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EXECUTIVE SUMMARY  
Traffic congestion has negative economic, environmental and societal impacts. In 2017, US commuters 

aggregated a national travel delay of 8.8 billion hours, which translated to a congestion cost of 179 billion 

dollars. 3.3 billion gallons of fuel were wasted in traffic jams, which increased air pollution and CO2 

emissions. Furthermore, higher congestion levels were linked to higher accident frequencies. Since traffic 

volumes are ever-increasing, congestion is expected to worsen by another 60% until 2030.  

One of the causes of urban congestion are badly timed traffic signal controllers. In the US alone, traffic 

signals were estimated to cause 5-10% of all traffic delays or 295 million vehicle-hours. To improve traffic 

signal plans, research efforts have been made to create self-adaptive traffic controllers, i.e. controllers 

which adapt in real-time to the current traffic demand.  

To observe the current traffic situation, it was proposed to use connected vehicle technology. Vehicle 

connectivity enables vehicles to communicate vehicle trajectory information (e.g. speed, position, 

planned route), as well as information on road and traffic conditions in real-time with the traffic signal 

controller or other vehicles. The controller can gather data from all vehicles around the intersection and 

use this to create optimal signal plans. 

Within literature, different types of methods to create self-adaptive traffic signal controllers were found. 

In this thesis, it was chosen to focus on deep Q-learning models (DQN), which are a type of reinforcement 

learning model. Reinforcement learning (RL) models are able to overcome shortcomings of other 

methods: they are applicable in real-time and they do not require researchers to create a complex 

mathematical model (i.e. they are model-free).  

Past research on self-adaptive controllers has mostly assumed that all of the vehicles are connected. Yet, 

at least for the close future, this remains an unrealistic assumption. Instead, traffic will consist of a mixture 

of regular vehicles (RVs) and connected vehicles (CVs). Up to date, not many studies investigated whether 

self-adaptive controllers in general, and deep Q-learning based controllers in particular, are able to control 

traffic signals efficiently even under different CV-penetration rates. This thesis aims to alleviate this gap 

by investigating whether DQN-based traffic signal controllers are able to reduce traffic congestion for 

mixed traffic scenarios, and what design choices have to be made to build such a controller. As such, this 

thesis aimed to answer the research question: Can deep Q-learning models be used to control signalized 

intersections in mixed traffic scenarios such that traffic congestion is reduced? 

In order to answer this research question, it was first investigated what decisions have to be made when 

building a new DQN controller, and how past studies have made these decisions. This thesis conducted a 

systematic literature review in which the most important design choices regarding agent design (state, 

action and reward representations, model extensions), traffic environments (network topologies, traffic 

scenarios) and model evaluation (base cases, KPI) were reviewed.  

Another part of the review focused on reinforcement learning in mixed traffic scenarios. Less research has 

been done on this topic. For mixed traffic situations, two types of agents were found in literature: vanilla 

DQN agents and recurrent DQN agents. The results show that even for low CV-penetration rates, both 

model types can successfully reduce traffic congestion compared to traditional traffic signal controllers. 

Yet literature gaps remain. Currently, no clear best practices exist that could guide researchers on how to 

design new agents. Many studies do not or only partially describe why they made certain design choices 
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and how they calibrated their agents, which makes it difficult for future researchers to learn from their 

experiences. Overall, it turns agent design and fine-tuning into a trial-and-error process. 

This thesis contributed to mitigating this problem by applying a more structured approach to agent design. 

It was decided to build two types of deep Q-learning controllers, one vanilla DQN agent and one recurrent 

DQN agent. First, two base agents were designed which combined design choices from previous studies 

in novel ways. Yet, since the agents would be tested on different types of scenarios than in those previous 

studies, it would not be guaranteed that these choices would be optimal. To solve this, each of the unclear 

design choices were investigated in experiments. Within these experiments, each parameter was 

investigated using a new base model. In this base model, all settings were identical, apart from the 

parameter under investigation. This allowed assessing how the different alternatives for every parameter 

impacted both agent stability and performance. The alternatives which resulted in the best stability and 

highest performance were chosen. Based on this result, a new base agent could be designed, which could 

then be used to experiment with the next parameter. 

Doing this, agents in this thesis were calibrated in a systematic manner. Yet, when comparing the results 

of the calibration experiments to literature, it was found that the optimal design choices and parameters 

were often different than in previous studies. This indicates that optimal parameters for an agent depend 

to a large extent on the overall agent design and also on the training and testing environment (e.g. traffic 

scenarios, intersection layout). This makes it difficult to derive more general best-performing settings. In 

the end, fine-tuning the agents remained a time-consuming trial-and-error process.  

After the two agents were fine-tuned, they were evaluated using a microscopic traffic simulator. The goal 

was to investigate how stable the agents’ performance is, how well the agents can efficiently control 

traffic signals under different traffic scenarios (low constant, medium constant, high constant and 

dynamic traffic) and CV-penetration rates (between 10% and 100%), how robust agents are to changes in 

penetration rates, and how the vanilla and recurrent agents differ. To be able to benchmark the two 

agents’ performances, they were compared to a traditional fixed-time controller.  

It was found that the designed vanilla agent was unable to reduce traffic congestion in mixed traffic 

scenarios. Many hypotheses were unsupported: neither agent stability nor agent performance increased 

with higher penetration rates and vanilla agents were unable to outperform fixed-time controllers.  

Recurrent agents however performed very well, with all hypotheses from section 8.1.3 being supported. 

They were relatively stable and performed well even under low penetration rates. The experiments also 

showed that higher penetration rates led to more stability and higher performance across all traffic 

scenarios. Additionally, the recurrent agent was found to be robust to penetration rate changes: the 

recurrent agent trained under 50% CV-penetration was able to perform well for CV-penetration rates 

between 30%-100%. Furthermore, the recurrent agent was able to outperform the fixed-time controller 

for most of the penetration rates and scenarios. The required CV-penetration rate to outperform the 

fixed-time controller was between 0% (medium traffic) and 40% (low and dynamic traffic). This indicates 

that while the required CV-penetration rate is relatively low across scenarios, no critical transition 

penetration rate can be determined since this largely depends on the type of scenario. When comparing 

the scenarios, it was found that for scenarios with fewer cars, the recurrent agent required a higher CV-

penetration rate to reach a good level of performance than for scenarios with many cars. Moreover, the 

recurrent agent was able to perform better in constant traffic scenarios than in dynamic traffic scenarios.  
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When comparing the results of the mixed traffic experiments to literature, not all findings from past 

research were supported. A major difference between the results was that in past research, vanilla DQN 

agents have been shown to be able to successfully control traffic signals even for mixed traffic situations, 

while the vanilla agent in our study was unable to do so. For the recurrent agent however, both this thesis 

and past research concluded that recurrent agents are able to significantly outperform fixed-time 

controllers, even under low penetration rates. Further similarities were that higher penetration rates lead 

to higher performance, and that recurrent agents are up to a certain degree robust to changes in 

penetration rates. Unlike past research, this thesis found that for all traffic scenarios agent performance 

improves with increasing penetration rates. Previous studies found that this was only the case for low and 

medium traffic scenarios, but not for high traffic scenarios.  

Based on the experiments it can be concluded that the designed vanilla DQN agent is unsuitable for mixed 

traffic control. The recurrent DQN agent on the other hand, performed better than the vanilla agent in 

terms of stability, performance and robustness, and only the recurrent agent was able to outperform the 

fixed-time controller for all but the lowest penetration rates. This makes recurrent DQN a promising 

method for future research on reinforcement learning-based traffic signal control. 

In brief, this thesis found that reinforcement learning algorithms could potentially be used to control 

signalized intersections in mixed traffic scenarios such that traffic congestion is reduced. Nevertheless, 

this thesis only resulted in a proof-of-concept. Experiments were conducted under simplified conditions 

and results are subject to several limitations, which may compromise the results. In order to answer the 

main research question with certainty, recurrent DQN controllers (and reinforcement learning controllers 

in general), will need to be further developed, calibrated, and tested under more realistic circumstances.  

The thesis concludes with several recommendations for practice and future research. Since reinforcement 

learning models are currently still in the research phase and not ready for real-life implementation, it is 

currently too early for policy-makers to take action, apart from providing sufficient funding. First, 

controllers need to become more mature and must be validated on more types of scenarios under more 

realistic circumstances before they can be considered for real-life implementation. 

To make reinforcement learning agents more mature, several recommendations for future research can 

be made. Future research could for example investigate whether other reinforcement learning models 

than deep Q-learning could gain better results. Additionally, more research is needed on how agents can 

be implemented that consider other goals besides traffic efficiency. Also, it is suggested to investigate the 

robustness of reinforcement learning agents when they are implemented in more realistic conditions.  

Furthermore, the design process to build new reinforcement learning agents could be improved. In many 

published studies, authors did not justify their design choices and did not describe how they calibrated 

their agents. For new researchers this means that they cannot benefit from these previous experiences, 

and that agent design remains a time-consuming trial-and-error process. In order to make this process 

faster, it is recommended to further investigate how different design choices and different parameters 

impact agent performance and stability. This could for example be done by means of systematic 

experiments in which the impact of every setting is analyzed separately. To facilitate this process better, 

it is recommended to develop standardized testing environments and traffic scenarios that allow for more 

systematic cross-comparisons between studies and benchmarking of well-performing agents.  
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1. INTRODUCTION 

1.1 Problem Introduction 
Traffic congestion creates far-reaching economic, environmental and social externalities. In 2017, 

commuters in the US aggregated a national travel delay of 8.8 billion hours, which translated to a 

congestion cost of 179 billion dollars (Schrank, Eisele, & Lomax, 2019). 3.3 billion gallons of fuel were 

wasted in traffic jams, which increased air pollution and CO2 emissions. Furthermore, higher congestion 

levels were linked to higher accident frequencies (G. L. Chang & Xiang, 2003; Marchesini & Weijermars, 

2010), thus leading to ten thousand traffic-related fatalities (Florin & Olariu, 2015). 

Due to increasing traffic volumes, externalities increased over time: the annual delay due to traffic 

congestion increased per auto commuter in the US from 20h in 1982, to 54h in 2017, an increase of 270% 

(Schrank et al., 2019). Since traffic congestion is forecasted to increase an additional 60% by 2030 (Rafter, 

Anvari, & Box, 2018), economic losses and social and environmental problems are expected to worsen. 

One of the causes of congestion are urban intersections. Urban intersections critically impact traffic delays 

as well as accident rates (Rahmati & Talebpour, 2017). Intersections are bottlenecks for traffic (L. Chen & 

Englund, 2016), since traffic streams with conflicting paths have to be coordinated, leading to a decrease 

in road capacity.  

To control incompatible traffic flows and guarantee safety at busy urban intersections, traditionally traffic 

signals are used. Yet, badly timed traffic signal plans (i.e. inappropriate traffic phase sequences and traffic 

signal splits) can negatively impact traffic flows (Du, Shangguan, Rong, & Chai, 2019). If successive traffic 

lights are not adjusted to each other, cross-blocking can occur. Cross-blocking means that vehicles at one 

intersection cannot cross the intersection despite having a green signal, since downstream lanes are 

completely occupied due to a red signal at the downstream intersection. At the other extreme, green 

idling may occur. This means that certain lanes of the intersection have a green signal, despite there being 

no cars that need to cross in those lanes. Both cross-blocking and green idling prevent other cars that 

currently have a red signal to needlessly wait. Oftentimes congestion at one intersection causes domino 

effects to other intersections, and thus affects wider network performance (Yau, Qadir, Khoo, Ling, & 

Komisarczuk, 2017). Traffic signals are especially inefficient at high traffic volumes (Shi, Jiang, & Li, 2016). 

In the US alone, traffic signals were estimated to cause 5-10% of all traffic delays, or 295 million vehicle-

hours (Denney, Curtis, & Olson, 2012). 

To improve traffic efficiency, traffic signals must react to traffic demand (Jing, Huang, & Chen, 2017). A 

recent development believed to aid with this are automated and connected vehicles (L. Chen & Englund, 

2016). Vehicle connectivity enables vehicles to communicate vehicle trajectory information (e.g. speed, 

position, planned route) and information on road and traffic conditions in real-time with the traffic signal 

controller or other vehicles (Catapult Transport Systems, 2017; L. Chen & Englund, 2016). Based on this 

data, traffic signal control can be optimized.  

Within the field of cooperative intersection management, the final goal is to create intersections in which 

vehicles communicate with infrastructure and other vehicles to negotiate safe and efficient passing 

strategies that require no human interventions (L. Chen & Englund, 2016). If a 100% CAV penetration rate 

were to be reached, all traffic signals and signs could be replaced with intersection management systems 

that optimize traffic flows based on communicated real-time data (Wuthishuwong & Traechtler, 2017). 
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Researchers suggest this could make intersections very efficient, thus causing minimal traffic delays 

(Sousa, Almeida, Coutinho-Rodrigues, & Natividade-Jesus, 2018).  

However, a 100% CAV penetration rate is unrealistic within the close future (Overtoom, 2018). Instead, 

there will be a transition period in which conventional, automated and connected vehicles (i.e. mixed 

traffic) will co-exist. This requires control strategies that can efficiently and safely manage different vehicle 

mixtures (Kamal, Hayakawa, & Imura, 2020).  

Up until now, many intelligent intersection control strategies were proposed. The idea of using vehicle 

connectivity to create smart intersections was first proposed by Huang & Miller (2004), and the first 

intersection controller was created by Dresner and Stone already in 2004. Nevertheless, despite 

numerous studies in this field, only few studies investigated signal control strategies for mixed traffic.  

Additionally, the existing methods are subject to other limitations, as has been documented in various 

literature reviews (e.g. Chen & Englund, 2016; Florin & Olariu, 2015; Guo, Li, & Xuegang, 2019; Jing et al., 

2017; Li, Wen, & Yao, 2014; Namazi, Li, & Lu, 2019; Rios-Torres & Malikopoulos, 2017). Existing control 

strategies are based on often-unrealistic assumptions, have not yet been extensively validated and their 

large-scaled impacts remain unresearched.  

1.2 Research objective 
The second chapter of this thesis discusses relevant background information on traffic signal control and 

provides more information on the identified research gap. Chapter 3 further scopes down the topic, 

identifies the main and sub-research questions and presents the research approach.   

The main conclusions of these chapters can be summarized as follows: up to date, many intelligent traffic 

signal control methods have been proposed, but only few studies have investigated whether and how 

these models can efficiently control traffic signals during the transition period. This thesis aims to alleviate 

this gap by investigating whether traffic signal controllers are able to reduce traffic congestion for mixed 

traffic scenarios, and what design choices have to be made to build such a controller.  

Since different model types exist, it is not possible to evaluate design choices for all types of models. 

Instead, it was chosen to focus only on reinforcement learning approaches, which are oftentimes 

mentioned as a promising traffic signal control approach. More specifically, the most popular type of 

reinforcement learning-based model, deep Q-learning was chosen.  

Finally, the main research question which will be answered within this thesis is as follows:  

Can deep Q-learning models be used to control signalized intersections in mixed traffic scenarios 

such that traffic congestion is reduced? 

1.3 Thesis outline 
The thesis is structured as follows: chapter 2 defines core concepts and reviews the field of intelligent 

traffic signal control. Based on this review, limitations of existing studies are identified, and the research 

gap and goal of this thesis are introduced. Chapter 3 further scopes down the research topic, presents the 

research approach and defines the research questions. Chapter 4 presents relevant background 

knowledge on the chosen control method (reinforcement learning) which will be needed to understand 

all further design decisions. Chapter 5 presents an in-depth literature review on the state-of-the-art of 
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reinforcement learning in traffic signal control. Based on the findings in this review, chapter 6 develops a 

conceptual model. Chapter 7 presents the implementation details of the developed controller. In chapter 

8, the experiments are described. In this chapter, the methodology is summarized, then hypotheses 

regarding the expected results are stated, and finally the results of the experiments are analyzed. Chapter 

9 discusses the results, evaluates model limitations, suggests possible model improvements and embeds 

the results in existing literature. Finally, chapter 10 concludes the thesis by answering the research 

questions, stating the scientific contributions, highlighting the link to CoSEM and providing 

recommendations for practice and future research.  

The code used in this thesis is available on GitHub1. 

  

 
1 https://github.com/chantal000/Deep-QLearning-Agent-for-Traffic-Signal-Control 
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2. RESEARCH GAPS AND RESEARCH GOAL 
This section aims to identify literature research gaps to define a clearer research goal. To provide the 

reader with needed background knowledge, first some core concepts are defined, and intersection 

management is introduced. To identify specific research gaps, a literature review on intelligent signalized 

intersection management has been conducted. For the literature review, the review methodology, the 

results and the found research gaps are discussed. Lastly, the research goal is presented. 

2.1 Definition of core concepts: connected and automated vehicles 
Within literature many terms regarding intelligent vehicles are used interchangeably: connected, 

autonomous or automated vehicles, smart or intelligent driving, driverless cars or self-driving cars 

(Catapult Transport Systems, 2017; Elliott, Keen, & Miao, 2019; H. Zhang, Tam, & Shi, 2002). Oftentimes, 

researchers imply either one of or both of two different technologies: automation and communication. 

To avoid confusion, the terms used throughout this thesis must be clearly defined. The next section 

discusses both technologies separately, before discussing their combination. 

2.1.1 Automation 
The goal of automation is for vehicles to drive fully autonomously, i.e. the car can drive by itself without 

any input by humans. This goal can be reached by equipping vehicles with an array of sensors such as 

cameras, radars, LiDAR, lasers, ultrasonic sensors and GPS (Guanetti, Kim, & Borrelli, 2018). However, as 

controversy around the term “autonomous” exists, the term “driving automation” is preferred (Vagia & 

Rødseth, 2019).  

 

Figure 1 Levels of automation (SAE International, 2019) 

The degree of driving automation is directly related to its technology’s degree of complexity (Martínez-

Díaz, Soriguera, & Pérez, 2019). Different classification schemes to refer to automation levels were 

proposed, but the dominantly adopted scheme is SAE standard J3016 (SAE International, 2019), as shown 
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in Figure 1. It classified vehicle automation on a scale from level 0 (no automation) to level 5 (full 

automation). The levels are differentiated by who is responsible for controlling the car (human/vehicle), 

who supervises the environment (human/vehicle) and the types of driving scenarios (Martínez-Díaz et al., 

2019).  

In levels 0-2, humans are responsible for driving and must supervise the environment at all times, even if 

support features are in use (Martínez-Díaz et al., 2019; SAE International, 2019). Level 0 corresponds to 

manual driving. While warning and momentary assistance systems (e.g. navigation systems, automatic 

emergency braking) may be present, the human has full control over all lateral (i.e. steering) and 

longitudinal (i.e. braking, acceleration) car movements. From level 1 upwards, either lateral or longitudinal 

control is taken over by the vehicle. In automation level 1, driver assistance systems can either support 

steering or braking/acceleration. Examples are adaptive cruise control, frontal collision avoidance or lane-

keeping assistance systems. In automation level 2 both steering and braking/acceleration are supported.  

In levels 3-5, the car is responsible for driving and monitoring the environment, allowing the human 

“driver” to do other tasks. In level 3, the vehicle can handle well-defined driving scenarios (e.g. driving on 

the highway) but may request the human to take back control once it reaches its capabilities’ boundaries 

(e.g. in unexpected traffic). In level 4 the vehicle can drive autonomously under limited conditions. It will 

not require the human to take over control. Nevertheless, level 4 automated vehicles cannot handle all 

traffic scenarios. Level 5 automation (full automation) means the car has full control over all operational 

(steering, acceleration/braking, monitoring) and tactical decisions (turning, lane changes, signal 

observance) and can handle all traffic scenarios. The driver will never drive manually (Martínez-Díaz et al., 

2019). Level 5 automation is what authors usually refer to when they mention autonomous vehicles. 

The use of the term automated vehicles (AVs) in this thesis refers to vehicles that function independently 

of a human operator in the given traffic scenario (i.e. drive through an intersection). Humans are 

passengers and do not need to drive. As such, vehicles from automation levels 4-5 are covered. 

2.1.2 Connectedness 
Connected vehicles (CVs) have technologies to communicate with contributing agents, such as vehicle-to-

vehicle (V2V), vehicle-to-infrastructure (V2I) (e.g. to a traffic controller) or vehicle-to-pedestrians (V2P) 

communication. The combination of all communication modes is called vehicle-to-everything (V2X) 

(Bagloee, Tavana, Asadi, & Oliver, 2016; Zeadally, Guerrero, & Contreras, 2019). Propagated messages 

could include information about road, traffic and weather conditions, routing options or vehicle 

trajectories, thus enabling a range of services (Zeadally et al., 2019).  

Communication between vehicles makes them more aware of their surroundings. It enables e.g. multi-

vehicle cooperation, awareness of obstacles outside the vehicle’s line of sight, or improved traffic 

forecasts (Guanetti et al., 2018). Connectedness thus forms the basis for intelligent intersection control.  

V2V communications allow vehicles to communicate without a centralized entity (Martínez-Díaz et al., 

2019). Instead, vehicles form so-called vehicular ad hoc networks (VANETs) (Zeadally et al., 2019). Core 

technologies supporting vehicular communication are dedicated short-range communication (DSRC) and 

5G. DSRC is the currently used technology. Bandwidth for DSRC has been allocated in both the US and the 

EU and standards for its use were developed (L. Chen & Englund, 2016). 5G technology is being studied as 

an alternative, and could in the future be used as well (Guanetti et al., 2018). A detailed review of 
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communication technology is out of scope, but readers may refer to reviews by Guanetti et al. (2018), 

Martínez-Díaz et al. (2019) and Zeadally et al. (2019). 

2.1.3 Types of vehicles 
Based on the two technologies, it is possible to create four types of vehicles, as shown in Figure 2. 

Conventional vehicles are vehicles that cannot communicate with other vehicles or infrastructure. 

Additionally, they are manually driven by humans, even though some driver assistance features may be 

present (automation levels 0-2). CVs are human-driven vehicles that have communication technologies 

that enable V2I and V2V communication. AVs are vehicles that require no human inputs but instead use 

sensors to monitor and react to their environment. Connected and automated vehicles (CAVs) are capable 

of both automated driving and communication (Guanetti et al., 2018).  

 Level of Automation 

Not automated Automated 

C
o

n
n

e
ct

e
d

n
e

ss
 Unconnected Conventional / regular 

vehicles (RV) 
Automated vehicles (AV) 

Connected Connected vehicles (CV) Connected and automated 
vehicles (CAV) 

Figure 2 Possible types of vehicle classifications based on their level of automation and connectedness 

Note that vehicles equipped with communication technology are not necessarily automated and vice 

versa. However, likely automated vehicles will increasingly rely on connectivity to reach autonomy, thus 

a convergence of both technologies is expected (Catapult Transport Systems, 2017).  

Penetration rates of both AVs and CVs are expected to increase in the future. A review of studies that 

forecasted penetration rates of AVs and CVs was done by Overtoom (2018). While forecasts between 

researchers differ greatly, the studies agree that some fraction of vehicles will be automated or 

connected. Furthermore, the review concludes that likely most AVs will also be connected. Based on these 

results, a mix between conventional vehicles and CAVs can thus be expected for the near future. It will 

take a long time until a penetration rate of 100% CAVs is reached, if ever (Overtoom, 2018). 

2.2 Background on Intersection Control 
When conflicting vehicle streams meet at intersections, rules are needed to coordinate their passing. 

Implemented strategies are tradeoffs between traffic flow efficiency, accessibility, safety and 

environmental factors. Intersections can be unsignalized (e.g. yield or stop signs, roundabouts, priority 

rules, right-before-left) or signalized (i.e. using traffic lights) (L. Chen & Englund, 2016; Ilgin Guler, 

Menendez, & Meier, 2014). The focus of this thesis will be on signalized intersections for two reasons. 

First, traffic signals are usually used to manage busier urban intersections which are more likely to be 

congested. Second, in mixed traffic scenarios in the transition period, it would not be possible to 

communicate decisions directly with V2I or V2V to unconnected vehicles. Instead, traffic signals would 

still be needed to relay these decisions. The next sections will then focus only on signalized intersection 

control. 

2.2.1 Signalized intersection control 
Traffic signals sequentially assign the right-of-way for conflicting vehicle streams at intersections via three 

signals (red, yellow, green) with certain cycle times. The phases and timings are decided by the traffic 
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signal controller (Florin & Olariu, 2015). In general, we can distinguish traditional TSC from intelligent TSC. 

The following paragraphs introduce these phases briefly.  

2.2.1.1 Traditional traffic signal control 

Traditional TSC strategies did not directly communicate with vehicles. Nevertheless, these controllers 

went through several phases of improvement. Commonly they are categorized into three types: fixed-

time controllers, actuated controllers and adaptive controllers (Ilgin Guler et al., 2014; L. Li et al., 2014). 

Initial traffic controllers were fixed-time controllers. Signal plans used predefined cycles and timings set 

by administrators (H. J. Chang & Park, 2013). Improved fixed-time controllers allowed to set different 

control plans at different times during the day (e.g. during morning or evening rush-hour) to facilitate 

better traffic flows for recurring traffic patterns (H. Zhang et al., 2002). Optimization of traffic control 

plans occurred offline based on historical traffic data (Florin & Olariu, 2015). Advantages of these static 

controllers are a simple design, low computing power and the lack of need for expensive hardware. 

However, fixed-time controllers cannot adapt well to dynamic non-recurring traffic fluctuations such as 

congestion, accidents, construction or differences in human driving patterns (H. J. Chang & Park, 2013). 

As such they cannot control traffic optimally, and could even increase congestion (Artimy, 2007).  

An improved type of controller are traffic-responsive controllers, such as actuated and adaptive 

controllers. Traffic-responsive controllers use real-time measurements gathered from infrastructure-

based sensors such as inductive loops, magnetic or ultrasonic sensors (H. J. Chang & Park, 2013; Florin & 

Olariu, 2015; Jing et al., 2017). The controller can dynamically optimize phase sequences, timings and 

splits based on this data to adapt to current traffic demand. Actuated controllers are usually used for 

isolated intersection control. Their algorithms use static parameters (e.g. minimum green time, maximum 

phase length) to react to real-time data (Jing et al., 2017).  

Adaptive controllers are used to control intersections in arterials or networks. Data from upstream 

detectors is used as input for prediction models that estimate vehicle arrivals and queue lengths to 

optimize traffic signals based on incoming traffic (L. Li et al., 2014). Advantages of traffic-responsive 

controllers are that they can adapt signal plans in real-time to traffic fluctuations, making them more 

flexible and efficient. Nevertheless, the sensors can only cover limited local areas and can only gather 

instantaneous traffic data (when a vehicle passes over it), instead of continuous traffic states (e.g. speed, 

location, heading) (H. J. Chang & Park, 2013). Thus, it does not allow for route prediction. Since only 

sampled data is available, roads are modeled in averages or densities, which can critically impact signal 

efficiency (He, Zheng, Chen, & Guan, 2017). Additionally, infrastructure sensors are expensive to install 

and maintain, and system performance is severely degraded if a sensor breaks down (Jing et al., 2017). 

2.2.1.2 Intelligent traffic signal control 

In intelligent traffic signal control, the goal is to create self-adaptive control systems. Self-adaptive control 

systems adapt signal plans in real-time to match current traffic patterns based on certain control targets 

and real-time traffic data (Y. Wang, Yang, Liang, & Liu, 2018). Self-adaptive traffic signal control systems 

can adjust their internal logic and parameters based on their perception of the environment (Abdulhai, 

Pringle, & Karakoulas, 2003), and are thus able to permanently adapt to changed traffic conditions without 

human intervention.  

In intelligent TSC, the developmental phases are not as clearly distinguished as in traditional TSC, since 

different researchers are relying on different assumptions and are working on different model types. Yet, 
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Y. Wang, Yang, Liang, & Liu (2018) attempted to capture different developmental levels of self-adaptive 

traffic signal control in a framework, with each level making traffic controllers more intelligent. The 

transition from the lowest to the highest (predicted) development level can be summarized as follows: 

TSC evolved from offline control to real-time online control, from a low data to a data-rich environment, 

from isolated intersection control to network control and from empirical control methods to intelligent 

self-adaptive control. The authors predict that at the highest level of self-adaptive traffic signal controllers, 

controllers will use data-driven, adaptive and model-free learning algorithms. 

In self-adaptive traffic signal control, the controller requires data on the current state of the environment. 

Usually, this data is gathered via vehicular involvement. Gathering information via communication 

networks has several advantages compared to infrastructure-based sensors. V2V and V2Icommunication 

enable a more accurate perception of the environment, infrastructure and traffic. The detection range is 

significantly larger and gathered information is more detailed. Instead of instantaneous readings and 

averages, it is possible to sample each connected vehicle’s exact trajectory (Q. Guo et al., 2019), thus 

enabling more accurate traffic estimations. Furthermore, using vehicle communication technology is 

cheaper than installing sensors in the infrastructure and allows for more flexibility (L. Chen & Englund, 

2016; R. Zhang, Ishikawa, Wang, Striner, & Tonguz, 2020). 

2.3 Literature Review: Intelligent traffic signal control 
In this thesis, intelligent traffic signal control is the topic of interest. The goal of intelligent signal control 

is to retime signals based on real-time data such that vehicle delays or queue lengths are minimized, traffic 

flow is smoothened, and emissions are reduced (Jing et al., 2017). To get a better understanding of the 

field, and to define the specific research topic, knowledge gap and research questions, a literature review 

has been conducted. The following sections will present this review. 

2.3.1 Literature search method 
During the literature search, the databases Scopus and Google Scholar were used. The review took place 

in March 2020. Since in literature different terms are used to describe the same concepts, various 

keywords were used. The keywords “connected”, “cooperative”, “autonomous”, “automated”, 

“driverless” and “self-driving”, were used in combination with “car”, “vehicle”, “driving” or “intersection”. 

Further keywords were “congestion”, “traffic signal control”, “traffic efficiency” and “traffic flow”. Only 

English results were included. Due to the large number of results, results were filtered by document type 

“review”. Forward and backward snowballing were applied to find additional relevant review papers.  

2.3.2 Literature review results 
Many researchers worked on intelligent traffic signal control in recent years, and many approaches were 

proposed. Since several in-depth reviews on these approaches already exist, the further analysis will be 

based on these reviews. Table 1 summarizes the review topic, the classification used and the review focus 

of the nine found reviews. Some important topics mentioned in the reviews are discussed next. 

Table 1 Summary of review studies on intelligent traffic signal control 

Reference Review topic Classification Types Description 

(D. Zhao, Dai, & 
Zhang, 2012) 

Computational 
intelligence 
techniques in 
urban traffic 
control 

Recurrent and non-recurrent 
congestion; further divided into 
different computational 
intelligence strategies 

- introduces applications of computational 
intelligence in TSC to solve traffic recurrent 
and non-recurrent congestion 
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(L. Li et al., 
2014) 

Improving the 
efficiency of 
traffic control 
strategies by 
using vehicular 
communications 

Isolated intersection control 
and network-wide traffic 
control (both with vehicular 
communication) 

- Focus on the controller side 
- Discusses non-cooperative and cooperative 

driving 
- Discusses transition from feedback to 

feedforward control due to vehicle 
connectivity 

- More focus on isolated intersection control 
strategies 

- Contrasting design preferences in controller 
design (model-based predictive control vs 
simulation-based predictive control; global 
planning-based control vs local self-
organization-based control; control using 
rich, maybe redundant information vs 
concise information) 

(Florin & Olariu, 
2015) 

Adaptive traffic 
signal control 
using vehicular 
communication 

Level of vehicular involvement 
(no vehicular involvement, 
passive involvement, active 
involvement); further 
subdivisions in sections 

- Taxonomy of adaptive traffic signal control 
strategies achieved through vehicular 
communication 

- Focuses on optimizing traffic signals (from 
technology perspective) 

- Discusses most representative papers 
- Future outlook/vision for traffic signal 

control 

(L. Chen & 
Englund, 2016) 

Cooperative 
intersection 
management 
systems 

Signalized and unsignalized 
intersections (with more sub-
categories in unsignalized 
intersection control) 

- Review of cooperative intersection 
management systems 

- Main methodologies and techniques used 
- Focus is on non-signalized intersections 
- Summary of worldwide projects 

(Rios-Torres & 
Malikopoulos, 
2017) 

Coordination of 
CAVs at 
intersections and 
merging on 
highway on-
ramps 

Centralized and decentralized 
approaches (each further 
divided into heuristic rule-
based and optimization-based 
control approaches) 

- Review of strategies on intersection and 
highway ramps coordination using CAVs 

(Jing et al., 
2017) 

Adaptive signal 
control methods 

Isolated and multiple 
intersection management 
strategies 

- Systematic review of papers, including 
overview tables (i.a. method, objective 
function, CV penetration rate, data resource, 
simulation scenario, simulation platform)  

- Evaluates studies quality based on 
systematic and quantifiable criteria 

- Presents an adaptive traffic signal control 
framework 

(Q. Guo et al., 
2019) 

Urban traffic 
signal control 
with CAVs or 
mobile sensing 
data 

Deterministic and stochastic 
approaches, further divides 
studies for CAV signal control 
into research topics (driver 
guidance, actuated control, 
platoon-based signal control, 
planning-based signal control, 
signal-vehicle coupled control, 
multi-vehicle cooperative 
driving without signals) 

- Reviews methods for estimating traffic flow 
states and optimize traffic signal timings 
based on CAVs 

- Focuses on mixed conventional and CAV 
traffic 

- Highlights required related research topics 
(transit priority control, network control, 
impacts of CAVs penetration, safety 
guarantee, implementation requirements for 
CAV technologies) 

(Elliott et al., 
2019) 

Advances in CAV 
technology 
(includes a 
section on 
intersection 
navigation) 

Centralized and decentralized 
approaches 

- Reviews state-of-the-art on several CAV-
technologies (communications, security, 
intersection navigation, collision avoidance, 
and pedestrian detection) needed for the 
success of CAVs 
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- Categorizes intersection navigation into 
several methods (real-world testing, 
optimization and control, heuristics), types 
of intersections (isolated, networks), and 
other aspects (environmental impacts, 
human-driver and pedestrian 
considerations, prioritized vehicles) 

(Namazi et al., 
2019) 

Intelligent 
intersection 
management 
systems using AVs 

Signalized intersection control 
(for pure AV situations and 
mixed traffic) + unsignalized 
intersection control (for pure 
AV traffic); further subdivided 
by study goals; categorizes 
studies by applied method 

- Systematic review of papers, including 
overview tables 

- Compares how well different approaches are 
evaluated 

- Identified the intended goals of the 
reviewed studies (efficiency, safety, ecology, 
passenger comfort, others, mix of goals) 

- Identifies the used methods in the reviewed 
studies (optimization-based, rule-based, 
machine learning-based, hybrid approaches) 

 

2.3.2.1 Types of control strategies 

In intelligent signalized intersection management systems, generally three types of control strategies are 

possible (Q. Guo et al., 2019; Jing et al., 2017), depending on the available type of technology. 

The first method is intelligent signal scheduling. This method uses V2I communication to a signal 

controller. Vehicles are passive participants that send information about their current state (e.g. location, 

speed, its environment) to a traffic controller. The controller aggregates the vehicle data to create better 

estimations of current traffic states and uses this to optimize signal phases, sequences and timings (Florin 

& Olariu, 2015; Q. Guo et al., 2019). This method requires that some vehicles are connected. 

The second method is trajectory control. Based on CAV’s own states and observations of traffic signals 

and other vehicles, the CAV’s arrival time at the intersection can be estimated. V2V allows vehicles to 

negotiate with traffic controllers and other vehicles to optimize their own vehicle trajectories for efficient 

passing (L. Chen & Englund, 2016; Florin & Olariu, 2015) before even reaching the intersection. This can 

be done by calculating passing sequences and by adapting trajectories (via accelerating/decelerating or 

steering) where necessary (Jing et al., 2017). However, non-CAVs cannot be controlled using this strategy. 

Lastly, it is possible to jointly optimize both trajectory and signal control (Rios-Torres & Malikopoulos, 

2017). Likely, this strategy can achieve the best traffic control performance (Q. Guo et al., 2019). 

2.3.2.2 Types of methods 

Most reviews describe the methods used in studies. Some reviews further classify these into groups. 

Namazi et al. (2019) classified studies as optimization-based, rule-based, machine learning-based or 

hybrid. According to this review, 44.76% of the included studies (N=105) used optimization-based 

methods, 40% rule-based methods, 3.8% machine learning methods and 11.43% hybrid methods. Rios-

Torres and Malikopoulos (2017) group optimization-based and heuristic rule-based approaches. Chen & 

Englund (2016) do not classify studies, but they do discuss mathematical optimization in general terms.  

Optimization-based methods aim to find values for a set of decision variables that optimize an objective 

function under a set of constraints (L. Chen & Englund, 2016). Objectives can be singular or a combination 

of goals. Possible objectives are to maximize efficiency (minimize traffic delay, maximize intersection 

throughput), maximize safety (minimize collisions, resolve conflicts), minimize the ecological impact 
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(minimize emissions or fuel consumption) or maximize passenger comfort (Namazi et al., 2019). Decision 

variables can be time slot allocation, passing sequences, or vehicle maneuvers such as braking, 

accelerating or steering. Constraints can e.g. be safety-related (safe headways, speed limits) or passenger 

comfort-related (no hard braking, no sudden movements) (L. Chen & Englund, 2016). The advantage of 

optimization-based methods is that complex situations can be modeled by including different objectives 

and constraints. Optimization-based methods search for an optimal solution under the respective traffic 

scenario, thus are adaptive to fluctuations in traffic. Drawbacks are that solution spaces may be non-

linear, so search algorithms could get stuck in local optima. Additionally, models can get complex quickly 

(e.g. more constraints, higher traffic volumes, more complex scenarios), which is computationally 

expensive to solve. Only few methods were deemed solvable in real-time (Namazi et al., 2019). 

(Heuristic) rule-based methods use a set of rules to determine the next action. Rule-based methods are 

computationally simpler than optimization-based methods, and thus usable in real-time. However, when 

the complexity of the traffic scenario increases, more rules must be added, which can make the model 

too complex to guarantee efficient traffic flows. Additionally, rule-based methods are based on a set of 

stochastic rules, thus cannot guarantee an optimal solution or adapt to traffic. As a consequence, rule-

based methods’ performances may vary significantly between traffic scenarios (Namazi et al., 2019). 

Hybrid methods of optimization and rule-based methods could reduce the computational complexity 

compared to pure optimization models, while also making the model more adaptive to traffic scenarios. 

