
distances between the input-layer and initial first-layer activations of states differing only in the
superfluous feature value for the (OH)(F-OH) encoding fall somewhere in between the ones for
the other two types of state encoding29. Hence, it is most difficult to map bisimilar states differing
solely in the superfluous feature value, which also have the same Q-values, to similar activations
for the (OH) state encoding and easiest for the (OH)(N) encoding30.

Gridworld 3x3 (OH)(N). Gridworld 3x3 (OH)(F-OH). Gridworld 3x3 (OH).
(a) Input Layer.

Gridworld 3x3 (OH)(N). Gridworld 3x3 (OH)(F-OH). Gridworld 3x3 (OH).
(b) First Layer.

Figure 3.19: t-SNE plots of the activations at the beginning of training for the input and first layers of 2-layer DQNs with a hidden
layer size of ኺ for the Gridworld 3x3 domain with different forms of state encoding. Activations are computed for all states and
every  states that differ solely in the superfluous feature and hence correspond to the same ground state are drawn in the same
color. In addition, states corresponding to bisimilar ground states are shown in the same color.

• State space size. The first-layer representation becomes relatively less similar to the coarsest
Markov state representation and Markov with respect to the transition function for domains with

27The peak value for ᑋᑍ does not always arise during the second learning phase for the (OH)(N) encoding. Instead, the peak
value for ᑋᑍ is the initial value for hidden layer sizes larger than or equal to the dimensionality of the state encoding (see
Figures A.25b and A.26b in the Appendix). Thus, while the peak value for ᑋᑍ for the (OH)(N) encoding does not show how
Markov with respect to the transition function the first-layer representation becomes during the second learning phase, it clearly
expresses how much easier it is for this type of state encoding to group states from the same ground states together in the
first layer due to the favorable initialization.

28As the weights of the linear layers of our networks are randomly initialized with small values near ኺ, the state encoding strongly
impacts the state representation in the first network layer at the beginning of training. However, if the size of the first layer is
much smaller than the one of the input layer, the correlation coefficients in the first layer at the beginning of training tend to be
more different from those in the input layer due to the higher degree of compression.

29Notice that even though there are five clusters in the t-SNE plot for the input-layer representation for the (OH)(F-OH) encoding
just as for the (OH) encoding, these clusters are equidistant and have a Euclidean distance of ኻ. For the (OH) encoding,
however, the five clusters in the input layer are not equidistant and the Euclidean distance between states differing solely in
the superfluous feature value can be as large as ኼ. Refer to Section 3.1.3 for more information on the types of state encoding.

30Similar observations can be made for the FrozenLake 4x4 domain in Figures A.11 and A.12 in the Appendix.
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(a) ᑂ(ᑕᑗᑚᑩ).
0 10 20 30 40 50

Hidden Layer Size

0.0

0.2

0.4

0.6

0.8

1.0

Pe
ak

 c
or

re
la

tio
n 

co
ef

fic
ie

nt

(b) ᑋᑍ.
Figure 3.20: Mean peak ᑂ(ᑕᑗᑚᑩ) and ᑋᑍ in each layer with ዃ%-confidence intervals for each hidden layer size for a 2-layer
DQN for the Gridworld 5x5 (OH)(F-OH) domain. Values are based on ኾ repetitions. The first and second vertical line indicate the
smallest hidden layer sizes for which the test rewards converge and the network converges to the optimal policy, respectively, at
least one out of ኾ times.

larger state spaces. For instance, Figure 3.20 reveals that even for just-right hidden layer sizes,
the peak values of 𝑐ፊ(፝ᑗᑚᑩ) and 𝑐ፓፕ are not significantly higher in the first than in the output layers
of DQNs for Gridworld 5x5, whereas this clearly is the case for Gridworld 3x331. This is caused
by two aspects. First, the Gridworld 3x3 and 5x5 domains have very similar just-right hidden
layer sizes when the ground state is one-hot encoded. Due to the larger state space size of the
Gridworld 5x5 domain, those just-right hidden layer sizes necessitate a stronger compression of
the state space for the Gridworld 5x5 than the Gridworld 3x3 domain. This means that the first-
layer representation is further abstracted towards a 𝑄∗-irrelevance abstraction more quickly and
more intensely for the Gridworld 5x5 domain. Second, mapping states with the same multi-step
rewards from different ground states to very similar activations in the first network layer takes
longer for larger state spaces, because more weights have to be learned. Hence, for larger-than-
necessary hidden layer sizes for such domains, the second layer learns to represent the Q-values
based on a certain number of transitions before the first-layer representation has fully created the
corresponding clusters. For example, in the t-SNE plot for the first-layer representation in Figure
3.21c, the activations drawn in purple, light blue and gray, which correspond to non-bisimilar
states with similar Q-values, fall into a single cluster. Yet, the states whose activations are colored
in light blue or gray have not formed distinct clusters beforehand (see Figures 3.21a and 3.21b).
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(a) Training episode ኽኺኺ.
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(c) Training episode ኽኺኼ.
Figure 3.21: t-SNE plot of the activations in the first layer of a 2-layer DQN for the Gridworld 5x5 (OH)(F-OH) domain for different
training episodes. The hidden layer size is ኺ. Refer to Figure 3.7c for the coloring scheme.

Feasibility. The state encoding and hidden layer size not only impact how difficult and necessary it is
to form a first-layer representation close to the coarsest Markov state representation and subsequently
one similar to a 𝑄∗-irrelevance abstraction, but also whether it is possible in the first place. It is thus
crucial to select an appropriate form of state encoding and sufficiently large hidden layers.
31See Figure A.24 for the corresponding plots for the Gridworld 3x3 domain.
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(a) (b)
Figure 3.22: To obtain the coarsest Markov state representation for the FrozenLake 4x4 domain, all terminal states need to be
mapped to the same activation pattern and all other ground states to distinct activations. a) When the ground state is encoded
via features, the ground states are encoded based on their x- and y-coordinates in the grid and mapping states to the same
first-layer activations if and only if they are bisimilar requires non-linearly separable functions to be learned. b) When the ground
state is one-hot encoded, a linearly separable function is sufficient to group states together if and only if they are bisimilar.

• State encoding. Grouping states together in the first layer if and only if they are bisimilar or if and
only if they have the same Q-values is not possible for the (F) and (F)(N) forms of state encoding
for the Gridworld 3x3 and FrozenLake 4x4 domains32. This is the case, because a single-layer
neural network can only learn linearly separable functions for each of its output nodes [53]. Yet,
bisimilar states are not linearly separable for these domains when the ground state is encoded
via features (see Figure 3.22a). Notice that when the ground state is one-hot encoded, mapping
states to the same activations if and only if they are bisimilar requires solely a linearly separable
function to be learned.

Figure 3.23: Correlation coefficients and t-SNE plots of the activations the states are mapped to for the layers of a 2-layer DQN
with a hidden layer size of ኺ for the Gridworld 3x3 (F) domain.

Rather than grouping states based on Q-values or bisimilarity for these types of state encoding,
the first-layer representation learns to cluster states based on their ground states as shown in

32Recall that states are bisimilar if and only if they have the same Q-values in the Gridworld 3x3, Gridworld 5x5, FrozenLake 4x4
and FrozenLake 8x8 domains.
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Figure 3.23 for the Gridworld 3x3 (F) domain3334. Since the learned first-layer representation
consequently is a finer abstraction of the state space than both the coarsest Markov state repre-
sentation and a 𝑄∗-irrelevance abstraction, more hidden nodes are required for 2-layer DQNs for
the Gridworld 3x3 (F) domain to converge to the optimal policy. This is indicated by the vertical
lines in Figure 3.24. More precisely, whereas fewer than 5 hidden nodes are needed for 2-layer
DQNs for the Gridworld 3x3 domain to converge to the optimal policy when the ground state is
one-hot encoded, more than 20 are necessary when it is encoded via features.

(a) Gridworld 3x3 (F).
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(b) Gridworld 3x3 (OH).
Figure 3.24: Mean converged ᑉᑖᑨ, ᑂ, ᑂ(ᑕᑗᑚᑩ), ᑋᑍ, ᐼ and ᑈ∗ in the first layer with ዃ%-confidence intervals for each hidden
layer size for 2-layer DQNs for the Gridworld 3x3 (F) and Gridworld 3x3 (OH) domains. Values are based on  repetitions.
The first and second vertical line indicate the smallest hidden layer sizes for which the test rewards converge and the network
converges to the optimal policy, respectively, at least one out of  times.

When the ground state is encoded via features for our domains, a DQN cannot group any states
with the same Q-values from different ground states together in the first layer without mapping
states with different Q-values to the same cluster. Hence, a state representation that groups
states together if and only if they correspond to the same ground state is optimal for the first
network layer for this form of ground state encoding for Gridworld 3x3. With optimal here wemean
that the largest amount of state space compression is obtained that is possible without losing
any information necessary to learn the Q-values. Moreover, due to the grid structure present in
this form of state encoding and the fact that merely linearly separable functions can be learned,
the only learnable state representations that groups states together if and only if they belong to
the same ground state are ones that closely mirror the underlying grid structure. The first-layer
representation is thus hardly changed during training. This is mirrored by the fact that 𝑐ፄ has a
value close to 1 in the first network layer at the end of training when encoding the ground state
via features (see Figure 3.24a). Notice that 𝑐ፄ is not equal to 1 at the end of training, because
the DQN does learn to map states that differ solely in the superfluous feature value to activations
that are more similar than at the beginning of training35.
4-layer DQN. As the first layer cannot form a state representation that is similar to the coarsest
Markov state representation if the ground state is encoded via features, one might expect later
hidden layers to create such an internal state representation during training if a DQN has multiple
hidden layers. Yet, as depicted in Figure 3.25 for a 4-layer DQN with a hidden layer size of
50 for the Gridworld 3x3 (F)(N) domain, this does not occur. While state representations in later
hidden layers do become more similar to the coarsest Markov state representation during training
than the first-layer representation, none of them becomes more similar to the coarsest Markov
state representation than the one in the output layer at any point during training. Instead, the
representations in all hidden layers remain very similar to the one in the input layer. This is the
case even when one reduces the hidden layer size and thus the network capacity (see Figure
3.26)36. The reason for this phenomenon likely is the fact that the initial state representation in
each of the hidden layers is very similar to the one in the input layer (see Figure 3.25). Thus,

33When grouping states based on bisimilarity or Q-values, all states corresponding to ground states with the same sequence of
actions to a goal state under ∗, whose activations are drawn in the same color in t-SNE plots, fall into the same cluster for
the Gridworld 3x3 domain.

34We provide supporting evidence based on the FrozenLake 4x4 domain in Figure A.15 in the Appendix.
35A consequence of this is that ᐼ typically is higher at the end of training if all features are scaled to [ኺ, ኻ] than if the features are
not scaled. The reason is that states differing merely in the superfluous feature value have encodings with relatively smaller
Euclidean distances when all features are scaled to [ኺ, ኻ] in the (F)(N) state encoding. This is mirrored by the mean converged
first-layer value for ᐼ in Figure A.14 in the Appendix.

36Supporting evidence based on the FrozenLake 4x4 domain is given in Figure A.17 in the Appendix.



3.2. Results 43

Figure 3.25: Correlation coefficients and t-SNE plots of the activations the states are mapped to for the layers of a 4-layer DQN
with a hidden layer size of ኺ for the Gridworld 3x3 (F)(N) domain. The coloring scheme is shown in the top-left corner.

just like the first layer cannot group any bisimilar states or states with the same Q-values from
different ground states together without grouping some non-bisimilar states or states with different
Q-values together, this also holds for the other hidden layers, albeit to slightly lower degrees for
later hidden layers. Clustering states primarily based on their ground states therefore poses a
local optimum for all three hidden layers of 4-layer DQNs for the Gridworld 3x3 domain when the
ground state is encoded via features.

• Hidden layer size. The hidden layer size may not only be so large that learning close to the
coarsest Markov state representation in the first layer is not necessary, but it may also be too small



44 3. Characteristics of Internal State Representations During Learning

0 10 20 30 40 50
Hidden Layer Size

0.0

0.2

0.4

0.6

0.8

1.0

Pe
ak

 c
or

re
la

tio
n 

co
ef

fic
ie

nt

Input layer
Layer 1

Layer 2
Layer 3

Layer 4
Test rewards converge,
Convergence to optimal policy

Figure 3.26: Mean peak ᑂ(ᑕᑗᑚᑩ) in each layer with ዃ%-confidence intervals for each hidden layer size and constant input-layer
ᑂ(ᑕᑗᑚᑩ) for a 4-layer DQN for the Gridworld 3x3 (F) domain. Values are based on  repetitions. The vertical line indicates the
smallest hidden layer size for which the test rewards converge and the network converges to the optimal policy at least one out
of  times.
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Figure 3.27: Mean ᑉᑖᑨ, ᑂ(ᑕᑗᑚᑩ), ᑋᑍ and ᑈ∗ for the first layer of a 2-layer DQN with a hidden layer size of ኻ for the Gridworld
3x3 (OH) domain. Values are based on  repetitions and ዃ%-confidence intervals are shown.

for it to be possible to create such a first-layer representation. For instance, our experiments for
the Gridworld 3x3 (OH) domain show that for a hidden layer size of 1, the first-layer representation
does not get significantly more similar to the coarsest Markov state representation during training
(see Figure 3.27). As visualized in Figure 3.28, forming the coarsest Markov state representation
in the first layer is not possible for a hidden layer size of 1. While it would be feasible to map
states to the same first-layer activation pattern if and only if they are bisimilar, it is not viable to
create the correct inter-cluster distances for this domain. Similar arguments hold for learning a
𝑄∗-irrelevance abstraction in the first layer. The result is that states in the first layer are largely
grouped based on immediate rewards at the end of training. This is mirrored in Figure 3.27 by
the high value for the reward-based correlation coefficient 𝑐ፑ፞፰ at the end of training.

(a) (b)
Figure 3.28: a) Pairwise distances based on ፝ᑗᑚᑩ for the first three ground states of the Gridworld 3x3 domain. b) For a hidden
layer size of ኻ, mapping these three states to activations such that the pairwise Euclidean distances of the activations match the
pairwise distances based on ፝ᑗᑚᑩ is not feasible.

Further factors. Besides the factors discussed above, we also investigate the effects of other aspects
in the Appendix. We show the impact of optimization settings such as the batch size and the learning
rate in Sections C.4.2 and C.4.3. Moreover, factors that do not have a significant impact on the learned
hidden-layer state representations are the frequency with which the target network is updated during
training as discussed in Section C.4.1, whether or not a fixed replay memory is utilized during training
as delineated in detail in Section C.1, and whether a DQN converges to the true Q-values or solely to
the optimal policy as analyzed in Section C.5.



4
Impact of Markovianity on Learning

Speed and Consistency
In Chapter 3, we saw that internal state representations that are similar to the coarsest Markov state
representation tend to be learned in the hidden layers of DQNs during the second learning phase. In-
tuitively, creating such internal state representations should be useful, because the coarsest Markov
state representation distinguishes states if and only if doing so is relevant for predicting rewards and
next states. Hence, forming the coarsest Markov state representation at the beginning of training helps
both to discard irrelevant information and to maintain sufficient information to represent the transition
function and rewards, and should therefore allow for faster and more data-efficient learning. Yet, our
results from Chapter 3 also suggest that such a representation may not be created if this is less nec-
essary due to the network capacity. The purpose of this chapter thus is to explore whether forming
a hidden-layer representation that is more similar to the coarsest Markov state representation during
training for such settings can allow deep RL agents to learn more quickly and more consistently.

Several options exist for making a deep RL agent learn a hidden-layer state representation that is
closer to the coarsest Markov state representation as shown in Figure 4.1:

1. Pretraining. Pretraining could strive to create the coarsest Markov state representation in the last
layer of a neural network, after which one adds one more layer for learning the Q-values. The
pretrained layers could also be reused for domains that have different Q-values, as long as a sub-
set of the relevant1 features of the original domain are relevant for the related domain. This latter
idea forms the basis of some of our experiments in Chapter 5, which examine whether creating
a hidden-layer representation that is more similar to the coarsest Markov state representation
indeed facilitates transfer to such related domains.

2. Auxiliary loss. A bisimulation-based auxiliary loss, which forces a network to learn close to the
coarsest Markov state representation in its last hidden layer, could be incorporated into the training
of a DQN. This approach is similar to the one of pretraining, except that the steps of forming close
to the coarsest Markov state representation in the second-to-last network layer and learning the
Q-values are combined. One possible advantage of this combination is that if one is not interested
in transfer to related domains, learning the coarsest Markov state representation in the second-
to-last network layer solely to some extent may already improve upon the training, while being
less time consuming than doing so completely.

In the following, we describe an auxiliary loss that forces a DQN to learn a hidden-layer represen-
tation that is similar to the coarsest Markov state representation in Section 4.1, and analyze the extent
to which such an auxiliary loss can improve upon the learning of deep RL agents on single domains in
Section 4.2. Note that the purpose of this chapter is not primarily to design a novel auxiliary loss, but
to see whether it is useful to create internal state representations that are more similar to the coarsest
Markov state representation during training. In fact, our best-performing auxiliary loss is in its current
1Recall that we define relevant features as those that are needed to predict the reward and relevant features of next states.
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(a) (b)
Figure 4.1: Options for using bisimulation metrics to force DQNs to learn internal state representations that are more similar to
the coarsest Markov state representation. a) Pretraining. A network is pretrained to form close to the coarsest Markov state
representation in its last layer. b) Auxiliary loss. A bisimulation-based auxiliary loss is computed during training, which impacts
the state representations learned in all but the last layer of a DQN.

form not scalable to large domains, as it requires computing the exact bisimulation metric 𝑑፟።፱2 for
all pairs of states. While we do explore the impact of employing an approximation of this bisimulation
metric instead, doing so comes at the expense of reduced effectiveness. Lastly, even though we do
not investigate the impact of pretraining based on bisimulation metrics, an auxiliary loss can also be
employed for pretraining by using it as the sole loss. Hence, the auxiliary loss we propose is applicable
to the context of pretraining as well.

4.1. Methodology

Figure 4.2: Flow-chart of the experiments we conduct to examine the impact of Markovianity on learning speed and consistency.

We empirically elucidate whether forming a hidden-layer representation that is more similar to the
coarsest Markov state representation during training can allow deep RL agents to learn more quickly
and more consistently on a single domain. To this end, we propose an auxiliary loss, which pushes a
network to create an internal state representation that is similar to the coarsest Markov state represen-
tation in its last hidden layer. As baseline serve 2-layer DQNs trained like the ones in Chapter 3. A flow
chart visualizing the experiments conducted for this research question is given in Figure 4.2. Next, we
2Refer to Section 2.7.1 for more information on this bisimulation metric.
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discuss the auxiliary loss in Section 4.1.1 and the experimental setup in Section 4.1.2.

4.1.1. Auxiliary Loss
Adding auxiliary tasks to the learning process introduces a bias which pushes the agent to learn a
state representation that is useful for several tasks, hence reducing the variance and potentially the
degree of overfitting to the training data [18]. Our auxiliary loss more specifically forces the Euclidean
distance between the activations two states are mapped to in the last hidden layer to be proportional
to a distance that is based on bisimulation metrics.

Bisimulation-based measures. We compare the impacts of utilizing multiple distances that are
based on or equal to bisimulation metrics. Specifically, we perform experiments based on 𝑑፟።፱, 𝑇ፓፕ
and 𝑑ᖤ፟።፱3. While only employing 𝑑፟።፱ pushes a network to learn the coarsest Markov state representa-
tion in its last hidden layer, 𝑇ፓፕ and 𝑑

ᖤ
፟።፱ are much faster to compute in practice. In addition, 𝑇ፓፕ is also

independent of the discount factor and the reward function. Lastly, future work should further explore
the impact of utilizing 𝑑ፓፕ as measure for an auxiliary loss, because, unlike 𝑇ፓፕ and similarly to 𝑑፟።፱, it
incorporates the reward function but is at the same time much faster to compute exactly than 𝑑፟።፱.

Calculation of the auxiliary loss. To calculate the auxiliary loss during training, the pairwise bisimu-
lation metric-based distances 𝑑ፁ between (a subset of) states are computed before training. For each
update of the network during training, the auxiliary loss is then calculated by comparing the current
Euclidean distance 𝑑፮፫፫ፄ (𝑧። , 𝑧፣) between the activations 𝑧። and 𝑧፣ that states 𝑠። and 𝑠፣ are mapped
to in a hidden network layer to the corresponding target Euclidean distance 𝑑፭ፚ፫፠፞፭ፄ (𝑧። , 𝑧፣)4. For each
network update, the steps performed to incorporate the auxiliary loss are as follows:

1. 𝑑፭ፚ፫፠፞፭ፄ (𝑧። , 𝑧፣) is computed based on the premise that we want a Pearson correlation coefficient
of 1 between 𝑑ፁ and 𝑑ፄ, which means that the points (𝑑ፄ(𝑧። , 𝑧፣), 𝑑ፁ(𝑠። , 𝑠፣)) should fall onto a
straight line as shown in Figure 4.3. One known point on this line is the point (0, 0), since we
would like that 𝑑ፄ(𝑧። , 𝑧፣) = 0 if and only if 𝑑ፁ(𝑠። , 𝑠፣) = 0. We obtain a second point on this line by
determining 𝑑፭ፚ፫፠፞፭ፄ for the largest possible value 𝑑፦ፚ፱ፁ for 𝑑ፁ5. Based on this constructed line,
𝑑፭ፚ፫፠፞፭ፄ (𝑧። , 𝑧፣) is computed as so:

𝑑፭ፚ፫፠፞፭ፄ (𝑧። , 𝑧፣) =
𝑑፦ፚ፱ፄ
𝑑፦ፚ፱ፁ

× 𝑑ፁ(𝑠። , 𝑠፣). (4.1)

Note that 𝑑፦ፚ፱ፄ is a hyperparameter that can be tuned.

2. Based on the current and target Euclidean distances of the current activations 𝑧, the target acti-
vation 𝑧፭ፚ፫፠፞፭። is calculated for each state 𝑠። as follows6:

𝑧፭ፚ፫፠፞፭። = 𝑧። +
1
2 ×∑

፣ጽ።
(𝑑፭ፚ፫፠፞፭ፄ (𝑧። , 𝑧፣) − 𝑑፮፫፫ፄ (𝑧። , 𝑧፣))

𝑧። − 𝑧፣
||𝑧። − 𝑧፣||

, (4.2)

where ||𝑧።−𝑧፣|| is the length of the vector 𝑧።−𝑧፣7. Note that the unit-length vector
፳ᑚዅ፳ᑛ
||፳ᑚዅ፳ᑛ||

between
the current activations of states 𝑠። and 𝑠፣ is multiplied by half of the amount by which the Euclidean

3See Section 3.1.1 for details on how we calculate these measures.
4We also performed some experiments based on directly optimizing the Pearson correlation coefficient rather than explicitly
calculating target Euclidean distances. This has the advantage that the resulting auxiliary loss is less restrictive. Yet, an
auxiliary loss based on this computation did not significantly improve upon the learning of 2-layer DQNs for the FrozenLake 4x4
(OH) domain.

5Notice that ፝ᑞᑒᑩᐹ is equal to ኻ for ፓᑋᑍ for all of our domains, whereas it is not clear what ፝ᑞᑒᑩᐹ is for ፝ᑗᑚᑩ or ፝
ᖤ
ᑗᑚᑩ. One option is

to set ፝ᑞᑒᑩᐹ equal to the highest occurring value for ፝ᑗᑚᑩ or ፝
ᖤ
ᑗᑚᑩ for a specific domain, another one is to utilize a fixed value for

all domains.
6Instead of calculating the target activations and subsequently minimizing the Mean Squared Error (MSE) between current
and target activations, one could also directly minimize the MSE between the current and target Euclidean distances of the
activations.

7To prevent exploding gradients during training, it may be useful to divide the sum in the above equation by the number of other
states ፣ or alternatively use a rather low weight for the auxiliary loss.
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Figure 4.3: Setup for the computation of the target Euclidean distance ፝ᑥᑒᑣᑘᑖᑥᐼ (፳ᑚ , ፳ᑛ) for the activations ፳ᑚ and ፳ᑛ that the states
፬ᑚ and ፬ᑛ are mapped to in a network layer based on ፝ᐹ(፬ᑚ , ፬ᑛ). The blue line is the line that all points (፝ᐼ(፳ᑚ , ፳ᑛ), ፝ᐹ(፬ᑚ , ፬ᑛ))
should fall on to achieve a Pearson correlation coefficient of ኻ.

distance between the activations of the two states should be changed. The idea behind this is that
if the activations of two states should be pulled apart or moved closer together, each activation is
moved by half the required total amount in the corresponding direction.

3. The goal is to minimize the MSE between the current and target activations for states 𝑠። ∈ 𝑆:

𝑀𝑆𝐸(𝑧። , 𝑧፭ፚ፫፠፞፭። ) =
ፃዅኻ

∑
፝ኺ
(𝑧።,፝ − 𝑧፭ፚ፫፠፞፭።,፝ )ኼ, (4.3)

where 𝐷 is the size of the network layer.

4.1.2. Experiments
To evaluate the effectiveness of this auxiliary loss, we train 2-layer DQNs with varying hidden layer
sizes, weights and durations8 for the auxiliary loss, values for 𝑑፦ፚ፱ፄ and target network update fre-
quencies for the FrozenLake 4x4 (OH) and Gridworld 3x3 (OH) domains and measure the 𝐿ኻ-error
with respect to the true Q-values for each training episode. We use the (OH) state encoding, as the
hidden-layer state representations tend to become less similar to the coarsest Markov state represen-
tation during training for this type of state encoding than for other forms of state encoding as described
in Section 3.2.2.3. Varying hidden layer sizes are employed, because the network capacity impacts
the extent to which the formed first-layer representation is similar to the coarsest Markov state repre-
sentation when no auxiliary loss is used, as shown by our previously discussed experimental results
in Chapter 3. Furthermore, we conduct experiments with different target network update frequencies,
since especially when the target network is updated very frequently, adding a bisimulation-based aux-
iliary loss may be useful to increase learning stability. Lastly, despite the fact that the tested domains
are relatively small with state space sizes of 80 and 180 with the added superfluous feature, results
for these domains should nevertheless indicate whether or not a bisimulation-based auxiliary loss can
improve upon the training of DQNs. Yet, improvement is expected to be more pronounced for larger
domains. Details on how we set 𝑑፦ፚ፱ፁ for 𝑑፟።፱ and 𝑑

ᖤ
፟።፱ can be found in Section A.2.1 in the Appendix.

