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Efficient Jacobian-Based Inverse Kinematics
With Sim-to-Real Transfer of Soft

Robots by Learning
Guoxin Fang , Member, IEEE, Yingjun Tian , Zhi-Xin Yang , Member, IEEE, Jo M. P. Geraedts ,

and Charlie C. L. Wang , Senior Member, IEEE

Abstract—This article presents an efficient learning-
based method to solve the inverse kinematic (IK) problem
on soft robots with highly nonlinear deformation. The major
challenge of efficiently computing IK for such robots is due
to the lack of analytical formulation for either forward or
inverse kinematics. To address this challenge, we employ
neural networks to learn both the mapping function of for-
ward kinematics and also the Jacobian of this function. As
a result, Jacobian-based iteration can be applied to solve
the IK problem. A sim-to-real training transfer strategy is
conducted to make this approach more practical. We first
generate a large number of samples in a simulation environ-
ment for learning both the kinematic and the Jacobian net-
works of a soft robot design. Thereafter, a sim-to-real layer
of differentiable neurons is employed to map the results of
simulation to the physical hardware, where this sim-to-real
layer can be learned from a very limited number of training
samples generated on the hardware.

Index Terms—Inverse kinematics (IKs), Jacobian, learn-
ing, sim-to-real, soft robots.

I. INTRODUCTION

W ITH the use of flexible material, soft robots have the
ability to make a large deformation and interact safely

with the environment [1], which leads to a broad range of
applications, such as exoskeleton/wearable devices [2], soft
manipulators [3], [4] and surgery assistance [5]. However, as a
hyper-redundant system with high nonlinearity in both material
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property and geometric deformation, it is difficult to formulate
an effective kinematic model for solving the control task. The
analytical forward kinematics (FKs) solution only exists for
specific designs with a relatively simple shape (e.g., [6] and
[7]). For a general soft robot with complicated structures/shapes,
efficiently computing its inverse kinematic (IK) solution remains
a challenging problem. For soft robots with redundancy, fast and
reliable IK solution is a very important means for improving the
control precision and response frequency in practical tasks [8].

A. Related Work

To efficiently model the behavior of soft robotic systems (i.e.,
computing FK), both analytical formulation and numerical sim-
ulation were conducted in previous research. Those analytical
solutions, based on the differential geometry [6], [7], [9] and the
mechanics analysis [10], are difficult to be generalized for soft
robots with a complex shape, where numerical simulation by
the finite element method (FEM) is usually employed [11], [12].
Computational efficiency is a bottleneck of applying FEM in
the IK computation, as the simulation needs to be repeatedly
conducted to estimate the Jacobian [13]. To overcome this,
a reduced model by voxel representation [14], or computing
quasistatic equilibrium [15], is presented to accelerate. However,
these methods can easily become nonrealistic after applying
large rotational deformation. The geometry-oriented simulation
pipeline [16] can precisely compute the deformation of a variety
of soft robots even in large rotation, which is later extended into
a general IK solver [17] by using the Jacobian-based iteration.
A model reduction method is applied to further accelerate the
numerical-based simulation [18]. However, it is still difficult to
directly include the simulator in the loop of iteration and achieve
fast IK computing.

The data-driven methods used in soft robotics are often treated
as regression problems of machine learning where kinematic
models can be effectively learned from datasets [8]. To en-
able the IK tasks on soft robots, an intuitive solution is to
directly learn the mapping of IK, which takes the motion as
the input of a network and generates the corresponding param-
eters of actuation as output [19]–[25]. However, this intuitive
method does not perform well in a redundant system, as the
one-to-many mapping from task space to actuator space is gen-
erally difficult to learn. Although this issue can be partly solved
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TABLE I
COMPARISON OF LEARNING-BASED METHODS FOR SOLVING IKS ON SOFT ROBOTS

†We evaluate the complexity of network-based IK computing on networks with O(h) hidden layers and O(b) neurons per layer.
‡High complexity in [26] is caused by applying the chain rule to an FK network to obtain its Jacobian, which results in nested functions.