However, up to date little research on how to combine models has been done (Namazi et al., 2019). 

Machine learning models could train controllers by letting them handle different traffic scenarios through 

trial-and-error. Over time, algorithms learn how to respond to scenarios efficiently. This could make 

machine learning models adaptive to traffic, while also remaining low in complexity. Additionally, no inner 

workings of traffic scenarios would have to be modeled, making the models simpler than other methods. 

Machine learning methods have been effective in other fields, yet compared to other methods in TSC 

have gained less attention (Jing et al., 2017). 

2.3.3 Limitations and future research 
Most reviews elaborate on the assumptions, simplifications and limitations of their reviewed studies. 

Table 2 summarizes and categorizes these findings. As can be seen, many assumptions and simplifications 

were made within the proposed models. The reason for this is that modeling an intersection is a too 

complex spatio-temporal problem to study all factors at the same time. 

Table 2 Assumptions, limitations and simplifications made within reviewed studies 

Type Limitation / 
Simplification 

Identified by Description 

Simplified 
models 

Exclusion of other 
traffic participants 

(L. Chen & Englund, 2016; 
Elliott et al., 2019; Guanetti et 
al., 2018; Jing et al., 2017; 
Namazi et al., 2019) 

Only road traffic (specifically cars) is included. 
Other modes (pedestrians, cyclists, buses, trucks) 
are excluded. 

Assumption of 100% 
penetration rate of 
CV or CAV technology 

(L. Chen & Englund, 2016; 
Elliott et al., 2019; Florin & 
Olariu, 2015; Q. Guo et al., 
2019; Jing et al., 2017; Namazi 
et al., 2019; Sarker et al., 2020) 

Models assume that each vehicle is connected or 
connected and automated. These models cannot 
handle conventional vehicles. 
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Exclusion of 
unexpected situations 

(L. Chen & Englund, 2016; 
Elliott et al., 2019) 

Models do not consider sudden occurrences 
(accidents, car breakdowns, power outages, bad 
weather) 

Unrealistic human 
behavior 

(L. Chen & Englund, 2016) Models assume rational and uniform human 
behavior.  

Only unsaturated 
traffic conditions 

(Jing et al., 2017) Models are not developed to handle 
oversaturated traffic scenarios. 

Unrealistic driving 
behaviors 

(L. Chen & Englund, 2016) Models assume that there are no lane changes, 
no overtaking, no reversing. 

Unrealistic vehicle 
characteristics 

(L. Chen & Englund, 2016; 
Namazi et al., 2019) 

Models do not realistically model vehicle 
characteristics or car following behaviors. 
Models assume deterministic and homogeneous 
characteristics (e.g. length, width, dynamics, 
quality of sensors, types of algorithms) for all 
vehicles, rather than stochastic ones.  

Simplified 
validation 
environment 

Simplified traffic 
conditions 

(L. Chen & Englund, 2016; 
Elliott et al., 2019; Jing et al., 
2017; Namazi et al., 2019) 

In the validation environment only simple traffic 
conditions are being tested (e.g. balanced flow 
rates, geometric intersection) 

Too few traffic 
scenarios 

(Elliott et al., 2019; Jing et al., 
2017; Namazi et al., 2019) 

Models are validated using too few types of 
scenarios (e.g. no variation in flow rates, 
intersection layout) 

Validated in 
simulation studies 

(Q. Guo et al., 2019; Jing et al., 
2017) 

Models are validated in simulation environments 
rather than field studies. 

Technological 
assumptions 

Assumption of perfect 
communication 

(L. Chen & Englund, 2016; Q. 
Guo et al., 2019; Namazi et al., 
2019) 

Models assume perfect information. Data loss, 
interference, transmission delays are excluded. 

Assumption of perfect 
sensing technology 

(Florin & Olariu, 2015) Models assume vehicles have perfect 
information on their speed, location, etc. 

Disregard of privacy 
and security  

(Q. Guo et al., 2019) Models do not consider data privacy or security. 

All intersections have 
communication 
technology installed  

(L. Chen & Englund, 2016) Models assume that V2I communication to all 
infrastructure is possible. 

Network-
based 

Modeling only 
isolated intersections 

(Elliott et al., 2019; Florin & 
Olariu, 2015; Q. Guo et al., 
2019; Jing et al., 2017; L. Li et 
al., 2014; Namazi et al., 2019) 

Most studies model an isolated intersection, 
rather than corridors or networks of 
intersections. 

Other Model not solvable in 
real-time 

(Namazi et al., 2019) Most models are too computationally complex to 
be solvable in real-time. 

 
In this thesis, the focus will be mixed traffic modeling. Mixed traffic modeling has been widely mentioned 

as a critical shortcoming in past reviews, yet it is critical for the nearby future. 

2.3.3.1 Mixed traffic 

Most intelligent TSC models assume a 100% penetration rate of either CVs or CAVs (L. Chen & Englund, 

2016; Elliott et al., 2019; Florin & Olariu, 2015; Q. Guo et al., 2019; Jing et al., 2017; Namazi et al., 2019; 

Sarker et al., 2020). The review by Namazi et al. (2019) found 93% of the 105 reviewed studies focused 

only on pure CAVs. Only 7% considered mixed traffic scenarios.  

Assuming that all vehicles are autonomous and/or connected makes models simpler. The assumption of 

100% AV penetration means the traffic signal controller can control all vehicle’s trajectories. The 

assumption of 100% CV penetration means no traffic estimation models are needed since full information 

on all vehicle trajectories and states is available (Q. Guo et al., 2019). Estimating the status of unconnected 

vehicles is complex, and the used estimation method can have big impacts on the controller’s 
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performance (Jing et al., 2017). These estimations become even more complex under limited CV-

penetration rates. Research on how to do this is just starting to emerge (Q. Guo et al., 2019). 

Since in the transition period different mixes of conventional, automated and connected vehicles will be 

present, TSC methods that work well for different penetration rates are needed. Different penetration 

rates have been shown to significantly impact a controller’s effectiveness (Q. Guo et al., 2019; Jing et al., 

2017; Sarker et al., 2020; Y. Wang et al., 2018). Yet, only 30.77% of the reviewed studies by Jing et al. 

(2017) tested their controller under different penetration rates.  

While some of the proposed algorithms also work well for lower penetration rates (e.g. Zheng & Liu, 2017), 

for most of the proposed controllers traffic efficiency increases significantly only after 25-30% CV-

penetration (Q. Guo et al., 2019). The exact critical transition point (i.e. the critical penetration rate) is 

unknown since many factors influence it. Only recently have studies started to investigate the relation 

between CV/CAV-penetration and controller performance (e.g. Rios-Torres & Malikopoulos, 2018; Validi, 

Ludwig, Hussein, & Olaverri-Monreal, 2018).  

2.4 Research gap and research goal 
The research gap this thesis aims to alleviate can be summarized as follows: in the past, many traffic signal 

control methods have been proposed, but most methods can only be applied under full CV- or CAV-

penetration. Since we are currently entering the transition phase towards connected vehicles, strategies 

are needed which work under less than 100% CV-penetration. However, only few controllers can be 

applied under these mixed traffic situations. 

Therefore, this thesis aims to alleviate this gap by investigating design choices when building a new traffic 

signal controller. The goal is to propose and evaluate an intelligent traffic signal control strategy that works 

under mixed traffic scenarios. 

2.5 Summary 
This chapter introduced the reader to the field of intelligent signalized intersection management, 

identified a research gap and presented the research goal.  

First, the core concepts of automation and connectedness were introduced. Automated vehicles are 

vehicles that do not need a human operator to drive or monitor the vehicle in a given traffic scenario. 

Connected vehicles are vehicles that can communicate with infrastructure (V2I) or other vehicles (V2V).  

Then, background knowledge on signalized intersection control was briefly summarized. Traditional signal 

control methods do not communicate directly with vehicles. Traditional strategies include fixed-time, 

actuated or adaptive controllers. Intelligent controllers on the other hand aim to control traffic in a self-

adaptive way, i.e. in real-time and based on current traffic data.  

To scope down the field and identify a research goal, a literature review on intelligent signalized 

intersection control strategies was conducted. In the review, different types of control strategies and 

methods were discussed. Additionally, many research limitations were identified. One of the research 

gaps is that most models assume a 100% CV- or CAV-penetration rate. However, in the close future there 

will be a transition phase from conventional to automated and/or connected vehicles. Therefore, this 

thesis aims to contribute to closing this gap by developing and proposing an intelligent signaled 

intersection management strategy that can operate in the transition period.   
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3. RESEARCH APPROACH 

3.1 Scoping: Traffic signal control method 

3.1.1 Machine Learning 
As described in chapter 2.3.2.2, different types of traffic signal control strategies exist. For each type of 

method, different theories are used, and many different models have been suggested. This makes it 

impossible to study all methods simultaneously. 

In this thesis, it was chosen to focus on machine learning algorithms. Fewer studies focused on machine 

learning than on optimization or rule-based methods. Yet, the authors of review articles believe machine 

learning methods will likely become the future of intelligent TSC (Jing et al., 2017; Namazi et al., 2019; Y. 

Wang et al., 2018; D. Zhao et al., 2012). Machine learning models can find (near-)optimal signal settings 

within large stochastic and non-linear systems, which would be too complex for humans to model (D. Zhao 

et al., 2012). Furthermore, machine learning models are likely able to overcome the shortcomings of other 

models by improving data collection, traffic state and human behavior prediction and decision-making.  

Different types of machine learning algorithms have been applied to intelligent traffic signal control, such 

as reinforcement learning, fuzzy logic, group intelligence algorithms (e.g. genetic algorithms) and neural 

networks (Y. Wang et al., 2018; D. Zhao et al., 2012). Yet, both Yau et al., (2017) and Y. Wang et al. (2018) 

state that fuzzy logic, group intelligence and neural network algorithms alone are not suitable to create 

self-adaptive traffic signal controllers due to the strict assumptions these algorithms impose. They believe 

that reinforcement algorithms are the most suitable algorithm for TSC. Thus, it was decided to use 

reinforcement learning. 

3.1.2 Reinforcement Learning 
Using reinforcement learning (RL) in TSC has many advantages. RL algorithms are model-free approaches, 

i.e. they do not require a human to create a precise mathematical model of the system environment. They 

can learn good or optimal policies without prior knowledge of the environment or external supervision. 

In other approaches such as optimization or rule-based methods, researchers must a priori model the 

complete intersection control system including all behavioral rules. However, this can get very complex. 

Oftentimes it is unclear how setting certain traffic phases will affect traffic at later points in time. For 

example, it may be a good decision to set a certain signal to green in the short-term, but in the long-term, 

another choice may have been better. RL agents however can operate in such delayed return 

environments, making them very suited for adaptive TSC (Rodrigues & Azevedo, 2019). RL agents can 

learn the best actions just by interacting with their environments in a trial-and-error way. If the agent 

does an action that improves a predetermined performance indicator (e.g. the cumulative waiting time of 

all cars in the intersection), then agent gets a reward, otherwise it gets a punishment. As such, the only 

inputs the modeler needs to specify are the ways that the agent perceives its environment, the actions it 

can choose and the reward function. This is much simpler than in other methods.  

Another advantage of RL is that it allows for real-time control. Other methods such as optimization 

approaches are too computationally complex (see chapter 2) for real-time use. RL models however are, 

once fully trained, computationally cheap to use and thus suitable. Furthermore, unlike e.g. rule-based 

models, RL agents can adapt to dynamically changing environments (e.g. rush hour, demand changes, 

accidents) (Mannion, Duggan, & Howley, 2016; Yau et al., 2017), as long as similar situations have been 
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encountered during training. Unlike traditional TSC methods, RL allows traffic splits to be shortened or 

lengthened and traffic phases to be chosen as needed, rather than following fixed cycles (Yau et al., 2017). 

This allows better adaptation to the current traffic situation, and ultimately to better reduce congestion.  

Within the field of reinforcement learning, many different types of models exist. Yet, researching all types 

of models would be too time-consuming for this thesis. Due to this, it was decided to focus on Deep Q-

learning models since these are the most commonly applied type of RL model in TSC literature. Chapter 4 

will provide a brief introduction to deep Q-learning models and RL in general. 

3.2 Research questions and research flow 
Based on the outlined knowledge gap, research goal and the chosen traffic signal control method, the 

main research question and sub-research questions were formulated. 

MAIN: Can deep Q-learning models be used to control signalized intersections in mixed traffic scenarios 

such that traffic congestion is reduced? 

1 What is the current state-of-the-art in intelligent traffic signal control using deep Q-learning for 

both homogeneous and mixed traffic scenarios? 

2 What types of deep Q-learning models would be suitable to design an intelligent traffic signal 

controller for mixed traffic scenarios? 

3 How can the deep Q-learning-based traffic signal controllers be calibrated and trained in a 

systematic manner? 

4 How can the designed deep Q-learning-based traffic signal controllers be evaluated in order to 

determine which controller performs better under which circumstances? 

5 To what extent are the designed deep Q-learning-based traffic signal controllers able to reduce 

traffic congestion for mixed traffic situations in a robust manner? 

6 How do the results compare to other literature results? 

The first sub-question requires to conduct a literature review. This is needed to get to know the state-of-

the-art, in order to make an informed decisions on how to design a  deep Q-learning controller and what 

design decisions were made in previous research. Based on the results of the first sub-question, at least 

two suitable deep Q-learning model types can be chosen (sub-question 2).  

When designing RL-agents, many design decisions have to be made and many hyperparameters must be 

chosen. Sub-question 1 already answered what these decisions are and how they influence the final model 

performance. Yet, calibrating RL-agents remains a trial-and-error task. In sub-question 3, it is investigated 

how this calibration process can be conducted in a more systematic way. The goal is to create fine-tuned 

agents which reduce traffic congestion for mixed traffic situations. In this step, the proposed controllers 

must be implemented in software. 

Sub-question 4 is concerned with the methodology of evaluating the designed agents. Based on this 

methodology, several experiments can be implemented and conducted. The results of these experiments 

will be used to answer sub-question 5. More specifically, it will be investigated to what extent model types 

work well for different circumstances (e.g. under what types of traffic scenarios, under which penetration 

rates), and how the performance of the different models compares to each other.  
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In sub-question 6 the results of experiments will be compared to results of other studies. A cross-

comparison with literature allows us to embed the results in literature, to validate the results and to 

determine the new scientific contributions of this study.  

3.3 Research approach: Modeling and Simulation 
For this research, a design and simulation approach was chosen. In the design part, RL-based controllers 

that can accommodate mixed traffic will be designed. In this thesis, at least two different types of RL 

controllers will be compared, so that it can be tested which model works well under which traffic scenarios 

and penetration rates. In order to build the controllers, design choices of other studies will be analyzed 

and combined in novel ways. Yet, it may not always be clear a priori what design choices and parameters 

work best for the newly designed models. To solve this, systematic experiments will be conducted in which 

each of the unknown design choices and different values for each of the parameters will be tested. The 

goal is to fully calibrate the algorithms such that stable and well-performing RL-agents are created.  

Once the RL-models have been built, they are ready to be trained on different traffic scenarios. After 

training, the algorithms can be evaluated. Both training and training will take place under several different 

CV/CAV penetration rates, so that it can be investigated how the controllers perform under different types 

of mixed traffic situations.  

Training RL-models is a time-intensive process which requires the RL-model to be exposed to numerous 

different traffic situations. Due to this, RL-algorithms are trained using microscopic traffic simulations.  

Furthermore, RL algorithms are generally also evaluated using microscopic traffic simulations. Using 

simulations to evaluate traffic signal control strategies has several advantages compared to field studies. 

To evaluate a strategy, it must be tested under different traffic situations. In simulations, it is possible to 

do many runs under precisely controlled traffic scenarios, which allows for detailed results. In field 

simulations however, it is impossible to control all factors exactly (Jing et al., 2017), which could make 

results less precise. Furthermore, simulation studies are faster, safer and cheaper than field studies.  

However, simulations also have disadvantages. Intersections are complex, which means that there are 

many factors which may significantly impact how well a controller performs. It is also possible that some 

behavior (especially human behavior) is not modeled realistically. Results may largely depend on the 

assumptions under which the model has been tested. However, research on traffic simulation is ongoing, 

and more features have been added over time to make it more realistic (Fellendorf & Vortisch, 2010). 

Ultimately, simulators are an established way to evaluate newly proposed traffic signal controllers. Once 

a strategy was proven effective in a simulation study, and once automated and connected vehicles are 

mature enough for real traffic, field studies can be used as the next validation step. 
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4. BACKGROUND ON DEEP Q-LEARNING LEARNING 
This section introduces the required background knowledge of reinforcement learning and deep Q-

learning needed to understand this thesis. For quick introductions for beginners, please refer to (Heberer, 

2019; Nicholson, n.d.; Osiński & Budek, 2018; Sharma, 2019; Silver, 2015). For an in-depth introduction, 

see (Sutton & Barto, 2018).  

4.1 Basic Idea of Reinforcement Learning 
Reinforcement Learning (RL) is a subset of Machine Learning in which models learn to make sequences of 

decisions within complex and/or uncertain environments. RL algorithms apply an iterative trial-and-error 

process to find the best solution for a problem without any external supervision or hints from the modeler 

on how to solve the problem. Instead, the algorithm solely learns which actions are optimal via the reward 

the action obtains (similar to how you would train e.g. a pet). If the algorithm performs a good action, it 

will receive a positive reward. If it performs a bad action, it will receive a punishment (negative reward). 

This trial-and-error learning process takes place over many iterations. Over time, the algorithm gains 

experience and learns which actions lead to better results. RL algorithms can correlate immediate actions 

with both immediate and delayed returns.  

There are three basic elements in RL: the agent, the environment and rewards (see Figure 3). The agent 

is the entity taking actions within its current state at each time step. The environment is the world in 

which the agent is located. The environment responds to actions by the agent(s) and provides as outputs 

a new state and a reward for the agent in the new time step. Rewards are incentives or feedback for the 

agent to measure how good a certain action is.  

 

Figure 3 Schematic on Reinforcement Learning as an MDP. Adapted from (Yang, Tan, & Menendez, 2017) 

Before proceeding with the formal definition, some terms will be informally defined.  

Actions (𝑨). 𝐴 is the set of all possible actions which the agent can take while in state 𝑠. Action sets are 

discrete and finite. Each round, the agent picks a single action.  

State (𝑺). 𝑆 is the current situation of the environment, i.e. a specific configuration of objects and time. 

Reward (𝑹). A reward is an immediate return from the environment based on the last chosen action by 

the agent. Rewards can be used as feedback by the agent to evaluate the success of its last action.  
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Policy (𝝅). The strategy of the agent to map states to actions, i.e. to determine its next actions based on 

its current state. The goal is to find a policy that leads to the best rewards. 

Transition function (𝑻). Change in the environment as a result of taking a certain action in a certain state. 

Discount factor (𝜸). Returns from the environment can be immediate or delayed. Delayed rewards are 

rewards that happen after several state-action combinations are chosen. Since these rewards are less 

important than immediate rewards, delayed rewards will be discounted by factor 𝛾 between 0 and 1. A 𝛾 

-value of 0 means only immediate rewards are considered, while a 𝛾-value of 1 means that all future 

delayed rewards are as important as the immediate rewards. 

Value (𝑽). Expected long-term return with discount (opposed to short-term reward). 𝑉𝜋(𝑠) is the 

expected long-term return of the current state under policy 𝜋.  

Q-value (also action-value) (𝑸). Similar to 𝑉, but also includes the current action a. 𝑄𝜋(𝑠, 𝑎) is the long-

term return of taking action 𝑎 under policy 𝜋 from current state 𝑠. It measures how good it is to take 

action 𝑎 when in state 𝑠 and following policy 𝜋. 

4.2 Markov Decision Processes 
Formally, RL agents are generally modeled as Markov Decision Processes (MDP). According to Sutton and 

Barto (2018), MDPs are “classical formalizations of sequential decision making where actions influence 

not just immediate rewards, but also subsequent situations, or states, and through those future rewards. 

Thus, MDPs involve delayed reward and the need to tradeoff immediate and delayed reward”. 

An MDP can be formally defined as a four-tuple < 𝑆, 𝐴, 𝑅, 𝑇 >, where 𝑆 = {𝑠1, … , 𝑠𝑛} is a finite set of 

states and 𝐴 = {𝑎1, … , 𝑎𝑚} is a finite set of actions. The function 𝑇: 𝑆 𝑥 𝐴 𝑥 𝑆 → [0,1] defines the 

transition function specifying the probability of taking action 𝑎 in state 𝑠 and ending up in state 𝑠′. The 

reward for taking action 𝑎 in state 𝑠 and ending up in state 𝑠′ is represented by reward function 

𝑅: 𝑆 𝑥 𝐴 𝑥 𝑆 →  ℝ. 

The system fulfills the Markov property if the outcome of an action only depends on the previous state 

and action, such that  

𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡−1, 𝑎𝑡−1, … ) = (𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡) (1) 

To determine which actions agents will choose when in a certain state, they use policies. Policy 𝜋 maps 

from states to actions: 𝜋: 𝑆 → 𝐴. This means that if the agent is in state 𝑠0 and acts under policy 𝜋, it will 

choose action 𝑎0 = 𝜋(𝑠0) and will transition to state 𝑠1. For this transition, the agent will receive reward 

𝑟0 = 𝑅(𝑠0, 𝑎0, 𝑠1).  

Rewards that are received are a combination of immediate returns and delayed returns. Delayed returns 

are discounted by a discount factor 𝛾 ∈ [0,1]. The agent’s goal is to maximize its expected reward over 

time. Usually, it should give preference to short-term (immediate) rewards over long-term (delayed) 

rewards. The total return, the expected discounted cumulative reward over time is calculated as: 

𝑅𝑡  = 𝐸[𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾
2𝑟𝑡+2 +⋯ = 𝐸[∑𝛾𝑘𝑟𝑡+𝑘]

∞

𝑘=0

(2) 
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Two different value functions can be defined: a state value function and a state-action value function. The 

value of state 𝑠 under policy 𝜋 is 𝑉𝜋(𝑠). It represents the expected return of following policy 𝜋 when 

starting in state 𝑠. It is defined as 

𝑉𝜋(𝑠) = 𝐸𝜋[𝑅𝑡|𝑠𝑡 = 𝑠] 

= 𝐸𝜋[∑ 𝛾𝑘𝑟𝑡+𝑘|𝑠𝑡 = 𝑠] 

∞

𝑘=0

 

= 𝐸𝜋[𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾
2𝑟𝑡+2 +⋯|𝑠𝑡 = 𝑠] 

= 𝐸𝜋[𝑟𝑡 + 𝛾𝑉
𝜋(𝑠𝑡+1)|𝑠𝑡 = 𝑠] 

= ∑ 𝑇(𝑠, 𝜋(𝑠), 𝑠′)

𝑠′∈𝑆

(𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉𝜋(𝑠′)) (3) 

where 𝑠′ denotes the next state. This equation is also known as the Bellman equation. It describes the 

relationship between the value of state 𝑠 and its successor states.  

Furthermore, a state-action value function 𝑄𝜋(𝑠, 𝑎) can be defined. It shows the expected value of taking 

action 𝑎 while the agent is in state 𝑠 while following policy 𝜋. In other words, it is a measure of how good 

the state-action pair is. It is defined as 

𝑄𝜋(𝑠, 𝑎) = 𝐸[𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] 

= 𝐸𝜋[∑ 𝛾𝑘𝑟𝑡+𝑘|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] 

∞

𝑘=0

 

= ∑ 𝑇(𝑠, 𝜋(𝑠), 𝑠′)

𝑠′∈𝑆

(𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉𝜋(𝑠′)) (4) 

 An optimal policy 𝜋∗ (i.e. a policy that results in expected values equal or greater than any other policies 

for all states) satisfies 

𝑉∗(𝑠) = max
𝑎∈𝐴

∑𝑇(𝑠, 𝑎, 𝑠′)

𝑠′∈𝑆

(𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉∗(𝑠′)) (5) 

𝑄∗(𝑠, 𝑎) = ∑ 𝑇(𝑠, 𝑎, 𝑠′)

𝑠′∈𝑆

(𝑅(𝑠, 𝑎, 𝑠′) + 𝛾max
𝑎′∈𝐴

𝑄∗(𝑠′, 𝑎′)) (6) 

If 𝑇 and 𝑅 are known, the optimal policy can be found e.g. via dynamic programming methods that use 

the recursion in equation (5). These approaches are known as model-based approaches. These 

approaches do not require the agent to interact with the environment directly (Y. Li, 2018a). However, in 

many cases the system is too complex to be able to determine 𝑇 and 𝑅 upfront. In these cases, RL 

algorithms can be applied. These model-free approaches rely on the earlier described trial-and-error 

processes to sample the underlying MDP to learn the optimal policies. 

We can express the optimal value function and policy solely in terms of the Q-function: 

𝑉∗(𝑠) = max
𝑎∈𝐴

𝑄∗ (𝑠, 𝑎) (7) 

𝜋∗(𝑠) = arg max
𝑎∈𝐴

𝑄∗ (𝑠, 𝑎) (8) 
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Now, we do not need to know the transition function 𝑇 or the reward 𝑅 explicitly. Instead, the Q-function 

is sufficient to determine the next action. The Q-function is iteratively estimated and updated. 

4.3 Model-free Reinforcement Models 
Model-free reinforcement models can be classified as value function-based or policy search-based. 

Additionally, hybrid actor-critic approaches exist that use both value functions and policy search 

(Arulkumaran, Deisenroth, Brundage, & Bharath, 2017). Value function methods estimate the value 

function 𝑉∗ in an iterative process, until an optimal value function is found. This process is based on the 

optimality Bellman operator. Policy-search methods do not need a value function model, but directly 

search for an optimal policy 𝜋∗. Given a policy, its value function can be determined via the Bellman 

equation.  

Furthermore, value-based approaches can be divided into on-policy and off-policy algorithms. In off-policy 

algorithms, actions may be selected according to non-optimal policies during training. On-policy 

algorithms however only select policies which are currently estimated to be optimal, i.e. these algorithms 

only select actions greedily.  

In this thesis, it was decided to use deep Q-learning. Deep Q-learning is a type of Q-learning, which is a 

model-free, value function-based, off-policy RL algorithm. This algorithm will be described next. 

4.4 Tabular Q-learning 
Traditional Q-learning (Watkins, 1989) uses a lookup table of all possible Q-values of state-action pairs 

and iteratively updates the Q-values. The updates at each time step 𝑡 are performed using the following 

equation: 

𝑄𝑡+1(𝑠𝑡, 𝑎𝑡)⏟      
new Q-value

= 𝑄𝑡(𝑠𝑡, 𝑎𝑡)⏟      
old Q-value

+ 𝛼⏟
learning rate

[
 
 
 
 
 

𝑟𝑡 + 𝛾 max
𝑎′∈𝐴

𝑄𝑡(𝑠𝑡+1, 𝑎)⏟          
estimate of optimal future Q-value⏟                    

new value (temporal difference target)

−𝑄𝑡(𝑠𝑡 , 𝑎𝑡)⏟      
old Q-value

]
 
 
 
 
 

⏞                              
temporal difference

  (9)
 

The algorithm uses the Bellman equation for the value function update, by weighting the old Q-value and 

the temporal difference value. The learning rate (or step size) 𝛼 ∈ [0,1] determines the speed that new 

information is being learned. A learning rate of 0 means the algorithm learns nothing, while a value of 1 

means that only the most recent information is considered to choose new actions (i.e. all previously 

learned knowledge would be forgotten). 

If each state-action pair is visited infinite times, then Q-learning will converge to an optimal policy. In 

practice this is not impossible, so algorithms are stopped after a certain fixed number of episodes or when 

the model’s performance improvements are under a certain threshold. Nevertheless, it is not easy to 

determine a priori for how long a model needs to be trained.  

The full Q-learning algorithm is shown in algorithm 1 (adapted from (Pol, 2016)). 
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Algorithm 1: Tabular Q-learning 

1: Initialize 𝑸(𝒔, 𝒂) randomly for all 𝒔 ∈ 𝑺, 𝒂 ∈ 𝑨, 𝒊 = 𝟏 
2: for each episode do 
3:  Initialize 𝒔, 𝒂 
4:  for each step 𝒕 in episode do 
5:   𝒂 = 𝝅(𝒔)   // Select a using policy based on current Q, e.g. ε-greedy 
6:   Take action 𝒂 
7:   Receive reward 𝒓, observe new state 𝒔′ 

8:   Update Q: 𝑸(𝒔, 𝒂) = 𝑸(𝒔, 𝒂) + 𝜶(𝒓 + 𝜸𝐦𝐚𝐱
𝒂′

𝑸(𝒔′, 𝒂′) − 𝑸(𝒔, 𝒂)) 

9:   set 𝒔 = 𝒔′ 
10: end for 
11: end for 

4.5 Exploration and Exploitation 
In reinforcement learning, there is a trade-off between exploration and exploitation. Exploration is 

needed to discover up until then unencountered state-action combinations, to find potentially 

better/more optimal solutions. Exploitation is needed to use the learned knowledge about which action 

would be optimal in the current state. Both must be balanced. On the one hand, excessive exploration 

leads to agents limiting their capacity to receive rewards, therefore reducing their performance. On the 

other hand, excessive exploitation leads to the agent never learning new potentially better policies (Yau 

et al., 2017).  

Literature has extensively studied this trade-off. Different exploration strategies exist, e.g. 𝜀-greedy, 

Botzman (also called softmax), UCB. The choice of exploration strategy can affect the performance of the 

algorithm (Yau et al., 2017). 

4.6 Function approximation 
A critical problem with tabular Q-learning is the so-called “curse of dimensionality”: if the number of state-

action pairs becomes too large or even unlimited (for continuous states) problems arise. Too much storage 

space would be needed to store every state-action pair and the computational costs and learning times 

would increase exponentially (Arulkumaran et al., 2017; Yau et al., 2017). Additionally, since every state-

action pair would have to be visited near infinitely to converge, finding the optimal policy is no longer 

guaranteed. Tabular Q-learning works well for small problems, however in the real-world state-action 

spaces are rarely small or finite. 

To solve this, function approximation can be applied. It is used to approximates the value of a function 

and allows us to generalize experiences to other similar (potentially unencountered) state-action pairs. In 

the case of Q-learning, function approximation can be used to generalize learned Q-values of state-action 

pairs to predict similar state-action pairs. As such, the algorithm is likely to learn Q-values faster. 

Instead of having to store every state-action pair Q-value in a table, the learned function 𝑄(𝑠, 𝑎) will be 

parameterized by a learned weight 𝜃. Different methods can be used to approximate these values. One 

of them is gradient descent. In gradient descent, 𝜃 is updated by minimizing the mean squared error (MSE) 

between the current 𝑄(𝑠, 𝑎) estimate and the true 𝑄𝜋(𝑠, 𝑎) estimate under policy 𝜋 (i.e. target). The 

update is done by taking the derivative of the MSE, which is calculated as follows: 
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𝑀𝑆𝐸(𝜃) =∑𝑃(𝑠)[𝑄𝜋(𝑠, 𝑎, 𝜃∗)⏟      
target Q𝑠∈𝑆

− 𝑄𝑡(𝑠, 𝑎, 𝜃𝑡)⏟      
current Q estimate

]2 (10) 

𝜕

𝜕𝜃𝑡
𝑀𝑆𝐸(𝜃) = 2[𝑄𝜋(𝑠, 𝑎, 𝜃∗) − 𝑄𝑡(𝑠, 𝑎, 𝜃𝑡)]

𝜕

𝜕𝜃𝑡
𝑄𝑡(𝑠, 𝑎, 𝜃𝑡) (11) 

Where 𝑃(𝑠) is the sampling distribution (i.e. the probability to visit state 𝑠 under policy 𝜋). 

However, the target 𝑄𝜋 is not known, thus we estimate it by using the reward in the current time step 

and a discounted estimate of the next state’s best Q-value using the current 𝑄𝑡 estimate. 

𝑄𝜋(𝑠, 𝑎, 𝜃∗) ≈ 𝑟𝑡 + 𝛾 [max
𝑎′∈𝐴

𝑄𝑡(𝑠𝑡+1, 𝑎
′, 𝜃𝑡)] (12) 

Since it uses the max-operator, equation (12) is an optimistic estimate of the Q-value at time step 𝑡. 

Now that the Q-value is parameterized by 𝜃, supervised machine learning algorithms can be used to 

approximate the Q-function.  

4.7 Deep Q-learning 
In this thesis, it was chosen to study deep Q-learning models. In deep Q-learning, deep (artificial) neural 

networks ((A)NN) are used to approximate the Q-values (also called DQN: deep Q-networks). NNs are 

universal approximators that can approximate complex and highly non-linear functions. As such, they can 

recognize hidden patterns from complex data, making it suitable for problems that are too complex for 

humans or other data analysis methods (Araghi, Khosravi, & Creighton, 2015). An in-depth explanation of 

how neural networks work is out-of-scope. For an introduction to neural networks, refer to Bishop (1996). 

Here it suffices to know that deep neural networks will be used. Deep NNs are NNs which have multiple 

hidden layers. Adding more hidden layers to the NN allows the NN to approximate more complex 

functions, at the cost of longer training times. Thus, a tradeoff between the number of hidden layers and 

training time is needed. 

The basic idea is that we want to use NNs to update the Q-values, similar as in equation (9). To update the 

NN’s weights needed to approximate the Q-functions, commonly gradient descent and backpropagation 

are used. To use this, we need a cost function that measures the difference between the NN’s estimated 

Q-value and the actual Q-value. The goal is to minimize this error function. Since the actual Q-value is 

unknown, we can again estimate it by using the temporal difference target of equation (9). It represents 

the total expected reward of all future time steps, including discounted future rewards. Then we can 

iteratively update the target value. 

We can set up our loss function as follows, using the squared error loss: 

𝐿 =
1

2
[𝑄(𝑠𝑡 , 𝑎𝑡) − (𝑟𝑡 + 𝛾𝑉(𝑠𝑡+1))] (13) 

Now we can perform gradient descent using the derivative of the loss function: 

𝜕𝐿

𝜕𝑄(𝑠𝑡 , 𝑎𝑡)
= 𝑄(𝑠𝑡 , 𝑎𝑡) − (𝑟𝑡 + 𝛾𝑉(𝑠𝑡+1)) (14) 

Using this, an update rule for the Q-value can be created: 
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𝑄𝑡+1(𝑠𝑡 , 𝑎𝑡) = 𝑄𝑡(𝑠𝑡, 𝑎𝑡) − 𝛼[𝑄(𝑠𝑡 , 𝑎𝑡) − (𝑟𝑡 + 𝛾𝑉(𝑠𝑡+1))] (15) 

Where the best estimate for the value of the next state is the value of the expected best action in that 

state: 

𝑉(𝑠) = max
𝑎∈𝐴

𝑄𝑡𝑎𝑟𝑔𝑒𝑡(𝑠, 𝑎) (16) 

A basic scheme of DQN is shown in Figure 4. The NN consists of an input layer, a certain amount of hidden 

layers (minimum of 2 in case of deep learning), and an output layer. The input to the NN is the current 

state, which consists of multiple measurement values of the environment. The output of the NN are the 

Q-values which are associated with every possible action (in this scheme 4 actions). In other words, the 

NN predicts the Q-values for all 𝑚 actions 𝑎 ∈ 𝐴 in the current state 𝑠𝑡: 𝑄(𝑠𝑡 , 𝑎0), 𝑄(𝑠𝑡 , 𝑎1), … , 𝑄(𝑠𝑡 , 𝑎𝑚). 

 

Figure 4 Scheme of Deep Q-learning (adapted from Vidali (2018)) 

4.8 Convergence  

4.8.1 Convergence issues   
If we use function approximation approaches such as NNs to estimate our Q-values, convergence to the 

optimal policy like in tabular Q-learning is no longer guaranteed. Different instabilities or convergence 

problems may occur (Pol, 2016; Samad, 2020).  

Violates i.i.d assumption 

Supervised Learning algorithms such a NN assume that samples are independently and identically 

distributed (i.i.d). However, the next sample of state-action pairs (𝑠𝑡+1, 𝑎𝑡+1) is heavily dependent on the 

previous pair (𝑠𝑡 , 𝑎𝑡). Furthermore, since 𝑄𝑡 is iteratively updated every time step, the sampling 

distribution of the sample (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) also changes. In other words, samples are neither independent 

nor identically distributed. 

Catastrophic forgetting and moving targets 

When using function approximation, Q-values are not updated per single entry in a table, but rather 

globally via changing the Q-value approximation function (here: the NN). One problem is that of 
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catastrophic forgetting: when new samples are used to update the Q-function, the network could forget 

earlier learned tasks from older samples (Coşkun, Baggag, & Chawla, 2019). 

Furthermore, since as shown in equation (12), both the current 𝑄(𝑠, 𝑎) estimate and the target estimate 

𝑄𝜋(𝑠, 𝑎) are used to update the new 𝑄(𝑠, 𝑎) estimate. Thus, in every time step the Q-values of a specific 

state-action pair change. However, since the Q-function is updated globally, this means that also the Q-

target estimate changes at the same time, moving the Q-target. This can lead to oscillation of the Q-target 

and thus destabilize the learning. 

4.8.2 Solutions 
Different methods have been proposed to solve the convergence issues. The two most commonly used 

are experience replay and target networks, as first proposed for DQN in the 2015 DeepMind paper (Mnih 

et al., 2015) that used RL for Atari games. Furthermore, many other add-ons to the so-called “vanilla” or 

base DQN have been proposed (see e.g. Hessel et al. (2018)), which will be discussed in the next section. 

4.8.2.1 Experience replay 

Experience replay (Lin, 1992) is a method used to avoid the correlation of samples. Samples consist of the 

tuple (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡, 𝑠𝑡+1), where 𝑠𝑡 is the current state, 𝑎𝑡 is the chosen action, 𝑟𝑡 is the reward of choosing 

action 𝑎 in state 𝑠, and 𝑠𝑡+1 is the resulting next state. Usually, neural network updates would be 

performed immediately after each experience (i.e. after obtaining a sample). This is referred to as online 

learning.   

Instead, in experience replay, experiences are first stored in the replay memory 𝑀. Each training step, a 

randomized group of samples (called a batch) are taken from the memory and used to train the network. 

Batches can consist of a single sample, a subset of samples (called mini-batches) or all samples. This 

process is shown visually in Figure 5. Using experience replay thus ensures that the chosen samples are 

no longer correlated since the sampling order is random. As such, learning is logically separate from 

gaining new experiences. This ensures better convergence (Mnih et al., 2015). 

 

Figure 5 Memory handling before training the NN. Adapted from Vidali (2018). 