4.2. Results
We obtain the best results by utilizing an auxiliary loss based on 𝑑፟።፱, which forces a DQN to form the
coarsest Markov state representation in its last hidden layer. This auxiliary loss can help DQNs for the
FrozenLake 4x4 (OH) domain to converge to the true Q-values more quickly as well as to learn more
accurate Q-values if the hyperparameters for training without the auxiliary loss otherwise do not allow
the DQN to converge to the true Q-values. For example, Figure 4.4 shows that a 2-layer DQN with a
8Since the auxiliary loss is expensive to compute, we apply the auxiliary loss with a fixed decay rate of ኺ.ዃዃዃዃ and vary the
number of training episodes during which we use the auxiliary loss.
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(c) ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺ.
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(d) ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺኺ.
Figure 4.4: ፋᎳ-error with respect to the true Q-values for a 2-layer DQN with a hidden layer size of ኺ for the FrozenLake
4x4 (OH) domain when employing different weights for the auxiliary loss and varying target network update frequencies. The
usage of the auxiliary loss is ended after training episode ኼ, ኺኺኺ, which is indicated by the green vertical line. ፝ᑞᑒᑩᐼ is set to
√ኼዀ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞ and ፝ᑗᑚᑩ is employed as bisimulation-based state distance for the auxiliary loss. The red line
depicts the ፋᎳ-error when no auxiliary loss is used. ዃ%-confidence intervals are shown based on  repetitions.

hidden layer size of 50 for the FrozenLake 4x4 (OH) domain converges to the true Q-values almost
twice as fast and more reliably when the auxiliary loss is added to the training process for different
target network update frequencies. This suggests that creating a hidden-layer state representation that
is more similar to the coarsest Markov state representation during training is indeed useful. Supporting
evidence based on the Gridworld 3x3 domain is given in Section A.2.2.2 in the Appendix. Furthermore,
the impacts of different target network update frequencies and hyperparameters for the auxiliary loss
are analyzed in Section A.2.2.1 in the Appendix using the FrozenLake 4x4 domain as example.

Hidden layer size. Introducing the auxiliary loss leads to less improvement in the 𝐿ኻ-error at the
beginning of training for smaller hidden layer sizes than for larger ones, even when choosing the best
value for 𝑑፦ፚ፱ፄ for each hidden layer size (see Figure 4.5). This intuitively makes sense, as a DQN
with a lower capacity already forms a hidden-layer representation that is more similar to the coarsest
Markov state representation during training when no auxiliary loss is used, and needs to learn closer to
a 𝑄∗-irrelevance abstraction in the first layer for the second layer to be able to learn the true Q-values.

Auxiliary loss based on 𝑑ᖤ፟።፱ or 𝑇ፓፕ. Replacing 𝑑፟።፱ by the much faster to compute 𝑑
ᖤ
፟።፱ or 𝑇ፓፕ also

improves the 𝐿ኻ-error at the beginning of training. Yet, whereas using an auxiliary loss based on 𝑑፟።፱
also allows for significantly earlier convergence to the true Q-values, this is not the case when 𝑑ᖤ፟።፱ or
𝑇ፓፕ are employed. In contrast to 𝑑፟።፱, 𝑑

ᖤ
፟።፱ does not assign distances of exactly 0 to bisimilar states,

which makes it more difficult to learn not to distinguish states based on the superfluous feature value
as well as to group bisimilar states from different ground states together while the auxiliary loss is ap-
plied. The latter aspect also holds for 𝑇ፓፕ, as clustering states based on 𝑇ፓፕ leads to distinct clusters for
bisimilar states from different ground states, such as the terminal states in the FrozenLake 4x4 domain.
Therefore, our auxiliary loss can be made more scalable by utilizing bisimulation-based measures that
do not require calculating the precise Kantorovich distance-based bisimulation metric. Yet, doing so
comes at the cost of reduced effectiveness, which underlines the usefulness of creating the precise
coarsest Markov state representation rather than approximate or finer versions during training9. De-
9Recall that clustering states based on ፓᑋᑍ leads to a strictly finer abstraction of the state space than doing so based on ፝ᑗᑚᑩ
for our domains. The reason is that ፓᑋᑍ assigns a non-zero distance to bisimilar states from different ground states for our
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፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞  ኼኺ.
(b) ፝ᑞᑒᑩᐼ  √ኼዀ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞.
Figure 4.5: ፋᎳ-error with respect to the true Q-values for a 2-layer DQN for the FrozenLake 4x4 (OH) domain when employing
different hidden layer sizes, settings for ፝ᑞᑒᑩᐼ , and weights for the auxiliary loss. ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞   and the usage of the
auxiliary loss is ended after training episode ኼ, ኺኺኺ, the latter of which is indicated by the green vertical line. ፝ᑗᑚᑩ is employed
as bisimulation-based state distance for the auxiliary loss. The red line depicts the ፋᎳ-error when no auxiliary loss is used.
ዃ%-confidence intervals are shown based on  repetitions.

tailed results for the auxiliary losses based on 𝑑ᖤ፟።፱ and 𝑇ፓፕ are given in Section A.2.3 and Section A.2.4
in the Appendix, respectively.

domains.



5
Impact of Markovianity on Generalization
Chapter 3 showed that the degree to which the formed hidden-layer representations are similar to the
coarsest Markov state representation is contingent on several factors such as the network capacity, and
that the precise coarsest Markov state representation is not created for any setting in our experiments.
Yet, learning an internal state representation that is similar to the coarsest Markov state representation
in a DQN’s hidden layer by the end of training poses multiple possible advantages over learning a finer
or a coarser state representation with regards to generalization:

1. Transfer to related domains. A trained network that has formed an internal state representa-
tion that is similar to the coarsest Markov state representation could generalize better to related
domains with different reward or transition functions, as long as the related domain’s relevant
features are a subset of the relevant1 features of the original domain. Notice that changing the
transition and reward functions in a way that maintains the abstract states of the coarsest Markov
state abstraction is realistic. For instance, consider our introductory example of a firefighter robot
in a domain in which the color of an object is irrelevant and observations that differ solely in the
object color are hence bisimilar. Plausible related domains are ones in which the immediate re-
wards for pouring water upon seeing ”smoke above blue house” or ”smoke above orange house”
or the probabilities of extinguishing the fire in those states differ while an object’s color remains
irrelevant. Depending on the precise transition and reward functions, the states ”smoke above
blue house” and ”smoke above orange house” may or may not have the same Q-values as states
such as ”burning red car” and ”burning black car.” This means that a coarser abstraction of the
state space than the coarsest Markov state representation that clusters states solely based on
Q-values may fail to generalize to related domains. Similarly, if the formed hidden-layer represen-
tation does not regard states differing solely in the color of an object as equivalent and is thus finer
than the coarsest Markov state representation, more information than necessary is transferred
to a related domain. Therefore, more data and time may be required to learn the new Q-values
based on the transferred state representation.

2. Robustness to superfluous feature values unseen during training. A network that has learned a
hidden-layer representation similar to the coarsest Markov state representation could generalize
better to irrelevant feature values not encountered during training. For example, using different
values for the superfluous feature value during testing than training could have less severe of
an impact on the performance if the representations formed in the hidden layers are closer to
the coarsest Markov state representation. This is the case, because such representations tend
to ignore superfluous features to a larger extent than less Markov state representations. In the
firefighter example, for instance, a hidden-layer representation that does not distinguish objects
based on their colors allows the agent to act optimally in the state ”smoke above yellow house”
even if the agent has solely visited the states ”smoke above blue house” and ”smoke above
orange house” during training. Of course, learning a precise𝑄∗-irrelevance abstraction in a hidden
layer would lead to the same generalization performance to superfluous feature values unseen

1Recall that we define relevant features as those that are needed to predict the reward and relevant features of next states.
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during training as learning the coarsest Markov state representation. The reason is that both of
these representations are entirely indifferent to superfluous features. Yet, as discussed above,
forming an exact 𝑄∗-irrelevance abstraction in a hidden layer may render generalization to related
domains with different transition or reward functions more difficult.

This chapter thus explores the extent to which learning a hidden-layer representation that is closer
to the coarsest Markov state representation renders a network trained on one domain more useful for
related domains with modified reward or transition functions in Section 5.1, and makes a DQN more
robust to new superfluous feature values in Section 5.2.

5.1. Transfer to Related Domains
We outline our methodology in Section 5.1.1 and our results in Section 5.1.2.

5.1.1. Methodology
As depicted in Figure 5.1, we train 2-layer DQNs either with or without the bisimulation-based auxiliary
loss described in Chapter 4. Afterwards, we transfer learned internal state representations to DQNs that
are then retrained on related domains. The related domains and the transfer of state representations to
related domains are described in the following. Details regarding the auxiliary loss we utilize for some
experiments to make the hidden-layer representations formed on an original domain more similar to
the coarsest Markov state representation are given in Section A.3.1.1 in the Appendix.

Figure 5.1: Flow-chart of the experiments conducted to explore the impact of Markovianity on generalization to related domains.

5.1.1.1 Related Domains
We create three altered versions of the Gridworld 3x3 domain, in each of which two states are bisimilar
if and only if they are bisimilar in the original domain:

1. Modified reward function. We change the reward function by setting the immediate reward for
moving forward in four bisimilar ground states to −1 rather than 0. This leads to different optimal
actions for those four ground states as well as to different Q-values for the four ground states and
all states for which the path under the optimal policy leads through one of the four ground states
for some action. The altered domain is depicted in Figure 5.2a and referred to as Gridworldፑ 3x3.

2. Modified transition function. We alter the transition function for a set of four bisimilar ground states.
More precisely, the action 𝑟𝑜𝑡𝑎𝑡𝑒 for these four ground states no longer causes a deterministic
transition, but a stochastic one with two equally likely next ground states. This change leads to
different Q-values, but the optimal actions of all states are the same as in the original domain.
This related domain is visualized in Figure 5.2b and we denote it by Gridworldፓ 3x3.

3. Modified reward and transition functions. We combine the two modifications above to yield a
domain in which both the Q-values and the optimal actions are different for some states compared
to the original domain. This domain is shown in Figure 5.2c and we refer to it by Gridworldፑፓ 3x3.
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(a) Gridworldᑉ 3x3: Modified re-
ward function.

(b) Gridworldᑋ 3x3: Modified transi-
tion function.

(c) Gridworldᑉᑋ 3x3: Modified re-
ward and transition functions.

Figure 5.2: Domains related to the Gridworld 3x3 domain. The coloring of the ground states is based on the colors we assign
to the activations of states in our t-SNE plots to highlight which ground states are bisimilar. A circle in a ground state indicates
that the optimal action in the original domain is to rotate clockwise, whereas an arrow denotes that the optimal action in the
original domain is to move forward. Black arrows indicate changes in the reward or transition function compared to the original
domain for a state’s optimal action in the original domain. If the modification is related to the transition function, the black arrow
is labeled with the probability of transitioning to a certain next ground state, and if the modification occurs with respect to the
reward function, the black arrow is labeled with the new immediate reward ፫.

In addition, we design two domains related to the FrozenLake 4x4 domain, in each of which two
states are bisimilar if and only if they are bisimilar in the original domain. These domains are defined
in Section A.3.1.1 in the Appendix. The results of the experiments based on these two domains serve
as supporting evidence and can be found in Section A.3.1.3.

5.1.1.2 Transfer to Related Domain
We copy representations learned by the 2-layer DQNs trained on the original domains and retrain
them on a related domain. Thereby, we compute the 𝐿ኻ-error with respect to the true Q-values of the
related domain for each retraining episode. We distinguish three cases with respect to which weights
we transfer to a related domain and which weights are updated during retraining:

1. All weights are transferred, but only the ones in the last layer are updated during retraining. In this
scenario, the formed first-layer representation allows a DQN to converge to the true Q-values of
the related domain only if it distinguishes states based on features that are relevant for learning
the Q-values of the related domain. This condition is not met if the first layer has formed a 𝑄∗-
irrelevance abstraction for the original domain and it does not hold that states have the same
Q-values in the related domain if they have the same Q-values in the original domain.

2. Only the first-layer weights are transferred and these weights are not updated during retraining.
The motivation for this scenario is that if the Q-values of the related and the original domain are
very similar, the differences in 𝐿ኻ-error during retraining may not be very visible for different first-
layer representations if the output-layer weights are also copied. Note that for our experiments,
states have the same Q-values in the related domain if and only if they have the same Q-values
in the original domain. In this scenario, the output-layer weights thus are newly initialized.

3. All weights are transferred and updated during retraining. In this transfer mode, the formed first-
layer representation and the learned Q-values are transferred and updated during retraining.
The reason for adding this scenario is that for very small hidden layer sizes, creating a first-layer
representation that is close to the coarsest Markov representation may not lead to a sufficient
compression of the state space for the output layer to converge to the true Q-values during re-
training. Hence, the first-layer representation learned for the original domain only provides the
initialization for the learning in the related domain in this scenario.

5.1.2. Results
In the sequel, we describe our results for the experiments in which the pretraining does not include
the auxiliary loss in Section 5.1.2.1 and those for adding the auxiliary loss to the training on the orig-
inal domains in Section 5.1.2.2. Thereby, we use the experiments conducted on domains related to
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the Gridworld 3x3 domain as primary examples. However, Section A.3.1.3 in the Appendix contains
detailed results for the experiments performed for both FrozenLake 4x4 and Gridworld 3x3. In addi-
tion, Section A.3.1.2 in the Appendix explores the impact of changing the target Euclidean distances
between non-bisimilar states for the auxiliary loss.

5.1.2.1 Pretraining Without Auxiliary Loss

(a) Gridworld 3x3ᑋ (OH). (b) Gridworld 3x3ᑋ (OH)(N). (c) Gridworld 3x3ᑋ (OH)(F-OH).
Figure 5.3: Mean ፋᎳ-error with respect to the true Q-values during retraining of 2-layer DQNs with different hidden layer sizes
for the Gridworldᑋ 3x3 domain. The weights from solely the first network layer are transferred and those are not updated during
retraining. Values are based on ኻኺ repetitions and ዃ%-confidence intervals are shown.

Figure 5.3 reveals based on the Gridworldፓ 3x3 domain that the following factors impact how well
a 2-layer DQN generalizes to a related domain:

1. The generalization performance is better when the formed first-layer representation is less close
to a 𝑄∗-irrelevance abstraction for the original domain. Recall that DQNs with larger hidden lay-
ers learn first-layer representations that are less similar to a 𝑄∗-irrelevance abstraction2, which
explains why DQNs with larger hidden layer sizes tend to generalize best for the (OH)(N) and
(OH)(F-OH) state encodings. In addition, the created first-layer representations for larger-than-
necessary hidden layer sizes are closer to a 𝑄∗-irrelevance abstraction for the (OH)(N) and
(OH)(F-OH) state encodings than for the (OH) encoding, which is why the former lead to higher
𝐿ኻ-errors on the related domain.

2. Lower 𝐿ኻ-errors on the related domain are achieved when the formed first-layer representation
is closer to the coarsest Markov state representation. Moderately sized hidden layers are more
similar to the coarsest Markov state representation for the (OH) encoding than even larger hidden
layers, which is why the former lead to better generalization performance than the latter (see
Figure 5.3a)3. For the (OH)(N) and (OH)(F-OH) forms of state encoding, the largest tested hidden
layer sizes do not yet cause the first-layer representations to be less similar to the coarsest Markov
state representation by the end of training4. Hence, DQNs with moderately sized hidden layers
do not outperform DQNs with even larger hidden layers for these two types of state encoding.

3. DQNs with larger hidden layers are less dependent on the first-layer representation when it comes
to learning the newQ-values. This adds to the fact that DQNs with larger hidden layers generalize
best for the (OH)(N) and (OH)(F-OH) forms of state encoding. Notice also that DQNs with very
small hidden layer sizes such as 3 need to learn a first-layer representation that is more similar
to a 𝑄∗-irrelevance abstraction based on the modified reward and transition functions to be able
to converge to the true Q-values. This is not possible if the first layer’s weights are fixed during
retraining.

Thus, learning a hidden-layer representation that is similar to the coarsest Markov state representation
tends to be beneficial for generalization, especially for moderately sized hidden layers.

When a 2-layer DQN is trained without auxiliary loss on an original domain, we further find that the
following factors impact how useful a hidden-layer representation that is similar to the coarsest Markov
state representation is for generalization:
2Refer to Section 3.2.2.3 for more information on the impact of the hidden layer size and the state encoding on the formed
hidden-layer state representation.

3Section 3.2.2.3 discusses the impact of the (OH) state encoding on the hidden-layer state representation. Also refer to Figure
A.28c in the Appendix to see how similar to the coarsest Markov state representation the final first-layer state representation of
a 2-layer DQN is for different hidden layer sizes for the (OH) state encoding.

4This is depicted in Figures A.28a and A.28b in the Appendix.
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(c)
Figure 5.4: Mean ፋᎳ-error with respect to the true Q-values during retraining of 2-layer DQNs with different hidden layer sizes for
the Gridworldᑋ 3x3 (OH) domain. Values are based on ኻኺ repetitions and ዃ%-confidence intervals are shown. a) The weights
from solely the first network layer are transferred and those are not updated during retraining. b) The weights from both network
layers are transferred, but solely those from the last layer are updated during retraining. c) The weights from both network layers
are transferred and updated during retraining.

1. Whether or not the learned output-layer representation is transferred. The extent to which
the formed first-layer representation is similar to the coarsest Markov state representation has no
significant impact on the generalization performance if the last layer’s weights are also transferred.
Figure 5.4 visualizes that all sufficiently large hidden layer sizes allow DQNs trained without the
auxiliary loss on the original domain to generalize similarly well in that case. This intuitively makes
sense, as states in our modified domains have the same Q-values if and only if they have the
same Q-values in the original domain. Hence, transferring the output layer’s weights together
with the ones from the input layer implies that the correct abstract states are already present in
the output layer at the beginning of training, and that solely some inter-cluster distances need
to be adjusted to represent the modified Q-values. This also means that whether or not the first
layer’s weights are updated during retraining does not make a significant difference when the
output layer’s weights are transferred, except for very small hidden layer sizes (see Figures 5.4b
and 5.4c). Recall that DQNs with smaller hidden layer sizes such as 3 or 5 need to create closer
to a 𝑄∗-irrelevance abstraction based on the modified domain’s reward and transition functions in
the first layer to be able to learn accurate Q-values.

2. Way in which the related domain differs from the original one. Overall, the Gridworldፓ 3x3
domain is the related domain to which DQNs generalize worst if the last layer’s weights are not
transferred (see Figure 5.5). It is also for this domain that it becomes clear that DQNs with a more
Markov first-layer state representations such as those with a hidden layer size of 30 generalize
better than even larger DQNs for the (OH) type of state encoding. Yet, such small differences in
the first-layer representations do not have a significant impact on the generalization performances
of DQNs on other related domains. This is mirrored in Figures 5.5b and 5.5c, where all DQNs
with sufficiently large hidden layers learn similarly well for Gridworldፑ and Gridworldፑፓ 3x3.
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(a) Gridworldᑋ 3x3 (OH). (b) Gridworldᑉ 3x3 (OH).
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(c) Gridworldᑉᑋ 3x3 (OH).
Figure 5.5: Mean ፋᎳ-error with respect to the true Q-values during retraining of 2-layer DQNs with different hidden layer sizes
for the (OH) state encoding. The weights from solely the first network layer are transferred and those are not updated during
retraining. Values are based on ኻኺ repetitions and ዃ%-confidence intervals are shown.

The likely reason for the much worse generalization performance to the Gridworldፓ 3x3 domain
is twofold5. First, the way in which the transition function is altered introduces stochasticity to the

5Modifying the transition function alone is not the reason, because the ፋᎳ-errors achieved on the FrozenLakeᑉ 4x4 and
FrozenLakeᑉᑋ 4x4 domains when only the first layer’s weights are pretrained are similar, as shown in Figure A.52 in the
Appendix. The degree to which the Q-values of a modified domain differ from the ones of the original domain also is not the
only cause, as the initial ፋᎳ-error is much higher for Gridworldᑉ 3x3 than for Gridworldᑋ 3x3, and still the final ፋᎳ-error at the
end of training is highest for Gridworldᑋ 3x3 (see Figure 5.5).
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Figure 5.6: Possible path through the Gridworldᑋ 3x3 domain when following the optimal policy. Stochastic transitions are labeled
with their probabilities.

transitions. The result is that with some non-zero probability, the agent goes in multiple circles
around the domain without reaching the goal state when following the optimal policy (see Figure
5.6). Consequently, unless the hidden layer can represent the transition function well, it likely is
rather difficult to learn the Q-values for this domain. Yet, this specific modification of the transition
function cannot be the sole reason why DQNs do not converge to the true Q-values for this domain
if solely the first layer’s weights are copied. This is the case, because more accurate Q-values
are learned on the Gridworldፑፓ 3x3 domain, whose transition function is altered in the same way,
albeit full convergence to the true Q-values is not achieved for that domain either. The second
contributing aspect therefore appears to be that since the reward function is not modified and
the overall difference in Q-values compared to the original domain is comparatively small, a local
optimum different from the global one is found for Gridworldፓ 3x3. However, as this explanation
is not entirely satisfying, it would be interesting to explore in more detail in future work which kinds
of modifications to the reward and transition functions render generalization more difficult.

5.1.2.2 Pretraining With Auxiliary Loss
Introducing the auxiliary loss to the training on the original domain generally improves upon the gen-
eralization performance of 2-layer DQNs. This suggests that a first-layer representation that is more
similar to the coarsest Markov state representation facilitates transfer to related domains6. For exam-
ple, Figure 5.7a shows that now all hidden layer sizes allow DQNs to converge to the true Q-values
of the Gridworldፑ 3x3 domain. Overall, the improvement is largest for settings for which DQNs trained
without auxiliary loss tend to generalize relatively badly. Intuitively this makes sense, because if DQNs
with less Markov first-layer representations already generalize well, little improvement is to be expected
from making the first-layer representations more Markov. These are the cases for which introducing
the auxiliary loss to the training on the original domain has the most noticeable positive effect:

• The largest improvement is obtained for the Gridworldፓ 3x3 domain when the last layer’s weights
are not transferred, where all DQNs except those with very small hidden layer sizes now converge
to much more accurate Q-values (see Figure 5.7b). Slightly less extensively but still very notice-
ably lower 𝐿ኻ-errors are achieved on the Gridworldፑፓ 3x3 domain when the last layer’s weights
are not transferred as depicted in Figure 5.7c.

• Improvements for the transfer scenarios in which the output layer’s weights are copied are typ-
ically smaller than if the output layer’s weights are not transferred (see Figure 5.8). Recall that
states have the same Q-values in a related domain if and only if they have the same Q-values
in the original domain and that the reward and transition functions are modified for solely a few
states. Hence, transferring the output layer’s weights together with the ones from the input layer
means that few changes need to be made to the output-layer representation to represent the new
Q-values.

6Yet, it matters not only how similar to the coarsest Markov state representation the formed first-layer representation is, but also
how large the Euclidean distances between non-bisimilar states are as discussed in Section A.3.1.2 in the Appendix.
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Without bisimulation-based auxiliary loss. With bisimulation-based auxiliary loss.
(a) Gridworldᑉ 3x3 (OH).

Without bisimulation-based auxiliary loss. With bisimulation-based auxiliary loss.
(b) Gridworldᑋ 3x3 (OH).

Without bisimulation-based auxiliary loss. With bisimulation-based auxiliary loss.
(c) Gridworldᑉᑋ 3x3 (OH).
Figure 5.7: Mean ፋᎳ-error with respect to the true Q-values during retraining of 2-layer DQNs with varying hidden layer sizes for
the different domains related to the Gridworld 3x3 domain. The first-layer weights are initialized to those of DQNs trained on the
Gridworld 3x3 domain either with or without auxiliary loss and are not updated during retraining. The second-layer weights are
newly initialized. Values are based on ኻኺ repetitions and ዃ%-confidence intervals are shown.

• Improvements tend to be larger for DQNs with relatively small hidden layer sizes such as 57.
Moreover, even when the output layer’s weights are transferred, DQNs with smaller hidden layers
now sometimes converge more quickly to the true Q-values of the related domain than DQNs with
larger hidden layers. For instance, Figures 5.8b and 5.8c depict that if both layers’ weights are
transferred to the Gridworldፓ 3x3 domain, DQNs with a hidden layer size of 5 often converge
more quickly than DQNs with larger hidden layer sizes8. This confirms that learning an internal
state representation that is similar to the coarsest Markov state representation and finer than
a 𝑄∗-irrelevance abstraction is useful for generalization purposes. Note that DQNs with small
hidden layers learn a first-layer representation that is close to a 𝑄∗-irrelevance abstraction when
no auxiliary loss is utilized. Furthermore, when the auxiliary loss is added to the pretraining,

7However, since adding the auxiliary loss makes it harder for DQNs with small hidden layers to converge to the true Q-values
on the original domain, the ፋᎳ-error at the beginning of retraining when the output layer’s weights are transferred is some-
times higher than when no auxiliary loss is added. This renders learning on the modified domain more difficult than when the
initialization is more favorable.

8Note that DQNs with a hidden layer size of ኽ do not generally converge even sooner than DQNs with a hidden layer size of  on
the Gridworldᑋ 3x3 domain. The reason for this is twofold. First, DQNs with a hidden layer size of ኽ have formed more similar
to a ፐ∗-irrelevance abstraction in the first layer for the original domain due to our settings for the auxiliary loss as discussed in
Section A.3.1.1 in the Appendix. Second, such DQNs need to learn a first-layer representation that is closer to a ፐ∗-irrelevance
abstraction based on the modified transition function, which is not possible if the first layer’s weights are not updated during
retraining and may not succeed even if the weights are not fixed.
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Without bisimulation-based auxiliary loss. With bisimulation-based auxiliary loss.
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Without bisimulation-based auxiliary loss. With bisimulation-based auxiliary loss.
(b)

0 1000 2000 3000 4000 5000
Number of Training Episodes

0

20

40

60

80

100

120

140

L1
-E

rro
r w

.r.
t. 

Q
-v

al
ue

s

3
5
7
10

12
15
17
20

25
30
35
40

45
50
55
60

Without bisimulation-based auxiliary loss. With bisimulation-based auxiliary loss.
(c)
Figure 5.8: Mean ፋᎳ-error with respect to the true Q-values during retraining of 2-layer DQNs with different hidden layer sizes for
the Gridworldᑋ 3x3 (OH) domain. Values are based on ኻኺ repetitions and ዃ%-confidence intervals are shown. a) The weights
from solely the first network layer are transferred and those are not updated during retraining. b) The weights from both network
layers are transferred, but solely those from the last layer are updated during retraining. c) The weights from both network layers
are transferred and updated during retraining.