by setting constraints in the actuator space [24] or specifying the
preference of configurations in the IK equation [25], we solve
the problem by using a different method to combine learning
with Jacobian-based IK. Our method is efficient when planning
a smooth motion (i.e., by minimizing variation in the actuator
space) for soft robot systems with redundancy. To reach a similar
goal, Thuruthel et al. [27], [28] attempted to learn the differential
IK model with local mapping. Another method was presented
in [29] to estimate the soft robot’s Jacobian by the Kalman filter
approximation. Recently, Bern et al. [26] presented a method to
effectively evaluate the Jacobian by using the gradients of the
FK network, which however limits the type of network used for
FK learning and requires more time to compute the Jacobian
for determining IK solutions. In our work, both the mapping
functions of FK and the Jacobian are learned by neural networks
as explicit functions. This makes our method far more efficient.
A comparison of three types of learning-based methods is given
in Table I.

On the other hand, learning a kinematic model for soft robots
usually needs a large number of samples, which can be very
time-consuming when generating the data in a physical envi-
ronment either by the motion capture system [4] or embedded
sensors [30], [31]. Moreover, to explore the boundary of the
workspace, a large extension in material under large actuation
needs to be applied [32]. Soft materials on a robot can become
fragile and might generate plastic deformation after repeating
such deformation may times [4]. Consequently, the learned
model becomes inaccurate. Furthermore, errors generated dur-
ing the fabrication of a specimen can make the network learned
on this specimen difficult to be used on other specimens with
the same design. To reduce the cost of generating training data,
Kubus et al. [33] reported a data-efficient method by exploiting
structural properties of the kinematic mapping. Another solution
is to generate the accurate dataset in the simulation environment,
and then convert the model learned from simulation into physical
reality by transfer learning [34]–[37]. The hybrid model contains
the analytical formulation, and the network-based correction
was conducted in [25] and [38], where more precise control
of the soft robot was achieved. Similarly, FEM was used in [39]
to generate a simulation dataset for training a hybrid kine-
matic model by transfer learning. A more efficient numerical
simulator [17] is adopted in this work to generate the training
dataset. When working together with the sim-to-real network,
IK with high accuracy can be achieved. The comparison of IK
with sim-to-real learning by using the reduced analytical model
versus our simulation-based model can be found in Section IV-C.

Fig. 1. Pipeline of the Jacobian-based method to determine the ac-
tuation parameters ck+1 for the waypoint pk+1 ∈ L that solves the IK
problem of soft robots by minimizing O(·) in (1). Both the position pr

in task space and the Jacobian Jr are effectively estimated by the
networks Nfk, NJ , and Ns2r obtained from the offline training. When
O < ε2, we regard the convergence as having been achieved (e.g., 0.1%
of the workspace width is employed as ε).

B. Our Method

Three networks: 1) FKs Nfk; 2) Jacobian NJ ; and 3) sim-to-
real mapping Ns2r, are trained to support the effective comput-
ing of IK for soft robots in both virtual and physical spaces at
a fast speed. With an objective function defined in quadratic
form and the network-based efficient estimation of FK and
Jacobian, the Jacobian-based iteration is used to compute the
IK solution. The pipeline of our method is shown in Fig. 1 with
detail discussed in Section II.

The technical contributions of our work are as follows:
1) A direct pipeline for learning both the FK and Jacobian

from accurate numerical simulation results, to support
effective IK computing for soft robots. This method can
compute IK solutions in a fast speed and has the capability
to plan a smooth motion for soft robotic systems with
redundancy.

2) A two-step learning strategy by using the sim-to-real
transfer learning to eliminate the gap between the predic-
tion based on simulation and the physical behavior, which
can greatly reduce the required amount of empirical data
when compared to directly learning a predictor from the
physical experiment.

The behavior of our method has been verified on two hardware
setups of soft robots giving 2-D and 3-D motions. The effective-
ness of our method is quantitatively evaluated and compared
with other approaches in the IK tasks of soft robots. Experimen-
tal tests are also conducted to demonstrate the performance of
our method on soft robots with the same design, but fabricated
with different materials.
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II. JACOBIAN-BASED KINEMATICS AND LEARNING

In this article, we focus on solving the IK problem for soft
robots—specifically, to determine the parameters of actuation
that can drive a soft robot to reach a target position/shape.
As the analytical IK solution cannot be obtained, we adopt a
Jacobian-based numerical method where a target-oriented ob-
jective function O(·) is minimized to determine the parameters
of actuation. In this section, we first introduce the Jacobian-
based IK computation for the path-following task. After this,
we demonstrate how it can be solved practically by applying
the training in a virtual environment and then the sim-to-real
transformation.

