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Abstract
Urbanization is a worldwide trend that drives an immense increase in air traffic demand. The worldwide
aviation network makes global business possible which generates economic growth, creates jobs and
facilitates international tourism and trade. Many of the world’s transport hubs like The Greater London
Area have allocated this demand over various airports, which forms amulti-airport region (MAR). Airport
expansion plans and infrastructural investments in multi-airport regions, therefore, depend not only on
the total level of air traffic growth but on its allocation. Therefore, the goal of this research is to develop
an analysis framework for the market dynamics driving airport activity levels, focusing on multi-airport
regions, and analyse how this provides a base for strategic decisions in the region. This goal was split
into two sub-goals. First, understand the evolution of airport’s market shares based on the allocation of
air traffic passengers amongst airports in a chosen MAR. Second, understand the market dynamics of
passenger integrated transport systems in a MAR. Forecasting its underlying determinants can provide
estimates for the future transport system in a MAR, which accommodate and facilitate smooth future
operations of used logistical components. Greater London was chosen as a multi-airport region.

Part one consists of a quantitative model that can compute annual air traffic demand for a multi-airport
region, and the allocation of this demand over airports within, for the period 2010 - 2050. Aggregate
air traffic demand is based on UK’s GDP projections and the allocation model was based on the
relative performance of airports in terms of their accessibility, airfares and connectivity. A multivariate
regressionmodel was applied correlating historical (2010 - 2019) airport performance to their respective
market shares. The results show regional air traffic demand is likely to grow 82% over the next 30 years.
Based on 60 observations, the model can predict its market shares with an R-squared of 0,952.

Part two progresses the quantitative model to generate a forecasting framework for the next 30 years
for various important aviation-related variables in the region. This concludes that for London Gatwick,
City and Stansted airport the projected growth in air traffic demand will not form any capacity problems,
but for London Heathrow, Luton and Southend airport, it will. A major factor influencing this is the rising
environmental awareness and increasing costs for carbon emission abatement. London Heathrow
Airport, being UK’s most important airport, together with the UK government has identified several
developments to facilitate the expected growth in air traffic demand.
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1
Introduction

1.1. Background
Worldwide population has increased by 30% since 2000 and is expected to further increase by 23% to
9.7 billion inhabitants in 2050 [106]. Due to this global population growth and increased migration, the
majority of this increased population will live in urban regions [97]. This so-called urbanization is one of
the major worldwide trends being observed. It drives an immense increase in human transport demand,
resulting in increased traffic movements, especially in urban regions. People use transport modes
like private vehicles or public transport for relatively short travel distances and aircraft for relatively
longer distances. To accommodate the increased demand for global travel mobility, infrastructural
developments have to take place.

The worldwide aviation network makes global business possible which generates economic growth,
creates jobs and facilitates international trade and tourism. The total value of goods transported by air
is $6.5 trillion, representing 35% of all international trade. 45% of international tourists travel by air and
the global aviation industry contributes 4.5% to the global GDP and facilitates 88 million jobs [14] [78].
Accompanying the increased travel demand has resulted in a comparable increase in available seat
kilometres in the sky. However, there has been a lack of airport and terminal capacity, especially in
urban regions, to allocate both the increased air traffic passenger demand and seat kilometres.

As a result, many of the world’s transport hubs like Greater London, New York Metropolitan Area,
Greater Los Angeles Area andWashington, have naturally allocated air traffic demand amongst multiple
airports, accessible through the region’s infrastructure. These regions are referred to as Multi Airport
Regions orMARs. Human/passenger transport within and amongst theseMARs is a result of a dynamic
behaviour between the following three topics.

1. Air traffic passengers’ preference amongst airports;

2. Infrastructure within the MAR;

3. Airline and airport strategy.

Comprehending and quantifying expected traffic flows in these MARs is crucial to plan infrastructural
changes and airport constructions and/or expansions, and to substantiate strategic and political
decisions herein. These and their investments are all based on the projected levels of utilizing
passengers. It is therefore important to comprehend the evolution of the three factors driving passenger
transport within a MAR and the dynamic behaviour amongst them.

Planning airport expansions are complicated, especially in multi-airport regions, where airports are part
of a network serving the region. Airport capacity expansions in such regions depend not only on the total
level of air traffic growth but also on its allocation amongst the alternative airports serving the region.
So, as the world’s population and thus demand for transport and air travel will in all likelihood continue to

1



2 1. Introduction

increase, comprehending this allocation of air traffic passengers is crucial for airport expansion plans as
well as accommodating infrastructural, strategic and political adaptations in the region. This allocation
also provides insight into the market shares evolution of airports serving the MAR [22, 37].

In Figure 1.1, the context of this research is visualised.

Figure 1.1: Project Context

1.2. Research Goals
The goal of this research is formulated as follows: ”Develop an analysis framework for the market
dynamics driving airport activity levels, focusing on multi-airport regions, and analyse how this provides
a base for strategic decisions in the region.” To achieve this, two sub-goals have been set up:

I Understand the evolution of airport market shares based on the allocation of air traffic passengers
amongst airports in a chosen MAR;

II Understand market dynamics of passenger integrated transport system in a MAR. Forecasting its
underlying determinants can provide estimates for the future transport system in a MAR, which
accommodate and facilitate smooth future operations of used logistical components.

1.3. Report Structure
The research that has been performed to achieve these goals is explained in this report. First, a brief
literature review on relevant topics is shared in chapter 2. The modelling methodology is explained
in chapter 3, after which relevant aspects of the case study and illustrations of the methodology are
shared in chapter 4. Its results are presented in chapter 5.

These results are used as a baseline for the forecasting framework, which is analysed in chapter 6,
after which the research is discussed and concluded in chapter 7. Finally, some recommendations to
potentially further enhance this research are suggested in chapter 8.



2
Literature Review

The research field of air traffic modelling is extensive and has been in place for quite some years.
As urbanisation leads to increased air traffic and pressure on urban infrastructure, modelling air
traffic demand has become more complex, which is the result of many airport operational and urban
infrastructural operations. Many pieces of research focus on specific details of air traffic modelling. This
only captures part of the equation and therefore, this research has combined and progressed several
of these detailed studies to form an integrated approach to modelling air traffic demand.

In this chapter, the literature study is presented regarding air traffic modelling, relevant to achieving
the goal of this research. Four major research blocks have been identified, in which this chapter is
structured.

2.1. Multi Airport Region
2.1.1. Definitions
Origin and destinations are not restricted to single airports but represent urban agglomerations closely
bound to an attractive centre by commerce, business or tourism. These regions are referred to as
metropolitan areas [20]. Travelling amongst such metropolitan regions around the globe is done mainly
through air travel, facilitated by airports and airlines. A multi-airport region (MAR) is defined as

”A set of two or more significant airports that serve commercial traffic within a metropolitan region.” [24].

The size of such a metropolitan region is mainly defined using two methods. First, its population is
defined as the number of people living within a fixed radius of x km from the regions’ centre [20].
Second, through the geographical area that covers a combined 60-minute road access time from the
airports serving the metropolitan area [148].

To provide an overview of the worldwide Multi-Airport Regions, Table 2.1 presents 12 of the world’s
largest, served by a minimum of four airports. Airports that are located outside the former city’s
boundaries are included, as they also serve the region. Military airbases without commercial traffic,
heliports, and airports that only serve cargo services are excluded in this overview.

By analysing homogeneous urban and airline data, a link was found between activity in metropolitan
areas (MARs) and their air traffic levels. It was found that GDP, the level of economic decision power,
touristic attractions, and the distance from major air markets are more than two-thirds based on the
variation in air service [49]. This seems to indicate air service and aviation activity remains profoundly
rooted in metropolitan characteristics of urban regions (notably size and wealth). The same holds to
a lesser extent for low-cost carriers as they are partly focused on niche markets and less expensive
regional airports [49].

Therefore, it is important to comprehend the activity in these MARs to be able to describe changes in air
traffic levels. This ultimately leads to a good understanding of the behaviour of passengers concerning

3



4 2. Literature Review

Multi-Airport Region Number of Airports
United Kingdom, England, Greater London, London 6
United States, New York, New York metropolitan area, New York City 6
United States, California, Greater Los Angeles Area, Los Angeles 5
United States, Washington, Seattle 4
United States, California, San Francisco Bay Area 4
United States, Florida, Miami 4
United States, Massachusetts, Boston 4
Australia, Victoria, Melbourne 4
France, Île-de-France, Paris 4
Russia, Moscow 4
Japan, Tokyo Metropolis, Special wards of Tokyo 4
Sweden, Stockholm County, Stockholm 4

Table 2.1: Overview of Multi-Airport Regions

their mobility. Airports can be accessed using theMARs ground transportation systems. Corresponding
transport modes consist of public transport, private motorised (cars), and individual active (cycling or
walking). Travelling amongst these MARs is dominantly done using trains or aircraft [28, 72]. Long haul
trips (1000+km), are dominantly travelled through aircraft. However, for shorter distances, faster-driving
trains provide a good sustainable alternative. As many countries try to minimize their carbon emissions
according to the Paris Agreement, pressure on more sustainable transport increases. This is likely to
influence the aviation sector as demand could switch to more sustainable transport options like trains
[129, 48].

2.1.2. Catchment Area
A relevant term in the air traffic modelling in MARs is an airport’s catchment area, which is defined as

’The geographical area from which a facility (airport) attracts (the bulk of) its costumers’ [149].

In manyMARs, catchment areas overlap and thus create a region where potential air traffic passengers,
based on the definition of the catchment area size, are not bound to one specific airport but have
a choice [18]. Usually, airport’s catchment areas are depicted by drawing concentric circles around
the airports. The radii of these circles are based on an assumption of a maximum ground access
time of 2 hours. This approach is easy to apply and interpret, but it results in a static visualisation of an
airport’s catchment area as it ignores the driving factors behind passenger airport choice: airport access
times, flight frequencies and airfares. This means that it ignores the highly influential fact that airport
market shares tend to decrease when one moves further away from the airport. The methodology
presented in the research by Marcucci and Gatta does take the driving factors behind airport choice into
account when measuring the size of airport catchment areas and the airport’s market shares therein. It
allows one to show how these differ by travel motive and destination and how they evolve. In addition,
the methodology allows one to estimate the effects on an airport’s catchment area of infrastructure
improvements or improvements in an airport’s service offering [95].

The research makes several relevant conclusions. First, market shares in regions further away quickly
diminish. Second, as an airport offers higher service levels relative to surrounding airports, the
catchment area increases. So, if airports facilitate more destinations, the catchment area increases
as well [95].

A catchment area analysis like this allows airports to evaluate the spatial nature of their catchment
area to understand passenger airport choice and the competitive forces in their respective hinterland
regions. It identifies the regions where market share is relatively low and the reasons behind it. Airports
may also use the catchment area information in their marketing efforts towards airlines. Furthermore,
the methodology may be of use to policymakers as it not only provides them with information on the
competitive position of airports in the OD-markets served but to assess the effects of infrastructure
investments, ex-ante as well as ex-post [89, 95].
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Precise analyses of airport catchment areas have been largely ignored in literature due to the lack of
consistent data [149]. Many pieces of research are based on passenger surveys, which have relatively
small sample sizes compared with the complete population scope of that region. So, catchment
area studies have mostly been based on revealed [55, 116] but also, somewhat less often, on stated
behaviour [90].

2.1.3. Transport Modes
Air traffic passengers use various transport modes to reach their desired airports. As mentioned before,
these so-called ground surface access modes can be grouped into three categories; [28, 72].

I Private motorised consists of mechanised forms of non-scheduled transport that are not available
for public use. Some examples of these are private cars and motorcycles, private taxis or
minicabs, airline or corporate chauffeur-driven services and minibuses;

II Public transport consists of shared surface transport modes that operate to a set timetable on
fixed routes and which are available for public use (like coach services, bus and rail services, and
water ferries);

III Individual active consists of modes requiring physical effort/activity by an individual like walking
and cycling.

The car and rail remain themost important accessmode at nearly all European airports [6]. Rail consists
of trains, trams and metro services and offers several benefits over cars. It is not prone to traffic jams
which occur frequently in large metropolitan areas. Also, rail offers relatively high passenger capacity,
frequency of rides and fast access times. Rail thereby increases the catchment areas of airports, which
is beneficial for both railway and airport operators. Finally, rail offers a much more sustainable form of
transport compared to cars [68].

Airport access by suburban trains is predominant in Europe (22/30 airports). Only a limited number
of airports are connected to the long-distance train network. Out of these 30 airports, 9 are
connected directly to the European high-speed rail network with cross-border services to neighbouring
countries; Amsterdam, Dusseldorf, Frankfurt, and Paris-Charles de Gaulle [65]. These convenient rail
connections allow passengers to travel faster and cheaper compared to conventional rail networks and
could result in a modal shift from aircraft to trains for short-haul routes [131, 133].

Besides rail, coaches and busses are frequently used as airport access modes. Long-distance coach
services are usually seen in countries where there is no rail solution. Short distance access by public
transport is usually realised by buses. Additional advantages are multi-stop possibilities during the
ride to the airport and general comfort. A disadvantage is often that they are subject to traffic jams in
congested areas [93].

Car parking facilities at airports are an influential factor for in airports’ operations. Parking fees account
for a huge share of non-aeronautical revenues of airport operators. An alternative method to car
parking is the ”kiss-and-ride” drop off facility. Taxis and rental companies pay fees to offer services
at airports and thereby also contribute to their non-aeronautical revenues [115]. The attractiveness of
infrastructural access depends not only on factors like frequency, comfort and speed but also on the
availability of attractive ticketing options for travellers [41].

Airport accessibility can be understood as a measure to describe how difficult it is for potential air
passengers to reach a particular airport [6], and is based on the transport modes discussed [134].
Passengers rate travel alternatives according to their subject preference which may vary according to
the trip purpose (business vs leisure) and destination type (domestic, regional international (short-haul),
intercontinental).
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2.2. Dynamical Behavior
This section focuses on the dynamic behaviour driving passenger transport in MARs. First, literature
substantiating the emergence and evolution of MARs due to their market dynamics is provided. This is
done through relative case study analyses. Second, the dynamic infrastructure in a MAR is analysed.
Third and final, strategic implementations in MARs are discussed, which forms a base for the strategic
decisions that can be made with the modelling framework presented later in this report. An example
of a strategic implementation could be integrating rail network schemes with inbound and outbound
flights to support peak demand.

To emphasize its importance, passenger transport within and amongst MARs is a result of a dynamic
behaviour between the following three topics:

1. Air traffic passengers’ preference amongst airports;

2. Infrastructure within the MAR;

3. Airline and airport strategy.

The dynamics between these topics vary over time. Due to urbanisation, urban regions have become
more densely built which restricts existing airports and infrastructural elements within to expand.
Therefore, they have enhanced their operational efficiency to facilitate rising air traffic demand. Given
the capacity constraints on existing major airports, the development of Multi-Airport Systems is going
to be a key mechanism by which air transport operators around the world will be able to meet future
demand [25, 39].

2.2.1. Air traffic passenger’s preference amongst airports
To better understand how such systems and dynamics will evolve, a case study was performed on
59 airport systems worldwide [25]. This case study looked at the evolution and development of
multi-airport regions, covering the development of airports, dynamics amongst airports and surrounding
infrastructures. The analysis showed significant differences in the evolution of multi-airport systems
across world regions:

• Europe & USA: Recent development In the United States and Europe primarily involves the
emergence of secondary airports to allocate certain flights from low-cost carriers to other major
hub airports. Low-cost carriers are using the existing airport infrastructure to optimize their cost
structure. In the United States and Europe, protecting existing under-utilized airports will be key
to meeting future demand [25].

• APAC: In Asia, MARs have generally evolved through the construction of new high capacity
greenfield airports. Due to the lack of suitable airports, strong growth of traffic is perceived. In
Asia, where existing under-utilized airport infrastructure is weak, and where projections of future
air traffic demand are high, there is a need to develop and apply a dynamic approach to develop
infrastructure for multi-airport systems [25].

• Off-shore airports offer sometimes a solution in highly populated areas with many buildings and/or
caused by massive protests (like Hong Kong and Japan).

2.2.2. Infrastructure within the MAR
The development of multi-airport systems is the expression of the adaptation of the national air
transportation system to capacity constraints and emergent market opportunities. As major hub
airports around the world reach their capacity limits and become congested and thus over utilised, new
airports merge in the region either through the construction of new high capacity airports or through
the emergence of secondary airports from available and non-utilized airports. The development of
multi-airport systems will be key by which air transportation systems around the world will be able
to meet future demand. Not just extra airport capacity has to be created to relieve congested hub
airports, but also the infrastructure around these newly used airports and their accessibility are just as
important. If public transport systems and private vehicle access facilities do not match the provided
extra demand of such a newly used airport, the airport will be underutilised. Another crucial thought
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is that urbanization will continue, so these airports and surrounding infrastructure need to be built and
planned to accommodate this expected increased demand [73, 25].

Airlines generally have a considerable choice about which airports they serve, and choose according
to their commercial advantage. In some scenarios, due to technical reasons, a second airport in the
region will be used. This can occur when the airport’s runway characteristics constrain the use of
certain aircraft. A second airport is commercially attractive to airlines if it provides a good market.
Airlines allocate flights to routes, utilizing large-scale optimisation programs. These are based on air
traffic demand forecasts, allocation forecasts, metropolitan business levels, tourism activity and ground
infrastructural supply [110].

It has been observed that the market share achieved by an airline is disproportionate to its frequency
share; the fraction of the total flights it offers in a market [60, 39, 43]. An airline offering 60% of the
flights in a market may, for example, get 75% of the passengers. Airlines that dominate a market will
achieve higher yields and greater profits. Airlines thus try to focus their fleet on dominant markets or at
least prevent competitive airlines from doing so. This is one example of the competitive dynamic that
leads airlines to match flights on specific routes.

Because of this multiplier effect, the profitability of allocating any flight to a route is not determined
solely by its loads. An additional flight in a major market reinforces the value of the other flights in
that market. When airlines consider the possibility of allocating flights to secondary airports, they thus
have to consider not only whether they can achieve competitive load factors in the secondary market,
but whether there is sufficient additional traffic that will compensate for the loss in the airline’s market
share in the major market. This is a subtlety that analysts all too often ignore. This competitive dynamic
leading airlines to match flights on routes also leads airlines to allocate flights to primary airports rather
than provide service to the second airport. This is a stable result of the competitive interaction between
airlines [60]. When airlines face a decision, they tend to allocate flights to secondary airports either
when their primary airport is heavily congested or when metropolitan traffic is substantial enough [110].

Governments should improve surface access to new airports to attract and be able to facilitate suitable
traffic to those airports. [9]. In Asia, air traffic levels are expected to experience the world’s highest
growth beyond 2021 [37]. However, aviation infrastructure is not keeping pace with this growth. Many
Asian hubs are already operating above their planned capacity, resulting in a rapid escalation of delays
since 2010. The passenger capacity of Asian hubs can be observed in Figure 2.1.

Current plans for the construction of mega-hub airports are not effective from a cost perspective and will
fail to keep up with demand. Instead, many small pieces of research, from which the methodologies are
confidential, have shown the government should plan more medium-sized airports to keep costs low,
gain maximum operational efficiency, and build a wider aviation network, increasing the total capacity
the region can allocate. This allows Asian commercial aviation to continue in its role as a key enabler
of economic growth [37].

Despite these insights, airport operators and governments in Asia are competing to build the world’s
biggest airport, capable of allocating well over 100 million passengers annually. However, experience
has shown that such size and growth lead to increased complexity, and airports suffer from significant
dis-economies of scale above ±50 million passengers annually. This holds both for airport operators
(CAPEX and OPEX wise) and for the airlines and passengers using them, as transport time within the
airport significantly increases and becomes more complex. Simultaneously, the network advantages
of such mega airports do not increase at an equal pace as their size. Therefore, Asian airport planners
and operators will need to acquire capabilities in multi-airport systems or radically change how airports
operate to overcome the inherent scale of mega-hubs. Not only do airport operators need to optimize all
work-streams and operations at the airport, but the entire infrastructure allowing air traffic passengers to
access the airport also needs to adapt. This entails scaling up train, metro and bus transport to and from
the city’s centre and major tourist locations. Also, public roads need to be scaled up to accommodate
the increased amount of cars [37].
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Figure 2.1: Asian Hubs in 2012

Research on the Asian aviation market suggests that government policymakers and planners in Asia
consider moving beyond simply considering the provision of capacity to meet demand, and instead
think through the options for providing a cost-effective travel experience for passengers [37]. Such
options should take into account the following aspects:

I Surface travel distance to the airport;

II Time spent navigating the airport;

III Operating efficiencies that airlines gain with shorter taxi distances from runway to the gate as well
as slots that are available to suit passenger and airline schedules.

It is expected that airports with terminal capacities from 20 to 25million passengers and runway capacity
of around 50 million passengers, namely twin independent parallel runways, will give the optimal
combination of scale economy whilst allowing the majority of passengers to travel on point-to-point
flights. So, air traffic demand allocation models have shown, considering the Asian region, airports
with capacities of 20-50 million passengers annually will result in the most optimal operations, instead
of mega-hubs with a capacity of 100+ passengers annually. This will thus stand a better chance of
meeting Asia’s growing demand in a way that enhances air connectivity and improves the quality of
travel [37].

Sustainable surface transport modes
Simultaneously increasing the proportion of airport access journeys made by public transport and
enhancing its environmental impact while accommodating growing consumer demand is a key goal
for the UK to reach net-zero in 2050 [28]. Compared with earlier mentioned transport modes, public
transport offers the greatest potential to reduce emissions and lessen congestion. However, there are
several significant challenges associated with producing, planning, promoting and sustaining public
transport services to airports. Besides needing to accommodate increasing demand, it needs to
meet changing consumer needs and preferences concerning quality, speed and affordability, in an
environmentally friendly yet cost-effective manner.

As mentioned before, surface access is a vitally important element of any airport’s infrastructure. It
materially affects investment in the local transport network, may generate congestion, almost inevitably
degrades the local air quality and creates visual pollution. Surface access also directly impacts an
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Table 2.2: Public transport modes to London Airports in 2015 [28]

airport’s operational efficiency and commercial performance as airside activities rely on a continuous,
unimpeded and timely flow of passengers, staff and goods accessing and egressing the site [29]. To
provide a real-life example, if employees arrive late for a shift due to congestion on the approaching road
or rail network, flights might be delayed or cancelled, passengers inconvenienced and the reputation of
the airline and airport can be damaged [77]. Delay with the same cause can happen to passengers, who
might miss their flights because of it. Therefore, airports must be able to offer a reliable, robust, safe,
secure, affordable, integrated and attractive portfolio of surface access options to grow their business
on the one hand while simultaneously minimising their environmental footprint on the other [29, 28].
This correlation is another example showing airports and airlines depend on a region’s infrastructure
through which air traffic passengers and staff can access airports.

To illustrate the available public transport services, Table 2.2 shows the situation in the London Area,
one of the largest MARs in Europe.

2.2.3. Airline and airport strategy
According to a study from MIT, Air traffic passengers need to be distinguished between originating and
transfer traffic [110]. Originating traffic consists of the passengers who either live in the metropolitan
area or who have been there for some time. Transfer traffic on the other hand consists of the passengers
who arrive at the airport by aircraft to change to another aircraft to continue their journey. Data has
shown passengers routinely bypass close airports to use more distant airports that provide better
service to passengers. Airlines recognize this and respond accordingly. So, airlines adapt their strategy
to air traffic passengers’ preferences, which in turn, are reflected in the strategy of airports. The same
holds for public transport operators and other infrastructural organizations, who control public road
expansions and improvements.