DQNs with slightly larger than necessary hidden layer sizes tend to be initialized with a first-layer
representation that is closer to the coarsest Markov state representation than the ones of DQNs
with larger hidden layers due to our settings for the auxiliary loss as discussed in Section A.3.1.1
in the Appendix.

5.2. Robustness to Superfluous Feature Values Unseen During
Training

We outline our methodology in Section 5.2.1 and our results in Section 5.2.2.

5.2.1. Methodology
To investigate whether forming a hidden-layer representation that is closer to the coarsest Markov
state representation aids a DQN in generalizing to superfluous feature values not encountered during
training, we train the same 2-layer DQNs as in Chapter 3 with different hidden layer sizes and two forms
of state encoding for the Gridworld 3x3 domain. Moreover, to obtain hidden-layer representations that
are more similar to the coarsest Markov state representation, we apply the auxiliary loss described in
Chapter 4 to the training of someDQNs. For each of theseDQNs, we subsequently compute the optimal
action returned for each non-terminal ground state when sampling 1, 000 values for the superfluous
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feature uniformly at random from an interval that is 𝑖 times as large and centered at the same value
as the interval used during training, where 𝑖 ∈ {1, 2, 4, 6, 8, 10, 25, 50, 100, 500, 1000}. Note that even
if 𝑖 = 1, the superfluous feature values generated at test time are not necessarily equivalent to those
seen during training, as our networks are trained with only 5 specific values for the superfluous feature.
Moreover, notice that the number of generated superfluous feature values decreases relative to the
interval size for larger intervals, thus rendering averages less reliable for such intervals. Figure 5.9
shows a flow-chart of our experiments and methodological details are provided in Section A.3.2.1 in
the Appendix.

Figure 5.9: Flow-chart of the experiments performed to investigate the impact of Markovianity on generalization to superfluous
feature values not encountered during training.

5.2.2. Results
We describe our results based on training DQNs without and with the bisimulation-based auxiliary loss
in Section 5.2.2.1 and Section 5.2.2.2, respectively. Furthermore, more detailed results for adding the
auxiliary loss to the training process are given in Section A.3.2.2 in the Appendix.

5.2.2.1 Training Without Auxiliary Loss

(a) Gridworld 3x3 (OH). (b) Gridworld 3x3 (OH)(N).
Figure 5.10: Average numbers of optimal actions learned by 2-layer DQNs with different hidden layer sizes. Optimal action
returned for each non-terminal ground state are measured when sampling ኻ, ኺኺኺ different values for the superfluous feature
uniformly at random from an interval that is ። times as large as the one used during training. The value ። is depicted on the
x-axis. Since there are ኽኼ non-terminal states in the Gridworld 3x3 domain, returning ኽኼ, ኺኺኺ optimal actions is optimal. Values
are based on ኽኺ repetitions and ዃ%-confidence intervals are shown.

As depicted in Figure 5.10, smaller hidden layer sizes generally allow for better generalization to
superfluous feature values unseen during training when no auxiliary loss is added to the training pro-
cess. Yet, as the final first-layer representations of such DQNs are more similar to both a 𝑄∗-irrelevance
abstraction and the coarsest Markov state representation9, these experimental results allow us to con-
clude only that coarser abstractions allow for better generalization than finer ones. This observation
9This is discussed in Section 3.2.2.3 and depicted in Figure A.28 in the Appendix.
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intuitively makes sense, because coarser abstractions tend to ignore the superfluous feature to a higher
degree. As mentioned in Section A.3.2.1 in the Appendix, this is not surprising, because networks with
large capacities are known to tend to overfit to the training data and hence to generalize worse to data
unseen during training. Lastly, notice that small hidden layer sizes such as 5 and 10 do not always
enable generalization to all superfluous feature values generated at test time for small intervals, and
hence lead to worse generalization than larger hidden layer sizes for such intervals. This pattern is due
to the fact that the learning of all true Q-values does not always succeed for such small hidden layer
sizes.

5.2.2.2 Training With Auxiliary Loss
Figure 5.1110, reveals that if a bisimulation-based auxiliary loss is added to the training process, the
generalization performance tends to be better than if no auxiliary loss is introduced11. This improvement
instinctively makes sense, because utilizing the auxiliary loss to push a DQN to learn the coarsest
Markov state representation in its first layer typically allows the learned first-layer representation to
ignore the superfluous feature to a larger extent. For instance, Figure 5.12 visualizes for a 2-layer
DQN with a hidden layer size of 3 that the first-layer representation created without auxiliary loss is
finer than the one formed with auxiliary loss when it comes to the activations that states differing solely
in the superfluous feature are mapped to.
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(a) ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞  .
1 2 4 6 8 10 25 50 100 500 1000

Scale of the Superfluous Feature

15000

17500

20000

22500

25000

27500

30000
N

um
be

r o
f O

pt
im

al
 A

ct
io

ns
 L

ea
rn

ed

Without aux. loss With aux. loss

(b) ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞  ኻኺ.
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(c) ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞  ኻ.
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(d) ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞  ዀ.
Figure 5.11: Average numbers of optimal actions learned by 2-layer DQNs for Gridworld 3x3 (OH) with different hidden layer
sizes, with and without the auxiliary loss added to the training process. Optimal action returned for each non-terminal ground
state are measured when sampling ኻ, ኺኺኺ different values for the superfluous feature uniformly at random from an interval that
is ። times as large as the one used during training. The value ። is depicted on the x-axis. Since there are ኽኼ non-terminal states
in the Gridworld 3x3 domain, returning ኽኼ, ኺኺኺ optimal actions is optimal. Averages are based on ኻኺ and ኽኺ repetitions for the
experiments with and without auxiliary loss, respectively. ዃ%-confidence intervals are shown.

However, Figure 5.11 shows that there are three exceptions to the observation that introducing the
auxiliary loss improves upon the generalization performance:

• Generalization to large intervals. Generalization to superfluous feature values sampled from
very large intervals tends to be better for this domain if first-layer representations that are not
entirely indifferent to the superfluous feature are closer to a 𝑄∗-irrelevance abstraction. Notice
that while introducing the auxiliary loss leads to improved generalization to small and moderately
sized intervals, it deteriorates the generalization performance for large intervals (see Figure 5.11).

10Results for more hidden layer sizes and for the (OH)(N) state encoding are provided in Figure A.53 in the Appendix.
11The higher standard deviations for the experiments with auxiliary loss are largely due to the fact that ኽኺ repetitions are performed
when no auxiliary loss is used and solely ኻኺ when the auxiliary loss is added due to time constraints.
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This can be explained by the fact that even though the first-layer representations learn to ignore
the superfluous feature to a larger extent when we apply the auxiliary loss, they do not do so
completely. At the same time, the Euclidean distances between ground states with the same
optimal action are on average clearly smaller than the ones between ground states with different
optimal actions in a 𝑄∗-irrelevance abstraction for Gridworld 3x3, but much less so in the coarsest
Markov state representation12. Hence, that for very different superfluous feature values a state
is mapped to an activation in the first layer that is near the activations of states with a different
optimal action is more likely in this scenario than if the formed first-layer representation is closer to
a 𝑄∗-irrelevance abstraction, which is the case when no bisimulation-based auxiliary loss is used.
This conclusion is also supported by the observation that 2-layer DQNs with a hidden layer size of
5, which form a first-layer representation more similar to a 𝑄∗-irrelevance abstraction than DQNs
with larger hidden layer sizes when the auxiliary loss is added13, on average generalize better to
very large intervals than DQNs with any other tested hidden layer size (see Figure 5.11a).

• DQNs with large hidden layers. Introducing the bisimulation-based auxiliary loss tends to lead
to worse generalization performance to large intervals for large hidden layer sizes such as 65
than for smaller hidden layer sizes (see Figure 5.11). This is the case, because the first-layer
representations of DQNs with large hidden layers become less similar to the coarsest Markov
state representation again at the end of training for our hyperparameter settings for the auxiliary
loss. Therefore, they begin to distinguish states based on the superfluous feature value to a higher
degree (see Figure A.47b in the Appendix). Thus, while one would expect DQNs with varying
hidden layer sizes to generalize similarly well to superfluous feature values unseen during training
if the first-layer representations are very similar to the coarsest Markov state representation, this
fact explains why this is not observed in our experiments.

• DQNs with very small hidden layers. Besides the generalization performance of DQNs with
large hidden layers to large intervals, there appears to be another exception to the observation
that adding the auxiliary loss to the training improves upon the generalization performance. This
exception are DQNs with a hidden layer size of 5, for which adding the auxiliary loss deteriorates
generalization performance for superfluous feature values sampled from small intervals (see Fig-
ure 5.11a). The reason for this phenomenon is that applying the auxiliary loss to the training of
DQNs with this hidden layer size does not guarantee that the networks always converge to the
optimal policy by the end of training, even if very low weights are used for the auxiliary loss14.
The relatively large standard deviations together with the fact that the average number of learned
optimal actions is higher for large intervals when the auxiliary loss is added than when it is not
used suggest, however, that if such a 2-layer DQN does converge to the optimal policy, the gen-
eralization is better when the auxiliary loss is added than when it is not introduced. This intuitively
makes sense, because Figure 5.12 visualizes that utilizing the bisimulation-based auxiliary loss
during the training of a 2-layer DQN with such a small hidden layer size does cause states that
differ only in the superfluous feature value to be mapped to more similar activations in the first
layer than if no auxiliary loss is utilized. Moreover, the final first-layer representation is at the same
time rather close to a 𝑄∗-irrelevance abstraction15, which facilitates generalization to superfluous
feature values sampled from very large intervals.

12Non-terminal ground states have average Euclidean distances of ኺ.ኻ and ኺ.ኽኽኽ to other non-terminal ground states with the
same and different optimal actions, respectively, in a ፐ∗-irrelevance abstraction for Gridworld 3x3. In the coarsest Markov state
representation, however, the mean Euclidean distances of non-terminal ground states to other non-terminal ground states with
the same and different optimal actions are ኺ.ኻኾኻ and ኺ.ኻኾኾ, respectively, if ፝ᑞᑒᑩᐼ  ፝ᑞᑒᑩᐹ  ኻ. The mean Euclidean distances
are therefore much more similar for the coarsest Markov state representation than for a ፐ∗-irrelevance abstraction.

13This is due to the fact that the auxiliary loss is applied less intensively for DQNs with a hidden layer size of  in our experiments
to not prevent the DQNs from learning the optimal policy. Refer to Section A.3.2.1 in the Appendix for more information on
how we apply the auxiliary loss.

14Recall that DQNs with small hidden layers have to form a first-layer representation that is very similar to a ፐ∗-irrelevance
abstraction to be able to learn accurate Q-values.

15This is due to the fact that the auxiliary loss is applied less intensively for DQNs with a hidden layer size of  to not prevent
them from learning accurate Q-values. Refer to Section A.3.2.1 in the Appendix for more information on how we apply the
auxiliary loss.
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(a) Without bisimulation-based auxiliary loss.

(b) With bisimulation-based auxiliary loss.
Figure 5.12: Correlation coefficients and t-SNE plots of the activations states are mapped to in the layers of 2-layer DQNs with
a hidden layer size of ኽ for the Gridworld 3x3 (OH) domain during training. In a) the DQN is trained without auxiliary loss, and
in b) the bisimulation-based auxiliary loss is applied based on ፝ᑗᑚᑩ during the first ኺኺ training episodes with a weight of ኺ.ኻ, a
decay rate of ኺ.ዃዃዃዃ and a value of √ኽኼ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞ for ፝ᑞᑒᑩᐼ .



6
Conclusion and Future Research

This chapter provides summarized answers to each of our three primary research questions in Section
6.1, and addresses the limitations of our approach and names directions for future work in Section 6.2.

6.1. Conclusion
Our work is based on the premise that a deep RL agent should ideally learn the coarsest Markov
state representation, in which Euclidean distances between states are proportional to how behaviorally
similar these states are. Behavioral similarity thereby is measured by a bisimulation metric that is
based on the Kantorovich distance1. Based on this concept of ideal state representation, we examined
what deep RL agents learn in practice. Moreover, we empirically tested whether creating this ideal
representation in hidden layers is beneficial in the contexts of learning speed and generalization. In
the sequel, we answer each of our main research questions:

1. Which internal state representations do deep RL agents form during training and how sim-
ilar are these to the coarsest Markov state representation?
Our experimental results suggest the existence of three overlapping learning phases in all net-
work layers. First, states are clustered based on multi-step rewards, second, the internal state
representations become more similar to the coarsest Markov state representation and especially
more Markov with respect to the transition function, and finally, states are progressively grouped
based on Q-values. Thus, learning phases 2 and 3 determine how similar to the coarsest Markov
state representation the internal state representations become during and still are at the end of
training. Thereby, the internal state representations formed in hidden layers during these two
phases depend on the necessity, difficulty and feasibility of learning the coarsest Markov state
representation and of grouping states based on Q-values. Factors that contribute to these three
aspects are the network capacity and the state encoding. The precise coarsest Markov state
representation is not learned during any of our experiments.

2a. To which degree does creating internal state representations that are more similar to the
coarsest Markov state representation during training improve upon the learning speed and
consistency of deep RL agents?
Introducing a bisimulation-based auxiliary loss to push a 2-layer DQN to form an internal state
representation in its hidden layer that is more similar to the coarsest Markov state representation
can cause a DQN to converge to the true Q-values more quickly and reliably. The best results
are thereby obtained when the auxiliary loss forces a DQN to create the precise coarsest Markov
state representation. In that case, the auxiliary loss is based on an exact bisimulation metric that
is costly to compute in practice. If we replace this exact bisimulation metric by an approximate
bisimulation metric or a component of bisimulation metrics, a DQN is pushed to create an ap-
proximate coarsest Markov state representation or a representation that is no coarser than the

1The Kantorovich distance is also referred to as Wasserstein distance, Kantorovich-Rubinstein distance, Monge-Kantorovich
distance or earth mover’s distance.
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coarsest Markov state representation, respectively. In that case, learning proceeds also more
quickly at the beginning of training, but no faster convergence to the true Q-values is ultimately
achieved. While it is thus possible to remove the bottleneck of having to compute the exact bisim-
ulation metric required for learning the coarsest Markov state representation, doing so comes at
the expense of decreased effectiveness.

2b. To which extent does learning internal state representations that are more similar to the
coarsest Markov state representation by the end of training lead to improved generaliza-
tion?
Generalization to modified reward and transition functions. We pretrained 2-layer DQNs on an
original domain and subsequently retrained them on related domains with modified reward or
transition functions and as relevant features a subset of the relevant features of the original do-
main. We find that if the internal state representation transferred from the first layer of a pretrained
DQN is more similar to the coarsest Markov state representation, earlier convergence and con-
vergence to more accurate Q-values are achieved on a related domain. Yet, the usefulness of
learning a first-layer representation that is similar to the coarsest Markov state representation
depends on the specific changes made to the reward and transition functions. Specifically, gen-
eralization based on a first-layer representation that is less similar to the coarsest Markov state
representation tends to be worse for related domains with certain modifications to the transition
function. These are modifications that necessitate a precise representation of the transition func-
tion to learn the new Q-values, but overall lead to relatively low differences in Q-values compared
to the original domain. Finally, adding an auxiliary loss that pushes a network to form the coarsest
Markov state representation in its hidden layer improves upon the generalization performance for
settings for which the generalization after pretraining without auxiliary loss is poor.
Generalization to new irrelevant feature values. Internal first-layer state representations that are
more similar to the coarsest Markov state representation cause better generalization to super-
fluous feature values that are moderately different from the ones encountered during training.
Yet, better generalization to superfluous feature values very different from the ones seen dur-
ing training is not always attained if the learned first-layer internal state representation is more
similar to the coarsest Markov state representation. Specifically, if the created first-layer repre-
sentation does not entirely ignore a superfluous feature, generalization to such values is better if
the Euclidean distances between states with different optimal actions are larger relative to those
of states with the same optimal action than they are in the coarsest Markov state representation.

6.2. Directions for Future Research
We subsequently outline suggestions for future work with respect to scaling up, generalization, and
other learning algorithms.

6.2.1. Scaling Up
One limitation of our experiments is that they are based on small domains and require computations
which in their original form are not scalable to larger problems. We therefore identify the following
directions for future work:

• Domains. The largest one of our fully observable domains is the Gridworld 5x5 domain, which has
a state space size of only 500 after introducing the superfluous feature. While using such small
domains has the advantage that we can identify each individual state in t-SNE plots to get a clear
understanding of what a deep RL agent has learned at any point during training, it is desirable to
see if our observations also hold for more realistic domains. Furthermore, while we do explore the
internal state representations formed by a DRQN for the partially observable Hallway domain, this
domain also merely has 15 ground states and we do not perform any generalization experiments
for partially observable domains. Hence, more experiments should be conducted both for simple
and more realistic partially observable domains.

• Computation of bisimulation metrics for stochastic domains. The only somewhat efficient algo-
rithm to compute the Kantorovich distance-based bisimulation metric for continuous MDPs with
stochastic transitions is the Monte Carlo approach by [13], yet it is not scalable to very large do-
mains. Furthermore, while the approximation algorithm by [8] is applicable to large domains, it
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is not designed for domains with stochastic transitions. Thus, the bisimulation metric which we
ideally want Euclidean distances between states to be proportional to cannot easily be computed
for large domains with stochastic transitions. This limits the applicability of our auxiliary loss in
its current form and of our bisimulation-based correlation coefficients. Future work should con-
sequently find a way to more efficiently approximate this bisimulation metric also for stochastic
domains.

• Incorporate computation of bisimulation metrics into learning. Our auxiliary loss is not only limited
in applicability because the Kantorovich distance-based bisimulation metric cannot be efficiently
computed for stochastic domains, but also because calculating bisimulation metrics for the aux-
iliary loss and learning itself currently are separate, consecutive steps. Yet, these steps could
potentially be combined. For example, since the approximation algorithm by [8] also computes
encodings of observations to calculate the bisimulation metric, it would be useful to investigate
how to directly incorporate the approximation of the bisimulation metric into the training of a DQN.
Notice that our experiments in Chapter 4 reveal that we can replace the expensive computation of
the precise Kantorovich distance-based bisimulation metric by an approximation by means of the
algorithm by [8], albeit at the expense of reduced effectiveness of the resulting auxiliary loss with
respect to learning speed. Yet, using this approximation algorithm introduces additional steps,
such as the tuning of hyperparameters and the training of the neural network used for the approx-
imation. While the training time required for the small domains utilized in our work is negligible
as it is in the order of seconds2, more time is likely needed for realistic domains.

• On-policy bisimulation metrics. When starting our research, we had identified using on-policy
bisimulation metrics as a way to in the future make our auxiliary loss more scalable to larger do-
mains. Such on-policy bisimulationmetrics do not take all actions into consideration for computing
behavioral similarity, but only those of a specific policy. While the concurrent research by [64] has
already explored the use of an auxiliary loss based on on-policy bisimulation metrics, it would be
insightful to directly compare the impacts of utilizing on-policy bisimulation metrics rather than the
original bisimulation metrics, especially with respect to generalization. Note that a representation
learned based on on-policy bisimulation metrics is no finer than one formed based on bisimulation
metrics, as solely a subset of actions is considered in on-policy bisimulation metrics.

6.2.2. Generalization
We empirically examined the importance of learning an internal state representation that is similar to
the coarsest Markov state representation for generalization in Chapter 5. We propose to explore the
following aspects in future research:

• We found in Chapter 5 that certain modifications to the transition function make it more important
to have learned an internal first-layer state representation that is similar to the coarsest Markov
state representation. It would thus be interesting to investigate in more detail the impacts of differ-
ent types of modifications on the usefulness of learning the coarsest Markov state representation.

• The work of [30] examines the impact of different forms of non-stationarity on the generalization
performance of neural networks. To gain insights into the effect a type of non-stationarity has
on the formed internal state representations, it would be worthwhile to compute our bisimulation-
based correlation coefficients.

6.2.3. Other Learning Algorithms
We utilize only DQNs and DRQNs with hard target network updates for our experiments. The impact
of this is very visible from the correlation coefficients during training and also the kinds of internal state
representations that are present at certain stages of training. It would hence be interesting to look at
the impact of applying soft target network updates and of employing other learning algorithms on the
types of internal state representations that are learned. At the same time, computing our bisimulation-
based correlation coefficients for other network architectures and learning algorithms could help to gain
a deeper understanding of what the resulting deep RL agents learn.

2Refer to Section D.3.1 in the Appendix for information on how we run our computations.
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A
Detailed Results

This chapter contains additional results and figures for the experiments discussed in themain part of this
work for each of our three primary research questions. Specifically, Sections A.1, A.2 and A.3 supply
further information on the characteristics of internal state representations during learning, the impact
of Markovianity on learning speed and consistency, and the impact of Markovianity on generalization,
respectively.

A.1. Characteristics of Internal State Representations During
Learning

Section A.1.1 shows supporting results for the second learning phase of DQNs and Section A.1.2 further
information on the factors impacting the learning process. In addition, Section A.1.3 discusses whether
the bisimulation-based correlation coefficients can be utilized to infer whether a DQN has discovered
or converged to the optimal policy, Section A.1.4 explores whether bisimulation-based correlation co-
efficients enable drawing conclusions regarding the adequacy of a DQN’s capacity, and Section A.1.5
supplies further figures.

A.1.1. Learning Phase 2
We provide experimental results for three more domains besides the Gridworld 3x3 domain in Section
A.1.1.1. In addition, we show that the hidden- and output-layer state representations also become
more similar to the coarsest Markov state representation during this phase of learning in a domain in
which states with the same Q-values are not necessarily bisimilar in Section A.1.1.2, and when a fixed
replay memory is used during training in Section A.1.1.3. Furthermore, the first-layer representation
tends to be more similar to the coarsest Markov state representation and more Markov with respect
to the transition function than the ones in subsequent hidden layers as discussed in Section A.1.1.4.
Lastly, we delineate that both 𝑐ፊ(፝ᑗᑚᑩ) and 𝑐፝ᖤᑗᑚᑩ , the latter of which is much faster to compute, enable
insights into how similar to the coarsest Markov state representation an internal state representation is
in Section A.1.1.5.

A.1.1.1 Further Domains
Gridworld 5x5 and FrozenLake 8x8. Figures A.1 and A.2 visualize that the hidden- and output-
layer representations also become more similar to the coarsest Markov state representation and more
Markov with respect to the transition function as states are grouped based on multi-step rewards for
the Gridworld 5x5 and FrozenLake 8x8 domains. Furthermore, Figure A.3 mirrors that it also holds for
a 2-layer DQN for the FrozenLake 8x8 (OH)(F-OH) domain that both 𝑐ፓፕ and 𝑐ፊ(፝ᑗᑚᑩ) tend to be higher
in the first than in the input1 and output layers.

1Recall that the term input layer refers to the state encoding.
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Figure A.1: Correlation coefficients and t-SNE plots of the activations the states are mapped to for the layers of a 2-layer DQN
for the Gridworld 5x5 (OH)(F-OH) domain. The hidden layer size is equal to ኺ.

Figure A.2: Correlation coefficients and t-SNE plots of the activations the states are mapped to for the layers of a 2-layer DQN
for the FrozenLake 8x8 (OH)(F-OH) domain. The hidden layer size is equal to ኺ.

FrozenLake 4x4. Clustering states based on immediate rewards for this domain already leads to
almost the same clusters of states as when grouping states based on Q-values. Moreover, 𝑐ፓፕ and
𝑐ፊ(፝ᑗᑚᑩ) are rather high for a𝑄∗-irrelevance abstraction for the FrozenLake 4x4 domain. Consequently, it
is not visible for this domain when looking at t-SNE plots of the first-layer representation and the values
for 𝑐ፓፕ and 𝑐ፊ(፝ᑗᑚᑩ) that the internal state representations learn to represent the transition function and
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Figure A.3: Mean ᑋᑍ and ᑂ(ᑕᑗᑚᑩ) for the layers of 2-layer DQNs for the FrozenLake 8x8 (OH)(F-OH) domain. Values are based
on  repetitions and ዃ%-confidence intervals are shown. The hidden layer size is equal to ኻኼ.

Figure A.4: Correlation coefficients and t-SNE plots of the activations the states are mapped to for the layers of a 2-layer DQN
for the FrozenLake 4x4 (OH)(F-OH) domain. The hidden layer size is equal to ኺ.

become closer to the coarsest Markov state representation to some extent, rather than just forming
close to a 𝑄∗-irrelevance abstraction, during this learning phase (see Figure A.4).

What can nicely be seen for the FrozenLake 4x4 domain is that the higher values of 𝑐ፓፕ and 𝑐ፊ(፝ᑗᑚᑩ)
in the first network layer compared to the input and output layers largely stem from different distances
between the abstract states that are created as well as from forming close but clearly distinct clusters
for non-bisimilar states with similar Q-values. For example, the states whose activations are drawn
in black, blue-green and white in t-SNE plots have similar Q-values, as they are all located above a
hole and require similar numbers of steps to the goal under the optimal policy. However, the three
corresponding ground states are not bisimilar. The activations that these states are mapped to tend to
form a single cluster in the second layer of a DQN for FrozenLake 4x4 (OH)(F-OH), whereas they are
separated in three clearly distinct clusters in the first layer (see Figure A.4).

A.1.1.2 Gridworld 3x3 (Aug)
The hidden- and output-layer representations become more similar to the coarsest Markov state rep-
resentation at the beginning of training even for a domain in which states with the same Q-values are
not necessarily bisimilar. Recall that in the Gridworld 3x3, Gridworld 5x5, FrozenLake 4x4 and Frozen-
Lake 8x8 domains, states have the same Q-values if and only if they are bisimilar. Thus, to rule out that
the internal state representations become more similar to the coarsest Markov state representation at
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Figure A.5: Correlation coefficients and t-SNE plots of the activations the states are mapped to for the layers of a 2-layer DQN
for the Gridworld 3x3 (Aug) (OH) domain. The hidden layer size is equal to ኺ.

the beginning of training only because the abstract states of the coarsest Markov state representation
and a 𝑄∗-irrelevance abstraction are the same, we also conducted experiments with the Gridworld 3x3
(Aug) domain, in which states with the same Q-values are not necessarily bisimilar. Figure A.5 shows
that bisimilar states rather than states with the same Q-values are at first grouped together. Notice that
𝑐ፊ(፝ᑗᑚᑩ) initially increases, whereas 𝑐ፐ∗ stays the same or even decreases. Furthermore, in t-SNE plots
3, only states whose activations are drawn in exactly the same color and not states whose activations
are colored in paler and darker shades of the same color tend to be mapped to similar activations2.
This likely is the case, because it is necessary to have learned rather precise estimates of the true
Q-values for this domain to realize that some non-bisimilar states have the same Q-values, which has
not yet been achieved during this phase of learning.