To use experience replay, a memory is needed. This memory has a certain size, representing how many 

samples can be stored before having to remove old ones. Usually, once the memory is full, the oldest 

sample is removed. Additionally, the modeler must determine a batch size, which specifies how many 

samples are included in each batch. In experience replay, samples may be encountered several times. The 

higher the batch size and the more often training instances happen, the more often a sample will be 

encountered. Encountering an experience multiple times is useful, since gaining new experiences can be 
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computationally costly. Since the algorithm works iteratively and only updates Q-values slowly, 

encountering a sample multiple times is useful. Especially reusing rare but valuable experiences can be 

beneficial, since it may take long to re-encounter the situation.  

However, experience replay also has disadvantages. One drawback is that it requires a lot of memory, 

which may be costly (Park & Shires, 2019). Another problem is that if the environment changes too much, 

the old rewards for certain state-action pairs may no longer be accurate. Furthermore, since samples are 

chosen uniformly, common experiences may be sample more often than rare ones, even though those 

experiences may be much more critical (e.g. experiences leading to fatal accidents)(Pol, 2016). An 

improvement for this problem is prioritized experience replay (Schaul, Quan, Antonoglou, & Silver, 2016). 

4.8.2.2 Target network 

To avoid the problem of moving targets, an approach called target network can be applied (Mnih et al., 

2015). In this method, two separate Q-networks with different 𝜃 parameters are kept: an online network 

𝑄(𝑠, 𝑎, 𝜃) and a target network 𝑄(𝑠, 𝑎, 𝜃𝑇). The online network is used to for backpropagating every step, 

i.e. to use experiences to update parameter 𝜃 of the online Q-network. The target network is used to 

estimate the target Q-values. The target Q-network is kept frozen for several iterations, the so-called 

freeze interval. Once the freeze interval is over, the two networks are synchronized by copying the values 

from the online network to the target network. Now the target Q-values are not changing every time step, 

but only once at the end of the freeze interval. For a schematic of the approach, see Figure 6. Since now 

the current Q-values and target Q-values are no longer changing simultaneously, the agent’s decisions 

become more stable (R. Zhang et al., 2020). 

 

Figure 6 Scheme of target network approach. Adapted from Kocabaş (2017). 

4.9 Deep Q-learning extensions 
As mentioned, many extensions for deep Q-learning (and other reinforcement learning algorithms) have 

been proposed in literature. These algorithms have shown performance improvements when used 

standalone, however, it was unclear to what extent these extensions can be combined and how these 

combinations affect the performance, learning speed and stability of DQN.  

Hessel et al. (2018) aimed to study this problem and published the highly cited paper in which they 

evaluated DQN combined with six extensions (called the Rainbow agent). The extensions studied in the 

paper were double deep Q-learning (Van Hasselt, Guez, & Silver, 2015), prioritized experience replay 
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(Schaul et al., 2016), dueling networks (Z. Wang et al., 2016), multi-step bootstrap targets (Sutton, 1988), 

distributional Q-learning (Bellemare, Dabney, & Munos, 2017) and noisy nets (Fortunato et al., 2017). To 

evaluate the performance of the proposed agent, the in RL commonly used Atari 2600 benchmark was 

used. The authors evaluated the performance of their Rainbow agent compared to vanilla DQN as well as 

other state-of-the-art DQN algorithms (which use either one or several of the described extensions). They 

found that the Rainbow agent outperforms vanilla DQN and all other state-of-the-art agents by a 

significant margin. Additionally, the authors conducted ablation studies in which they ran the Rainbow 

agent with one extension removed to quantify how much an extension contributes to Rainbow’s 

performance. It was found that prioritized experience replay and multi-step learning were most crucial 

for the improved performance compared to DQN. Distributional Q-learning, noisy nets and dueling 

networks also generally improved the agent’s performance, however not in all games. Only double Q-

learning did not improve the agent’s performance.  

Another type of DQN extension is to add recurrence. The most popular variant of recurrent neural 

networks is to add long short term memory layers (LSTM) (Hochreiter & Schmidhuber, 1997). Recurrent 

networks allow to model time/sequence-dependent behavior by remembering information on past states 

in memory. Instead of using only the current state as input, recurrent networks also use their memory of 

previously seen states. This method is particularly useful in situations in which either decisions not only 

depend on the current state but also on the past states, or in which the state is only partially observable. 

Hausknecht & Stone (2017) were the first to use recurrence in deep RL. Specifically, they applied LSTM to 

DQN agents (resulting in deep recurrent Q-learning; DRQN) and evaluated the models on the Atari 

benchmark. They compared vanilla DQN and recurrent DQN and found that DRQN performed better than 

DQN if the state was only partially observable and that DRQN was more robust to changes in the quality 

of observations. Further improvements to DRQN were made by Kapturowski, Ostrovski, Quan, Munos and 

Dabney (2019 and Lample & Chaplot (2017). 

Many other types of extensions exist, but a more in-depth discussion is out of the scope. For more 

information on different model types and extensions, refer to Y. Li (2018b) or Sutton and Barto (2018).  

4.10 Summary 
This chapter has introduced required background knowledge on Q-learning and deep Q-learning. The 

basic idea is that algorithms are model-free, i.e. they can learn good policies without researchers having 

to model all internal behaviors. Instead, agents learn by trial-and-error by observing the environment 

state, choosing actions and getting feedback from the environment on how good or bad their action was.  

Traditional Q-learning agents use tabular Q-learning. Yet, this oftentimes suffers from the curse of 

dimensionality, meaning that the number of state-action pairs quickly grows too large to train. Deep Q-

learning solves this problem, but also introduces stability issues. The stability issues can be combatted by 

applying two extensions: experience replay and target network freezing. A wide range of other extensions 

have been proposed in literature and could be used to improve model performance or stability.   
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5. STATE-OF-THE-ART IN DEEP Q-LEARNING IN TRAFFIC SIGNAL CONTROL 
This section the state-of-the-art in using deep Q-learning in TSC will be reviewed. The focus will only be 

on Deep Q-learning. Earlier research on using RL in TSC used other, not deep, methods such as tabular Q-

learning. However, as described in chapter 2, these methods do not allow to model as complex relations 

as using neural networks. Other methods than Q-learning could potentially also be applicable for TSC, 

however since most research focuses on Q-learning, only this method is taken into consideration. 

5.1 Literature gap and sub-research goal 
The first RL traffic controller was proposed in 1994, however at that time it could not yet be implemented 

due to computational limitations (Mikami & Kakazu, 1994). The first adaptive controller using RL was 

proposed in 2003 (Abdulhai et al., 2003). Since then, many authors used RL for adaptive TSC. For a review 

of RL methods in TSC from 1997-2010, please see the paper by El-Tantawy, Abdulhai and Abdelgawad 

(2014). For papers until 2016, please see Mannion et al. (2016). In this time, RL approaches in TSC only 

used tabular Q-learning, thus they were limited in state space and model complexity. To solve this, deep 

reinforcement learning started becoming popular. 

As mentioned, DQN was first used by Mnih et al. in 2015 to play Atari games. Deep RL is a fast-developing 

field, in which much new research is being published. In recent years, deep RL also became popular in TSC 

(P. Chen, Zhu, & Lu, 2019). The most popular RL model is deep Q-learning (Y. Wang et al., 2018).  

Since the field is developing so quickly, existing reviews are outdated quickly. Several general DQN reviews 

not specific to TSC were found in literature, such as by Arulkumaran et al. (2017), Y. Li  (2018) and Mousavi, 

Schukat and Howley (2016). Wang, Yang, Liang and Liu (2018) reviewed methods to control self-adaptive 

TSC systems with a focus on integrating TSC and intelligent transport systems. They conclude that TSC 

based on multi-agent RL will probably be the future research focus, however they do not review any DQN 

methods. Lastly, the survey by Yau et al. (2017) reviews the state-of-the-art in RL until 2017 and they 

specifically review different representations of TSC problems in RL models (i.e. state representations, 

action space, reward functions). Nevertheless, their review also does not include DQN methods. As can 

be seen, no reviews focusing on DQN in TSC have been published. Thus, this review will fill this gap. 

5.2 Literature Search Method 
A systematic review of existing literature was conducted through the databases Scopus, IEEE and Google 

Scholar. Two different searches were conducted: the first was to find papers that apply DQN to TSC and 

the second was to find papers that apply RL (not specifically DQN) to TSC in mixed human and connected 

or automated vehicle environments. The search terms used for each search are shown in Table 3. 

Table 3 Search terms used in the literature review on RL approaches in TSC 

Key concept Keywords 

1 2  

Traffic signal control ● ● Intersection, "traffic light", "traffic signal", "traffic signal control", signal* 

Road traffic ● ● Vehicle, car 

Reinforcement 
learning 

 ● reinforcement learning 

Deep Q-learning ●  DQN, “deep reinforcement learning”, deep Q-learning 

Connected or 
automated vehicles 

 ● Autonomous, automated, intelligent, driverless, unmanned, cooperative, 
connected, connect*, communication, cooperat*, V2*, smart 

Mixed Traffic  (●) Non-automated, human-driven, mixed, penetration, partial* detect*, POMDP 
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All searches were performed on the title, abstract and keywords. To limit results from other transport 

domains, the keywords “UAV”, “unmanned aerial vehicle”, “aerial”, “underwater” and “air” were 

excluded. In each case, articles were filtered first by their titles and by screening the abstracts. For the 

relevant results, the full-body text was used. Lastly, for the selected literature the references were 

reviewed in included if relevant (‘backward snowballing’).  

Only papers that focused on signalized intersection control were included. This excluded studies that 

focused on non-signalized intersections, on-ramp merging or AV trajectory control. Studies that included 

pedestrians, lane changes or traffic rule violations were excluded since they are out of the scope of the 

algorithm that will be designed in this thesis. Other articles that were out of the scope were papers on 

pedestrian or human driving prediction algorithms, cross-modal learning and human-vehicle interactions. 

To guarantee quality articles are included, all included papers must describe the implemented RL 

algorithm, their methodology used (experimental setup, list of parameters) and must provide quantitative 

experimental results. 

A full list of all included papers, as well as the results can be found in Appendix C. Due to page size 

limitations, it could not be included in the main body of the paper.  

5.3 State-of-the-art of Deep Q-learning in traffic signal control  
In the next sections, the findings will be outlined and discussed by topic. Note that all discussions assume 

that traffic drives on the right side of the road, but conclusions can easily be adjusted to left-side driving. 

5.3.1 Network topologies 
Many different types of network topologies can be chosen for the traffic model. In general, it is possible 

to study either isolated intersections, multiple intersections in an arterial or a network of intersections. 

Furthermore, it is possible to study either synthetic topologies or real-world topologies (Yau et al., 2017). 

Synthetic layouts allow for better control of the environment, but real-world intersections allow to better 

adapt the TSC to the specific requirements for that intersection.  

In the reviewed literature, many papers focused on isolated intersections. All of these papers used 

synthetic intersection layouts of bidirectional 4-way intersections. Researchers chose different numbers 

of lanes for the legs: between 1 and 4. Recently, more interest is being shown in studying coordinated 

signal control in arterial or networks.  

5.3.2 Possible movements and traffic phases 
When looking at the single intersection level, the modeler must decide which movements are permitted 

for vehicles and how traffic phases should be assigned (Yau et al., 2017). Since nearly all papers assumed 

4-way intersections, the discussion will only be based on these.  

Concerning the allowed movements, the following options were found:  

• only through traffic (i.e. driving straight without turns) 

• through traffic and turns 

• movements as in the real-world (through traffic, turns, potentially U-turns or one-way streets).  

The possible traffic (green) phases are related to this. The options found here are either two traffic phases, 

4 traffic phases or more than 4 traffic phases.  
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Some researchers decided to not allow turns. (e.g. P. Chen et al., 2019; L. Li, Lv, & Wang, 2016; Mousavi, 

Schukat, & Howley, 2017; Nawar, Fares, & Al-Sammak, 2019; Pol & Oliehoek, 2016; Wei, Zheng, Yao, & Li, 

2018; Wu, Kong, & Fan, 2019; R. Zhang et al., 2020). In these models, only two phases were used: North-

South green and East-West green. This was done to simplify the model; however, it reduced the models’ 

real-world applicability. Often these models were meant as proofs-of-concept for newly proposed ideas. 

The other popular choice was to use 4 green phases. While other green phase options would be possible 

(see (Yau et al., 2017)), the common choice was to use the option shown in Figure 7. Two traffic phases 

allow through and right-turning traffic and two traffic phases allow left-turning traffic.  

 

Figure 7 Commonly chosen combination of green phases 

A few papers even added as many as 8 phases of compatible movements, see e.g. (M. Guo, Wang, Chan, 

& Askary, 2019; Kim, Jung, Kim, & Lee, 2019).  

Ultimately, the choice of allowed traffic movements and green signals will influence for what kind of 

intersections the model will be applicable. In practice, the choice of intersection will depend on the local 

traffic situation. Nevertheless, adding more possible green phases to the model can make the controller 

more flexible, but it will also become harder to train the agent. A trade-off will have to be made. 

5.3.2.1 Additional phase constraints 

Many modelers add transitions between phases. Some researchers add a few seconds of yellow time after 

switching phases (e.g. S. Wang et al., 2019; Wei et al., 2018). Additionally, some models also include a few 

seconds of all-red phases during transitions (e.g. Coşkun et al., 2019). The purpose of yellow and red 

phases is to allow vehicles to clear the intersection in order to increase safety. It also makes the model 

more similar to real-life. 

Some researchers added extra logic to the allowed phases, a so-called “sanity check” (R. Zhang et al., 

2020). This involves adding a minimum and/or maximum duration for green phases. This means the 

controller may not switch phase until the minimum green duration has passed and must switch phase if 

the maximum duration was reached. Minimum phase lengths are implemented to ensure that at least 

one vehicle can pass during a green phase. Maximum phase lengths are implemented to ensure fairness 

between lanes since some reward functions could lead to shorter queues becoming less prioritized and 

having to wait infinitely long compared to longer queues. Other authors however argue that imposing 

minimum and maximum durations a priori is not a necessity since the algorithm would develop such 

policies by itself (Genders & Razavi, 2018). 

5.3.3 States 
The state representation is an important input for RL models. The state represents the agent's decision-

making factors, i.e. it represents everything the agent knows about the current situation at time 𝑡 and the 
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agent must decide which action to take based only on this knowledge. Within the literature, many 

different state representations were found. States can either be singular or consist of several different 

sub-states (i.e. measures for different factors combined into one overall state) (Yau et al., 2017). 

Additionally, the state of one intersection may include information about other surrounding intersections. 

The following (sub)state representations were found in DQN literature: 

• Queue size: Number of vehicles waiting/halting within a leg or lane. To determine which vehicles 

are waiting, a maximum speed has to be defined (e.g. 0.1 m/s). All vehicles below this speed are 

counted as waiting in the queue, all others are not. Used e.g. by M. Guo et al. (2019) and L. Li et 

al. (2016). 

• Vehicle position: Physical position of vehicles within the intersection. Represented via discrete 

traffic state encoding (DTSE). In DTSE, lane segments of length 𝑙 beginning at the stop line are split 

into discrete cells of length 𝑐 (Genders & Razavi, 2016). All cells are combined into a state vector 

or matrix. For DTSE, the size of the cell is critical: if it is too long, the individual vehicle dynamics 

are lost, but if it is too short, the computational cost will increase drastically. Generally, the cell 

length is chosen slightly larger than the average car. In the case of vehicle positions, binary DTSE 

is used: if a vehicle is inside the cell, the cell will be set to 1, else it will be 0.  

• Distance to the nearest vehicle at each approach: Distance [m] from the stop line to the closest 

vehicle that is driving towards the intersection for each leg. If no vehicle is approaching on a leg, 

the maximum distance is used. Representation used by R. Zhang et al. (2020). 

• Vehicle density: Can be measured per leg (e.g. R. Zhang et al., 2020), per lane (e.g. Genders & 

Razavi, 2016) or via DTSE (Zeng, Hu, & Zhang, 2018). Is encoded either as an absolute number of 

vehicles on the leg/lane, as a number of vehicles per area or as 
#𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠

max#𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠
. 

• Speed. Speed of vehicles at time 𝑡 [m/s]. Can be either measured as average speed for the whole 

leg or lane (e.g. Genders & Razavi, 2018) or represented via DTSE per vehicle (e.g. T. Zhao & Wang, 

2019). Speeds can be absolute or normalized with respect to the maximum allowed speed.  

• Delay. Delay [s] for vehicles from entering the intersection to leaving the intersection (i.e. crossing 

the stop line). Measured as the difference between the time needed to cross the intersection at 

the maximum allowed speed and the time needed to actually cross the intersection. Delay can be 

measured per vehicle or as average per leg over time. Used for example in (Kim et al., 2019).  

• Vehicle waiting time. Similar to vehicle delay. Measures the time [s] that vehicles have spent 

under a certain speed threshold (e.g. under 0.1 m/s). The waiting time per vehicle can either be 

reset to 0 every time the vehicle starts moving or kept as a cumulative value. Nawar et al. (2019) 

for example used the vehicle waiting time normalized to the maximum waiting time in the 

network. 

• Vehicle emissions. CO2, NOx or other emissions created by vehicles. Used e.g. by Kim et al.  

(2019). 

• Red/green/yellow timing: elapsed time [s] since the beginning of the red/green/yellow phase for 

a specific leg or lane. See for example in (Shabestary & Abdulhai, 2019). 

• Yellow phase indicator: binary value which is set to 1 if there currently is a yellow phase, 0 if not. 

See (R. Zhang et al., 2020). 

• Current traffic phase: Combination of green signals currently activated. Within the state 

representation, phases can be encoded differently. Option 1 is to simply assign numbers to traffic 

phases (phase 1, phase 2, phase 3, …) and to simply use the phase number for the state. Option 2 
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is to one-hot encode phases. Here a vector with the same length as the number of traffic phases 

is created. Every entry in this vector is set to 0, except the current phase which is set to 1 (see e.g. 

(Zeng et al., 2018)). Option 3 is to use DTSE and to encode per lane (e.g. Nawar et al., 2019) or for 

every cell if they currently have a green phase (1) or not (0) (e.g. Genders & Razavi, 2016). Option 

4 is to use +/- signs in another indicator. R. Zhang et al. (2020) for example encoded the current 

phase by making the detected car count a positive number if that leg had a green phase, and a 

negative number if it had a red phase. Apart from encoding the current phase, in some cases, 

researchers also encode the next phase (e.g. Wei et al., 2018). Note that this is only possible if the 

traffic phases are in a fixed order. 

• Current time. Elapsed time [s; min; h; d; m] since a specified time. Different representations are 

possible, such as encoding the current hour of the day, day in the week, or month of the year. R. 

Zhang et al. (2020) for example encoded the current time in hours since midnight, discretized into 

24 steps of one hour.  

• Raw pixel snapshot. Camera snapshot of the full traffic situation at the current time. Uses all 

pixels as input. Used for example by Mousavi et al. (2017). 

As can be seen, there are many different possibilities for creating a state representation. Earlier RL 

methods such as tabular Q-learning only allowed for lower dimensional state representations, and usually 

required a certain amount of discretization. The most common choices in state representations for tabular 

Q-learning were queue length, delay or flow rates (Genders & Razavi, 2016; Mannion et al., 2016; Yau et 

al., 2017). No data at the individual vehicle level could be included. The developments of DQN now allow 

researchers to include rich high-dimensional data (Liang, Du, Wang, & Han, 2018). Deep Q-learning 

however removed these restrictions, leading to authors proposing very detailed state representations, 

often at the individual vehicle level, with many authors proposing to use DTSE. 

Some authors argue that the controller can make better decisions the more data it has available (R. Zhang 

et al., 2020). They argue that if not all information is included in the state, relevant decision factors may 

be missing, thus the model would not be able to create optimal policies.  

Three studies find that using higher-dimensional state representations outperforms RL-algorithms which 

only use queue size as state. Mousavi et al. (2017) find that using raw pixel inputs from a SUMO snapshot 

as state leads to a 67-73% reduction in queue length and cumulative delay compared to using a shallow 

network RL-algorithm that uses queue length as state. Genders & Razavi (2016) also compare a high-

dimensional state DQN to a shallow NN RL-algorithm. As state representation they use a combination of 

a one-hot encoded traffic phase vector with a 2-layered DTSE that includes the vehicle position and speed. 

They found that the higher-state representation led to an 88% reduction in average cumulative delay, a 

66% reduction in queue length, a 20% reduction in average travel time and a similar throughput. 

Shabestary and Abdulhai (2019) compared DQN using 2-layer DTSE (representing vehicle position and 

vehicle speed) to tabular Q-learning and found that the higher-dimensional state representation led to a 

23.4% reduction in intersection travel time, 39.3% reduction for in queue time, and 36.0% shorter queue 

lengths with 42.3% fewer variations. As can be seen, higher-dimensional state representations led to 

significant improvements in various performance indicators compared to only using queue length. 

Genders & Razavi (2018) and Gao, Shen, Liu, Ito, & Shiratori (2017) speculate that this is because if a model 

only uses the queue length as state representation, this would ignore all vehicles which are still driving 

(so they would not be counted as a member of the queue). Shabestary & Abdulhai (2019) provide similar 

reasoning: they explain that if a controller only uses queue length as input, it cannot distinguish between 
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100 slow-moving vehicles or an empty lane. Once a lane with a long queue gets a green phase, all these 

vehicles suddenly start moving slowly. However, since they are now above the cutoff speed to be counted 

as “in a queue”, they now suddenly become “invisible” to the controller. As such, different environmental 

situations could be represented by the same state representation but gain completely different rewards 

even if the same actions are picked. This can lead to instability. 

Similar reasoning can be used against using average traffic flows. Average traffic flows use historical traffic 

data to calculate e.g. average speeds or delays over a certain time interval. The problem is that these are 

just approximations of the current traffic states, and useful information could be left out (Genders & 

Razavi, 2016). In case of using average travel delays, the problem is that these kinds of metrics can only 

be gathered once vehicles have left the intersection, leading to only a delayed representation of the 

environment (Gao et al., 2017). 

Additionally, many metrics such as queue length and average vehicle flows are not metrics which can be 

measured directly, because they need to be preprocessed and abstracted by experts using prior 

knowledge (Shabestary & Abdulhai, 2019). To use queue lengths for example, experts must specify a 

speed threshold. For average flows, assumptions about e.g. vehicle lengths must be made. This type of 

abstraction and discretization causes a loss of information which may lead to problems. 

For these reasons, many authors argue against using discretization or abstraction by experts. Instead, they 

suggest using high-dimensional states such as raw pixel images or DTSE, so that the deep RL-algorithm 

can extract and learn the relevant features by itself, without prior knowledge (Gao et al., 2017; Genders 

& Razavi, 2016; Mousavi et al., 2016). 

Other authors argue that certain state representations would not work in practice since this data would 

either be impossible to obtain in real-time or it would require too expensive sensors (Choe, Baek, Woon, 

Kong, & Member, 2018; Coşkun et al., 2019; Genders & Razavi, 2018; Horsuwan & Aswakul, 2019; Mousavi 

et al., 2017; Rodrigues & Azevedo, 2019; S. Wang et al., 2019; T. Wu et al., 2019). Many of these authors 

work under the assumption that the traffic environment is only observable via infrastructure sensors, such 

as induction loops, cameras or radar. However, as stated in chapter 2, the rise in connected vehicles could 

solve this problem. Using vehicle communication could enable the traffic controller to gather individual 

vehicle-based real-time traffic information, without the need for expensive infrastructure sensors (Liang 

et al., 2018; R. Zhang et al., 2020).  

Nevertheless, the fact that higher-dimensional state representations always gain significantly better 

results is not undisputed in literature. Genders & Razavi (2018) compared three different levels of details 

in state representations using the same asynchronous advantage actor-critic RL-algorithm with the same 

rewards, traffic situation, training parameters and model parameters for all three cases. For each of the 

three state representations, the authors included the one-hot encoded current traffic phase and the time 

spent in that phase. For the low-resolution state, they used leg occupancy and average leg speed. For the 

middle-resolution state, lane queue lengths and lane density were used. In the high-resolution state, a 1-

layer DTSE of vehicle positions was used. After running the experiments, they found that there was no 

difference in traffic throughput between the different controllers and only a 9% difference in queue length 

between the high and the low/medium-state representations. Only the level of delay was significantly 

affected: the middle- and high-resolution states led to a reduction of the average vehicle delay of 21 and 

25% respectively. The authors conclude that in many cases, lower- or medium-resolution state 

representations may be sufficient. Yet, they mention that the lack of significantly better performance of 
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the high-resolution controller could have been caused by the fact that the experiments only used a 

shallow NN, rather than a deep network. 

We can conclude that it is not completely clear which state representations would be most suitable. In 

general, researchers have gained good results when using individual vehicle-based representations (such 

as position and speed DTSE), especially when in combination with current traffic phase information and 

elapsed time (Fang, Chen, & Liu, 2019; Gao et al., 2017; Pol & Oliehoek, 2016; Shabestary & Abdulhai, 

2019; Wei et al., 2018; Zeng et al., 2018; Zeng, Hu, & Zhang, 2019). Ultimately, adding more information 

will likely improve the agent’s performance (as long as only raw unabstracted data is used), but it will also 

increase the agent’s training time. A trade-off will have to be made.  

5.3.4 Actions 
The action space represents what changes the traffic controller can make. Within the literature, two types 

of actions were specified: 

• Pick next traffic phase. In this action representation, the controller chooses the next traffic phase 

for a certain number of time steps (usually for the next 1 to 10s). The choice of traffic phases is 

determined by the modeler (see section 5.3.2). For this action representations, traffic phases are 

acyclic, meaning they do not appear in any fixed order.  

• Pick traffic phase split. In this representation, traffic phases happen in a fixed order; the controller 

can only choose the duration of the current traffic phase. In some models, the controller can 

extend the current phase for a certain number of time steps or decide to switch to the next one 

(e.g. Zeng et al., 2018). In other models, the duration of a phase is determined at the beginning 

of the phase and cannot be extended (e.g. Liang et al., 2018). In some cases, the controller may 

even decide to spend 0s in a certain traffic phase, effectively skipping the phase and making the 

phases acyclic (e.g. Zeng et al., 2018).  

Both types of action representations were found numerous times in literature. Researchers which use the 

first type argue that these controllers can more dynamically adapt to traffic, since the controller has free 

choice of all phases without being constrained by predetermined orders. Proponents of the second type 

argue that having a fixed order is more predictable for humans and increases safety (Choe et al., 2018).  

Note that in case of models that only have two phases, effectively both types of action representations 

become the same. 

5.3.5 Rewards 
Rewards are the measure by which agents determine how good or bad a certain action in a certain state 

was. As such, rewards can either be positive (rewards) or negative (punishments). The agent chooses 

actions such that expected rewards are optimized. Like for the state representation, there are many 

different metrics for rewards in literature. Some authors use only one metric, while others use a weighted 

reward function consisting of two or more metrics. The following metrics were found in DQN literature: 

• Queue length. See section 5.3.3 on states. For an example see (L. Li et al., 2016). 

• Vehicle delay. See section 5.3.3. Used e.g. by R. Zhang et al. (2020). 

• Vehicle travel time. Similar to delay, but instead of using the difference with the optimal travel 

time, the actual time to pass the intersection is used. Used for example by Wei et al. (2018). 

• Vehicle waiting time. See section 5.3.3. Used e.g. by Nawar et al. (2019). 
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• Number of waiting vehicles. Number of vehicles under a certain speed threshold. Can be 

measured for the full intersection (Zeng et al., 2019) or as the absolute or relative difference 

between legs (Coşkun et al., 2019). 

• Number of vehicles. Total number of vehicles in the intersection region, regardless of the vehicles’ 

speeds. See e.g. (Choe et al., 2018). 

• Intersection throughput. Number of vehicles that pass over the stop line. Used e.g. by Zeng et al. 

(2019). 

• Comparative performance with fixed time control. Proposed by Du et al. (2019). See discussion 

below. 

• Fuel/energy consumption. Amount of fuel used. Can be used as reward to create a controller that 

reduces environmental impact (Islam, Aziz, Wang, & Young, 2019). 

• Vehicle emissions. See section 5.3.3. Used by Fang et al. (2019) to reduce environmental impacts 

of intersections. 

• Penalty for (emergency) stops. Negative reward for every vehicle that did an (emergency) stop. 

See e.g. (Y. Wu, Chen, & Zhu, 2019) 

• Phase change. Penalizes agent if the phase switches. Used to avoid constant flickering of traffic 

signals. See e.g. (Zeng et al., 2019). 

• Number of teleports. Teleports are specific to SUMO and only happen in case of would-be 

collisions or traffic jams. Used by Pol & Oliehoek (2016). 

Other rewards that were mentioned in reviews (Mannion et al., 2016; Yau et al., 2017), but which were 

used in non-DQN algorithms were: delay incurred during phase transitions, appropriateness of green 

times, achieving green waves, accident avoidance and speed restrictions.  

Note that all rewards mentioned are metrics which the agent wants to reduce. As such, the rewards will 

have negative values, making the term punishment more suitable. 

Different authors have implemented vehicle-based rewards (e.g. queue length, waiting time, delay) in 

various ways. Some authors use cumulative values, others use averaged value per vehicle, and others use 

relative values between different legs or lanes. Using averaged values is more intuitive for humans to 

understand and to evaluate. However, average values provide the controller with no information about 

the total number of vehicles in the intersection. For example, having 1 or 100 vehicles with an average 

queue length of 10 vehicles would give the same reward, even if the former is a much better situation 

than the latter. The argument for using differences between legs is to promote fairness between legs.   

Additionally, many rewards can either be implemented as an absolute real value (e.g. the current absolute 

queue length), a discretized or binary value (e.g. 1 if there was a phase change in the last time step, 0 if 

not) or as a measure of change between time steps (e.g. change in queue length between time step 𝑡 and 

𝑡+1). Using values of change immediately shows the controller whether the action improves (positive 

reward value) or worsens (negative reward value) the current situation. Yet if agents use the absolute 

value, they have a sense of the order of magnitude of a reward.  

Furthermore, some models use squared rewards. Brys, Pham, & Taylor (2014) for example used the 

cumulative squared vehicle delay so that fewer large delays are prioritized over many short delays. This 

not only encourages fairness between road users but also leads to faster learning rates. 
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Different arguments can be used for and against certain rewards. Like for the state representation, some 

authors argue that certain metrics are only obtainable in simulators, but not in the real world (Mannion 

et al., 2016). Yet, as mentioned, connected vehicles will be able to overcome this shortcoming. 

The most commonly used reward is delay. This metric is vehicle-based and intuitively represents how 

much time loss was caused by the traffic signal for a specific vehicle. Since the goal of the controller is to 

reduce the time that vehicles spend in traffic, this seems a suitable metric. The issue is that delays can 

only be determined with certainty after a vehicle leaves the intersection. This will cause delayed rewards, 

so the controller may not be able to assign rewards accurately to actions, causing slower learning or 

unstable control. Furthermore, delays may not properly penalize traffic jams. For a two-lane approach for 

instance, a controller would not be able to distinguish between one blocked and one full speed lane vs 

two lanes at half speed, since they would lead to similar rewards, even though the traffic flows are 

different (Pol, 2016). Similar reasoning can be used for using travel time as a reward.  

The second most commonly used reward is waiting time. Intuitively longer waiting time implies that there 

is more congestion, thus it is a suitable metric. The problem with using waiting time is that the controller 

converges to a policy in which the traffic phase changes every time a new action is chosen. This is because 

as mentioned in section 5.3.3, only vehicles under a certain speed threshold are counted as “waiting”. If 

the controller switches often between phases, the vehicles in the new phase’s queue start moving slowly 

and are no longer counted as “waiting”. The controller can thus create policies in which vehicles drive 

slowly, but hardly truly halt (Pol, 2016). The same problem exists when using the number of waiting 

vehicles. 

A policy that leads to constantly flickering lights will cause vehicles to start and stop frequently. For 

humans this style of driving is uncomfortable and not desirable (Coşkun et al., 2019). To avoid this, some 

authors add a penalty for the number of (emergency) stops. Other authors decide to instead use a penalty 

for phase changes. They are undesirable since they require yellow and red transition phases to allow 

vehicles from one road to stop, before giving a green signal to the new lane. During these transition phases 

few or no vehicles can pass the intersection, reducing its throughput. 

Yet another reward that is frequently used is the intersection throughput. The drawback of throughput is 

that it does not take into account how long queues are or how long vehicles have been waiting. In over-

saturated traffic conditions this could lead to the agent choosing one green only and leaving the other 

directions red forever. This would lead to unfair results. 

As can be seen, different rewards have different advantages and disadvantages, and may be suitable for 

different objectives or traffic situations. Islam et al. (2019) for example tested three different reward 

functions: total detected control delay, total detected energy consumption and total detected energy 

consumption with penalty for stops. They found that reward function 2 provided undesirable results, 

reward 1 provided better performance in trip delay and reward 3 better energy consumption.  

Due to the different strengths and weaknesses of reward functions, authors started to experiment with 

weighted reward functions. Mannion et al. (2016) for example tested three different reward functions for 

a tabular Q-learning algorithm: 1. Change in average queue length between time steps, 2. Change in 

cumulative waiting time between time steps, 3. Weighted reward of 1 and 2. They concluded that reward 

function 2 performs best under steady traffic flows (i.e. for balanced flow between legs) and reward 1 for 

highly variable flows. Reward function 3’s performance was in between and is then suggested as the best 
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allrounder to handle dynamically changing traffic. Like Mannion et al. (2016), many authors adopted 

weighted reward functions to adapt to different situations (Horsuwan & Aswakul, 2019; Nawar et al., 

2019; Pol & Oliehoek, 2016; S. Wang et al., 2019; Wei et al., 2018; Y. Wu et al., 2019; Zeng et al., 2019; R. 

Zhang et al., 2020). However, finding suitable weights for the sub-rewards was found to be a complex and 

time-consuming task (Mannion et al., 2016; Pol, 2016).  

In general, a problem with many rewards is that traffic is a dynamic system. The arrival rate of vehicles is 

constantly changing, but most controllers do not take this into account for their reward. As such, if the 

arrival rate increases, agents may receive a punishment even if they make the right decision (and vice 

versa). The rewards in these cases do not represent how good the controller’s action was (Du et al., 2019). 

An attempt to solve this was made by Du et al. (2019). In their model, they use a weighted reward of delay 

and waiting time. But rather than using absolute values or the change compared to the previous phase, 

they compare the current delay and waiting time to the delay and waiting time caused by a fixed-time 

controller operating under the same traffic scenario (i.e. with the same arrival rates, vehicle positions and 

speeds). In this case, agents receive a reward if they perform better than fixed time controllers and a 

punishment otherwise. 

Overall rewards are a trade-off between optimizing traffic flows, driving comfort and fairness. Some 

authors even add environmental considerations into the reward (Fang et al., 2019; Islam, Aziz, Wang, & 

Young, 2018; Kim et al., 2019), thus adding another trade-off dimension. 

5.3.6 Deep Q-learning extensions and Robustness 
As described in section 4.8, just using a neural network as a function approximator can lead to instability 

and convergence problems. To solve this, nearly all DQN-models use some type of experience replay and 

many use target networks. As such, DQN with experience replay and target networks can be considered 

the base or vanilla DQN algorithm.  

Additionally, many authors have attempted to improve the stability and performance of TSC algorithms 

by using rainbow agent extensions (i.e. double Q-learning, dueling networks, prioritized experience 

replay, noisy nets, multi-step learning, distributional RL). To evaluate the performance improvements, 

authors conducted ablation studies or compared the performance against regular DQN. Pol and Oliehoek 

(2016) evaluated multiple DQN algorithms: base DQN, double Q-learning DQN, prioritized replay DQN and 

DQN with batch normalization. They found that prioritized experience replay led to an increase of average 

rewards, that double DQN tends to get stuck in local optima and thus does not improve performance and 

that batch normalization leads to less stability. Nawar et al. (2019) evaluated the performance of a DQN 

algorithm with compact rainbow extensions (i.e. the 3 rainbow extensions: prioritized experience replay, 

multi-step learning, distributional RL) to regular DQN. In the experiments the compact rainbow agent was 

more stable and led to lower vehicle waiting times, lower trip times and lower fuel consumption compared 

to regular DQN. Fang et al. (2019) conducted extensive experiments and compared DQN with prioritized 

experience replay, double Q-learning and dueling networks to (1) regular DQN (2) double DQN with 

random experience replay (3) dueling DQN with random experience replay (4) double dueling DQN with 

random experience replay. The results showed that the double dueling controller with prioritized 

experience replay outperforms all other controllers. Prioritized experience replay was most crucial in 

performance improvement, leading to around 15% performance improvement compared to regular DQN. 

Double Q-learning and dueling networks each added around 5% additional performance improvements. 

Liang et al. (2019) conducted ablation studies on a DQN algorithm with double Q-learning, dueling 
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networks and prioritized experience replay and also compared it to regular DQN. They found that all three 

extensions contributed to faster learning times, higher rewards and improved performance metrics. From 

the experiments we can conclude that using rainbow extensions2 leads to performance improvements. 

Especially prioritized experience replay and dueling networks gave positive results. Double Q-learning led 

to improved performance in experiments by Fang et al. (2019) and Liang et al. (2019), but not for Pol and 

Oliehoek (2016). Overall, the results are in line with the original rainbow experiments by Hessel et al. 

(2018). 

Wei et al. (2018) recently proposed two new extensions: memory palace and phase gates. In ablation 

studies, the memory palace method improves results only for unbalanced traffic scenarios, while the 

phase gate improves the performance in all scenarios. Zeng et al. (2019) used the idea of memory palaces 

and also tested the extension of mixed Q-networks (i.e. a network in which the softmax outputs are 

replaced with fuzzy classification results). They found no performance differences between regular DQN, 

DQN with memory palaces, DQN with fuzzy classification or DQN with both extensions. As such, the effects 

on performance remain unclear.  