The six London airports’ Surface Access Strategies commit them to reducing private vehicle journeys
among passengers and staff and support mode shift towards the more sustainable public transport.
Several policy changes have been identified in the UK and internationally to try and accomplish this.
These can be split into strategic and operational policies. Strategic policies refer to long-term goals
that help to implement a particular vision into specific plans and projects. These set a benchmark
for monitoring progress and are designed to be measurable for performance monitoring and to help
guide decision-making. Operational or tactical level policies generally operate short-term and are how
broader policies are met. Operational policies are also designed to be measurable [28].

Three key strategic surface access policies and their associated operational objectives were identified
from London and presented in Table 2.3. The policy’s effect on the operational objective was graded
with a five-grade-scale ranging from strongly positive (++) to strong negative effect (−−).
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Table 2.3: Strategic and operational Surface Access Policies for encouraging public transport use [28]

Through the use of such policies, transition to more sustainable transport modes is encouraged.
However, there are numerous challenges and complexities associated with environmentally
sustainable surface access provisions. These include, but are not limited to, financial and economic
constraints, geographical hurdles, the seasonal nature of demand, the difficulty of getting users to
accept alternatives to the private car, and prevailing regulatory and governance issues. It comes down
to reducing attractiveness in comfort and price to enhance environmental impact. The challenges faced
by decision-makers in this regard are perhaps exemplified no better than in the UK [28].

The growth in aviation is set to continue for the foreseeable future and as such, airport surface access
will form an increasingly important consideration for airport operators, airport users and local and
national authorities. This in turn has an impact on how airlines and airports must react with their
strategy. Public transport has a major issue to play both in minimising the environmental impacts
of surface access journeys while addressing the challenges inherent in increasingly congested road
networks.

2.3. Macro Air Traffic Demand Forecasting
Air traffic demand forecasting and modelling entail computing the expected air traffic demand. This can
be done in terms of air traffic passengers, air traffic movements (ATMs), or weight of cargo transported.
These models can be applied at the national, regional and airport levels. This research focuses on
modelling air traffic passenger demand. This section covers literature on air traffic demand modelling
at macro (multi-airport regional) level, while the next section analysis literature on how this macro, or
regional, demand can be allocated over airports in the region.

The air transport industry has experienced rapid growth with an average annual growth rate of almost
10% over the past 55 years. To put this into perspective economically, this equals three times the
GDP growth in real terms, which is the broadest measure of world economic activity [113]. Reliable
forecasts of civil aviation activity play a crucial role not just for MARs and airports, but also for airlines,
engine and airframe manufacturers, suppliers, air navigation services, municipalities and other relevant
organisations. To then make efficient use of forecasts developed by quantitative methods, the results
must be easily understood by, and acceptable to, the decision-maker or the end-user.

Air traffic demand forecasting is important for airline management, air traffic planning and Intelligent
Transport Systems (ITS) [84]. Short-term air traffic demand can be used and embedded as a Decision
Support System (DSS), a valuable module in ITS. A wide range of methodologies and techniques were
developed for short-term air traffic demand forecasting, depending upon the type of acquired data and
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the potential use of forecasting [118]. An example of short-term air traffic demand forecasting can be
the forecasting for the next few months, given a time series of the previous month’s air traffic demand.
Here, historical data are collected and analysed to utilize a forecasting model. Then, this model is
extrapolated for insight into future values of air traffic demand [159].

Different computational techniques are used for different forecasting horizons; short-term, medium-term
or long-term, which depend on their intended use [113]. Short-term forecasts are up to 1 year, and
medium-term forecasts are forecast for the coming 1 to 5 years. Long-term forecasts are for more
than 5 years. Short-term forecasts generally involve some form for scheduling, which may include for
example the seasons of the year, of planning purposes. Medium-term forecasts are generally prepared
for planning, scheduling, budgeting and resource requirement purposes. Long-term forecasts are used
mostly in connection with strategic planning to determine the level and direction of capital expenditures
and to decide on ways in which goals can be accomplished [113]. In general, forecasting methods can
be grouped into four categories:

1. Quantitative or mathematical;

2. Qualitative or judgemental;

3. Decision analysis (combination of quantitative and qualitative);

4. Artificial Intelligence.

In general, forecasting techniques that start with historical data and develop a forecast based on a set of
rules fall into quantitative methods. Situations in which such data are not readily available or applicable
and in which experience and judgement must be used are best suited for qualitative methods. Artificial
Intelligence techniques are given their section despite their partial overlap with quantitative (causal)
methods because their application can vary from that of quantitative methods. To provide structure to
this section, Figure 2.2 shows an overview of air traffic demand forecasting methods.

Figure 2.2: Air traffic demand forecasting techniques
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2.3.1. Quantitative Forecasting Methods
For quantitative forecasting methods, there are two subcategories; time-series analysis and causal
methods [113]. Time series analysis is where forecasts are made based on data comprising one or
more time series. A time series is a collection of observations made sequentially through time [32].
Causal methods infer a cause-and-effect relationship [113].

Time Series Analysis
Two methods fall under time series analysis as can be seen below [113, 46, 47, 102].

1. Trend Projection:
Here, historical trends in traffic developments are extrapolated to derive forecasts. It is assumed
factors that determined historical traffic developments will continue in the future as well.

2. Decomposition methods:
This involves dissecting the time series in components to account for seasonality, trend and
cyclical patterns in historical data.

Causal Methods
Trend projecting and decomposition methods have been proven to be reliably for short-term air traffic
forecasting. However, this type of forecasting is likely to be unreliable and theoretically difficult to
substantiate for long-term forecasts. Consequently, forecasts derived by taking into account how
economic, social and operational conditions affect the development of traffic offer an alternative to
time-series analysis. Causal methods can predict the ups and downs of the market via their analysis
of cause and effect relationships. It evaluates whether the relationship of the dependent variable to
the independent (explanatory) variables is significantly related to the movements of these variables.
These methods fall under this category:

1. Regression Analysis: [142]
This is the most popular method of forecasting civil aviation demand and can take into account
multiple explanatory variables. Multiple regression analysis with a price-income structure is
generally referred to as econometric modelling. The starting point of such econometric analysis is
a regression equation model that postulates a causal relationship between a dependent variable
and one or more explanatory variables. The dependent variable is generally historical air traffic
and its relationship with the explanatory variables is expressed as its elasticity [142, 113].

2. Simultaneous equations models: [91]
These involve multiple equations where their variables simultaneously satisfy all of them. For
example, suppose demand (D0) for air traffic can be expressed as a function of price, income
and level of service offered (LOS). The level of service itself can be expressed as a function of
lagged demand, airline competitiveness and network effects. On the other hand, supply can be
expressed as a function of lagged demand, price and operating costs. To represent and model
this simultaneous causality, econometricians have developed simultaneous equations models.

3. Gravity models (spatial equilibrium):
Demand between two cities is directly proportional to the population of the two and inversely
proportional to the square of the distance between them [113]. The population is a measure of
attractiveness, and the distance is a measure of impedance (resistance) [27]. These models
have been refined using airfare, time and other factors to allow for the impedance effect and
using a truncated population above a predetermined income level to represent those who would
be potential candidates for air travel. Another name for such methods is ’air traffic distribution
models’.

Interesting adaptations to gravity models try to estimate a relationship between air traffic demand
and relative shares of other transport modes when accessibility of service by different modes is
available for the route concerned [35, 113]. For air transport demand, variables such as distance,
travel time, level of service, and accessibility of service by other modes of transportation have
been used. Another procedure to develop route group or city-pair forecasts is to express the
traffic flow concerned as a share of the total market and to use the market share and historical
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growth patterns to ensure consistency between the city pair and the total market forecast. The
underlying assumption of this procedure is that each city pair’s share of the total approaches its
eventual share of the market asymptotically, taking into account the concept of market maturity,
where applicable.

4. Other variations of causal methods:

(a) Lagged variables and distributed lags:
A casual relationship where the influence of a change in an explanatory variable is expected
to spread over a longer time is called the ’the distributed lag effect’.

(b) Stepwise regression:
This procedure has been developed to enable the analyst to search through a list of possible
explanatory variables to select those which provide the best regression model.

(c) Air traffic distribution models:
These models are used to forecast air traffic demand between designated airport pairs, city
pairs and/or country pairs. Socio-economic factors, demographics and other relevant factors
including economic characteristics of the cities themselves for the market concerned should
be taken into consideration. Also, supply-side factors such as the level of service available
between origin and destination can come into play.

2.3.2. Qualitative Forecasting Methods
All forecasting techniques discussed so far have assumed that historical observations are available,
and they present an underlying pattern. Qualitative forecasting methods are used when such data is
sparse or not available at all, and can be split up into two main forecasting techniques, namely the
Delphi technique and Technological Forecasting.

The Delphi Technique is a spatial procedure for forecasting by the consolidation of opinions in the
future. This entails bringing together information from many experts and moving towards a consensus
among them. The Delphi Technique is defined as ”a way of obtaining a collective view from individuals
about issues where there is no or little definite evidence and where opinion is important. The process
can engender group ownership and enable cohesion among individuals with diverse views. It is an
iterative questionnaire exercise with controlled feedback from a group of anonymous panellists. The
design avoids the often counterproductive group dynamics that can occur where individuals are swayed
or intimidated by others but allows panellists to reappraise their views in the light of the responses of
the group as a whole.” [150].

Technological forecasting attempts to generate new information about future systems and performance.
This method can be categorised into two categories; explorative and normative. Explorative
technological forecasting uses the current basis of knowledge to broadly assess future conditions.
Normative technological forecasting techniques start with assessing future goals and objectives
and work backwards to determine the necessary developments to achieve the desired goals [113].
Technological forecasting, in general, applies to all purpose-full and systematic attempts to anticipate
and understand the potential direction, rate, characteristics, and effects of technological change,
especially invention, innovation, adoption, and use. Any individual, organization, or nation that can
be affected by technological change inevitably engages in forecasting technology with every decision
that allocates resources to particular purposes [53].

2.3.3. Decisions Analysis Methods
Decision analysis should be considered as a combination of both quantitative and qualitative analysis
methods. Here, the analyst’s judgement is used in preparing forecasts for a particular area of
expertise in combination with some statistical or mathematical techniques including subjective inputs
or probabilities. Decision analysis methods can be divided into four techniques as shown below.

1. Market Research and Industry Survey:
Traffic forecasting through market research survey aims at analysing the characteristics of the
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air transport market to examine empirically how the use of air transport varies between different
sectors of the population and different industries [126, 62]. These results in combination with
forecasts of socio-economic changes may indicate the likely future development of air transport
[113].

2. Probabilistic Analysis:
Having a distribution of possible outcomes for a variable can provide a more realistic outcome,
and the range of the forecast can be assessed based on subjective probabilities. A simulation
technique often used here is called Monte Carlo simulation [45, 99, 161, 40, 155]. Monte Carlo
methods are a broad class of computational algorithms that rely on repeated random sampling
to obtain numerical results. Monte Carlo simulation differs from traditional simulation in that the
model parameters are treated as stochastic or random variables, rather than as fixed values. So,
the underlying concept is to use randomness to solve problems that might be deterministic [23].
This technique can also be applied to the performance of transport modes in metropolitan regions
[7].

3. Bayesian Analysis:
Forecasts based on subjective input and probability estimates require the use of an analytical
model that is generally referred to as Bayesian analysis. It can improve a prior estimate using
new data or using conditional regression, which is a method for using objective data to refine
prior estimates of the regression coefficients. In this method, coefficients of one of the explanatory
variables can be assigned based on an a priori basis and the coefficients of the other variables can
then be re-estimated. This iteration can be repeated until all relationships have been estimated
[36, 71, 70].

4. System Dynamics:
This is used on large-scale computer models where there are many integrated mathematical
algorithms. Such a method can be used to simulate the behaviour of the system concerned in
response to certain variables. For example, an increase in demand increases the load factor
when supply (capacity) remains stable and, in turn, increases airline revenue. This increase in
demand reduces unit cost, which is a condition to reduce average fares and further stimulate
demand, which in turn will increase the supply offered [147].

System dynamics frameworks can be used to model, analyse and generate scenarios to increase
the system’s performance because of their capability of representing physical and information
flows, based on information feedback control that is continuously converted into decisions and
actions. It is found that airfare, level of service, GDP, population, number of flights per day and
dwell time play an important role in determining the air passenger volume, runway utilization and
total additional area needed for passenger terminal capacity expansion [143].

A study regarding system dynamics for market forecasting and structural analysis in the aviation
industry has led to some interesting conclusions. First, system dynamics models can provide
more reliable forecasts of short- to mid-term trends than statistical models, and thus lead to better
decisions. Second, system dynamics models provide a means of understanding the causes of
industry behaviour, and thereby allow early detection of changes in industry structure and the
determination of factors to which forecast behaviour is significantly sensitive. Third and final,
system dynamics models allow the determination of reasonable scenarios as inputs to decisions
and policies [92].

2.3.4. Artificial Intelligence
Definition
The literature describes also the use of artificial intelligence techniques in air traffic modelling. It
overlaps with the previously discussed methods like regression and is increasingly used for complex
forecasting models. Neural networks reflect the behaviour of the human brain, allowing computer
programs to recognize patterns and solve problems in the field of AI, machine learning and deep
learning. Neural networks, also known as artificial neural networks (ANNs) or simulated neural
networks (SNNs), are a subset of machine learning and are at the heart of deep learning algorithms.
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Their name and structure are inspired by the human brain, mimicking the way that biological neurons
signal to one another [51].

Artificial neural networks (ANNs) are comprised of node layers, containing an input layer, one or more
hidden layers, and an output layer. Each node, or artificial neuron, connects to another and has an
associated weight and threshold. If the output of any individual node is above the specified threshold
value, that node is activated, sending data to the next layer of the network. Otherwise, no data is passed
along to the next layer of the network. Neural networks rely on training data to learn and improve their
accuracy over time. However, once these learning algorithms are fine-tuned for accuracy, they are
powerful tools in computer science and artificial intelligence, allowing us to classify and cluster data at
a high velocity. Tasks in speech recognition or image recognition can take minutes versus hours when
compared to manual identification by human experts. One of the most well-known neural networks is
Google’s search algorithm. [51].

Deep learning and neural networks tend to be used interchangeably in conversations, which can be
confusing. The ”deep” of deep learning is just referring to the depth of layers in a neural network. A
neural network that consists of more than three layers, including input and output, can be considered a
deep learning algorithm. A neural network with two or three layers is considered a basic neural network
[51].

Artificial neural networks for air traffic modelling
In recent years, air traffic demand forecasting literature has seen remarkable growth in research papers
using Artificial Neural Networks, from now on referred to as ANNs. ANNs are primarily used when
non-linearities occur in the data and have been used more often for complex phenomena in forecasting
modelling. It is a common belief that ANN methodology provides a robust potential for modelling,
analysing and forecasting, compared to traditional time series and econometric models [83, 156].

To provide confidence in the effectiveness of ANNs in real-time modelling and forecasting in air traffic
demand, three questions are relevant:

1. Is ANN able tomodel and yield competent forecasting performance for monthly air traffic demand?

2. Is the empirical forecasting approach a simplified and efficient methodology?

3. Can this methodology be incorporated as a DSS (decision support system) in an ITS (Intelligent
Transportation Systems) for one-step-ahead real-time forecasting?

The following literature examples are described:

• Pamula investigated if short term forecasting could be used in traffic control systems when
incorporated into modules of ITS. The study aimed to examine the impact of time window length
(20, 30 and 40 min) and days of the week on the quality of forecasting and to find the best model
for short term forecast of traffic flow [118].

• Zhang and Qu state that ANNs are not able to compute seasonally or trend variations effectively
with ”un pre-processed” raw data and either de-trending or de-seasonalisation can dramatically
reduce foresting errors [159]. A study that identified differences and similarities between ANNs
and statistical methods concluded that complex nonlinear tools have both advantages and
limitations, and frequently simpler models can give as good results as complex ones, depending
on the data [82].

• Raeesi et al. used feedforward neural networks for traffic time series forecasting. The input of
the neural network is the time delay data, exported from the road traffic data system of Monroe
City and the performance of the ANN is validated, using the real observation data of the 301st
data, from the past 300 days of traffic data [130].

• Spisaeng et al. focused on forecasting Australia’s low-cost carrier passenger demand and
RPK (revenue passenger kilometres) using traditional econometric and ANNs methodologies.
It concluded that when comparing the forecasting ability of the two techniques, ANN responded
the better performance than the multiple linear regression approach [141].
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• Profillidis et al. analysed how modelling and forecast of future air transport demand can be
conducted with the application of AI and particularly of the method of ANN. The method of ANN is
used in the paper to model and forecast future air transport demand concerning the evolution of
gross domestic product (GDP) and other driving forces of the problem, for mature and developing
air transport markets [127].

• Research by Kolidakis aimed to test the robustness of an empirical computational intelligence
model in one month ahead air traffic demand forecasting for the airport of Sydney (Australia).
Results reveal the method achieves an impressive and remarkable low difference (2,20%)
between measured and forecasted accumulative traffic demand for the period January 2018 to
August 2018 [84]. The proposed methodology is characterized by high flexibility, comprehensive
operation and low requirements for computational resources. Therefore, it can be used bymodern
utilities and transportation operators while it can be embedded in Intelligent Transport Systems,
enabling proactive decisions to mitigate the economic and environmental impacts of extended
transport systems congestion.

Air traffic demand series are volatile and can be influenced by a diverse group of variables. The
results are essential for regulatory authorities, decision-makers, local and national authorities, and
transportation system engineers. Accurate results for air traffic demand forecasts are crucial for
decision-making strategy in the short-term horizon, as well as for long-term planning towards supporting
decision-makers for transport systems planning and maintenance.

According to the literature, Artificial Neural Networks is a method providing applications in various
scientific areas. It can take into account great amounts of data and simulate non-linearities and complex
situations. Also, ANNs provide real-time results, have a high degree of flexibility, adaptability and
generalization, and operate empirically. All of these features of ANN impress and attract many scientists
in the forecasting field.

2.3.5. Forecasting for aviation planning
This subsection presents (forecasting) methods specifically for aviation, air navigation, airport and
airline planning purposes.

Air Navigation Systems Planning
For air navigation systems and organisations, traffic forecasts and peak-period parameters are
important in anticipating where and when congestion occurs. This section provides an overview of
the methodology developed by ICAO and its regional traffic forecasting groups in the generation of
these forecasts.

Crucial information for air navigation planners is estimates of expected aircraft movements. Estimates
of aircraft movements may be obtained by simple trend projection techniques, using historical aircraft
moving data and prolonging this trend into the future. However such forecasts are valid only for a very
short term. Therefore, projected air traffic passengers are converted into aircraft movements taking
into account the fleet mix and load factors [113].

Seasonality results in volatile traffic demand throughout the year. Also, daily traffic distributions vary
significantly by the hour of the day. In markets with high seasonality patterns, peak-period patterns
provide key information to determine areas of congestion that might occur in the airspace as well as in
airports, which help with accurate future planning [113].

Modelling this seasonality and peak-period patterns is something that has not been researched
thoroughly in literature due to a lack of consistent data. This can be overcome through modelling
spatio-temporal dynamics in airports’ catchment areas [148]. Air traffic demand varies by time of day,
day of the week and seasonally, which results in varying airport access times accordingly [148]. Airport
accessibility is a key decision variable for airport choice by air traffic passengers [73, 81]. An analytical
framework was setup that explores the spatio-temporal variability in catchment areas of MARs, which
is done through three steps:



2.3. Macro Air Traffic Demand Forecasting 17

I Analyse the geographies of access time by road to the different MAS airports;

II Parameterize MAR airport utility based on pricing, connectivity characteristics, and on-time
performance and use this information as input to;

III A Huff model to calculate different airports’ attractiveness and associated catchment areas at the
level of census block groups [148].

This resulted in the importance of complex patterns of traffic congestion as well as seasonal variations
in airport fare structures.

Airport Planning
Traffic forecasts provide criteria both for airport facility and financial planning. They are necessary
to determine future airport capacity requirements. Peak demand must be determined to evaluate
facility requirements since airport capacity becomes most critical during daily and hourly traffic peaks.
The expected number of aircraft movements is a crucial determinant for runway, taxiway and apron
requirements. The following planning parameters are commonly required:

1. Annual airport passengers categorized as international (scheduled or non-scheduled) or
domestic, originating or terminating, and transiting or transferring;

2. Annual aircraft movements by type of operations (international commercial, domestic commercial,
general aviation, military);

3. Peak-hour passengers by various categories;

4. Peak-hour aircraft movements by size/type;

5. Number of airlines serving the airport;

6. Number and type of aircraft requiring maintenance and overhaul services at the airport;

7. Number of visitors to the airport;

8. Number of employees at the airport;

9. Freight and mail traffic.

Terminal planning is assisted by breaking down passenger forecasts into passengers using the arrival
and departure facilities and passengers using transfer or transit facilities. Driving factors for the number
of originating/terminating passengers at an airport differs for direct transit and transfer passengers.
Therefore it is important to analyse and forecast these traffic categories separately.

Aircraft movements are generally grouped into commercial air transport (for carriage of passenger and
freight traffic), general aviation (flying training, private and business flying, aerial work), and military
movements. Although it is wise to take historic trends in movements into account, a proven-to-be
more accurate approach is to compute aircraft movements forecasts from passenger traffic forecasts
and assumptions about the future load factors and aircraft sizes. There are no universally accepted
definitions for modelling peak period traffic. Generally, ratios are applied of busy period traffic to annual
traffic [113].

Airline planning
The airline planning process is influenced by the results of planning in other civil aviation sectors,
particularly as reflected in the capacity of the aviation infrastructure, the products of the equipment
manufacturers, and government policy. The airline’s share in a given market depends on several
factors. Traffic rights granted by governments in so-called bilateral agreements provide the basis for
the operation of an airline’s scheduled route system, the expansion of operations and the serving of
new routes. The demand for air travel on particular routes is largely a function of traffic generating
factors like population and economic conditions, price, and service levels [113]. Another factor driving
demand is the relative attractiveness of competing destinations and other transport modes.

Fleet planning is described as the act of determining future fleet requirements and the timing of aircraft
acquisition. Fleet planning considers the following;
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1. Airline goals and objectives;

2. Passenger and cargo traffic demand;

3. Service pattern impact on market share;

4. Aeroplane performance;

5. Operating economics;

6. Operational and other system requirements.

This planning process can be complex because of a few main reasons. First, passenger and cargo
traffic continue to increase as a result of urbanization, as mentioned in Chapter 1. Second, aircraft types
and configurations that become available are changing and improving rapidly. Third, routes structures,
traffic rights and airline competition changes and finally, financial results remain the driving factor for
airlines and can frequently push the airline planning to adapt.

There are many methods to compute the market share of an airline. IATA has developed a
computational method to estimate the market share, knowing the total market, as can be seen in
Equation 2.1.

(𝑀.𝑆.)𝑥 =
𝐹𝑥
𝐹𝑡

(2.1)

where:

(𝑀.𝑆.)𝑥 = Market share of airline x
𝐹𝑥 = Frequency offered by airline x
𝐹𝑡 = Total frequency offered by all airlines serving the market

Another computation taking into account more variables is shown in Equation 2.2.

(𝑀.𝑆.)𝑥 =
𝐹𝑥 ⋅ 𝐶𝑥 ⋅ 𝑆𝑥 ⋅ 𝑃𝑥 ⋅ 𝐴𝑥
∑𝐹𝑡 ⋅ 𝐶𝑡 ⋅ 𝑆𝑡 ⋅ 𝑃𝑡 ⋅ 𝐴𝑡

(2.2)

where:

(𝑀.𝑆.)𝑥 = Market share of airline x
𝐹 = Frequency offered by airline x
𝐶 = Total frequency offered by all airlines serving the market
𝑆 = Stop factor
𝑃 = Average price
𝐴 = Airline’s market appeal
𝑥 = Airline x
𝑡 = Airline servicing the market; t takes values 1, ..., n

As trip distance increases, the importance of non-stop flights and flight frequency decreases. Airline
related factors include the airline’s position in the market, consumer preferences for the airline due to
frequent flyer programs and passenger service on its own. These are all factors that also come into
play for long-range markets.