A.1.1.3 Impact of Exploration
To rule out that the observed way in which the internal state representations are formed arises solely
due to the way in which an agent increasingly explores a domain, we also conducted experiments
in which transitions during training are sampled from a fixed replay memory. This replay memory is
previously filled during the training of an agent on the same domain. Since the replay memory size is
larger than the total number of transitions performed during training, the replay memory contains all
transitions encountered during training of a DQN without fixed replay memory. Figure A.6 shows for a
2-layer DQN for the Gridworld 3x3 (Aug) (OH)(N) domain that the internal state representations become
more similar to the coarsest Markov state representation at the beginning of training even when such a
fixed replay memory is utilized3. This can be seen from the initially increasing value of 𝑐ፊ(፝ᑗᑚᑩ) and the
fact that 𝑐ፐ∗ decreases at the beginning of training. In addition, especially t-SNE plots 4 clearly depict
that bisimilar states rather than states with the same Q-values are mapped to similar activations.

Moreover, while 𝑐ፓፕ decreases at the beginning of training in Figure A.6, this also occurs for the
(OH)(N) encoding for this domain when no fixed replay memory is utilized (see Figure A.27). This is due
to the high input-layer and initial first-layer value for 𝑐ፓፕ for this form of state encoding. More precisely,
all states differing solely in the superfluous feature value are already mapped to very similar activations

2States whose activations are drawn in different shades of the same color have the same Q-values but are not bisimilar. Refer
to Section 3.1.5 for more information on the t-SNE coloring scheme.

3See Figure C.4 in the Appendix for the contents of the used fixed replay memory.
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Figure A.6: Correlation coefficients and t-SNE plots of the activations the states are mapped to for the layers of a 2-layer DQN for
the Gridworld 3x3 (Aug) (OH)(N) domain when a fixed replay memory is utilized during training. The hidden layer size is equal
to ዀ.

in the input layer and in the first layer at the start of training, and distances between the activations
of states from different ground states are very alike. Consequently, 𝑐ፓፕ cannot increase due to map-
ping states from the same ground state closer together, and it decreases as distances between the
activations of states from different ground states become less similar during training. Further experi-
ments with fixed replay memories for the Gridworld 3x3 and FrozenLake 4x4 domains that underline
the conclusion presented here are discussed in Section C.1 in the Appendix.

(a) First layer. (b) Second layer. (c) Third layer.
Figure A.7: t-SNE plots of the activations states are mapped to in the hidden layers of a 4-layer DQN with a hidden layer size of
ኺ for the Gridworld 3x3 (OH)(F-OH) domain after training episode . At this point during training, the target network has been
updated once.

A.1.1.4 Impact of Multiple Hidden Layers
For 4-layer DQNs, the first-layer representation also generally becomes more similar to the coarsest
Markov state representation and more Markov with respect to the transition function during this phase
of training than the representations in later hidden layers. For instance, one can see in Figure A.7 that
the first layer of a 4-layer DQN with a hidden layer size of 50 already forms separate clusters for all
states differing solely in the superfluous feature value after the target network has been updated solely
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once, whereas this occurs to lesser degrees for the second and third layers4. In fact, Figure A.8 shows
that the mean peak values of 𝑐ፊ(፝ᑗᑚᑩ) and 𝑐ፓፕ in the first layers of 4-layer DQNs for the Gridworld 3x3
(OH)(F-OH) domain tend to be higher than in the second and the third layer for all sufficiently large
hidden layer sizes.
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(a) First layer.
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(b) Second layer.
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(c) Third layer.
Figure A.8: Mean peak ᑂ(ᑕᑗᑚᑩ), ᑋᑍ and ᑈ∗ in each hidden layer with ዃ%-confidence intervals for each hidden layer size for
a 4-layer DQN for the Gridworld 3x3 (OH)(F-OH) domain. Values are based on  repetitions. The first and second vertical line
indicate the smallest hidden layer size for which the test rewards converge and the network converges to the optimal policy,
respectively, at least one out of  times.

A.1.1.5 𝑐ፊ(፝ᑗᑚᑩ) vs. 𝑐፝ᖤᑗᑚᑩ
Since Euclidean distances in the coarsest Markov state representation are proportional to 𝑑፟።፱, 𝑐ፊ(፝ᑗᑚᑩ)
is a precise measure of how close to the coarsest Markov state representation an internal state repre-
sentation is. However, the feasibility of utilizing 𝑐ፊ(፝ᑗᑚᑩ) in practice is strongly limited by the long time
needed for computing 𝑑፟።፱ with a satisfying precision. Yet, as depicted in Figure C.6 in the Appendix
and analyzed in more detail in Section C.3 in the Appendix, computing 𝑐፝ᖤᑗᑚᑩ rather than 𝑐ፊ(፝ᑗᑚᑩ) leads to
very similar results for the FrozenLake 4x4 (OH) domain. This is promising, because since 𝑑ᖤ፟።፱ can be
calculated much faster than 𝑑፟።፱, an analysis of how close to the coarsest Markov state representation
an internal state representation is based on 𝑐፝ᖤᑗᑚᑩ is much more scalable to larger domains.

A.1.2. Factors Impacting Hidden-layer State Representations During Learning
Phases 2 and 3

In the following, we provide supporting evidence for our analysis of the factors impacting the hidden-
layer state representations during the second and third learning phases from Section 3.2.2.3.
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Figure A.9: Mean peak ᑈ∗ in the first layer with ዃ%-confidence intervals for each hidden layer size for 2-layer DQNs for the
Gridworld 5x5 (OH)(F-OH) domain. Values are based on ኾ repetitions. The first and second vertical line indicate the smallest
hidden layer sizes for which the test rewards converge and the network converges to the optimal policy, respectively, at least
one out of ኾ times.

Necessity. Figures A.9 and A.10 show that less close to a 𝑄∗-irrelevance abstraction is formed in the
first layer for larger-than-necessary than for just-right hidden layer sizes also for the Gridworld 5x5 and

4Recall that the activations of all bisimilar states are drawn in the same color for the Gridworld 3x3 domain. Thereby, always ኾ
ground states are bisimilar, and there are  states corresponding to each ground state.
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the FrozenLake 4x4 and FrozenLake 8x8 domains when the (OH)(F-OH) state encoding is used5.
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(a) FrozenLake 4x4.

0 10 20 30 40 50
Hidden Layer Size

0.0

0.2

0.4

0.6

0.8

1.0

Co
nv

er
ge

d 
co

rre
la

tio
n 

co
ef

fic
ie

nt

(b) FrozenLake 8x8.
Figure A.10: Mean converged ᑈ∗ in the first layer with ዃ%-confidence intervals for each hidden layer size for 2-layer DQNs for
the FrozenLake 4x4 (OH)(F-OH) and FrozenLake 8x8 (OH)(F-OH) domains. Values are based on  repetitions. The first and
second vertical line indicate the smallest hidden layer sizes for which the test rewards converge and the network converges to
the optimal policy, respectively, at least one out of  times.

Difficulty. Our conclusions regarding the difficulty of forming internal state representations similar to
the coarsest Markov state representation or to a 𝑄∗-irrelevance abstraction are supported by results for
the FrozenLake 4x4 domain. More precisely, Figure A.11 depicts that the degree to which the first-layer
representation becomes similar to the coarsest Markov state representation, Markov with respect to
the transition function, and close to a 𝑄∗-irrelevance abstraction is contingent on the state encoding
also for the FrozenLake 4x4 domain6. Just as for the Gridworld 3x3 domain, this difference is due to
the varying input-layer and initial first-layer representations, which determine how difficult it is to map
states differing solely in the superfluous feature value to similar activations (see Figure A.12).
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(a) FrozenLake 4x4 (OH)(N).
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(b) FrozenLake 4x4 (OH)(F-OH).
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(c) FrozenLake 4x4 (OH).
Figure A.11: Mean peak ᑂ(ᑕᑗᑚᑩ), ᑋᑍ and ᑈ∗ in the first layer with ዃ%-confidence intervals for each hidden layer size for a
2-layer DQN for the FrozenLake 4x4 domain with different forms of state encoding. Values are based on  repetitions. The first
and second vertical line indicate the smallest hidden layer sizes for which the test rewards converge and the network converges
to the optimal policy, respectively, at least one out of  times.

5Since the highest value for ᑈ∗ occurs not necessarily at the end of training for the FrozenLake 8x8 domain, we depict the mean
converged value for ᑈ∗ for the FrozenLake domains.

6Just as for Gridworld 3x3, the peak first-layer value for ᑋᑍ occurs at the start of training rather than during the second learning
phase for the (OH)(N) state encoding for hidden layer sizes greater than or equal to the dimensionality of the state encoding
(see Figures A.25a and A.26a).
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Figure A.12: t-SNE plots of the activations at the beginning of training for the input and first layers of 2-layer DQNs with a hidden
layer size of ኺ for the FrozenLake 4x4 domain with different forms of state encoding. Activations are computed for all states
and every  states that differ solely in the superfluous feature and hence correspond to the same ground state are drawn in the
same color.



A.1. Characteristics of Internal State Representations During
Learning 79

Feasibility. Below, we provide further feasibility results for another state encoding in which the ground
state is encoded via features for Gridworld 3x3 and for FrozenLake 4x4:

Figure A.13: Correlation coefficients and t-SNE plots of the activations the states are mapped to for the layers of a 2-layer DQN
with a hidden layer size of ኺ for the Gridworld 3x3 (F)(N) domain.

• Gridworld 3x3. As visualized in Figure A.13, the created first-layer representation also clusters
the activations of states based on their ground states for the (F)(N) state encoding, for which all
features are scaled to [0, 1] and hence have the same scale. Yet, Figure A.14 shows that the first-
layer value for 𝑐ፄ typically is higher at the end of training for the (F)(N) than for the (F) encoding.
The reason for this is that the first layer learns to map states differing solely in the superfluous
feature value to very similar activations, and that states that differ only in the superfluous feature
value already have encodings with relatively small Euclidean distances when all features are
scaled to [0, 1].

(a) Gridworld 3x3 (F).
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(b) Gridworld 3x3 (F)(N).
Figure A.14: Mean converged ᑉᑖᑨ, ᑂ, ᑂ(ᑕᑗᑚᑩ), ᑋᑍ, ᐼ and ᑈ∗ in the first layer with ዃ%-confidence intervals for each hidden
layer size for 2-layer DQNs for the Gridworld 3x3 (F) and Gridworld 3x3 (F)(N) domains. Values are based on  repetitions.
The first and second vertical line indicate the smallest hidden layer sizes for which the test rewards converge and the network
converges to the optimal policy, respectively, at least one out of  times.

• FrozenLake 4x4. As depicted in Figure A.15, the first-layer representation of a 2-layer DQN also
learns to map states to similar activations if and only if they belong to the same ground state for
the FrozenLake 4x4 domain when the ground state is encoded via features. Thereby, even a
hidden layer size of 50 does not allow a 2-layer DQN for the FrozenLake 4x4 domain to converge
to the true Q-values when the ground state is encoded via features. This is mirrored in Figure
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Figure A.15: Correlation coefficients and t-SNE plots of the activations the states are mapped to for the layers of a 2-layer DQN
with a hidden layer size of ኺ for the FrozenLake 4x4 (F) domain.

A.16 by the fact that 𝑐ፐ∗ is not close to 1 for the output layer at the end of training as it would be
when convergence to the true Q-values is achieved. Lastly, just as for the Gridworld 3x3 domain,
none of the hidden layers of 4-layer DQNs learn internal representations that are more similar
to the coarsest Markov state representation than the output-layer representation during training
when the ground state is encoded via features (see Figure A.17).
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Figure A.16: Mean converged ᑈ∗ in the output layer with ዃ%-confidence intervals for each hidden layer size for 2-layer DQNs
for the FrozenLake 4x4 (F) domain. Values are based on  repetitions. The first and second vertical line indicate the smallest
hidden layer sizes for which the test rewards converge and the network converges to the optimal policy, respectively, at least
one out of  times.
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Figure A.17: Mean peak ᑂ(ᑕᑗᑚᑩ) in each layer with ዃ%-confidence intervals for each hidden layer size and constant input-layer
ᑂ(ᑕᑗᑚᑩ) for a 4-layer DQN for the FrozenLake 4x4 (F) domain. Values are based on  repetitions. The first and second vertical
line indicate the smallest hidden layer sizes for which the test rewards converge and the network converges to the optimal policy,
respectively, at least one out of  times.
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A.1.3. Correlation Coefficients When the Test Rewards Converge, the Optimal
Policy is Discovered, and Convergence to the Optimal Policy is Achieved

Besides the internal state representations that are learned by DQNs, we are also interested in the spe-
cific internal state representations required for the test rewards to converge, the optimal policy to be
discovered, and convergence to the optimal policy to be achieved. Note that with the convergence of
the test rewards we mean that all test episodes end successfully for a training episode and all subse-
quent training episodes. Convergence of the test rewards is especially interesting for the FrozenLake
domains, for which simply reaching the goal state is difficult due to the holes, stepping into which ends
an episode.

Figure A.18: Correlation coefficients and t-SNE plots of the activations the states are mapped to for the first layer of a 2-layer
DQN with a hidden layer size of ኺ for the FrozenLake 8x8 (OH)(F-OH) domain.

Chapter 3 shows that the internal state representations learned in hidden layers depend on various
factors such as the state encoding, state space size and the network capacity, and that the precise
coarsest Markov state representation is not learned for any of our experiments. Therefore, looking at
the values of correlation coefficients alone does not allow drawing any conclusions regarding whether
all tests succeed, a DQN has discovered the optimal policy, or convergence to the optimal policy has
been achieved. This becomes clearly visible in Figures A.19, A.20 and A.21, which depict the cor-
relation coefficients during training for 2-layer DQNs with a hidden layer size of 50 for the Gridworld
3x3, FrozenLake 4x4, FrozenLake 8x8 and Gridworld 5x5 domains for all types of state encoding.
Nevertheless, we can make a few noteworthy observations:

• All correlation coefficients have largely converged when a DQN for a Gridworld domain
converges to the optimal policy. 𝑐ፓፕ, 𝑐ፊ, 𝑐ፑ፞፰, 𝑐ፊ(፝ᑗᑚᑩ) and 𝑐ፐ∗ have mostly converged in
both layers when a 2-layer DQN converges to the optimal policy for a Gridworld domain, but
not for a FrozenLake domain. This is the case, because a DQN for a Gridworld domain has to
have learned rather accurate Q-values to be able to always act optimally, since states have very
similar Q-values for optimal and non-optimal actions in the Gridworld domains. In the FrozenLake
domains, however, the Q-values for optimal and non-optimal actions differ to amuch larger extent.
Therefore, a DQN for a FrozenLake domain may converge to the optimal policy even before the
precise Q-values have been learned. This means that the internal state representations may
afterwards still be modified to a larger degree than for the Gridworld domains. Notice that if the
network capacity is large, such subsequent changes for DQNs for the FrozenLake domains are
generally limited to the output layer, because the first layer then does not have to form close to a
𝑄∗-irrelevance abstraction.
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(a) Gridworld 3x3 (OH).

(b) Gridworld 3x3 (OH)(N).

(c) Gridworld 3x3 (OH)(F-OH).

(d) Gridworld 3x3 (F).

(e) Gridworld 3x3 (F)(N).
Figure A.19: Correlation coefficients for the layers of 2-layer DQNs for the Gridworld 3x3 domain with different forms of state
encoding. The hidden layer size is equal to ኺ.
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(a) FrozenLake 4x4 (OH).

(b) FrozenLake 4x4 (OH)(N).

(c) FrozenLake 4x4 (OH)(F-OH).

(d) FrozenLake 4x4 (F).

(e) FrozenLake 4x4 (F)(N).
Figure A.20: Correlation coefficients for the layers of 2-layer DQNs for the FrozenLake 4x4 domain with different forms of state
encoding. The hidden layer size is equal to ኺ.
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(a) FrozenLake 8x8 (OH).

(b) FrozenLake 8x8 (OH)(N).

(c) FrozenLake 8x8 (OH)(F-OH).

(d) Gridworld 5x5 (OH).
Figure A.21: Correlation coefficients for the layers of 2-layer DQNs for the FrozenLake 8x8 and Gridworld 5x5 domains with
different forms of state encoding. The hidden layer size is equal to ኺ.

• A DQN converges to the optimal policy soon after 𝑐ፓፕ no longer changes significantly.
Figures A.19, A.20 and A.21 visualize that 𝑐ፓፕ typically no longer changes significantly when a
DQN converges to the optimal policy even for the FrozenLake domains. Recall that 𝑐ፓፕ takes on
a value of 1 for our domains when states are mapped to the same activations if and only if they
belong to the same ground state and all inter-cluster distances are equal. Hence, 𝑐ፓፕ has mostly
converged when a DQN for the FrozenLake domain converges to the optimal policy, because
states from the same ground states already are mapped to very similar activations and the inter-
cluster distances already are very far from being equidistant at that point. For instance, Figure
A.18 shows for the first layer of a 2-layer DQN for the FrozenLake 8x8 (OH)(F-OH) domain that
states corresponding to the same ground state are mapped to very similar activations from t-SNE
plot 5 onward and that only inter-cluster distances vary slightly in subsequent t-SNE plots as the
network learns the precise Q-values.



A.1. Characteristics of Internal State Representations During
Learning 85

(e) Gridworld 5x5 (OH)(N).

(f) Gridworld 5x5 (OH)(F-OH).
Figure A.21: Correlation coefficients for the layers of 2-layer DQNs for the FrozenLake 8x8 and Gridworld 5x5 domains with
different forms of state encoding. The hidden layer size is equal to ኺ.

A.1.4. Using Bisimulation Metrics to Choose an Adequate Network Capacity
The analysis of the state representations that a DQN forms in each of its layers in Chapter 3 does
already take different network capacities into consideration. This section, however, now explicitly ex-
plores whether bisimulation-based correlation coefficients during or at the end of training allow to draw
conclusions regarding the adequacy of the capacity of a DQN, which is defined by the number of layers
and number of nodes per layer. Specifically, it would be interesting if one could say whether a DQN
with a certain hidden layer size and number of layers has insufficient, adequate, or too much capacity
after computing these measures. An adequate network capacity is important, because a network with
insufficient capacity may not be able to learn an optimal policy, and a network with too much capacity
requires more memory and training and testing time than necessary and may fail to converge.

A.1.4.1 Hidden Layer Size
Ideally, the values of correlation coefficients alone would indicate whether the used hidden layer size
is too small, adequate, or larger than necessary. Yet, as discussed in Chapter 3, the precise coarsest
Markov state representation is not learned during any of our experiments. Furthermore, the values
of the correlation coefficients for other types of internal state representations differ based on various
aspects such as the state encoding and characteristics of the domain itself. This renders drawing con-
clusions regarding the adequacy of the hidden layer size based on solely the values of the correlation
coefficients impossible. While we found the values of the correlation coefficients during as well as at
the end of training to be contingent on the hidden layer size in Chapter 3, the patterns we discovered
do not make it obsolete to train a DQN with various hidden layer sizes to find an adequate one. For in-
stance, we saw that 𝑐ፊ(፝ᑗᑚᑩ) tends to be highest at the end of training for slightly larger-than-necessary
hidden layer sizes. However, to find the hidden layer size for which 𝑐ፊ(፝ᑗᑚᑩ) is highest at the end of
training, one has to train DQNs with different hidden layer sizes. Computing 𝑐ፊ(፝ᑗᑚᑩ) thus does not offer
any shortcut to choosing an adequate hidden layer size.

A.1.4.2 Number of Hidden Layers
Adequately many vs. more hidden layers than necessary. Just as in the context of choosing
an adequate number of hidden nodes, the values of the correlation coefficients alone do not indicate
whether or not the number of hidden layers is adequate. What we do see is that for just-right and
slightly larger hidden layer sizes, all four layers of 4-layer DQNs typically form very similar internal state
representations and thus have similar values for the correlation coefficients at the end of training when
only a single hidden layer is needed, which is the case for our domains when the ground state is one-hot
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Second layer.
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Third layer.
0 10 20 30 40 50

Hidden Layer Size

0.0

0.2

0.4

0.6

0.8

1.0

Co
nv

er
ge

d 
co

rre
la

tio
n 

co
ef

fic
ie

nt

Output layer.
(a) FrozenLake 4x4 (OH)(F-OH).
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Second layer.
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Third layer.
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Output layer.
(b) FrozenLake 4x4 (F).

Figure A.22: Mean converged ᑉᑖᑨ, ᑂ, ᑂ(ᑕᑗᑚᑩ), ᑋᑍ, ᐼ and ᑈ∗ in each layer with ዃ%-confidence intervals for each hidden
layer size for 4-layer DQNs for the FrozenLake 4x4 (OH)(F-OH) and the FrozenLake 4x4 (F) domain. Values are based on 
repetitions. The first and second vertical line indicate the smallest hidden layer size for which the test rewards converge and the
network converges to the optimal policy, respectively, at least one out of  times.

encoded (see Figure A.22a). When multiple hidden layers are useful because they necessitate a lower
total number of hidden nodes, as when the ground state is encoded via features for the FrozenLake
4x4 domain, the values of the correlation coefficients at the end of training in the layers differ to a larger
extent for just-right and slightly larger hidden layer sizes (see Figure A.22b).

Yet, looking at whether or not the values of the correlation coefficients at the end of training are
similar for the layers alone does not allow drawing conclusions regarding the adequacy of the number
of layers. The reason is that the differences between the internal state representations formed in the
hidden layers increase as the hidden layer size becomes larger than necessary, even when not all
hidden layers are needed. Consequently, large differences between the internal state representations
present in hidden layers at the end of training could mean either that the number of hidden layers is
adequate, or that fewer and smaller hidden layers should be utilized. Even if one additionally finds that
the learned representations in earlier hidden layers are very close to the state encoding, one can only
conclude that smaller hidden layers should be used. This is the case, because it occurs both when
the number of hidden layers is adequate and when there are more hidden layers than needed that the
formed first-layer representation is increasingly similar to the state encoding for larger-than-necessary
hidden layer sizes.
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(a) First layer.
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(b) Output layer.
Figure A.23: Mean converged ᑉᑖᑨ, ᑂ, ᑂ(ᑕᑗᑚᑩ), ᑋᑍ, ᐼ and ᑈ∗ in each layer with ዃ%-confidence intervals for each hidden
layer size for a 2-layer DQN for the FrozenLake 4x4 (F) domain. Values are based on  repetitions. The first and second vertical
line indicate the smallest hidden layer sizes for which the test rewards converge and the network converges to the optimal policy,
respectively, at least one out of  times.

Adequately many vs. too few hidden layers. Our experimental results suggest that while using a
single hidden layer for a DQN for the FrozenLake 4x4 domain when the ground state is encoded via
features allows the DQN to converge to the optimal policy, even a hidden layer size of 50 is not yet
sufficient for the DQN to converge to the true Q-values. This is mirrored in Figure A.23 by the fact
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that 𝑐ፐ∗ in the second layer takes on a final value much lower than the one near 1 that is has for a 𝑄∗-
irrelevance abstraction. When employing three hidden layers instead, a hidden layer size of 10 already
causes more accurate Q-values to be learned than for any tested hidden layer size for a 2-layer DQN.
Thus, for a fixed total number of hidden nodes, a 4-layer DQN performs much better than a 2-layer DQN
for the FrozenLake 4x4 domain when the ground state is encoded via features. Hence, one should use
more than just a single hidden layer for this domain and type of ground state encoding.

Yet, based on the values of the correlation coefficients at the end of or during training of a 2-layer
DQN for the FrozenLake 4x4 domain, it does not become clear that utilizing more hidden layers would
ameliorate the training process. In fact, the first-layer correlation coefficients at the end of training are
very similar for both 2-layer DQNs and 4-layer DQNs. This becomes evident when comparing Figure
A.22b to Figure A.23. Furthermore, while the final values of 𝑐ፊ(፝ᑗᑚᑩ) and 𝑐ፑ፞፰ are much lower for the
output layer of a 2-layer DQN than for the output layer of a 4-layer DQN, they are also lower for too
small hidden layers for a 4-layer DQN than for adequate hidden layer sizes for a 4-layer DQN. There-
fore, the final output-layer values of 𝑐ፊ(፝ᑗᑚᑩ) and 𝑐ፑ፞፰ are not indicative of whether more hidden layers
or more hidden nodes are most adequate. Lastly, notice that the precise values of those correlation co-
efficients for a 𝑄∗-irrelevance abstraction are domain-dependent, which means that unless one knows
their values for a 𝑄∗-irrelevance abstraction for a domain beforehand, one cannot even compare the
final output-layer values for 𝑐ፊ(፝ᑗᑚᑩ) and 𝑐ፑ፞፰ to the ideal ones.

A.1.5. Further Figures
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(a) Input layer.
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(b) First layer.
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(c) Output layer.
Figure A.24: Mean peak ᑂ(ᑕᑗᑚᑩ), ᑋᑍ and ᑈ∗ in each layer with ዃ%-confidence intervals for each hidden layer size for a 2-layer
DQN for the Gridworld 3x3 (OH)(F-OH) domain. Values are based on  repetitions. The first and second vertical line indicate the
smallest hidden layer sizes for which the test rewards converge and the network converges to the optimal policy, respectively, at
least one out of  times.
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(a) FrozenLake 4x4.
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(b) Gridworld 3x3.
Figure A.25: Mean initial and peak ᑋᑍ in the first layer with ዃ%-confidence intervals for each hidden layer size for 2-layer
DQNs for the FrozenLake 4x4 and the Gridworld 3x3 domain for the (OH)(N) state encoding. Values are based on  repetitions.
The first and second vertical line indicate the smallest hidden layer sizes for which the test rewards converge and the network
converges to the optimal policy, respectively, at least one out of  times.
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(a) FrozenLake 4x4.
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(b) Gridworld 3x3.
Figure A.26: Mean ᑋᑍ in the layers of 2-layer DQNs for the FrozenLake 4x4 and Gridworld 3x3 domains for the (OH)(N) state
encoding. Values are based on  repetitions and ዃ%-confidence intervals are shown. The hidden layer size is equal to ኺ.