Lastly, some authors have experimented with using recurrent Q-networks, specifically using long short 

term memory (LSTM). Other studies assume that states are 100% observable and that sensors provide 

100% accurate information at all times. However, sensors are not ideal, and mistakes can happen, leading 

to false or missing state inputs. Recurrent networks are used to combat this since they can process 

sequential information (i.e. they can learn to understand vehicle trajectories and integrate this historical 

data with current sensor inputs) (Choe et al., 2018; T. Zhao & Wang, 2019). Three authors compared 

recurrent DQN with base DQN. T. Zhao and Wang (2019) found that recurrent DQN slightly outperforms 

DQN for 100% observable states, but significantly outperforms regular DQN in terms of rewards, waiting 

times, robustness and stability for less than 100% observable states. Choe et al. (2018) found that 

recurrent DQN reduced average travel times by 23% and overall vehicle waiting times by 10% compared 

to regular DQN. Lastly, Zeng et al. (2019) found that recurrent DQN led to more efficient exploration. In 

100% observable states, regular and recurrent DQN led to similar performance, but under less than 100% 

observability recurrent DQN significantly outperforms regular DQN. From the experiments, it can be 

concluded that recurrent DQN can significantly improve the controller’s performance, especially if states 

are not 100% observable. 

5.3.7 Traffic generation 
To train and evaluate the controller, it needs to be exposed to traffic scenarios. Scenarios can be 

constructed in different ways. To create a scenario, researchers must specify both arrival rates and turning 

ratios for each leg and lane. Some relevant differences are described below: 

• Under-saturated traffic vs saturated traffic vs over-saturated traffic. Different types of traffic 

saturation exist. In under-saturated conditions, the vehicle arrival rate is lower than the potential 

intersection throughput; in saturated traffic the arrival rate is equal to the potential throughput; 

and in over-saturated traffic the arrival rate is higher than the potential throughput. Under-

saturated traffic can e.g. be found during the night, saturated traffic during early afternoons, and 

over-saturated traffic during rush-hour.  

 
2 This conclusion has not yet been proven for noisy nets. 
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• Constant vs dynamically changing traffic. Researchers can either model traffic such that the 

arrival rates remain constant over time, or as changing over time. Poisson distributions are by far 

the most popular traffic generation method, but other distributions are suitable as well (Genders 

& Razavi, 2016). In DQN literature, examples of sinusoidal functions (Du et al., 2019), Weibull 

distributions (Genders & Razavi, 2016; Vidali, 2018) and Burr distributions (Genders & Razavi, 

2016) were found.  

• Balanced vs unbalanced traffic. Traffic can either have similar arrival rates between lanes (i.e. 

balanced) or unequal (i.e. unbalanced). 

• Synthetic data vs real-world. Arrival rates and turning probabilities can either be created 

synthetically, or data from real-world traffic can be used. For proof-of-concept models, synthetic 

data may be better suited, since all factors are controllable. For real-world implementations, 

historical traffic data from the intersection is more useful, as it allows the controller to optimally 

adapt to the specific intersection. 

The exact choice of traffic scenario(s) will depend on the purpose of the model. Nevertheless, some 

general aspects can be discussed. 

To train a model, traffic scenarios should be stochastic in nature. If training scenarios are deterministic, 

this would mean that the agent is trained over and over on the same scenario, which can lead to severe 

overfitting. To avoid this, statistical distributions can be used.  

Furthermore, agents will only be able to optimally control traffic in scenarios which they have been trained 

on (Rodrigues & Azevedo, 2019). If the scenario during testing is too different than during training, 

favorable performance is not guaranteed. Due to this, it is advised to train agents on many different 

scenarios, as long as they are relevant for the intersection in question. A major limitation in a lot of the 

reviewed studies was that they only consider one specific traffic scenario, rather than a mix of different 

ones. This only allows evaluation of a controller on that specific scenario, but not on others. This is 

problematic, since it has been shown that some controllers perform well in certain scenarios, but not in 

others (Mannion et al., 2016). 

Additionally, some studies only train their controllers on constant traffic (e.g. L. Li et al., 2016; Mousavi et 

al., 2017; Nawar et al., 2019; Pol & Oliehoek, 2016). However, fixed-time controllers perform especially 

well for constant traffic flows (Abdulhai et al., 2003), and methods such as the Webster method (Webster, 

1958) allow researchers to find optimal cycle times. Fixed-time controllers have even been shown to 

outperform RL-algorithms for constant, over-saturated traffic (Vidali, 2018). Using RL-algorithms for 

constant traffic only would not be worth the computational cost. Instead, the actual benefit of adaptive 

DQN controllers is to control dynamic traffic situations (Abdulhai et al., 2003; Yang et al., 2017). 

Some good examples of models that have been trained and tested on dynamic traffic demands can be 

seen in M. Guo et al. (2019), Vidali (2018) and Wei et al. (2018). 

5.3.8 Performance indicators 
To assess the performance of a proposed controller, key performance indicators (KPI) must be gathered. 

Various performance metrics were found in literature: 

• Gained reward 

• Queue length 
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• Throughput / Number of passed vehicles / Number of completed trips 

• Waiting time 

• Travel time 

• Delay 

• Vehicle speed 

• Green time per leg/lane 

• Number of stops 

• Fuel consumption 

• Emissions 

The found performance metrics mostly overlap with the previously discussed state and reward 

representations. For the specific descriptions and discussion of the metrics, please refer to sections 5.3.3 

and 5.3.5.  

In general, some authors report the results in terms of cumulative values, while others report values 

averaged over vehicles. In some papers also differences between legs/lanes are reported. Most authors 

also include figures showing the change of the KPIs over time within a traffic scenario. Furthermore, since 

the traffic scenarios are stochastic, performance measures must be evaluated over several runs. Ideally, 

both the averages and standard deviations of the runs should be reported and discussed.  

5.3.9 Base case(s) 
To evaluate the performance of a proposed model, researchers compare their model against other 

models, the so-called base cases. Different base cases were found in literature: 

• Fixed-time control 

• Other traditional TSC: actuated control, longest queue first, time-loss based control, traditional 

adaptive control 

• Earlier proposed state-of-the-art RL-methods (including non-DQN methods) 

• Other, less sophisticated RL-algorithms: tabular Q-learning, shallow NN RL-algorithms 

• Model variations: Ablation studies on their model (i.e. their model minus certain extensions) 

The most common base case used was fixed-time control. However, fixed-time control may not be the 

best base case, since RL-algorithms were shown to outperform or perform equally well as fixed-time 

control in nearly all cases. Ideally, both ablation studies and comparisons with state-of-the-art controllers 

would be conducted to assess the performance in different scenarios and using different KPI. However 

due to time and space limitations, this is oftentimes not done.  

5.4 Mixed traffic scenarios and POMDP in traffic signal control 
The second part of the literature review focused on research that applied RL methods (not specifically 

DQN) to TSC in mixed human and connected or automated vehicle environments.  

The problem of mixed traffic is presented in Figure 8. The left side of the figure shows the traffic situation 

for 100% connected vehicles. Since all vehicles communicate information about themselves, the full 

intersection state can be observed. On the right side, the CV-penetration rate is less than 100%. Now 

assuming that traffic is only observed via V2X communication, the agent will only be able to observe the 

connected vehicles, leading to incomplete state representations. The unconnected vehicles essentially 
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become invisible to the agent. Since states are now no longer fully observable, the problem is formulated 

as a partially observable Markov decision process (POMDP) (Arulkumaran et al., 2017).  

 
Figure 8 Mixed connected and non-connected vehicle traffic. Adapted from Islam et al. (2019). 

POMDP environments do not only happen in case of mixed traffic but can also happen due to incomplete 

monitoring of the environment (e.g. due to sensor breakdowns, no sensors in a specific area, obstructed 

camera vision), wrong information (e.g. due to sensor malfunctions) or communication delays. The real-

world is full of uncertainties, so it is practically impossible to have a complete and correct state 

representation, making all practical RL-TSC applications POMDP (Zeng et al., 2018). The following 

paragraphs summarize the studies on RL under partial observability due to mixed traffic. 

The earliest found experiments with different CV-penetration rates (40%, 60%, 80%, 100%) were 

conducted by (Yang et al., 2017). They used a DQN-algorithm with a state representation consisting of the 

sum of squared delays of the North/South and East/West approaches of all connected vehicles, the 

current phase and the elapsed phase duration. The reward representation consisted of the cumulative 

squared delay of all vehicles (connected and unconnected). Since they did not apply stabilizing add-ons 

(e.g. experience replay, target networks), their algorithm was too unstable to gain any usable results.  

Islam et al. (2019) studied the impact of different CAV-penetration rates for tabular Q-learning. The 

performance was tested under different traffic demand rates on two real-life networks of decentralized 

4-way intersections. The state representation consisted of the normalized and discretized queue length 

for each leg, estimated based on the last CAV to join the queue (i.e. it is assumed that all space in front of 

the last CAV is also occupied by queued vehicles). They found that travel times, queue times and energy 

consumption improved for penetration rates over 20-40%. In network 1, the controller reaches the same 

or better performance levels as the current real-life TSC strategy for penetration rates around 40-50%. 

For lower penetration rates no clear trends were found. Higher standard deviations at lower penetration 

rates indicate unstable controllers, which is due to the low or inexistent observability of queue lengths. 

They conclude that as expected, higher penetration rates lead to better performance. They also state that 

it is not possible to specify a critical penetration at which RL outperforms traditional controllers since the 

RL performance strongly depends on the design of the specific scenario. 

Zeng et al. (2018) compared the performance of two deep Q-network algorithms: regular DQN and 

recurrent DQN. In both cases, the state representation consisted of a 2-layered DTSE of traffic density and 
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average normalized speed observed only for connected vehicles, as well as the one-hot encoded current 

traffic phase. The reward consisted of the change in the number of halting vehicles between time steps 

(both observed and non-observed vehicles). The authors trained and tested agents under penetration 

rates of 10%, 25%, 50%, 75%, and 100%. The results (see Figure 9, left side) showed that both the regular 

and recurrent DQN agents reached stable and comparable performance for 100% penetration rates. 

However, regular DQN performed much worse for lower penetration rates, while recurrent DQN 

produced stable average waiting times under penetration rates even as low as 10%. Additionally, the 

authors tested the robustness of the agents when trained under a penetration rate of 50% but tested 

under different penetration rates. The results (see Figure 9, right side) showed that the recurrent DQN 

agent produced lower average waiting times than regular DQN for a wider range of penetration rates, 

making it more robust. The authors conclude that recurrent DQN is more robust to penetration rate 

differences since it allows the agent to carry historical data over to the next phase which allows it to make 

correct decisions even without seeing the current environmental state. 

 
Figure 9 Results from Zeng et al. (2018). 

T. Zhao and Wang (2019) conducted a similar study. Their state representation consisted of a 2-layered 

DTSE using vehicle position and normalized speed. Change in cumulative delay was used as a reward. They 

trained and tested agents under unsaturated, near-saturated and over-saturated traffic flows. All results 

are in line with the results from Zeng et al. (2018) (compare Figure 9 and Figure 10). Regular and recurrent 

DQN performs similarly for a 100% penetration rate, but recurrent DQN significantly outperforms regular 

DQN for lower penetration rates (see Figure 10, middle). The higher the penetration rate, the better the 

agent performs. The sensitivity analysis of different penetration rates showed that a recurrent DQN agent 

Figure 10 Results from T. Zhao and Wang (2019). 
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trained under 50% penetration is more robust to penetration rate changes than regular DQN (see Figure 

10, right side). Additionally, unlike Zeng et al. (2018), T. Zhao and Wang (2019) also compared the agents 

when trained and tested under different traffic flow rates. The results show that recurrent DQN 

outperforms regular DQN under all traffic flows (see Figure 10, left side). 

R. Zhang et al. (2020) applied DQN for partial vehicle detection under 0%, 10%, 20%, 40%, 60%, 80% and 

100% CV-penetration rates for a simplified 4-way intersection without turns. They used a weighted state 

representation consisting of the distance to the nearest vehicle at each approach [m], the number of 

detected vehicles at each approach, a yellow light phase indicator (binary), the current discretized time 

[h since midnight] and the current phase (encoded within the detected car count and distance to the 

nearest detected vehicle: negative values if red, positive values if green). The reward consisted of the 

average vehicle delay. Like in (Zeng et al., 2018), agents were trained and tested under a priori fixed 

penetration rates. Controllers were trained and tested under either sparse, medium or dense traffic flows. 

The authors expected the following results: for very low traffic rates, the controller will react to each 

vehicle individually, as if they were particles. If a connected vehicle arrives, the controller will switch to a 

green phase instantly. Unconnected vehicles cannot be recognized by the controller, so they will have to 

wait until the maximum green time has elapsed. For very high flow rates, the individual vehicle will 

become less important, since vehicles are part of a “liquid” rather than particles, so all vehicles will have 

similar speeds and behaviors. Due to this, it is expected that connected and non-connected vehicles will 

have similar waiting times. 

 
Figure 11 Waiting time under different detection rates and different traffic flows. Results from R. Zhang et al. (2020). 

The experiments confirmed the authors' hypotheses. For medium traffic (see Figure 11, middle), the DQN 

algorithm outperforms a fixed-time controller even under low penetration rates. As expected, the overall 

performance increases with higher penetration rates. Approximately 80% of this performance 
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improvement happens within the first 20% penetration rate. Additionally, as hypothesized, they found 

that the waiting time for detected vehicles is much lower than for undetected vehicles, even though the 

agent gets rewarded for reducing the waiting time of both types of vehicles. The results for sparse traffic 

flow (see Figure 11, top) are similar to the medium traffic flow. For dense traffic flow (see Figure 11, 

bottom), as expected, the performance of the controller does not improve for higher penetration times 

and waiting times for both detected and undetected vehicles are similar throughout. The authors 

conclude that the agent can perform well under different penetration rates and can seamlessly adapt to 

dynamic traffic flows. Furthermore, the authors conducted sensitivity analyses to different flow rates and 

penetration rates. They found that controllers trained under one flow rate or penetration rate but tested 

under another were able to adapt to different flow rates or penetration rates, as long as they were not 

radically different. This shows a certain level of robustness. 

From the reviewed literature we can conclude that it is possible to use DQN to control partially observable 

traffic even under low CV-penetration rates. Nevertheless, higher CV-penetration rates lead to better 

performance, which can be explained by the fact that the agent has more complete information about 

the environment to make a decision. Agents behave differently under different flow rates. Lower traffic 

flow rates lead to shorter waiting times for detected vehicles, but worse waiting times for undetected 

vehicles. For high traffic rates, this difference disappears. Lastly, when using recurrent DQN compared to 

regular DQN, the agent’s performance and robustness to penetration rate changes significantly improve.  

5.5 Identified Literature gaps and suggested future research 
Within the reviewed literature on using DQN in TSC and using RL in mixed TSC, many literature gaps were 

identified. This section will outline them. 

Unclarity about best state representation. In literature, many different state representations were found, 

ranging from simple to complex. Authors argue for and against different representations, but only a few 

authors attempted to do cross-comparisons between different state representations. In these cross-

comparisons authors compared high-dimensional state representations (e.g. DTSE) against low-

dimensional state representations (e.g. queue length) (e.g. Genders & Razavi, 2018; Mousavi et al., 2017). 

Yet, a cross-comparison between different state representations of similar or same information density 

(e.g. one-hot encoded current green phases vs +/- encoded green phases) is lacking. As such, for future 

research it is suggested to conduct a systematic study that compares different state representations. In 

these studies, all model parameters should be kept constant, apart from the state representation. It 

should be evaluated how different state representations impact model performance and stability, and 

under which circumstances which state representation is most suitable. 

Unclarity about the best reward representation. Like for the state representation, many different reward 

representations have been suggested in literature. Picking a suitable reward representation may arguably 

be even more difficult since the full reward needs to be aggregated into a single value. Yet, it was seen 

that different rewards have different advantages and disadvantages, with no reward being objectively the 

best. To combat this, some researchers have attempted to use weighted reward functions, yet this causes 

the issue of how different sub-rewards should be weighted. Overall, like for the state representation, a 

systematic study comparing the impact of different reward representations on model performance and 

stability is lacking. Research needs to investigate which rewards work under which circumstances. 
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Lack of systematic fine-tuning of agents. When designing agents, many hyperparameters have to be set 

(e.g. the number of episodes to train the model, the target network freeze interval, the memory size). 

These hyperparameters influence model performance and stability. Yet, not all papers report these 

values, and nearly none of the studies present how they determined these values. For practice this means 

that research from previous studies are not reproduceable, but also that it is more difficult to design new 

agents. 

Balancing algorithm goals. When designing a traffic signal controller, several goals have to be balanced: 

traffic efficiency, safety, fairness to all traffic participants, driver comfort, environmental impact, etc. In 

current literature on RL in TSC however, most of the reviewed papers focused only on traffic efficiency, 

and only a few focused on energy or fuel-efficiency or minimizing emissions. Yet, the other goals are 

oftentimes neglected. Thus, research is needed on how to include and balance the different goals. 

Fairness. When designing a controller, only a few researchers explicitly considered fairness. Yet, 

fairness is an important aspect of TSC. A pure traffic efficiency conscious controller would likely 

“sacrifice” the few vehicles for the many. Some authors attempted to solve this by imposing 

maximum phase constraints, yet this does not solve the problem that the agent is not actively 

aware of fairness. Others have experimented with using squared delays to prioritize vehicles 

which have been waiting for a long time over vehicles which have just arrived. Yet, overall fairness 

does not gain enough attention. Future research could attempt to explicitly include fairness 

constraints within a weighted reward.  

Impact on safety. No studies were found which explicitly investigated the impact of their 

controller on traffic safety. Some authors included boundary conditions to ensure safety (e.g. 

yellow and red clearance phases), but none of the studies explicitly included it in the agent’s goal.  

Lack of variety in traffic scenarios and network topologies. Most literature uses uniformly distributed 

and balanced traffic scenarios. Yet, as discussed this is unrealistic in the real world, and it does not allow 

the RL agent to show its true advantages compared to fixed-time controllers. Furthermore, most 

controllers are only tested on artificial 4-way intersections. However, in the real world many different 

types of intersections exist. Overall, there is a need to train and test RL agents on a wider range of traffic 

scenarios (e.g. dynamic, unbalanced, different saturation levels) and network topologies (e.g. 3-way 

intersections, non-geometric layouts), in order to be able to evaluate for what types of intersections RL 

would be useful and for which intersections other controllers would be more suitable.  

Lack of other traffic participants. All investigated RL agents focus only on vehicles (i.e. regular cars). Other 

traffic participants, e.g. buses, trucks, cyclists, pedestrians and public transport have been excluded. 

Excluding them makes models much simpler, but also less realistic. Future research could investigate the 

ability of RL agents to accommodate these other traffic participants, particularly regarding safety.  

Robustness. Only few papers have investigated the robustness of algorithms (Rodrigues & Azevedo, 

2019). Trained RL agents could however break in many ways: signal failures could happen, communication 

between traffic participants and the infrastructure could be delayed or broken down, road accidents or 

other unexpected traffic situations could happen, or traffic demand could radically change from the 

trained scenarios. Good TSC should show a certain level of robustness to the kinds of problems. First 

suggestions on how to achieve this have been made, but further research will be needed. 
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Online learning. Related to the problem of robustness is that of online learning. Generally, once an agent 

is trained and implemented in an intersection, it will only perform greedy actions. This however means 

that the agent is unable to learn while it is operating, and thus unable to adapt to slow changes in traffic 

scenarios. A possible solution for this would be to retrain the agent at regular intervals, but this is time-

consuming and expensive. Another solution would be to train the agent while it is online, under the 

condition that when the agent does explorative actions, traffic is not unnecessarily hindered. Strategies 

on achieving this are left for future research. 

Impact of mixed traffic scenarios. In the nearby future, traffic will consist of a mixture of conventional 

and connected and/or automated vehicles. RL TSC may exploit data from connected vehicles to gain better 

results. Yet, most researchers assume all vehicles are connected, and only few researchers have 

investigated CV-penetration rates of less than 100%. The recurrent DQN agent has led to promising 

results. However, other agents may lead to even better results. 

Furthermore, the problem with current mixed traffic agents is that they must be trained under a fixed 

penetration rate. This is problematic since it is likely that traffic will consist of different mixtures of CVs 

and RVs (e.g. different penetration rates at different times of the day or week). Ideally, an agent would be 

able to accommodate different mixtures of vehicle types. How this can be achieved is currently unknown. 

Problematic model validation. Due to time, cost, safety restrictions and possible public inconvenience 

caused by sub-optimal strategies it is not possible to test newly proposed TSC on real-world 

intersections. Because of this, controllers must be tested in simulators. However, to get valid results, the 

simulator must be able to accurately simulate real-world traffic and driving behaviors. While simulators 

can represent many types of traffic situations, simulators are never able to capture real-life behaviors 

100% accurately. Thus, to completely validate whether proposed strategies would work in the real-

world, field studies will be needed.  

Lack of benchmarks and systematic comparison between controllers. Since deep RL is such a fast-

developing field, new agents are being proposed continuously. Researchers are not only experimenting 

with the state, reward and action representations but also with the types of RL models and extensions. In 

recent years, many new DQN extensions and other RL algorithms have been successfully applied in other 

domains. Many researchers have started to implement these controllers also for TSC. Yet, up to date there 

is a lack of systematic comparisons between controllers. Many researchers compare their agents to 

traditional TSC, but only few compare them to state-of-the-art RL controllers (e.g. Fang et al., 2019). 

Part of this problem may be caused by the fact that unlike in some other domains, there are no 

standardized test scenarios TSC. For the development of current deep RL agents for example, many 

researchers test their algorithms on standardized environments such as the Cartpole problem, the Doom 

game (Lample & Chaplot, 2017) or the Atari 2600 benchmark (Hessel et al., 2018; Mnih et al., 2015). Many 

of these environments have been combined into an easily accessible toolkit called OpenAI Gym (Brockman 

et al., 2016). Having such standardized environments with standardized scenarios enables a better 

comparison between model types and allows benchmarking, and thus speeds up algorithm evaluation 

(OpenAI, 2016). Future research may look into developing such an environment.  
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5.6 Summary 
Overall it can be concluded that deep RL in TSC is a promising new field that is developing quickly. New 

controllers are continuously being proposed, and many researchers are working on increasingly better-

performing algorithms.  

When designing an RL agent for TSC, many design choices have to be made. In literature, many different 

design decisions must be taken regarding the state, action and reward representation, the RL agent, 

network topologies, traffic generation, KPIs and base cases. Yet, systematic comparisons and best 

practices for these choices are lacking. Much of the design process currently seems to be trial-and-error 

based. 

At the end of the review, many research gaps have been suggested and future research directions have 

been outlined. To facilitate better systematic comparisons between proposed agents, it is highly 

suggested to develop standardized environments with standardized scenarios in order to benchmark 

controllers. This will allow for faster development and evaluation.   
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6. CONCEPTUAL DESIGN 
In this section the conceptual design of the reinforcement learning strategy will be discussed. First, the 

problem will be scoped and assumptions and simplifications will be explained. After this, the 

environmental setup of the simulations will be described. Lastly, design decisions about the reinforcement 

learning agent itself will be outlined and evaluation methods discussed.  

6.1 Scope, assumptions and simplifications 
As described, modeling intersections is complex. To reduce the problem, certain scoping decisions must 

be made. In this project, only the effects of the traffic control method on traffic performance will be 

investigated. Human behavior, route choice, data security, connectivity problems and other limitations of 

previous studies (see section 2.3.3) fall outside the scope. Furthermore, it was decided to only focus on 

traffic efficiency. Impacts on other factors such as safety, fairness to all traffic participants, environmental 

factors, passenger comfort and social perception are out of scope. Only urban signalized intersections are 

considered, rather than unsignalized, rural or highway intersections. Only isolated intersections rather 

than networks of intersections will be analyzed. Furthermore, this research will only design an agent that 

controls the traffic signals. An agent which controls vehicle trajectories is out of scope. 

As mentioned, the focus is on the transition period between conventional vehicles to connected and/or 

automated vehicles. To simplify the problem, only connected and regular vehicles will be included in the 

system. CAVs may be included in later research. 

Other assumptions for this project are based on common assumptions from other Intelligent signalized 

intersection management studies (L. Chen & Englund, 2016; Florin & Olariu, 2015; Q. Guo et al., 2019; 

Yang, Guler, & Menendez, 2016): 

- All intersections and CVs are assumed to be equipped with communication devices 

- Communication is ideal (no data loss, no latency, no security issues, no compatibility issues) 

- Perfect information on CV states is available (e.g. on position, speed) 

- No overtaking, reversing or lane changing is considered 

- Vehicle characteristics of conventional vehicles of CVs are assumed to all have the same 

(stochastic) settings (e.g. dimensions, driving behavior) 

- No traffic uncertainties (e.g. accidents, road works) are considered 

- Only vehicles are modeled, other modes (e.g. cyclists, pedestrians, public transport) are excluded 

6.2 Environmental setup 

6.2.1 Intersection layout 
In this thesis, it was chosen to use a hypothetical intersection layout, rather than to perform a case study 

on a real intersection layout. Using a hypothetical layout gives the modeler more control over the 

environmental conditions while using a case study intersection makes the model more adapted to a 

specific intersection. For both the hypothetical and case study intersection layout there is a risk that the 

controller model is only adapted to this specific network, thus it may not generalize well. To combat this 

risk, ideally the control strategy would be evaluated on several networks. Yet, due to time constraints this 

was not possible within this thesis. 
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In this thesis, it was decided to use a hypothetical 4-way intersection. Using a hypothetical intersection 

eliminates the need to find a suitable real-life intersection and allows full control over the design. Using a 

4-way intersection has several advantages: (1) it is a geometric, which means that there will be no 

differences in controller performance between the different legs due to differences in lane or leg 

configuration (2) nearly all published RL algorithms are based on 4-way intersections, which makes the 

results of this project easier comparable to past studies (3) 4-way intersections are common types of 

intersections. To make the intersection more realistic compared to some other studies (see section 5.3.2), 

traffic is not restricted to only through traffic. Instead, vehicles can travel straight, right or left. 

The finally chosen layout can be seen in Figure 12. The layout consists of a single isolated 4-way 

intersection. Each leg is bidirectional and has 4 incoming lanes. The most left lane is for left-turning traffic 

only, the two middle lanes are for through-traffic and the right lane is used for both right-turning and 

through-traffic. Each leg is 750m long, as measured from the edge origin to the intersection stop line. The 

maximum speed in the whole intersection system is 13.89m/s (50km/h). 

 

Figure 12 Intersection layout 

6.2.2 Traffic signals 
In the intersection, there are 8 different traffic lights, 2 for each of the four legs. One traffic light per leg 

controls through and right-turning traffic, thus it controls the three right lanes. Another traffic light 

controls left-turning traffic, so it only controls the left lane. Vehicles approaching the intersection 

automatically chose the appropriate lane queue for their intended destination. 

Traffic movements happen in 4 different green phases, as seen in Figure 13. There are two straight-and-

right going phases (with origins North/South or East/West) and two left-turning phases (also with origins 

North/South or East/West). We can denote the green phases as follows: {NSG, NSLG, EWG, EWLG}, where 

NS stands for North/South, EW for East/West, L for left-turning, and G for green phase. This choice in 

traffic phases and traffic movements is the most commonly chosen option in literature. This layout is also 

common in real-life. 

Like in real-life, each traffic light has three different states: red, yellow or green. Transitions between these 

colors always happen in the order <red-green-yellow-red>. Some previously conducted studies have 
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excluded yellow phases, however in real-life yellow phases are needed for safety reasons and to clear the 

intersection. Since yellow phases will add several seconds of transition time between green phases during 

which vehicles cannot begin to cross the intersection, yellow phases cause lower traffic throughputs. If 

we exclude yellow phases from the model, this would not allow for realistic phase transitions. As such, 

whenever a transition between green phases takes place, there will be a yellow light phase. Yellow phases 

last for 4 seconds. 

The model is always in exactly one of the 8 described phases (i.e. one of the 4 green phases or one of the 

4 yellow phases). Not all traffic lights may be red at the same time.  

6.2.3 Choice of traffic scenarios 
As was concluded in the discussion on traffic generation (section 5.3.7), RL agents can only learn good 

traffic control strategies for scenarios that they have encountered before. As such, the agent must be 

exposed to all types of scenarios which it should be able to handle during real-life implementation. If an 

agent were to be designed for a real-life intersection, the agent would be trained on gathered real-life 

traffic data. In this thesis however a hypothetical thesis is being modeled, thus the traffic demand will 

have to be constructed manually. 

For this thesis it is assumed that traffic demand from all four legs of the intersection is balanced, i.e. the 

arrival rates from all four sides are equal. Additionally, it is assumed that all arriving traffic has the same 

probability to go straight, to make a right or to make a left turn. Making these assumptions radically cuts 

down the number of possible traffic scenarios and thus speeds up training. A drawback is that the agent 

will not be able to control these excluded traffic scenarios optimally. 

Since many previous studies were limited by the fact that they only studied constant arrival rates, this 

thesis will include both scenarios with constant and dynamic arrival rates. All scenarios will be stochastic, 

i.e. they will be randomly generated using probability distributions. As stated before, training agents on 

deterministic scenarios can lead to severe overfitting, meaning that the agent would not be able to 

generalize well to other similar scenarios. In this study, the scenarios with constant arrival rates are 

generated using a random uniform distribution. The scenarios with dynamic arrival rates are created using 

a Weibull distribution of shape 2, as suggested by Vidali (2018). Weibull distributions of shape 2 are well 

suited to generate traffic scenarios from the beginning to the end of rush hour: the traffic demand starts 

low, quickly increases until it reaches its peak, and then gradually decreases again until it reaches low 

traffic demand levels. 

Figure 13 Four possible green phases. From left to right: (1) NSG: right-turning and through traffic with origins North/South (2) 
NSLG: left-turning traffic with origins North/South (3) EWG: right-turning and through traffic with origins East/West (4) EWLG: 

left-turning traffic with origins East/West. 
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Figure 14 shows examples of traffic demand generation per simulation time step. The left figure shows a 

uniform distribution of 2000 cars over 5400 time steps. Note that while the distribution is uniform, the 

number of cars generated at each time step are not exactly equal, since it remains a stochastic process. 

The right figure shows a shape 2 Weibull distribution with the same number of time steps and generated 

cars. It can be seen that the number of cars over time at the peak is much higher than for the uniform 

distribution, while at the tails the number of cars over time is much lower. 

 

Figure 14 Examples of car generation distributions. The left figure shows a random uniform distribution. The right figure shows a 
Weibull distribution. 

For the controller in this thesis, it was decided that it should be able to control different amounts of 

arriving traffic. It was decided against using only one type of scenario (e.g. only constant traffic generation 

with a fixed arrival rate) since this is unrealistic in the real world. In the real world intersections must 

accommodate rush hour traffic, regular day time traffic and night traffic. These situations generally differ 

in the number of cars which arrive.  

To model this, it was decided to use three different types of arrival patterns: high or saturated traffic 

(corresponding to rush hour traffic), medium traffic (corresponding to regular day time traffic) and low or 

under-saturated traffic (corresponding to nigh traffic). Over-saturated traffic scenarios are excluded. The 

reason for this is that in over-saturated traffic scenarios the vehicle arrival rate is higher than the 

maximum potential intersection throughput. Thus, whatever phase the agent decides on, it will receive a 

negative reward. This results in agents that are unable to learn optimal strategies. Additionally, as 

discussed previously in section 5.3.7, fixed time controllers are the optimal TSC strategy for over-saturated 

traffic. 

6.2.4 Vehicles 
Several assumptions about the vehicles in the simulation were already described in section 6.1.  

In general, vehicles will be modeled in a similar fashion. All modeled vehicles will be regular cars, i.e. there 

will be no trucks, buses, bikes, etc. All generated vehicles have similar behavior (e.g. vehicle following 

behavior) and characteristics (e.g. vehicle length, driving speed, acceleration/deceleration). Keeping 

vehicle parameters similar for all vehicles allows for faster training and better evaluation of the 

effectiveness of the controller. However, to ensure more realism in the scenarios, vehicles will differ 

slightly in driving speed, acceleration and following behavior. These parameters will be stochastically 

chosen for each vehicle. 
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A major difference between vehicles is the vehicle type. Vehicles can be either connected vehicles or 

regular vehicles. As discussed in section 2.1, connected vehicles can communicate their position, speed 

and other characteristics to the controller, while regular vehicles cannot. In this thesis, it is assumed that 

connected vehicles can only communicate information about their own states to the controller, but not 

about surrounding vehicles. Each controller will be trained under a certain penetration rate of connected 

vehicles. To evaluate how well the agent can control traffic under different penetration rates, several 

agents will have to be trained under different penetration rates.  

6.3 Reinforcement Learning Model 

6.3.1 States 
From the reviewed literature it was concluded that many possible state representations exist, yet it is not 

clear which representation would be the best and for which scenario. 

In this thesis, it is assumed that the state is observed by connected vehicles, rather than by traditional 

infrastructure sensors like loops or radars. As such, the available information is vehicle-based. Most 

researchers agree that it is better to use raw data (e.g. individual vehicle positions and speeds), rather 

than aggregated data (e.g. queue lengths). Many argue that the more information a controller has 

available, the better decisions it could potentially learn. Yet, adding more types of information also 

increases the state space, which increases training time.  

For this project, a compromise between the amount of available information and training time was made. 

Since the available data is vehicle-based, DTSE is a suitable state representation. A problem with DTSE is 

that the chosen cell length may greatly affect the result. Most papers chose a cell length of slightly longer 

than the vehicle length, so that only one vehicle can fit into the cell. Yet, if such a short cell length is 

chosen, the number of cells to represent a full lane gets very large, and thus will take long to train. 

Additionally, cells that are closer to the stop line may be more valuable for the controller than for cells 

that are further away. Due to this, less resolution in these further away cells may be required. Thus, it was 

decided that the cell length for cells closer to the stop line should be short (i.e. a cell length just slightly 

longer than one vehicle), and cells further away should get increasingly longer. Additionally, since there 

are two traffic lights per leg (one traffic light controlling three lanes and one traffic light controlling one 

lane), it was decided to use a width of two cells per leg. One of the cells encodes vehicles on the three 

righter lanes, and one cell encodes vehicles on the left lane. It would be possible to use a width of four 

cells per leg (i.e. one cell per lane on the leg), but this would drastically increase the state space, while not 

Figure 15 One leg of the intersection overlaid with DTSE cells. Cells closer to the stop line are shorter, while cells which are 
further away get progressively longer. Figure adapted from Vidali (2018). 
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adding much useful extra information, as all three lanes are controlled by the same signal. This approach 

was proposed by Vidali (2018), and the same layout will be used in this thesis 

Figure 15 provides an overview of the chosen cells for a single leg. In total 10 cells are used to encode the 

full length of a lane. Since a width of 2 cells is chosen per leg, in total there are 8 times 10 cells, so 80 cells. 

The first 4 cells fit one vehicle each, and after this cell lengths get gradually larger (see Figure 16).  

 
Figure 16 Cells lengths of the DTSE. The closer to the stop line, the shorter the cell length. Figure adapted from Vidali (2018). 

When using DTSE, different data can be encoded in the cells, such as vehicle position, vehicle density, 

speed, delay, vehicle waiting time or the current phase. Most papers included a binary value for the 

vehicle position. The cell would include a 1 if a vehicle occupies the cell and a 0 if the cell is empty. Yet, in 

these papers usually a cell length of one vehicle was chosen. In our case, some cells can fit more than one 

vehicle, so if binary values are used some information may be lost. To overcome this, Zeng et al. (2018) 

used vehicle density, measured as the number of vehicles in the cell divided by the potential maximum 

number of vehicles in the cell. Figure 17 visualizes the two options for an example. Since it is unclear which 

method leads to better results, preliminary tests will be conducted with either encoding method. 

 

Figure 17 DTSE of vehicle position/density. The top option shows binary position encoding. A vehicle is considered to be in a cell 
if its front bumper is in the cell. The lower option shows floating point encoded vehicle density measured as the relative cell 

occupancy. (Note: figure not to real simulation scale due to space reasons.) 

Additionally, many authors had success with including a second DTSE layer which encodes the current 

vehicle speed as a real number. Including the speed additional to the vehicle position can be useful, since 

it allows the controller to distinguish between vehicles which are currently driving and about to cross the 

intersection and vehicles which are currently waiting. To ensure that values do not get too large, the 

speeds are usually normalized with the leg’s speed limit. In our case, since several vehicles can occupy the 

cell at the same time, the average of all vehicles in the cell is used. 

Lastly, including the current signal phase and the elapsed time since the beginning of the current green 

phase was shown to lead to well-performing agents. Thus, this will also be included in the state 

representation. The elapsed time will be encoded as an integer. For the current phase, two different 
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encoding strategies will be tested. Option 1 includes encoding the phase as a one-hot vector. In option 2, 

the current phase will be encoded in the 2-layered DTSE. Lanes that currently have a green signal will be 

encoded as a positive number, lanes that currently have a red signal will be encoded as a negative number. 

An example of both options is presented in Figure 18. Option 1 is the more widely applied method in 

literature and has gained successful results, but it means that the model has an extra input dimension. 

Option 2 has not been widely used, but R. Zhang et al., (2020) found that it led to a more stable agent. 

6.3.2 Actions 
The agent’s action set consists of picking one of the 4 green phases (as described in section 6.2.2) for each 

action time step 𝑡. As such the action set is defined as  

𝐴 = {𝑁𝑆𝐺,𝑁𝑆𝐿𝐺, 𝐸𝑊𝐺, 𝐸𝑊𝐿𝐺}  ∈ 𝑡 

Unlike in some other previous works, the phase order is not fixed, i.e. the agent can start any green phase, 

leading to acyclic phase orders. This allows the controller to respond more dynamically to new traffic 

demand. 

The next green phase will be initiated for a duration of 5 seconds. Shorter durations may provide more 

flexibility to the agent, but also take longer to train since the difference in reward between time steps 

would be very short. 5 seconds was chosen as a trade-off. Choosing a new phase for the next 5 seconds 

effectively imposes a minimum green time for every lane. This also prevents the controller from switching 

too rapidly from green to red and ensures that at least one vehicle can pass the intersection. 

Note that the time interval between action time steps 𝑡 and 𝑡 + 1 is not fixed. If the agent decides to 

remain in the same green phase, the interval between action time steps 𝑡 and 𝑡 + 1 is equal to one green 

phase duration (i.e. 5 seconds). If the agent decides to switch to a different green phase, first the agent 

must initiate a yellow phase and then it can start the new green phase. In this case, the interval between 

action time steps 𝑡 and 𝑡 + 1 is equal to one yellow phase duration plus one green phase duration (i.e. 4 

+ 5 = 9 seconds). To visualize this, see Figure 19. At action time step 𝑡1, the agent is at the end of green 

phase 0 and decides to remain in green phase 0. Thus, the time interval between 𝑡1 and 𝑡2 is 5 seconds. 

In action time step 𝑡2 the agent is at the end of green phase 0 and decides to switch to green phase 1. The 

time interval between 𝑡2 and 𝑡3 is 9 seconds.  