A. Jacobian-Based IK Solution

The path-following problem of a soft robot is described as
driving a marker on its end-effector to move along a path L pre-
sented by a set of target waypoints {p1,p2, . . . ,pi,pi+1, . . .} in
the task space. For each waypointpi to be reached by the marker,
numerical computation of IKs attempts to minimize the distance
between pi and the marker’s position. This is formulated as an
optimization problem

ci = argmin
c

O(pi, c) = argmin
c

‖pi − p(c)‖2 (1)

where p(·) ∈ Rn denotes the FK function to compute the po-
sition of the marker, the input of p(·) is a vector of actuation
parameters c = (c1, c2, . . . , cm) ∈ Rm, and n and m are the
dimensions of the task space and the actuator space, respectively.

To find the solution of (1), the gradient of O(·) is

dO
dc

= −2(pi − p(c))J(c) (2)

will be employed to update the value of c with J(c) = dp/dc ∈
Rn×m being the Jacobian matrix that describes the moving trend
of a soft robot’s body at certain actuation parameters. The value
of c is updated by c = c+ΔhdO

dc , where Δh is a step size to
minimize the value of O(·) along the gradient direction, which
can be determined by soft linear search [17]. Fig. 1 shows the
illustration of this algorithm.

When a physics-based simulation is employed to evaluate the
FK function p(·), the Jacobian matrix J can be obtained by
numerical difference [17], [39]. Thekth column ofJ is computed
as

Jk =
∂p(c)

∂ck
≈ p(. . ., ck +Δc, . . .)− p(. . ., ck −Δc, . . .)

2Δc
(3)

where Δc is a small constant determined according to experi-
ments and assigned as 1/10 N of the actuation range, where N
is the number of samples for each actuation parameter presented
in Section III-B. Notice that it can be time-consuming to evaluate
the values of p(·) and J(·) by physics-based simulation in IK
computing. We therefore introduce a learning-based method to
learn both the FK and the Jacobian model in the offline stage,
which can support a fast IK computing during online usage. In
the meantime, the difference between the simulation and the
physical behavior is fixed by the sim-to-real transfer learning.

Fig. 2. Network structure used in our approach to train the kinematic
model and the sim-to-real transfer.

B. Learning-Based Model for IK Computing

We learn both the FK model and its Jacobian from
simulations,- denoted by ps(·) and Js(·), respectively, which
are transferred to physical hardware by learning a sim-to-real
mapping function r(·). Denoting the location of a traced marker
on physical hardware as pr, the function of sim-to-real mapping
is required to have r(ps) ≈ pr. Neural networks are employed
to learn these functions (see the architecture of neural networks
shown in Fig. 2).

In the simulation environment, ps(·) and Js(·) are trained on
two networks: 1)Nfk; and 2)NJ , by spanning the workspace of
actuators with a large number of samples. Note that the output
layer for NJ is a column vector as the flattened Jacobian matrix
Js. After obtaining the network Nfk, the sim-to-real mapping
function r(·) is trained on a differentiable networkNs2r by using
a few samples obtained from a physical experiment conducted
on the hardware setup.

With the help of these trained networks, we can estimate the
Jacobian on the hardware setup as

Jr(c) =
dpr

dps

dps

dc
≈ diff(Ns2r)J

s(c). (4)

Considering the difficulty of data acquisition on hardware
specimens, the feedforward neuronal network (FNN) with a
single layer of fully connected neurons is adopted in our im-
plementation for Ns2r. The differentiation diff(Ns2r) as an
n× n matrix can be computed analytically by differentiating
the network’s activation functions. As most of the complexity
in kinematics can be effectively captured by Nfk and NJ , a
lightweight network Ns2r trained by a small dataset obtained
from the physical experiment can already show very good per-
formance on eliminating the inconsistency in material properties
and fabrication.