2.4. Air Traffic Demand Allocation
Many factors drive people to choose a certain airport, from which an allocation and relative market
shares of the airports in the region can be modelled. In modelling air traffic passengers’ preferences,
a distinction has to be made regarding the type of passenger and their trip purpose. For example,
business travellers assign more weight to access time and flight schedule than they do to airfare in
comparison with leisure travellers [117]. Also, passengers living in the airport’s region have more
knowledge of accessible infrastructure than cross-border passengers or foreign travellers.
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Passengers choose airports that are more attractive to them [42]. This airport attractiveness is
characterised by attributes that aim to represent both its accessibility and utility. An airport’s
accessibility is based on the infrastructure and transport systems through which passengers can access
the airport from their original location in the MAR. The airport’s utility is based on the service and
utility passengers can experience by using that airport. This includes aspects like pricing, connectivity
characteristics, and on-time performance [148].

According to classical transport literature, each region has the potential for generating passenger trips
that are allocated among available destinations in proportion to their respective attractiveness. The
drawback of this approach is that it overlooks potential substitution between markets and can lead to
over and underestimation of trip-end totals [20]. If there are similarities in destination and travel purpose,
passenger demand will switch. If nests of comparable alternatives are present, demand switching does
not happen equally over all alternatives. For example, if transport modes metro, train and car are the
available alternatives, the metro and train are in the same nest of alternatives, namely public transport.
and the car is not. An increase in metro ticket prices will predominantly result in passengers switching
from metro to train, rather than from metro to the car, because train and metro are comparable modes.
Taking into account these nests of alternatives can be done via mixed logit modelling [19].

G. Harvey was one of the first researchers who started analysing the behaviour of air traffic passengers
in choosing among departure airports in a multi-airport region [73]. Data from a 1980 survey of
passengers in the San Francisco Bay Area were used to study the characteristics of airport choice
for residents. To model the choices of air traffic passengers, a multinomial logit (MNL) model was
used. Ground access time and frequency of direct air service to the chosen destination can account for
a large portion of the variation in airport usage patterns. The model is based on a hierarchy of choices
that are made during the planning process. In Figure 2.3, this can be observed.

Figure 2.3: G. Harvey choice hierarchy [73]
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The distinction is made between the origin of passengers, either being residents or non-residents,
and between travel purposes, either being business or leisure travellers. These two distinctions are
necessary for choice patterns to be detected. The MNL model computes elasticities in regards to
decision variables; access time (min), frequency of flights (per week) and airfare (dollars). The results
are shown in Table 2.4.

Coefficients of:
Traveller types Time Frequency Fare
Business -0.1 0.003 -0.4
Leisure -0.1 0.02 -0.08

Table 2.4: Results Harvey’s choice model [73]

The negative sign means an increase in such variable results in a decrease in air traffic demand. Both
literature prior to and results of this research conclude that access time and schedule convenience
are strong determinants for airport choice. They, therefore, suggest modelling airport choice on such
decision variables. The results also conclude the importance of ground access in planning for multiple
airport systems and the difficulty of predicting airport attractiveness use without information about
market-specific airline schedules [73].

To date, the categorisation of residents vs non-residents and leisure vs business travellers has been
used, with the latter categorisation usually being extended with VFR (visiting friends and relatives).
Besides, all the choice dimensions as shown in Figure 2.3 are still used in modern pieces of research
concerning air traffic modelling, but not in form of a choice hierarchy. Stated and revealed choices
are used as input and their impact/importance on the explanatory variable is computed, resulting in
weights instead of a hierarchy where a certain choice is made before the other. The same can be
applied to the research following this literature review; not using a hierarchy but computing airport
attractiveness levels based on the influence level of a choice dimension. Besides, the structure of
this choice hierarchy will be used to define boundary conditions of the airport attractiveness model. If
passengers aim to travel to destination x on date y, and certain airports do not provide options to fly to
x on date y, this choice option will be removed from the choice set.

Air traffic demand is to be generated and allocated [20]. Demand generation refers to the estimation
of total air traffic flows and demand allocation involves the study of underpinning the distribution of
passengers over available travel itineraries within a specific market. Air demand generation is typically
modelled via a gravity formulation approach in which travel demand between city pairs is assumed to be
positively proportional to the mutual attraction factors of the respective cities and inversely proportional
to the generalized cost of travel between them.

In the study by Birolini et al., a distinction is made between pull factors that attract passengers
and push factors that supply passengers. Attractor factors depend on regional, geographical and
socio-economical characteristics (demand-side characteristics) such as income and population. Supply
factors are used to model the ease or difficulty of travelling between regions. Their study analysed how
modifications to itinerary attributes can impact air trip generation and demand stimulation, and the
substitutability between destinations at different travel lengths [20].

Passengers have a choice between airports within a MAR [44]. Interesting research for the New York
Bay Area airports covers the spatio-dynamics in the airport’s catchment area. The choice of an airport
in a MAR is rooted in understanding the airport’s catchment area [148]. Travel time by car is the key
decision factor that results in an airport decision [81, 73]. Passengers envisage longer travel times to
the airport as an increasing risk to miss their flight. Therefore, the travel time to the airports, which
partly determines the accessibility, is a dominant decision variable in most airport choice models [121,
134, 76]. Koster et al. developed a mixed logit model to measure the effect of airport access travel
time variability on access travel cost [85]. Both business and leisure passengers are sensitive to higher
travel time costs when accessing an airport.

As mentioned before, there are two sets of considerations that make an airport more attractive than
others [121, 42];



2.4. Air Traffic Demand Allocation 21

1. Its Accessibility;

2. Its Utility.

From this, a huff model can be made that calculates gravity-based probabilities of costumers at each
origin location choosing a facility, a particular MAR airport, from all potential facilities (all MAR airports).
Accordingly, catchment areas are geographical areas from which a facility attracts the bulk of its
customers. Many research examines airport choices based on surveys. This method has three
major drawbacks that need to be mentioned. Firstly, they are costly, proprietary or unavailable for
analysts doing the research. Secondly, surveys reflect the interest of airports and airport planners
instead of the interests of researchers. Thirdly, MAR is context-dependent, and without generalising,
makes comparing difficult. Because of the latter drawback, generalising an airport demand forecast is
extremely difficult as the majority of the input parameters are geographically specific and therefore not
able to be applied over different regions [148].

Loo found that access time was statistically significant in modelling airport choice in a MAR, whereas
the number of access modes, access costs, and queue time at check-in counters was not [90].
Surveys have shown airfares are often more important than service. Because of this reason, rising
low-cost carriers have become increasingly popular as they serve popular routes for relative low fares.
Especially leisure travellers who go on vacation prefer to travel with these airline companies. For
business travellers, airfares are not as important as for leisure travellers because they usually do not
pay for their trips themselves and leisure travellers do [21, 125, 56]. To quantify this preference gap,
it has been found that 60% of leisure passengers and 45% of business passengers rate ticket fare as
the most important factor when choosing a flight [160].

Passengers are willing to travel further for better fares [50, 145, 66]. Another interesting trend being
observed is the rate of passengers switching to a new airline or airport is considerably higher for those
with recurring delay or cancellation experiences [144]. Airport and/or airline choices are linked to each
other, as airlines and airports use each other’s services to operate and create revenue [80]. Therefore,
passenger airport choice is a joint airport-airline decision, considering all other relevant variables to be
equal. Besides, it has been observed airline brand loyalty plays a significant role in airport choice as
well [80]. Taken together, neither operationalization of accessibility (access time by road) nor the choice
sets and variables therein (fare, connectivity, on-time performance, etc) used in the so-called Huff
model paint an exhaustive picture of MAR airport choice, with above all individual travel characteristics
possibly playing a supplementary role. Therefore, the thesis research following this literature review
aims to analyse passenger transport, focusing on air traffic passengers and their choices in a MAR
through the use of dynamic behaviour of such linked decisions. Literature regarding this dynamic
behaviour in a MAR can be observed in Chapter 3.

As mentioned in Chapter 2, according to Derudder and Teixera, a MAR is a set of two or more airports
that commercially serve a regional market. Identifying MARs by their IATA code (International Air
Transport Association) cannot be used systematically because some clear examples do not have one
(for example in San Francisco). For each airport, the market area is defined as the destinations that are
reachable within a maximum of two legs [44]. For each modelling step, min-max normalisations were
applied so that the lowest utility equals 0 and the highest equals 1. This is done for ease of interpretation,
the possibility of straightforwardly combining different variables, and reasons for comparability across
time windows. The airport’s utility’s choice set is based on four variables; the number of markets
served, the number of departures, the number of most directly served markets and the number of
unique markets. The on-time choice set combines on-time, delayed and cancelled flights. Here,
the researchers adopt the approach and data of the US Department of Transportation (DOT), which
considers a flight to be on time if arriving or departing within 15 minutes of the scheduled time. There
have been a few studies that have partially looked at this scenario and context, but not including the
cancelled flights [146, 121].

The research computes total scores for each census block in the airport’s catchment area representing
the attractiveness of the airport to them. This total score is a function of the separate utilities for fare,
connectivity and on-time performance. This produces, for each census block (j), the attractiveness
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pij for a passenger departing from his census block to choose from the different airports (i) that are
within a 60-minute radius [148]. These results vary in times, days, and seasons and it captures this
changing behaviour. An important aspect in modelling airport choice is capturing the subjectivity of
the choice-maker. If air travellers have positive experiences with their airports, this will influence their
future choice of this passenger. So, a positive prior experience of an air traffic passenger influences
airport choice in the future. This positive experience is a function of factors that, for a large portion, are
still present and would thus result in the same airport choice for that individual, has he/she not travelled
using that airport already [17, 134, 55, 95].

Many of the researches analysed in this literature review focus on a region of a single country. There is
little research regarding airport choice for multi-airport regions covering multiple countries. The little that
does exist is limited to large metropolitan areas in politically and economically stable western European
countries [89, 122, 90]. The research of Paliskaet al. focuses on how country-specific individuals’
characteristics may influence passengers’ airport choice. This is done through the use of a double
multinomial logit model. The base model for estimating the airport catchment area size and market
shares therein, and the airport choice final model. This methodology extends the research work of Lian
and Ronnevik [88] by using MNL (multinomial logit) airport choice model framework instead of logistic
regression.

During the research, the presence of heterogeneity among categorised airport choices was observed,
while the standard multinomial logit model assumes preference homogeneity. It was concluded this
heterogeneity originates from the multi-national characteristics of these choices, and the influence
of variables affecting passengers’ airport choice varies across countries. This heterogeneity can
be analysed and adapted using a so-called integrated treatment which can result in significant
improvement in model accuracy and explanatory power [134, 95, 98].

Standard multinomial logit (MNL) models assume preference homogeneity. It is assumed that the
influence of variables affecting passengers’ airport choices may vary across individuals and countries.
To measure the quality of the data and fit of the model, the likelihood is observed through the likelihood
function. Using the mixed logit model formulation to account for taste heterogeneity used a modified
Newton-Raphson algorithm with adaptive quadrature to evaluate the likelihood function, and numerical
derivates are used to maximize this [117, 140].

The research by Paliska et al. concludes a few interesting points. First, leisure travellers are more
willing to use public transport services than business travellers do because the price is lower. Despite
a lower price, the travel time is higher, but the weight or importance of travel time is less than that of the
total airport access price. Second, the highly expressed preference choice for the ’home airport’ is more
common among business travellers and frequent flyers. For both of these types of travellers, minimizing
total travel time has relative high importance compared to other parameters influencing airport choice.
Third, leisure passengers consider on average more alternatives than business travellers. Fourth, in
general, access time is the dominant variable. The decision amongst these alternatives is based on
the airport characteristics that can be observed below.

1. Distance;

2. Ticket price (airfare);

3. Frequency of flights;

4. Convenience of flight times;

5. Other airport-related costs like parking and airport consumption.

Cross border passengers do not value airport distance as important in comparison to non-cross-border
passengers. Ticket price, frequency of flights and other airport services proved more important for
cross-border passengers in comparison to no-cross-border passengers. As mentioned, the analysis
of the airport’s catchment area and market share evolution based on airport choice preference was
done so using a double logit model to fit the survey data. Variables included are categorised into
socio-demographic and airport quality of service. Socio-demographic variables describe the demand
for and supply of airports. Quality of service variables belongs to the allocation of this demand.
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1. Socio-demographic:

(a) Gender;
(b) Age;
(c) Type (student, worker, retired);
(d) access mode (train, bus, car);
(e) Country of origin.

2. Quality of service (QOS):

(a) Airport ground access time (proxy driving time);
(b) Number of direct destinations from an airport (a proxy for airport size);
(c) Airports’ share of passengers flying LCC > 10%;
(d) Airports’ share of passengers flying LCC > 30%.

Another interesting conclusion from the research from Paliska is the importance of local context in
studying airport choice [117]. This has also been pointed out in earlier studies [154, 90]. Many
interesting methods have been developed to measure airports accessibility. As mentioned in Chapter
2, Marucci and Gatta use a radius around the facilities (airports). Zhoe works with Thiessen polygons
and derives distances between these polygons and airports. This method can take into account the
population density in discrete city blocks [162]. Another measuring method done by Fuellhart takes a
certain driving distance from the airports to define the accessibility [55].

Airport utility is more complex than measurements of airport accessibility because they involve a broad
range of interlocking variables [148]. The following aspects influence passenger choice:

1. Inter alia flight frequency;

2. Number of direct connections to reach the destination;

3. Number of stops to reach the destination;

4. Aircraft type;

5. Travel purpose (business, leisure);

6. Socio-economic considerations;

7. Loyalty programs offered by the airlines at an airport;

8. Number of passengers travelling together;

9. Previous consumer experience.

These influence the level of service or utility an airport provides either directly itself or via its airlines
that serve via that airport. These all influence passengers’ choice of airport.

2.4.1. Decision Variables
In this subsection, an overview and analysis are made regarding the usage of decision variables by
previous authors in air traffic and airport modelling. Which variables should be considered, which
variables have proven to be relevant in literature, which can be easily determined and which variables
do authors opt not to use and why are sub-questions that will be discussed here. The results of these
questions lie in the availability, applicability and consistency of data.

Airport choice specifically in a multi-airport region has already been deeply analysed by many
researchers and authors [96, 120, 57, 10]. From these researches, access time and frequency of flights
have been shown to be dominant factors in airport choice. As mentioned before, business travellers
assign more weight to access time and flight schedules than they do to airfare [117]. The exact opposite
is true for leisure travellers [134, 121, 120, 90, 80]. In general, actors that influence airport choices also
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cause the spatial and temporal variations in the airport’s catchment area and market shares [89]. The
most common reported utility factors determining airport choice, according to literature are fare levels,
frequency of service, direct vs indirect service, ground access, and length of hauls [89, 145, 160, 55, 90,
79, 119, 88]. Airports offering better service levels (more direct flights at a reasonable price) to various
destinations can attract passengers from more distant regions [89]. Gjedakar reported that, in addition
to differences in fares, improved road infrastructure around and towards the airport has significantly
contributed to catchment area heterogeneity and higher levels of traffic leakage to the main airports in
the case of Norway [61].

A common problem in air traffic demand modelling in general and also through regression analysis is
the lack of availability of consistent fare data [113]. This is because fare data is volatile and not publicly
available from airlines. Therefore, a single measure of price can be calculated as an average of the
various fares, weighted by the number of passengers using each fare. In general, passenger yield, i.e.
passenger revenue per passenger kilometre, can be used as a measure of price. Ideally, the average
weighted fare for a particular route group or region concerned is more appropriate.

2.5. Conclusion Literature Review
Multi-Airport Region
This research is focused on Multi-Airport Regions, defined as a set of two or more significant airports
that serve commercial traffic within a metropolitan region. Its scope is commonly defined by a radius
from the airport, either defined by an x-minute drive time or by a straight line. Socio-economic
characteristics and activity in MARs are linked to their air traffic activity, and can therefore be used to
model and forecast. Analysing the airport’s access network and comprehending passenger transport
dynamics is crucial for logistical and airport developments to accommodate rising air traffic demand.

Research on multi-airport regions can be extended, as the following relevant gaps have been identified
in the literature:

1. A more accurate catchment area definition can be obtained by comprising dynamic traffic data to
develop detailed airport access time information. Continuously dynamic traffic levels will result in
varying airport access times, thus a more realistic catchment area analysis.

2. Research on overlapping catchment areas is limited. The strength of this overlap influences
the weights of decision variables concerning passenger mobility decisions. As the definition of
catchment areas forms the basis of air traffic passenger allocation amongst airports, further insight
regarding this matter can provide more realistic and significant modelling results.

3. Discretising MARs allows for socio-economic information and airport access time to be split
amongst geographical blocks. This is likely to more realistically capture the information in a MAR,
which can be used for modelling and forecasting purposes.

Taking into account these literature gaps, several technical considerations are taken into account for
the research following this literature review.

I Dynamically model airport catchment areas more accurately based on live traffic data. Airport
access times can be computed automatically using maps software packages like Google’s routing
API, which take into account live traffic situations. The routing network hereby forms a varying
input, thus resulting in a dynamic definition and computation for airports catchment areas and
their accessibility.

II Accurate and current access time computations can be combined with socio-economical
information of population blocks from the surrounding region to develop a complete accessibility
score for the various airports in the MAR. These blocks can be based on zip codes, and
socio-economical information like household income, purchasing power and tourism supply can
be used for such computations.
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III The influence of improved rail within MARs and increased high-speed railways between MARs.
Improved rail increases the potential supply of air traffic passengers for airports by increasing their
catchment areas. Some airports might benefit from thismore than others, which needs to be taken
into account when accessing them, Besides, many big European cities are connected through
this increasingly expanding high-speed rail network, which provides an alternative and extension
to (short-haul) flights. Because of these reasons, the increasingly improving rail connections are
relevant when analysing passenger mobility in the long term.

Dynamic model
Urbanization is driving an immense increase in passenger transport demand resulting in increased
traffic movements, especially in urban regions. Private vehicles and public transport modes are used
for short travel distances and aircraft are used for longer travel distances. As air traffic demand rises,
more people have to be allocated to and from airports. Thismeans (airport access) transport modes and
systems need to be scaled up and optimised to accommodate this increased demand effectively and
efficiently. Optimising passenger transport in a MAR can be done by focusing on its three driving topics;
air traffic passenger preference amongst airports, infrastructure within the MAR, and airline/airport
strategy. Based on the ”mega-hub” research in Asia, accommodating increased travel demand can
be done most effectively by allocating air traffic passengers over multiple airports in the region, rather
than converging all traffic to onemega-hub airport. So far, literature has only analysed the unidirectional
links of strategic implementations on the performance of infrastructure operations.

Literature on this subject can be extended by focusing on the following two topics:

1. The dynamic behaviour amongst the topics driving human transport/mobility in a MAR can be
analysed integrally. So far, previous pieces of research have only looked at partial drivers
explaining such passenger movements and analysed the unidirectional dynamic between two
factors.

2. The presence of generic models that can be applied to a larger variety of contexts.

State-of-the-art literature on the dynamics driving passenger transport and its gaps have resulted in
the following considerations for the follow-up MSc research:

I Approach passenger transport and mobility integrally by analysing the dynamic behaviour of its
three driving factors. The evolution of these dynamics can provide the basics for estimating how
multi-airport regions will form. This insight is crucial for planning logistical implementations in a
MAR and mega-cities to accommodate expected air traffic demand, as a result of urbanisation.

II Make a generic block in the dynamic model that can be used to model the dynamic behaviour for
larger and various contexts. As infrastructure improves, passenger mobility in a MAR improves
and the airport can be accessed faster and more convenient. This hypothesis is to be examined
in the follow-up research.

III Model the environmental performance of airport surface access, including the sustainable gain
of high-speed trains compared to short-haul flights. Besides, the potential modal shift from
short-haul flights to trains as a result of increased environmental awareness and sustainable
pressure from governments will be analysed. It can be relevant to analyse the ratio of the added
value of good surface access on an airports’ operational efficiency to its environmental impact.

IV Quantify the benefit of strategic infrastructural implementations on passenger transport and
mobility. This can be done based on previous infrastructural changes and their resulting gain in
airport access. This could eventually lead to a change in the market share evolution of airports.

Passenger transport in multi-airport region
Air traffic demand forecasting methods can be divided into four categories; quantitative, qualitative,
artificial intelligence and decision analysis. The first category can be split into two sub-categories,
namely time-series and causal, of which the latter option has proven to be most accurate in air traffic
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forecasting. The commonly used regression analysis and spatial equilibrium method fall under this
sub-category. Both models try and link historical socio-economic and socio-demographic data to
historical air traffic data and compute elasticities for these variables.
Tower control maintains smooth operations from expected peak-hour air traffic passengers and aircraft
movements. Artificial Neural Networks (ANNs) provide a robust potential for modelling, analysing and
forecasting compared to traditional time series and econometric models. ANNs’ additional value to air
traffic modelling is its ability to account for great amounts of data, simulate non-linearities in complex
situations, provide real-time results, have a high degree of flexibility, adaptability and generalization,
and operate empirically.
Allocating the total air traffic demand over airports is computed based on airport attractiveness levels,
which is based on its accessibility and utility. Multinominal logit (MNL) models have proven to be
effective in modelling this allocation and computing elasticities for explanatory variables based on
stated and revealed passenger preferences. Access time, airfare and frequency of service are the most
dominant explanatory variables for airport preference. Based on these results, the market shares of
airports can be determined. Important to take into account is the categorisation of air traffic passengers’
travel purpose (leisure/business/VFR) and type (resident vs non-resident).

Several relevant subjects in air traffic demand modelling literature are still to be researched:

1. Just as in the ’Dynamic model’ section, there are no generic models that can model air traffic
demand or its allocation amongst airports for multiple contexts or regions. This is because
context-specific variables have proven to have a significant impact on the model result.

2. The majority of airport allocation models use static passenger preference as input. However,
passenger preferences adapt and the decision variables that all together form passenger
preference can vary. This has not been analysed yet in literature.

Based on these gaps and literature, the following technical concepts for the follow-up MSc research
have been identified.

I Using discretized dynamic MAR data for airport allocation modelling. Dynamic passenger
preference input in combination with discretised dynamic MAR data is likely to provide accurate
allocation predictions. This challenging concept is to be analysed in follow-up research.

II Adapt such models to be generic and applicable to a larger scope of contexts and regions. This
can be done by creating a modelling block that accounts for context-specifics and another generic
block that can be applied to other regions as well.

III Allow strategic implementations as input for airport market share evolution computations. This
could result in a changing market share evolution of the respective airports in a MAR if certain
strategic implementation in MARs’ infrastructure occurs.



3
Modelling Methodology

The goal of this research is to develop an analysis framework for the market dynamics driving airport
activity levels, focusing on multi-airport regions, and analyse how this provides a base for strategic
decisions in the region. This is achieved through a quantitative model, of which its results are
progressed in a forecasting framework. The analysis framework can be performed on any multi-airport
region if the minimum data requirements are satisfied. The methodology of the quantitative model is
presented generically in this chapter. First, the general setup is presented, after which each modelling
block will be analysed in detail.

3.1. Modelling Setup
The quantitative model considers the first sub-goal of this research which is to understand the evolution
of airport market shares based on the allocation of air traffic passengers amongst airports in a chosen
MAR. To achieve this, three necessary modelling blocks have been identified:

1. Regional Air Traffic Demand Forecast

2. Airport Performance

3. Airport Allocation and Market Shares

In this section, these blocks will be introduced briefly, after which a detailed analysis and substantiation
for these steps/methods are provided.