Figure A.27: Correlation coefficients and t-SNE plots of the activations the states are mapped to for the layers of a 2-layer DQN
for the Gridworld 3x3 (Aug) (OH)(N) domain. The hidden layer size is equal to ዀ.
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(a) Gridworld 3x3 (OH)(N).
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(b) Gridworld 3x3 (OH)(F-OH).
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(c) Gridworld 3x3 (OH).
Figure A.28: Mean converged ᑂ(ᑕᑗᑚᑩ) and ᑈ∗ in the first layer with ዃ%-confidence intervals for each hidden layer size for a
2-layer DQN for the Gridworld 3x3 domain with different forms of state encoding. Values are based on  repetitions. The first
and second vertical line indicate the smallest hidden layer sizes for which the test rewards converge and the network converges
to the optimal policy, respectively, at least one out of  times.
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A.2. Impact of Markovianity on Learning Speed and Consistency
Section A.2.1 discusses how we set 𝑑፦ፚ፱ፁ for auxiliary losses based on 𝑑፟።፱ and 𝑑

ᖤ
፟።፱ for our exper-

iments, and Sections A.2.2, A.2.3 and A.2.4 contain further results for the experiments with auxiliary
losses based on 𝑑፟።፱, 𝑑

ᖤ
፟።፱ and 𝑇ፓፕ, respectively.

A.2.1. Setting 𝑑፦ፚ፱ፁ
While 𝑑፦ፚ፱ፁ is clearly equal to 1 when 𝑇ፓፕ is utilized, we have two options for reasonably setting 𝑑፦ፚ፱ፁ
when 𝑑፟።፱ or 𝑑

ᖤ
፟።፱ are employed for the auxiliary loss. First, we could set 𝑑፦ፚ፱ፁ to the maximum ap-

pearing distance based on 𝑑፟።፱ or 𝑑
ᖤ
፟።፱ for a domain. However, this makes it difficult to compare the

impact of varying values for 𝑑፦ፚ፱ፄ for different domains, because states with similar bisimulation-based
distances are not necessarily pushed to roughly equally distant activations for different domains. Thus,
we set 𝑑፦ፚ፱ፁ equal to 1 for both Gridworld 3x3 and FrozenLake 4x4 when using an auxiliary loss based
on 𝑑፟።፱ or 𝑑

ᖤ
፟።፱. Yet, when comparing the use of 𝑑

ᖤ
፟።፱ to the one of 𝑑፟።፱, it is important to take the large

discrepancy between the maximum arising distances into consideration. For instance, given that the
largest occurring value for 𝑑ᖤ፟።፱ for FrozenLake 4x4 is 24.5 times as high as the one for 𝑑፟።፱, 𝑑፦ፚ፱ፄ
should be set 24.5 times higher for 𝑑፟።፱ than for 𝑑

ᖤ
፟።፱ to obtain comparable results.

A.2.2. Auxiliary Loss Based on 𝑑፟።፱
Section A.2.2.1 and Section A.2.2.2 provide further experimental results for the FrozenLake 4x4 (OH)
and the Gridworld 3x3 (OH) domain, respectively.

A.2.2.1 FrozenLake 4x4
In the following, we analyze the impacts of the target network update frequency and the hyperparameter
settings for the auxiliary loss using the FrozenLake 4x4 domain as example.
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(a) ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻ.
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(b) ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  .
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(c) ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺ.
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(d) ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺኺ.
Figure A.29: ፋᎳ-error with respect to the true Q-values for a 2-layer DQN with a hidden layer size of ኺ for the FrozenLake 4x4
(OH) domain when employing different weights for the auxiliary loss, varying target network update frequencies, and terminating
the usage of the auxiliary loss after training episode ኼ, ኺኺኺ, the latter of which is indicated by the green vertical line. ፝ᑞᑒᑩᐼ is set
to √ኼዀ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞ and ፝ᑗᑚᑩ is employed as bisimulation-based state distance for the auxiliary loss. The red line
depicts the ፋᎳ-error when no auxiliary loss is used. ዃ%-confidence intervals are shown based on  repetitions.

Target network update frequency. While introducing the auxiliary loss improves the 𝐿ኻ-error during
training and allows for earlier convergence for all tested target network update frequencies, the magni-
tudes of improvement at various stages of training vary across different values for this hyperparameter:
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• The auxiliary loss leads to less improvement in the 𝐿ኻ-error or even slight deterioration at the
very beginning of training while the target network has not yet been updated 𝑛 − 1 times, where
𝑛 is the maximum number of transitions Q-values are based on. Hence, the improvement in
𝐿ኻ-error is largest at the beginning of training for small values for the 𝑡𝑎𝑟𝑔𝑒𝑡_𝑢𝑝𝑑𝑎𝑡𝑒-parameter
(see Figure A.29). This is the case, because the auxiliary loss prevents precise grouping based
on rewards considering few transitions. Yet, since the auxiliary loss does not impact the output-
layer representation, it does not yet allow states to be fully clustered based on Q-values either.
As learning to predict the immediate rewards already leads to rather accurate Q-values due to
the high proportion of terminal states in the FrozenLake 4x4 domain, this therefore causes the
𝐿ኻ-error to be slightly higher at the beginning of training when the auxiliary loss is added than
when it is not used7.

• The auxiliary loss greatly reduces the variance and the magnitude of the 𝐿ኻ-error towards the
end of training especially for values much higher or lower than the best tested value of 10 for
the 𝑡𝑎𝑟𝑔𝑒𝑡_𝑢𝑝𝑑𝑎𝑡𝑒-parameter (see Figure A.29). The result is that the different settings for the
target network update frequency now perform similarly well. This shows that introducing the
auxiliary loss can render the training process more stable and more robust to different settings
for hyperparameters such as the target network update frequency.

Hyperparameters of the auxiliary loss. To obtain the best possible improvement and no deteriora-
tion of the 𝐿ኻ-error during training, it is important to choose appropriate values for 𝑑፦ፚ፱ፄ , the duration,
and the weight for the auxiliary loss:

• 𝑑፦ፚ፱ፄ . We from the start chose to render 𝑑፦ፚ፱ፄ dependent on the hidden layer size, because
a smaller hidden layer implies that a DQN is less flexible and that very large target Euclidean
distances may thus prevent the network from learning the true Q-values. More precisely, we
set 𝑑፦ፚ፱ፄ = √𝑤 × ℎ𝑖𝑑𝑑𝑒𝑛_𝑙𝑎𝑦𝑒𝑟_𝑠𝑖𝑧𝑒 and solely change the factor 𝑤. Our experimental results
confirm that lower values for 𝑑፦ፚ፱ፄ are required for DQNs with smaller hidden layer sizes. Specifi-
cally, lower values for 𝑤 are needed for such DQNs even though 𝑑፦ፚ፱ፄ already is lower for smaller
DQNs for a fixed value for𝑤. For instance, 𝑤 = 256 leads to good results for a 2-layer DQNwith a
hidden layer size of 50 for the FrozenLake 4x4 (OH) domain as shown in Figure A.34d. However,
values for 𝑤 of 128 or 256 cause almost no improvement or even deterioration of the training
process for a 2-layer DQN with a hidden layer size of 20 (see Figures A.34c and A.34d). Instead,
𝑤 = 32 yields the largest improvements for a 2-layer DQN with a hidden layer size of 20 as
visualized in Figure A.34b.
When tuning 𝑑፦ፚ፱ፄ based on the hidden layer size, it is also important not to select too low of a
value. For example, setting 𝑤 = 1 for a 2-layer DQN with a hidden layer size of 50 deteriorates
the 𝐿ኻ-error throughout training and induces later convergence to the true Q-values (see Figure
A.36). Yet, besides too low and too large values for 𝑑፦ፚ፱ፄ leading to less improvement or even
deterioration, multiple different settings for 𝑑፦ፚ፱ፄ enable good results. For instance, 𝑤 = 8, 𝑤 =
32, 𝑤 = 128 and 𝑤 = 256 all cause the auxiliary loss to significantly improve upon the 𝐿ኻ-error
during the beginning of training for a 2-layer DQNwith a hidden layer size of 50 for the FrozenLake
4x4 (OH) domain (see Figure A.34).

• Duration. In our experiments, we use a fixed decay rate of 0.9999 for the auxiliary loss and
rather than varying the decay rate, we alter the number of training episodes during which the
auxiliary loss is applied. The primary reason for this is that the naive computation of the auxiliary
loss is expensive. Yet, it is also interesting to see what happens to the formed internal state
representations when the auxiliary loss is no longer applied at varying times during training. The
downside of this approach, however, is that if the auxiliary loss is still used with a large weight
when its application is terminated, the learning targets may change abruptly.
We find that the auxiliary loss should be terminated sooner for DQNs with smaller hidden layers.
For instance, Figure A.34d visualizes that applying the auxiliary loss for 2, 000 training episodes

7See also Figure A.35, which shows that if the auxiliary loss is added to the training, states are less grouped based on Q-values
in the first and the output layer at the beginning of training when the ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞-parameter is set to ኻኺኺ than when it is
set to ኻ.
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Figure A.30: Correlation coefficients and t-SNE plots of the activations the states are mapped to for the layers of a 2-layer DQN
with a hidden layer size of ኽ for the Gridworld 3x3 (OH) domain. ፝ᑞᑒᑩᐼ is set to√ኽኼ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞ and ፝ᑗᑚᑩ is employed
as bisimulation-based state distance for the auxiliary loss. The auxiliary loss is applied with a weight of ኺ.ኻ and a decay rate of
ኺ.ዃዃዃዃ during the first ኺኺ training episodes, the latter of which is indicated by the green vertical line.

Figure A.31: Correlation coefficients and t-SNE plots of the activations the states are mapped to for the layers of a 2-layer
DQN with a hidden layer size of  for the Gridworld 3x3 (OH) domain. ፝ᑞᑒᑩᐼ is set to √ኻኼዂ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞ and ፝ᑗᑚᑩ
is employed as bisimulation-based state distance for the auxiliary loss. The auxiliary loss is applied with a weight of ኺ.ኼ and a
decay rate of ኺ.ዃዃዃዃ during the first ኻ, ኺኺኺ training episodes, the latter of which is indicated by the green vertical line.

yields good results for DQNs with a hidden layer size of 50 for the FrozenLake 4x4 (OH) domain.
Yet, the same duration causes the 𝐿ኻ-error to ultimately deteriorate after initially improving for
DQNs with a hidden layer size of 20, both for the same value of 256 for 𝑤 and for the optimal
value of 32 (see Figures A.34d and A.34b). Instead, terminating the auxiliary loss after 1, 000
training episodes is useful for a DQN with a hidden layer size of 20 (see Figure A.32). This
observation can be explained by the fact that DQNs with smaller hidden layers need to create an
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abstraction coarser than the coarsest Markov state representation in their first layers to be able to
converge to the true Q-values. Figure A.30 shows, for example, that if an auxiliary loss based on
𝑑፟።፱ is applied to a 2-layer DQN for the Gridworld 3x3 (OH) domain with a hidden layer size of 3,
the second layer cannot form a 𝑄∗-irrelevance abstraction before the auxiliary loss is terminated.
This is indicated by the very low value for 𝑐ፐ∗ while the auxiliary loss is used. The output layer
of a 2-layer DQN with a hidden layer size of 5, however, can already create much closer to a
𝑄∗-irrelevance abstraction while the auxiliary loss is applied (see Figure A.31). Nevertheless,
even if the auxiliary loss is applied so long that the 𝐿ኻ-error increases at some point after initially
decreasing, the 𝐿ኻ-error decreases again as soon as the auxiliary loss is terminated. This is, for
instance, depicted in Figure A.34b when the auxiliary loss is utilized for 2, 000 training episodes.
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(a) Application for ኻ, ኺኺኺ training episodes.
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(b) Application for ኻ, ኺኺ training episodes.
Figure A.32: ፋᎳ-error with respect to the true Q-values for a 2-layer DQN with a hidden layer size of ኼኺ for the FrozenLake 4x4
(OH) domain when employing different weights for the auxiliary loss and ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  , and terminating the usage of the
auxiliary loss after varying numbers of training episodes, the latter of which is indicated by the green vertical line. ፝ᑞᑒᑩᐼ is set
to √ኽኼ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞ and ፝ᑗᑚᑩ is employed as bisimulation-based state distance for the auxiliary loss. The red line
depicts the ፋᎳ-error when no auxiliary loss is used. ዃ%-confidence intervals are shown based on  repetitions.

The duration should be adapted based on not only the hidden layer size, but also with respect to
𝑑፦ፚ፱ፄ . The reason is that more time is needed to group states differing solely in the superfluous
feature value together in the first layer when 𝑑፦ፚ፱ፄ is higher. Note that the higher 𝑑፦ፚ፱ፄ , the more
priority is given to adjusting the Euclidean distances between the activations of states with a large
distance with respect to 𝑑፟።፱ relative to tuning the Euclidean distances between the activations of
states that are bisimilar. This is visualized in Figure A.33 for 2-layer DQNs for the FrozenLake 4x4
(OH) domain. For such a DQN, 𝑐ፊ(፝ᑗᑚᑩ) is close to 1 in the first layer after 2, 000 training episodes
if 𝑤 = 256, but takes on a value below 0.8 at the same point during training if 𝑤 = 512. Thereby,
states differing only in the superfluous feature are mapped to much more similar activations in t-
SNE plot 4 in Figure A.33a than in t-SNE plot 5 in Figure A.33b, both of which show the activations
states are mapped to after about 1, 100 training episodes for the two different settings for 𝑑፦ፚ፱ፄ

8.

• Weight. We experimented with different weights of 0.2, 0.4, 0.6, 0.8 and 0.9 for the auxiliary loss.
Our results show that for appropriate settings for the duration and 𝑑፦ፚ፱ፄ , the different weights
lead to very similar outcomes. Yet, if the auxiliary loss is applied for too long or if too high or
too low of a value for 𝑑፦ፚ፱ፄ is chosen, lower weights tend to cause less deterioration or even still
improvement than larger weights. For instance, Figure A.34a visualizes that if the auxiliary loss
is applied with 𝑑፦ፚ፱ፄ = √8 × ℎ𝑖𝑑𝑑𝑒𝑛_𝑙𝑎𝑦𝑒𝑟_𝑠𝑖𝑧𝑒 to a 2-layer DQN for the FrozenLake 4x4 (OH)
domain during the first 2, 000 training episodes, a weight of 0.2 still leads to lower 𝐿ኻ-errors during
training than if no auxiliary loss is used. Higher weights, however, cause the 𝐿ኻ-error to increase
at some point after initially dropping. In addition, very low weights such as 0.001 are necessary
for DQNs with very small hidden layer sizes such as 3 to prevent exploding gradients.

8Bisimilar states with the same superfluous feature value are still grouped together early during training for high values for ፝ᑞᑒᑩᐼ .
The reason is that such states are already mapped to relatively similar activations at the beginning of training for the (OH) state
encoding.
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(a) ፝ᑞᑒᑩᐼ  √ኼዀ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞.

(b) ፝ᑞᑒᑩᐼ  √ኻኼ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞.
Figure A.33: Correlation coefficients and t-SNE plots of the activations the states are mapped to for the layers of a 2-layer
DQN with a hidden layer size of ኺ for the FrozenLake 4x4 (OH) domain for different values for ፝ᑞᑒᑩᐼ . ፝ᑗᑚᑩ is employed as
bisimulation-based state distance for the auxiliary loss. The auxiliary loss is applied with a weight of ኺ.ኼ and a decay rate of
ኺ.ዃዃዃዃ during the first ኼ, ኺኺኺ training episodes, the latter of which is indicated by the green vertical line.
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፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞  ኺ.
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፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞  ኼኺ.
(a) ፝ᑞᑒᑩᐼ  √ዂ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞.
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፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞  ኺ.
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፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞  ኼኺ.
(b) ፝ᑞᑒᑩᐼ  √ኽኼ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞.

0 500 1000 1500 2000 2500 3000 3500 4000
Number of Training Episodes

0

50

100

150

200

250

L1
 E

rro
r

0.2
0.4
0.6
0.8
0.9
Without aux. loss
Aux. loss end

፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞  ኺ.
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፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞  ኼኺ.
(c) ፝ᑞᑒᑩᐼ  √ኻኼዂ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞.
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፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞  ኺ.
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፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞  ኼኺ.
(d) ፝ᑞᑒᑩᐼ  √ኼዀ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞.
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፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞  ኺ.
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፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞  ኼኺ.
(e) ፝ᑞᑒᑩᐼ  √ኻኼ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞.
Figure A.34: ፋᎳ-error with respect to the true Q-values for a 2-layer DQN for the FrozenLake 4x4 (OH) domain when employing
different hidden layer sizes, varying settings for ፝ᑞᑒᑩᐼ , different weights for the auxiliary loss and ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  , and
terminating the usage of the auxiliary loss after training episode ኼ, ኺኺኺ, the latter of which is indicated by the green vertical line.
፝ᑗᑚᑩ is employed as bisimulation-based state distance for the auxiliary loss. The red line depicts the ፋᎳ-error when no auxiliary
loss is used. ዃ%-confidence intervals are shown based on  repetitions.
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Further figures. Below, we provide further figures for experiments based on the FrozenLake 4x4
domain.

(a) ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞ = ኻ.

(b) ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞ = ኻኺኺ.
Figure A.35: Correlation coefficients and t-SNE plots of the activations the states are mapped to for the layers of a 2-layer DQN
with a hidden layer size of ኺ for the FrozenLake 4x4 (OH) domain for different target network update frequencies. ፝ᑞᑒᑩᐼ 
√ኼዀ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞ and ፝ᑗᑚᑩ is employed as bisimulation-based state distance for the auxiliary loss. The auxiliary
loss is applied with a weight of ኺ.ኼ and a decay rate of ኺ.ዃዃዃዃ during the first ኼ, ኺኺኺ training episodes, the latter of which is
indicated by the green vertical line.
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A.2.2.2 Gridworld 3x3
We found an auxiliary loss based on 𝑑፟።፱ to generally improve upon the 𝐿ኻ-error during training when
appropriate hyperparameters are chosen for the FrozenLake 4x4 (OH) domain in Chapter 4. Experi-
ments on the Gridworld 3x3 (OH) domain, however, hardly show any improvement when applying this
auxiliary loss. Figures A.37, A.39, A.40, A.41 and A.42 visualize for different values for 𝑑፦ፚ፱ፄ that intro-
ducing an auxiliary loss based on 𝑑፟።፱ allows for no earlier convergence of a 2-layer DQN with a hidden
layer size of 50, and only sometimes leads to slightly lower 𝐿ኻ-errors at the beginning of training.

The likely reason for this different outcome for the Gridworld 3x3 (OH) domain is that even without
auxiliary loss, a 2-layer DQN converges to the true Q-values almost directly after the target network
has been updated 5 times. Note that Q-values for the Gridworld 3x3 domain are based on at most 6
transitions. Hence, a DQN trained without auxiliary loss already converges as soon as is possible due
to the fact that the target network provides the estimates of the Q-values of next states during training9.
Adding an auxiliary loss that does not directly impact the output-layer representation therefore cannot
lead to earlier convergence. The slight improvements in 𝐿ኻ-error that are observed for the Gridworld
3x3 (OH) domain when the auxiliary loss is introduced then arise, because adding the auxiliary loss
allows mapping bisimilar states and hence states with the same Q-values closer together in both layers
at the beginning of training than without auxiliary loss as depicted in Figure A.38 for a 2-layer DQN with
a hidden layer size of 10.

Another interesting observation when applying this auxiliary loss to DQNs for the Gridworld 3x3 (OH)
domain is that if the auxiliary loss is terminated when the network has almost or already converged to
the true Q-values, the 𝐿ኻ-error sharply increases before subsequently decreasing again (see Figure
A.37d). Thereby, the sudden increase in 𝐿ኻ-error is larger for higher values for 𝑑፦ፚ፱ፄ and for higher
weights for the auxiliary loss. This phenomenon arises because of the downside of simply terminating
the auxiliary loss rather than decaying it until it becomes negligible, as mentioned in the context of
the impact of the hyperparameters of the auxiliary loss on DQNs trained for the FrozenLake 4x4 (OH)
domain. Since the auxiliary loss still has a considerable impact on the overall loss when it is ended due
to the decay rate of 0.9999 that we utilize, the gradients for the first-layer weights abruptly change when
the auxiliary loss is stopped. The magnitude of the change thereby depends on the value for 𝑑፦ፚ፱ፄ as
well as the weight of the auxiliary loss. Afterwards, the second-layer weights need to be adjusted to
the suddenly altered first-layer representation.

፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺ. ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺኺ.
(a) Duration:  episodes.
Figure A.37: ፋᎳ-error with respect to the true Q-values for a 2-layer DQN with a hidden layer size of ኺ for the Gridworld 3x3 (OH)
domain when employing different weights for the auxiliary loss, different target network update frequencies, and terminating the
usage of the auxiliary loss after different numbers of training episodes, the latter of which is indicated by the green vertical line.
፝ᑞᑒᑩᐼ is set to √ኻኼዂ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞ and ፝ᑗᑚᑩ is employed as bisimulation-based state distance for the auxiliary loss.
The red line depicts the ፋᎳ-error when no auxiliary loss is used. ዃ%-confidence intervals are shown. For ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺ,
some figures show the ፋᎳ-error during fewer training episodes to make differences more visible.

9Notice that this is different for the FrozenLake 4x4 (OH) domain, where 2-layer DQNs trained without auxiliary loss converge to
the true Q-values much after the target network has been updated a sufficient number of times.
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፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺ. ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺኺ.
(b) Duration: ኺ episodes.

፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺ. ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺኺ.
(c) Duration: ኻኺኺ episodes.

፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺ. ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺኺ.
(d) Duration: ኼኺ episodes.

፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺ. ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺኺ.
(e) Duration: ኼ, ኺኺኺ episodes.
Figure A.37: ፋᎳ-error with respect to the true Q-values for a 2-layer DQN with a hidden layer size of ኺ for the Gridworld 3x3 (OH)
domain when employing different weights for the auxiliary loss, different target network update frequencies, and terminating the
usage of the auxiliary loss after different numbers of training episodes, the latter of which is indicated by the green vertical line.
፝ᑞᑒᑩᐼ is set to √ኻኼዂ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞ and ፝ᑗᑚᑩ is employed as bisimulation-based state distance for the auxiliary loss.
The red line depicts the ፋᎳ-error when no auxiliary loss is used. ዃ%-confidence intervals are shown. For ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺ,
some figures show the ፋᎳ-error during fewer training episodes to make differences more visible.
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(a) Without auxiliary loss.

(b) With auxiliary loss.

Figure A.38: Correlation coefficients and t-SNE plots of the activations the states are mapped to for the layers of a 2-layer DQN
with a hidden layer size of ኻኺ for the Gridworld 3x3 (OH) domain with and without the auxiliary loss added to the training. ፝ᑗᑚᑩ
is employed as bisimulation-based state distance for the auxiliary loss with ፝ᑞᑒᑩᐼ  √ኻኼዂ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞. The auxiliary
loss is applied with a weight of ኺ.ኼ and a decay rate of ኺ.ዃዃዃዃ during the first ኻ, ኺኺኺ training episodes, the latter of which is
indicated by the green vertical line.
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(a) ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺ. ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺኺ.

(b) ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺ. ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺኺ.

(c) ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺ. ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺኺ.

(d) ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺ. ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺኺ.

(e) ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺ. ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺኺ.

Figure A.39: ፋᎳ-error with respect to the true Q-values for a 2-layer DQN with a hidden layer size of ኺ for the Gridworld 3x3 (OH)
domain when employing different weights for the auxiliary loss, different target network update frequencies, and terminating the
usage of the auxiliary loss after different numbers of training episodes, the latter of which is indicated by the green vertical line.
፝ᑞᑒᑩᐼ is set to √፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞ and ፝ᑗᑚᑩ is employed as bisimulation-based state distance for the auxiliary loss. The red
line depicts the ፋᎳ-error when no auxiliary loss is used. ዃ%-confidence intervals are shown. For ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺ, some
figures show the ፋᎳ-error during fewer training episodes to make differences more visible.
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(a) ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺ. ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺኺ.

(b) ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺ. ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺኺ.

(c) ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺ. ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺኺ.

(d) ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺ. ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺኺ.

(e) ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺ. ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺኺ.

Figure A.40: ፋᎳ-error with respect to the true Q-values for a 2-layer DQN with a hidden layer size of ኺ for the Gridworld 3x3 (OH)
domain when employing different weights for the auxiliary loss, different target network update frequencies, and terminating the
usage of the auxiliary loss after different numbers of training episodes, the latter of which is indicated by the green vertical line.
፝ᑞᑒᑩᐼ is set to √ዂ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞ and ፝ᑗᑚᑩ is employed as bisimulation-based state distance for the auxiliary loss. The
red line depicts the ፋᎳ-error when no auxiliary loss is used. ዃ%-confidence intervals are shown. For ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺ,
some figures show the ፋᎳ-error during fewer training episodes to make differences more visible.
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(a) ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺ. ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺኺ.

(b) ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺ. ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺኺ.

(c) ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺ. ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺኺ.

(d) ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺ. ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺኺ.

(e) ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺ. ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺኺ.

Figure A.41: ፋᎳ-error with respect to the true Q-values for a 2-layer DQN with a hidden layer size of ኺ for the Gridworld 3x3 (OH)
domain when employing different weights for the auxiliary loss, different target network update frequencies, and terminating the
usage of the auxiliary loss after different numbers of training episodes, the latter of which is indicated by the green vertical line.
፝ᑞᑒᑩᐼ is set to √ኼዀ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞ and ፝ᑗᑚᑩ is employed as bisimulation-based state distance for the auxiliary loss.
The red line depicts the ፋᎳ-error when no auxiliary loss is used. ዃ%-confidence intervals are shown. For ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺ,
some figures show the ፋᎳ-error during fewer training episodes to make differences more visible.
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(a) ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺ. ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺኺ.

(b) ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺ. ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺኺ.

(c) ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺ. ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺኺ.

(d) ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺ. ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺኺ.

(e) ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺ. ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺኺ.

Figure A.42: ፋᎳ-error with respect to the true Q-values for a 2-layer DQN with a hidden layer size of ኺ for the Gridworld 3x3 (OH)
domain when employing different weights for the auxiliary loss, different target network update frequencies, and terminating the
usage of the auxiliary loss after different numbers of training episodes, the latter of which is indicated by the green vertical line.
፝ᑞᑒᑩᐼ is set to √ኻኼ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞ and ፝ᑗᑚᑩ is employed as bisimulation-based state distance for the auxiliary loss.
The red line depicts the ፋᎳ-error when no auxiliary loss is used. ዃ%-confidence intervals are shown. For ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻኺ,
some figures show the ፋᎳ-error during fewer training episodes to make differences more visible.