Through this learning-based model, the gradient of the IK
objective function in the physical environment can then be

Authorized licensed use limited to: TU Delft Library. Downloaded on January 09,2023 at 08:56:02 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 3. Two hardware setups employed in our experiments to collect data and verify the performance of our method.(a) Soft actuator with multiple
chambers, (c) which are actuated by an array of syringes. (b) Three connected soft fingers, (d) which can be actuated individually by proportional
pressure regulators.

computed by

dO
dc

= −2(pi − pr(c))Jr(c) (5)

≈ −2(pi − r(ps(c)))diff(Ns2r)J
s(c). (6)

Note that the real positions of markers, pr(c) in (5), can also
be obtained from a hardware setup (e.g., by a motion-capture
system). However, using positions predicted by Nfk and Ns2r

networks can avoid physically actuating the hardware inside the
loop of numerical iteration. After training the networks Nfk,
NJ and Ns2r, an iteration-based algorithm (as shown in Fig. 1)
is used to effectively solve (1). The actuation parameters ci−1

for realizing pi−1 are employed as the initial guesses when
computing ci for pi. As a result, the iteration converges rapidly
and the continuity of motion in configuration space can be
preserved.

III. DATA GENERATION AND TRAINING

We first present two hardware setups that are used in our
research to verify the performance of the abovementioned
learning-based method. After introducing the steps for gener-
ating datasets, the training details are provided.

A. Soft Robotic Hardware

Two hardware setups are constructed to investigate the perfor-
mance of our IK solver. Both setups are equipped with cameras
to capture the real positions of markers for the purpose of training
and verification.

1) Actuator With 3-D Motion: The first setup is a 3-D printed
soft actuator with three chambers that can be actuated individu-
ally [4]. Its soft body can extend and bend in a 3-D task space.
To verify the behavior of our sim-to-real method, two specimens
are fabricated by the same Object350 Connex 3-D printer but
using slightly different materials—the Agilus black and Agilus
transparent materials. Both have the softness 70 A according
to their factory specification. These two models are shown as
Robots 1 and 2 in Fig. 3(a). The soft robot is actuated by an
array of syringes that has closed-loop control with the help of

pressure sensors, as shown in Fig. 3(c). For this setup, we have
the same dimension for the workspace (m = 3) and the actuator
space (n = 3).

2) Planar Finger Manipulator: The second setup is a soft
manipulator that can move in the xy-plane [see Fig. 3(b)]. The
manipulator contains three soft finger sections that are rigidly
connected. We use Festo Pressure Regular VPPE-3-1/8-6-010 to
provide the pressure for each section [see Fig. 3(d)]. Every finger
section contains dual chambers that can bend symmetrically for
both sides up to 120◦. To maximize the deformation of each
finger section, we only actuate one side for a segment, each time
with the pressed air in the range of [0, 3] bar. When considering
both sides of a segment, this results in a range of [−3, 3] as
actuation,- i.e., “+” for actuating the chamber at one side and “−”
for the other side. This is a redundant system with the dimension
n = 2 for the workspace and m = 3 in the actuator space.

B. Data Generation on Simulator

In our work, FKs of soft robots in a virtual environment is
computed by a geometry-oriented simulator [16], [17]. When
employ this simulator to generate datasets for training the FK
network Nfk and the Jacobian network NJ , the computation
time for generating single sample point is 4.3 s (the three-
chamber robot) and 1.2 s (the finger manipulator), respectively.
It is worth mentioning that as a general training pipeline, the
dataset used to train Nfk and NJ can be generated by dif-
ferent kinematic models,- e.g., those analytically computed by
piecewise constant curvature [3] or numerically by the FEM
software, such as Abaqus. Here, we choose the geometry-based
simulator, as it can further reduce the cost of data generation than
FEM. Moreover, it needs to capture less physical data than the
analytical model for training the sim-to-real network (discussed
in Section IV-C).

We now present the sampling method in actuator space for
generating training data points. We uniformly divide the pressure
range of each actuator into N segments to make sure that the
distance between sample points is less than 1% of the workspace
width. Sampling results of the two hardware setups are shown
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Fig. 4. Results of the simulation are employed as training samples
(present in black dots) to learn the FK network Nfk and the Jacobian
network NJ , where these samples also span the workspace Pw of a
robot. Red dots represent some example points as targets for motion in
the workspace.

in Fig. 4, which also presents the workspaces Pw of these two
soft robots. In our experiment, N = 16 and N = 29 are used
for these two setups, respectively. This results in 163 = 4096
samples for the three-chamber actuator [see Fig. 4(a)] and
293 = 24389 samples for the finger manipulator [see Fig. 4(b)].
Notice that the difference in choosing the N value is due to the
redundancy of the finger setup, which also has a larger range
in actuation. Based on our tests, datasets selected in these sizes
can already well-trained Nfk and NJ to capture the kinematic
behavior of soft robots (see the results in the following section).