First, to understand the evolution of the airport’s market shares, the total market has to be defined and
computed. This is done in the Regional Air Traffic Demand Forecast, which computes the aggregate
air traffic demand in terms of passengers landing and departing at airports serving the MAR. The
analysable period is split into historical, from 2010 to 2019, and projected, from 2020 to 2050. Air
traffic passenger numbers dropped in late 2019 due to the COVID-19 pandemic, which disturbed its
time series. To ensure the air traffic demand time series can bemathematically described without taking
into account such extreme events, the historical period ends after 2019, after which the demand drop
forms the start of the projected period. The projected period ends in 2050 since data that drive air traffic
demand are projected up to 2050 as well.

Second, the performance of airports is computed relative to other airports serving the MAR. Their
relative performance is based on three key performance indicators that have been proven to represent
the attractiveness of airports, and thereby their utilisation levels and market shares:

1. Accessibility

2. Airfare

3. Connectivity

27
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Insight into the relative performance of airports forms the basis for why and how air traffic passengers
choose airports, and thus how many air traffic passengers use each airport. It is proven air traffic
passengers prefer airports with convenient flight schedules according to their desired destination, which
are affordable and easily accessible. These relative airport performance scores are analysed through
the years 2010 - 2019 and can be projected up to 2050.

Third, based on the total performance or relative attractiveness of airports, regional air traffic passenger
demand is allocated over the airports serving the multi-airport region. An airport’s total performance
is measured through the relative performance concerning its accessibility, airfares, and connectivity
combined. However, not all key performance indicators contribute equally to total performance.
Therefore, to analyse their contribution or weight to total performance, amultivariate regression analysis
has been performed. Here, independent (explanatory) variables are presented by historical airport key
performance indicator scores and the dependent (response) variable is presented by the historical
market shares of airports.

A visualisation of the set-up of the quantitative model can be observed in Figure 3.1.

Figure 3.1: Set-up quantitative model

3.2. Regional Air Traffic Demand Forecast
Air travel is a derived demand. Demand for air transportation between origin and destination markets
is derived from the socio-economic interactions between these markets, shaped by carriers’ networks
and available airlift capacity.

In general, history has shown that air traffic activity levels are driven by the economic and demographic
performance of the key source markets of demand that an airport serves, defined by variables such as
economic activity and personal income [1, 128]. In other words, there is a proven close relationship
between economic activity and annual traffic growth. While this is generally true, each airport is different
in terms of the traffic and air carriers it serves and the socio-economic environment in which it operates.
Dependable forecasting, therefore, requires an in-depth awareness and understanding of the specific
factors that will drive traffic development.

Multi-airport regions are served by multiple airports which have overlapping catchment areas. As such,
originating travellers from the region and arriving passengers to the region have the option to choose
between several airports for their needs. Therefore, predicting future traffic levels for one airport can
not be done in isolation and should consider the trends and dynamics occurring at other airports.

To develop medium- to long-term projections of future activity, a macro-econometric approach has
been adopted, relating demand for air travel to the developments of the underlying macro-econometric
conditions in the market. This approach is generally referred to as multivariate regression analysis
and belongs to causal forecasting methods as described in subsection 2.3.1. This method is chosen
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because it has proven to be the most accurate and efficient in forecasting aviation demand compared to
other methods and can take into account multiple explanatory variables [142, 113]. This first part of the
quantitative model entails modelling and forecasting air traffic passengers that will use the combined
airports in the MAR from 2010 to 2050, based on data from 2010 to 2019.

Within this approach, historical traffic developments in the MAR are studied and related to various
socio-economic indicators, for instance, national economic developments, population developments in
the region, oil prices, and regional income per capita. According to data availability, multiple regressions
were executed to estimate the strength of the relationship between variables across different models.

It has been found that the growth of income, often proxied by GDP, is a fundamental driver of the
demand for air travel [34, 124]. During the past twenty years, global passenger traffic has expanded
at an average annual growth rate of 5.1% while global GDP grew by an average annual rate of 3.7%
over the same period. This implied an average elasticity of 1.4 and economic growth explaining most
of the expansion in air travel seen in the past twenty years. Another proven driver of air traffic demand
is oil prices [33]. Oil prices influence the pricing of aviation, and therefore indirectly the attractiveness
and demand. Therefore, the correlation of GDP and oil prices with air traffic demand will be analysed,
and if an adequate correlation is found, will be used in the quantitative model.

In addition, economic growth is now increasingly being driven by developing economies, where income
elasticities are higher. Therefore, the underlying drivers for overall air travel growth are likely to remain
strong for the foreseeable future [113].

The socio-economic variables that are correlated with air traffic demand depend on the region and
country. Therefore, the correlation of various socio-economic variables with air traffic demand should
be analysed. Data for projections of such data is usually only available at a national level. Therefore,
the correlation between such a socio-economic variable and national air traffic demand is analysed
first, after which the correlation between national and MAR air traffic demand is used to then analyse
the correlation between (national) socio-economic variables and MAR air traffic demand. Once an
adequate correlation is found, projections of the socio-economic(al) variable(s) can be used to project
air traffic demand. An illustration of this modelling block can be observed in section 4.4. Besides,
Figure 3.2 zooms in on modelling block 1 of the quantitative model.

Figure 3.2: Modeling block 1: Regional air traffic demand forecast

3.3. Airport Performance
Once aggregate air traffic levels to and from the MAR can be modelled using the Regional Air Traffic
Demand Forecast, air traffic needs to be allocated over airports serving the multi-airport region. This is
done by computing the relative performance of the airports amongst each other. Airport performance
is characterised by their relative attractiveness to air traffic passengers. The performance of airports is
determined through variables that represent their accessibility and utility [121, 42].

Literature has shown airport performance can be best measured based on three key performance
indicators. First, airport accessibility was analysed since it has been shown to be a dominant
decision variable for airport choice and thus its performance [121, 134, 76]. Airport accessibility
considers the ease at which an airport can be accessed from the MAR, and vice versa, taking into
account characteristics of the potential air traffic passengers. Second, airport airfares represent
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airport performance [89, 145, 160, 55, 90, 79, 119, 88], which is a function of the fares that airlines
implement. Third and final, an airport’s connectivity has shown to be relevant in measuring an airport’s
performance/attractiveness [42], which considers the number of reachable destinations on Earth and
the quality of these routes. Airport connectivity implicitly captures the first criteria of an air traffic
passenger in airport choice, which is his/her desired destination. Airport airfare and connectivity both
belong to an airport’s utility.

To bring structure to this section, visualisation of this second modelling block is shown below in
Figure 3.3.

Figure 3.3: Modeling block 2: Airport performance

3.3.1. Accessibility
The accessibility of an airport has significant relevance to indexes such as passenger scale and the
number of airlines. The higher the level of accessibility, the stronger the competitiveness of the
airport will be, thus resulting in a higher market share of air traffic passengers in the region [16].
The accessibility typically measures ”the ease and convenience of access to spatially distributed
opportunities with a choice of travel”.

This research implements a gravity-based accessibility measure, which is generically explained in
subsection 2.3.1 [113, 27], as it has been proven to bemore accurate and valuable in comparing airports
than solely travel time indicators [8]. Gravity models were the earliest causal models developed for
traffic forecasting. The gravitational law states the gravity between two objects is directly proportional
to their masses and inversely proportional to their squared distance, as can be seen by equation
Equation 3.1.

𝐹12 = 𝐹21 = 𝐺 ⋅
𝑚1 ⋅ 𝑚2
𝑟2 (3.1)

Where:

𝐹12 = Force from object 1 to object 2
𝐹12 = Force from object 2 to object 1
𝐺 = Gravitational constant
𝑚 = Mass
𝑟 = Distance between objects

A simplified formulation of a general gravity model for human spatial interaction used for the prediction
of travel demand between two places i and j can be seen in Equation 3.2. The concept of this formula
is used to compute airport accessibility.

𝑉ij = 𝑘 ⋅
(𝑎𝑖 ⋅ 𝑎𝑗)𝛼
𝑑𝛾𝑖𝑗

(3.2)
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Where:

𝑉ij = Passenger volume between i and j
𝑘 = Constant
𝛼 = Attraction factor from location i or j
𝑑𝑖𝑗 = Distance between i and j
𝛾 = Parameter that controls the influence of the distance on travel demand

The attraction and/or ’repulsion’ is expressed not only by a single variable but by a combination of
various factors. This undirected gravity model can be extended to a directed model if 𝑉𝑖𝑗 which
measures directed passenger flows from i to j.

The proposed model considers a gravity approach with the following three driving factors for airport
accessibility.

1. Travel times. An air traffic passenger is more likely to choose an airport that is closest to his/her
origin or desired final destination

2. Population. Regions with more inhabitants are more likely to supply air traffic passengers than
regions with fewer inhabitants.

3. Income. Regions with wealthier inhabitants are more likely to supply air traffic passengers than
regions with less wealthy inhabitants.

Travel Times
Multi-airport regions are divided into ’census’ blocks, which are sub-regions that contain
socio-economical and demographic data such as the number of inhabitants, age, gender, wealth and
coordinates. These sub-regions will from now on be referred to as districts. Air traffic passengers
are supplied to airports in the MAR from these districts. According to the classic gravity formulation
as mentioned above, the distance between these so-called supply nodes and the airports is inversely
proportional to the passenger volume. Therefore, an initial analysis considers computing the distance
in kilometres between all airport-district combinations. This was computed in the form of straight-line
distance, based on the coordinates of the district’s centre-point and the airports, taking into account
the spherical shape of the Earth, using the so-called Haversine formulation:

𝑑 = 2 ⋅ 𝑅 ⋅ sin−1(√sin2(𝜙2 − 𝜙12 ) + cos(𝜙1) cos(𝜙2) sin2(
𝜆2 − 𝜆1
2 )) (3.3)

Where:

𝑑 = Straight-line distance
𝑅 = Radius of the Earth = 6371 km
𝜙 = Latitude
𝜆 = Longitude

Urban regions usually consist of a densely built region, with traffic congestion often disturbing airport
access. Therefore, it was analysed how airport travel access times correlate to the recently computed
straight-line distances. Another research examined a comparable correlation for hospital access in
upstate New York, which is also a multi-airport region [123]. It concluded the correlation between travel
distance and time was 0.987 for all observations and 0.825 for distances less than 15 miles (24.14 km).
These very high correlations indicate that straight line distance is a reasonable proxy for travel time in
most hospital demand or choice models, especially those with large numbers of hospitals [123]. This
research was performed on driving distance and not straight-line distance, meaning the correlations
with straight-line distance will be lower.

Therefore, it is analysed how long it takes people to access airports from the districts in the MAR.
Transport modes in MARs consist of public road users (private cars and taxi) and railway users (trains
and metros) [86]. Uncongested trips were analysed to eliminate the uneven influence of potential road
constructions or emergency service obstructions on airports. This means car trips were analysed at
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2:00 a.m. on a Wednesday and public transport trips were analysed at 2:00 p.m. on a Wednesday as
well. The ratio of passengers accessing airports using cars and public transport differs per airport in
the region. Therefore, this ratio is used as variable input to model travel times in Equation 3.4.

𝑇𝑇𝑖𝑗,𝑘 = 𝑃𝑇𝑇𝑖𝑗,𝑘 ⋅ 𝑅𝑝𝑢𝑏𝑙𝑖𝑐 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 + 𝐶𝑇𝑇𝑖𝑗,𝑘 ⋅ 𝑅𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 (3.4)
Where:
𝑇𝑇𝑖𝑗,𝑘 = Travel time from district j to airport i in year k
𝑃𝑇𝑇𝑖𝑗,𝑘 = Public transport time from district j to airport i in year k
𝑅𝑝𝑢𝑏𝑙𝑖𝑐 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 = Public transport access ratio
𝐶𝑇𝑇𝑖𝑗,𝑘 = Car transport time from district j to airport i in year k
𝑅𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 = Private vehicle access ratio

Now, for each airport-district combination, the travel times and straight-line distances are computed.
For each combination, the mean value for each airport was computed to compare these methods. The
hypothesis states that travel times should show a smaller disparity between airports than straight-line
distances since longer straight-line distances can be bridged by higher transport velocities, resulting in
shorter relative travel times. For example, many major hub airports are located further away from the
city than smaller business-oriented airports. However, these hub airports are extremely well connected
to the city and MAR districts through an extensive railway and highway infrastructure. This allows for
efficient and fast travel over longer distances, compared to less popular locations where this extensive
infrastructure is not available. The same distance can thus be bridged by higher velocities, resulting in
relative shorter travel times.

Actual travel distance over a road network has shown to be a superior alternative compared to
straight-line distance when calculating accessibility [26]. Besides, the research regarding hospital
access has shown using travel times is more accurate than travel distance [123]. Despite these pieces
of research being applied to different regions, both regions are urban areas served by multiple airports.
Therefore, this methodology continues with the computational method concerning travel times, as
described in Equation 3.4, over straight-line distances. Besides airport access travel times, airport
accessibility also depends on the income and wealth of the districts in the surrounding MAR.

Population
As described in the introduction, urbanisation is a major worldwide trend where urban regions become
more and more populated, resulting in an increased demand for air travel around the world. Therefore,
increased population drives air traffic demand up. It is assumed the same holds for multi-airport regions
and the districts herein, meaning there is a positive correlation between the population level in districts
and the air traffic passengers supplied therefrom. This correlation specifically could not be determined
or substantiated in this research because of the lack of availability of data. Therefore, it was assumed
that districts with x% more inhabitants have the potential to supply x% more air traffic passengers to
airports in the region.

Income
Just as described in the literature review and Regional Air Traffic Demand Forecast, it has been proven
wealthy economies fly more. As such, there is a good correlation between GDP and air traffic levels
for countries. Several pieces of research substantiate the positive relationship between wealth and air
traffic demand. First, research indicates the World’s richest 1%, people who earn more than 109,000
USD (£79,000), are responsible for 50% of flying emissions [87]. Second, a review revealed that
76% of overseas trips were taken by 29% of middle and high-income households in 17 Asia-Pacific
countries, including Australia, China and Singapore [87]. Third and final, it is shown that there is high
consistency in the Granger-causality relationship between wealth and transportation, and income and
transportation. The study has three important contributions: First, the relationship between wealth and
transportation is shown both theoretically and empirically. Second, transportation is shown to have a
dual role in an economy. Third and final, it is shown that the wealth-transportation relationship and the
transport-income relationship are equally robust and consistent [157].

It is therefore assumed wealth is positively correlated to air traffic demand in multi-airport regions.
Wealth is taken into account for the accessibility measure by first gathering the average annual
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gross earnings per MAR district for 2010 to 2019. The currency depends on the multi-airport region.
This research assumes income and population equally contribute to the performance of an airport’s
accessibility.

Scoring
To recap, one of the three key performance indicators for airports is accessibility, which comprises
travel times, the district’s population, and income data. Higher travel times result in a low performance
whereas a higher population and income result in higher performance. To take this into account, a
reversing method has been implemented through the accessibility computation equations. This is done
so higher population, higher income and lower access times result in higher total accessibility. A scoring
method is applied so airports’ accessibility is measured relative to other airports in the MAR, so they
can be compared. The list below provides a recap of the input data for accessibility.

1. Geographical data of airports within the MAR. Coordinates of MAR airports to account for their
relative location within the MAR, used for travel time computations.

2. Population data of MAR districts. The number of inhabitants for all MAR districts over the years
2010 - 2019 is selected as weighting for the accessibility measure.

3. Income data of MAR districts. Average gross earnings data was selected for all MAR districts
over the years 2010 - 2019 as weighting for the accessibility measure.

4. Geographical data MAR districts. Coordinates of centre-points for MAR districts to account for
their relative position in the MAR, used for travel time computations.

The accessibility score for airports can now be computed through four steps. First, income values are
reversed and transformed into points (𝐼𝑃𝑗,𝑘), after which they are converted into a score (𝐼𝑆𝑗,𝑘) ranging
from 1 to 10, as is done in Equation 3.5 and Equation 3.6. Using this method, high income values result
in a low income score.

𝐼𝑃𝑗,𝑘 = 𝑚𝑎𝑥(𝐼𝑗,𝑘) + 𝑚𝑖𝑛(𝐼𝑗,𝑘) − 𝐼𝑗,𝑘 (3.5)

𝐼𝑆𝑗,𝑘 =
𝐼𝑃𝑗,𝑘

𝑚𝑎𝑥(𝐼𝑃𝑗,𝑘)
⋅ 9 + 1 (3.6)

Where:

𝐼𝑗,𝑘 = Income of district j in year k
𝐼𝑃𝑗,𝑘 = Income points of district j in year k
𝐼𝑆𝑗,𝑘 = Income score of district j in year k

Second, the same method is applied to population data, as can be observed in Equation 3.7 and
Equation 3.8. Again, high population values result in a low population score.

𝑃𝑃𝑗 = 𝑚𝑎𝑥(𝑃𝑗,𝑘) + 𝑚𝑖𝑛(𝑃𝑗,𝑘) − 𝑃𝑗,𝑘 (3.7)

𝑃𝑆𝑗,𝑘 =
𝑃𝑃𝑗,𝑘

𝑚𝑎𝑥(𝑃𝑃𝑗,𝑘)
⋅ 9 + 1 (3.8)

Where:

𝑃𝑗,𝑘 = Population of district j in year k
𝑃𝑃𝑗,𝑘 = Population points of district j in year k
𝑃𝑆𝑗,𝑘 = Population score of district j in year k

Third, the accessibility of each airport is computed. This is done in three steps. First, for each
airport-district combination, the travel times (𝑇𝑇𝑖𝑗,𝑘) are multiplied by the reversed income score (𝐼𝑆𝑗,𝑘)
and the reversed population score (𝑃𝑆𝑗,𝑘). The average of each airport is computed by dividing by the
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number of districts (𝑛), which is computed in Equation 3.9 and results in an accessibility index for each
airport (𝐴𝐼𝑖,𝑘). A low 𝐴𝐼𝑖,𝑘 means good accessibility. Second, to make sure high values translate to
good accessibility, the accessibility index is reversed using Equation 3.10, resulting in the accessibility
points (𝐴𝑃𝑖,𝑘). The third and final step consists of a scoring computation, which converts accessibility
points (𝐴𝑃𝑖,𝑘) into an airport accessibility score (𝐴𝑖,𝑘) in Equation 3.11.

𝐴𝐼𝑖,𝑘 =
∑𝑛𝑗=1 𝑇𝑇𝑖𝑗,𝑘 ⋅ 𝐼𝑆𝑗,𝑘 ⋅ 𝑃𝑆𝑗,𝑘

𝑛 (3.9)

𝐴𝑃𝑖,𝑘 = 𝑚𝑎𝑥(𝐴𝐼𝑖,𝑘) + 𝑚𝑖𝑛(𝐴𝐼𝑖,𝑘) − 𝐴𝐼𝑖,𝑘 (3.10)

𝐴𝑖,𝑘 =
𝐴𝑃𝑖,𝑘

𝑚𝑎𝑥(𝐴𝑃𝑖,𝑘)
⋅ 9 + 1 (3.11)

Where:

𝑛 = Number of districts
𝑇𝑇𝑖𝑗,𝑘 = Travel time from district j to airport i in year k
𝐴𝑆𝑖,𝑘 = Accessibility score for airport i in year k
𝐴𝑃𝑖,𝑘 = Accessibility points for airport i in year k
𝐴𝑖,𝑘 = Accessibility for airport i in year k

3.3.2. Airfare
Airfare is defined as the price to be paid by an aircraft passenger for a particular journey [114]. Research
in MAR Aburrá Valley, Colombia analysed relevant airport choice variables for air traffic passengers
[101]. AMultinomial Logit Model (MNL) was used, which is based on the theory of maximizing utility, and
data was obtained on revealed and stated preference surveys of users who reside in the metropolitan
area of Aburrá Valley, Colombia. It was revealed the most common variables that affect passenger
airport choice are airport access cost and time, and airfares [101]. Various other pieces of research
have proven the accuracy of using MNLmodels in modelling airport choice [88, 73]. As discussed in the
literature review, various other pieces of research have identified airfare as one of the leading variables
affecting airport choice, thereby being a logical choice as a performance indicator when comparing
airports in a MAR. Therefore, airfare is chosen as the third key performance indicator.

Airfares are implemented by airlines. The major expenses that affect companies in the airline industry
are labour and fuel costs. Labour costs are largely fixed in the short term, while fuel costs can swing
wildly based on the price of oil. For this reason, analysts pay more attention to fuel costs in the near
term. Two-thirds of the costs of flying an aircraft are fixed, so changes in fuel costs can swing a flight
from profit to loss depending on how many people are on the flight. Historically, the airline industry
continues to be brutally competitive, even though the business of flying people all over the world and
country has become an integral part of human life. The cost of flying continues to trend lower. The
internet has also created greater price transparency, reducing margins.

Airlines pay airport fees/charges to make use of their facilities, like landings and take-offs. These
charges depend on the type of aircraft, their weight en the number of passengers. Heavier larger
aircraft pay more fees, mainly because they emit more noise and emissions to cover a certain distance.
Long-haul trips require larger aircraft, more fuel, and more airline employees compared to short
(domestic) flights. Therefore, airfares for longer trips are generally higher, but also have different fare
structures, that make up the total price a passenger has to pay. Because of this, airfares are analysed
according to their trip length. Besides, to compare airfares across airports, the length of each route has
to be taken into account. If airport x serves, on average, flights of longer distances than airport y, given
these flights are in the same trip level, the fare of airport x is likely to be higher than airport y because
longer trips are generally more expensive. To remove this aspect, airfares are analysed per distance
metric (km).
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Data was gathered using subscription-based Sabre aviation data. The database contains data on all
outbound and inbound flights for almost all airports worldwide. To model airport airfares, the model
requires the following types of data:

• Origin data

– Airport (name)
– City
– Country
– Region

• Destination data

– Airport (name)
– City
– Country
– Region

• Year

• PPDEW (passengers per day each way)

• Average base fare (USD)

• Base revenue (USD)

• Average total fare (USD)

• Total revenue (USD)

• Distance (km)

Having this data, the model computes airfare scores using the following steps and equations:

1. Airline passenger yield is defined as the revenue per revenue passenger per kilometre flown [137,
138]. Since airfare data is hard to obtain due to fluctuating data, the yield is computed to represent
the average airfare per passenger per flight distance in kilometres. Therefore, the airfare index
is computed using Equation 3.12, which results in USD/passenger/km.

𝐴𝐼𝑖,𝑚 =
(𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑖,𝑚 (𝑈𝑆𝐷)

𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠𝑖,𝑚
)

𝐹𝑙𝑖𝑔ℎ𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖,𝑚 (𝑘𝑚)
(3.12)

Where:

𝐴𝐼𝑖,𝑚 = Airfare index concerning flights to and from airport i on route m

2. Continents are added to the dataframe by linking regions to their corresponding continent. The
regions’ formulation according to the database can be observed in the list below, and belong to
the continent that is written in between the brackets. Grouping these regions is done for departing
and arriving routes.

• Eastern Europe (Europe)

• Western Europe (Europe)

• Central Africa (Africa)

• East Africa (Africa)

• North Africa (Africa)

• Southern Africa (Africa)

• West Africa (Africa)

• Caribbean (North America)

• Central America (North America)

• Gulf (North America)

• North America (North America)

• South America (South America)

• Asia sub continent (Asia)

• Central Asia (Asia)

• Far East Asia (Asia)

• Middle East (Asia)

• Southeast Asia (Asia)

• Australia (Australia)

• Pacific (Australia)
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3. Routes are classified in five trip levels (t = 1, 2, 3, 4, 5);

I Domestic. Flights that depart and land in the same country.
II Regional. Flights that depart and land in the same region, but not in the same country.
III Continental. Flights that depart and land on the same continent, but not in the same region.
IV Intercontinental. Flights that depart and land on different continents.
V Total. Containing all flights together.

4. Airfare indices are grouped in their corresponding trip level, and relatively reverse ranked within,
on a scale from 0 to 1. This means that, within a trip level, the route with the highest airfare index
receives the lowest rank, being zero, and vice versa. This allows for low fares to result in high
airfare performance.