104 A. Detailed Results

A.2.3. Auxiliary Loss Based on 𝑑ᖤ፟።፱
The impact of using an auxiliary loss based on 𝑑ᖤ፟።፱ is very similar to employing one that is based on
𝑑፟።፱, if one adjusts 𝑑፦ፚ፱ፄ so that the target Euclidean distances of the activations of states with the
maximum occurring bisimulation-based distance are comparable10. Comparing Figure A.43a to Figure
A.43b, one can see that if the values for 𝑑፦ፚ፱ፄ are set to comparable values, employing 𝑑ᖤ፟።፱ and 𝑑፟።፱
leads to very similar first-layer state representations. For example, 𝑐ፊ(፝ᑗᑚᑩ) takes on a value near 0.9
in the first layer for training episode 2, 000 in both cases, with the value being only slightly higher when
𝑑፟።፱ is utilized.

It is therefore not surprising that the 𝐿ኻ-errors with respect to the true Q-values during training are
also comparable for several weights and durations for the auxiliary loss as visualized in Figure A.44.
Yet, whereas using an auxiliary loss based on 𝑑፟።፱ not only allows for lower 𝐿ኻ-errors at the beginning
of training than when no auxiliary loss is utilized, but also for significantly earlier convergence to the
true Q-values if the auxiliary loss is applied for 1, 500 or 2, 000 training episodes, the latter is not the
case when 𝑑ᖤ፟።፱ is employed (see Figures A.44c and A.44d). The likely reason is that 𝑑

ᖤ
፟።፱ in contrast

to 𝑑፟።፱ does not assign distances of exactly 0 to bisimilar states. This makes it more difficult to learn
not to distinguish states based on the superfluous feature value, as well as to group bisimilar states
from different ground states together while the auxiliary loss is applied. An auxiliary loss based on 𝑑ᖤ፟።፱
should hence be terminated sooner or used with a lower weight than one based on 𝑑፟።፱, so that the
learning of precise Q-values is not hindered towards the end of training.

(a) ፝ᖤᑗᑚᑩ. ፝ᑞᑒᑩᐼ  √ኺ.ኾኼዀ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞, which is comparable to ፝ᑞᑒᑩᐼ  √ኼዀ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞
when using ፝ᑗᑚᑩ.
Figure A.43: Correlation coefficients and t-SNE plots of the activations the states are mapped to for the layers of a 2-layer DQN
with a hidden layer size of ኺ for the FrozenLake 4x4 (OH) domain when using either ፝ᖤᑗᑚᑩ or ፝ᑗᑚᑩ as basis of the auxiliary loss.
The auxiliary loss is applied with a weight of ኺ.ኼ and a decay rate of ኺ.ዃዃዃዃ during the first ኼ, ኺኺኺ training episodes, the latter of
which is indicated by the green vertical line. Notice the slightly different x-axis ranges of a) and b).

10The highest occurring value for FrozenLake 4x4 for ፝ᑗᑚᑩ is ኺ.ኼ, whereas the one for ፝
ᖤ
ᑗᑚᑩ is ኾ.ዂዃኻ. This means that the two

values differ by a factor of roughly ኼኾ..
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(b) ፝ᑗᑚᑩ. ፝ᑞᑒᑩᐼ  √ኼዀ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞.
Figure A.43: Correlation coefficients and t-SNE plots of the activations the states are mapped to for the layers of a 2-layer DQN
with a hidden layer size of ኺ for the FrozenLake 4x4 (OH) domain when using either ፝ᖤᑗᑚᑩ or ፝ᑗᑚᑩ as basis of the auxiliary loss.
The auxiliary loss is applied with a weight of ኺ.ኼ and a decay rate of ኺ.ዃዃዃዃ during the first ኼ, ኺኺኺ training episodes, the latter of
which is indicated by the green vertical line. Notice the slightly different x-axis ranges of a) and b).
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፝ᖤᑗᑚᑩ. ፝ᑗᑚᑩ.
(a) Duration: ኺኺ episodes.
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፝ᖤᑗᑚᑩ. ፝ᑗᑚᑩ.
(b) Duration: ኻ, ኺኺኺ episodes.
Figure A.44: ፋᎳ-error with respect to the true Q-values for a 2-layer DQN with a hidden layer size of ኺ for the FrozenLake
4x4 (OH) domain when employing different weights for the auxiliary loss and ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  . The usage of the aux-
iliary loss is ended after varying numbers of training episodes, which is indicated by the green vertical line. ፝ᑞᑒᑩᐼ is set to
√ኺ.ኾኼዀ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞ for ፝ᖤᑗᑚᑩ and to √ኼዀ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞ for ፝ᑗᑚᑩ. The red line depicts the ፋᎳ-error when
no auxiliary loss is used. ዃ%-confidence intervals are shown based on  repetitions.
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(c) Duration: ኻ, ኺኺ episodes.
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፝ᖤᑗᑚᑩ.
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፝ᑗᑚᑩ.
(d) Duration: ኼ, ኺኺኺ episodes.
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(e) Duration: ኽ, ኺኺኺ episodes.
Figure A.44: ፋᎳ-error with respect to the true Q-values for a 2-layer DQN with a hidden layer size of ኺ for the FrozenLake
4x4 (OH) domain when employing different weights for the auxiliary loss and ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  . The usage of the aux-
iliary loss is ended after varying numbers of training episodes, which is indicated by the green vertical line. ፝ᑞᑒᑩᐼ is set to
√ኺ.ኾኼዀ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞ for ፝ᖤᑗᑚᑩ and to √ኼዀ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞ for ፝ᑗᑚᑩ. The red line depicts the ፋᎳ-error when
no auxiliary loss is used. ዃ%-confidence intervals are shown based on  repetitions.

A.2.4. Auxiliary Loss Based on 𝑇ፓፕ
If an auxiliary loss based on 𝑇ፓፕ is introduced to the training of 2-layer DQNs for the FrozenLake 4x4
(OH) domain, the 𝐿ኻ-error with respect to the Q-values is improved at the beginning of training (see
Figure A.45). Yet, similarly to employing an auxiliary loss based on 𝑑ᖤ፟።፱, the addition of this auxiliary
loss does not allow DQNs to converge sooner than if no auxiliary loss is utilized. Even though we
performed experiments solely with one value for 𝑑፦ፚ፱ፄ and hence do not know for sure whether different
values would enable earlier convergence, it makes sense that learning is improved upon only at the
beginning of training. This is the case, because grouping states together based on 𝑇ፓፕ leads to distinct
clusters for bisimilar states from different ground states, such as the terminal states in the FrozenLake
4x4 domain. Consequently, while the activations of states that differ solely in the superfluous feature
value are pushed closer together by means of this auxiliary loss, which explains the improvement in
𝐿ኻ-error at the beginning of training, the activations of states belonging to different ground states are
pulled farther apart by the auxiliary loss, thus making it more difficult to learn to map such states to the
same Q-values in the second layer. Therefore, in practice, this auxiliary loss should also be applied
solely at the very beginning of training or its weight should be decayed quickly.
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(a) ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻ.
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፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኾ.
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(b) ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኻ.
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፭ፚ፫፠፞፭_፮፩፝ፚ፭፞  ኾ.
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Figure A.45: ፋᎳ-error with respect to the true Q-values for a 2-layer DQN with a hidden layer size of ኺ for the FrozenLake
4x4 (OH) domain when employing different weights for the auxiliary loss and different target network update frequencies, and
terminating the usage of the auxiliary loss after varying numbers of training episodes, the latter of which is indicated by the
green vertical line. ፝ᑞᑒᑩᐼ is set to √ኻኼዂ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞ and ፓᑋᑍ is employed as bisimulation-based state distance for
the auxiliary loss. The red line depicts the ፋᎳ-error when no auxiliary loss is used. ዃ%-confidence intervals are shown based
on  repetitions.
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A.3. Impact of Markovianity on Generalization
Section A.3.1 contains further information on generalization to related domains with modified reward or
transition functions, and Section A.3.2 delineates in more detail our methodology and results regarding
the generalization to new irrelevant feature values.

A.3.1. Transfer to Related Domains
Section A.3.1.1 outlines methodological details, Section A.3.1.2 analyzes the impact of changing the
Euclidean distance between the first-layer activations of non-bisimilar states on the generalization per-
formance, and Section A.3.1.3 provides detailed results for the experiments conducted for the domains
related to the FrozenLake 4x4 and Gridworld 3x3 domains.

A.3.1.1 Methodological Details
Domains related to FrozenLake 4x4. We design two domains related to the FrozenLake 4x4 do-
main, in each of which two states are bisimilar if and only if they are bisimilar in the original domain:

1. Modified reward function. We change the reward function by setting the immediate reward for
going up in ground state 1, right in ground state 3, up in ground state 6, left in ground state 8,
right in ground state 9 and down in ground state 10 to −0.5 instead of the original value of 0.
This change causes different optimal actions for ground states 9 and 10 and different Q-values
for those two ground states and all states for which the path under the optimal policy leads to
one of the two ground states for some action. This related domain is shown in Figure A.46a and
denoted by FrozenLakeፑ 4x4.

2. Modified transition and reward functions. We replace the original deterministic transition function
by a new deterministic transition function, in which the next ground states for five state-action
combinations are altered (see Figure A.46b). Thereby, the new transition probabilities ensure
that each ground state is still visited for some state-action combination. The change in transition
probabilities leads to different Q-values for some states as well as different immediate rewards
due to the fact that stepping into a hole yields a reward of −1. Yet, the optimal actions of all states
are identical to the ones in the original domain.

The results for the experiments based on these domains serve as supporting evidence and can be
found in Section A.3.1.3.

(a) FrozenLakeᑉ 4x4: Modified reward func-
tion.

(b) FrozenLakeᑉᑋ 4x4: Modified re-
ward and transition functions.

Figure A.46: Domains related to the FrozenLake 4x4 domain. The coloring of the ground states is based on the colors we assign
to the activations of states in our t-SNE plots. Black arrows indicate changes in the reward or transition function compared to
the original domain. If a modification is related to the transition function, the black arrow is labeled with the action for which the
next state is altered, and if a modification occurs with respect to the reward function, the black arrow is labeled with the new
immediate reward ፫.

Auxiliary loss. For some experiments, we apply the auxiliary loss proposed in Chapter 4 based on
𝑑፟።፱ during the first part of the training on the original domain for the three types of state encoding
in which the ground state is one-hot encoded. Since the first network layer cannot form the coarsest
Markov state representation for the (F) state encoding, as it requires learning a non-linearly separable
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function, the auxiliary loss is not applied for this form of state encoding. The specific hyperparameter
values are named in Table A.1 and Table A.2 for the Gridworld 3x3 and the FrozenLake 4x4 domain,
respectively. Smaller values for 𝑑፦ፚ፱ፄ and lower weights for the auxiliary loss are necessary for very
small hidden layer sizes to keep the gradients from exploding during training. Moreover, since an
abstraction coarser than the coarsest Markov state representation needs to be formed in the first layer
for very small hidden layer sizes such as 3 for the DQN to be able to converge to the true Q-values,
the auxiliary loss has to be terminated sooner for such hidden layer sizes. Yet, despite using adapted
settings for DQNs with smaller hidden layer sizes, adding the bisimulation-based auxiliary loss to the
training of DQNs with a hidden layer size of 3 does not always prevent the gradients from exploding.
To render the results more comparable, we hence discard any repetition for this hidden layer size from
our results for which training a DQN leads to exploding gradients when the auxiliary loss is used.

Table A.1: Hyperparameter values for the bisimulation-based auxiliary loss that is added to the training of 2-layer
DQNs for the Gridworld 3x3 domain in the context of transfer to related domains. Values depend on the hidden
layer size (HLS) of a DQN.

Parameter Description HLS 3 HLS 5 HLS > 5
𝑑፦ፚ፱ፄ Target Euclidean distance √32 × 𝐻𝐿𝑆 √32 × 𝐻𝐿𝑆 √128 × 𝐻𝐿𝑆

of the activations of
two states with the max.
bisimulation-based distance.

Decay rate Decay rate, applied after 0.9999 0.9999 0.9999
each application of the
auxiliary loss.

Measure Bisimulation-based measure 𝑑፟።፱ 𝑑፟።፱ 𝑑፟።፱
used for the auxiliary loss.

Stop episode Training episode starting 500 500 1,000
at which the auxiliary loss
is no longer applied.

Weight Weight of the auxiliary loss. 0.0001 0.1 0.2

Table A.2: Hyperparameter values for the bisimulation-based auxiliary loss that is added to the training of 2-layer
DQNs for the FrozenLake 4x4 domain in the context of transfer to related domains. Values depend on the hidden
layer size (HLS) of a DQN.

Parameter Description HLS = 3 HLS > 3
𝑑፦ፚ፱ፄ Target Euclidean distance √8 × 𝐻𝐿𝑆 √8 × 𝐻𝐿𝑆

of the activations of
two states with the max.
bisimulation-based distance.

Decay rate Decay rate, applied after 0.9999 0.9999
each application of the
auxiliary loss.

Measure Bisimulation-based measure 𝑑፟።፱ 𝑑፟።፱
used for the auxiliary loss.

Stop episode Training episode starting 2,000 2,000
at which the auxiliary loss
is no longer applied.

Weight Weight of the auxiliary loss. 0.01 0.1

While we do adjust the hyperparameter values to account for the fact that small hidden layer sizes
imply that a first-layer representation coarser than the coarsest Markov state representation needs to be
learned to allow for convergence to the true Q-values, we do not fine-tune the values to ensure that all
larger-than-necessary hidden layer sizes learn first-layer representations that are equally Markov. For
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example, if the auxiliary loss is applied for solely 1, 000 out of 4, 000 training episodes for the Gridworld
3x3 domain, the first-layer representation tends to become slightly less Markov again at the very end
of training for large hidden layer sizes such as 65 (see Figure A.47). This aspect is important to keep in
mind when using our results to compare the generalization performances of 2-layer DQNs with different
hidden layer sizes when they are trained with the bisimulation-based auxiliary loss.

(a) ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞  ኽ.

(b) ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞  ዀ.
Figure A.47: Correlation coefficients and t-SNE plots of the activations states are mapped to in the layers of 2-layer DQNs with
different hidden layer sizes for the Gridworld 3x3 (OH) domain during training. The auxiliary loss is applied with a weight of ኺ.ኼ
during the first ኻ, ኺኺኺ training episodes, the latter of which is indicated by the green vertical line.

A.3.1.2 Impact of 𝑑፦ፚ፱ፄ
Figure A.48 and Figure A.49 show for the FrozenLakeፑ 4x4 and the FrozenLakeፑፓ 4x4 domain, re-
spectively, that increasing the value for 𝑑፦ፚ፱ፄ for the auxiliary loss during training on the original domain
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generally leads to earlier convergence to the true Q-values by DQNs with large hidden layers. Since
𝑑፦ፚ፱ፄ determines the target Euclidean distances between the activations of non-bisimilar states, larger
Euclidean distances between the activations of non-bisimilar states hence lead to improved general-
ization performance. Yet, generalization performance tends to be slightly worse for DQNs with small
hidden layer sizes such as 3 and 5 when 𝑑፦ፚ፱ፄ is increased. This deterioration can be explained by
two aspects. First, a higher value for 𝑑፦ፚ፱ፄ makes it more difficult for DQNs with small hidden layers to
converge to the true Q-values on the original domain. This results in a higher 𝐿ኻ-error at the beginning
of retraining when the output layer’s weights are transferred, which causes less accurate Q-values to
be learned in the corresponding two transfer scenarios due to the less favorable initialization. Second,
the larger Euclidean distances between non-bisimilar states in the first layer themselves also make it
harder for DQNs with small hidden layers to learn the Q-values on the modified domain. The reason is
that even when the output layer’s weights are not transferred, DQNs with small hidden layers tend to
generalize worse for higher values for 𝑑፦ፚ፱ፄ (see Figure A.49b).

፝ᑞᑒᑩᐼ  √ዂ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞ ፝ᑞᑒᑩᐼ  √ኻኼዂ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞
(a) FrozenLakeᑉ 4x4: The weights from both network layers are transferred, but solely those from the last layer are
updated during retraining.

፝ᑞᑒᑩᐼ  √ዂ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞ ፝ᑞᑒᑩᐼ  √ኻኼዂ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞
(b) FrozenLakeᑉ 4x4: The weights from solely the first network layer are transferred and those are not updated
during retraining.

፝ᑞᑒᑩᐼ  √ዂ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞ ፝ᑞᑒᑩᐼ  √ኻኼዂ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞
(c) FrozenLakeᑉ 4x4: The weights from both network layers are transferred and updated during retraining.
Figure A.48: Mean ፋᎳ-error with respect to the true Q-values during retraining of 2-layer DQNs with different hidden layer sizes for
the FrozenLakeᑉ 4x4 (OH) domain for each of the three forms of transfer when using different values for ፝ᑞᑒᑩᐼ when applying the
auxiliary loss during training on the original domain. Values are based on ኻኺ repetitions. ዃ%-confidence intervals are shown.
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፝ᑞᑒᑩᐼ  √ዂ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞ ፝ᑞᑒᑩᐼ  √ኻኼዂ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞ ፝ᑞᑒᑩᐼ  √ኼዀ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞
(a) FrozenLakeᑉᑋ 4x4: The weights from both network layers are transferred, but solely those from the last layer are
updated during retraining.

፝ᑞᑒᑩᐼ  √ዂ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞ ፝ᑞᑒᑩᐼ  √ኻኼዂ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞ ፝ᑞᑒᑩᐼ  √ኼዀ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞
(b) FrozenLakeᑉᑋ 4x4: The weights from solely the first network layer are transferred and those are not updated during
retraining.

፝ᑞᑒᑩᐼ  √ዂ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞ ፝ᑞᑒᑩᐼ  √ኻኼዂ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞ ፝ᑞᑒᑩᐼ  √ኼዀ × ፡።፝፝፞፧_፥ፚ፲፞፫_፬።፳፞
(c) FrozenLakeᑉᑋ 4x4: The weights from both network layers are transferred and updated during retraining.
Figure A.49: Mean ፋᎳ-error with respect to the true Q-values during retraining of 2-layer DQNs with different hidden layer sizes
for the FrozenLakeᑉᑋ 4x4 (OH) domain for each of the three forms of transfer when using different settings for ፝ᑞᑒᑩᐼ when
applying the auxiliary loss during training on the original domain. Values are based on ኻኺ repetitions. ዃ%-confidence intervals
are shown.
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A.3.1.3 Detailed Results
Figures A.50 and A.51 and Figure A.52 provide detailed results for the transfer to related domains for
the Gridworld 3x3 and the FrozenLake 4x4 domain, respectively. Results are shown for all transfer
modes and types of state encoding and for pretraining both with and without the bisimulation-based
auxiliary loss.

Without bisimulation-based auxiliary loss. With bisimulation-based auxiliary loss.
(a) Gridworld 3x3 (OH).

Without bisimulation-based auxiliary loss. With bisimulation-based auxiliary loss.
(b) Gridworld 3x3 (OH)(N).

Without bisimulation-based auxiliary loss. With bisimulation-based auxiliary loss.
(c) Gridworld 3x3 (OH)(F-OH).

Without bisimulation-based auxiliary loss.
(d) Gridworld 3x3 (F).

Figure A.50: Mean ፋᎳ-error with respect to the true Q-values during retraining of 2-layer DQNs with different hidden layer sizes
for the Gridworldᑉ 3x3 domain. The first-layer weights are initialized to those of DQNs trained on the Gridworld 3x3 domain
either with or without auxiliary loss and are not updated during retraining. The second-layer weights are newly initialized. Values
are based on ኻኺ repetitions and ዃ%-confidence intervals are shown.
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A.3.2. Robustness to Superfluous Feature Values Unseen During Training
Section A.3.2.1 provides methodological details and Section A.3.2.2 contains further figures.

A.3.2.1 Methodological Details
Motivation. Naturally, one would expect hidden-layer representations that do not distinguish states
based on their superfluous feature value to generalize better to the values sampled at test time, and
hence to return the correct optimal action for more generated states. To evaluate the usefulness of
learning a hidden-layer representation that is similar to the coarsest Markov state representation, how-
ever, we need to train networks that differ in how close to the coarsest Markov state representation
their formed hidden-layer representations are, while controlling for other factors that could impact the
generalization behavior. Thereby, there are several options for creating such differing internal state
representations based on our experimental results from Chapter 3:

• We could train networks with different types of state encoding, because our experimental results
reveal that the hidden-layer representations learned differ between the types of state encoding,
especially for larger-than-necessary hidden layer sizes. However, our types of state encoding
also differ in the scale of the superfluous feature used during training, which makes a direct
comparison more difficult11.

• Another approach to generating such internal state representations is to train networks with dif-
ferent hidden layer sizes. Recall that our experimental results suggest that the extent to which
the created first-layer state representation is similar to the coarsest Markov state representation
depends on the hidden layer size, amongst others. Yet, this approach is taking advantage of
the fact that neural networks with much larger-than-necessary capacities tend to overfit to the
training data if no form of regularization is applied [18]. Thus, while the formed first-layer repre-
sentation certainly is less close to the coarsest Markov state representation for very large hidden
layer sizes, it also simply gets closer to the one in the input layer for much larger-than-necessary
hidden layer sizes.

Table A.3: Hyperparameter values for the bisimulation-based auxiliary loss that is added to the training of 2-layer
DQNs for the Gridworld 3x3 domain to explore the robustness to superfluous feature values unseen during training.
Values depend on the hidden layer size (HLS) of a DQN.

Parameter Description HLS 5 HLS > 5
𝑑፦ፚ፱ፄ Target Euclidean distance √32 × 𝐻𝐿𝑆 √128 × 𝐻𝐿𝑆

of the activations of
two states with the max.
bisimulation-based distance.

Decay rate Decay rate, applied after 0.9999 0.9999
each application of the
auxiliary loss.

Measure Bisimulation-based measure 𝑑፟።፱ 𝑑፟።፱
used for the auxiliary loss.

Stop episode Training episode starting 500 1,000
at which the auxiliary loss
is no longer applied.

Weight Weight of the auxiliary loss. 0.1 0.2

11For example, in the (OH) encoding, the scale of the superfluous feature is four times as large as the one of the features
encoding the ground state, whereas the scales of the superfluous feature and of the features encoding the ground state are
equivalent for the (OH)(N) encoding. Consequently, the difference in scales for the (OH) encoding may mean that for hidden
layers that are slightly larger than necessary, the internal state representation formed in the first layer can generalize better to
superfluous feature values outside the training interval, even though states from the same ground state and with superfluous
feature values seen during training are mapped to less similar activations than for the (OH)(N) encoding.
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Auxiliary loss. Our chosen hyperparameter values for the auxiliary loss are listed in Table A.3.
Thereby, the same two observations as in the context of transfer to related domains hold, which are
important to keep in mind when analyzing our results. First, just-right hidden layer sizes require a
first-layer representation coarser than the coarsest Markov state representation to be learned for the
network to be able to converge to the true Q-values. Therefore, the auxiliary loss is applied less in-
tensively for such hidden layer sizes. Second, the first-layer representations tend to become slightly
less Markov again towards the end of training for very large hidden layer sizes such as 60 due to our
hyperparameter settings for the auxiliary loss.

A.3.2.2 Further Figures
Figure A.53 depicts the average numbers of optimal actions learned by 2-layer DQNs with and without
adding the bisimulation-based auxiliary loss to the training process for the Gridworld 3x3 (OH) and
Gridworld 3x3 (OH)(N) domains.
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Figure A.53: Average numbers of optimal actions learned by 2-layer DQNs with different hidden layer sizes, with and without
adding the bisimulation-based auxiliary loss to the training process. Optimal action returned for each non-terminal ground state
are measured when sampling ኻ, ኺኺኺ different values for the superfluous feature uniformly at random from an interval that is ።
times as large as the one used during training. The value ። is depicted on the x-axis. Since there are ኽኼ non-terminal states
in the Gridworld 3x3 domain, returning ኽኼ, ኺኺኺ optimal actions is optimal. Averages are based on ኻኺ and ኽኺ repetitions for the
experiments with and without auxiliary loss, respectively. ዃ%-confidence intervals are shown.





B
Characteristics of Internal State

Representations in Partially Observable
Domains

In this section, we investigate the internal state representations formed by deep RL agents in partially
observable domains. To this end, we explore the internal state representations present in the layers
of DRQNs during and at the end of training in Section B.2. Our experimental approach is described in
further detail in Section B.1.

B.1. Methodology
In the following, we describe in detail the computed correlation coefficients, domains, state encoding,
network architectures and training procedure, and the t-SNE visualizations that we create for the internal
state representations.

B.1.1. Correlation Coefficients
To compute Pearson correlation coefficients based on (components of) bisimulation metrics for our
partially observable domains, we use the belief states corresponding to finite-length histories as states.
Recall that since a belief state is a sufficient statistic for the agent’s history of interactions with the
environment and its initial belief state, a POMDP can be reduced to a continuous MDP in which the
fully observable states are the internal belief states (see Section 2.3). Based on belief states, we
calculate the following correlation coefficients:

1. 𝑐፝ᖤᑗᑚᑩ .

• Definition. This is the Pearson correlation coefficient between the approximate Kantorovich
distance-based bisimulation distances 𝑑ᖤ፟።፱ of the belief states on the one hand and the
Euclidean distances between the activations the belief states are mapped to in a neural
network layer on the other hand.

• Computation. We employ the approximation algorithm by [8] as described in Section 2.7.1.2
to compute 𝑑ᖤ፟።፱. Our chosen hyperparameters for this algorithm are listed in Section D.1.1
in the Appendix and the equation for subsequently computing the Pearson correlation coef-
ficient is given in Equation 3.1.

2. 𝑐ፑ፞፰.

• Definition. This is the Pearson correlation coefficient between the maximum absolute reward
distances of the belief states on the one hand and the Euclidean distances between the
activations the belief states are mapped to in a neural network layer on the other hand.
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• Computation. Analogously to the computation for finite MDPs described in Section 3.1.1,
the maximum absolute reward distance between two belief states 𝑏 and 𝑏ᖣ is given by:

𝑚𝑎𝑥ፚ∈ፀ|𝑅(𝑏, 𝑎) − 𝑅(𝑏ᖣ, 𝑎)|. (B.1)

After the computation of the pairwise maximum absolute reward distances of belief states
and the pairwise Euclidean distances between the activations belief states are mapped to,
the Pearson correlation coefficient is computed (see Equation 3.1).

3. 𝑐ፓፕ.
• Definition. This is the Pearson correlation coefficient between the maximum total-variation
distances 𝑇ፓፕ of the transition functions of the belief states on the one hand and the Euclidean
distances between the activations the belief states are mapped to in a neural network layer
on the other hand.