Figure 18 Examples of both current phase encodings. The current green phase of the intersection in this example is EWG. The 
left hand side shows this phase encoded as a one-hot vector. The right hand side shows this phase encoded as a positive number 
in the rows corresponding to the lanes which currently have a green signal (here: lanes W and E). (Note: the values in the DTSE 

do not necessarily match the shown intersection). 
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Figure 19 Action time steps and intervals 

In some literature, researchers implemented maximum phase durations. This means that after the 

controller has spent a maximum amount of seconds in one phase, it must switch to another phase. This 

ensures more fairness between lanes. Yet, other authors argue against imposing these constraints, since 

they claim that the agent would learn such policies by itself for situations where it is necessary. In our 

agent, no maximum phase durations will be implemented, since fairness of the algorithm is out of the 

scope. If the agent turns out to result in unfair policies, these constraints may be added in future research. 

6.3.3 Rewards 
As discussed in section 5.3.5, many different performance indicators have been proposed as reward 

functions in literature. Additionally, different researchers have implemented the same performance 

indicator in slightly different ways. Different reward functions have different advantages and 

disadvantages. In an attempt to overcome this, several authors attempted to use weighted reward 

functions which combine several performance indicators. A major shortcoming in literature is that it has 

not been extensively studied how sub-rewards should be weighted, how different reward functions 

impact the agent’s performance and under which traffic situations different reward functions work well. 

Because of this, it is difficult to pick the reward function a-priori. Thus, in this thesis tests will be conducted 

with several different reward functions as performance metrics. The chosen reward functions consist of 

the three most commonly chosen singular metrics: cumulative vehicle delay, cumulative vehicle waiting 

time and queue length. Additionally, a 50/50 weighted reward consisting of both the cumulative delay 

and waiting time will be tested, since this led to good results in previous studies (Dijk, 2017; Samad, 2020). 

Each of the four rewards will be tested (1) as an absolute value (equation 17) and (2) as a value of change 

between two consecutive action time steps 𝑡 (equation 18): 

𝑟𝑡 = 𝑅𝑡  (17) 

𝑟𝑡 = 𝑅𝑡 − 𝑅𝑡−1 (18) 

where 𝑟𝑡 is the reward at action time step 𝑡 and 𝑅𝑡 is the measure of the chosen metric (i.e. cumulative 

delay ∑ 𝐷𝑡,𝑖𝑖 , cumulative waiting time ∑ 𝑊𝑡,𝑖𝑖 , queue length 𝑄𝑡, 50 cumulative delay/50 cumulative 

waiting time ∑ 𝐷𝑊𝑡,𝑖𝑖 ) at action time step 𝑡. 

Delay per vehicle is defined as the difference between the actual time the vehicle has driven measured at 

time 𝑡 and the optimal time the vehicle would have needed to cover the driven distance, assuming it had 

driven at the speed limit3. Since the cumulative delay is used, the delay of all vehicles at an action time 

step is summed. The equations are as follows:  

 
3 Driver speed is generated stochastically per vehicle. Some vehicles will be driving above the speed limit, so their 
actual driving time can be shorter than the optimal driving time. This results in a negative value for the delay. 



55 
 

𝑅𝑡 =∑𝐷𝑡,𝑖
𝑖

 (19) 

𝐷𝑡,𝑖 = 𝑇𝑡,𝑖
𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑇𝑡,𝑖

𝑜𝑝𝑡𝑖𝑚𝑎𝑙 (20) 

𝑇𝑡,𝑖
𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑇𝑡 − 𝑇𝑖

𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 (21) 

𝑇𝑡
𝑜𝑝𝑡𝑖𝑚𝑎𝑙

=
𝑑𝑖

𝑣𝑠𝑝𝑒𝑒𝑑 𝑙𝑖𝑚𝑖𝑡
(22) 

𝑇 denotes simulation time steps (one simulation step corresponds to one second) and 𝑡 denotes action 

time steps (which happen once every 5 or 9 simulation steps, see section 6.3.2). 𝑖 denotes a vehicle from 

the set 𝐼 of all vehicles in the intersection system at that moment. 𝐷𝑡,𝑖 is the delay of vehicle 𝑖 at time 𝑡, 

𝑇𝑡,𝑖
𝑎𝑐𝑡𝑢𝑎𝑙 is the actual driving time of vehicle 𝑖  at time 𝑡, 𝑇𝑡,𝑖

𝑜𝑝𝑡𝑖𝑚𝑎𝑙
 is the optimal driving time of vehicle 𝑖  at 

time 𝑡, 𝑇𝑡 is the current simulation time at action time step 𝑡, 𝑇𝑖
𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒

 is the departure time of vehicle 

𝑖, 𝑑𝑖  is the distance vehicle 𝑖 has driven until now and 𝑣𝑠𝑝𝑒𝑒𝑑 𝑙𝑖𝑚𝑖𝑡 is the maximum allowed speed on the 

leg.  

Waiting time per vehicle is defined as the number of seconds that a vehicle has spent at a speed under 

0.1m/s. The cumulative waiting time is calculated as: 

𝑅𝑡 =∑𝑊𝑡,𝑖
𝑖

 (23) 

where 𝑊𝑡,𝑖 denotes the waiting time of vehicle 𝑖 at time 𝑡.  

Queue lengths is calculated as the sum of queuing vehicles on all four legs. Vehicles are considered to be 

in a queue if their speed is under 0.1m/s. The queue length is defined by the last halting vehicle’s position. 

It is calculated as: 

𝑅𝑡 = 𝑄𝑡  (24) 

𝑄𝑡 = 𝑄𝑡
𝑁 +𝑄𝑡

𝑊 + 𝑄𝑡
𝑆 + 𝑄𝑡

𝐸  (25) 

where 𝑄𝑡 is the cumulative queue length at time 𝑡 and 𝑄𝑡
𝑋 denotes the queue length of the respective leg 

𝑋 = {𝑁,𝑊, 𝑆, 𝐸}.  

Lastly, the weighted reward consisting of vehicle delay and weighting time will be calculated as: 

𝑅𝑡 = 0.5∑𝐷𝑡,𝑖
𝑖

+ 0.5∑𝑊𝑡,𝑖
𝑖

 (26) 

Since training the agent will be conducted in a simulator, it is possible to gather vehicle-based reward data 

on all vehicles, including regular unconnected vehicles. This allows us to include the reward for all vehicles, 

even regular vehicles who are not included in the state. Some authors argue that this is unrealistic since 

regular vehicles cannot be directly observed. Yet, training will generally always be performed in a 

simulator, since it is not possible to train an agent on real-life traffic without completely disrupting traffic 

flows until the agent is trained.  
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In this research, only a 50/50 weighted reward of delay and waiting time will be tested. Past research has 

used a wide range of weighted rewards consisting of several sub-rewards. Yet, studies found that it was 

difficult to determine appropriate weights for them. Since this would likely cost too much time, more 

complex rewards functions were deemed out of the scope of this thesis.  

6.3.4 Agent 
For this thesis it was decided to use implement both a deep Q-learning agent (to be referred to as vanilla 

DQN agent or DQN agent) and a deep recurrent Q-learning agent (to be referred to as recurrent DQN 

agent or DRQN agent). DQN agents are the most commonly applied type of agent and have been used to 

successfully control traffic signals. Many reinforcement learning extensions have been proposed (e.g. 

the rainbow extensions or recurrent DQN agents) and may be applied to gain good results. For this 

thesis, only recurrence was implemented as an extension, since this extension has been shown to be 

able to perform well even when the environment state is not fully observable. Due to time restrictions, a 

comparison with other model extensions could not be implemented.  

6.3.4.1 Deep Neural Network Architecture 

When building a deep RL model, an integral part is the deep neural network that is used. In literature 

many different network architectures have been found, ranging from relatively small and shallow (e.g. 

Genders & Razavi, 2018) to large and deep (e.g. Du et al., 2019). The problem is that there are no clear 

standards or best practices on how to design neural network architectures for reinforcement learning 

algorithms yet. Previous studies may be used for inspiration but may not guarantee good results. This is 

because the best network architecture may depend largely on the specific problem at hand, which means 

that a network architecture that works for one problem, may not work for a slightly modified problem. 

An even more complicating factor is that deep reinforcement learning algorithms take long to train and 

depend on a large range of other hyperparameters as well, so it is not feasible to test a large number of 

network architectures.  

Nevertheless, the network architecture is somewhat restricted by the specific problem at hand. In this 

thesis DQN and DRQN are being applied, which constrains the allowed network inputs and outputs. For 

the DQN agent, the neural network input must be a batch of state samples. For the DRQN agent, the input 

must be a batch of trajectories containing a fixed number of samples. The shape of these samples depends 

on the chosen state (see section 6.3.1). The output of the DQN agent must be a batch of Q-values for each 

of the four allowed actions (4 x 1). For the DRQN model the neural network output must be a batch of 

trajectories of Q-values. Apart from these boundary constraints, the choice of architecture is up to the 

researcher.  

For both the DQN and the DRQN agent, nearly the same network architecture is used. The only difference 

is that the DRQN has an additional LSTM layer.  

For both agents, convolutional layers will be applied to the DTSE-part of the state input. Convolutional 

neural networks (CNN) are commonly for image processing since it allows to extract spatial information, 

which would be lost in multilayer perceptrons (MLP). For an introduction to CNNs, please refer to Aghdam 

and Heravi (2017). Our 2-layered DTSE can be seen as a type of image with a width of 10 cells, a height of 

8 cells and 2 channels (position/density and speed). In CNNs, usually ReLu activations are used. When 

using CNNs, the input is passed through several convolutional layers. To go from one layer to the next, a 

filter size, kernel and stride must be specified. Generally, the number of filters start small to collect local 
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information and gradually increases to combine local information into complex shapes to distinguish 

between different features (here: between states) (Ramesh, 2018). The kernel size and the stride depends 

on the specifics of the image. For the design of the convolutional layers, the architecture from well-

performing literature agents was used. It was decided to test two different convolutional architectures. 

Architecture 1 is a small network inspired by Zeng et al. (2018) and T. Zhao & Wang (2019) consisting of 

two convolutional layers with 8 and 4 filters, a kernel size of (2,2) and (2,2) and a stride of (2,2) and (1,1) 

respectively. Architecture 2 is a large network with three convolutional layers of 16, 32 and 64 filters, a 

kernel size of (2,2), (2,2) and (1,1) and a stride of (2,2), (2,2) and (1,1) respectively, as inspired by (Fang et 

al., 2019). 

The output of the convolutional layers will then be flattened and concatenated with the elapsed time 

input and the current phase input (if one-hot encoded). In case of the DRQN agent, information will now 

be passed through an LSTM layer of size 96. Lastly, all information will be passed through two fully 

connected layers of size 32 and 16 which are ReLu activated. The output layer consists of a fully connected 

linearly activated layer which outputs the four predicted Q-values.  

Figure 20 shows an example of a DRQN network architecture that can be used. Note that the to-be tested 

networks may differ from the one shown in this figure: some networks will have 3 instead of 2 

convolutional layers, vanilla DQN agents will not have the LSTM layer and some architectures will not have 

the (4 x 1) current phase input. The finally chosen network architecture will depend on the outcome of 

the preliminary experiments. 

  

Figure 20 Example of a possible network architecture. Note that the finally chosen network may not be the same. 

6.3.4.2 Algorithm stabilization 

As discussed in section 4.8, DQN algorithms may not always converge. To stabilize the training process, 

experience replay and target networks will be applied. The algorithm stability may depend on the 

hyperparameters which are chosen for the memory size and the target network freeze interval. Since no 

best practices for choosing these exist yet, tests will be conducted with different ranges of values. 

6.3.4.3 Other details 

To train neural networks, an optimizer that minimizes a loss function is needed. In this case, the loss 

function consists of the mean squared error between the model output (here: the predicted Q-values) 
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and the true values (here: the target Q-values). For this model, the Adam optimizer is being used, since 

this was shown to perform well and converge quickly (Liang et al., 2018). 

To trade-off exploration and exploitation, an 𝜀-greedy strategy will be used in which 𝜀 linearly decays from 

1 to 0 over all training episodes. Each time the agent picks an action, it will pick a random action with 

probability 𝜀 and a non-random action (i.e. the action with the highest Q-value) with a probability 1 − 𝜀. 

6.4 Model evaluation 

6.4.1 KPI 
During testing, the controller’s performance will be evaluated at every simulation step. Since different 

metrics measure different aspects of traffic controller performance, several KPIs have been chosen: 

Average vehicle delay. Delay measures how many seconds a vehicle has lost up until that point compared 

to the optimal time needed to drive up to that point, assuming the vehicle would have driven at the speed 

limit. In the simulation, vehicles would only drive slower than their preferred driving speed if they stop 

for red signals, if they wait behind other vehicles in a queue or if they are accelerating or decelerating. It 

is then reasonable to assume that delay is a good measure to quantify how much time has been lost due 

to the traffic signal. It was chosen to evaluate the average rather than the cumulative delay, since this is 

easier to interpret for humans, and since ultimately the goal is to reduce the effects of signal congestion 

as much as possible for all vehicles, rather than for just a few vehicles. The formula for delay was 

presented in equations 17-20 in section 6.3.3. The average delay per simulation step 𝑡 for all episodes 𝑒 ∈

𝐸 is calculated as: 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑑𝑒𝑙𝑎𝑦 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 =
1

𝐸
∑ [

1

|𝐼|
∑𝐷𝑡,𝑖

𝐼

𝑖

] 

𝐸

𝑒

(27) 

Average connected vehicle delay and average regular vehicle delay. Additional to the full vehicle delay, 

the vehicle delay for only connected or regular vehicles will be collected. This allows evaluating whether 

an agent which can see only connected vehicles also leads to strategies that work for regular vehicles.  

Average waiting time. The average waiting time is correlated to the vehicle delay. It measures how many 

seconds a vehicle spends on average driving under 0.1m/s (see section 6.3.3). It is measured as: 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 =
1

𝐸
∑ [

1

|𝐼|
∑𝑊𝑡,𝑖

𝐼

𝑖

]

𝐸

𝑒

(28) 

Average queue length. The average queue length measures how many vehicles are waiting on average at 

time step 𝑡. It is measured as: 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑞𝑢𝑒𝑢𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 =
1

𝐸
∑𝑄𝑡  

𝐸

𝑒

(29) 

6.4.2 Base case 
Ideally, the trained agent would be compared against different traditional controllers and state-of-the-art 

control methods. Due to time limitations, this is not possible in this thesis. 
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Instead, it was decided to only compare the performance against a fixed-time controller. The fixed-time 

control has the same green phases as the reinforcement agent. One traffic cycle goes through all four 

phases in a fixed order (NSG, NSLG, EWG, EWLG). Each phase has a duration of 30s.  

The base case will be evaluated in the same manner as the RL agent: it will be tested on the same scenarios 

and the same KPI will be gathered.  

6.5 Summary 
In this section the conceptual design of the reinforcement learning strategy has been discussed. Decisions 

regarding the scope, the environmental setup and the reinforcement learning model have been made. No 

implementations have been made yet at this point.  

Many scoping decisions have been made to simplify the problem. In this project, it will be studied how 

the RL control strategy affects traffic efficiency in signalized intersections. The focus will be on how 

different penetration rates of connected vehicles influence the controller’s performance. 

The environmental setup consists of a geometric 4-way intersection with 4 lanes per leg: the left lane is 

used for left turns, the two middle lanes for through traffic and the right lane for right turns and through 

traffic. In total the intersection has 8 traffic signals, or 2 per leg. One signal controls each of the left-turning 

lanes, and one signal controls each of the three through and right-turning lanes. In total there are four 

green phases: North/South right/through traffic, North/South left-turning traffic, East/West right/through 

traffic and East/West left-turning traffic. Between different phases, a yellow phase of 4 seconds is used. 

Traffic will be generated in four different types of stochastic scenarios: (1) low constant traffic (2) medium 

constant traffic (3) high constant traffic (4) dynamic traffic. Generated vehicles in the simulation are either 

connected vehicles or regular vehicles. The amount of generated connected vehicles is dependent on the 

penetration rate set for the scenario. 

Regarding the reinforcement learning agent, it was decided to implement both a deep Q-learning agent 

and a deep recurrent Q-learning agent. Both agents will use experience replay and target networks to 

stabilize the training process. The state representation consists of a 2-layered DTSE of vehicle 

position/density and speed, the current green phase and the elapsed green time. The exact state 

representation will be decided on after preliminary experiments have been conducted. The available 

actions are to decide the next green phase for 5 seconds. The reward representation is currently 

undecided, but experiments will be conducted on which reward leads to the best performance. Options 

include the difference in cumulative vehicle delay, waiting time or queue length.  

To evaluate the agent’s performance, several KPI will be gathered at every simulation step. The chosen 

KPIs are the averaged (total, connected, and regular) vehicle delay, the averaged waiting time and the 

averaged queue length. Furthermore, it was decided to evaluate the agent by comparing it against a 

fixed-time controller.  
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7. IMPLEMENTATION 
In this chapter, the implementation details will be described. This includes the implementation in 

software, details regarding the traffic generation, an overview of training and testing agents and a 

discussion on hyper-parameters. 

7.1 SUMO (Simulation of Urban Mobility) 
In this thesis, SUMO was used as the simulator (SUMO, 2020). SUMO is an open-source microscopic traffic 

simulator. It is time-discrete and space-continuous (Behrisch, Bieker, Erdmann, & Krajzewicz, 2011). 

For this thesis project a simulator had to meet several requirements: 

- Be able to do microscopic traffic simulation 
- Be able to specify networks of intersections 
- Be able to model congestion 
- Allow designing a traffic signal control strategy 
- Be able to model V2I and V2V communication 
- Be able to measure specified performance metrics 
- Be able to conduct scenario experiments 

Different review articles were available that compare simulator packages. Pell et al. (2017) compared 17 

packages with a focus on the realized functionalities. Kotusevski and Hawick (2009) and Ejercito et al. 

(2017) focused on evaluating the usage and performance of the packages. Several of the packages which 

were open-source or accessible via the TU Delft met these requirements (SUMO, VISSIM, OpenTrafficSim, 

Aimsung). SUMO was the finally chosen package since this is by far the most used simulator for RL (see 

Appendix C). A basic reinforcement learning model that uses SUMO was found from a previous Master 

thesis (Vidali, 2018). This RL model will be used as the basis for my algorithm.  

The implementation of the environment was done using SUMO’s NetEdit. All legs and lanes, allowed 

movement directions, speed restrictions, the intersection itself are specified in NetEdit, along with the 

position and allowed phases of the traffic lights. For the description of the environment, see section 6.2. 

This implementation was left the same as in Vidali's  (2018) work.  

Traffic scenarios can be specified using .rou files. In these files it is possible to specify different vehicle 

types and routes. More information on traffic generation will be provided in section 7.2. 

To interface a traffic control strategy with SUMO, the TraCI (Traffic Control Interface) library is used. This 

allows us to run the algorithm outside of SUMO and it provides the interface to get and set values in the 

SUMO simulation. 

Lastly, the SUMO GUI can be used. If the GUI is enabled, it is possible to see the model’s decisions. This is 

useful during debugging, e.g. to see how the agent behaves or to visually evaluate the final trained agent. 

Generally, however the algorithm will be run without the GUI since this is much faster. 

7.2 Traffic generation   

7.2.1 Traffic scenarios 
To train the controller, the agent has to be exposed to episodes of different traffic scenarios. Each episode 

is 5400 simulation steps long. One simulation step is equal to one second, so episodes are 1,5h long. 
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As described in section 6.2.3, traffic will be generated with three different amounts of arriving vehicles: 

low (undersaturated) traffic, medium saturated traffic and high saturated traffic. These arrival rates can 

be either constant (i.e. uniformly distributed) or dynamic (i.e. Weibull distributed).  

To determine the vehicle arrival rates for the three constant traffic scenarios, some simple tests were 

conducted with a fixed-time controller. The fixed time controller has a green phase duration of 30 seconds 

and cycles through the four green phases described in section 6.2.2. The controller was tested by using 

different values for the total number of generated vehicles within an episode. It is assumed that traffic is 

balanced equally over the legs. For each run, the queue length per simulation step was recorded. 

Additionally, it was visually checked in the SUMO GUI how many vehicles can pass at once through a green 

phase. The resulting queue lengths for some of the values which were tested can be seen in Figure 21. 

 

Figure 21 Queue lengths over time in the fixed time controller. Experiments are conducted under constant traffic scenarios with 
different numbers of total arriving vehicles in an episode. The total number of generated vehicles in the experiments are: 150 

vehicles (upper left), 2000 vehicles (upper right), 5000 vehicles (lower left), 7000 vehicles (lower right). 

In all figures, the queue lengths are rapidly jumping between higher and lower queue lengths. These jumps 

can be explained by one queue of vehicles getting a green light and driving through the intersection all at 

once, which rapidly decreases the queue length. Furthermore, the plots show that as intuitively expected, 

the more vehicles are generated, the higher the queue lengths. In the plots as well as in the GUI it could 

be seen that vehicle arrival rates up to around 5000 generated vehicles in an episode of 5400 seconds can 

be handled by the fixed time controller. When watching the simulation via the GUI, it could be seen that 

all vehicles in the queue could pass through the intersection at once during a green light phase. The plots 

also confirm this: the queue lengths follow a regularly repeating pattern, without any up- or downwards 

trends. The trend in the figure for 7000 generated cars shows a different pattern: the queue lengths show 

a continuous upwards trends, meaning that queue lengths are increasing over time. The same behavior 

was easily seen in the GUI: more vehicles were arriving than the fixed-time controller could handle. This 

resulted in not all vehicles being able to drive through the intersection during a green light phase. 
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From the experiments, it was concluded that the cut-off between saturated and over-saturated traffic is 

between 5000 and 7000 vehicles. Based on this, for the constant high traffic scenario 5000 cars will be 

generated, for the medium traffic scenario 2000 cars will be generated and for the low traffic scenario 

150 cars will be generated. The low number of 150 generated cars leads to a situation in which oftentimes 

only a single vehicle is waiting at the intersection (see upper left Figure 21). Overall, the constant traffic 

scenarios cover the whole range from singe vehicle queues to near-saturated queues. 

For the dynamic traffic scenario, the peak of the arrivals should correspond to the high traffic arrival rate. 

This is the case for a Weibull distribution with approximately 2000 generated cars. A histogram of this 

Weibull distribution over one full episode is shown in Figure 22. A bin size of 5 minutes was chosen, 

resulting in 18 bins. Additionally, the constant arrival rates of the high, medium and low traffic scenarios 

per 5 minutes are plotted (277.78 veh/5 mins, 111.11 veh/5 mins, 8.33 veh/5 mins resp.). As can be seen, 

the Weibull distribution arrival rates cover all three constant traffic scenarios. Because of this, only one 

type of dynamic traffic scenario is needed. A summary of the four different scenarios is shown in Table 4. 

Table 4 Scenario specifications 

Scenario Distribution Number of generated vehicles 

Low constant traffic scenario Uniform 150 

Medium constant traffic scenario Uniform 2000 

High constant traffic scenario Uniform 5000 

Dynamic traffic scenario Weibull 2000 

 

7.2.2 Vehicle generation 
Once it has been decided which scenario will be simulated in the episode, the algorithm starts with 

determining the arrival patterns for the full episode. The arrival rates are generated according to Table 4.  

Additional to the arrival rates, each vehicle will be randomly assigned a certain origin and destination. 

Since it was decided to use balanced traffic, each generated vehicle has equal chances to start on either 

of the four legs (25% chance for each leg). Regarding the turning movements, each vehicle has a 25% 

chance to turn right, a 25% chance to turn left, and a 50% chance to continue straight.  

Figure 22 Traffic arrival rates following a Weibull distribution with 2000 generated cars. Overlaid 
with the constant arrival rates of the high, medium and low traffic scenarios. 
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Since in this thesis we are interested in how different penetration rates of connected vehicles affect the 

controller’s performance, vehicles must be either a connected vehicle or regular vehicle. This assignment 

is done randomly. Vehicles are assigned to be a connected vehicle with the probability of the penetration 

rate, else they will be a regular vehicle. Within this thesis, the agent will be trained and tested under CV-

penetration rates of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100%. To visualize the vehicle 

type in the GUI, connected vehicles are displayed in blue, while regular vehicles are displayed in red (see 

Figure 23). Within the simulation, all vehicles have the same characteristics (see Table 5). 

Table 5 Vehicle parameters in SUMO 

Parameter Value 

Acceleration 1 m/s2 

Deceleration 4.5 m/s2 

Vehicle length 5 m 

Car following model Krauß following model (Krauß, 1998) 

Minimum gap between 
two vehicles 

2.5 m 

Maximum Speed 25 m/s 

Departure Speed 13.89 m/s 

Departure Lane Random 

Driver imperfection4  0.5 

 
4 The driver imperfection is a parameter that causes differences between vehicles in their driving speeds and the 
acceleration behavior. It must be a value between 0 and 1. A value of 0 denotes that all driver’s follow the set 
parameters perfectly. Adding driver imperfection makes simulations more realistic, since not all drivers drive exactly 
the same. 

Figure 23 Screenshot from the SUMO GUI. Red vehicles are regular 
vehicles, blue vehicles are connected vehicles. 
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7.3 Training 

7.3.1 Vanilla DQN Agent 
Algorithm 2 describes the training process of the vanilla DQN agent. An agent is trained for a fixed amount 

of episodes using a fixed penetration rate.  

 Algorithm 2: Training process of the DQN agent 

 Input hyperparameters: total number of episodes total_episodes, maximum number of steps per 
episode max_steps, green phase duration green_duration, yellow phase duration yellow_duration, 
target network freeze interval 𝛽, batch size batch_size, learning rate 𝛼, number of epochs 
training_epochs, minimum memory size memory_size_min, maximum memory size 
memory_size_max, discount rate 𝛾 

1 Initialize online with random weights 𝜃 and target network with identical weights 𝜃− = 𝜃 

2 Initialize empty experience replay memory 

3 for total_episodes episodes: 

4  Generate next traffic scenario 

5  # RUNNING THE SIMULATION AND GATHERING SAMPLES 

6  while current simulation step < max_steps: 

7   Get the current state 𝑠 at this time step 𝑡 

8   Observe the reward 𝑟 at this time step 𝑡 

9   Add observed sample to memory in the form (𝑠𝑡−1, 𝑎, 𝑟, 𝑠𝑡) 

10   if current memory size > memory_size_max: 

11    Remove the oldest sample from the memory 

12   Pick next action 𝑎 based on the current state using the online network: 
  𝑎 =  argmax

𝑎
𝑄(𝑠, 𝑎, 𝜃) with probability 1 − 𝜀, else select a random action 

13   if action 𝑎𝑡 == old action 𝑎𝑡−1: 

14    Execute a yellow phase for yellow_phase seconds 

15   Execute a green phase for green_phase seconds 

16  # TRAINING THE NETWORK 

17  for training_epochs epochs: 

18   if current memory size is bigger than memory_size_min: 

19    Sample a uniformly random batch with batch_size number of samples  
   from the memory  

20    for each sample (𝑠𝑡−1, 𝑎, 𝑟, 𝑠𝑡) in batch 𝑏: 

21     calculate the target Q-values with     
    𝑄(𝑠, 𝑎, 𝜃) = 𝑟 + 𝛾 ∗ argmax

𝑎
𝑄(𝑠, 𝑎, 𝜃−) 

22    Train online model (i.e. update 𝜃) using batch 𝑏 by fitting the batch state 
   as network inputs and the new batch target Q-values 𝑄(𝑠, 𝑎, 𝜃) as  
   network outputs 

23  if current training iteration % 𝛽: 

24   Copy model weights 𝜃 from online network into target network (i.e. replace  
  parameters 𝜃−) 

25 Save trained online network weights 𝜃 and plot cumulative reward for every episode 

 

Every episode contains the same processes. Note that the number of episodes must be specified a priori. 

Each episode runs for 5400 simulation steps, but the number of action steps within an episode may vary, 
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since the time interval between consecutive green phases varies (5s or 9s). The number of action steps 

ranges between 600 action steps (if always the same action is chosen) and 1080 action steps (if always a 

different action is chosen). On average, an episode will include 675 action steps. An episode can be roughly 

split into three phases: traffic generation, running the simulation and gathering samples, and training. 

Figure 24 shows the different processes and decisions within one episode for the vanilla DQN model.  

Each episode begins with generating a new training scenario (see section 7.2.1). Scenarios are generated 

in the following cycle: dynamic traffic, low traffic, dynamic traffic, medium traffic, dynamic traffic, high 

traffic. This means that half the trained scenarios are constant traffic situations and the other half are 

dynamic traffic situations. Once the scenario for the current episode is picked, the algorithm randomly 

generates a SUMO route file with the corresponding number of generated vehicles and penetration rate.  

The next step is to run the simulation. The simulation is run for 5400 simulation steps. During the 

simulation, the agent gathers experiences (i.e. samples in the form (𝑠𝑡−1, 𝑎, 𝑟, 𝑠𝑡)) and saves these 

samples into the experience replay memory. If the memory gets fuller than a certain threshold, the oldest 

sample gets deleted. During the simulation, the agent acts as follows: at the end of the green phase 

duration, the algorithm gets the current state and the observed reward from the simulator. Based on the 

current state, it decides which action to pick, i.e. it picks the green phase for the next 5 seconds. The agent 

picks a random action with a probability 𝜀 and a greedy action with a probability of 1 − 𝜀 (𝜀-greedy 

strategy). To do a greedy action, the agent inputs the current state into the online network and picks the 

action which returns the highest Q-value (i.e. the highest valued output). If the action is the same as the 

action in the previous time step, the agent remains in the same green phase. If the action is different, the 

agent switches to the corresponding yellow signal phase for 4 seconds and then switches to the new green 

phase. After the simulation has run for 5 seconds in the new green phase, the steps described are repeated 

until the episode is over. 

After the simulation part is finished, the agent will be trained. Training follows the process described in 

chapter 4. The agent is trained on a fixed number of batches, one batch at a time. Batches consist of 100 

randomly chosen samples from the memory. For each entry in a batch, the current Q-value 𝑄(𝑠, 𝑎, 𝜃) is 

calculated using the online network and the target Q-value 𝑄(𝑠, 𝑎, 𝜃−) is calculated using the target 

network. The online network is then updated using equation 15 from section 4.7: 𝑄𝑡+1(𝑠𝑡, 𝑎𝑡) =

𝑄𝑡(𝑠𝑡, 𝑎𝑡) − 𝛼[𝑄(𝑠𝑡 , 𝑎𝑡) − (𝑟𝑡 + 𝛾𝑉(𝑠𝑡+1))]. After a fixed number of steps, the target network is 

unfrozen, and the weights from the online network are copied into the target network. 

7.3.2 Recurrent DQN agent 
For the DRQN agent, the flow of processes during one episode is mostly the same as for the vanilla DQN 

agent. This section will only describe the changes compared to the vanilla agent. 

• Saving to memory. In the vanilla DQN model, the memory consists of individual experience 

samples for an action time step 𝑡 in the form (𝑠𝑡−1, 𝑎, 𝑟, 𝑠𝑡). The recurrent agent however 

learns from trajectories of experiences (i.e. several consecutive samples from time steps 

𝑡𝑠𝑡𝑎𝑟𝑡 until 𝑡𝑒𝑛𝑑). If samples are saved as individual experiences, information about how the 

time dimension would be lost. To solve this, the memory instead stores full episodes of 

samples during which the order of the experience samples is preserved.  
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Figure 24 Flow of one episode. An episode has three parts: traffic generation, simulation and training. 
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• Get a minibatch of samples. In the vanilla DQN model, a minibatch consists of a batch of 

individual samples. In the recurrent DQN model, a minibatch of consists of a batch of sample 

trajectories. Each trajectory consists of a fixed number of consecutive samples and is 

randomly chosen from memory. Thus, time relations are preserved within sample 

trajectories, while there is no time correlation between trajectories. 

• Choose next action.  When choosing greedy actions, the action with the highest 

corresponding Q-value is chosen. In the DQN model, these Q-values depend only on the 

current state. In the recurrent model however, the network includes an LSTM layer that can 

remember past states (called the hidden state). Q-values then not only depend on the current 

state, but also on the hidden state. 

• Training using trajectories. During training, the algorithm tries to minimize the difference 

between trajectories of predicted Q-values and trajectories of target Q-values. Generally, 

there are two ways to update the DRQN’s weights: bootstrapped sequential updates and 

bootstrapped random updates (Hausknecht & Stone, 2015). Both have been shown to lead to 

similar performance. In this thesis bootstrapped random updates are performed. This means 

that sample trajectories of a fixed length with a random starting point within an episode are 

selected randomly from memory. Chosen trajectories are used for one weight update step. 

The hidden state of the LSTM will be reset to zero for every trajectory. In Hausknecht  and 

Stone (2015), the full trajectory is used for training. Several improvements to this 

implementation have been made in research which have been shown to lead to better results 

(Kapturowski et al., 2019; Lample & Chaplot, 2017). Nevertheless, for this thesis due to time 

limitations it was chosen to only implement the less complex solution of Hausknecht and 

Stone (2015). Extensions could be implemented in future research. 

7.4 Testing 
After a model has been trained, it can be tested. During testing, the model will no longer do any 

exploration (i.e. pick any random actions), but instead will only do exploitation (i.e. choose greedy 

actions). Assuming that the model has been trained sufficiently, this should lead to a good traffic signal 

control strategy. 

During testing, the model will be tested on each scenario separately. This allows to evaluate how well the 

controller has learned to control a certain scenario, and whether it can recognize and switch between 

different scenarios. For each trained agent, the KPI described in section 6.4.1 will be gathered at every 

simulation step. 

Since traffic scenarios are stochastically generated, it is not possible to trust a single scenario run, since 

results may vary a lot for different scenarios even if they are generated under the same random 

distribution. To solve this, a trained model must be tested under one scenario for enough runs to get a 

good estimate of all outcomes. Both the mean and the range between the 5% and 95% percentile will be 

reported. In this project, each model will be evaluated using 50 runs. The agent will only be tested on 

episodes that have not yet been seen during training (i.e. traffic scenarios during testing are generated 

with a different random seed than during training).  
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7.5 Model hyper-parameters 
Reinforcement learning models have many hyper-parameters. Hyperparameters are parameters which 

are not inferred during training, but which are set by the modeler. They influence the training process of 

the agent, as well as the model’s final performance. As such, it is important to pick suitable values. The 

problem is that many of these parameters have not been investigated extensively, so it is unclear which 

values would be optimal for the model. 

In this thesis, some of the hyperparameters are chosen based on previous investigations in literature. Yet, 

for other parameters no clear results were found, so systematic preliminary tests will be done in which 

the final model will be fine-tuned. This section will discuss how the hyper-parameters influence the 

training process and model performance, and which values will be chosen. 

Training episodes. The number of training episodes influences how many new traffic scenarios an agent 

will experience. The more scenarios it sees, the more data it has to train on. If too few scenarios are used, 

the agent may overfit these scenarios, leading to a bad testing performance on new scenarios. Yet, more 

scenarios lead to an increase in training time.  

The number of training episodes which is needed is difficult to determine. It not only depends on the 

model being trained but also on the number of training epochs and the mini-batch size. Due to this, no 

value was chosen yet. Instead, tests will be conducted with several different values for the number of 

episodes (see sections 8.1 and 8.2.5). 

Training epochs. The number of training epochs affects how many mini-batches are being used to train 

the agent after every episode. If too few batches are picked, then underfitting may occur. If too many 

batches are picked, overfitting may occur. In either case, the test performance will be unsatisfactory. 

Similar to the number of training episodes, it is difficult to generalize how many training epochs are 

needed. Because of this, tests will be run with different numbers of epochs (see sections 8.1 and 8.2.5).  

Mini-batch size. The mini-batch size parameter defines how many samples are included in one training 

batch. Small batch sizes may lead to a fast converging learning process but could lead to training noise. 

Large batch sizes lead to slower convergence with less noise. 

In literature, different batch sizes have been used, ranging usually from 32 to 128. Vidali (2018) tested 

different training strategies and found that frequent training using a batch size of 100 outperformed a 

strategy with a batch size of 50. Due to this, it was decided to use a mini-batch size of 100. 

Learning rate. Deep neural network weights are updated using stochastic gradient descent methods. The 

gradient descent algorithm estimates an error gradient based on the training data and updates the model 

weights by back-propagating the errors through the network. The learning rate determines the step size 

of these updates, or in other words, how fast an algorithm “overwrites” old information with new 

information when the weights are updated. Higher learning rates lead to faster learning but may lead to 

overshooting the optimum and unstable training. Lower learning rates lead to slower training and could 

get stuck in local optima.  

Pol (2016) did experiments using high and low learning rates. She found that higher learning rates (α = 

0.1) lead to earlier oscillation, but lower learning rates (α = 0.00025) also lead to oscillation. She 

hypothesized that due to the ADAM optimizer’s adaptive gradients, the learning rate does not influence 



69 
 

the final model’s stability to a large extent. Based on these results, for this thesis it was chosen to use a 

relatively low learning rate of 0.001.  

Discount factor. The discount factor is a parameter that determines how important future rewards are 

compared to the current reward. Low discount rates lead to prioritizing current events or events in the 

close future over distant events. Short-term optimal decisions may be taken at the expense of future 

events. High discount factors lead to future rewards being nearly as important as current rewards.  

In traffic signal control problems, future rewards should be nearly as important as immediate rewards, 

because short-term optimal actions could have negative effects in the long term on queue lengths and 

waiting times. As such, in literature usually high gamma values are used. A commonly chosen discount 

factor is 0.99. This value will also be used here.  

Target network freeze interval. The freezing interval determines how often the target network weights 

are copied over into the online network. Shorter freeze intervals lead to more frequent target network 

updates. Too short intervals can lead to instability of the training process since the target Q-values are 

still shifting too frequently. Too long intervals can lead to a need for long training, too strong gradient 

updates, or getting stuck moving in a wrong direction (Pol, 2016). 

Pol (2016) tested freezing interval of 10,000 (1 episode), 30,000 (3 episodes) and 50,000 steps (5 

episodes). She found that both a freeze interval of 1 and 5 episodes leads to unstable results, but a freeze 

interval of 3 episodes gained more stable performance. However, she trained her agent only on one type 

of scenario rather than four different ones, so her results may not transfer to this thesis’ agent. Thus, tests 

with different freeze intervals will be conducted (sections 8.1 and 8.2.6). 

Memory size. The memory size determines how many samples can be stored in memory, and thus how 

long a sample will be stored until it is deleted. Small memory sizes only let the agent see recent episode 

samples and could lead to catastrophic forgetting and training instability. Large memory sizes allow the 

agent to see experiences from more episodes, but this poses the risk that some old samples are outdated 

and irrelevant. Additionally, computational memory issues could occur. 