5. For each airport for each trip level, the mean value of these ranks is computed. This value is
represented by:

𝐴𝐼𝑖,𝑡(𝑅𝑅) =
∑𝑛𝑖=1 𝐴𝐼𝑖,𝑚,𝑡(𝑅𝑅)

𝑛 (3.13)

Where:

𝐴𝐼𝑖,𝑡(𝑅𝑅) = Mean value of reverse ranked airfare indices for airport i on level t
𝐴𝐼𝑖,𝑚,𝑡(𝑅𝑅) = Reverse ranked airfare index of airport i, route m, and trip level t
𝑛 = Number of routes
𝑖 = Increment size

6. Airfare score for airport i in year k, being 𝐹𝑖,𝑘, is computed for each trip level on a scale from 1 to
10 using the same concept as is done for accessibility, based on the mean value of ranks from
step 5. This is done using Equation 3.14. The scores on total trip level (t = 5) are used in the
quantitative model to compute the allocation of air traffic passengers over airports in the MAR.
Airfare scores from other trip levels (t = 1, 2, 3, or 4) are relevant when evaluating an airport’s
performance on domestic or international, that is regional, continental or intercontinental level.

𝐹𝑖,𝑘 =
𝐴𝐼𝑖,𝑚,𝑡=5(𝑅𝑅)

𝑚𝑎𝑥(𝐴𝐼𝑖,𝑚,𝑡=5(𝑅𝑅))
⋅ 9 + 1 (3.14)

Where:

𝐹𝑖,𝑘 = Airfare score for airport i in year k
𝐴𝐼𝑖,𝑚,𝑡=5(𝑅𝑅) = Mean of reversed ranked airfare indices for airport i, in year k, for trip level 5 (total)

3.3.3. Connectivity
Definition and Importance
The third and final airport key performance indicator is its connectivity. Air connectivity reflects how
well a country, city, or airport is connected to cities around the world. Access to greater air connectivity
is fundamental for the ability of a given country or city to develop economic linkages with the rest of the
world. Air connectivity provides the foundation for the international mobility of people and goods and
is, therefore, a vital engine of economic growth worldwide. The connectivity of MAR airports combined
make up the connectivity of that MAR, and thereby part of its country’s connectivity worldwide.

In 2019, Australia’s national carrier Qantas was testing a new non-stop commercial flight from Sydney
to London. This flight takes 19.5 hours to complete and, if launched, means the world of air travel has
reached ultra-long-haul travel. A century ago, it took 28 days to reach Australia from the UK by air
with multiple stops on the way and no passengers on board [78]. In the late 1940s, the length of this
trip was shortened considerably and yet it would take four days for passengers to reach Sydney from
London with stops in Rome, Tripoli, Cairo, Karachi, Calcutta, Singapore and Darwin. The introduction
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of jet engines and other new aircraft technologies have made it possible to operate direct flights on
long-haul and ultra-long-haul distances, allowing airlines to add and develop air connectivity regionally
and globally. Consequently, it is now possible to reach London the same day one departs from Sydney.

Improved air connectivity benefits users of air transport networks (passengers and shippers). Perhaps
the most important economic benefit of air transport is the value that passengers and shippers derive
from the ability to access destinations and markets around the world [78].

Over the course of the past decades, air travel has offered consumers and producers more choice
in routings and faster linkages to the rest of the world, at an ever-decreasing cost in real terms. In
2019, the air transport industry connected a record number of cities worldwide, reaching and exceeding
23,000 unique city-pair connections for the first time. Moreover, the cost of air travel and air freight
transportation has been decreasing in real terms as savings from new technology adoption and greater
efficiencies are being passed on to the consumer in the form of a lower price in real terms [78].

Improved air connectivity brings about wider economic benefits, beyond air traffic passengers. It serves
as an important catalyst for economic growth and prosperity because it can boost the supply side of
the economy and build additional productive capacity to enable economic growth without inflationary
pressures [78].

A 10% increase in direct air connectivity comes with a 0,5% additional increase in GDP per capita
[2]. Therefore, citizens’ access to air connectivity is a fundamental part of the equation for economic
and social cohesion. Using the connectivity models presented here, this analysis provides indices
that matter most in citizens’ access to direct and indirect connectivity, based on both quantitative and
qualitative metrics. This means this is not simply a measure of how many city pairs there are, or
how many direct services there are. Connectivity used in this research is a composite measure of the
number of destinations, the frequency of services and the quality of the connections (in the case of
hubbing or indirect services).

Methods
Regions with low connectivity can enhance their competitiveness by improving the connectivity of their
airports [136]. Therefore there is no surprise that academics and practitioners in transport science
have made efforts to develop indices for measuring the connectivity of airports [31]. Complex network
science can be used to measure the connectivity of air transport networks and thus airports. A
two-dimensional classification is considered for connectivity measures based on transport networks
[136]:

1. Local versus global connectivity: The first connectivity airport measures that come to mind are the
number of direct connections, passenger transported, and so on. These are measures of local or
direct connectivity. However, the development of hub-and-spoke operations has enhanced the
value of global or indirect connectivity or hubbing, that is, the availability of indirect connections
of an airport.

2. Weighted versus unweighted measures: Direct connections can be considered unweighted or
weighted. We consider that an unweighted direct connection between two airports exists if there
is at least one direct connection between these airports in a time window. In weighted networks,
we associate with each connection a measure of its intensity. The most common are the number
of flights scheduled, available seats or available seats per kilometre.

One of themost popular methods derived from complex network analysis measuring airport connectivity
is the SEONetScan Connectivity Model, which is used by ACI. This method considers a global weighted
measure of connectivity. Since 1997, NetScan has been applied in many consultancy studies for
different stakeholders and has been widely published in international peer-reviewed academic journals
[139]. Another reason for using the method is that it not only computes airport connectivity indices but
also analyses the connectivity of multi-airport regions and their countries. This is useful when analysing
developing countries and identifying the potential of new airports in terms of additional economic benefit
as a result of this additional connectivity.
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Besides ACI’s NetScan model, another frequently used model is developed by the International
Association of Air Transport (IATA) [78]. Just as the NetScan method, it considers a global weighted
measure of connectivity. Both methods will be analysed and compared with each other to make sure
the more relevant method is used in this research.

The connectivity of airports in a MAR is made up of four types of connectivity definitions, which all have
their own computational method. Combined, they form the total connectivity of an airport [2]:

• Direct Connectivity. These are the direct air services available from the airport, measured not just
in terms of destinations, but also factoring in the frequency of flights to the same destination (so
for example, an airport with 5 daily flights to another airport, will register a higher score than one
with only 4).

• Indirect Connectivity. This measures the number of places people can fly to, through a connecting
flight at hub airports from a particular airport. For example, if you fly from Cork to a hub airport
such as Amsterdam Schiphol, that’s a direct flight from A to B. But with the vast choice of onward
destinations you can fly to from there, the large number of available onward connections from
these airports expands the range of destinations available from the airport of origin. Indirect
connections are weighted according to their quality, based on connecting time and detour involved
with the indirect routing. For example, a flight fromManchester to Johannesburg via Paris-Charles
de Gaulle will register a higher score than an alternative routing via Doha.

• Airport Connectivity. This is the most comprehensive metric for airport connectivity, taking into
account both direct and indirect connectivity from the airport in question. Airport connectivity is
defined as the sum of direct and indirect connectivity – thus measuring the overall level to which
an airport is connected to the rest of the World, either by direct flights or indirect connections via
other airports.

• Hub Connectivity. Hub connectivity is the key metric hub airports. Essentially, it measures the
number of connecting flights that can be facilitated by the hub airport in question, taking into
account a minimum and maximum connecting time, and weighing the quality of the connections
by the detour involved and connecting times. This measure is not taken into account in this
research because transfer flights do not supply or attract passengers from the Greater London
region.

SEO’s NetScan method is presented first, after which IATA’s connectivity model is analysed. Finally,
both models are compared and a conclusion is made which model will be used and why.

SEO Netscan [2]
The NetScan model first identifies all direct and indirect (one-stop) connections available on an airport
pair. The model uses OAG passenger flight schedule data on direct flights as input. Here, the flight
schedule for the third week of June was used for the years 2010 - 2019. Indirect connections are created
within the model by connecting two direct flights taking into account minimum andmaximum connecting
times. Indirect connections are possible at any given airport either between flights of the same airline or
between flights of airlines working together in an alliance or through a codeshare agreement. Indirect
connections are less attractive to passengers than direct connections, due to the transfer and circuity
time involved. Therefore, each connection is weighted for its quality and ranges between zero and one.

A direct, non-stop flight operated by a jet aircraft is given the maximum quality of one. The quality of
an indirect connection will always be lower than one since travel time is added due to transfer time and
circuity time. The same holds for a direct multi-stop connection for a direct connection operated by a
turboprop: passengers face a lower network quality because of a longer travel time. Connections with
a too-long travel time relative to the theoretical direct flight time will be assigned a quality of 0. As such,
these connections are considered to be unrealistic travel options for the passenger.

First, the maximum allowable perceived travel time (MAPTT) is calculated. the MAPTT 𝑡𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑, 𝑚𝑎𝑥𝑥(ℎ)𝑦
between airport X and Y depends upon the non-stop flight time (NSFT) between both airports
𝑡𝑓𝑙𝑖𝑔ℎ𝑡, 𝑛𝑜𝑛−𝑠𝑡𝑜𝑝𝑥𝑦 and a factor that decreases with distance. The NSFT is determined by the geographical
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coordinates of origin and destination airport and the flight speed of an average jet aircraft taking into
account the time needed for take-off and landing. Over longer distances, passengers are willing
to accept longer transfer- and circuity times. Therefore, the MAPTT also depends on a factor that
decreases with distance: the further apart two airports are, the longer the MAPTT will be. This is
captured in Equation 3.15.

𝑡𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑, 𝑚𝑎𝑥𝑥𝑦 = 𝑡𝑓𝑙𝑖𝑔ℎ𝑡, 𝑛𝑜𝑛−𝑠𝑡𝑜𝑝𝑥𝑦 + 5 ⋅ 𝑙𝑜𝑔(𝑡𝑓𝑙𝑖𝑔ℎ𝑡, 𝑛𝑜𝑛−𝑠𝑡𝑜𝑝𝑥𝑦 + 0, 5) (3.15)

Second, the actual perceived travel time (APTT) is determined. For direct connections, the APTT
between airport X and Y 𝑡𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑, 𝑎𝑐𝑡𝑢𝑎𝑙𝑥(ℎ)𝑦 equals the actual flight time (AFT) 𝑡𝑓𝑙𝑖𝑔ℎ𝑡, 𝑎𝑐𝑡𝑢𝑎𝑙𝑥𝑦 . For indirect
flights the APTT equals the flight times on both flight legs plus the transfer time at hub h 𝑡𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟ℎ .
As transfer time is considered more uncomfortable than flight time, the transfer time is penalized by a
factor that decreases with distance 𝑃𝑥𝑦.

𝑡𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑, 𝑎𝑐𝑡𝑢𝑎𝑙𝑥(ℎ)𝑦 = {𝑡
𝑓𝑙𝑖𝑔ℎ𝑡, 𝑎𝑐𝑡𝑢𝑎𝑙
𝑥𝑦 , for direct flights
(𝑡𝑓𝑙𝑖𝑔ℎ𝑡, 𝑎𝑐𝑡𝑢𝑎𝑙𝑥ℎ + 𝑡𝑓𝑙𝑖𝑔ℎ𝑡, 𝑎𝑐𝑡𝑢𝑎𝑙ℎ𝑦 ) + 𝑃𝑥𝑦 ⋅ 𝑡𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟ℎ , for indirect flights

(3.16)

If the AFT is smaller than or equal to the average NSFT, then the weight of the connection 𝑞𝑥(ℎ)𝑦𝑎 equals
1. In practice, this is only the case on direct flights operated by aircraft that are at least equally fast
as the average jet aircraft on which the non-stop flight time is based. When the APTT becomes larger
than the MAPTT, the weight of the connection is zero and the connection will be considered enviable.
In any other case, the APTT lies between the NSFT and the MAPTT. In these cases, the weight of the
connection depends on the relative difference between the perceived and maximum allowable travel
time.

𝑞𝑥(ℎ)𝑦𝑎 =
⎧⎪
⎨⎪⎩

1, 𝑖𝑓 𝑡𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑, 𝑎𝑐𝑡𝑢𝑎𝑙𝑥(ℎ)𝑦 ≤ 𝑡𝑓𝑙𝑖𝑔ℎ𝑡, 𝑛𝑜𝑛−𝑠𝑡𝑜𝑝𝑥𝑦

1 − 𝑡𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑, 𝑎𝑐𝑡𝑢𝑎𝑙𝑥(ℎ)𝑦 −𝑡𝑓𝑙𝑖𝑔ℎ𝑡, 𝑛𝑜𝑛−𝑠𝑡𝑜𝑝𝑥𝑦

𝑡𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑, 𝑚𝑎𝑥𝑥𝑦 −𝑡𝑓𝑙𝑖𝑔ℎ𝑡, 𝑛𝑜𝑛−𝑠𝑡𝑜𝑝𝑥𝑦
, 𝑖𝑓 𝑡𝑓𝑙𝑖𝑔ℎ𝑡, 𝑛𝑜𝑛−𝑠𝑡𝑜𝑝𝑥𝑦 < 𝑡𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑, 𝑎𝑐𝑡𝑢𝑎𝑙𝑥(ℎ)𝑦 < 𝑡𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑, 𝑚𝑎𝑥𝑥𝑦

0, 𝑖𝑓 𝑡𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑, 𝑎𝑐𝑡𝑢𝑎𝑙𝑥(ℎ)𝑦 ≥ 𝑡𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑, 𝑚𝑎𝑥𝑥𝑦
(3.17)

When the APTT is relatively small compared to the MATT, the weight of the connection is high and
vice versa. The connectivity 𝐶𝑁𝑈𝑥(ℎ)𝑦𝑎 of an individual direct or indirect connection equals its quality
𝑞𝑥(ℎ)𝑦𝑎.

𝐶𝑁𝑈𝑥(ℎ)𝑦𝑎 = 𝑞𝑥(ℎ)𝑦𝑎 (3.18)

The CNU is calculated for each individual direct and indirect connection. This means that when a flight
is offered with a daily frequency, the CNUs for each of these seven flights as well as for each possible
connection have been calculated. The reason for distinguishing between individual flights is twofold.
First, the flights might be carried out by different aircraft types during the week leading to different flight
times and therefore differing CNUs. Second, the same flight might connect to different flights on for
example Monday than on a Friday.

Summing the quality-adjusted connectivity values offered by an airport on a certain route provides
the total connectivity on the route. Summing direct and indirect connectivity offered from airport i in
year k yields the airport connectivity index 𝐶𝐼𝐼,𝑘, which measured the connectivity available to air traffic
passengers using that airport.

IATA [78]
IATA has developed a connectivity indicator to measure the degree of integration of a country into the
global air transport network. It is a composite measure reflecting the number and economic importance
of the destinations served from country’s major airports and the number of onward connections
available from each destination. Geographically, IATA’s air connectivity index enables the reporting
of connectivity scores at different levels of aggregation: city, country and region. The index has global
coverage and encompasses virtually all countries around the world. It covers more than 3,000 cities
globally. The countries covered are grouped into different regions as follows:
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1. Africa

2. Asia

3. Europe

4. Latin America

5. The Middle East

6. North America

The connectivity indicator is based on the number of available annual seats to each destination between
2014 and 2019. The source of available seat capacity is SRS Analyser, a comprehensive database
containing passenger and cargo schedules for more than 900 airlines worldwide. The number of
available seats to each destination is then weighted by the size of the destination airport (in terms
of the number of passengers handled at that airport each year). The weighting for each destination
indicates the economic importance of the destination airport and the number of onward connections it
can provide.

For example, Beijing airport, the world’s largest airport, is given a weighting of 1 while Austin airport,
which handles 15% of the number of passengers handled by Beijing, is given a weighting of 0.15.
Therefore, if an airport has 1,000 seats available in Beijing it is given a weighted total of 1,000. But
it also has 1,000 seats available to Austin, these are given a weighted total of 150. The weighted
totals are then summed for all destinations served out of a given airport to determine the connectivity
indicator.

Another way to illustrate the impact of destination airport weights is to think of a single flight fromGeneva
to Beijing or Austin. Other things being equal, a flight from Geneva airport to Beijing would receive a
higher connectivity score compared to a flight from Geneva to Austin airport (Figure 5). The difference
in destination weights reflects the extent to which destination airports are connected to the rest of the
global air transport network.
Therefore, the connectivity indicator for a given airport can be represented as the sum of destination
weighted available seats from the airport to all destination airports:

𝐴𝐶𝐼 =
𝑎𝑙𝑙 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛

∑
𝑘=1

(𝐴𝑛𝑛𝑢𝑎𝑙 𝑂𝑢𝑡𝑏𝑜𝑢𝑛𝑑 𝑆𝑒𝑎𝑡𝑠𝑘 ⋅ 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐴𝑖𝑟𝑝𝑜𝑟𝑡 𝑊𝑒𝑖𝑔ℎ𝑡𝑘 (3.19)

Where:

𝐴𝐶𝐼 = Air connectivity index
𝑘 = Destination

Another mathematically equivalent way to write this formula, according to IATA, shows that the
frequency of service from the origin airport to other destinations is taken into consideration:

𝐴𝐶𝐼 =
𝑎𝑙𝑙 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛

∑
𝑘=1

(𝐹𝑙𝑖𝑔ℎ𝑡 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑘 ⋅ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑆𝑒𝑎𝑡𝑠 𝑝𝑒𝑟 𝐹𝑙𝑖𝑔ℎ𝑡𝑘 (3.20)

As evident from the second formulation, air connectivity increases as the range of destinations
increases, the frequency of service increases or larger “hub” airport destinations are served.

Conclusion
Complex network science forms the basis for airport connectivity models by analysing the network of
nodes, which represent airports. Due to increasing hub-and-spoke networks, this science has become
more interesting and detailed over the years. Two connectivity models were identified to compute
the connectivity of airports in a MAR; ACI’s SEO NetScan Connectivity Model and IATA’s Connectivity
Model. There are three main differences among these methods that have resulted in the decision for
ACI’s NetScan Connectivity Model:
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• The ACImethod is primarily focused on European airports and includes themajor airports outside.
IATA’s method has a broader scope concerning worldwide airports. However, the results, as will
be shown below this list, shows that taking into account smaller airports located far away from
the airport in question does not affect the connectivity index significantly.

• The main application of ACI’s NetScan air connectivity model is for competitive analysis of
continents, countries, cities, airlines and airports. By contrast, the IATA air connectivity index
is focused on country and regional levels, and is not airport specific. When comparing airports,
this is crucial.

• ACI’s measure emphasizes the quality of indirect connections, whereas IATA’s measure implicitly
captures indirect connectivity bymeasuring the quality of the destination in terms of its connectivity
to the rest of the air transport network, which is less accurate.

In terms of results on a country level, ACI’s connectivity index closely correlates with the method from
IATA, as can be seen in Figure 3.4.

Figure 3.4: ACI and IATA air connectivity score by country 2019 (R-squared = 0.98)

So, NetScan connectivity indices for MAR airports are compared amongst each other and converted
into a connectivity score ranging from 1 to 10 using Equation 3.21, which uses the same concept
as is done for accessibility and airfare. This ensures cross comparing airports according to their key
performance indicators is possible.

𝐶𝑖,𝑘 =
𝐶𝐼𝑖,𝑘

𝑚𝑎𝑥(𝐶𝐼𝑖,𝑘)
⋅ 9 + 1 (3.21)

Where:

𝐶𝑖,𝑘 = Connectivity score for airport i in year k
𝐶𝐼𝑖,𝑘 = Connectivity index for airport i in year k, obtained from the NetScan model (Equation 3.18)

3.4. Airport Allocation and Market Shares
In the first modelling block regarding the regional air traffic demand forecast, the amount of air traffic
passengers that use MAR airports is modelled. The allocation of this regional demand over the airports
in the MAR is based on the relative performance of airports, regarding their accessibility, airfares, and
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connectivity, which is computed in the second modelling block of the quantitative model. This is done
using Equation 3.11, Equation 3.14, and Equation 3.21, which results in a score for each KPI from
1 to 10, for all MAR airports, for 2010 - 2019. These scores combined should represent the relative
performance of airports.

The goal of the quantitative model is to understand the evolution of airport market shares based on the
allocation of air traffic passengers amongst airports in the MAR. The evolution of airport market shares
in the MAR is split into a historical period, ranging from 2010 to 2019 and a projected period, ranging
from 2020 to 2050. To accomplish this goal, the methodological steps of the third and final modelling
block of the quantitative model are presented in this section. In Figure 3.5, visualisation of this third
modelling block is presented.

Figure 3.5: Modelling block 3: Airport allocation and market shares

First, the research aims to accurately model historical market shares based on the recently computed
scores for airport key performance indicators. This is done through a multivariate regression analysis,
where historical airport market shares in MAR are mathematically dependent and explained by the
airport’s key performance indicators. Here, historical market shares form the dependent variable and
the KPI scores form the independent (explanatory) variables.

Second, the projected market shares of airports in the MAR are computed based on:

1. Projections of the accessibility of airports in the MAR;

2. Projections of the airfares of airports in the MAR;

3. Projections of the connectivity of airports in the MAR;

4. Results of the regression analysis. These provide the correlation between airport performance,
based on accessibility, airfare, and connectivity, and their market shares.

For example, an airport expands by building a new runway which allows more operations by existing
or new airlines at the airport. If new routes are flown that has not yet been flown before from that
airport, the connectivity increases, thus increasing its relative connectivity score. In combination with
the results from the regression analysis, the adapted market shares projections can be computed. This
will in all likelihood result in an increased market share for the expanded airport and a decrease in all
other airports serving the MAR.

The regression analysis allows the model to calculate market shares of airports serving the MAR, based
on their relative performance on accessibility, airfares, and connectivity. The mathematical explanation
can be observed below.
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𝑌𝑖,𝑘 = 𝛽 + 𝛼 ⋅ 𝐴𝑖,𝑘 + 𝜏 ⋅ 𝐹𝑖,𝑘 + 𝜎 ⋅ 𝐶𝑖,𝑘 (3.22)

Where:

𝑌𝑖,𝑘 = Market share of airport i in year k
𝛽 = Interception point
𝛼 = Coefficient for accessibility
𝐴𝑖,𝑘 = Accessibility score for airport i in year k, available from Equation 3.11
𝜏 = Coefficient for airfare
𝐹𝑖,𝑘 = Airfare score for airport i in year k, available from Equation 3.14
𝜎 = Coefficient for connectivity
𝐶𝑖,𝑘 = Connectivity score for airport i in year k, available from Equation 3.21

Second, the air traffic passengers that utilise an airport in theMAR in a certain year can now bemodelled
using the equation below.

𝑃𝑖,𝑘 = 𝑀𝐴𝑅 𝐴𝑇𝐷𝑘 ⋅ 𝑌𝑖,𝑘 (3.23)

Where:

𝑃𝑖,𝑘 = Air traffic passengers using airport i in year k
𝑀𝐴𝑅 𝐴𝑇𝐷𝑘 = MAR air traffic demand in year k, which results from regional air traffic demand forecast
𝑌𝑖,𝑘 = Market share of airport i in year k available from Equation 3.22

3.5. Coding Methodology
The quantitative model that has been set up in this research can be applied to every multi-airport region
around the world if the minimum required data is provided. The quantitative model has been set up
using Python (version 3.8) programming which needs two formatted data files. So, if the model is to be
applied to a multi-airport region, the following data is necessary.

1. Sabre air traffic datasets for the years 2010 - 2019 for all airports considered. This is a .csv format
and should contain the column names as mentioned in subsection 3.3.2.