• Computation. The computation of 𝑐ፓፕ proceeds analogously to the case of finite MDPs dis-
cussed in Section 3.1.1. Notice that when we compute the total-variation distance between
belief states 𝑏። and 𝑏፣ for some action 𝑎, we do not enumerate all belief states as next states,
because this would be infeasible. Instead, we only take the belief states 𝑏ፚ,፨። and 𝑏ፚ,፨፣ , 𝑜 ∈ 𝑂
s.t. 𝑃(𝑜|𝑏። , 𝑎) > 0 or 𝑃(𝑜|𝑏፣ , 𝑎) > 0, that result from making observation 𝑜 after taking ac-
tion 𝑎 in belief states 𝑏። and 𝑏፣, respectively, into consideration. Nevertheless, calculating
𝑐ፓፕ for POMDPs is significantly more computationally expensive than for MDPs due to the
computation of next belief states.

Since it is infeasible to calculate these correlation coefficients based on all possible belief states, we
by default utilize a sample of 500 belief states based on histories that are collected by letting an agent
walk randomly through the domain. Yet, some additional experiments are conducted to explore the
impact of using a larger sample of belief states in Section C.7. Finally, since computing 𝑐ፊ proved not
to be useful for finite MDPs, we do not calculate this correlation coefficient for POMDPs1.

B.1.2. Domains
Experiments are conducted based on the Hallway domain [38]2, which consists of 15 grid locations
as depicted in Figure B.1. In each grid position but the goal state, 4 orientations are possible, which
leads to a total of 57 states. The start state is chosen uniformly at random from the non-terminal states
and an episode ends when the goal state has been reached or when 100 steps have been executed.
In the original implementation, the agent can choose from the actions {𝑠𝑡𝑎𝑦, 𝑓𝑜𝑟𝑤𝑎𝑟𝑑, 𝑡𝑢𝑟𝑛 𝑟𝑖𝑔ℎ𝑡,
𝑡𝑢𝑟𝑛 𝑙𝑒𝑓𝑡, 𝑡𝑢𝑟𝑛 𝑎𝑟𝑜𝑢𝑛𝑑}. Yet, we simplify the domain by removing the 𝑡𝑢𝑟𝑛 𝑎𝑟𝑜𝑢𝑛𝑑 and 𝑠𝑡𝑎𝑦 actions.
A reward of 1 is obtained for arriving in the goal state and a reward of 0 for arriving in any other state.
In each state, the agent generally observes the presence of a wall in each of the 4 possible locations.
When the agent arrives in the goal state, however, it receives a distinct observation. In addition, when
the agent faces south in one of the non-terminal states in the second row of the domain, a distinct
observation is obtained. Lastly, while the transition probabilities are stochastic in the original description
of the domain, deterministic transitions are utilized in this work. The reason for this choice is that the
only computationally feasible algorithm for approximating 𝑑፟።፱ for continuous MDPs is suitable solely
for deterministic MDPs as described in Section 2.7.1.2.

B.1.3. State Encoding
Since we do not add a superfluous feature to the observations in the partially observable domain, the
only question is how to encode the observation histories themselves. Evidently, one-hot encoding his-
tories to ensure a Pearson correlation coefficient of 0 between the Euclidean distances of the encoded
1Moreover, it is not clear how to compute ᑂ based on belief states, since such a computation requires assigning identifying
numbers to all belief states. It was possible to assign distinct numbers to each state in our small fully observable domains.
Yet, assigning unique numbers to each possible belief state to subsequently compute the cumulative distribution function is
infeasible. While one could consider only the next belief states with non-zero probabilities of being reached when computing
ፓᑂ for two histories, such computations of ፓᑂ would not always assign the same identifiers to a next belief state. Thus, two
next belief states could be assigned very similar identifiers during one and more different ones during another computation of
ፓᑂ. Calculating ᑂ based on such pairwise distances of histories would therefore be even less meaningful than in the context
of MDPs.

2We implemented the Hallway domain in the pomdp_domains package.

https://github.com/nelealbers/pomdp_domains
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Figure B.1: Hallway domain. The triangles denote the possible orientations of the agent and the brightly colored triangles mark
states in which distinct observations are received by the agent. The goal state is specified by ፆ.

histories and the bisimulation-based measures is not feasible. Therefore, we opt to one-hot encode
the observations. This not only allows for a reasonable dimensionality of the encoded observations but
also guarantees that all input dimensions have the same scale.

B.1.4. DRQN Implementation and Training
DRQNs are implemented in PyTorch 1.3.1 and trained as described in Section 2.4.1 with the Adam
algorithm. Thereby, a target network and a replay memory are used to improve learning stability as
outlined in Section 2.4.1. Each trained DRQN consists of three layers, of which the first and the last one
are linear layers and the second one is an LSTM layer. Each hidden layer has the same size, which is
given by the 𝑙𝑎𝑦𝑒𝑟_𝑠𝑖𝑧𝑒 parameter in Table B.1, unless an experiment involves changing the hidden
layer size. In addition, Rectified Linear Unit (ReLU) activations are utilized for each hidden layer. The
policy of the agent during training is 𝜖-greedy. In case 𝜖 is decayed during the training process, 𝜖 is
multiplied by the 𝑑𝑒𝑐𝑎𝑦_𝑟𝑎𝑡𝑒 parameter after each episode whose terminal reward is higher than the
current average of terminal rewards. The hyperparameter values are determined via grid search and
the final values are listed in Table B.1.

Table B.1: Hyperparameter values for DRQNs for the Hallway domain.

Parameter Description Value

batch_size Batch size for training 128
decay Whether to decay 𝜖 True
decay_rate Decay rate for 𝜖 0.999995
discount_factor Discount factor of POMDP 0.95
history_length Length of histories 7
layer_size Size of hidden layers 32
learning_rate Learning rate 𝛼 0.00005
lr_decay Whether to decay 𝛼 True
lr_decay_rate Decay rate for 𝛼 0.99995
max_epsilon Starting value for 𝜖 1
max_steps Max. # of steps per episode 100
min_epsilon Min. value for 𝜖 0.35
num_episodes Number of training episodes 30,000
replay_memory_size Capacity of replay memory 50,000
target_update Update frequency for target network 150
weight_ep Sampling weight for successful episodes 1

(1 is normal)
weight_hist Sampling weight for histories ending in 10

the goal state (1 is normal)

B.1.5. Convergence of Test Rewards
To determine when an agent has learned to always reach the goal state, we test each DRQN 100 times
after each training episode.

B.1.6. t-SNE Visualization
To visualize the representations learned by a DRQN, t-SNE plots of the activations in a network layer
are created as explained in Section 2.8 with a default perplexity value of 30. Thereby, either all the
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activations of histories belonging to belief states with the same most probable ground state are drawn
in the same color as much as possible, or activations are colored based on clustering histories with
respect to their bisimulation-based distances. These two coloring types are discussed below.

B.1.6.1 Coloring Based on the Ground State
The activations of each history are colored based on the ground state the agent believes to be most
likely after acting according to that history. If there are multiple ground states with the highest belief
value for a history, the activations for that history are colored based on the ground state with highest
belief value that has the lowest index and with a pink border. Indices are assigned to ground states from
left to right based on the underlying grid as shown in Figure B.2. Regarding the ground state colors,
each ground state is assigned a unique color and ground states with the same actions corresponding
to shortest paths to the goal state receive similar colors. For example, all ground states for which the
action 𝑡𝑢𝑟𝑛 𝑟𝑖𝑔ℎ𝑡 leads to the goal state most quickly are drawn in shades of blue and purple. Notice,
however, that these actions corresponding to the fastest path to the goal are not necessarily the optimal
actions, since action my also be taken to gather information. In addition, the goal state is depicted in
pink. The detailed coloring scheme for the ground states is shown in Figure B.3.

Figure B.2: Ground state indices for the Hallway domain.

Figure B.3: Colors used for each ground state of the Hallway domain in t-SNE plots. Each ground state is assigned a unique
color and ground states with the same actions corresponding to shortest paths to the goal state receive similar colors.

B.1.6.2 Coloring Based on K-Means Clustering
Coloring activations based on the ground state corresponding to the highest belief value leads to a
loss of information when there are multiple such ground states. Therefore, we also color activations in
t-SNE plots by clustering the activations that histories are mapped to based on a matrix with pairwise
distances based on 𝑑ᖤ፟።፱ via the K-Means algorithm implemented in the Scikit-learn package. Thereby,
we create 5, 10, 15 or 20 clusters.

B.2. Results
We delineate the learning process for DRQNs in Section B.2.1 and describe factors impacting the
hidden-layer state representations in Section B.2.2.

B.2.1. Learning Process
Recall that we identified three overlapping learning phases for DQNs in Chapter 3. Our experimental
results for DRQNs suggest that similar learning phases also occur for partially observable domains, as
we will outline subsequently.

B.2.1.1 Learning Phase 1
At the beginning of training, the internal state representations tend to cluster the activations of belief
states based on multi-step rewards, depending on the number of times the target network has been
updated. Yet, histories are not fully clustered based on immediate rewards until after the target network
has been updated once. Since the reward-based correlation coefficient 𝑐ፑ፞፰ measures the degree to
which belief states are grouped based on immediate rewards, this can be seen from a strong increase
in 𝑐ፑ፞፰ once the target network has been updated once and a subsequent step-wise decrease in 𝑐ፑ፞፰
(see Figure B.7).

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
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Calculating bisimulation-based correlation coefficients thus is very promising to gain insights into
the internal state representations also of DRQNs. t-SNE plots of the activations states are mapped
to, however, are much less helpful for POMDPs than for the small MDPs discussed in Chapter 3. For
instance, one can see that the peak value for 𝑐ፑ፞፰ is accompanied by a distinct cluster of states at the
bottom of t-SNE plot 2 in the first row of Figure B.4, which visualizes the output-layer representations of
a DRQN during training. Yet, it is not clear which belief states correspond to this cluster of activations.
This is the case, because the cluster includes several activations of belief states for which multiple
ground states are believed to be most likely3, which means that the coloring based on ground states
does not allow to uniquely identify the belief states.

Figure B.4: Correlation coefficients and t-SNE plots of the activations histories are mapped to during training for the output layer
of a DRQN for the Hallway domain. The hidden layer size is equal to ኻዀ. In the first row, activations are colored based on the
corresponding most likely ground states and in the second and third row based on  and ኻኺ clusters based on ፝ᖤᑗᑚᑩ, respectively.

B.2.1.2 Learning Phase 2
As the network layers’ internal state representations group belief states based on multi-step rewards,
the representations becomemore similar to the coarsest Markov state representation. This is visualized
in Figure B.7, where 𝑐፝ᖤᑗᑚᑩ increases at the beginning of training in all three layers in a way that is similar
to the one observed for MDPs in Chapter 3. Again, looking at the t-SNE plots in Figure B.4 in which
the activations are colored based on the ground states does not provide many insights as to which
belief states are now grouped together. This is the case, because there is a large number of belief
states with multiple equally probable ground states. However, the t-SNE plots in which activations are
colored based on clusters created via the K-Means algorithm clearly show that a high value for 𝑐፝ᖤᑗᑚᑩ
corresponds to an internal state representation in which belief states that have a low distance with
respect to 𝑑ᖤ፟።፱ tend to be mapped to activations that are relatively close in Euclidean distance.

We further make the following observations with respect to the second learning phase:

• The first-layer representation is more similar to the coarsest Markov state representation than
the ones in the LSTM and the output layer throughout training. The first-layer representation
has the highest value for 𝑐፝ᖤᑗᑚᑩ throughout training as depicted in Figure B.7. Yet, notice that
the correlation coefficients for the first layer only measure where histories with the same last

3Such activations have a pink border in the t-SNE plots.
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observation are mapped. This is the case, because there is no hidden state that impacts the
first-layer activations a history is mapped to and because we compute the correlation coefficients
based on the activations of solely the last observations of histories. Therefore, the observation
that the first layer has the highest value for 𝑐፝ᖤᑗᑚᑩ throughout training is partially due to the fact that
histories with low bisimulation-based distances also tend to have similar last observations for this
domain, as mirrored by the high initial first-layer value for 𝑐፝ᖤᑗᑚᑩ of around 0.4 (see Figure B.7).

Figure B.5: Correlation coefficients and t-SNE plots of the activations histories are mapped to during training for the first layer
of a DRQN for the Hallway domain. The hidden layer size is equal to ኻዀ. In the first row, activations are colored based on the
corresponding most likely ground states and in the second and third row based on  and ኻኺ clusters based on ፝ᖤᑗᑚᑩ, respectively.

Nevertheless, 𝑐፝ᖤᑗᑚᑩ also increases during training for the first layer. Figure B.5 shows that there
are initially 14 clusters in the first layer, one for each observation that can be made in the do-
main4. The first-layer representation then becomes more similar to the coarsest Markov state
representation by mapping different observations with relatively low pairwise distances based on
𝑑ᖤ፟።፱ to more similar activations. This is visible in the t-SNE plots in Figure B.5 that color acti-
vations based on clustering via K-Means. For instance, the distinct observations that are made
when facing south in one of the non-terminal ground states in the second row of the domain are
mapped to more similar activations.

• We cannot conclude that the LSTM layer forms an internal state representation that is more similar
to the coarsest Markov state representation during the second learning phase than the one in
the output layer. In the context of MDPs, our results indicate that the first-layer representation
generally is more similar to the coarsest Markov state representation than both the input- and the
output-layer representation during the second learning phase. Since the first layers of our DRQNs
consider merely single observations for their internal state representations, one might therefore
assume that the LSTM layer creates an internal state representation that is more similar to the
coarsest Markov state representation than the one in the output layer during this learning phase.
Yet, we find that while the LSTM-layer representation tends to be more Markov than the output-
layer one at the end of training, this is not the case for the beginning of training while histories
are increasingly clustered based on multi-step rewards.

4If we used the original stochastic observation function of the Hallway domain, the observation space size would be ኼኺ. Not all
of these observations are possible when the presence of walls is always observed correctly, however.
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That it is not observed in our results that the LSTM-layer representation becomes more similar to
the coarsest Markov state representation than the output-layer representation at the beginning of
training could be due to two different aspects. First, the smallest hidden layer size for which we
performed experiments is 8, but we do not know whether this is the smallest hidden layer size
for which training is successful for the Hallway domain. It could thus be that for even smaller
network capacities, the LSTM-layer representation becomes more Markov than the one in the
output layer at the beginning of training. Second, our experiments with MDPs suggest that for
domains with larger state spaces, the first-layer representation becomes more Markov than the
one in the output layer to a lesser degree than for domains with smaller state spaces. Note that
the number of belief states for the Hallway domain is higher than the number of states in any of
our fully observable domains and that we do not know whether a hidden layer size of 8 is larger
than necessary. It could consequently be the case that it takes longer to form a representation
that is Markov based on a given number of transitions in the LSTM layer, and that the output layer
hence learns to represent rewards based on a certain number of steps before the LSTM layer
has fully formed such a representation.

B.2.1.3 Learning Phase 3
Our experiments with DQNs in Chapter 3 clearly show that the output layer ultimately forms a 𝑄∗-
irrelevance abstraction and that the hidden layers also progressively cluster states based on Q-values
at some point during training. Thereby, we could draw our conclusions based on the value of the
correlation coefficient 𝑐ፐ∗ and t-SNE plots in addition to the fact that DQNs are trained to predict Q-
values. Because we do not calculate 𝑐ፐ∗ for our experiments with DRQNs, we have to rely on t-SNE
plots and the knowledge that DRQNs, too, are trained to learn Q-values alone:

(a) First layer. (b) LSTM layer. (c) Output layer.
Figure B.6: t-SNE plots of the activations histories are mapped to at the end of training for the layers of a DRQN for the Hallway
domain. The hidden layer size is equal to ኻዀ. Activations are colored based on the corresponding most likely ground states.
The coloring scheme for the ground states that are believed to be most probable is given at the top. If there are multiple most
probable ground states for a belief state, the corresponding activation is depicted with a pink border.

• Output layer. The t-SNE plot for the output-layer representation at the end of training in Figure
B.6c depicts five easily identifiable (sub-) clusters, which are those of activations drawn in shades
of pink, purple, brown, yellow and blue-green. The cluster of activations drawn in pink thereby
corresponds to belief states for which the terminal state is most likely, and the other four colors
denote belief states with the highest belief for ground states near the distinct observations made
when facing south in one of the non-terminal states in the second row of the domain. Since the
activations for belief states for which the terminal state is most likely fall into a separate cluster,
the activations colored in shades of purple, brown and blue-green are part of the same cluster but
form distinct sub-clusters, and the activations drawn in shades of yellow form a distinct cluster, it
seems likely that the DRQN has indeed converged to group states based on Q-values. Notice,
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for instance, that the terminal ground state is the only ground state with Q-values of 0 for each
action. Finally, the negative value for 𝑐፝ᖤᑗᑚᑩ for the output layer at the end of training suggests
that belief states for which the DRQN learns similar Q-values do not necessarily also have low
distances with respect to 𝑑ᖤ፟።፱ for this domain.

• Hidden layers. The fact that similar clusters of activations are present in the LSTM layer at the end
of training as in the output layer suggests that the LSTM layer also progressively clusters belief
states based on Q-values (see Figure B.6b). Moreover, 𝑐፝ᖤᑗᑚᑩ decreases after an initial peak for
the LSTM layer, just as it is observed for the layers of DQNs and for the output layer of DRQNs
(see Figure B.7). The latter observation can also be made for the first layer, because Figure B.5
shows a decrease in 𝑐፝ᖤᑗᑚᑩ for the first layer after an initial peak. This suggests that observations
are also increasingly clustered based on Q-values in the first layer. Recall that we cannot expect
to see a similar t-SNE plot of the activations at the end of training for the first layer as for the
output layer, because the first layer solely clusters single observations rather than histories (see
Figure B.6a).

B.2.2. Factors Impacting the Hidden-layer State Representations
Our experimental results suggest that the extent to which the first- and the LSTM-layer representations
become similar to the coarsest Markov state representation at the beginning of training and still are at
the end of training depends on the hidden layer size. More precisely, Figure B.7 visualizes that 𝑐፝ᖤᑗᑚᑩ
is higher during the second learning phase for DRQNs with smaller hidden layer sizes. Recall that we
also found this to be the case for MDPs in Section 3.2, and that this phenomenon can be explained by
the fact that networks with higher capacities need less coarse of an abstraction of the state space to be
formed in hidden layers to be able to learn the true Q-values than networks with lower capacities do.

Furthermore, just as in the context of MDPs, the degree to which the internal state representations
in hidden layers are similar to the coarsest Markov state representation at the end of training also de-
pends on the hidden layer size. Specifically, the state representations in hidden layers are more similar
to the coarsest Markov state representation at the end of training for smaller hidden layer sizes. This
is largely due to the fact that the representations also become less similar to the coarsest Markov state
representation and remain closer to the initial ones at the beginning of training for larger hidden layer
sizes, because abstracting the state space is required to a lesser extent for networks with larger capac-
ities. Yet, we cannot conclude based on our results that the hidden-layer representations of DRQNs
with smaller hidden layers also tend to be abstracted towards towards a 𝑄∗-irrelevance abstraction to
a larger degree than those of DRQNs with slightly larger hidden layers, as we did in the context of
MDPs. This is the case, because we only performed experiments with four different hidden layer sizes
for DRQNs for the Hallway domain.
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C
Further Experiments

C.1. Fixed Replay Memory
The goal of the experiments in this section is to explore to which extent the patterns observed in Chapter
3 are merely due to the changing composition of the replay memory during training. To this end, 2-
layer DQNs with a hidden layer size of 50 are trained for Gridworld 3x3 (OH) and FrozenLake 4x4
(OH). However, unlike in Chapter 3, the replay memory is not filled during training. Instead, a fixed
replay memory is utilized for each domain, which is the one that exists at the end of training a 2-layer
DQN without fixed replay memory as in Chapter 3. Since the replay memory size is larger than the total
number of transitions performed during training, the replay memory contains all transitions encountered
during training of a 2-layer network without fixed replay memory. The occurrences of the state-action
combinations in the fixed replay memory used for Gridworld 3x3 (OH) are exemplarily shown in Figure
C.1. While more transitions exist for optimal actions taken in non-terminal states than for non-optimal
actions, especially when these non-terminal states are close to a goal state, each action is taken at
least 7 times in each state. Notice that all DQNs that are trained with a fixed replay memory in this
section still converge to the optimal policy and the true Q-values.

Figures C.2 and C.3 show for the FrozenLake 4x4 (OH) and the Gridworld 3x3 (OH) domain, re-
spectively, that using a fixed replay memory does not significantly impact the final state representations
learned in the network layers. For Gridworld 3x3 (OH) and the first layer for FrozenLake 4x4 (OH), em-
ploying a fixed replay memory also does not significantly change the way the final state representations
are learned. For the second layer for FrozenLake 4x4 (OH), however, utilizing a fixed replay memory
causes 𝑐ፓፕ, 𝑐ፊ and 𝑐ፑ፞፰ to increase more quickly at the beginning of training. This is due to the DQN
learning to form clusters for ground states farther away from the start state more rapidly when a fixed
replay memory is used. Notice that when no fixed replay memory is utilized, it takes some time for
the agent to reach farther away states due to the holes that directly terminate an episode. Transitions
containing such states are, however, already present in the replay memory at the beginning of training
when a fixed replay memory is employed. This also explains why using a fixed replay memory has
a much smaller impact on the way the second-layer state representation is learned for Gridworld 3x3
(OH). The reason is that this domain has neither holes that prematurely end an episode nor a fixed start
state, which implies that a non-fixed replay memory has a much more even distribution over states at
the beginning of training for this domain.
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Figure C.1: Occurrences of state-action combinations in the fixed replay memory used for Gridworld 3x3 (OH). The y-axis shows
the start state of a transition, grouped by ground state, and the x-axis the action taken in that state. All states belonging to ground
states ኻዀ through ኻዃ are terminal states.
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(a) Non-fixed replay memory.

(b) Fixed replay memory.
Figure C.2: ᑉᑖᑨ, ᑂ, ᑂ(ᑕᑗᑚᑩ), ᑋᑍ and ᑈ∗ for different numbers of training episodes for both layers of a 2-layer DQN for
FrozenLake 4x4 (OH) when employing either a fixed or a non-fixed replay memory. The hidden layer size is equal to ኺ.

(a) Non-fixed replay memory.

(b) Fixed replay memory.
Figure C.3: ᑉᑖᑨ, ᑂ, ᑂ(ᑕᑗᑚᑩ), ᑋᑍ and ᑈ∗ for different numbers of training episodes for both layers of a 2-layer DQN for
Gridworld 3x3 (OH) when employing either a fixed or a non-fixed replay memory. The hidden layer size is equal to ኺ.



132 C. Further Experiments

Figure C.4: Occurrences of state-action combinations in the fixed replay memory used for Gridworld 3x3 (Aug) (OH)(N). The
y-axis shows the start state of a transition, grouped by ground state, and the x-axis the action taken in that state. All states
belonging to ground states ኻዀ through ኻዃ as well as the last  states are terminal states.
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C.2. Empirical vs. Exact Reward and Transition Functions to Com-
pute 𝑐𝐾, 𝑐𝑅𝑒𝑤 and 𝑐𝑇𝑉

The experiments conducted in Chapter 3 compute bisimulation metrics and their components based
on the exact reward and transition functions just like in the original work on bisimulation metrics [14].
Yet, utilizing the empirical reward and transition functions may be more generally applicable, because
the true reward and transition functions of a domain may not be known in practice or the domain may
be too large to store the true reward and transition functions exactly in a table.

(a) Exact reward and transition functions.

(b) Empirical reward and transition functions based on ኾ, ኺኺኺ training episodes for ᑉᑖᑨ, ᑂ and ᑋᑍ.
Figure C.5: Correlation coefficients for different numbers of training episodes for both layers of a 2-layer DQN for FrozenLake
4x4 (OH). ᑉᑖᑨ, ᑂ and ᑋᑍ are calculated based on either the exact reward and transition functions or the empirical reward and
transition functions that are present after ኾ, ኺኺኺ training episodes. The other correlation coefficients are always computed based
on the exact reward and transition functions. The hidden layer size is equal to ኺ.

Figure C.5 visualizes for a 2-layer DQN for the FrozenLake 4x4 (OH) domain that the observed
values for 𝑐ፊ, 𝑐ፑ፞፰ and 𝑐ፓፕ do not significantly differ when using empirical rather than exact reward and
transition functions to compute these three correlation coefficients. More precisely, the converged value
of 𝑐ፑ፞፰ in both layers does not change at all, and 𝑐ፓፕ and 𝑐ፊ are slightly higher at the end of training
when empirical transition and reward functions are used. The lack of change in the converged value
of 𝑐ፑ፞፰ can be explained by the fact that the tested domain is so small and simple that after the end of
training, the empirical reward function is equal to the exact reward function. Furthermore, the empirical
transition function only differs from the true transition function in that the probability of transitioning from
one state 𝑠 to another state 𝑠ᖣ is not exactly equal to 0.2 when the probability of transitioning from the
ground state of state 𝑠 to the ground state of state 𝑠ᖣ is equal to 11. Thus, 𝑐ፓፕ and 𝑐ፊ are higher when
empirical transition functions form the basis of the computation, as the learned state representation is
based on the transitions that the agent has actually seen rather than the exact transition probabilities.

Since FrozenLake 4x4 is a very small domain even with the added superfluous feature, experiments
in larger domains are needed to explore whether using the empirical reward and transition functions
rather than the exact ones is a viable option when the empirical reward and transition functions are
less close to the exact ones. In addition, we did not compute 𝑐ፊ(፝ᑗᑚᑩ) based on empirical transition and
reward functions, which should also be investigated in the future.

1This exact value of ኺ.ኼ is due to uniformly at random choosing one of the five possible values for the added superfluous feature.



134 C. Further Experiments

C.3. Approximately Computing 𝑑𝑓𝑖𝑥
Computing 𝑐ፊ(፝ᑗᑚᑩ) precisely is prohibitive for large domains, because the exact calculation of 𝑑፟።፱ is
expensive even for moderately sized domains. We thus subsequently compare using 𝑑፟።፱ for measur-
ing how close to the coarsest Markov state representation an internal state representation is to utilizing
𝑑ᖤ፟።፱. Recall that 𝑑

ᖤ
፟።፱ is the result of approximating 𝑑፟።፱ by means of the approximation algorithm by [8]

delineated in Section 2.7.1.2. Notice that while computing 𝑑፟።፱ with our selected precision takes several
hours for FrozenLake 4x4, calculating 𝑑ᖤ፟።፱ requires solely a few seconds based on our hyperparameter
settings2.