Pol (2016) also investigated the effect of memory size on training stability. Her results indicate that a 

memory size of one episode is too short and leads to unstable results. Yet, her results for larger memory 

sizes (10 episodes in her case), also lead to somewhat unstable results. As such, the optimal memory size 

remains unclear and will be tested (see sections 8.1 and 8.2.7). 

Trajectory sequence length (for the DRQN model only). The length of a sampled trajectory provides the 

controller with several consecutive samples of experiences to build up the hidden state. If a too short 

trajectory is chosen, the model has too little knowledge about past states to build up an accurate hidden 

state since the hidden state is reset after every trajectory. This can make it harder or impossible for the 

model to learn good policies. If a too long trajectory is chosen, the training time increases (Dijk, 2017). 

Furthermore, the i.i.d. assumption is violated more (see section 4.8.1), which can lead to instability. 

Dijk (2017) experimented with different history sizes by comparing model performance and stability for 

models trained with trajectory sequence lengths of 2, 4, 10 and 20. The results show that a trajectory 

length of 2 leads to unstable results which are worse than that of a vanilla DQN model. A trajectory length 

of 4 leads to equally good stability and performance as the vanilla DQN model. Both the trajectory lengths 

of 10 and 20 perform equally well and both outperform the vanilla DQN model in stability and 
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performance. Since the training time between the 10 and 20 trajectory length agents is nearly doubled, 

Dijk (2017) advises using the agent with a trajectory length of 10. However, since the agent which is 

trained in this thesis is not equal to the agent of Dijk (2017), it is unclear whether these results transfer. 

Due to this, experiments with different trajectory lengths will be done (see sections 8.1 and 8.2.8). 

7.6 Implementation, Verification and Validation 

7.6.1 Software Implementation and Verification 
This DQN agent was implemented in python 3 using the deep learning library Keras and the machine 

learning library TensorFlow 2. The simulation part uses the SUMO simulator. The interface between the 

two parts is handled by the SUMO library Traci.  

During implementation, each time a new functionality was added small tests were run to verify it. Often 

small training runs were done with few episodes and epochs to see if the model breaks. Plots of the 

gathered KPI and the deep NN architecture were used to check if parameters are implemented correctly. 

For a lot of debugging it was useful to check the in- and output array shapes. For example, if the state 

consists of a 2-layered DTSE, a one-hot encoded phase vector and the elapsed time, the deep NN’s input 

shape should be of the dimensions ((10, 8, 2), (4, 1), (1)). The output of the deep NN should be the four 

Q-values and should thus be of shape (4,1).  

Apart from this, it was checked whether the algorithm behaves as it is expected. For example, when 

implementing the state representation, the python code’s state representation was manually compared 

against the current state visible in the SUMO GUI. For the memory, it was for example tested whether it 

stores newly added samples correctly and whether it removes the oldest samples once the memory gets 

too full. And for the target network it was checked whether the online model’s weights continuously get 

updated, while the target model’s weights only get updated at the end of a freeze interval. If 

inconsistencies were found, these errors were corrected before implementing new functionalities. 

Verifying the correct functioning of the network models itself is more complicated. Deep neural networks 

are useful to approximate complex non-linear functions, but humans are not able to easily interpret their 

weights. However, since the neural network and machine learning libraries Keras and TensorFlow are 

being used, it can be assumed that the neural network is being built as specified and that model fitting 

and predictions work correctly. 

7.6.2 Validation 
Since DQN models are model-free, it is difficult to evaluate what is happening inside the algorithm and to 

understand why an agent makes a certain decision. This makes it difficult to understand what effect 

changing certain parameters has on the model. 

Additionally, it is not possible to test a traffic controller which is under development on real-world traffic 

due to time, cost, safety restrictions and possible public inconvenience caused by sub-optimal strategies. 

Because of this, the controller has to be tested in a simulator, so in this case in SUMO. However, to get 

valid results, the simulator must be able to accurately simulate real-world traffic and driving behaviors. 

Since SUMO is developed by researchers and is widely applied by researchers as well, it can be assumed 

that the tool has been sufficiently validated and that it realistically represents traffic flows.  
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7.7 Summary 
This chapter described the implementation and experimental setup. For this project, both a DQN agent 

and a DRQN agent will be trained and tested. To stabilize training, experience replay and target networks 

are used. The reinforcement learning part of the algorithm is implemented in python using Keras and 

TensorFlow, while the simulation part is implemented in SUMO.  

To evaluate the agent’s training stability and performance, the cumulative reward per training episode is 

plotted and analyzed. After training, an agent can be tested for its ability to reduce congestion using the 

gathered KPI.  

Since many model settings and hyper-parameters cannot be determined a priori, preliminary experiments 

will be conducted to fine-tune the settings. Only the best performing model will be used for the 

penetration rate experiments. In these experiments, an agent will be trained under CV-penetration rates 

between 10% and 100%. The performance of the different agents can be compared to each other. 

Additionally, the agents will be compared to a fixed-time controller as a base case.   
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8. EXPERIMENTS 
This section will present and analyze the experimental setup and the results. First, the experimental 

strategy is described. Then, the preliminary experiments will be presented during which several 

parameters were tested. Based on this, a fine-tuned vanilla and a fine-tuned recurrent agent have been 

built. This agent has been trained and tested under different penetration rates. These tests will also be 

analyzed in this chapter.  

8.1 Methodology and expected results 

8.1.1 Preliminary experiments methodology 
As mentioned in sections 6.3.1 on states, 6.3.3 on rewards, 6.3.4 on the reinforcement agent and 7.5 on 

model hyperparameters, not all model settings and parameters could be determined a priori, since it is 

often unclear which settings would perform better. Due to this, several preliminary experiments will be 

conducted which are used to build a fine-tuned controller.  

In preliminary experiments, a base model will be used with the currently best-performing settings. Within 

the base model, a single setting or parameter will be changed at a time (using 2 or 3 different values) to 

find the best performing one. Each model must be trained and then evaluated. Using the experiments, 

the agent’s performance will hopefully iteratively improve until a good agent is found. The following 

preliminary experiments will be conducted: 

• State representation – floating-point density vs binary vehicle position. See section 6.3.1.  

• State representation – one-hot encoded phase vs +/- encoded phase. See section 6.3.1.  

• Reward representation – cumulative delay vs cumulative waiting time vs queue length. See 

section 6.3.3. 

• Convolutional network architecture – small or large network. See section 6.3.4.1. 

• Number of episodes – 500, 600, 700 episodes.  

• Number of epochs – 300, 400, 500 epochs. 

• Combinations of episodes and epochs – more episodes/fewer epochs vs fewer episodes/more 

epochs 

• Freeze interval – 4000, 6000, 8000, 10000, 12000, 14000 steps (4, 6, 8, 10, 12, 14 episodes resp.) 

• Memory size – 30,000, 40,000, 50,000, 60,000, 70,000, 80,000 memory size 

• Trajectory length (for DRQN only) – 9, 12, 15, 18, 21, 24 samples per trajectory 

The evaluation takes place by investigating how the cumulative reward or the cumulative KPI per episode 

changes during the training process. For the first experiments, only the cumulative reward per episode 

was tracked. Since different scenarios lead to different magnitudes of rewards, the rewards must be split 

into the different scenario types and analyzed separately (see e.g. in Figure 25).  

Investigating the cumulative reward plots allows us to evaluate the agents’ performance and training 

stability. In the beginning, the agent only chooses random actions, so the performance may be unstable. 

With increasing ε-values, the fraction of random actions decreases, while the fraction of greedy actions 

increases. This means that in later episodes increasingly more actions are being chosen based on the 

learned policies. For a well-performing agent, the graphs are expected to show an upwards trend towards 

a less negative reward. This would imply that a better policy than a random policy was learned. A well-

performing agent should also not show unstable behavior towards the end of the plot. Instability towards 
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the end can point to underfitting (e.g. due to not having been trained enough) or overfitting (e.g. getting 

stuck in local optima), which may lead to unsatisfactory results. 

The problem when only looking at the gained reward during training episodes is that a certain fraction of 

actions (ε) is chosen randomly rather than greedily. Especially in the first half of the episodes, a majority 

of the actions is chosen randomly. This makes it more difficult to analyze how a model converges and how 

stable it is, since both factors may be negatively influenced by the random actions. To counter this 

problem, in later experiments testing episodes were performed after every 10 training episodes. During 

these testing episodes, each of the 4 scenarios is run using only greedy actions. Greedy actions are chosen 

based on the most recent version of the neural network which is being trained. When looking only at the 

greedy testing episodes, it is easier to analyze the algorithm’s stability and performance over time. The 

drawback is that 4 additional testing episodes have to be run after every 10 training episodes, which will 

significantly increase the training time. Due to this, greedy episodes have only been run for part of the 

experiments.  

For each of the tested (hyper-)parameters, the best-performing model will be selected. Once all 

preliminary experiments have been evaluated, a fine-tuned model can be built by combining all the best-

performing settings. Note that individual settings may be near-optimal for the agent used during the 

preliminary experiment, yet there is no guarantee that settings are still near-optimal after being combined 

into a fine-tuned agent. This issue is left for future research.   

8.1.2 Penetration rate methodology 
The fine-tuned agents from the preliminary experiments will be used for the penetration rate 

experiments. Both a DQN and a DRQN agent will be built. The agents will be trained under CV-penetration 

rates of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100%. Again, the cumulative reward plots 

from training can be used to evaluate the agents’ training stability. 

To evaluate the actual performance, the agents will be tested according to the procedure described in 

section 7.4. Based on the gathered KPI, the performance of the models can be compared for the different 

model types and penetration rates.  

Figure 25 Example plots of the cumulative reward per episode over the full training period. The left figure plots the absolute 
reward values per episode. It can be seen that the reward jumps up and down a lot, due to the different number of vehicles in 
the episodes. The right figure plots the absolute cumulative reward per scenario type. Developments per scenario can be 
evaluated. 
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8.1.3 Hypotheses for expected results 
For our experiments, we expect the following results: 

(1) Increases in penetration rates lead to increases in agent stability. Since agents trained under lower 

CV-penetration rates can observe less of the state than agents trained under higher penetration rates, 

likely these agents will not be able to map states well to Q-values. Especially agents trained under low 

penetration rates can only see a very limited amount of cars. The agent may be able to learn good 

policies in some of the scenario runs, but likely not as well as the higher penetration rate agents. Thus, 

more divergence for the KPIs in these agents is expected. 

(2) Increases in penetration rates lead to increases in agent performance. For the same reason, it is 

expected that on average the agents trained under higher penetration rates will achieve lower delays, 

waiting times and queue lengths.  

(3) Connected vehicles have lower delays and waiting times than regular vehicles. When agents observe 

the state, they can only see connected vehicles. Because of this, it is expected that the agents will 

create strategies targeted at connected vehicles. Since agents cannot see regular vehicles, it is more 

difficult for agents to develop good strategies for them. 

(4) Increases in penetration rates lead to decreasing differences in delays and waiting times between 

CVs and RVs. Higher CV-penetration rates mean that more CVs are seen by the agent. In low 

penetration rates, the agent can react to individual CVs. In higher penetration rates however, the agent 

will see more CVs at the same time and must decide which CVs to prioritize. Ultimately, this means 

that increasing CV-rates lead to higher average delays and waiting times for CVs. 

(5) Increases in the number of cars in a traffic scenario lead to decreasing differences in delays and 

waiting times between CVs and RVs. In the low traffic scenario, very few vehicles are generated, so 

vehicles generally arrive one at a time. Since the agent can only observe connected vehicles, it would 

be expected that the agent will directly switch to a green phase for an arriving connected vehicle, thus 

leading to low delays. Regular vehicles however would not be observed, so they would have to wait 

until a connected vehicle joins them to be recognized. In high traffic scenarios on the other hand, many 

vehicles arrive at the same time. The agent will no longer be able to distinguish or react to individual 

vehicles but will respond to groups of vehicles as a whole. This makes it more likely that CVs and RVs 

arrive around the same time and wait in the same queue. The agent can now react to the CVs in the 

queue, and the RVs in the queue can pass at the same time. Ultimately, regular vehicles will have 

similar delays and waiting times as connected vehicles in the high traffic scenario.  

(6) Good performance in one scenario is correlated with good performance in another scenario. The 

goal of controllers is to be able to reduce congestion in different traffic scenarios. Due to how deep Q-

learning functions, the agent tries to optimize policies for all scenarios simultaneously. This makes it 

unlikely that the agent will learn good policies in one scenario, while sacrificing performance in the 

other scenarios.  

(7) Reinforcement learning agents can outperform fixed-time controllers. 

(8) Recurrent DQN agents are more stable than vanilla DQN agents. Since DRQN agents not only see the 

current state, but also have access to past states, it is expected that these agents will be more stable 

than DQN agents.  

(9) Recurrent DQN agents perform better than vanilla DQN agents. For the same reason, it is expected 

that recurrent agents will lead to lower delays, waiting times and queue lengths than vanilla agents.  
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8.2 Preliminary parameter test results 
This section describes the results of the preliminary experiments per experiment. Finally, combining all 

the preliminary experimental results, a fine-tuned agent can be built.  

8.2.1 State representation - floating-point density vs binary vehicle position 
As described in section 6.3.1, the vehicle position inside each cell in the first layer of the DTSE can either 

be expressed binary (i.e. 1 if a vehicle is present in the cell, 0 if no vehicle is present in the cell) or as a 

floating-point number in terms of vehicle density (i.e. number of vehicles in cell divided by potential 

maximum number of vehicles in cell). The binary representation means that there are less possible states, 

while the floating-point representation means that there is less information loss when translating the real 

world into a DTSE. It is unclear which representation would be more stable and which would perform 

better. To investigate which representation to pick, both representations were tested on the base agent 

presented in Table 7 (see Appendix A.1).  

The results are shown in Figure 26. The left figure shows the training reward for the Boolean state 

representation agent. It can be seen that in all four scenarios the performance towards the end of training 

(i.e. when mostly greedy actions are chosen) is worse than at the beginning of training (when mostly 

random actions are chosen). This means that this agent’s learned strategy is worse than a random 

strategy. The right figure shows the training reward for the agent with a density representation. The final 

performance of the agent is still worse than picking random actions, except for the high traffic scenario. 

In the high traffic scenario, the learning curve went upwards, thus showing that the agent is learning 

better-than-random policies. However, the cumulative negative reward for the other three scenarios is 

less than half the reward for the same scenarios in the Boolean representation agent, meaning while the 

policy is still bad, it is much better than the Boolean agent.  

From the experiments, it can be concluded that the Boolean representation is unsuitable. Likely too much 

information is lost when translating the real world into binary cell occupancy, making the agent unable to 

distinguish different traffic situations from each other. Thus, for all succeeding agents, only the density 

representation will be used.  

Nevertheless, the density agent’s performance is unsatisfactory in performance, as well as unstable 

(which can be seen in the jumps in the learning curve). Possible explanations for this are underfitting (e.g. 

Figure 26 Cumulative negative reward per episode during training. Left figure: agent with Boolean state representation. Right 
figure: agent with floating point density state representation. 
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due to too low number of training episodes or epochs), an unsuitable reward function or other untuned 

parameters. 

8.2.2 State representation - one-hot encoded phase vs +/- encoded phase 
Section 6.3.1. discussed two possible ways to encode the current green phase in the model. The first 

option is to one-hot encode the green phase and use it as an additional (4x1) neural network input. The 

second option is to encode the current phase in the DTSE: cells in lanes that currently have a green phase 

will have a positive-valued cell entry, while cells in lanes that have a red phase will have a negative-valued 

cell entry. To investigate which option leads to better results, the agent was tested on the base agents 

presented in Table 8 and Table 9 (see Appendix A.2). 

The experiments with the first base agent are inconclusive. While the +/- encoded agent seems to perform 

slightly better (in the medium and dynamic traffic scenarios) and to be slightly more stable (especially in 

the high and medium scenarios), both agents are too unstable to draw any definite conclusions.  

Figure 27 shows the training rewards for the experiments with the second base agent. In both cases, the 

agent initially learns how to control the high traffic scenario. However, in the one-hot encoded agent, 

control of the high traffic scenario ends up unstable, while it remains much more stable in the +/- encoded 

agent. The performance and stability in the low, medium and dynamic scenarios are relatively 

comparable, but with a slightly better reward for the +/- encoded agent.  

Overall, both experiments point to the +/- encoded agent leading to slightly more stable performance and 

improved results compared to the one-hot encoded agent. This encoding method will be used for future 

experiments.  

8.2.3 Convolutional network architecture  
Within literature, different architectures to extract information from images (here: the DTSE) were found. 

In this section, two layouts will be tested (for full details, see Table 10, Appendix A.3): 

(1) Small network: 2 convolutional layers (filter sizes: 8, 4; kernel sizes: 2, 2; stride: 2, 1) 

(2) Large network: 3 convolutional layers (filter sizes: 16, 32, 64; kernel sizes: 2, 2, 1; stride: 2, 2, 1) 

The results are shown in Figure 28. Both networks are converging after around 100 episodes, yet it can be 

seen that the smaller network is more stable and leads to a lower reward. Based on this result, the smaller 

Figure 27 Cumulative negative reward per episode during training. Left figure: one-hot encoded phase. Right figure: +/- encoded 
phase. 
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network is preferred. Nevertheless, it may be possible that the larger network may perform better when 

trained with different settings, but this is left for future research.  

Figure 28 Cumulative negative reward per greedy episode during training. Left figure: smaller network. Right figure: larger 
network. 

8.2.4 Reward representation 
Section 6.3.3 described eight different reward functions which could be investigated: the absolute value 

of or the change in cumulative delay, cumulative waiting time, total queue length or 50/50 weighted 

cumulative delay and waiting time. In this preliminary experiment, it is investigated which reward leads 

to better results. Experiments are conducted with the settings described in Table 11, appendix A.4.  

Figure 29 shows the cumulative delay per episode for the greedy testing episodes during training. Only 

the high traffic scenario is shown here. The other scenarios show similar behavior and can be seen in 

appendix A.4. The plots for the waiting time, queue length and reward show the same trends and have 

been excluded.  

The results in all four scenarios show that the agents using the absolute waiting time, absolute delay, 

change in delay and the absolute weighted delay/waiting time are not converging, which means that no 

suitable policy is being learned. These agents are unstable and remain poor in performance. Four reward 

functions lead to converging results: change in waiting time, the change in queue length, absolute queue 

length and the change in weighted delay and waiting time. Agent’s using these reward functions are able 

to learn much-better-than-random policies.  

Overall, it seems that agents using the absolute-valued reward functions do not converge (except for the 

queue length) and that agents using a change in KPI are converging well (except for the delay). Why this 

is the case is unclear. A possible explanation for this may however be that using a value of change 

immediately shows the agent whether an action improves the current traffic situation (leading to a 

positive-valued reward) or worsens the situation (leading to a negative-valued reward). An agent that only 

uses absolute values has to learn this by itself. Nevertheless, this does not explain why this does not hold 

for the change in delay or the absolute queue length.  

Furthermore, it can be noted that using a weighted reward function (here a 50/50 weighted reward 

consisting of delay and waiting time) does not result in an agent whose performance is halfway between 

agents using only delay or only waiting time as reward. Surprisingly, the agent using the change in delay 
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performs poorly, while the agent which uses the weighted delay and waiting time performs very well. This 

shows that even a reward which leads to bad results by itself can lead to acceptable performance when 

used in a weighted function. Yet, how the different sub-rewards interact within a weighted reward is 

difficult to predict. Further research that tests more weighted reward functions will be needed.  

To determine which of the four converging reward functions should be chosen, the plot on the left of 

Figure 29 is zoomed in on only the best-performing agents (see right figure). In this zoomed-in view it can 

be seen that in all 4 scenarios the change in waiting time leads to the most stable agent and the lowest 

cumulative delay. The agent using this reward converges after approximately 140 episodes and after that 

remains very stable. The other three agents which lead to convergence (using the rewards change in 

queue length, absolute queue length and the change in weighted delay and waiting time) lead to less 

stable results and a higher final delay time. Based on this result, the change in cumulative waiting time is 

used as a reward in the fine-tuned agent.  

8.2.5 Numbers of epochs and episodes 
An agent must be trained on several episodes for a certain number of epochs. However, it is difficult to 

determine how many episodes and epochs are needed a priori, since the number of training instances will 

depend on other model choices, e.g. the state representation, reward, memory size, network 

architecture. In the experiments, different combinations of values for epochs and episodes were tested.  

First, it was tested how epochs and episodes are related. Figure 30 shows agents with the same settings 

(see Table 12 in Appendix A.5) trained for different number of episodes and epochs: (1) 504 episodes, 

1000 epochs (2) 250 episodes, 2000 epochs (3) 1000 episodes, 500 epochs. These values lead to each 

agent being trained for approximately the same amount of training batches5 (≈ 500,000). The batch size 

in this experiment is 100, meaning the three agents being trained on ≈50,000,000 samples. The results of 

this experiment show that agents trained on fewer episodes, but more epochs lead to less stability and 

lower performance than agents trained on more episodes but fewer epochs.  

 
5 504 episodes * 1000 epochs ≈ 250 episodes * 2000 epochs ≈ 1000 episodes * 500 epochs ≈ 500,000 training 
batches 

Figure 29 Impact of different reward functions: cumulative delay per episode during training using only greedy policies in the 
high traffic scenario. Left: overview over all reward functions. Right: zoomed in view over the best-performing reward functions 
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A possible explanation for this would be that the agent with more episodes and fewer epochs sees more 

variety in training samples. This can be demonstrated with some example calculations. The three agents 

each have a batch size of 100 and a memory size of 50,000. On average, 675 samples are added to the 

memory each training episode (see section 7.3 for the calculation), so a sample will be deleted from 

memory after around 746 episodes. An agent trained for 1000 episodes and 500 epochs will see 500 

(epochs) * 100 (batch size) = 50,000 samples per episode. In other words, each sample from the memory 

is seen on average once per episode (assuming a full memory), or 74 times until it is deleted from the 

memory. An agent trained for 250 episodes and 2000 epochs will see 2000 (epochs) * 100 (batch size) = 

200,000 samples per episode, or on average each sample 4 times per episode. In total every sample will 

be seen around 296 times until deletion. This may be problematic since agents need data to learn new 

experiences. If one sample is seen for too many times, it can lead to severe overfitting in the model, as 

seems to be the case for the agent trained for 250 episodes. Training an agent on more episodes but less 

often on the same samples should be able to combat overfitting. 

Nevertheless, note that the agent with the highest amount of episodes and the lowest number of epochs 

(1000 episodes, 500 epochs) still shows some instability. This can either be caused by untuned other 

settings, or it may nonetheless point to over- or underfitting. The problem with Figure 30 is that only the 

reward during training is tracked. This means that the agent partially does random actions, and partially 

greedy actions. This makes it more difficult to analyze the agent’s convergence behavior and thus to 

determine whether the agent is overtrained or undertrained. To solve this, the next experiments ran a 

greedy episode for each scenario after every 10 training episodes (see section 8.1.1).  

 
6 50,000 (memory size) / 675 (new samples per episode) ≈ 74 episodes 

Figure 30 Cumulative negative reward per episode during training. Top: 504 episodes, 1000 epochs. 
Bottom left: 250 episodes, 2000 epochs. Bottom right: 1000 episodes, 500 epochs 
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In the second test, combinations of different numbers of episodes (700, 600, 500) and epochs (500, 400, 

300) have been tested using the mentioned greedy tests. The settings for this base agent are shown in 

Appendix A.5, Table 13. Due to space limitations, only the two extreme cases (700 episodes/500 epochs 

and 500 episodes/300 epochs) are shown in Figure 31. The rest of the experiments can be seen in Figure 

54, appendix A.5.  

When looking at the results, agents which were trained on fewer epochs (300 epochs) were more stable 

than agents trained on more epochs (500 epochs). This is in line with the result from the previous 

experiment (see Figure 30). This indicates that training an agent too often with the same experience 

samples can lead to overfitting and thus instability. Based on this result, agents trained with a lower 

number of epochs are preferred. Indeed, in our experiments all agents trained with 300 epochs 

converged, so 300 epochs will be used in future experiments.  

When looking at the plots of agents trained with 300 epochs, the major performance improvements 

happen in the first 150 to 200 episodes (see e.g. on the right side of Figure 31). After these first episodes, 

the agent has converged to relatively stable performance. Nevertheless, slight performance 

improvements are still being made. As a trade-off between performance and time needed to train the 

model, 400 episodes are chosen for future experiments.  

8.2.6 Target network freeze interval 
Section 7.5 discussed the target network freeze interval. The purpose of freezing the target network is to 

stabilize training, yet in order to do this, an appropriate freeze interval must be set. In this section, 

different freeze intervals are tested on the base agent presented in Table 14, appendix A.6. Freeze 

intervals here are specified in terms of training steps. Since the epoch size is 300, a freeze interval of 300 

corresponds to freezing the network for 1 full episode. In this test, freeze intervals of 4,000 steps (13.3 

episodes), 6,000 steps (20 episodes), 8,0000 steps (26.7 episodes), 10,0000 steps (33.3 episodes), 12,0000 

steps (40 episodes), 14,0000 steps (46.7 episodes) and 16,000 steps (53.3 episodes) are being tested.  

The results for the greedy episodes in the high traffic scenario are displayed in Figure 32. Results for the 

other scenarios again show similar patterns and can be seen in Figure 55, appendix A.6.  

From the plots it can be seen that increasing the freeze interval leads to higher performance and more 

stability. Agents with low freeze intervals (4,000 steps/13.3 episodes and 6,000 steps/20 episodes) lead 

Figure 31 Cumulative negative reward per episode in the greedy episodes during training. Left: 700 episodes, 500 epochs. Right: 
500 episodes, 300 epochs. 
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to especially unstable agents with large jumps in performance and overall lower rewards. It seems that in 

these agents, the target network is updated too often, so the moving target problem persists. With 

increasing freeze intervals, stability and overall performance increases, thus indicating that the moving 

target problem is avoided. Nevertheless, it can also be seen that the highest freeze interval does not lead 

to the best performing agent. Possible explanations can be that the target network updates are too 

infrequent so the agent may need more training time, or the system starts to move in the wrong direction 

during updates. 

The best performing agent is the agent with a relatively high freeze interval of 14,000 steps. This means 

the target network is updated every 46.7 episodes or around 8.5 times7 in total.  

 

Figure 32 Cumulative reward per greedy episode for the high traffic scenario. The overall best performing agent from all 
scenarios is highlighted.  

8.2.7 Memory size 
In section 7.5 the role of the memory size was discussed. In this experiment, agents trained with memory 

sizes of 30,000, 40,000, 50,000, 60,000, 70,0000 and 80,000 samples are investigated (see Table 15, 

Appendix A.7 for details).  

Figure 33 shows the resulting cumulative rewards per greedy episode for the high traffic scenario. The 

plots for the other scenarios show similar trends and can be found in Figure 56, appendix A.7.  

Overall, the results for the different memory sizes are relatively similar. Yet, it seems that lower memory 

sizes (30,000 and 40,000) lead to slightly less stable agents. In Figure 33 for example it can be seen that 

the agent with a memory size of 30,000 finds a good policy at around 110 episodes, but then it forgets it 

again. For higher memory sizes, some agents reach a high performance and good level of stability (e.g. 

 
7 400 (episodes) / 46.6 (episodes between updates) = 8.5 (updated in total) 
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the 50,000 agent), while other agents remain worse in performance and stability (e.g. the 60,000 agent). 

Nevertheless, it was found that none of the highest memory sizes led to the best-performing agents. 

From the experiments it can be concluded that a too low memory size can lead to catastrophic forgetting 

and instability. A possible reason for this is that in order to lead to stable results, the agent must have 

access to enough different experiences. If the memory gets replaced too often, it is likelier that stored 

experiences are too similar, which can impede learning.  

For bigger memory sizes, no clear conclusions can be drawn. Nevertheless, when deciding on an 

appropriate memory size it is desirable to have fewer samples in memory since this reduces the memory 

size required by the algorithm. Additionally, if the memory size gets too large there may be a risk of 

training the agent on no longer relevant experiences, which may slow down training. Thus, it is advised to 

pick the lowest memory size which leads to acceptable performance levels and stability.  

For the tested agents, a memory size of 50,000 leads to the overall best stability and performance in all 

scenarios. Thus, a memory size of 50,000 will be used for the fine-tuned agent. 

8.2.8 Trajectory sequence length (only for DRQN) 
Section 7.5 discussed the impact of the trajectory sequence length. In this preliminary experiment, 

difference sequence lengths are tested: 9, 12, 15, 18, 21, and 24 samples per trajectory. Since sequence 

lengths should work well for both 100% CV-penetration and less than 100% CV-penetration, the 

experiments are carried out using both 100%- and 50%-CV-penetration agents. For more details on the 

agents, refer to Table 16, appendix A.8.  

Figure 34 shows the results for the medium traffic scenario. The plots for the other scenarios can be seen 

in Figure 57, appendix A.8. From the plots it can be seen that when a too short trajectory length is used, 

Figure 33 Cumulative reward per greedy episode for the high traffic scenario. The overall best performing agent from all 
scenarios is highlighted. 
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results are less stable and may take longer to converge. This is particularly the case for the agent trained 

on a 50% CV-penetration rate. In Figure 34 for example, the left-hand side shows that agents with 

trajectory lengths of 9 or 15 samples converge less quickly and perform less well than the agents trained 

with higher trajectory lengths. For agents trained on longer trajectories, agent stability and final 

performance are similar. Furthermore, the difference between agents is more pronounced for the 50% 

CV-penetration agent than for the 100% CV-penetration agent. 

From these results it can be concluded that when an agent is trained on longer trajectories, the 

performance and stability of the agent improves. This result is intuitive since longer trajectories mean that 

the agent has access to a longer history which means that the hidden state will be more accurate. 

Particularly for agents which are trained under a CV-penetration rate less than 100%, having an accurate 

hidden state is important since the agent cannot observe the full state, which means the agent has to rely 

more on the past observations.  

Nevertheless, the plots also show that the longest trajectory length (here 24 samples) does not necessarily 

lead to the best performance. Dependent on the scenario and the CV-penetration rate, the best-

performing agents use trajectory lengths between 18 and 24 samples. It may be possible that after a 

certain point adding more samples to trajectories does not make the hidden state significantly more 

accurate, or it may be possible that the i.i.d. assumption gets overly violated. Additionally, adding more 

samples to a trajectory increases the training time, which is undesirable if it does not increase in 

performance improvements.  

Due to this, the agent with the best trade-off of training time and stability and performance is chosen. In 

this case, the agent with a trajectory length of 18 will be used in the fine-tuned agent. 

8.2.9 Fine-tuned agent 
After having conducted all the preliminary experiments, the best performing parameters are combined 

into a fine-tuned agent. For the final experiments, a DQN and a DRQN agent will be built. Both of them 

will be trained under penetration rates between 10% and 100%. The final fine-tuned agent settings are 

presented in Table 6.  

Figure 34 Cumulative reward per greedy episode for the medium traffic scenario. The agent with the best trade-off between 
performance and training time from all scenarios is highlighted. Left figure: CV-penetration rate of 100%. Right figure: CV-

penetration rate of 50%. 
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Table 6 Model settings and parameters of the fine-tuned agent 

Model setting or (Hyper-)parameter Value 

Training episodes 400 

Training epochs 300 

Minibatch size 100 

Target network freeze interval [steps] 14,000 

Replay memory size 50,000 

Trajectory length (only for DRQN) 18 

Discount factor 0.99 

Learning rate 0.001 

Penetration rates 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 
0.8, 0.9, 1 

Network architecture Convolution:  
Filters: 4, 8 
Kernel: 2, 2 
Stride: 2, 1 
Vehicle position: Density (float) 
Phase: +/- encoded 

Reward Change in cumulative waiting 
time 

Recurrence No / Yes (sequence length: 18) 

 

Figure 35 Cumulative negative reward per greedy episode during training of the fine-tuned agent. Top left: Vanilla DQN trained 
under 100% CV-penetration. Top right: Recurrent DQN trained under 100% CV-penetration. Bottom left: Vanilla DQN trained 

under 10% CV-penetration. Bottom right: Recurrent DQN trained under 10% CV-penetration 
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Figure 35 shows the cumulative negative reward per greedy episode for the fine-tuned agents for the 

vanilla DQN agent (left) and the recurrent DQN agent (right). Due to space limitations, only the two 

extreme penetration rates are shown here: the 100% CV-penetration agent is shown on the left, the 10% 

agent on the right. For the agents trained under different penetration rates, refer to Appendix A.9.  

When looking at the plots, it can be seen that in all 20 agents better-than-random policies have been 

learned. Furthermore, it can be noted that the vanilla agents are less stable and gain lower rewards than 

the recurrent agents. This is intuitive, since recurrent agents have access to a hidden state which provides 

them with more information to decide on the next action. This first impression will be further evaluated 

in chapter 8.3.1.  

8.3 Penetration rate test results 
In this section, the results of testing the fine-tuned agent are presented and discussed. Each agent has 

been tested on 50 unique runs. First the agent stability is analyzed and then the traffic scenarios will be 

analyzed separately. Next, the performance of the vanilla and recurrent agents is compared. Lastly, the 

robustness of both agents is evaluated. 

8.3.1 Analysis of agent stability 
When plotting the KPIs for a single scenario and penetration rate, results like in Figure 36 were seen. Since 

scenarios are generated stochastically, the trained agents will perform slightly differently for each of the 

runs. To analyze how stable the trained agents are, the median 5-95 percentile range is chosen. It 

measures the difference between the 5% and the 95% percentile (i.e. the spread of the blue area in Figure 

Figure 36 Examples of diverging KPIs in test runs. The black line shows the average values and the blue area shows the 5% to 
95% percentiles. All example figures show the cumulative queue length in the dynamic traffic scenario. Top left: vanilla agent 
under 100% CV-penetration. Top right: vanilla agent under 10% CV-penetration. Bottom left: recurrent agent under 100% CV-

penetration. Bottom right: recurrent agent under 10% CV-penetration. 
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36). Figure 37 shows the stability measured in terms of the queue length for both agent types in all 4 

scenarios. For the results of the other KPI, refer to Appendix B.1.  

In the figures it can be seen that the recurrent agent has a lower range for all scenarios and penetration 

rates than the vanilla agent. This means that the recurrent agent is more stable than the vanilla agent, 

thus supporting hypothesis 8 (see section 8.1.3).  

Furthermore, for the recurrent agent it can be observed that the stability increases with higher 

penetration rates (except for the 70% agent), which supports hypothesis 1. This result is expected, since 

agents with higher penetration rates know more about the state than agents trained on lower penetration 

rates, thus they can make better decisions. For the vanilla agent however, higher penetration rates do not 

necessarily lead to higher stability. See for example the 10% in the medium traffic scenario. This agent has 

the lowest range, despite being trained under the lowest penetration rate. Why the vanilla agent is stable 

for some penetration rates but unstable for others is unclear. It may be possible that in the less stable 

cases the algorithm got stuck in local optima. 

8.3.2 Analysis of results per traffic scenario 
Analyzing scenario runs separately per KPI, model type and scenario is difficult due to the high number of 

generated plots. Instead of looking at single plots, it is more useful to combine several runs into a single 

plot, since this facilitates easier comparisons. In these comparisons, the distribution of the KPI values (i.e. 

the blue areas in plots such as Figure 36) is excluded, since the values diverge too much to be able to plot 

them or to be able to provide useful results. Instead, every single run will be quantified using the median 

over the 50 runs. It was chosen to use medians rather than averages since a few single runs had large 

unexplained outliers which unfairly skewed the average.  

The next section will compare the results per scenario. 

8.3.2.1 Low traffic scenario 

Figure 38 shows the median cumulative delays per simulation step for agents trained under all penetration 

rates for the low traffic scenario. Figure 39 shows the average vehicle delay per episode broken down into 

Figure 37 Stability of the trained agents. Both figures plot the Interdecile range of the median queue length. Left: Vanilla agent. 
Right: Recurrent agent. 
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the delay for connected vehicles and delay for regular vehicles8. In both figures, the left side shows the 

results for the vanilla agent, and the right side the results for the recurrent agent. Figure 40 compares the 

average vehicle delay between the vanilla and the recurrent model. Since in all cases the plots for the 

delays, waiting times and queue lengths showed similar trends, only the plots of the delays have been 

included in the main text (refer to Appendix B.1 for the plots of the other KPI). 

In Figure 38 it can be seen that for both the vanilla and recurrent agents, the delays, waiting times and 

queue lengths are relatively constant over the full episode (when ignoring the noise of the quick up and 

down jumps). When looking at the queue lengths, queues for agents with higher penetration rates remain 

around or under 1 queuing vehicle, while for the lowest penetration rate the queues remain generally 

between 4 to 7 vehicles long. For all agents this means that all vehicles can pass the intersection at some 

point, and that no vehicles have to wait infinitely long.  

Both the vanilla and the recurrent agent show that the higher the penetration rate is, the lower the delays, 

waiting times and queue lengths are. This trend is especially visible in the recurrent agent: for all increases 

 
8 For plotting purposes, only the averages of the run medians have been used.  

Figure 38 Median cumulative delay in the low traffic scenario for all penetration rates. Left figure: Vanilla DQN agent. Right 
figure: Recurrent DQN agent. 

Figure 39 Average median cumulative delay for all vehicles, for connected vehicles and for regular vehicles in the low traffic 
scenario Left figure: Vanilla DQN agent. Right figure: Recurrent DQN agent. 
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in penetration rates, the performance of the model improves (the only exception being the 70%-agent). 

For the vanilla agent, the trend can also be seen, albeit not as clearly as for the recurrent agent since 

agents trained under penetration rates of 30%, 60%, 80% and 100% do not improve the agent’s 

performance. Nevertheless, in both models an overall downwards trend can be seen, which supports 

hypothesis 2 (see section 8.1.3). 