2. A formatted MAR data-set in .xlsx format. This dataset is split into seven tabs that represent a
data category:

• Population. Contains population data for all sub-regions/districts for 2010 - 2019.
• Income. Contains income data for all sub-regions/districts for 2010 - 2019.
• Historical market shares. Contains market shares of airports serving the MAR for 2010 -
2019 in terms of air traffic passengers and percentages..

• Geography airports. Contains identification names and coordinates of airports in question.
• Geography region. Contains regional information on sub-regions (districts and wards) and
their coordinates.

• Connectivity. Contains connectivity indices for airports in question, resulting from the SEO
NetScan Connectivity Model.

• Access Times. Contains the result of the airports’ access times computations.





4
Case Study Greater London

The analysis framework of this research can be performed on any MAR. However, several
methodological steps can not be solely presented on a generic level and must be illustrated for a
specific multi-airport region. Therefore, the analysis framework is illustrated and analysed on MAR
”The Greater London Area”, which is one of Europe’s major aviation hubs, located in the Southeast
of the United Kingdom, and served by six airports. This chapter introduces the MAR by presenting
its geographics, airports, and strategy. Then, the methodology is illustrated in detail for The Greater
London Area, which from now on is refered to as Greater London.

This chapter focuses on four major aspects of Greater London. First, the geographics of the region are
analysed. Second, the airports are presented with detailed information regarding their history, layout,
markets served and passenger profiles. Third, the strategy of the region is briefly introduced which is
returned in the forecasting framework in chapter 6. Fourth and final, the quantitative model is illustrated
for Greater London.

4.1. Greater London Geographics
Greater London is an administrative area in England governed by the Greater London Authority (GLA),
and a ceremonial county that covers the bulk of the same area, with exception of the City of London,
which forms a separate ceremonial county. The administrative area, which has the same scope as
the region of London, is organised into 33 local governmental districts, the 32 London boroughs and
the City of London. In this research, the City of London and the 32 London boroughs have the same
function. Therefore, the City of London is referred to as a 33rd ’borough’. The layout of these 33 local
governmental districts that make up Greater London can be seen in Figure 4.1.

Each of these districts supplies and attracts air traffic passengers to and from airports that serve this
region. It is assumed that a district’s supply of departing air traffic demand is similar to its demand of
arriving air traffic passengers because arriving traffic numbers are similar to departing traffic numbers
[135]. This entails air traffic demand concerning a district depends on the characteristics of that district.
Districts with more and wealthier inhabitants are more likely to contribute to a higher air traffic demand
compared to a district with fewer and less wealthy inhabitants [54, 38, 112, 158]. Therefore, it is
important to comprehend such characteristics of districts supplying air traffic demand to airports serving
the region.

London districts, its 32 boroughs and the City of London are made up of wards. The wards in the United
Kingdom are electoral districts at the sub-national level represented by one or more councillors and are
made up of postcodes. Socio-economical and geographical data of these postcodes, grouped in wards
and districts, provide vital information for air traffic modelling. Therefore, this has been researched and
structured as can be seen in Table 4.1.

Greater London has experienced significant urbanisation, resulting in a 41% rise in its population since
1980 [132]. This shows a considerably larger percentage increase compared to the 22% for United
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Figure 4.1: Overview of London’s 33 governmental districts (Boroughs + City of London)

Table 4.1: Overview of Greater London District Characteristics of 2019 [12, 103]
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Kingdom population for the same period [107]. UK’s and Greater London’s population growth since
1980 and its projections up to 2035 can be observed in Figure 4.2 and Figure 4.3.

Figure 4.2: Greater London Population Growth 1950-2035 Figure 4.3: United Kingdom Population Growth 1950-2035

Greater London is surrounded by the so-called ’London Metropolitan Area’, which includes Greater
London and its surrounding commuter zone. This is the area in which it is practicable to commute to
work in London and is also known as ’the London commuter belt’ or ’Southeast metropolitan area’.
Greater London produced £503 billion in 2019 while its metropolitan area - being the largest in Europe
- generated £730 billion, contributing 33% to the UK’s GDP of £2.2 trillion [104, 15, 58, 59].

4.2. Greater London Airports
This Greater London Area is served by the airports listed below and their distribution within the region
can be observed in Figure 4.4.

1. London Heathrow Airport (LHR)

2. London Gatwick Airport (LGW)

3. London City Airport (LCY)

4. London Luton Airport (LTN)

5. London Stansted Airport (STN)

6. London Southend Airport (SEN)

The London airport system is one of the busiest transportation nodes by passenger volume worldwide.
Combined, the six international airports handled over 180 million passengers in 2019.

London Heathrow Airport (LHR) is the busiest airport in the UK and one of the busiest in Europe with
81 million passengers in 2019, operating near full capacity for a decade now. It is located west of
London’s city centre, which can be accessed within 15 minutes with public transport. It is focused on
intercontinental and long-haul O&D passengers served by full-service carriers.

London Gatwick Airport (LGW) is the second busiest airport in London and served 46.6 million
passengers in 2019. It is located south of London’s city centre and can be reached through public
transport within 42 minutes. It is focused on tourism traffic and low-cost operators.

London City Airport is located near the heart of the financial district of London and served 5.1 million
passengers in 2019. Owing to its convenient location in the financial district, also referred to as the
commercial business district (CBD), London City Airport accommodates business traffic arriving from
major cities in Europe. 80% of traffic is international and British Airways is the main airline serving the
airport.

London Luton (LTN), Stansted (STN) and Southend Airport (SEN) are all located roughly 50 km from
the city centre. These airports served 18, 28 and 2 million annual passengers in 2019 respectively, of
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Figure 4.4: MAR Overview

which 90% were international passengers. They all focus on tourism traffic and low-cost carriers. An
overview has been made of relevant airport data as can be seen in Table 4.2.

Table 4.2: Overview of London Airports [4, 5, 111, 3, 94]

Due to urbanisation, rising air traffic demand has resulted in a 41% rise in air traffic passengers using
these airports in the last decade. This has resulted in pressure on airport capacity. Especially airports
that focus on international traffic have shown a strong increase in air traffic passengers. Major factors
driving this besides urbanisation are the rising amount of companies and their size in the commercial
business district of London, and the increased tourism destinations Southeast London offers. In
Figure 4.5, the rise in air traffic demand in the Greater London Area since 2010 can be observed.



4.3. Greater London Strategy 49

Figure 4.5: London Airport’s Air Traffic 2010-2019

4.3. Greater London Strategy
The UK has the largest aviation network in Europe and the third-largest in the world. Aviation directly
contributes at least £22 billion to the economy and supports 0.5 million jobs. The government supports
the growth of aviation and the benefits this could deliver, provided that growth sustainably takes place,
with actions to mitigate the environmental impacts.

Despite many advantages of a growing UK aviation, it faces various challenges that need to be
overcome to take advantage of the opportunities the future holds, and to realise the benefits of
sustainable growth while remaining at the forefront of aviation. All of these challenges are applicable
to the aviation market in the Greater London Area, being UK’s global hub. These challenges include:

• Global change and shifting markets;

• Impact of competition on business models;

• Increasing air traffic demand;

• Changing expectations of passengers;

• Effects of international climate change;

• Unlocking the full potential of modern technology.

As a result of increasing air traffic demand and a lack of capacity, the London airspace is full of holding
stacks, which are circular flight paths where arriving aircraft often need to hold in before landing,
resulting in delays and extra noise and carbon emissions. To safeguard its role as a major international
hub and one of the leading aviation and aerospace sectors, the UK and Greater London must be
well-positioned to take advantage of new opportunities while managing the potential economic, political
and environmental challenges along the way. The UK Transport Department has set up an aviation
strategy based on seven themes that will aid in achieving this.

1. Build a global and connected Britain;

2. Ensure aviation can grow sustainably;

3. Support regional growth and connectivity;

4. Enhance the passenger experience;
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5. Ensure a sage and secure way to travel;

6. Support general aviation;

7. Encourage innovation and new technologies.

Build a global and connected Britain
Greater London plays a prominent role on the world stage being the largest international aviation
network in Europe and the third largest worldwide. To keep this role, new connecting markets must
emerge, and rising air traffic demand must be facilitated. Hereby, it is important to improve global
standards, maintain and improve UKs connectivity, and support UK aviation export.

Ensure aviation can grow sustainably
To facilitate rising air traffic demand, the MAR should increase capacity and optimise operations.
This should be done in partnership with governments, regulators and the industry to provide a
comprehensive policy framework to better manage the environmental impacts of the sector. This
framework is summarized in Figure 4.6. It concludes an extra Northwest runway at Heathrow and
optimising runway use at surrounding airports will meet forecasted aviation demand up to 2030.

Figure 4.6: Partnership for sustainable growth

Support regional growth and connectivity
Airports are vital hubs for local economies, providing connectivity, employment and a hub for local
transport schemes. To maximise these benefits, the following must be ensured:

• Markets are functioning effectively for consumers and local communities;

• Airports are delivering the connectivity that regions need to maximise their potential;

• The industry continues to provide high-quality training and employment opportunities;

• Barriers to the air freight industry are reduced.
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Enhance the passenger experience
The industry is responsive to the needs of consumers but improvements can be made for passengers
with additional needs. The UK government is working on a new ’Passenger Charter’ to promote good
practice in the sector, create a shared understanding of the level of service passengers should expect,
and communicate roles and accountability clearly. The government proposes to take necessary action
to improve the experience at the border and tackle problems caused by disruptive passengers. It
will also consider strengthening the Civil Aviation Authority’s range of enforcement powers across the
consumer agenda. Aviation strategic plans focus on:

1. Sets out the proposed standards that could be included as part of a new Passenger Charter for
aviation;

2. Sets out a range of new measures for passengers with additional needs;

3. outlines measures to tackle the problem of disruptive passengers associated with alcohol
describes the government’s approach to improving the operating model at the border to enhance
the passenger experience;

4. Details proposals for simplifying and improving complaints and compensation procedures;

5. Sets out the government’s proposals for ensuring that consumers have timely access to the
information they need to make informed choices.

Ensuring a safe and secure way of travel
The UK is a global leader in aviation security and safety, having one of the best and safest aviation
systems in the world. The government and CAA share knowledge and expertise with other nations,
encouraging them to adhere to international standards and implement improvements with the industry
to make the skies safer for everyone. To maintain UK’s safety record, the aviation strategy focuses on:

• Addressing concentration of safety risks;

• Targeting emerging safety risks;

• Improving data and reporting;

• Addressing global variations in safety standards.

Support General Aviation
General Aviation (GA) sector contains non-scheduled civil aviation; business jets, pilot training,
emergency service flights, air displays and aerial photography as well as private flying. Aircraft include
single and multi-engine fixed-wing aeroplanes, helicopters, gliders, balloons, microlights, paragliders
and model aircraft. UK’s aviation strategy proposes to encourage growth in GA and indicates where
GA should seize the initiatives and capitalise on its opportunities. It’s focused on:

• How to reduce regulation;

• Strategic networks;

• Support for new existing commercial activities;

• Airspace;

• Safety;

• Safeguarding of aerodromes.

Encourage innovation and new technology
Innovation is key to delivering the outcomes of the UK governmental aviation strategy. They want to
capture the benefits of innovation for consumers by unlocking mobility and offering new options on how
people and goods can move around; and for the aerospace and aviation sectors, to maintain the UK’s
global leadership, help support jobs, increase productivity, and boost our trade and export capabilities.
Focus-points are:
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• Set out areas of opportunity for innovation in aviation - automation, electrification, digitisation and
data sharing;

• Identify barriers to innovation and how these can be addressed by the government in its enabling
role, working in partnership with the sector;

• Propose measures to better align policy and investments.

4.4. Methodology Illustration
This section presents and quantifies the methodology for The Greater London Region.

4.4.1. Regional Air Traffic Demand Forecast
The regional air traffic demand forecast analyses the correlation between socio-economic variables
and air traffic activity, and uses projections of these variables and their correlation with air traffic activity
to project air traffic activity in the MAR. Two variables have been proven to drive air traffic demand;
GDP and oil prices. Data and projections of these variables are only available on a national level, and
therefore, an initial analysis is performed using UK air traffic data. Then, using the correlation of UK air
traffic and Greater London air traffic, national GDP and oil price data will be linked to Greater London
air traffic activity.

First, UK’s GDP relationship with UK’s and Greater London’s air traffic demand was researched, in
which three types of data have been used:

• UK historical and projected annual GDP in real GBP [1980 - 2050] [104]

• UK annual air traffic passengers [1980 - 2019] [13]

• Greater London annual air traffic passengers [2010 - 2019]

The relationship between UK’s GDP and UK’s air traffic demand (ATD) was analysed and can be
observed in Figure 4.7. Regression analysis shows UK air traffic demand can be modelled using
Equation 4.1 with an R-squared of 0,9912.

Then, it was analysed howUK air traffic demand is correlated to Greater London (GL) air traffic demand,
of which the result can be observed in Figure 4.8. Greater London air traffic demand can be modelled
using Equation 4.2 with an R-squared of 0,9923.

Combining Equation 4.1 and Equation 4.2, Greater London air traffic demand can be computed from
UK GDP using Equation 4.3.

Figure 4.7: UK air traffic vs UK GDP 1980 - 2019 Figure 4.8: UK air traffic vs GL air traffic 2010 - 2019

𝑈𝐾 𝐴𝑇𝐷𝑘 = −129, 386, 474 + 186.4573942 ⋅ 𝐺𝐷𝑃 𝑈𝐾𝑘 (4.1)

𝐺𝐿 𝐴𝑇𝐷𝑘 = 5.7138 + 0.587 ⋅ 𝑈𝐾 𝐴𝑇𝐷𝑘 (4.2)
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𝐺𝐿 𝐴𝑇𝐷𝑘 = 5.7138 + 0.587(−129, 386, 474 + 186.4573942 ⋅ 𝐺𝐷𝑃 𝑈𝐾𝑘)
𝐺𝐿 𝐴𝑇𝐷𝑘 = −75, 949, 854.52 + 109.45049 ⋅ 𝐺𝐷𝑃 𝑈𝐾𝑘 ,

(4.3)

Where:
𝑘 = Year
𝑈𝐾 𝐴𝑇𝐷𝑘 = United Kingdom air traffic demand in year k
𝐺𝐷𝑃 𝑈𝐾𝑘 = Gross Domestic Product of United Kingdom in year k
𝐺𝐿 𝐴𝑇𝐷𝑘 = Greater London air traffic demand in year k

Besides, over the years 2010 - 2019, it was observed 61.00% of UK air traffic demand used Greater
London airports, which can be observed in Figure 4.9. Therefore, Greater London air traffic demand
was assumed to be 61.00% of UK air traffic demand. This assumption is more accurate in modelling
Greater London air traffic demand compared to the method described by Equation 4.3. Therefore, the
61% assumption is used for the Regional Air Traffic Demand Forecast.

Figure 4.9: UK and Greater London air traffic demand from 2010 - 2019

Another variable that has proven to be related to air traffic demand is oil prices [33]. So, a regression
analysis was performed using real oil prices as independent variables and UK air traffic demand as
dependent variable. The results are presented in Figure 4.10 and show insufficient correlation and
therefore oil prices are not used as predictor variables for UK air traffic demand, nor for Greater London
air traffic demand.

Figure 4.10: Relationship between real crude oil price and UK air traffic passenger demand
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So, historical UK GDP was found to be correlated with UK air traffic demand, which was found to be
correlated with Greater London air traffic demand over the years 2010 - 2019. Projections of UK GDP
up to 2050 were used to project UK air traffic levels, which were used to project Greater London air
traffic levels up to 2050. Its results can be found in chapter 5.

4.4.2. Airport Performance
The relative performance of airports is characterised by their attractiveness for air traffic passengers
relative to other airports in Greater London. Airport performance is measured based on three key
performance indicators; accessibility, airfare and connectivity.

For the accessibility computation, travel times for each airport district combination are weighted by
the wealth adjusted population of those districts. Greater London has 33 districts and six airports,
which means a list of 6 by 33 is created. For the travel time computation in Equation 3.4, the ratio
of public transport (𝑅𝑝𝑢𝑏𝑙𝑖𝑐 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡) and private vehicles (𝑅𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒) access to airports has to
be determined. The portion of air traffic passengers accessing the largest four London airports using
private vehicles and public transport can be observed in Figure 4.11:

Figure 4.11: Airport access mode 2019

Taking the average for these London airports in 2019, 58% of air traffic passengers access airports
using private vehicles and 42% access through public transport. Car transport is considered for the
classification of private vehicles. Using these values for 𝑅𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 and 𝑅𝑝𝑢𝑏𝑙𝑖𝑐 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡, travel
times for each airport-district combination can now be computed using Equation 3.4 and compared
with straight-line distances using Equation 3.3 for each airport-district combination.

For both methods, the mean value for the six London airports was computed to compare them.
The hypothesis stated travel times show a smaller disparity than straight-line distance, which can be
accepted in the case of Greater London. In Figure 4.12 and Figure 4.13, the results can be observed.
To analyse the disparity between the values within average airport travel times and average airport
distances, the maximum value from each series was divided by the minimum value of each series.
This is 1.76 and 3.49 for travel time and distance respectively, which shows the disparity between
travel time values is smaller compared to distances. This is because transport modes generally offer
higher velocities for longer distances.

Travel time results in a more representative measure for accessibility than straight-line distance and is
therefore taken into the computational method together with population and income.

The second variable that was included in the computation of airport accessibility is population.
Population data was gathered at the London district level, of which the results can be observed in
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Table 4.3. Summing up these values shows the population in London districts combined has risen
13,0% from 2010 to 2019, as can be observed in Figure 4.14.

Figure 4.12: Average airport access time in minutes Figure 4.13: Average airport distance from London districts

Table 4.3: London District Population 2010 - 2019 [11]

Figure 4.14: Greater London population development 2010 - 2019
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The third variable included in the airport accessibility computation is wealth. This research has gathered
average income data, in the form of average gross earnings (GBP) per London district through the years
2010 - 2019, which can be observed in Table 4.4. No data was available to analyse the exact elasticity
of income to air traffic demand. Therefore, it was assumed population and income contribute equally
to the performance of an airport’s accessibility.

Table 4.4: Average household income in London 2010 - 2019 [105]

The steps for airfare and connectivity do not need any case illustration, since their results can be directly
presented in chapter 5.

4.4.3. Airport Allocation and Market Shares
The final step of the quantitative model contains the airport allocation and computation of its market
shares. A multivariate regression model mathematically correlates historical airport performance
regarding their relative accessibility, airfares, and connectivity, to their historical market shares. The
results are used to compute the number of air traffic passengers that utilise an airport in the MAR
Greater London in a specific year using Equation 4.4, which can be observed below. This formula is
similar to Equation 3.23, which uses the results of Equation 3.22.

𝑃𝑖,𝑘 = 𝐺𝐿 𝐴𝑇𝐷𝑘 ⋅ 𝑌𝑖,𝑘 (4.4)

Where:

𝑃𝑖,𝑘 = Air traffic passengers using airport i in year k
𝐺𝐿 𝐴𝑇𝐷𝑘 = Greater London air traffic demand in year k, as can be calculated in Equation 4.3
𝑌𝑖,𝑘 = Market share of airport i in year k
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Modelling Results

This chapter provides the results of the quantitative model. First, the results of the regional air traffic
demand forecasts will be shared. Second, the scores for the airport’s key performance indicators will
be displayed. Third, the results of the regression analysis, airport allocation and market shares will be
visualised and explained. Fourth and final, a scenario in the MAR using the quantitative model will be
analysed.

5.1. Regional Air Traffic Demand Forecast
In this first step of the quantitative model, it was found UK GDP was correlated with UK air traffic
demand, which was found to be correlated with Greater London air traffic demand over the period
2010 - 2019. This correlation was found using a regressions analysis, which in combination with UK’s
GDP projections, could project Greater London air traffic levels up to 2050.

First, the statistical results of the regression with UK GDP as independent (explanatory) variable and
UK air traffic demand as dependent (response) variable are presented in Table 5.1.

Table 5.1: Regression analysis results: UK GDP - UK air traffic demand 1980 - 2019

The correlation between UK GDP and UK air traffic demand can thus be captured by Equation 5.1.

𝑈𝐾 𝐴𝑇𝐷𝑘 = −129𝐸6 + 186.45739 ⋅ 𝑈𝐾 𝐺𝐷𝑃𝑘 (5.1)

Where:

𝑈𝐾 𝐴𝑇𝐷𝑘 = UK air traffic demand in year k
𝑈𝐾 𝐺𝐷𝑃𝑘 = UK GDP in GDP in year k

Second, the correlation between UK air traffic demand and Greater London (GL) air traffic demand
was analysed. Two mathematical correlations were identified as accurate. The first correlation was
computed using a regression and the second identified that GL traffic was a 61.00% fraction of UK
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traffic. It was concluded that the 61.00% assumption was implemented in the model. Therefore the
following formula mathematically explains their correlation.

𝐺𝐿 𝐴𝑇𝐷𝑘 = 0.61 ⋅ 𝑈𝐾 𝐴𝑇𝐷𝑘 (5.2)

Where:

𝐺𝐿 𝐴𝑇𝐷𝑘 = Greater London air traffic demand in year k

Combining Equation 5.1 and Equation 5.2 with UK GDP projections results in Figure 5.1.

Figure 5.1: Results Regional Air Traffic Demand Forecast

5.2. Airport Performance
The next step in the quantitative model was to model airport performance through its three key
performance indicators; accessibility, airfares and connectivity. This section will analyse the
intermediate and final results of this scoring methodology.

Accessibility
The accessibility of airports was computed using wealth adjusted population and airport access time
computations from London districts. For each airport each year, the accessibility (𝐴𝑖,𝑘) was computed
using Equation 3.11. The scoring mechanism from accessibility index (𝐴𝐼𝑖,𝑘) to points (𝐴𝑃𝑖,𝑘) to final
score (𝐴𝑖,𝑘) for the six London airports in 2019 can be observed in Table 5.2.

Table 5.2: Scoring mechanism for accessibility in 2019

The final accessibility results, being the values 𝐴𝑖,𝑘 for 2010 - 2019 can be observed in Figure 5.2. The
results for 𝐴𝑖,𝑘 show a stable behaviour and therefore, not every year is plotted.
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Figure 5.2: Results Airport Accessibility

The scores throughout the years do not change much. For example, LGW obtained 8,67 in 2010 and
8,78 in 2019. Airport-district distances have not changed from 2010 to 2019, and it has been proven that
the infrastructural facilities have not been significantly improved in transporting people faster through
this infrastructural network. Therefore, the travel time computations have been assumed to be constant.

Total population has increased 11% over nine years, in which total income has increased 13%.
However, the relative distribution of population and income within each year has remained stable.
For income, the standard deviation was £5047.66 and £4998.83 for 2010 and 2019 respectively. This
means that 95% of the income values are captured in [£18,122 - £38,313] and [£21,771 - £41,767] for
2010 and 2019 respectively. For population, the standard deviation was 68.074 and 77.977 in 2010 and
2019 respectively. This means 95% of the population values are captured in [108,139 - 380,436] and
[119,989 - 431,899] for 2010 and 2019 respectively. This tells us that the data is comparably dispersed
for income and population within each year from 2010 to 2019. Together with the constant travel time
computation, this explains the stable behaviour of airport accessibility performance.

It can be seen that the following rank emerges in terms of airport accessibility performance. This shows
that the most centre-located airport, LCY, has indeed the highest accessibility. Also, it shows London
Southend Airport, located far away from the majority of districts, scores the lowest every year.