Figure C.6: ᑉᑖᑨ, ᑂ, ᑂ(ᑕᑗᑚᑩ), ᑋᑍ, ᑈ∗ and ᑕᖤᑗᑚᑩ during training for both layers of a 2-layer DQN with a hidden layer size of ኺ
for FrozenLake 4x4 (OH).

Figure C.6 shows that the value of 𝑐፝ᖤᑗᑚᑩ is rather similar to the one of 𝑐ፊ(፝ᑗᑚᑩ) in both network layers
during training. Indeed, for the second layer of the 2-layer DQN, the average difference between the
two measures is equal to 0.05 with a standard deviation of 0.02 and the largest difference occurs for
training episode 394 with a value of 0.06. For the first layer, the mean difference is even lower with a
value of 0.01 and a standard deviation of 0.01, whereby the largest arising difference is equal to 0.02.
Therefore, computing 𝑐፝ᖤᑗᑚᑩ is a viable alternative to calculating 𝑐ፊ(፝ᑗᑚᑩ) for the FrozenLake 4x4 domain
when it comes to evaluating how close to the coarsest Markov state representation an internal state
representation is.

2Refer to Section D.1 for the hyperparameter values we use for the computation of ፝ᖤᑗᑚᑩ and to Section D.3 for information on
how we run our computations.
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C.4. Sensitivity to Optimization Settings
In this section, we analyze the sensitivity of the results fromChapter 3 to the settings for the values of the
hyperparameters for training the DQNs. The specific hyperparameters whose impacts we investigate
are the frequency with which the target network is updated during training, the batch size, and the
learning rate. We use 2-layer DQNs with a hidden layer size of 50 for FrozenLake 4x4 (OH) as example.

C.4.1. Target Network Update Frequency

(a) ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞ = ኻኺ.

(b) ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞ = ኺ.

(c) ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞ = ኻኺ.
Figure C.7: ᑉᑖᑨ, ᑂ, ᑂ(ᑕᑗᑚᑩ), ᑋᑍ and ᑈ∗ during training for both layers of a 2-layer DQN for FrozenLake 4x4 (OH) when using
different settings for the ፭ፚ፫፠፞፭_፮፩፝ፚ፭፞-parameter. The hidden layer size is equal to ኺ.

To rule out that the observed patterns for the correlation coefficients depend critically on the update
frequency for the target network, we also trained 2-layer DQNs for FrozenLake 4x4 (OH) with values of
50 and 150 for the 𝑡𝑎𝑟𝑔𝑒𝑡_𝑢𝑝𝑑𝑎𝑡𝑒-parameter besides the original value of 10, while keeping all other
hyperparameters fixed. As visualized in Figure C.7, changing the frequency with which the target net-
work is updated during training significantly impacts neither the final values the correlation coefficients
take on at the end of training nor the patterns of the correlation coefficients during training. The only
difference is the speed with which the final first- and second-layer internal state representations are
formed, with higher values for the 𝑡𝑎𝑟𝑔𝑒𝑡_𝑢𝑝𝑑𝑎𝑡𝑒-parameter leading to slightly later convergence to
the final state representations. Since updating the target network every 10 episodes already ensures
stable learning, it makes sense that updating the target network less often causes a later convergence
to the true Q-values. This is the case, because more training episodes are required for the target net-
work to output the Q-values based on a certain number of transitions if the target network is updated
less frequently.
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C.4.2. Batch Size
To explore the impact of using different batch sizes on the internal state representations that are formed
and the way they are learned, we trained a 2-layer DQNwith a hidden layer size of 50 for the FrozenLake
4x4 (OH) domain with different batch sizes, while keeping all other hyperparameters fixed. Figures C.8
and C.9 depict that the batch size does not significantly impact the final output-layer state representation
for a 2-layer DQN for FrozenLake 4x4 (OH). This means that all networks converge to the true Q-values
equally well. Yet, the final first-layer representation has higher values for 𝑐ፑ፞፰, 𝑐ፓፕ, 𝑐ፐ∗ and 𝑐ፊ(፝ᑗᑚᑩ) for
higher batch sizes. This can be explained by the fact that the first-layer representation groups states
corresponding to the same ground state less closely together for smaller batch sizes (see Figure C.8).
The reason likely is that using more transitions for updates results in the network being updated based
on transitions with more different superfluous feature values for the ground states. Hence, states that
differ solely in the superfluous feature value are grouped closer together at the beginning of training
while the network has not yet converged to the Q-values. If transitions with fewer different superfluous
feature values for states are employed for each update, states that correspond to the same ground
state are moved less closely together at the beginning of training. Yet, due to the higher-than-necessary
hidden layer size of 50, the DQN can still converge to the true Q-values.

First layer. Second layer.
(a) ፚ፭፡_፬።፳፞ = ኻኺ.

First layer. Second layer.
(b) ፚ፭፡_፬።፳፞ = ዀኾ.

First layer. Second layer.
(c) ፚ፭፡_፬።፳፞ = ኻኼዂ.

First layer. Second layer.
(d) ፚ፭፡_፬።፳፞ = ኼዀ.

Figure C.8: t-SNE plots of the activations the states are mapped to at the end of training for both layers of a 2-layer DQN with a
hidden layer size of ኺ for FrozenLake 4x4 (OH) when using different batch sizes. Activations are computed for all states and
every  states that differ solely in the superfluous feature and hence correspond to the same ground state are drawn in the same
color.

In addition, using a higher batch size causes some correlation coefficients in the second layer to
first increase to a value higher than their final value and then to drop again. This, for example, occurs
for 𝑐ፑ፞፰ and 𝑐ፊ(፝ᑗᑚᑩ) around training episode 500 (see Figure C.9). This can be explained by the fact
that the DQN is trained to a higher extent and based on more accurate estimates of the 𝑛-step rewards
by the target network after the target network has been updated 𝑛 − 1 times for higher batch sizes,
because more data is used during each update. For instance, recall that 𝑐ፑ፞፰ is highest for a state
representation that clusters states solely based on immediate rewards. Thus, if the DQN is trained to
accurately predict Q-values based on 𝑛-step rewards for a low value for 𝑛, 𝑐ፑ፞፰ for the second layer is
higher than when the DQN accurately predicts the true Q-values.

C.4.3. Learning Rate
To investigate the impact of different learning rates on the internal state representations, we trained a
2-layer DQN with a hidden layer size of 50 for the FrozenLake 4x4 (OH) domain with learning rates of
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(a) ፚ፭፡_፬።፳፞ = ኻኺ.

(b) ፚ፭፡_፬።፳፞ = ዀኾ.

(c) ፚ፭፡_፬።፳፞ = ኻኼዂ.

(d) ፚ፭፡_፬።፳፞ = ኼዀ.
Figure C.9: ᑉᑖᑨ, ᑂ, ᑂ(ᑕᑗᑚᑩ), ᑋᑍ and ᑈ∗ during training for both layers of a 2-layer DQN for FrozenLake 4x4 (OH) when using
different settings for the batch size. The hidden layer size is equal to ኺ.

0.01, 0.001 and 0.0001. Notice that the default learning rate for FrozenLake 4x4 (OH) is set to 0.0001
in our experiments (see Table D.1).

As visualized in Figure C.10, altering the learning rate for a 2-layer DQN for FrozenLake 4x4 (OH)
does not significantly impact the learned second-layer representation. Thus, all tested learning rates
allow the network to converge to the true Q-values equally well, albeit the correlation coefficients still
fluctuate a lot for a learning rate of 0.01. The formed first-layer representation, however, strongly de-
pends on the learning rate. More precisely, using a higher learning rate leads to higher values for
𝑐ፊ(፝ᑗᑚᑩ), 𝑐ፐ∗ , 𝑐ፑ፞፰, and 𝑐ፓፕ in the first network layer at the end of training for all sufficiently large hidden
layer sizes (see Figure C.11). Figure C.12 shows that the reason for this observation is that higher
learning rates enable the first-layer representation to learn to ignore the superfluous feature to a larger
extent. This likely is the case, because higher learning rates cause even few occurrences of a certain
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(a) ፥፞ፚ፫፧።፧፠_፫ፚ፭፞ = ኺ.ኺኻ.

(b) ፥፞ፚ፫፧።፧፠_፫ፚ፭፞ = ኺ.ኺኺኻ.

(c) ፥፞ፚ፫፧።፧፠_፫ፚ፭፞ = ኺ.ኺኺኺኻ.
Figure C.10: ᑉᑖᑨ, ᑂ, ᑂ(ᑕᑗᑚᑩ), ᑋᑍ and ᑈ∗ for different numbers of training episodes for both layers of a 2-layer DQN with a
hidden layer size of ኺ for FrozenLake 4x4 (OH) when using different settings for the learning rate.

superfluous feature value in the transitions used for updating the DQN to have a noticeable impact on
the way the DQN is updated. This results in a stronger state space compression while the DQN has not
yet converged than when a lower learning rate is used. The DQN can, however, also converge without
this intensive state space compression occurring. Hence, for lower learning rates, the DQN converges
before such a strong state space compression has been created in the first network layer. The impact
of a higher learning rate thus is similar to the one of a higher batch size as discussed in Section C.4.2.
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Figure C.11: Mean converged ᑉᑖᑨ, ᑂ, ᑂ(ᑕᑗᑚᑩ), ᑋᑍ and ᑈ∗ in the first layer with ዃ%-confidence intervals for each hidden
layer size for a 2-layer DQN for the FrozenLake 4x4 (OH) domain with different learning rates. Values are based on  repetitions.
The two vertical lines indicate the lowest hidden layer sizes for which the test rewards converge and the network converges to
the optimal policy, respectively, at least one out of  times.
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(a) ፥፞ፚ፫፧።፧፠_፫ፚ፭፞ = ኺ.ኺኻ.

(b) ፥፞ፚ፫፧።፧፠_፫ፚ፭፞ = ኺ.ኺኺኺኻ.
Figure C.12: t-SNE plots of the activations the states are mapped to and corresponding correlation coefficients in the layers of a
2-layer DQN with a hidden layer size of ኺ for FrozenLake 4x4 (OH) throughout training for different learning rates. Activations
are computed for all states and every  states that differ solely in the superfluous feature and hence correspond to the same
ground state are drawn in the same color.
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C.5. Convergence to the True Q-values vs. Solely Convergence to
the Optimal Policy

A common problem when training DQNs is that the Q-values may diverge [1], whereby the network may
still converge to the optimal policy. To explore whether convergence to the true Q-values is accompa-
nied by different learned state representations in the network layers, we also trained 2-layer networks
with a hidden layer size of 50 for the Gridworld 3x3 (OH) and Gridworld 3x3 (F) domains such that the
Q-values diverge but the networks still converge to the optimal policy. Since both domains contain goal
states with non-zero rewards, this can be achieved by not adding transitions that start at a goal state
to the replay memory during training.

Figure C.13 visualizes that the learned first-layer representation for Gridworld 3x3 (OH) has a slightly
higher value for 𝑐ፊ(፝ᑗᑚᑩ) and a lower value for 𝑐ፐ∗ if the network solely converges to the optimal policy.
Since the same trend can be observed in the second network layer, this reveals that the first network
layer forms a state representation that is to a certain extent similar to the one in the last network layer if
this is possible. Moreover, the learned first-layer representation for Gridworld 3x3 (F) does not change
noticeably. Yet, this is due to the fact that for this form of state encoding, the first layer cannot group
states together if and only if they have the same Q-values as discussed in Section 3.2.2.3. With respect
to the last network layer for Gridworld 3x3 (F), Figure C.13 depicts a much higher value for 𝑐ፐ∗ and a
lower value for 𝑐ፑ፞፰ at the end of training when the network also converges to the true Q-values just
as for Gridworld 3x3 (OH), as is to be expected for diverging Q-values.

Consequently, the representation created in the hidden layer is relatively insensitive to whether the
network converges only to the optimal policy or also to the true Q-values. However, the learned first-
layer representation is to a certain extent similar to the one formed in the last network layer if this is
possible. This leads to a slightly different first-layer representation when the network only converges to
the optimal policy when the ground state is one-hot encoded. How different the first-layer representation
is thus largely depends on how different the formed second-layer representation is when convergence
to the optimal policy but not to the true Q-values is achieved. Yet, this is only the case if the first layer
can form a representation that is similar to the one in the second layer.
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C.6. Impact of the Perplexity on t-SNE Plots
As described in Section 2.8, the output of the t-SNE algorithm depends on the perplexity parameter.
Figure C.14 shows for the learned first-layer representation of 2-layer DQNs for Gridworld 3x3 (Aug)
(OH) and Gridworld 3x3 (Aug) (OH)(N) which impact the perplexity has on the t-SNE plots. Recall that
perplexity values between 5 and 50 are recommended by [40] and that the perplexity is set to 30 in our
experiments. We make the following observations:

• A perplexity of 2makes all clusters of activations look approximately equidistant and hence hides
global structure in the data.

• When a hidden layer size of 6 is utilized, global structure appears in the t-SNE plots for perplexity
values of 5, 10 and 30, and then becomes increasingly less visible for perplexity values of 50
and 100. Thus, a perplexity of 30 as is used in our experiments is appropriate for this state
representation.

• For a hidden layer size of 50, all perplexity values greater than 2 lead to approximately similar
results. Two main clusters are formed, whereby the larger one is composed of roughly equidis-
tant clusters of activations belonging to non-terminal states and the smaller one of activations
corresponding to terminal states. Since no perplexity value shows any global structure within the
larger cluster, it is likely that such structure does not exist due to the larger hidden layer size and
thus higher capacity of the network. However, it could also be that a different perplexity value is
necessary or that simply no perplexity value exists for which this structure becomes visible [63].
Irrespective of whether such global structure cannot be shown or needs a very specific perplexity
value, using a perplexity of 30 for this state representation is a reasonable choice given limited
time to exhaustively search the space of perplexity values.
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C.7. Correlation Coefficients based on Varying Numbers of Histo-
ries for POMDPs

Our experimental results for the internal state representations learned by DRQNs in Chapter B are
based on computing the correlation coefficients based on a sample of 500 histories. As depicted in
Figure C.15 for a DRQN with a hidden layer size of 32 for the Hallway domain, utilizing 1, 000 rather
than 500 histories for the computation of the correlation coefficients leads to very similar results. Thus,
the limited number of histories used to calculate the correlation coefficients does not pose a limitation
to employing the correlation coefficients for an analysis of the internal state representations created by
DRQNs for the Hallway domain.
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(a) First layer.
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ኻ, ኺኺኺ histories.
(b) LSTM layer.
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(c) Output layer.
Figure C.15: ᑉᑖᑨ, ᑕᖤᑗᑚᑩ and ᑋᑍ in each of the three layers of a DRQN for the Hallway domain during training. Both the first and

the LSTM layer have ኽኼ nodes. The correlation coefficients are computed based on the belief states resulting from sampling
ኺኺ or ኻ, ኺኺኺ histories.



D
Implementation Details

Section D.1 contains details on the computation of correlation coefficients, Section D.2 describes the
implementation and training of DQNs for our experiments, and Section D.3 states the technology used
throughout our research.

D.1. Computation of Correlation Coefficients
This section provides information on the hyperparameters used for the approximation of 𝑑፟።፱ via the
algorithm by [8] in Section D.1.1 and the bisimulation-based correlation coefficient 𝑐ፊ in Section D.1.2.

D.1.1. Approximate 𝑑፟።፱
We approximate 𝑑፟።፱ for belief states for POMDPs and for fully observable states for MDPs based on
the approximation algorithm by [8] as described in Section 2.7.1.21. We use a learning rate of 0.001,
update the target network every 128 episodes, employ a batch size of 32, increment 𝛽 by 0.00001
every 128 episodes up to a maximum value of 1, and train the network for 15, 000 episodes. Thereby,
we utilize a neural network with one hidden layer and 32 nodes in this hidden layer.

D.1.2. Correlation Coefficient 𝑐ፊ
Definition. 𝑐ፊ is the Pearson correlation coefficient between the maximum Kantorovich distances 𝑇ፊ
of the transition functions of the states on the one hand and the Euclidean distances between the acti-
vations the states are mapped to in a neural network layer on the other hand. We originally calculated
𝑐ፊ, because 𝑐ፊ(፝ᑗᑚᑩ) is not independent of the reward function and of 𝛾. However, computing the one-
dimensional Kantorovich distance of two probability functions 𝑃 and 𝑄 is equivalent to computing the
cumulative distribution function of |𝑃 − 𝑄| [51]. Hence, calculating the one-dimensional Kantorovich
distances of the transition functions has the caveat that the result depends on the number with which a
state is encoded. For instance, if there is a domain with a single action 𝑎 and three states 𝑠ኻ, 𝑠ኼ and 𝑠ኽ,
each encoded by their respective index, such that 𝑃(𝑠ኻ|𝑠ኻ, 𝑎) = 1, 𝑃(𝑠ኽ|𝑠ኼ, 𝑎) = 1 and 𝑃(𝑠ኼ|𝑠ኽ, 𝑎) = 1,
then for a high value for 𝑐ፊ, the activation 𝑠ኻ is mapped to should be closer to the activation 𝑠ኽ is mapped
to than to the one 𝑠ኼ is mapped to. The reason is that the absolute distance between the encoded state
numbers 1 and 3 is larger than the one between 1 and 2. The consequence is that the Kantorovich
distance between the transition functions of 𝑠ኻ and 𝑠ኼ is 2, whereas the one between the transition
functions of 𝑠ኻ and 𝑠ኽ is equal to 1. Therefore, while in general a high value for 𝑐ፊ indicates that there
exist clusters in the space of activations for all states that have the same transition probabilities for
all states, this is not necessarily the case for domains with few pairs of states with identical transition
functions compared to the total number of state pairs. In such domains, 𝑐ፊ will be high only if there
is a positive correlation between the Euclidean distance of the activations two states are mapped to
and the absolute distances between the state numbers that they have non-zero transition probabilities
to. Due to the dependence of 𝑐ፊ on the encoding of states and the fact that 𝑐ፊ no longer captures the
notion of bisimilarity, we discontinued the computation of 𝑐ፊ after initial experiments.
1We use the PyTorch implementation by Miguel Suau de Castro of the algorithm by [8], which is in turn based on the implemen-
tation found here.
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https://github.com/google-research/google-research/tree/master/bisimulation_aaai2020
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Computation. To calculate 𝑇ፊ for a pair of states 𝑠።, 𝑠፣ ∈ 𝑆 and an action 𝑎 ∈ 𝐴, one has to com-
pute the one-dimensional Kantorovich distance between the transition functions of 𝑠። and 𝑠፣ for 𝑎.
When computing 𝑐ፊ, the maximum is taken over all actions. The pseudocode for this computation is
given in Algorithm 4. To compute the one-dimensional Kantorovich distance, we utilize the wasser-
stein_distance2 method from Python’s Scipy package.

Algorithm 4 Computation of 𝑚𝑎𝑥ፚ∈ፀ(𝑇ፊ(𝑃(𝑠። , 𝑎), 𝑃(𝑠፣ , 𝑎))) for a pair of states 𝑠። , 𝑠፣ ∈ 𝑆
Require: 𝑆, 𝐴, 𝑃(𝑠።) (transition function of 𝑠። ∀𝑎 ∈ 𝐴), 𝑃(𝑠፣) (transition function of 𝑠፣ ∀𝑎 ∈ 𝐴)
1: 𝑇_𝐾፦ፚ፱ ← 0
2: for 𝑎 ∈ 𝐴 do
3: 𝑇_𝐾፦ፚ፱ ← 𝑚𝑎𝑥(𝑇_𝐾፦ፚ፱ ,𝑊𝑎𝑠𝑠𝑒𝑟𝑠𝑡𝑒𝑖𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑃(𝑠። , 𝑎), 𝑃(𝑠፣ , 𝑎)))
4: end for

D.2. DQN Implementation and Training
For each fully observable domain, a DQN is implemented in PyTorch 1.3.1 [47] and trained by mini-
mizing the loss given in Equation 2.5 via the Adam algorithm [34]3. Thereby, a target network and a
replay memory are used to improve learning stability as described in Section 2.4.1. For each domain,
two different network architectures are tested, one with two layers and one with four layers. The ReLU
activation function is used for all non-terminal layers, which is defined as follows:

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥).
Each hidden layer has the same size, which is given by the 𝑙𝑎𝑦𝑒𝑟_𝑠𝑖𝑧𝑒 parameter in Tables D.1 and
D.2, unless an experiment involves changing the hidden layer size. The hyperparameter values are de-
termined via grid search for each domain and the final values are listed in Table D.1 for the FrozenLake
domains and Table D.2 for the Gridworld domains.

The policy of the agent during training is 𝜖-greedy, which means that the agent takes the greedy
action with probability 1 − 𝜖 and a random action with probability 𝜖. In case 𝜖 is decayed over time, its
value is determined by the following equation:

𝜖 = 𝜖፦።፧ + (𝜖፦ፚ፱ − 𝜖፦።፧) × 𝑒𝑥𝑝(−𝑑𝑒𝑐𝑎𝑦_𝑟𝑎𝑡𝑒 × 𝑛𝑢𝑚_𝑠𝑡𝑒𝑝𝑠), (D.1)

where 𝜖፦።፧ is the minimum value for 𝜖, 𝜖፦ፚ፱ is the maximum value for 𝜖, 𝑑𝑒𝑐𝑎𝑦_𝑟𝑎𝑡𝑒 is the decay rate
for 𝜖 and 𝑛𝑢𝑚_𝑠𝑡𝑒𝑝𝑠 is the number of steps taken so far during training.

D.3. Technology
In the following, we describe the technology utilized throughout our experiments.

D.3.1. HPC Cluster
Computations are run on CPUs of the HPC cluster of the Intelligent Systems Department at the Delft
University of Technology.

D.3.2. Min-Cost-Flow-Class
The Min-Cost-Flow-Class is a C++ library that encompasses several solvers for minimum cost flow
problems. To compute the bisimulation metric component 𝑇፤(𝑑), we utilize the MCFZIB solver [2] from
the Min-Cost-Flow-Class just like the original work on bisimulation metrics does [14].

D.3.3. Python
Python is an interpreted high-level programming language that follows standards from procedural, im-
perative to object-oriented, and functional programming. In addition, it contains multiple useful pack-
ages, including Matplotlib [28] for creating effective data visualizations, NumPy [60] for efficient vector-
ized computations, OpenAI Gym [7] for RL research, PyTorch [47] for machine learning and especially
2The Kantorovich distance is also called Wasserstein distance.
3The implementation of the DQNs is based on a DQN implementation for the CartPole task by AdamPaszke [46] and a Q-learning
tutorial by Tiew Kee Hui [27].

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wasserstein_distance.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wasserstein_distance.html
http://insy.ewi.tudelft.nl/content/hpc-cluster
https://github.com/frangio68/Min-Cost-Flow-Class
https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html
https://tiewkh.github.io/blog/qlearning-openaitaxi/
https://tiewkh.github.io/blog/qlearning-openaitaxi/
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Table D.1: Hyperparameter values for DQNs trained for the FrozenLake domains.

Parameter Description FrozenLake FrozenLake FrozenLake
4x4 (OH) 4x4 (F) 8x8

batch_size Batch size for training 10 16 128
decay Whether to decay 𝜖 True True True
decay_rate Decay rate for 𝜖 0.0001 0.0001 0.00001
discount_factor Discount factor of MDP 0.9 0.8 0.99
layer_size Size of hidden layers 50 50 50
learning_rate Learning rate 𝛼 0.0001 0.005 0.0005
lr_decay Whether to decay 𝛼 False False False
lr_decay_rate Decay rate for 𝛼 / / /
max_epsilon Starting value for 𝜖 1 1 1
max_steps Max. # of steps per episode 200 200 200
min_epsilon Min. value for 𝜖 0.01 0.2 0.1
num_episodes Number of training episodes 4,000 4,000 10,000
replay_memory_size Capacity of replay memory 50,000 50,000 50,000
target_update Update frequency for target network 10 10 150

Table D.2: Hyperparameter values for DQNs trained for the Gridworld domains.

Parameter Description Gridworld Gridworld Gridworld Gridworld
3x3 (OH) 3x3 (F) 3x3 (Aug) 5x5

batch_size Batch size for training 128 128 128 128
decay Whether to decay 𝜖 True True True True
decay_rate Decay rate for 𝜖 0.0001 0.0001 0.00001 0.0001
discount_factor Discount factor of MDP 0.85 0.75 0.99 0.85
layer_size Size of hidden layers 50 50 50 50
learning_rate Learning rate 𝛼 0.005 0.001 0.00001 0.005
lr_decay Whether to decay 𝛼 False False False False
lr_decay_rate Decay rate for 𝛼 / / / /
max_epsilon Starting value for 𝜖 1 1 1 1
max_steps Max. # of steps per episode 100 100 100 100
min_epsilon Min. value for 𝜖 0.1 0.2 0.3 0.01
num_episodes Number of training episodes 4,000 4,000 30,000 4,000
replay_memory_size Capacity of replay memory 50,000 50,000 50,000 50,000
target_update Update frequency for target network 50 150 150 100

deep learning, and Scikit-learn for machine learning tasks in general [48]. Version 3.7 of Python is used
in this work.

D.3.3.1 NumPy Library
NumPy is a Python library that enables high-performance numerical calculations by reducing the num-
ber of operations, vectorizing computations, and avoiding the copying of data into memory. Version
1.16.5 of this library is utilized in this work.

D.3.3.2 OpenAI Gym
Version 0.15.4 of the OpenAI Gym library is utilized in the experiments in this work. For the experiments
for MDPs, we make use of the implementation of the 4x4 and 8x8 FrozenLake domains. Thereby, we
alter the original implementation to allow for modified reward and transition functions for our experi-
ments in Section 5.1, which involve the transfer of trained DQNs to related domains. Moreover, we
implemented the Gridworld 3x3 (Aug) domain, the variably sized Gridworld domain used in the work of
[14], and the Hallway domain [38] based on OpenAI Gym.

https://github.com/nelealbers/gridworld
https://github.com/nelealbers/pomdp_domains
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D.3.3.3 PyTorch Library
PyTorch is an open-source Python library that performs dynamic tensor computations combined with
automatic differentiation and GPU acceleration. PyTorch achieves high levels of flexibility and perfor-
mance while maintaining ease of use for the user. Version 1.3.1 is employed in this work to implement
the neural networks.

D.3.3.4 Scikit-learn
We employ version 0.21.3 of the Scikit-learn library to visualize the activations in neural network layers
via the t-SNE algorithm described in Section 2.8. Moreover, we utilize the K-Means algorithm to clus-
ter histories based on bisimulation-based pairwise distances for t-SNE plots for partially observable
domains in Chapter B.

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
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