Section 8.1.3 further hypothesized that for the low traffic scenario, CVs will have much lower delays than 

RVs (hypothesis 3), but it is also expected that this difference will get smaller with increasing CV rates 

(hypothesis 4). When looking at Figure 39, it can be seen that as expected in hypothesis 3, the delay for 

connected vehicles is lower than for regular vehicles. For both model types it can be seen that when the 

penetration rate is increased, the difference between connected and regular vehicles decreases. For 

agents trained under a penetration rate of 10%, the delay for connected vehicles is around 0 seconds for 

both model types, while the delay for unconnected vehicles is around 205 seconds. When looking at the 

agents trained under 90% CV-penetration, the difference between connected and unconnected vehicles 

is very small. These results can be explained as follows: in the low traffic scenario, cars are arriving one-

by-one, which means that the controller has to react to every arriving car individually. The controller can 

however only see the connected vehicles. In high penetration rates this means the controller can switch 

the traffic signal to a green phase for the majority of the arriving vehicles. But for a low penetration rate, 

if an unconnected vehicle arrives, the controller cannot observe and react to it. Instead, the vehicle will 

have to wait until either a connected vehicle arrives on the same leg (which may take long, since there 

are only very few connected vehicles) or it will have to be lucky that the controller switches to a green 

phase despite not seeing the vehicle.  

Lastly, Figure 40 shows that for most penetration rates the recurrent model performs better than the 

vanilla agent. The vanilla agent’s performance improvements with higher penetration rates are much 

slower and less stable than those of the recurrent agent. For the vanilla agent, a penetration rate of 70% 

or higher is required to reach a better performance than the fixed time controller (with 100% being an 

outlier). For the recurrent agent, a penetration rate as low as 40% is sufficient to perform better than the 

fixed time controller (with 70% being an outlier). From these results we can conclude that reinforcement 

learning models can outperform fixed-time controllers in the low traffic scenario for sufficiently high CV-

penetration rates, supporting hypothesis 7. Furthermore, it is concluded that recurrent agents generally 

perform better and reach these performance improvements faster, which supports hypothesis 9.  

Figure 40 Comparison between the vanilla and recurrent agents: average median cumulative delay in the low traffic scenario.  
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8.3.2.2 Medium traffic scenario 

The results for the medium traffic scenario are shown in Figure 41, Figure 42 and Figure 43. For full details, 

refer to Appendix B.2.  

Like for the low traffic scenario, the delays, waiting times and queue lengths in the medium traffic scenario 

remain relatively stable over the full episode (when ignoring the jumps), which means that the agent has 

learned a strategy that allows all vehicles to pass the intersection. Only for the vanilla agent trained under 

a 10% penetration this is not the case: for this agent, all three KPI are continuously decreasing, which 

points towards a few vehicles being “stuck” at the intersection. This can happen if one of the lanes never 

receives a green signal, so vehicles can never pass.  

Looking at figures Figure 41 and Figure 43, it can be seen that for the recurrent agent, the median delay 

is decreasing for every increase in CV-penetration. The major performance improvements for the 

recurrent agent are made between 20%-30% CV-penetration; after this the performance improvement 

rate is lower but constant. For the vanilla agent however, no such trend can be observed. Agents trained 

under penetration rates of 10%, 40%, 50%, 70% and 80% perform relatively well (although still worse than 

any of the recurrent agents), while agent trained under penetration rates of 20%, 30%, 60%, 90% and 

100% perform very bad. This is unexpected since the two best performing agents are trained under low 

Figure 41 Median cumulative delay in the medium traffic scenario for all penetration rates. Left figure: Vanilla DQN agent. Right 
figure: Recurrent DQN agent. 

Figure 42 Average median cumulative delay for all vehicles, for connected vehicles and for regular vehicles in the medium traffic 
scenario Left figure: Vanilla DQN agent. Right figure: Recurrent DQN agent. 
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penetration rates (10%, 40%), while two of the bad performing agents are trained under high penetration 

rates (90%, 100%). One possible reason for this may be that some agents “sacrificed” performance in the 

medium traffic scenario for better performance in other scenarios. Based on these results it can be 

concluded that hypothesis 2 is confirmed for the recurrent agent but rejected for the vanilla agent.  

When comparing the differences in delays between connected and regular vehicles (see Figure 42), similar 

conclusions like for the low traffic scenario can be drawn: CVs have lower delays than RVs, and this 

difference generally gets smaller with increasing penetration rates. Hypotheses 3 and 4 are thus 

confirmed for the medium traffic scenario. 

Furthermore, both models can be compared to the fixed-time controller. It can be seen that the recurrent 

agent significantly outperforms the fixed-time controller, even for penetration rates as low as 10%. This 

means that even under super low penetration rates DRQN agents can find traffic signal control policies 

which significantly reduce congestion compared to fixed-time controllers. This however is not the case for 

the vanilla agent. For this model type, only the agents trained under 10%, 50% and 70% CV-penetration 

can outperform the fixed-time controller. For the other agents, no suitable policies were found.  

 

Figure 43 Comparison between the vanilla and recurrent agents: average median cumulative delay in the medium traffic 
scenario. 

8.3.2.3 High traffic scenario  

The results for the medium traffic scenario are shown in Figure 44, Figure 45 and Figure 46. Again, the 

trends for the queue lengths and waiting times are similar to the trends for the median delays, and as 

such are excluded here (see Appendix B.3 for full results).  

Looking at Figure 44, it can be seen that for the vanilla agents trained under the lowest penetration rates 

(10%-30%), the delays, waiting times and queue lengths increase continuously. For these three agents, 

this likely means that not all vehicles can pass the intersection due to some lanes having an infinite red 

signal. The vanilla agents trained under higher penetration rates and all recurrent agents have learned 

policies in which all agents can pass the intersection.  

When looking at Figure 44 and Figure 46 similar trends as for the medium traffic scenario can be seen. For 

the recurrent agents, the delay is continuously decreasing with higher penetration rates (with the 

exception of the agent trained at 70% CV-penetration). This supports the second hypothesis. The biggest 
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performance improvements are made within the first 30% CV-penetration. For the vanilla agents, 

hypothesis 2 is only true for some of the agents (30%, 40%, 50%, 80%), so it cannot be confirmed. 

Regarding the differences between connected vehicles and regular vehicles, Figure 45 shows that for both 

model types the RV delay is higher than the CV delay, which is in accordance with hypothesis 3. It can also 

be seen that the difference between CV and RV delay gets smaller for higher penetration rates, thus 

supporting hypothesis 4. Furthermore, it can be noted that the difference between CVs and RVs is smaller 

for the high traffic scenario than for the low traffic scenario. This is in particular the case for the low 

penetration rates. Compare for example  and Figure 45. In the low traffic scenario under 10% CV-

penetration, the difference in delay between CVs and RVs is around 205 seconds for both model types. In 

the high traffic scenario, the difference for the 10%-agent is only around 7-12 seconds. This supports 

hypothesis 5: more cars in a scenario lead to a lower difference in delay times between CVs and RVs. It 

seems that indeed the agent no longer reacts to vehicles individually, but rather reacts to groups of 

vehicles. In the high traffic scenario likely enough vehicles are generated that the regular vehicles are 

“surrounded” by connected vehicles, so then they can cross the intersection when the controller reacts 

to the surrounding CVs.  

Lastly, the performance of the vanilla and recurrent agents can be compared. Figure 46 shows that all but 

the 10%-agent of the recurrent agents outperform the fixed-time controller. For the vanilla agent, only 

Figure 44 Median cumulative delay in the high traffic scenario for all penetration rates. Left figure: Vanilla DQN agent. Right 
figure: Recurrent DQN agent. 

Figure 45 Average median cumulative delay for all vehicles, for connected vehicles and for regular vehicles in the high traffic 
scenario Left figure: Vanilla DQN agent. Right figure: Recurrent DQN agent. 
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the agent trained under 80% CV-penetration can (barely) outperform the fixed-time controller. It can be 

concluded that the recurrent DQN agent is able to reduce congestion much better than both the fixed-

time controller and vanilla DQN controller. 

 

Figure 46 Comparison between the vanilla and recurrent agents: average median cumulative delay in the high traffic scenario. 

8.3.2.4 Dynamic traffic scenario 

The results for the dynamic scenario are shown in Figure 47, Figure 48 and Figure 49. For this agent, the 

trends in the plots of the delays and waiting times are different from the trends in the plots of the queue 

lengths. Due to this, both the delay and queue length plots are included here. For full details, refer to 

Appendix B.4. 

Figure 47 shows different behavior than the plots for the other scenarios. When looking at the plots of 

the delays, it can be seen that for many of the agents the delays increase drastically towards the end of 

the scenario. This can be explained when examining the plots of the queue lengths: at the end of the 

scenario, the queue lengths for those agents remain higher than 0, even though no new cars are arriving. 

This means that some vehicles cannot pass the intersection because they have a red light forever. Since 

they cannot pass, the delay and waiting times of these vehicles keep accumulating infinitely, resulting in 

the steep rise in the plots.  

Nevertheless, this behavior does not occur for all agents. It seems that when agents are trained under 

higher penetration rates, this phenomenon is less likely to occur. For the vanilla model, this behavior does 

not occur for agents trained under penetration rates of 70%, 80% and 90%, and for the recurrent model 

this does not occur for agents trained under penetration rates of 50%, 60%, 80%, 90% and 100%. From 

this it can be concluded that DQN and DRQN agents can learn to control dynamic scenarios such that all 

cars can cross the intersection, as long as the penetration rate is sufficiently high.  

When comparing the performance to the fixed-time controller, it can be seen that the recurrent model is 

able to greatly outperform the fixed-time controller in queue lengths, delays and waiting times for all 

penetration rates up until simulation steps 3000-4000. After these time steps, the agents trained under 

penetration rates of 10%, 20%, 30%, 40% and 70% no longer outperform the fixed-time controller, but 

agents trained under 50%, 60%, 80%, 90% and 100% do. This is related to the above-described problem 

that certain vehicles cannot cross the intersection, which leads to ever-increasing delays and never-

shortening queues. Based on this it can be concluded that recurrent agents trained under higher 
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penetration rates are able to control dynamic traffic situations efficiently. For lower penetration rates 

however, recurrent agents can only handle dynamic traffic situations at moments when there are many 

vehicles in the simulation (e.g. at the rush-hour peak, during the decline of rush-hour traffic), but not at 

moments when there are only a few vehicles (e.g. during the off-peak at the end of the scenario). 

Hypothesis 7 is thus supported by the higher penetration agents, but not for the lower penetration agents. 

Figure 49 shows the performance of the agents in terms of the averages of the median cumulative delays 

and the median queue lengths. Representing the performance of the full episode as a single aggregated 

value can be misleading since some of the agents perform well in most of the episode, but bad in the last 

part of the episode. Due to this, care must be taken when interpreting the averaged values, particularly 

when comparing the performance to the fixed-time controller. Nevertheless, Figure 49 can provide useful 

information. It shows that for the recurrent agent, increasing the penetration rate leads to lower delays 

and queue lengths (with the 70% agent being an outlier), thus supporting hypothesis 2.  

For the vanilla agents, the results are less clear. An interesting thing to note for the vanilla agent is that 

the plots for the average median delay and the average median queue lengths (Figure 49) do not correlate 

as well as in the other scenarios. See for example the vanilla agent trained under 70% CV-penetration. 

This agent achieves a low average median delay (comparable to the delay of the 80% agent), but only a 

Figure 47 Median cumulative delay and queue length in the dynamic traffic scenario for all penetration rates. Left figure: Vanilla 
DQN agent. Right figure: Recurrent DQN agent. 
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mediocre average median queue length (much worse than the 80% agent). Overall, the two plots show 

too different trends with too many outliers to be able to support hypothesis 2 for the vanilla agent.  

When comparing the vanilla agents’ performance to the fixed-time controller, Figure 47 shows that only 

the agent trained under 80% CV-penetration can outperform the fixed-time controller in terms of queue 

lengths. With respect to delays, none of the vanilla agents can outperform the fixed-time controller during 

the full episode, although the 80%-agent is able to reach similarly good performance levels on average. It 

performs equally well during the first 2800 simulation steps, much better during simulation steps 2800-

4400 and much worse during simulation steps 4400-5400. Overall, however, the vanilla DQN agents are 

unable to control the dynamic traffic scenario satisfactorily, thus rejecting hypothesis 7.  

Lastly, the difference between connected and regular vehicles can be investigated (see Figure 48). Like for 

Figure 49, looking only at the averaged values can be misleading, since the last third of the simulation 

steps greatly increases the average delays. Due to this, in Figure 48 only averages over the first 2800 

simulation steps. The plots show that indeed CVs have lower delays than RVs, supporting hypothesis 3.  

Furthermore, hypothesis 4 (higher penetration rates lead to a decreasing gap between CV and RV delays) 

can be supported for both model types. For the vanilla model, the difference between CVs and RVs is 

Figure 48 Average median cumulative delay for all vehicles, for connected vehicles and for regular vehicles in the dynamic traffic 
scenario (note: averages only include simulation steps 0 – 2800).  Left figure: Vanilla DQN agent. Right figure: Recurrent DQN 

agent. 

Figure 49 Comparison between the vanilla and recurrent agents: average median cumulative delay and average median queue 
length in the dynamic traffic scenario. 
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initially relatively high, but this difference rapidly gets smaller with increasing penetration rates. For 

penetration rates of 60% and higher, the difference between CVs and RVs has nearly disappeared, 

meaning CVs no longer have any advantages over RVs. For the recurrent agent, the difference between 

CVs and RVs for lower penetration rates is less high than for the vanilla agent. Also, for this agent, at higher 

penetration rates the differences between CVs and RVs are minimal.  

8.3.3 Analysis of results per KPI 
Lastly, we can discuss the results of all agents in every scenario per KPI. Figure 50 shows the results for 

the waiting times and queue lengths.  

For both the vanilla and the recurrent agent, the curves of the four scenarios follow the same shapes. This 

means that good (or bad) performance in one scenario is correlated to good (or bad) performance in 

another scenario. This supports hypothesis 6.  

Furthermore, we can compare the performance across scenarios. For the recurrent agent, in all four 

scenarios increasing penetration rates lead to better performance (with the 70% penetration agent being 

the outlier). For the medium and high traffic scenarios, even CV-penetration rates as low as 10% leads to 

nearly equally good delays as higher penetration rates. For the low and dynamic traffic scenarios, agents 

trained under low penetration rates (10%-30%) performed badly, but agents trained under high 

penetration rates performed very well. From this it can be concluded that recurrent DQN agents are able 

to control traffic signals such that congestion is reduced, even under relatively low CV-penetration rates.  

The same conclusion can however not be drawn for the vanilla agent. Higher penetration rates do not 

necessarily lead to better performance. See for example the medium traffic scenario. The agent trained 

under the lowest penetration rate is one of the best-performing agents, while the agent trained under 

Figure 50 Average median queue length for all penetration rates and scenarios per model types. Left figure: Vanilla agent. Right 
figure: Recurrent agent. 
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the 90% penetration rate is one of the worst-performing agents. Why this is the case is unclear. A possible 

explanation may be that vanilla agents get stuck in local optima, and thus cannot learn optimal policies. 

Overall, the vanilla DQN agent is unable to control traffic signals efficiently.  

8.3.4 Analysis of agent robustness 
In the previous experiments, each of the agents was tested on the same CV-penetration rates as they 

were trained on. However, this requires that the CV-penetration rate is known beforehand and that this 

penetration rate does not change over time. This assumption is unrealistic for real-world applications, 

since at different times of the day different CV-penetration rates may be present.  

To evaluate how robust agents are to changes in penetration rates, it was investigated how agents that 

are trained under a certain penetration rate will perform when tested under a different penetration rate. 

Since testing the robustness of each agent would be too time-consuming, only the agents trained under 

a penetration rate of 50% were tested. This allows us to evaluate how the agents perform in lower as well 

as in higher penetration rates. In the experiments, both agents were tested on all four scenarios and under 

penetration rates between 10% and 100%. The results for the median cumulative delays are presented in 

Figure 51. For the results for the waiting times and queue lengths, refer to Appendix B.3.  

The figure shows that in all four scenarios, the recurrent performs equally well or better when tested on 

penetration rates higher than 50%. For the vanilla agent this is also the case for the low, high and dynamic 

traffic scenarios. This indicates that both agents trained under 50% CV-penetration are robust to increases 

in CV-penetration rates. The only exception to this conclusion is the vanilla agent in the medium traffic 

scenario. Why this is the case is unclear.  

Figure 51 Results of the robustness experiments for all four scenarios. Within the experiments, the vanilla and recurrent agents 
trained under a penetration rate of 50% were tested on penetration rates between 10%-100%. Top left figure: low traffic scenario. 

Top right figure: medium traffic scenario. Bottom left figure: high traffic scenario. Bottom right figure: dynamic traffic scenario. 
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Looking at the results for penetration rates lower than 50%, it can be seen that for both model types 

performance decreases with lower penetration rates. This is expected since the agents can observe fewer 

vehicles and thus have less information to decide on the next action. However, it can also be seen that 

the recurrent agent is more robust to lower penetration rates than the vanilla agent. See the low traffic 

scenario for example: the recurrent agent’s performance remains relatively constant up to a penetration 

rate between 20%-30%. For the vanilla agent however, the performance already significantly worsens for 

a penetration rate of 40%. Similar observations can be made for the medium and dynamic scenarios. 

Based on these results it can be concluded that both the vanilla and the recurrent agent are robust to 

increases in penetration rates during testing, but that only the recurrent agent is robust to decreases in 

penetration rates. For the real-world, this implies that even if agents are trained under a different 

penetration rate than actually encountered in the traffic situation, the recurrent agent can still be 

expected to perform similarly well, as long as the real penetration rate is not too drastically lower. 

8.4 Summary 
This chapter described the experimental setup and experimental results. Experiments were separated into 

two parts: the preliminary experiments to fine-tune the agent’s settings and the actual experiments to 

evaluate the agent’s performance under different CV-penetration rates.  

In the preliminary experiments, systematic tests were conducted to determine how different state 

representations, rewards, convolutional network architectures, combinations of numbers of episodes and 

epochs, target network freeze intervals, memory sizes, and trajectory sequence lengths impact agents’ 

stability and performance. It was found that using a 2-layered DTSE with floating-point encoded vehicle 

density and +/- encoded green phase leads to the most stable performance. Furthermore, it was found 

that the most suitable reward function is the change in cumulative delay.  

The preliminary experiments showed that it is difficult to design a well-performing agent. This is partly 

because it is difficult to judge if instability of the agent is caused by under- or overfitting, and partly 

because there are too many different settings and parameters that could influence the final performance 

to exhaustively test them all. More research on how settings influence the agent’s performance is needed. 

For the final experiments, the best performing parameters were combined into two agents: one vanilla 

DQN agent and one DRQN agent. Both agents are identical, apart from the addition of an LSTM layer to 

the recurrent agent. The two fine-tuned agents were trained on CV-penetration rates between 10% and 

100% and tested on 50 runs under the same penetration rate. During the evaluation, first the stability of 

the agents was analyzed, then the performance was analyzed per traffic scenario and finally the 

performance was compared between traffic scenarios and model types.  

The results show that recurrent agents lead to more stable and better-performing agents than vanilla 

agents. Vanilla agents were generally not able to learn policies that can outperform fixed-time controllers, 

while recurrent agents were shown to be able to outperform fixed-time controllers even under 

penetration rates as low as 10%-40%. Furthermore, it was found that for recurrent agents, increasing the 

CV-penetration rate leads to increases in agent stability and performance. Overall, the recurrent agent 

was able to learn policies that efficiently control traffic signals such that congestion is reduced for all four 

traffic scenarios.  
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9. DISCUSSION 
In this chapter, the results of the thesis will be discussed. First, the hypotheses from chapter 8.1.3 are 

evaluated. Then, the limitations of the model will be discussed, and possible model improvements 

suggested. Lastly, the results will be embedded in the existing literature.  

9.1 Evaluation of hypotheses 
To wrap up the analysis of our agents, the evaluation of our hypotheses described in chapter 8.1.3 is 

summarized here. 

(1) Increases in penetration rates lead to increases in agent stability. 

a. Vanilla agent: While the agent stability plots (see Figure 37 and Figure 59 in Appendix 

B.1) do seem to show a downwards trend towards more stability for higher penetration 

rates, the plots have too many jumps to draw clear conclusions. Thus, this hypothesis is 

not supported for the vanilla agent.  

b. Recurrent agent: For the recurrent agent, this hypothesis is supported. The stability plots 

show clearly that for all but one agent, higher penetration rates lead to higher stability. 

The biggest improvements in stability are made in the first 40% of CV-penetration, but 

stability continues to improve even for higher penetration rates.  

(2) Increases in penetration rates lead to increases in agent performance.  

a. Vanilla agent: For the vanilla agent, this hypothesis is unsupported. While downward 

trends in the low (Figure 40) and dynamic scenarios (Figure 49) seem present, the plots 

have too many jumps to conclusively confirm the hypothesis. For the medium and high 

traffic scenarios (see Figure 43 Figure 46), this hypothesis is rejected. In the medium 

scenario for example, the agent trained under 10% performs better than any of the agents 

trained under high penetration rates (70% and more). 

b. Recurrent agent: For the recurrent agent however, the hypothesis is supported. Looking 

at the plots (e.g. Figure 40, Figure 43, Figure 46, Figure 49) shows that in all scenarios 

agent performance improves with increasing penetration rates (apart from the outlier at 

70% CV-penetration, which can be explained by the instability of this agent). Dependent 

on the scenario, the biggest performance improvements are made between the first 10% 

to 40% of CV-penetration. 

(3) Connected vehicles have lower delays and waiting times than regular vehicles. This hypothesis 

is supported for both the vanilla and the recurrent agents. CV delays are at all times lower than 

RV delays, which shows that DQN and DRQN agents can reduce delays and waiting times more 

efficiently for CVs.  

(4) Increases in penetration rates lead to decreasing differences in delays and waiting times 

between CVs and RVs.  The results of both the vanilla and recurrent agent support this hypothesis. 

In all scenarios, the differences between CVs and RVs are higher for lower penetration rates than 

for higher penetration rates. The biggest improvements in RV delays can be seen in the low traffic 

scenarios. For both agents, the RV delay under 10% CV-penetration is very large (200 + seconds), 

but drastically decreases with even slightly higher penetration rates (e.g. 15 seconds delay for the 

40% recurrent agent).  

(5) Increases in the number of cars in a traffic scenario lead to decreasing differences in delays and 

waiting times between CVs and RVs. Both the vanilla and recurrent agent results support this. In 



99 
 

both cases the difference in delays between vehicle types is very large (up to 205 seconds 

difference) for the low traffic scenario, while for the high traffic scenario this difference is much 

smaller (maximum of 12 seconds difference). The medium traffic scenario has differences in 

delays slightly higher than the high traffic scenario. Since the dynamic traffic scenario is a special 

case which includes low, medium and high traffic situations, this hypothesis cannot be evaluated 

for this scenario. From these results it can be concluded that particularly agents trained under low 

penetration rates in the low traffic scenario CVs have a large advantage compared to RVs. For 

agents trained under higher penetration rates or in scenarios with more vehicles, this advantage 

becomes much smaller.  

(6) Good performance in one scenario is correlated with good performance in another scenario. 

This hypothesis is supported for both agents. For both agents, agents that perform well in one 

scenario also perform well in the other scenarios. Vice versa, agents that perform badly in a 

scenario also perform badly in other scenarios (see e.g. the recurrent agent trained under 70% 

CV-penetration). It does not seem to be the case that agents solely focus on performing well in 

one scenario and “sacrifice” performance in other scenarios. Instead, agents seem to learn 

policies which work equally well/poorly in all of the scenarios.  

(7) Reinforcement learning agents can outperform fixed-time controllers.  

a. Vanilla agent: For the vanilla agent, the results for this hypothesis are mixed. For each of 

the scenarios, some of the vanilla agents can outperform the fixed-time controller in at 

least one of the KPI. For the low traffic scenario for example, three agents trained under 

high penetration rates (70%, 80%, 90%) can outperform the fixed-time controller in terms 

of delay, waiting times and queue lengths. For the medium traffic scenario, the 10%, 50%, 

70% and 80% agents can outperform the fixed-time controller in terms of waiting times 

and delays. For the high and dynamic scenarios, only the 80% agent can reach a better 

performance than the fixed-time controller. However, by far the majority of the agents is 

unable to learn policies that can control traffic signals more efficiently than the fixed-time 

controller. Due to this, the hypothesis is rejected for the vanilla agent. It may be possible 

that vanilla agents with different settings may lead to better results which could 

outperform the fixed-time controller, however for this experiment the vanilla DQN agent 

is not a suitable method to reduce congestion. 

b. Recurrent agent: The recurrent agent on the other hand performs much better than the 

vanilla agent and is able to outperform the fixed-time controller in all scenarios even 

under partial observability. For the low traffic scenario, agents trained under penetration 

rates of 40% or higher9 manage to learn policies that result in better delays, waiting times 

and queue lengths than for the fixed-time controller. A similar result can be seen for the 

dynamic scenario agent: agents trained under penetration rates of 40% and higher 

outperform the fixed-time controller in terms of delays and waiting times, and all agents 

outperform the fixed-time controller in terms of queue lengths. The results for the 

medium and high traffic scenarios are even better: in the medium traffic scenario, agents 

trained under any penetration rate outperform the fixed-time controller, and in the high 

traffic scenario agents trained under CV-penetrations of 20% and higher outperform the 

fixed-time controller for all KPI. Based on this it can be concluded that the recurrent DQN 

 
9 The 70% agent is excluded in this conclusion. The bad results of this agent are likely due to the lower stability of 
this agent. Why this agent is less stable is unclear. 
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agent can control traffic signals more efficiently than a fixed-time controller for medium 

and high traffic scenarios for penetration rates as low as 10-20%, and for the low and 

dynamic traffic scenarios for penetration rates as low as 40%. This makes recurrent DQN 

is a suitable method to reduce congestion due to traffic signals, even under low 

penetration rates.  

(8) Recurrent DQN agents are more stable than vanilla DQN agents. This hypothesis is supported. 

Figure 37 and Figure 59 show that the recurrent agent leads to higher queue length, waiting times 

and delay stability than the vanilla agent. Based on this it can be concluded that when an agent 

has a memory of past states added to the information about the current state, agent stability 

improves. 

(9) Recurrent DQN agents perform better than vanilla DQN agents. This hypothesis is supported. 

Except for the unstable recurrent agent trained under 70% CV-penetration, all the recurrent 

agents perform better or equally good as the vanilla agents. In most of the cases, the performance 

of the two model types is vastly different. Overall, the recurrent agents are thus able to learn 

much better traffic signal control policies than vanilla agents. 

From these results it can be concluded that many of the hypotheses hold for the recurrent agent, but not 

for the vanilla agent. The recurrent agent shows that indeed, higher CV-penetration rates lead to more 

stable and better-performing agents. Recurrent agents trained even under low penetration rates can 

outperform the fixed-time controller, which makes DRQN a suitable method for traffic signal control. 

For vanilla agents however, many of the hypotheses cannot be supported. Vanilla agents tend to be less 

stable and perform much less good than recurrent agents. Even under high penetration rates, vanilla 

agents are unable to outperform fixed-time controllers. This may be caused by the fact that despite 

conducting the preliminary experiments, many of the agents were slightly unstable. Potential reasons for 

this may be overfitting (e.g. due to too long training), underfitting (e.g. due to too short training), learning 

bad policies (due to too high target network freeze intervals), catastrophic forgetting (e.g. due to too high 

learning rates or too small memory sizes), unsuitable state or reward representations, an unsuitable 

neural network architecture, too complex traffic scenarios, etc. It can thus clearly be concluded that 

designing a well-performing and stable vanilla agent is a difficult task. This is partly due to the difficulty of 

judging if instability of the agent is caused by under- or overfitting, and partly due to too many different 

settings and parameters that could influence the final performance to exhaustively test all of them.  

Designing a well-performing recurrent agent however is much easier. Even within the limited amount of 

time of an MSc project, the designed agents were able to reach a better performance than fixed-time 

controllers, even under low penetration rates. This makes recurrent DQN agents a promising method for 

future research projects on mixed traffic signal control.  

9.2 Limitations 
The conducted research has several limitations that have to be taken into account when evaluating the 

results. This project is subject to many of the same limitations as previous research, both regarding traffic 

signal control research in general (see section 2.3.3) and RL-specific traffic signal control research (see 

section 5.5). Since modeling intersections is complex, many simplifications had to be made in order to 

scope down the problem. A comprehensive list of these scoping decisions can be found in chapter 6.1.  
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For example, simplifications were made which reduce the realism of the scenario. For instance, it was 

decided to only include regular vehicles and to exclude all other types of traffic participants. The model 

assumes that human behavior is uniform, that there are no unexpected traffic situations (e.g. no 

accidents, no traffic law violations) and that sensor inputs and communication are ideal. While these 

assumptions do reduce the realism of the scenario, these types of situations are less relevant in proof-of-

concept research. Since reinforcement learning is a new field, a lot of early experimentation is happening, 

for which simpler models suffice. Once proposed agents become more mature, the above-mentioned 

issues will have to be addressed.  

Another limitation of this project which is common in a lot of other research is that the model considers 

the intersection in isolation. If we would connect several such intersections into a network, each 

intersection would make its own locally optimal decisions, but would not cooperate with its neighbors. 

These “selfish”, local decisions could negatively impact other agents (e.g. block another vehicle, 

oversaturate another controller’s capacity) and lead to negative emergent patterns for the system as a 

whole (e.g. decreased intersection/network throughput) (Martínez-Díaz et al., 2019). Some researchers 

have started to investigate this problem (e.g. Chu, Wang, Codeca, & Li, 2020; Gong, Abdel-Aty, Cai, & 

Rahman, 2019; Hussain, Wang, & Jiahua, 2020; Klöckner & Klose, 2020; Lee, Chung, & Sohn, 2019; Xu et 

al., 2020; Yin, Wang, & Li, 2020), but none of the studies have jointly studied mixed traffic and network 

control. Since both network and mixed traffic control are complex problems that have not been 

extensively researched on their own, for now the concepts should first be studied separately.  

This project is also subject to the problem of generalizability. The proposed model has been trained and 

tested on a specific intersection layout and for a specific set of traffic scenarios. Different network 

topologies or traffic scenarios may lead to different results, and other traffic signal control methods may 

be more suitable for the situations. Due to this, it is suggested that when designing a traffic signal control 

method for a real-life intersection, several control methods should be compared for the specific needs of 

that intersection. In this project, it was chosen to use a simple 4-way intersection since this is the most 

researched topology, which makes the gained results easier to compare to past research. 

Lastly, there are limitations related to the chosen model type. Deep Q-learning models are suitable for 

complex problems such as traffic signal control because they are model-free. Yet, this same property is 

also their biggest disadvantage. Since the model only requires the modeler to specify a state, action and 

reward representation and specify the model hyper-parameters, it is difficult to understand what is 

happening inside the model and why an agent learns a certain policy. Model-free models do not allow the 

modeler to change inner model-workings, except by imposing artificial restrictions (e.g. maximum green 

times). This makes it not only difficult to validate a reinforcement learning model, but it also makes it 

difficult to determine why the model is not working optimally.  

9.3 Possible model improvements 
Since the recurrent model leads to much more promising results than the vanilla agent, it is suggested to 

only continue working on the recurrent agent. All further suggestions thus only concern the DRQN agent. 

In this thesis, the implementation of the first DRQN agent by Hausknecht  and Stone (2015) was followed. 

Yet, other researchers have improved this implementation. In Hausknecht  and Stone (2015), the full 

trajectory is used in training to update the model weights. Both Lample and Chaplot (2017) and 

Kapturowski et al. (2019) raise the issue that for the first few samples within a trajectory of samples, Q-
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values are estimated based on an almost non-existing or inaccurate history of states, since the hidden 

state is reset at the beginning of every trajectory. Using these first few samples to update the network 

weights may lead to inaccurate results. Instead the authors suggest using the first few samples in a 

trajectory to build up a more accurate hidden state value and to only use the later samples in a trajectory 

to update the network weights. Additionally, Kapturowski et al. (2019) also proposed to store the hidden 

state when saving a sample as part of a trajectory. When initializing the hidden state of a trajectory during 

training, this stored hidden state can be used rather than setting it to 0. Kapturowski et al. (2019) conclude 

that combining both strategies leads to significant performance improvements for the Atari-57 and the 

DMLab-30 benchmarks. Thus, it may be possible that implementing the improvements may also lead to 

improved results for the DRQN traffic signal controller. 

Furthermore, one or more extensions could be added to the model. Many of the Rainbow extensions for 

example have been shown to lead to more stable and better-performing agents. Particularly prioritized 

experience replay and dueling networks seem to lead to good results for traffic signal controllers (Fang et 

al., 2019; Liang et al., 2019; Nawar et al., 2019; Pol, 2016). Up-to-date, no studies were found which built 

a traffic signal controller that combined both recurrence and one of the rainbow extensions. When looking 

at the wider deep reinforcement learning community however, several studies can be found which 

combined LSTMs/recurrent Q-learning with one of the rainbow extensions (e.g. Kapturowski et al., 2019; 

Schulze & Schulze, 2018). Similar implementations could also be made for traffic signal controllers. 

Additionally, even though a well-performing and relatively stable agent has been designed, further fine-

tuning could further improve the agent’s stability and performance. In this project, several preliminary 

experiments to fine-tune the agent have been conducted. Yet, fine-tuning one parameter could have 

influenced the optimal settings for other parameters. Ideally, fine-tuning agents should be an iterative 

process. Due to time limitations, in this project only a few iterations could be implemented, so, more 

iterations could potentially further improve the results.  

In future preliminary experiments, it is suggested to test different state and the reward representations. 

Particularly the reward function may hugely impact performance, since this is the metric by which the 

agent assesses whether an action is good or bad. In this thesis, eight different reward functions were 

tested, yet none combined more than two sub-rewards. Other research however has had success with 

more complex reward functions; therefore it is suggested to further experiment with this. 

Lastly, in this project only connected vehicles and regular vehicles were compared. Yet, as described in 

section 2.1.3, it is likely that connected and automated vehicles will merge. Thus, the model could be 

extended to include CAVs rather than CVs. CVs only communicate their own state (position and speed) 

with the controller. CAVs however would also be able to inform the controller about neighboring vehicles 

within their line of sight. As such, they could communicate information on some of the regular vehicles’ 

positions and speeds as well. This would lead to a more observable traffic situation for the controller, and 

likely to improved performance, particularly for low penetration rates.  

9.4 Cross-comparison with literature results 

9.4.1 Agent design 
This thesis presented several preliminary experiments to fine-tune the agent. These results are difficult to 

compare with literature, since most studies do not report how they designed their agent. Yet, excluding 

this information makes it difficult for researchers which are new to the field to develop agents.  
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Nevertheless, some similar types of studies have been presented by Dijk (2017), Pol (2016) and Vidali  

(2018). Vidali (2018) tested different values for the discount factor 𝛾, as well as different types of sampling 

strategies. Pol (2016) tested variations in the network architecture, state representation, learning rate, 

optimization algorithms, the target network freeze interval, the memory size and compared performance 

with or without batch normalization, prioritized experience replay and double Q-learning. Dijk (2017) 

investigated the impact of the trajectory length, the freeze interval and different update methods. In this 

section, only the experiments which tested the same model variation are discussed.  

Pol (2016) found that networks with fewer filters and fewer layers performed slightly better and were 

slightly more stable than deeper networks with more layers. Nevertheless, she acknowledges that these 

differences may be caused by the deeper network needing slightly more training time. These results are 

in line with the results from the preliminary experiment described in section 8.2.3.  

Pol (2016) also studied the impact of the target network freeze interval. She found that a freeze interval 

of 1 or 5 episodes leads to unstable results, while a freeze interval of 3 episodes leads to stable results. 

Similar to Pol (2016), the experiment in section 8.2.6 found that a too low freeze interval (here: under 20 

episodes) leads to unstable agents. Both results thus show that if a too low freeze interval is chosen, 

instability may occur. A major difference between the two experimental results however are the 

differences in the acceptable freeze intervals: for Pol (2016), a freeze interval of 3 episodes was chosen, 

while in this thesis a freeze interval of 46.7 episodes worked best. A possible explanation for this are the 

differences between the agent’s designs and training processes: Pol’s agents were trained on longer 

episodes (10,000 steps instead of 5,400) and only one type of scenario (instead of 4 different ones) and 

agents could choose fewer actions (2 instead of 4). It may be possible that the higher complexity of the 

agent from this thesis (bigger action space, more scenarios) required a higher freeze interval to stabilize 

the agent. Clearly, the choice of the freeze interval depends largely on the other agent design choices. 

Nevertheless, it remains unknown how a suitable freeze interval can be easily determined.  

Furthermore, Pol (2016) also investigated variations in memory size. She found that agents with a low 

memory size (10,000 samples/1 episode) are unstable, while agents with larger memory sizes (100,000 

samples/10 episodes) are most stable. She attributes the low stability in lower memory agents to the 

problem of catastrophic forgetting. In the experiment in this study (see section 8.2.7), agents with small 

memory sizes (30,000 samples/44 episodes; 40,000 samples/59 episodes) also result in unstable 

performance. Like in Pol (2016), the instability in the low memory agent is likely due to instability. In this 

thesis’ experiment, no instability was found in agents with higher memory sizes (up to 80,000 samples/119 

episodes), although they did gain slightly lower rewards than the agent with a medium memory size. It 

may be possible that the agent would become unstable if the memory size would have been increased 

even more. Nonetheless, it can be concluded that both too high and too low memory sizes result in sub-

optimally performing agents. But, like for the freeze interval, it remains unknown how to pick a good 

memory size a priori.  

Dijk (2017) focused specifically on design choices for recurrent agents. The author found that trajectory 

lengths of 2 and 4 samples are too short to improve agent stability and performance compared to vanilla 

DQN agents. Trajectory lengths of 10 and 20 samples however led to stable agents that significantly 

outperformed vanilla agents. Both the 10 and the 20 sample agents resulted in a similar performance. The 

experiment in this thesis (see section 8.2.8) found that like for Dijk (2017), too short trajectory lengths (9 

- 15 samples) result in unstable and under-performing agents. Furthermore, as in the experiment by Dijk 
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(2017), agents trained on longer trajectory lengths (18+ samples) were stable and led to high rewards. 

After reaching a certain trajectory length, neither agent stability nor performance improved significantly. 

In this thesis, this saturation point was reached after a trajectory length of 18 samples, for Dijk (2017) this 

point was already reached after 10 samples. This difference may be caused by the fact that in Dijk (2017) 

all vehicles were observable (equivalent to 100% CV-penetration), while in some of the experiments in 

section 8.2.8 only half of the vehicles were observable (equivalent to 50% CV-penetration). Likely, lower 

CV-penetration requires longer trajectory lengths in order for the agent to build up an accurate hidden 

state.  

Lastly, the preliminary experiment on state representations can be compared to R. Zhang et al. (2020). 

They found that using +/- encoded current green phases leads to more stable agents than using one-hot 

encoded green phases. This result is in line with the experiment results in section 8.2.1.  