1. London City Airport (LCY)

2. London Heathrow Airport (LHR)

3. London Gatwick Airport (LGW)

4. London Luton Airport (LTN)

5. London Stansted Airport (STN)

6. London Southend Airport (SEN)

Airfare
Airfares have been analysed on aggregate - and trip level, either being domestic, regional, continental
or intercontinental. The results on aggregate level (for t = 5) are computed in Equation 3.14 and result
in values for 𝐹𝑖,𝑘, which are visualised in Figure 5.3. These are used in the third modelling block
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considering the regression analysis for airport allocation using Equation 3.22. Airport airfare results
per trip level for 2019 can be observed in Figure 5.4.

Figure 5.3: Results Airport Airfare

Figure 5.4: Airfare per trip level

It can be observed airport airfare performs much more volatile than airport accessibility, which in
essence is caused by the fluctuating balance of supply and demand. Airlines drive their airfares
based on real-time algorithms that fluctuate prices based on shifts in demand and available seats.
The demand is captured by web-browsing activity capturing the popularity of destinations.

Several common factors influence airfare. First, airlines look at two types of consumers, early - and
last-minute purchasers. An early purchase generally can wait some time to find the best deal, but
often will simply buy relatively affordable tickets, since predicting the exact lowest price point is difficult.
Last-minute purchasers often pay a relatively high price for a ticket since airlines know some consumers
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have no other option. The ratio of these type of passengers changes continuously. Second, airlines
anticipate their prices based on the forecasted popularity of destinations, which changes throughout
the years.

The following rank can be observed from the 2019 data.

1. London Stansted Airport

2. London Luton Airport

3. London Gatwick Airport

4. London London Heathrow Airport

5. London Southend Airport

6. London City Airport.

London City Airport is in the heart of the financial district whichmakes it attractive for business travellers.
This makes the airport expensive which is shown in the results. Stansted Luton and Gatwick are located
further away but focus on low-cost carriers, which make them relatively less expensive.

Connectivity
Airport connectivity (𝐶𝑖,𝑘) is computed using ACI’s NetScan method in Equation 3.21 and its results
are presented here. First, the evolution of London’s largest international airport Heathrow is presented
in Figure 5.5, after which the evolution of the remaining five airports is shown in Figure 5.6. The total
connectivity scores for each airport for the years 2010 - 2019, being 𝐶𝑖,𝑘, can be observed in Figure 5.7.
The values for 𝐶𝑖,𝑘 are used for the regression analysis for airport allocation in Equation 3.22.

Figure 5.5: LHR Connectivity Index 2010 - 2019 Figure 5.6: Airport Connectivity Indices 2010 - 2019

From Figure 5.6, it can be observed that all airports except London Gatwick have a stable airport
connectivity performance over time. London Gatwick is London’s second-largest airport in terms of air
traffic passengers, after London Heathrow, which has been operating at 98% for a decade already.
From Figure 5.5, it can be observed the number of destinations, and thereby the connectivity index
of Heathrow has increased from 2010 to 2013, after which expanding its operations to even more
destinations was not possible due to capacity constraints. However, the demand for international
transport kept rising, which has since been facilitated by London Gatwick, resulting in an increase
in its connectivity since 2013.
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Figure 5.7: Results Airport Connectivity

The following ranking can be made concerning airport connectivity:

1. London London Heathrow Airport

2. London Gatwick Airport

3. London Stansted Airport

4. London City Airport.

5. London Luton Airport

6. London Southend Airport

5.3. Airport Allocation and Market Shares
Airport market shares can be modelled using Equation 3.22, and together with Equation 3.23, the
allocation of air traffic passengers amongst airports in theMAR can be completed. This section provides
the results of the airport key performance indicator computation and aggregate multivariate regression
analysis, necessary to fill in these equations.

These results are presented in the following structure:

1. Results for airport key performance indicator computation; (Figure 5.8 - Figure 5.17)

2. Historical market shares of airports in the MAR; (Figure 5.18)

3. Statistical results of multivariate regression analysis, correlating airport key performance
indicators to airport market shares; (Table 5.3)

4. Comparing modelled and actual historical market shares (Figure 5.19 and Figure 5.20)

5. Final results of air traffic allocation. (Figure 5.21)

First, the results for airport key performance indicator computations for the period 2010 - 2019 is
presented.
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Figure 5.8: Airport KPI Results 2010 Figure 5.9: Airport KPI Results 2011

Figure 5.10: Airport KPI Results 2012 Figure 5.11: Airport KPI Results 2013

Figure 5.12: Airport KPI Results 2014 Figure 5.13: Airport KPI Results 2015

Figure 5.14: Airport KPI Results 2016 Figure 5.15: Airport KPI Results 2017
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Figure 5.16: Airport KPI Results 2018 Figure 5.17: Airport KPI Results 2019

Second, the historical market shares of airports serving the MAR from 2010 to 2019 are presented.
The multivariate regression model attempts to correlate the historical airport performance, in terms of
accessibility, airfare, and connectivity, to these historical market shares.

Figure 5.18: Greater London’s historical market shares

Third, the statistical results of the multivariate regression analysis is presented. In total, there are now
60 observations, for a period of ten years in which six airports have been analysed according to three
key performance indicators.

Table 5.3: Regression Results
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These results tell us that the model is able to predict airport market shares with an R-squared of 0,951,
which means 95,1% of the variation in market shares can be explained by the KPI scores. Each KPI
shows a logical coefficient sign, where connectivity is the most dominant KPI, followed by airfare and
accessibility. All P-values are lower than 0.0247, which indicates that at a significance level of 97%,
the null-hypothesis, being that the explanatory variables have no effect or relationship on the response
variable, is rejected. So, the airport’s key performance indicators are all well-correlated with the market
shares of these airports. Especially airfare and connectivity show good values.

With the results from the multivariate regression analysis, Equation 3.22 can be filled in resulting in
Equation 5.4, as shown below.

𝑌𝑖,𝑘 = 𝛽 + 𝛼 ⋅ 𝐴𝑖,𝑘 + 𝜏 ⋅ 𝐹𝑖,𝑘 + 𝜎 ⋅ 𝐶𝑖,𝑘 (5.3)

𝑌𝑖,𝑘 = −0.3803 + 0.0095 ⋅ 𝐴𝑖,𝑘 + 0.0398 ⋅ 𝐹𝑖,𝑘 + 0.0445 ⋅ 𝐶𝑖,𝑘 (5.4)

Where:

𝑌𝑖,𝑘 = Market share of airport i in year k
𝛽 = Interception point = -0.3803
𝛼 = Coefficient for accessibility = 0.0095
𝐴𝑖,𝑘 = Accessibility score for airport i in year k
𝜏 = Coefficient for airfare = 0.0398
𝐹𝑖,𝑘 = Airfare score for airport i in year k
𝜎 = Coefficient for connectivity = 0.0445
𝐶𝑖,𝑘 = Connectivity score for airport i in year k

Now, 𝑌𝑖,𝑘 can be computed if values for 𝐴𝑖,𝑘, 𝐹𝑖,𝑘, and 𝐶𝑖,𝑘 are known. This has been done for the
historical years 2010 - 2019 to test the model’s performance. In Figure 5.19, the modelled and actual
airport market share for 2019 is presented. Another comparison betweenmodelled and actual historical
market shares has been made for 2010 - 2019 by visualising the difference in terms of percentage
between them in Figure 5.20.

Figure 5.19: Modelled vs actual market share for London airports in 2019
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Figure 5.20: Modelled vs actual market share for London airports 2010 - 2019

Both from Figure 5.19 and Figure 5.20, it can be observed that the model over predicts the market
share for Luton and under predicts the market share for Gatwick. This is caused by the omission of
airport capacity constraints in the market share modelling. Luton airport performs at such a level, that
the model assigns a higher market share, and thus more air traffic passengers than it can facilitate.
Luton airport has been operating at 95% in 2019. It is likely that air traffic demand, which can not
be facilitated at Luton, is ’diverted’ to another airport with capacity, such as Gatwick, which has been
operating only at 62% in 2019. So, the model assigns more air traffic passengers, and thus a higher
market share to Luton, which it cannot facilitate based on its capacity. Therefore, air traffic demand
that can not use Luton, will likely use Gatwick in reality, which is not captured by the model, resulting
in a lower modelled market share for Gatwick.

For forecasting use of this model, it is assumed 𝐴𝑖,𝑘, 𝐹𝑖,𝑘, and 𝐶𝑖,𝑘 remain constant. These values can
be adapted such that, for example, an improved railway connection to airport 1 results in an increased
𝐴𝑖,𝑘 for 𝑖 = 1 and a decreased 𝐴𝑖,𝑘 for 𝑖 ≠ 1. These adapted airport accessibility scores will translate to
an adaptation in the projected airport market shares. For this model, key performance indicator scores
can be improved through a scalar value. Calibrating these scalars is left for future research.

As fifth and final step, the number of air traffic passengers utilising airports in the MAR in a given year
can be modelled using Equation 3.23, which is again shown below, but now Greater London (GL)
represents the MAR

𝑃𝑖,𝑘 = 𝐺𝐿 𝐴𝑇𝐷𝑘 ⋅ 𝑌𝑖,𝑘 (5.5)

This formula can now be applied since 𝑌𝑖,𝑘 is known from the multi-variate regression results and airport
key performance indicators, and 𝐺𝐿 𝐴𝑇𝐷𝐾 has been obtained from the regional air traffic demand
forecast. The results can be observed in Figure 5.21.
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Figure 5.21: Air traffic allocation model results

5.3.1. Scenario: Airport Removal
The quantitative model can be used to compute/simulate how the performance of airports and therefore
the allocation of air traffic passengers in the MAR adapt to strategic implementations in the region.
Using the results of the regression model, which can be observed in Equation 5.4, such simulations can
be performed. To illustrate this, several scenarios of strategic implementations have been identified:

1. The MAR is extended with an additional airport;

2. One MAR airport is closed for operations;

3. The region’s infrastructure is improved which can result in various airports receiving an improved
relative accessibility performance;

4. Airlines implement lower and thus more attractive fares for their flights, which can result in various
airports receiving an improved relative airfare performance;

5. Airports expand their operations, perhaps by adding a new runway, which allows current and/or
new airlines to expand their air traffic movements at that airport resulting in additional destinations.
This can result in that airport receiving an improved relative connectivity performance.

Scenario two, the removal of an airport, is chosen as a scenario to simulate with the quantitative model
because of several reasons. Scenario 1 will be inaccurate since imaginary data must be implemented
for the additional airport. Scenarios 3, 4, and 5 present a more realistic scenario than scenario 2 but
also present some difficulties. It is yet to be substantiated what the quantitative benefit of strategic
implementations in the region is on accessibility, airfare and connectivity, since this is left outside the
scope of this research.

An improved railway connection can increase an airport’s accessibility. To quantify this, the improved
travel time in minutes must be computed, which is only known after the infrastructural improvement is
realised, except when accurate computations have already been made simulating the reduced travel
times to airports. Airlines lowering their airfares can result in an improved airport airfare performance,
but exactly to what extent this improves the airfare scoring depends on the evolution of prices, which
are driven by many variables. The behaviour of airline prices and their predictions are left outside the
scope of this research. Improved airport connectivity performance can only be computed when the
data on planned additional destinations are available.
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Because of these reasons, scenario 1 was chosen to be simulated by the model. Greater London is
served by six airports. London Heathrow is UK’s most crucial international hub airport and is therefore
not chosen to ’be closed’. London City, Luton, Southend, and Stansted are the smallest four airports
in Greater London, and removing them would not show significant adaptations in the performance of
other MAR airports, thus neither for the adapted allocation of air traffic passengers. Therefore, London
Gatwick Airport was chosen to ’be closed’. The quantitative model has been performed over the new
MAR without Gatwick for 2019 using the results of the quantitative model with in Equation 5.4. This
results in the adapted relative performance of the remaining five London airports, and also an adaptation
in the allocation of air traffic passengers since traffic at London Gatwick now must be re-allocated. The
adapted performance can be observed in Figure 5.22.

Having the adapted performance scores for Equation 5.4, the adapted market shares 𝑌𝑖,2019 can be
computed. These are shown and compared with the ’original’ market shares when Gatwick was still
included in Figure 5.23. Heathrow Airport (LHR) will grow by 12%, which equals a rise of 27% compared
with its original market share, and City (LCY), Luton (LTN), Southend (SEN), and Stansted (STN) will
rise by 0%, 80%, 49%, and 32% compared with their original market share respectively. This means
that from the 46.6 million air traffic passengers that would use Gatwick, 22.6 million will re-allocate to
Heathrow, 14.4 million to Luton, 9.1 million to Stansted and the remaining 0.5 million will be re-allocated
to City and Southend combined.

Figure 5.22: Adapted KPI results 2019 Figure 5.23: Adapted vs Original Market Shares 2019

Using Equation 5.5, the allocation of air traffic passengers over airports can be computed. Assuming
London Gatwick Airport is closed after 2019, the number of air traffic passengers utilising airports in
the MAR up to 2050 can be observed in Figure 5.24.

Figure 5.24: Adapted air traffic passenger allocation over MAR airport
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Forecasting Framework

The results of the quantitative model are progressed with the Forecasting Framework. This part of
the research is concerned with the second sub-goal of this research; ’Understand market dynamics of
passenger integrated transport systems in a MAR. Forecasting its underlying determinants can provide
estimates for the future transport system in a MAR, which accommodate and facilitate smooth future
operations of used logistical components.’ The forecasting framework investigates the opportunities
to use the quantitative model for strategic implementations in a multi-airport region. Therefore, this
chapter is divided into two main sections.

Urbanization leads to rising air traffic demand, but is there enough capacity to facilitate this. Therefore,
the first section covers capacity limiting factors for air traffic in the region. The quantitative model can be
used to forecast the amount of air traffic passengers utilising airports in the MAR, which helps identify
when airports (will) operate at their limit.

To ensure aviation in Greater London can grow with the expected demand sustainably, this
research has investigated the major topics that are involved here and identified methods of how the
forecasting framework can aid in delivering more accurate substantiations for political and strategic
implementations. Therefore, the second section of this research concerns the future growth of the
Greater London Area.

6.1. Capacity Limit
The capacity in terms of facilitating air traffic in a MAR is determined through three factors:

1. Airport capacity;

2. Airspace capacity;

3. Infrastructural capacity.

These three factors can constrain the facilitation of air traffic demand growth, which is assumed to
grow according to the regional air traffic forecast. If the region would remain unconstrained, air traffic
demand is expected to rise 82% from ±180 million to ±320 million passengers in the next 31 years, as
can be seen in Figure 6.1.

69
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Figure 6.1: MAR expected growth next 31 years

6.1.1. Airport Capacity
Airport capacity is defined as ’a measure of the maximum number of aircraft operations that can be
accommodated on the airport or by an airport component within a given period of time’ [152]. Aircraft
operations in terms of air traffic movements can be converted to air traffic passengers through the
aircraft seat capacity and load factors. To evaluate the potential growth The Greater London Area
can handle, the level of airport utilisation and capacity was analysed and presented in Figure 6.2 and
Figure 6.3.

Figure 6.2: London airports utilisation in 2019 Figure 6.3: London airports utilisation percentage in 2019

London Heathrow, Luton and Southend airport have been operating above 90% in 2019, with Heathrow
operating at 98% for the last decade. Future air traffic demand growth is likely to not be facilitated by
these airports, which will be analysed in section 6.2.

6.1.2. Airspace Capacity
FIRs
All airspaces around the world are divided into Flight Information Regions (FIRs). Each FIR is managed
by a controlling authority that has responsibility for ensuring that air traffic services are provided to the
aircraft flying in them. The Civil Aviation Authority (CAA) is the controlling authority in the UK and
National Air Traffic Services (NATS) provides air traffic services to them.

FIRs vary in size. Smaller countries may have one FIR in the airspace above them and larger countries
may have several. Airspace over the ocean is typically divided into two or more FIRs and delegated to
controlling authorities within countries that border it. In some cases, FIRs are split vertically into lower
and upper sections. The lower section remains referred to as an FIR, but the upper portion is referred
to as an Upper Information Region (or ‘UIR’).
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Airspace within an FIR (and UIR) is usually divided into pieces that vary in function, size and
classification. Classifications determine the rules for flying within a piece of airspace and whether it is
‘controlled’ or ‘uncontrolled’. Aircraft flying in controlled airspace must follow instructions from Air Traffic
Controllers. Aircraft flying in uncontrolled airspace are not mandated to take air traffic control services
but can call on them if and when required (e.g. flight information, alerting and distress services).

UK FIRs
UK Airspace is divided into three FIRs: London, Scottish and Shanwick Oceanic, as can be seen in
Figure 6.4

Figure 6.4: UK FIRs [109]

The London FIR covers England and Wales. The Scottish FIR covers Scotland and Northern Ireland.
The Shanwick Oceanic FIR covers a region of airspace totalling 700,000 square miles over the
North-East Atlantic. NATS manages the airspace within these FIRs from two air traffic control centres
– one in Swanwick (Hampshire) and the other in Prestwick (Ayrshire).

NATS Swanwick Centre operates since 2002 and combines:

• The London Area Control Centre (LACC) which manages en-route traffic in the London Flight
Information Region. This includes en-route airspace over England and Wales up to the Scottish
border.

• The London Terminal Control Centre (LTCC) handles traffic below 24,500 feet flying to or from
London’s airports. This area, one of the busiest in Europe, extends south and east to the borders
of France and the Netherlands, west towards Bristol and north to near Birmingham.
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• Military Air Traffic Control which provides services to military aircraft (and civil aircraft when
required) operating outside of controlled airspace. They work closely with civilian controllers to
ensure the safe coordination of traffic.

NATS Prestwick Centre operates since 2010 and combines:

• The Manchester Area Control Centre (MACC), which controls aircraft over much of the north of
England, the Midlands and North Wales from 2,500 feet (762m) up to 28,500 feet (8,687m).

• The Scottish Area Control Centre (SCACC), which controls aircraft over Scotland, Northern
Ireland, Northern England and the North Sea from 2.,00 (762m) feet up to 66,000 feet (20,117m).

• The Oceanic Area Control Centre (OACC), which controls the airspace over the eastern half of
the North Atlantic from the Azores (45 degrees north) to a boundary with Iceland (61 degrees
north).

UK Airspace Classes
In the UK there are currently five classes of airspace; A, C, D, E and G. The classification of the airspace
within an FIR determines the flight rules which apply and the minimum air traffic services which are to
be provided. Classes A, C, D and E are areas of controlled airspace and G is uncontrolled airspace.
Controlled airspace is provided primarily to protect its users, mostly commercial airliners, and as such,
aircraft that fly in controlled airspace must be equipped to a certain standard and their pilots must hold
certain flying qualifications. Pilots must obtain clearance from Air Traffic Control (ATC) to enter such
airspace and, except in an emergency, they must follow ATC instructions implicitly.

1. Class A. In class A airspace, only Instrument Flight Rules (IFR) flying is permitted. It is the most
strictly regulated airspace where pilots must comply with ATC instructions at all times. Aircraft
are separated from all other traffic and the users of this airspace are mainly major airlines and
business jets.

2. Class C. Class C airspace in the UK extends from Flight Level (FL) 195 (19,500 feet) to FL 600
(60,000 feet). Both IFR and Visual Flight Rules (VFR) flying is permitted in this airspace but pilots
require clearance to enter and must comply with ATC instructions.

3. Class D. Class D airspace is for IFR and VFR flying. An ATC clearance is needed and compliance
with ATC instructions is mandatory. Control areas around aerodromes are typically class D and
a speed limit of 250 knots applies if the aircraft is below FL 100 (10,000 feet).
An aerodrome is a location from which flight operations take place such as large commercial
airports, small General Aviation airfields and Military Air Bases. The term airport may imply a
certain stature (having satisfied certain certification criteria or regulatory requirements) that an
aerodrome may not have. So whilst all airports are aerodromes, not all aerodromes are airports.

4. Class E. Class E airspace is for IFR and VFR use. IFR aircraft require ATC clearance and
compliance with ATC instructions is mandatory for separation purposes. VFR traffic does not
require clearance to enter class E airspace.

5. Class G. In class G airspace, aircraft may fly when and where they like, subject to a set of simple
rules. Although there is no legal requirement to do so, many pilots notify Air Traffic Control of
their presence and intentions and pilots to take full responsibility for their own safety, although
they can ask for help.
Air Traffic Control can provide pilots in Class G with basic flight information service to support their
safe flying. An Alerting Service is also provided if necessary to notify appropriate organisations
regarding aircraft in need of assistance (e.g. search and rescue).

UK Airspace Types
In addition to being given a class, which specifies rules for flying, controlled airspace may be further
defined by its ‘type’ depending on where it is and the function it provides. These can be observed in
Figure 6.5.
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Figure 6.5: UK Airspace Types [109]

1. Control Zones (CTZ). Aerodrome Control Zones afford protection to aircraft within the immediate
vicinity of aerodromes.

2. Control Areas (CTA). Control Areas are situated above the Aerodrome Traffic Zone (ATZ) and
afford protection over a larger area to a specified upper limit. Terminal Control Areas are normally
established at the junction of airways in the vicinity of one or more major aerodromes. The
London Terminal Control Area is an example of this and deals with air traffic arriving and departing
from London Heathrow, Gatwick, Luton, Stansted, London City, Northolt, Biggin Hill, Southend,
Farnborough and other minor airfields in the London area.

Airways are corridors of airspace connecting the Control Areas and link up with airways in other
countries too. Airways are normally 10 miles wide and have bases usually between 5,000 feet and
7,000 feet and they extend upward to a height of 24,500 feet.

Upper air routes (UARs) sit above airways. Their vertical limits are usually FL 250 (25,000 feet) –
FL 460 (46,000 feet). Civil and military aircraft operating above FL 245 (24,500 feet) are subject to
a full and mandatory Air Traffic Control Service. All airspace above 24,500 feet is Class C controlled
airspace.

Restricted areas (sometimes called ‘Danger areas’) prevent aircraft from staying into dangerous places.
Danger can come from airborne activities, such as military aircraft training or air-to-air refuelling. It can
also come from the ground, such as from weapons testing ranges. To ensure efficient use of the
airspace, most Restricted areas can be deactivated when they are not in use, allowing other aircraft to
then use the airspace.

UK Airspace Sectors
To manage the airspace in an FIR, the company providing air traffic control services – often referred
to as the ‘Air Navigation Service Provider (ANSP)’– will divide it into ‘Sectors’. These Sectors are like
3D jigsaw puzzle pieces with differing heights and sizes that interlock to cover the sky. These can be
observed in Figure 6.6.
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Figure 6.6: UK Sector Map [109]

Air Traffic Controllers (ATCOs) and Flight Information Services Officers (FISOs) are allocated to Sectors
to advise and guide the aircraft flying in them. The number, type and skills of those allocated to a Sector
will vary depending on the nature of airspace it covers (e.g. Class and Type as described above as
well as how busy or complex it is). Airspace Sectors can be created and reduced dynamically to deal
with demand. For example, in times when there are high levels of air traffic, more sectors may be
opened with more Controllers allocated to manage the aircraft within an area of airspace. This is done
to maintain safety as a Controller can only manage a certain number of aircraft at one time. In less
busy periods, when there are low levels of air traffic, such as throughout the night, Sectors may be
grouped or ‘band-boxed’, with fewer Controllers managing a larger area
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Holding Stacks
Inbound aircraft in the London Airspace do not always have direct access to their runway. This is caused
by airport delays, and as a result, these aircraft need to wait in so-called ’holding stacks’. Aircraft fly in
circular motions above the airport waiting to land. A visualisation of these London holding stacks can
be observed in Figure 6.7.

Figure 6.7: London Holding Stacks [108]

These stacks result in an increased noise footprint, higher emission levels, and further delays. It is
important to limit these holding stacks by optimising London airspace and airport landing and take-off
throughput.

6.1.3. Infrastructure Capacity
Infrastructural capacity concerns infrastructural facilities that facilitate air traffic passenger transport to
and from airports in the multi-airport region. This includes:

1. Rail. Railway connections like trains and metros are crucial for airport access and transport from
airports to the city. It is shown an average of 61% of air traffic passengers access London airports
by public transport. The frequency of service and passenger capacity of these trains is important
for their total capacity. The benefit of rail connections is that they are not prone to traffic jams
during peak-hour traffic.

2. Road. Private vehicles, taxis, busses and coach services make use of public roads to facilitate
airport-city transport.

Airports should always consider the maximum throughput of air traffic passengers to their terminal when
expanding their operations. If the input of passengers in a terminal for a specified time frame is smaller
than the expected output of passengers, then the expansion is not viable or the accessibility of that
airport/terminal should be increased. In Greater London, public transport schemes currently provide
sufficient capacity to supply the airport with air traffic passengers.

6.2. Future Growth
To facilitate rising air traffic demand in The Greater London Area, several developments have been
identified that started to take shape already. These developments can be grouped into airport
developments and airspace developments since Greater London’s infrastructure are assumed to not
limit air traffic growth at the moment.
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This chapter analyses the potential growth of air traffic in the region using the quantitative model and
identifies whether or not expansion plans will be enough for the expected growth in air traffic demand

6.2.1. Airport Developments
This section analyses Greater London airport expansion plans. First, London Heathrow Airport is
analysed because it is Greater London’s most important airport. Then, developments at the other five
London airports are discussed, after which an aggregate regional demand capacity forecast is made.

London Heathrow Airport
Heathrow is the UK’s only hub airport and the UK’s biggest port by value for trade with countries outside
the EU. Heathrow currently serves more than 200 destinations in more than 80 countries, connecting
the UK to the world and the world to the UK.

It is not just passengers that travel through Heathrow; over £100bn worth of imports and exports from
countries outside the EU were shipped through Heathrow in 2018, helping British businesses access
customers in every corner of the globe. But Heathrow’s existing runways are full and have been for over
a decade. International airlines have grown their route networks at European airports like Paris and
Frankfurt instead. These airports have capitalised on opportunities from new connections to growing
economies in Asia and the Americas.

The airport currently consists of four terminals and two runways, which serve approximately 82 million
passengers per annum. The terminals are accessed from the M25 and M4 and via the local road
network. Rail, London Underground, coach and bus stations are also located in all terminal areas.
Passenger and colleague car parking areas are located around the airport, with frequent bus services
linking these areas to the terminals.

In July 2015, the independent Airports Commission reported the conclusion of its three-year study
examining the need for additional capacity to maintain the UK’s position as Europe’s most important
aviation hub [74]. It found that there is a need for additional runway capacity in The Greater London
Area and unanimously concluded that a new north-west runway at Heathrow airport, combined with
a package of measures to address environmental and community effects, presented the best set of
measures for meeting that need and offered the greatest strategic and economic benefits.

In October 2016, the UK’s Government announced that it endorsed the Airports Commission’s
recommendation, and backed the plan for the new third runway at Heathrow [74]. Besides, it announced
that an Airports National Policy Statement (NPS) would be brought forward to provide policy for
the preferred scheme and that a draft version would be open to public consultation and scrutiny by
Parliament. National Policy Statements are put in place by Government to provide the policy framework
for nationally significant infrastructure projects, such as the expansion of Heathrow.

In June 2018, after being approved by Parliament, the Secretary of State for Transport designated the
Airports NPS, which confirms policy support for a new north-west runway at Heathrow, and establishes
the primary policy framework for deciding whether our proposals to expand Heathrow should be granted
development consent [74]. It also recognises the important role that the expansion of Heathrow has to
play in supporting the wider UK economy. The proposed new layout of London Heathrow Airport can
be observed in Figure 6.8.
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Figure 6.8: London Heathrow Airport layout including the proposed new third runway [74]

London Heathrow is expected to serve additional air traffic passengers because of its expansion
plan including the third runway. Using the quantitative model, projections of air traffic passengers at
Heathrow can be computed. These projections were compared with the additional capacity Heathrow
will create by executing its expansion, which can be observed in Figure 6.9.

Figure 6.9: Heathrow Expansion projected demand and capacity

From this figure, it can be observed that the projected demand growth will outgrow the projected
capacity growth by 2045. This means, based on air traffic passenger projections from the quantitative
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model, and the expected capacity increase by the expansion plans, Heathrow will reach its limit again
by 2045.

There is some debate concerning the planned expansion at Heathrow. The original plan states that
the newly planned runway will be fully operational by 2026. The cost of abating the carbon impact of
the proposed third runway has doubled since parliament approved the expansion. A study by New
Economics Foundation suggests the carbon value of the runway has increased from £50bn to £100bn,
twice the value presented to ministers and parliamentarians by the Department for Transport in the
Airports National Policy Statement [67]. As a result, Spanish infrastructure firm Ferrovial, which owns
25% of Heathrow, is tempted to cut funding after the CAA have presented that rising carbon cost will
result in higher landing fees, making the investment returns too low [30].

Greenhouse gas emissions values (“carbon values”) are used across governments for valuating
impacts on GHG emissions resulting from policy interventions. They represent a monetary value that
society places on one tonne of carbon dioxide equivalent (£/tCO2e). They differ from carbon prices,
which represent the observed price of carbon in a relevant market (such as the UK Emissions Trading
Scheme). The government uses these values to estimate the monetary value of the greenhouse gas
impact of policy proposals during policy design, and also after delivery [64].

The UK has a legal commitment to cut carbon emissions to zero. Therefore, most options for reducing
emissions and removing carbon from the atmosphere are already being utilised. That is why the cost
of abating new emissions gets higher as the climate ambition rises.

Expansion plans at other Greater London Airports
At the five other Greater London airports, several airport developments have also been planned, or are
already being executed, to increase their capacity and facilitate rising air traffic demand.

1. London Gatwick Airport currently has two runways that can not be used simultaneously due to
their proximity to each other. They plan to allow dual runway operations enabling 29million annual
air traffic passengers by 2038.

2. London City Airport has just completed eight new aircraft stands, a renewed parallel taxiway
facilitating 45 atm’s/hour, an extension of the terminal, and a more efficient digital air traffic control
tower that has facilitated 2 million new annual air traffic passengers.

3. London Luton Airport is planning to optimise its existing runway and renew its terminal building.
This allows for 13 million new annual passengers in 2039.

4. London Stansted Airport is planning a new arrival terminal and arrival check-in, upgrading existing
terminals, implementing new baggage and security systems, and making new taxiways and
-stands. This all will result in 8 million new annual passengers in 2022.

5. London Southend Airport is planning to upgrade its runway, expand departure and arrival
terminals, build a new hotel on site, and optimise car parking facilities leading to 7 million new
annual air traffic passengers in 2023.

The quantitative model can project annual air traffic passengers at these airports at any year in terms
of (𝑃𝑖,𝑘) using Equation 3.23, and thus also Equation 4.4. These expansion plans were compared with
these projected air traffic passenger demand levels, of which the results can be seen in Figure 6.10.
Then, the capacity expansion plans and projected air traffic demand for all London airports combined
were analysed, of which the results are presented in Figure 6.11.
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Figure 6.10: London Airports Capacity

Figure 6.11: Projected availability of MAR Greater London

From Figure 6.10, it can be observed that London Gatwick and Stansted airport will handle air traffic
demand growth well and that London Heathrow and Southend airport will not. London City and Luton
airport do not present significant enough results, which is a result of random noise in the model. The
MAR at the aggregate level can facilitate the expected air traffic demand growth.

The quantitative model in combination with expansion plans can be used as a warning system to detect
the capacity limit for airports, cities and multi-airport regions. Therefore, the model is useful for airports
and governments as a tool to identify the timing for and the dimension of strategic developments in the
region to increase capacity. For example, if the development of a third runway at London Heathrow is
realised, the airport’s performance will rise, especially in terms of connectivity. This is likely to result in
a higher market share and more air traffic passengers travelling to and from Heathrow, which means
the infrastructure to and from Heathrow should be adapted to facilitate this rise. Also, the airspace is
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likely to get more crowded. In conclusion, the model can be used to quantify the expected growth in air
traffic passengers, which forms the basis for expanding and optimising its surrounding infrastructure
for governments and airspace for air traffic control.

6.2.2. Airspace Developments
London airspace developments mainly consider route optimization plans. If no action is taken regarding
London’s air traffic capacity, delays will be 30minutes for every 1 in 30 flights by 2030. New technologies
provide the opportunity for quicker, cleaner and quieter flights.

More than 2.6 million aircraft fly through UK airspace every year, carrying over 300 million passengers
all over the world. But it’s not just commercial aircraft that fly through our skies, there aremilitary aircraft,
private pilots, leisure flyers, drones and many others too — and everyone who wants to be there has
a right to be. To meet these challenges, NATS is continuously working to modernise UK airspace to
structure and transform the technology our controllers use to manage air traffic.

The UK’s airspace is some of the most complex in the world, with its design dating back to the 1950s
for aircraft which have long since stopped flying. The need to modernise it has now been recognised
by the UK Government which tasked the Civil Aviation Authority (CAA) to coordinate how it happens.
Modernising airspace, which means both route design and new tools and technologies, will make air
traffic management more efficient, helping reduce the impact air traffic has on local communities and
the environment and supporting future growth.

At the heart of the Airspace Modernisation Strategy is an airspace redesign programme to ‘systemise’
our airspace. This means creating a structured route network where aircraft follow defined routes
between their departing airport and a point of exit from UK airspace, or the point of entry in UK airspace
to their arrival airport. Systemised airspace will enable more efficient flight profiles and reduce the
number of tactical interventions Air Traffic Controllers need to make. Performance-Based Navigation
(PBN) and the Airspace Change Organising Group (ACOG) are keys to modernising airspace:

1. Performance-Based Navigation. PBS is a very accurate way of flying aircraft which uses
satellite technology to allow aircraft to fly routes with more precision and consistency. Previous
generations of aircraft could not fly as precisely as they can today, which meant navigating the
skies using ground-based beacons and routes having a wide envelope of airspace surrounding
them. In the future, NATS will be able to create new, more closely spaced routes which will
reduce vectoring and which can be alternated on an agreed basis to provide noise respite for
communities below. PBN can bring an end to holding stacks as we know them today. Instead,
we’ll be able to use new concepts such as Point Merge and enable more continuous climbs and
descents. While these are not new concepts — they have been used for decades — continuous
climbs and descents are not always achievable in the airspace around busy airports. Changing
how arriving aircraft are managed will improve procedures for departing traffic which will no longer
need to level off to safely pass underneath the stacks. In the future, aircraft will more quickly reach
altitudes where they are more efficient, and this will make it easier to manage the impact of noise
on people who live near airports [109].

2. Airspace Change Organising Groups. NATS is responsible for modernising the higher-level route
network (what we call ‘en-route’), and airports are responsible for their low-level departure and
arrival routes. To coordinate the changes required, an independent body has been set up —
ACOG. To change airspace, a process is set out by the CAA called CAP1616, which provides
guidance when consultation is required with people who may be affected, whether they are
airspace users or the wider public [109].

Aircraft waiting to land close to airports at low levels result in holding stacks, which are necessary
to ensure safety and resilience within the airspace. In the past few years, ways to reduce this has
been investigated through queue and capacity management enhancements. In the near term, NATS
is planning to introduce changes to procedures for existing holding stacks to increase operational
efficiency. The list below explains the main concepts worked on.



6.2. Future Growth 81

1. Demand Capacity Balancing (DCB). Forecasting demand, capacity, performance, infrastructure
and weather ahead of time for effective capacity profile estimation.

2. Cross Border Arrival Management (XMAN). Work with neighbouring ANSPs (Maastricht upper
airspace centre) to slow aircraft down up to 550 nm from landing. This aims to better manage the
flow of aircraft into UK airspace by absorbing delays en-route.

3. Intelligent Approach (IA). Dynamically adjusts separation distances using time, rather than
distance to keep landing rates consistent in strong headwinds.

4. Point Merge (PM). Aircraft queuing to land fly an extended flight path around an arc instead of
holding circles (stacks). This allows aircraft to stay higher for longer with less noise.

These developments lead to reduced holding stacks, reduced aircraft fuel burns, reduced emissions
and increased throughput of arriving and departing aircraft.

6.2.3. Greater London Growth Strategy
This section progresses on the Greater London Strategy explained in section 4.3 with the previously
explained details regarding developments in the MAR. Growth in UK’s aviation sector is a result
of considerations made between its economic enhancements/importance and environmental impact.
UK’s aviation sector has a turnover of £60 billion, contributes over £52 billion to its GDP and facilitates
around one million jobs in the UK [153]. In addition, the aerospace manufacturing sector generates
annual exports of £26 billion and has a global market opportunity of £3.5 trillion over the next twenty
years. It also employs over 100,000 highly skilled British workers and provides technology and research
that has significant catalytic spin-off benefits to the wider UK economy. Besides, enhancing UK’s
aviation sector through its airports is crucial for the UK to maintain their position as a global aviation
hub. [63, 100].

However, these economic benefits do come at a cost. Aviation has caused 7% of the UK’s emissions
in 2018 [69]. Due to UK’s desire to reach net-zero in 2050, most options for reducing emissions and
removing carbon from the atmosphere have already been utilised. Therefore, the cost of cleaning up,
or ’abating’, new emissions gets higher as climate ambitions rise. Therefore the carbon value recently
tripped from £77 to £245 per tonne of carbon [151].





7
Discussion and Conclusion

This chapter discusses and concludes the research on airport market share forecasting in multi-airport
regions.

7.1. Achievements of Goals
The main goal of this research was to ”Develop an analysis framework for the market dynamics driving
airport activity levels, focusing on multi-airport regions, and analyse how this provides a base for
strategic decisions in the region. To realise this, two sub-goals were identified:

I Understand the evolution of airport market shares based on the allocation of air traffic passengers
amongst airports in a chosen MAR;

II Understand market dynamics of passenger integrated transport system in a MAR. Forecasting its
underlying determinants can provide estimates for the future transport system in a MAR, which
accommodate and facilitate smooth future operations of used logistical components.

To achieve these goals, the research develops an analytical framework that consists of a quantitative
model, which concerns sub-goal one, and a forecasting framework, which progresses the results of
the quantitative model and thereby realises sub-goal two. The Greater London Area was selected
as multi-airport region, which is located in the southeast of the United Kingdom and is served by six
airports.

The quantitative model starts by modelling the regional air traffic demand in the Greater London Area for
2010 - 2050. A correlation was found between UK’s GDP, UK’s air traffic levels, and Greater London air
traffic levels from 2010 to 2019. Projections of the UK’s GDP formed the basis for projections of Greater
London air traffic demand up to 2050, which concluded an 82% rise. The COVID-19 demand drop after
2019 forms the start of the forecasting period, which assumes air traffic demand grows unconstrained
in correlation with UK GDP projections. However, online meetings have become the standard for many
foreign business interactions, and together with the reduction of travel emissions, many companies
have announced to reduce their air travel trips by 25% to 50% [75]. This trend is expected to result in
air traffic levels recovering ±80% in 2022, compared to 2019 levels [52]. Air traffic levels in 2022 will
provide insight into whether or not this bounce-back is realised, and to what extent the projections of
air traffic levels should be adapted.

The second step of the quantitative model concerns allocating the modelled regional air traffic demand
over airports serving The Greater London Area. This was done based on the relative performance
of these airports amongst each other on three key performance indicators. First, airport accessibility
concerns the access time from the regional sub-districts, weighted by the wealth and population size of
these sub-districts. Second, airport airfares analysed the relative pricing of tickets per trip level, which
is based on trip length. This allows the model to compare airports not only on an aggregate level but
also on domestic, regional, continental and intercontinental level. The third and final key performance
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indicator is airport connectivity, which concerns the level at which an airport is connected to other
regions and airports of the world. All key performance indicators were analysed relative to each other,
from which a final grade on a scale from 1 to 10 was computed for each key performance indicator for
each airport for each year.

The model assumes airport performance is directly linked to their market shares through the three key
performance indicators. So, the third and final step of the quantitative model was correlating historical
airport performance to their historical market shares, in terms of annual air traffic passengers as a
portion of the total air traffic passengers utilising Greater London airports. This was done through a
multivariate regression model, which concluded an R-squared of 0.95 based on 60 observations. Also,
its results concluded that the order of influence on total airport performance was connectivity, airfare
and accessibility respectively.

So, the quantitative model can predict airport market shares based on their key performance indicators
and projections of the UK’s GDP up to 2050. Changes in an airport’s accessibility, airfare or connectivity
can be implemented in the model, which translates to an adapted market share projection of all airports
in the region.

The forecasting framework indicates capacity limiting factors in The Greater London Area and analyses
how the model can be used to evaluate future growth developments and strategic implementations in
the region. Air traffic demand is expected to grow, and three factors have been identified to potentially
limit the facilitation of this growth in The Greater London Area. UK airports and their government are
working on developing and improving their aviation sector based on these three factors.

1. Airport. Heathrow airport has already been operating at 98% for the last decade. The quantitative
model can be used to model annual air traffic passengers at airports. Together with projections
of future expansion plans at airports, it can be concluded that Gatwick, City and Stansted airport
will be able to facilitate rising air traffic demand, and Heathrow, Luton and Southend airport will
not. However analysing its aggregate projections, the region is successfully able to facilitate the
rising demand.

2. Airspace. As a result of highly utilised airports and rising air traffic movements due to increase air
traffic demand, London’s airspace is busy. Arriving aircraft often need to hold in circular holding
stacks before being granted to land to ensure safe landing operations. This results in increased
noise and carbon emissions and creates further delays. If no action is taken, delays are likely to
be 30 minutes for every one in three flights. NATS (National Air Traffic Services) is continuously
working to modernise UK airspace to structure and transform the technology our controllers use
to manage air traffic.

3. Infrastructure. London’s infrastructure allows air traffic passengers to travel between the city and
airports. Since its infrastructural operators like public transport and highways are well organised,
this factor is not (expected) to limit air traffic demand growth in the region.

The UK’s desire to keep its position as a global aviation hub demands that planned airport and airspace
developments are realised. The sector already contributes 3.4% of the UK’s total GDP and provides
around 1 million jobs in the UK. Its expansion plans will increase air traffic movements but it will also
decrease the presence of holding stacks, which decreases unnecessary emissions of carbons and
noise. However, due to increased environmental awareness, abating additional (expected) carbon
emissions, which result from these expansions, becomes more and more expensive risking the
realisation of such expansion developments at London airports.

7.2. Research Value
The added value of this research can be concluded by its main results and their purposes. The main
results consist of;

1. Annual air traffic demand of the UK and the multi-airport region Greater London up to 2050;
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2. The relative performance of airports within the multi-airport region regarding their accessibility,
airfares and connectivity;

3. Allocation of the projected multi-airport region air traffic passengers over airports serving the
region up to 2050;

4. Utilisation levels of airports in the multi-airport region up to 2050.

Which can be used for the following purposes:

1. Quantify airspace activity. This is necessary for air traffic management systems, strategic
implementations, and policy changes;

2. Quantify necessary airport capacity expansion given projected demand growth;

3. Compare performance relative to other airports in the multi-airport region;

4. Quantify how a strategic change in the multi-airport region or at the airport, in terms of
accessibility, airfare, or connectivity, results in a change in the market shares of all airports serving
the multi-airport region;

5. Identification of constraining factors in facilitating rising air traffic demand;

6. Detection of expected capacity limit both on multi-airport region and airport-specific level;

7. Quantify adjusted market shares after capacity expansion.





8
Recommendations for Future Research

This research was performed under several assumptions and limitations. This chapter proposes
various enhancements that could be made to improve the applicability and accuracy of this research.
This is done on the three components that make up the quantitative model; Regional Air Traffic
Forecast, airport performance, and air traffic allocation, and regarding the forecasting framework.

8.1. Regional Air Traffic Demand Forecast
The Regional Air Traffic Forecast shows UK GDP, UK air traffic and Greater London air traffic are
correlated. Projections of UK GDP from the basis that eventually leads to Greater London air traffic
demand projections. An interesting first addition would be to analyse other explanatory variables for
air traffic demand than UK GDP and oil prices. Second, implement and model the change in air
traffic demand as a result of increased environmental awareness. It would be likely that, with the
rise of greener alternative transport options for longer distances, the demand for air traffic will grow
less strongly. Also, airlines are likely to increase prices when fuels become more expensive, which is
currently happening as a result of the Russian-Ukrainian war. Third, if an airport within Greater London
increases its capacity, the portion of UK air travel that flies to/fromGreater London airports will increase.
This means the 61.00% assumption would change. Fourth, apply the model to monthly data instead
of annually. Fifth, perform the regional air traffic forecast on another multi-airport region. Necessary
data includes projections of national and local (MAR) air traffic drivers, such as the UK’s GDP in this
research. Sixth and final, implement three scenarios of air traffic demand recovery from the COVID-19
demand drop. If a slow, medium and fast recovery scenario is implemented in the projected air traffic
demand growth, future short-term air traffic levels will determine which of these recovery scenarios to
use for the air traffic demand forecast from then on.

8.2. Airport Performance
Airport accessibility can be improved by replacing travel time computations with an automatic Google
Maps API, that can calculate these travel times automatically. For the scale of this research, the
Google API, or other comparable programs, require paid subscriptions and is therefore not used in this
research. Second, the influence of population size and district wealth is assumed to equally influence
airport accessibility. This is not the case in reality. It can be examined by analysing districts’ passenger
supply to airports, districts’ population and gathered data on these passenger’s wealth. Its results can
be used to weigh population and wealth for the airport accessibility measure.

Airport airfares scores are assumed to behave linearly, meaning a twice as expensive ticket will be
twice less attractive. However, in reality, when the wealth of an individual goes up, his/her sensitivity to
price increases decreases. This means that the influence of price differences at lower income levels is
higher than at higher income levels. Implementing this recommendation could lead to a more realistic
influence of airport airfares on airport total performance.

Airport connectivity currently uses ACI’s SEO NetScan method to compute airport-specific connectivity

87



88 8. Recommendations for Future Research

indices. This model, therefore, depends on the airports being in their analysis. For the six London
airports, this is the case. When applying the model to another multi-airport region, it would be important
to gain access to the ACI connectivity indices of those airports concerned, or use alternative complex
network science. This can be done by ACI collaboration since an airport-specific report will be provided.
This will then also give insight into the sensitivity of those indices, which will lead to insight into how the
airport connectivity changes when an extra destination is added to an airport.

8.3. Air Traffic Allocation
The multivariate regression model shows statistically accurate and logical results. However, several
changes could be investigated. First, as is recommended for the Regional Air Traffic Forecast, applying
monthly data would increase the accuracy of the model.

Second, it could be analysed how potential air traffic passengers of Greater London airports weight
accessibility, airfares and connectivity in their choice of airports. This can be achieved through
mixed-logit modelling (MNL). Its results should be compared to the results (coefficients) of the
multivariate regression model and analysed to what extend and why they align (or not).

Third, adding runway constraints to represent the scope of an airport can be useful in limiting additional
traffic to airports that are operating above 98% in the future. This would mean that, despite the airport
having the performance to attract more passengers, these additional passengers could not be allocated,
and are thus distributed to other airports with capacity.

Fourth, in several multi-airport regions, air traffic passengers are not distributed logically based on
relative airport performance but are largely influenced by the government. An example occurs in
Russia, where some airlines are backed (indirectly) by their government or governmental officials,
which force their airlines to operate at certain airports. This could be captured by a subjective dummy
variable as the fourth key performance indicator.

8.4. Forecasting Framework
The forecasting framework provides insight into how themodel can be used for strategic implementation
in the region. In this analysis, it is assumed by air traffic passenger demand grows according to the
regional air traffic demand forecast. This model does not take into account the variability in airfares,
meaning that rising demand for a product (flights) does not result in a higher price of that product, which
in reality does occur. Therefore, a good addition to the model would be to perform an econometric
analysis of the change in airfares as a result of rising air traffic demand, probably under capacity en
environmental pressure.
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