Nevertheless, despite conducting the preliminary experiments, satisfactory stability and performance 

were not achieved for all agents. Particularly the vanilla agents remained somewhat unstable and were 

mostly unable to gain better results than the fixed-time controller. It may be possible that combinations 

of different parameters perform well on their own, but not in combination with other settings. Similar 

problems with instability were reported by other Master thesis students (Pol, 2016; Samad, 2020; Vidali, 

2018), showing that designing good reinforcement learning agents is not as straight-forward as it seems.  

9.4.2 Performance in mixed traffic scenarios 
As was seen in section 5.4, only a few researchers have used reinforcement learning algorithms for mixed 

traffic situations. Of the found studies, one paper used tabular Q-learning (Islam et al., 2019), one used 

tabular Q-learning and shallow neural network Q-learning (Yang et al., 2017), one used deep Q-learning 

(R. Zhang et al., 2020) and two used deep Q-learning and deep recurrent Q-earning with an LSTM layer 

(Zeng et al., 2018; T. Zhao & Wang, 2019). Since the study by Yang et al. (2017) resulted in too unstable 

controllers, no conclusions regarding the impact of penetration rates were drawn, and as such their study 

will be excluded from the further discussion.  

All four of the other papers found that in non-recurrent agents, higher penetration rates led to higher 

performing agents. In the study by Islam et al. (2019), the major performance improvements happened 

between 20% and 50%. When looking at the vanilla DQN agents, both Zeng et al. (2018) and T. Zhao and 

Wang (2019) find that performance majorly improves with increasing penetration rates between 10% and 

50% and then plateaus. R. Zhang et al. (2020) analyzed performance under different CV-penetration rates 

in different traffic scenarios and found that with increasing penetration rates, performance does not 

improve in the high traffic scenario, but that it does continuously improve between 0% and 100% 

penetration rate in the medium and low traffic scenarios (with 80% of the performance improvements 

happening in the first 20%).  

The results in this thesis are not in line with these previous findings. In this thesis’ experiments, higher CV-

penetration rates did not necessarily lead to better performance when using the vanilla DQN agent (see 

Figure 49 and Figure 64 in Appendix B.3). A possible explanation for this is that vanilla agents were 

unstable to a certain degree which could have caused lower performance. This instability may be due to 

agents not being fully fine-tuned, despite conducting the preliminary experiments.  

Furthermore, the results of the recurrent agent experiments can be compared to literature. Both Zeng et 

al. (2018) and T. Zhao and Wang (2019) trained recurrent DQN agents and found that the critical 
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penetration rate can be as low as 10%. For higher penetration rates, no major performance improvements 

were observed. They also find that using recurrent DQN outperforms vanilla DQN agents for all 

penetration rates and all traffic scenarios, and that recurrent agents are less sensitive in differences 

between the trained and tested penetration rates. 

These results are partially comparable to the results in this thesis. Like in Zeng et al. (2018) and T. Zhao 

and Wang (2019), recurrent DQN was shown to be able to outperform fixed-time traffic signal controllers 

in all traffic scenarios. However, unlike in Zeng et al. (2018) and T. Zhao and Wang (2019), agent 

performance in our experiments did not plateau after 10% CV-penetration, but instead plateaued after 

around 40% CV-penetration. This result indicates that it is not possible to specify a single critical 

penetration rate up until which the RL agent keeps improving. Instead, like Islam et al. (2019) concluded, 

this critical penetration rate depends largely on the design of the specific agent and the traffic scenarios.  

Another aspect that can be compared to literature are the differences between traffic scenarios. In 

literature, only T. Zhao and Wang (2019) and R. Zhang et al. (2020) tested their controllers under different 

penetration rates. Since the study by T. Zhao and Wang (2019) does not report how agents’ performance 

changes for different penetration rates in the different traffic scenarios, this study cannot be taken further 

into account. R. Zhang et al. (2020) however extensively discuss these results. They found that for the low 

and medium traffic scenarios, agent performance improved significantly for increasing penetration rates, 

but that for high traffic scenarios, agent performance did not improve for increasing penetration rates. 

Their result implies that agents in high traffic scenarios are able to perform equally well under low and 

high penetration rates. In this thesis however, this conclusion is unsupported. For the recurrent agent, 

performance in all traffic scenarios increased with higher penetration rates. This suggests that even high 

traffic scenarios can profit from increasing CV-penetration rates.  

Lastly, the differences between CV and RVs can be evaluated, which was only studied by R. Zhang et al. 

(2020). They found that CVs have lower waiting times than RVs, but that this advantage of CVs over RVs 

decreases the more cars there are in the traffic scenario. This result is also supported by this thesis.  

To conclude, some results of this thesis are similar to previous studies’ results, while others are 

contradicting. Unlike in literature, vanilla agents were unable to outperform fixed-time agents and higher 

penetration rates did not lead to increased performance. For recurrent agents however, these results are 

clearly supported.  

Yet, each of the studies has shortcomings that may limit their results. Islam et al. (2019) only implemented 

a tabular Q-learning controller, which is limited in its state representation and led to relatively unstable 

performance. Zeng et al. (2018) implemented a cyclic controller which is only tested only on a single 

constant traffic scenario. T. Zhao and Wang (2019) also train their controller on constant traffic scenarios, 

but they improve on Zeng et al. (2018) by including three different levels of traffic demand (higher 

saturated, near-saturated and low-saturated traffic). However, they do not explicitly discuss how agent 

performance is affected for the different levels of traffic demand. Lastly, R. Zhang et al. (2020) present 

the most comprehensive research. They included sparse, medium-dense and dense traffic scenarios and 

evaluated agent performance separately for each of these scenarios, and they also discussed how this 

affects CV and RV waiting times. However, unlike this thesis they did not build a recurrent agent. A 

shortcoming of all previous studies was that none trained or tested their controller under dynamic traffic 

scenarios, as this thesis has attempted to do.   
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10. CONCLUSION AND RECOMMENDATIONS 
This chapter concludes the thesis. First, the results will be summarized, and the research questions will be 

answered. Next, the scientific contributions are highlighted. Lastly, recommendations for policy-makers 

and future research are made. 

10.1 Summary 
In this thesis, the research goal was to investigate whether reinforcement learning-based algorithms 

would be a suitable method to control signalized intersections in mixed traffic scenarios such that traffic 

congestion is minimized for both connected and regular vehicles. To scope down the topic, only the most 

commonly used reinforcement learning method was under investigation: deep Q-learning.  

To answer the research questions, first a literature review on deep Q-learning in TSC has been conducted. 

Based on this literature, two deep Q-learning agents were designed: one vanilla DQN agent and one 

recurrent DQN agent. To calibrate the two agents, systematic fine-tuning experiments were conducted in 

which several design choices were compared. The two finalized agents were then trained and tested on 

different traffic scenarios and under different CV-penetration rates.  

The main research question for this thesis was: 

Can deep Q-learning models be used to control signalized intersections in mixed traffic scenarios 

such that traffic congestion is reduced? 

The main research question was subdivided into six sub-questions, which were defined in chapter 3.2. 

This section will summarize the findings by answering each of the sub-research questions, before 

concluding by answering the main research question. 

RQ1 What is the current state-of-the-art in intelligent traffic signal control using deep Q-learning for 

both homogeneous and mixed traffic scenarios? 

Reinforcement learning is a fast-developing field in which new algorithms are being proposed 

continuously. When looking at reinforcement learning in traffic signal control, the most popular 

reinforcement learning method is deep Q-learning (DQN). Within DQN models, authors have been 

experimenting with different model extensions, agent representations (including state, action and reward 

representations) and traffic environments (including network topologies and traffic scenarios). Many of 

the newly proposed controllers have been shown to outperform traditional control methods.  

The literature review in this thesis has identified, analyzed and discussed how previous researchers 

designed their agents. The review discussed each of the most important design choices in agent design. 

Included topics were state, action and reward representations, network topologies, traffic generation, 

DQN extensions, performance indicators and base cases.  

Furthermore, part of the review specifically focused on reinforcement learning in mixed traffic scenarios. 

Much less research has been done on this topic. For mixed traffic situations, two types of agents were 

found in literature: vanilla DQN agents and recurrent DQN agents which use an LSTM layer. The results 

show that even for low CV-penetration rates, both model types can successfully reduce traffic congestion 

compared to traditional traffic signal controllers. 
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Yet research gaps remain. Currently, no clear best practices and guidelines exist that could guide 

researchers on how to design new agents. Many studies do not or only partially describe why they made 

certain design choices and how they calibrated their agents, which makes it difficult for future researchers 

to learn from their experiences.  

Another research gap that contributes to this problem is the lack of systematic studies that compare 

different agents. This makes it more difficult to evaluate which design choices lead to better results. This 

lack of comparative studies may partly be caused by the lack of standardized testing scenarios. Without 

standardized scenarios, it is difficult to establish best practices and benchmarks.  

RQ2 What types of deep Q-learning models would be suitable to design an intelligent traffic signal 

controller for mixed traffic scenarios? 

In this thesis, it was decided to design a vanilla DQN agent and a recurrent DQN agent, because in previous 

studies both agents have been successfully used to control mixed traffic situations.  

Within this thesis, the two agents have the same settings, the only difference being the recurrent agent 

having an LSTM layer while the vanilla agent does not. The agents’ state representation consists of a 2-

layered DTSE matrix of the vehicle density and average normalized speed, the current green phase, and 

the elapsed green time. The set of actions consists of the four green phases which the agent can choose 

acyclically. The finally chosen reward function was the change in cumulative waiting time. To stabilize 

training, experience replay and target network freezing have been used. Since for many parameters no 

clear guidelines existed, agents were calibrated by means of several fine-tuning experiments (see RQ 3).  

RQ3 How can the reinforcement learning-based traffic signal controllers be calibrated and trained in a 

systematic manner? 

One of the identified research gaps was that it was unclear what the best design choices and parameters 

for DQN agents were. Many previous studies either did not report their fine-tuning process, or they 

applied a trial-and-error process. In this thesis, one contribution was to present a systematic and 

comprehensive calibration process, in which the impacts of different design choices on the agents’ 

performance and stability have been analyzed.  

The calibration process in this thesis attempted to apply a more structured approach. First, a base agent 

was designed which combined design choices from previous studies in novel ways. Yet, since the agents 

would be tested on different types of scenarios than in those previous studies, it would not be guaranteed 

that these choices would be optimal. 

To solve this, each of the design choices and parameters which we were unsure about were investigated 

in experiments. Each parameter was investigated by using a new base model. In this base model, all 

settings were identical, apart from the parameter under investigation. This allowed to assess how the 

different alternatives for every parameter impacted both agent stability and performance. To compare 

the agents tested under different parameter settings, the cumulative reward per episode during training 

was used. Stable agents show no jumps in rewards and agents which perform well lead to a very low 

negative reward. Finally, the parameter setting which resulted in the best stability and highest 

performance was chosen. Based on this result, a new base agent could be designed to experiment with 

the next parameter. 
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In the end, the best-performing settings for every design choice were combined into a fine-tuned vanilla 

and a fine-tuned recurrent agent. Ideally, each of the parameters should have been investigated several 

times, since the parameters which are chosen at later times may influence whether the parameters 

chosen at earlier times are still acceptable. The goal would thus be to iteratively fine-tune the agents. 

However, in this thesis this was not possible due to time reasons.  

Overall, agents in this thesis were calibrated in a systematic manner. Yet, the results show that the optimal 

design choices and parameter values vary a lot between different agents. The optimal settings not only 

depend on the other design choices which were made for the agent, but also on the traffic scenarios on 

which agents will be tested and trained. This makes it difficult to derive more general best-performing 

settings. In the end, fine-tuning the agents remained a time-consuming trial-and-error process.  

RQ4 How can the designed deep Q-learning-based traffic signal controllers be evaluated in order to 

determine which controller performs better under which circumstances? 

In this thesis, vanilla and recurrent agents were trained under a penetration rate between 10%-100% and 

tested under this same penetration rate. Testing took place under the same types of scenarios as agents 

had been trained on (low, medium and high constant traffic scenarios and dynamic traffic scenarios). 

Traffic scenarios were chosen to reflect different levels of traffic demand (low/undersaturated, 

medium/medium-saturated, high/oversaturated) and traffic distributions (constant, dynamic). Ideally, 

traffic scenarios should reflect real-life scenarios as closely as possible, since controllers can only perform 

well for situations on which they have been trained. Since the controller in this thesis was designed as a 

proof-of-concept, no real-life traffic data has been used. Instead, scenarios were designed such that agent 

stability and performance could be evaluated under as different situations as possible.  

To train and test DQN agents, a microscopic traffic simulator was used. Because scenarios are 

stochastically generated, controllers have been tested on every scenario for 50 runs. At every simulation 

step the following KPI were gathered: the average cumulative delay per vehicle and vehicle type (i.e. per 

CV and RV), the average cumulative waiting time per vehicle and the average queue length. Furthermore, 

to compare the agents’ performance, a traditional fixed-time controller was used as a benchmark.  

To evaluate the gathered data, different analyses have been done. In the first analysis, the stability of the 

agents was evaluated based on the interdecile range. In the next step, the performance of the agents was 

evaluated per traffic scenario. Lastly, the robustness of the agents was evaluated. For this, the vanilla and 

recurrent agents trained under CV-penetration rates of 50% were tested on all penetration rates between 

10%-100%. This allowed investigating how well the agents can perform when the penetration rate in real-

life does not match the penetration rate seen during training.  

RQ5 To what extent are the designed deep Q-learning-based traffic signal controllers able to reduce 

traffic congestion for mixed traffic situations in a robust manner? 

In the evaluation of the experiments, it was found that the vanilla agent which was designed in this thesis 

was unable to reduce traffic congestion in mixed traffic scenarios. Many of the hypotheses which were 

described in section 8.1.3 were unsupported: neither agent stability nor agent performance increased 

with higher penetration rates and vanilla agents were unable to outperform fixed-time controllers.  

Recurrent agents however performed very well, with all hypotheses from section 8.1.3 being supported. 

They were quite stable and performed well even under low penetration rates. Yet, the experiments also 
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showed that higher penetration rates led to more stability and higher performance across all traffic 

scenarios. Additionally, the recurrent agent was found to be quite robust to changes in the penetration 

rate during testing: the recurrent agent trained under 50% CV-penetration was able to perform well for 

CV-penetration rates between 30%-100%. Furthermore, the recurrent agent was able to outperform the 

fixed-time controller for most of the penetration rates and scenarios. The required CV-penetration rate 

to outperform the fixed-time controller was between 0% (medium traffic scenario) and 40% (low and 

dynamic scenarios). This indicates that while the required CV-penetration rate is relatively low across 

scenarios, no critical transition penetration rate can be determined, since this largely depends on the type 

of scenario. When comparing the scenarios, it was found that for scenarios with less cars, the recurrent 

agent required a higher CV-penetration rate to reach a good level of performance than for scenarios with 

many cars. Moreover, the recurrent agent was able to perform better in constant traffic scenarios than in 

dynamic traffic scenarios.  

Based on the results it can be concluded that the designed vanilla DQN agent is unsuitable for mixed traffic 

control. The recurrent DQN agent however, performed better than the vanilla agent in terms of stability, 

performance and robustness, and only the recurrent agent was able to outperform the fixed-time 

controller for all but the lowest penetration rates. This makes recurrent DQN a promising method for 

future research on reinforcement learning-based traffic signal control. 

RQ6 How do the results compare to other literature results? 

Section 9.4 compared the both the results of the calibration experiments and of the final mixed traffic 

experiments to results in literature.  

When comparing the results of the calibration experiments, it was concluded that the optimal design 

choices and parameters used in literature are oftentimes different than the choices which were found to 

work best for our agents. This indicates that optimal parameters for an agent depend to a large extent on 

not only the overall agent design but also on the training and testing environment (e.g. traffic scenarios, 

intersection layout). Nevertheless, despite the finally chosen values being different, the assessments of 

how certain parameters affect model stability and performance are mostly similar. See the results for the 

target network freeze interval for example. Despite the optimal values being different, both the results of 

this thesis and the study by Pol (2016) show that too low freeze intervals can lead to unstable agents.  

When comparing the results of the final mixed traffic experiments to literature, not all findings from past 

research were supported. A major difference between the results was that in past research, vanilla DQN 

agents have been shown to be able to successfully control traffic signals even for mixed traffic situations, 

while the agent in our study was unable to do so. Possibly, the vanilla agent is this thesis was not fine-

tuned enough. For the recurrent agent however, both this thesis and past research concluded that 

recurrent agents are able to significantly outperform fixed-time controllers, even under low penetration 

rates. Further similarities were that higher penetration rates lead to higher performance, and that 

recurrent agents are up to a certain degree robust to changes in penetration rates. Unlike past research 

however, this thesis found that for all traffic scenarios agent performance improves with increasing 

penetration rates. Previous study however found that this was only the case for low and medium traffic 

scenarios, but not for high traffic scenarios.  
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MAIN: Can deep Q-learning algorithms be used to control signalized intersections in mixed traffic 

scenarios such that traffic congestion is reduced? 

After having answered each of the sub-research questions, the main research question can be answered. 

Overall, the results of this thesis show that deep Q-learning algorithms could potentially be used to control 

signalized intersections in mixed traffic scenarios such that traffic congestion is reduced. 

While vanilla DQN was unable to control traffic signals efficiently, recurrent DQN was able to outperform 

fixed-time controllers even under low CV-penetration rates. This makes recurrent DQN a promising 

method for future research. 

Nevertheless, this thesis only resulted in a proof-of-concept. Experiments were conducted under many 

assumptions and simplified conditions (see section 6.1) and results are subject to multiple limitations (see 

section 9.2). All of these may compromise the results. In order to answer the main research question with 

certainty, recurrent DQN controllers (and reinforcement learning controllers in general), will need to be 

further developed, calibrated, and tested under more realistic circumstances. Several suggestions for 

future research steps will be suggested in section 10.5.  

10.2 Scientific contributions 
The scientific contribution of this thesis can be summarized as follows: 

In depth-review on using reinforcement learning in traffic signal control, with a focus on deep Q-

learning as well as mixed traffic situations. The only other review which was found on traffic signal 

control using reinforcement learning was published in 2017, yet most of the papers on TSC using deep 

reinforcement learning were published after this date. Additionally, no review was dedicated specifically 

to mixed traffic situations. The review in this thesis (see chapter 5) updated the outdated review and 

closed the research gap.  

Systematic experiments on fine-tuning the agents. In literature, nearly no authors describe why they 

made certain design choices and how they fine-tuned their models. Additionally, many researchers do not 

report all the relevant parameters in their models. This not only makes these studies difficult to reproduce, 

but it also means that it remained known how certain design choices and parameters affect the final 

agent’s stability and performance. For future researchers this means that they cannot use the previous 

researchers’ experiences to calibrate their own models. Instead, they will have to conduct their own fine-

tuning process which can be time-consuming. This thesis contributed to closing this research gap by 

presenting the full fine-tuning process. This calibration process was conducted by systematically 

experimenting with different design choices (e.g. state representation, reward representation) and 

parameters (e.g. memory size, target network freeze interval). The results of these experiments can 

hopefully help future researchers to better understand the effects certain design choices will have, and 

to cut down on the time to fine-tune their own agents.  

Experimental comparison of two model types (DQN and DRQN) regarding their stability and 

performance under different CV-penetration rates and traffic scenarios. Only a few previous researchers 

investigated how well reinforcement learning models are able to control traffic signals under mixed traffic 

situations, and even fewer researchers investigated how two different model types would perform in 

these situations. This thesis added new experimental insights to this by designing, training and testing two 

types of deep Q-learning controllers (vanilla DQN and recurrent DQN). Within the experiments, the 
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stability and performance of both agents were analyzed both separately and comparatively for different 

traffic scenarios (low constant, medium constant, high constant, dynamic) and CV-penetration rates (10%-

100%). Compared to previous research, the agents in this thesis were not only evaluated on constant 

traffic scenarios, but also on dynamic traffic scenarios. Additionally, results were compared to a fixed-time 

controller. Results of the experiments show that recurrent DQN agents are able to outperform fixed-time 

agents even under low penetration rates (10%-40%), but also that both agent stability and performance 

improve for higher penetration rates. Vanilla DQN agents resulted in unsatisfactory performance. Based 

on this result and the results by Zeng et al. (2018) and T. Zhao and Wang (2019), it can be concluded that 

recurrent DQN agents are superior to vanilla DQN agents, and that recurrent DQN agents are a promising 

method for future traffic signal control even under low CV-penetration rates.  

10.3 Link to CoSEM 
This thesis was carried out within the MSc program Complex Systems Engineering and Management 

(CoSEM). The research done within this project fits well to CoSEM for the following reasons: CoSEM is 

about designing solutions within complex socio-technical systems that solve problems that concern both 

public and private interests. Each of these aspects is included in this thesis.  

Intelligent intersections are great examples of complex socio-technical systems. Within intersections, 

many traffic participants (regular vehicles, connected and/or automated vehicles, cyclists, pedestrians) 

interact with each other. Every traffic participant acts according to their own behavioral rules such as 

traffic laws and their own destinations. Altogether, these individual behaviors create emergent traffic 

patterns that evolve over time and can be potentially unpredictable. This makes designing traffic signal 

controllers that regulate traffic such that safety is ensured, and such that congestion is minimized a 

challenging task.  

This thesis has a clear design component: within the project, two traffic signal controllers were designed. 

The designs were based on previously published state-of-the-art DQN agents, but also based on the 

systematic calibration experiments described in section 8.2. Each of the design choices has been described 

and justified. Within the design, values from both the private and the public domain have been taken into 

account: the overall goal was to increase traffic efficiency in order to reduce congestion, yet also safety 

had to be considered. Additionally, within the design phase it was aimed to use state-of-the-art methods 

from the field of reinforcement learning. At the same time however, also technical limitations needed to 

be taken into account (e.g. connected/automated technology limitations, computational limits). 

The project itself was multidisciplinary in nature, and multiple engineering components were present. It 

combined different aspects related to transportation science, civil engineering and computer science/ 

machine learning.  

Within this project CoSEM-related tools and knowledge were used. In the first part of the project, a 

systematic literature review as taught in the course SEN131A was conducted. Furthermore, this project 

required domain-specific knowledge from my track transport and logistics, as well as knowledge on 

simulation and modeling in order to design and evaluate the agents. Lastly, within the project the impacts 

of the designed controllers on traffic congestion were evaluated quantitatively and the implications of 

this were discussed.  
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10.4 Recommendations for practice 
The research in this thesis was explorative in nature and resulted in evidence that recurrent DQN agents 

may be able to efficiently control signalized intersections. Nevertheless, currently it is too early to 

implement the designed agent in practice. The agent designed in this thesis should be seen as a successful 

proof-of-concept, rather than as a method that is ready for real-world implementation. This is because 

the designed agent is subject to many simplifications and limitations (as discussed in section 9.2), but also 

because agent performance is not yet stable across all traffic scenarios and penetration rates.  

However, the results of this thesis show that recurrent DQN (and deep RL in general) may be a promising 

method that could be applied in the future. Thus, it is recommended that more research will be conducted 

in this field. Several research recommendations have been made in sections 9.3 and 10.5.  

To conclude, it is currently too early for policy-makers to take action, apart from providing sufficient 

funding. First, controllers need to become more mature and must be validated on more types of scenarios 

under more realistic circumstances. Only then can exact technical, social and legal implications be known 

and more specific policy recommendations be made.  

10.5 Recommendations for future research 
Several recommendations to improve the model built in this thesis have already been discussed in section 

9.3. This section will provide further recommendations independently from the agent in this project. 

Suggestions made relate to the literature gaps in applying reinforcement learning in traffic signal control, 

as identified in chapter 5.5.  

A major limitation in reinforcement learning-based traffic signal control research is the lack of 

standardized testing scenarios and environments. Currently, each research team implemented its agents 

in slightly different ways (e.g. different network topologies, different traffic demand generation), which 

reduces the ability to do cross-comparisons between different studies. If a set of standardized 

environments and scenarios would exist, researchers could test their proposed algorithms on these. 

Having unified testing scenarios would facilitate benchmarking and objective comparison of agents, and 

thus more systematic evaluations. When developing a set of environments, care must be taken that traffic 

scenarios cover the relevant different types of situations (e.g. under-saturated, saturated, over-saturated 

traffic; constant and dynamic traffic). The set of scenarios should neither be too small (which would limit 

researchers), nor be too large (which would hamper cross-comparisons). Regarding the implementation, 

similar approaches can be taken as for the implementation of the Atari or Doom environments in the 

OpenAI Gym (OpenAI, 2016). 

Additionally, more research is needed on how agents can be fine-tuned. At the moment, no best practices 

regarding choices in states, rewards, network topologies and hyperparameters exist, making it time-

consuming to design new agents. Having clearer guidelines would significantly reduce the time to develop 

agents, since researchers would not have to conduct as many fine-tuning experiments by themselves. 

Thus, it is suggested to systematically conduct and document fine-tuning experiments, similarly as has 

been done in the preliminary experiments in section 8.2.  

Another future research suggestion is to further develop existing traffic signal controllers’ models. Deep 

reinforcement learning is a fast-developing field in which authors continuously develop new model types 

or extensions to existing models. Combining several extensions could lead to significantly increased 
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performance compared to models without extensions or only single extensions (as for example shown in 

the highly-cited Rainbow paper by Hessel et al. (2018)). But it may also be possible that extensions do not 

combine well. Additionally, it may be possible that other model types than the most commonly used deep 

Q-learning model perform better, such as the hybrid actor-critic model. For traffic signal control 

specifically, only a limited amount of papers systematically compared model types and/or extensions in 

ablation studies (Fang et al., 2019; Wei et al., 2018; Zeng et al., 2019). Yet, many other newly developed 

methods exist which may improve performance further, but which have not yet been investigated for 

traffic signal control. For example, Kapturowski, Ostrovski, Quan, Munos, & Dabney (2019) have created 

an agent that combined recurrent deep Q-learning with prioritized experience replay and distributed Q-

learning, which outperforms existing deep RL agents on the Atari-57 benchmark. Similar studies could be 

conducted in TSC. 

More research is needed on multi-goal agents. Currently, many authors focus solely on traffic efficiency, 

at the expense of other goals. Yet, safety, fairness, environmental impacts, driver comfort and social 

acceptance are all goals which also have to be taken into account when designing a new traffic signal 

controller. For example, if controllers are purely performance-based, they could for example “sacrifice” a 

single vehicle for the better performance of the system as a whole by making the single vehicle wait very 

long. Clearly, this is undesirable, which means other goals should also be included. However, in existing 

controllers, it is difficult to include multiple goals. Partly this is caused by the fact that the algorithms are 

model-free which makes it not possible to change the inner workings. And partly it is caused due to it 

being difficult to weigh several goals and combine them into a balanced reward function. This leads to the 

next research suggestion, namely, to investigate how multiple rewards can be balanced to gain good 

performance.  

Lastly, future research should investigate whether agents will be able to perform well in the real-world 

under less ideal circumstances than the simulator provides. Most studies currently assume ideal 

conditions, yet the real-world is more chaotic. For example, unexpected or previously unencountered 

traffic situations may happen (e.g. accidents, radical demand changes), lane switches and traffic law 

violations could take place or signal failures, communication delays or errors could happen. These types 

of issues may compromise the robustness of the agent, and thus adversely affect its ability to reduce 

traffic congestion.  
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APPENDIX A: PRELIMINARY TESTING SETTINGS AND RESULTS 
This appendix includes all base agents mentioned in chapter 8.2, including all details on their model 

settings. Additionally, experiments which have been referred to in chapter 8.2, but which have not been 

included there due to space reasons are shown here. This appendix follows the same order as chapter 8.2. 

A.1 State representation experiments – vehicle position vs density 
Table 7 Model settings for the preliminary experiment on the state representation (vehicle position vs density) 

Model setting or (Hyper-)parameter Value 

Training episodes 330 

Training epochs 1000 

Minibatch size 100 

Target network freeze interval [steps] 6000 

Replay memory size 50,000 

Discount factor 0.99 

Learning rate 0.001 

Penetration rate 0.9 

Network architecture Convolution:  
Filters: 32, 64, 32 
Kernel: 2, 2, 2 
Stride: 2, 2, 1 
Phase: One-hot encoded 

Reward Change in cumulative delay 

Recurrence No  
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A.2 State representation experiments – one-hot encoded phase vs +/- encoded phase 
Table 8 Model settings for the first preliminary experiment on the state representation (one-hot encoding vs +/- encoding) 

Model setting or (Hyper-)parameter Value 

Training episodes 330 

Training epochs 1000 

Minibatch size 100 

Target network freeze interval [steps] 6000 

Replay memory size 50,000 

Discount factor 0.99 

Learning rate 0.001 

Penetration rate 0.9 

Network architecture Convolution:  
Filters: 32, 64, 32 
Kernel: 2, 2, 2 
Stride: 2, 2, 1 
Phase: (under investigation) 

Reward Change in cumulative delay 

Recurrence No  

Figure 52 Cumulative negative reward per episode during training. Experiments with base agent 2. Left figure: +/- phase 
encoding. Right figure: one-hot phase encoding. 

Table 9 Model settings for the second preliminary experiment on the state representation (one-hot encoding vs +/- encoding) 

Model setting or (Hyper-)parameter Value 

Training episodes 504 

Training epochs 1000 

Minibatch size 100 

Target network freeze interval [steps] 6000 

Replay memory size 50,000 

Discount factor 0.99 

Learning rate 0.001 

Penetration rate 0.9 

Network architecture Convolution:  
Filters: 4, 8 
Kernel: 2, 2 
Stride: 2, 1 
Vehicle position: Density (float) 
Phase: (under investigation) 

Reward Change in cumulative delay 

Recurrence No  
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A.3 Convolutional network shape experiments 
Table 10 Model settings for the preliminary experiment on the shape of the convolutional network 

Model setting or (Hyper-)parameter Value 

Training episodes 400 

Training epochs 300 

Minibatch size 100 

Target network freeze interval [steps] 14,000 

Replay memory size 50,000 

Discount factor 0.99 

Learning rate 0.001 

Penetration rate 1 

Network architecture Convolution:  
(under investigation) 
Phase: +/- encoded 

Reward Change in cumulative waiting time 

Recurrence No  

A.4 Reward representation experiments 
Table 11 Model settings for the preliminary experiment on the reward function 

Model setting or (Hyper-)parameter Value 

Training episodes 400 

Training epochs 300 

Minibatch size 100 

Target network freeze interval [steps] 14,000 

Replay memory size 50,000 

Discount factor 0.99 

Learning rate 0.001 

Penetration rate 1 

Network architecture Convolution:  
Filters: 4, 8 
Kernel: 2, 2 
Stride: 2, 1 
Vehicle position: Density (float) 
Phase: one-hot encoded 

Reward (under investigation) 

Recurrence Yes 
Sequence length: 18 
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Figure 53 Impact of different reward representations of the cumulative delays in different greedy scenarios. The left figures show 
the cumulative delay per greedy episode of all reward representations. Since the details of the best-performing agents are hidden, 
the right figure zoom in only on these best-performing agents. From top to bottom, the figures show the results for the low, 
medium, high and dynamic traffic scenario.  
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A.5 Numbers of epochs and episodes 
Table 12 Model settings for the first preliminary experiment on the number of episodes and epochs 

Model setting or (Hyper-)parameter Value 

Training episodes (under investigation) 

Training epochs (under investigation) 

Minibatch size 100 

Target network freeze interval [steps] 6000 

Replay memory size 50,000 

Discount factor 0.99 

Learning rate 0.001 

Penetration rate 0.9 

Network architecture Convolution:  
Filters: 4, 8 
Kernel: 2, 2 
Stride: 2, 1 
Vehicle position: Density (float) 
Phase: one-hot encoded 

Reward Change in cumulative delay 

Recurrence No  

 

Table 13 Model settings for the second preliminary experiment on the number of episodes and epochs 

Model setting or (Hyper-)parameter Value 

Training episodes (under investigation) 

Training epochs (under investigation) 

Minibatch size 100 

Target network freeze interval [steps] 12,000 

Replay memory size 50,000 

Discount factor 0.99 

Learning rate 0.001 

Penetration rate 1 

Network architecture Convolution:  
Filters: 4, 8 
Kernel: 2, 2 
Stride: 2, 1 
Vehicle position: Density (float) 
Phase: +/- encoded 

Reward Change in cumulative waiting 
time 

Recurrence No  
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Figure 54 Cumulative rewards per greedy episode during training. The figures show different combinations of episodes (from top to bottom: 700, 600, 500) and epochs (from left 
to right: 500, 400, 300) 
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A.6 Target Network Freeze Interval 
Table 14 Model settings for the preliminary experiment on the target network freeze interval 

Model setting or (Hyper-)parameter Value 

Training episodes 400 

Training epochs 300 

Minibatch size 100 

Target network freeze interval [steps] (under investigation) 

Replay memory size 50,000 

Discount factor 0.99 

Learning rate 0.001 

Penetration rate 1 

Network architecture Convolution:  
Filters: 4, 8 
Kernel: 2, 2 
Stride: 2, 1 
Vehicle position: Density (float) 
Phase: +/- encoded 

Reward Change in cumulative waiting 
time 

Recurrence No 

  

Figure 55 Comparison of different freeze intervals: cumulative reward during greedy episodes for all traffic scenarios. Top left: 
low traffic scenario. Top right: medium traffic scenario. Bottom left: high traffic scenario. Bottom right: dynamic traffic scenario. 
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A.7 Memory size 
Table 15 Model settings for the preliminary experiment on the memory size 

Model setting or (Hyper-)parameter Value 

Training episodes 400 

Training epochs 300 

Minibatch size 100 

Target network freeze interval [steps] 14,000 

Replay memory size (under investigation) 

Discount factor 0.99 

Learning rate 0.001 

Penetration rate 1 

Network architecture Convolution:  
Filters: 4, 8 
Kernel: 2, 2 
Stride: 2, 1 
Vehicle position: Density (float) 
Phase: +/- encoded 

Reward Change in cumulative waiting 
time 

Recurrence No 

  

Figure 56 Comparison of different memory sizes: cumulative reward during greedy episodes for all traffic scenarios. Top left: low 
traffic scenario. Top right: medium traffic scenario. Bottom left: high traffic scenario. Bottom right: dynamic traffic scenario. 
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A.8 Trajectory sequence length experiments 
Table 16 Model settings for the preliminary experiment on the sequence length 

Model setting or (Hyper-)parameter Value 

Training episodes 400 

Training epochs 300 

Minibatch size 100 

Target network freeze interval [steps] 14,000 

Replay memory size 50,000 

Discount factor 0.99 

Learning rate 0.001 

Penetration rate [1, 0.5] 

Network architecture Convolution:  
Filters: 4, 8 
Kernel: 2, 2 
Stride: 2, 1 
Vehicle position: Density (float) 
Phase: +/- encoded 

Reward Change in cumulative waiting 
time 

Recurrence Yes 
Sequence length: (under 
investigation) 
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Figure 57 Comparison of different trajectory lengths: cumulative reward during greedy episodes for all traffic scenarios. The left 
figures show the results for agents trained on 100% CV-penetration; the right figures show the results for agents trained under 
50% CV-penetration. From top to bottom the figures show the results for the low, medium, high and dynamic traffic scenarios.  
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A.9 Fine-tune agents  
  

100% CV-penetration 

90% CV-penetration 

80% CV-penetration 

70% CV-penetration 
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60% CV-penetration 

50% CV-penetration 

40% CV-penetration 

30% CV-penetration 
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20% CV-penetration 

10% CV-penetration 

Figure 58 Comparison of the final fine-tuned agents trained under different penetration rates: cumulative rewards per greedy 
episode. The left figures show the results for vanilla agents, the right figures show the results for recurrent agents. From top to 
bottom, the figures show the results for agents trained under 100%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10% CV-
penetration 
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APPENDIX B: MIXED TRAFFIC EXPERIMENTS RESULTS 
This appendix includes the results of the mixed traffic experiments (section 8.3) which have not been 

included in the main text due to space limitations. In this appendix, first the results for the agent stability 

are shown, then the results per traffic scenario (low, medium, high, dynamic) are presented, and finally 

the plots comparing vanilla, recurrent and fixed-time controllers are shown.  

B.1 Analysis of agent stability 
 

 

 

  

Figure 59 Stability of the trained vanilla and recurrent agents. The top figures show the interdecile range of the median delay and 
the bottom figures show the interdecile range of the median waiting time. The left figures show the stability of the vanilla agents 
and the right figures show the stability of the recurrent agents.  
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B.2 Analysis of agents per traffic scenario 

B.2.1 Low traffic scenario  

  

Figure 60 Median cumulative waiting times and delays in the low traffic scenario for all penetration rates. Top left figure: median 
waiting times for the vanilla agent. Top right figure: median waiting times for the recurrent agent. Bottom left figure: median 
queue lengths for the vanilla agent. Bottom right figure: median queue lengths for the recurrent agent. 
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B.2.2 Medium traffic scenario  
 

  

Figure 61 Median cumulative waiting times and delays in the medium traffic scenario for all penetration rates. Top left figure: 
median waiting times for the vanilla agent. Top right figure: median waiting times for the recurrent agent. Bottom left figure: 
median queue lengths for the vanilla agent. Bottom right figure: median queue lengths for the recurrent agent. 
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B.2.3 High traffic scenario 
 

B.2.4 Dynamic traffic scenario  
 

 

Figure 62 Median cumulative waiting times and delays in the high traffic scenario for all penetration rates. Top left figure: median 
waiting times for the vanilla agent. Top right figure: median waiting times for the recurrent agent. Bottom left figure: median 
queue lengths for the vanilla agent. Bottom right figure: median queue lengths for the recurrent agent. 

Figure 63 Median cumulative waiting times and delays in the dynamic traffic scenario for all penetration rates. Top left figure: 
median waiting times for the vanilla agent. Top right figure: median waiting times for the recurrent agent. Bottom left figure: 
median queue lengths for the vanilla agent. Bottom right figure: median queue lengths for the recurrent agent. 
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B.3 Comparison of vanilla and recurrent agents 
 

 

 

  

Figure 64 Comparison between the vanilla and recurrent agents for all scenarios. The left figures show the comparisons of the 
average median waiting times and the right figures show the comparisons for the average median queue lengths. From top to 
bottom, the figures show the results for the low, medium, high and dynamic traffic scenarios. 
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APPENDIX C: OVERVIEW OVER THE FOUND LITERATURE 
Due to size limitations, the table could not be attached in this thesis. Instead it has been attached in a 

separate Excel sheet.  

 