C. Data Generation on Hardware

For the purpose of training sim-to-real networkNs2r, datasets
are generated on two hardware setups. We uniformly span the
actuator space to generate physical data, which are classified
into the training (70%) and the test (30%) datasets. Since the
efficiency of the training pipeline depends on the number of
samples generated on hardware setups, we test and determine
the appropriate sample number used to train Ns2r—details are
presented in Section III-D.

1) Actuator With 3-D Motion: To trace the 3-D motion of this
soft actuator, we place a marker at the center of its top plane and
several markers on its static base. The motion capture system,
which contains eight Vicon Bonita ten cameras and ten Vicon
Vantage five cameras, is used to capture the movements at the
rate of 30 Hz. Because of the viscoelasticity of soft materials
used to fabricate this robot, it takes a relatively long time for the
position of a marker to become stable (i.e., less than 0.05-mm
change between neighboring image frames). This makes the
process of data collection more time-consuming than a robotic
system with rigid bodies. As a result, the average time for
collecting one sample in the physical environment is 4.0 s.

2) Planar Finger Manipulator: As only planar coordinates
are needed when tracking the positions of a marker, we use
a RealSense D435 camera mounted at the top of the setup. We
place a red marker on the tip of the manipulator and adopt the
OpenCV library as software to track the marker’s position in
the plane. QR code is employed to build the mapping between the
coordinates in image space and the coordinates in the real-world.

The speed of data acquisition for this system is 10 Hz. For this
hardware setup, the average time for collecting one sample point
is 3.5 s.

D. Details of Training

In this article, the type and structure of training models used
in the experiment are carefully selected based on their perfor-
mance. For training Nfk and NJ , FNN and long short-term
memory (LSTM) are tested, as they can both adequately capture
the nonlinear behavior in a training dataset, including the many-
to-one FK mapping for redundant systems. For the sim-to-real
transfer network Ns2r, it needs to be differentiable with analytic
gradients. Meanwhile, it should be lightweight as only a limited
number of samples can be obtained from physical experiments.
For these reasons, single-layer FNN is selected for Ns2r. All
networks are trained by using the deep Llearning toolbox of
MATLAB running on an NVIDIA GeForce RTX 2070 graphics
card.

1) Training for FK and Jacobian: We first study the effec-
tiveness of training Nfk and NJ by using a different number of
layers and different numbers of neurons. Each dataset is divided
into training and test subsets in the ratio of 70% : 30%. For all
networks, the activation function is set as tan–sigmoid

f(x) =
2

1 + e−2x
− 1 (7)

as it can well-fitted the nonlinearity in kinematic mapping. More-
over, it is differentiable and can provide a faster training speed.
We set the batch size as 200, the maximum number of epochs as
13 500, and the learning rate as 0.04. The Levenberg–Marquardt
backpropagation is employed for training.

The estimation errors for both soft robot setups are evalu-
ated on the test datasets, as shown in Fig. 5, where we can
find that FNN and LSTM can both converge to a good result
after carefully tuning the network parameters. It is hard to find
significant improvement in the accuracy by using network with
feedback connections (i.e., LSTM). This is because the training
data only contain quasistatic information of the system, where
the time-related network structure cannot show its advantage.
On the other hand, it is found that the structure of the network
for learning the Jacobian NJ on a redundant system (i.e., the
planar finger manipulator) needs to be selected more carefully.
FNN is selected as the final network structure, and the best
performance for training NJ is observed on this hardware setup
when FNN with h = 2 hidden layers and b = 64 neurons per
layer is employed to learn NJ . Differently, FNN with h = 3
layers and b = 30 neurons per layer gives the best results in
training Nfk. The error of position prediction by using Nfk is
less than 0.5 mm (i.e., 0.58% of the workspace’s width). For
the three-chamber actuator, the numbers of layers and neurons
have less influence on the training result. For this setup, we
select h = 2 and b = 35 for both networks, which results in a FK
prediction with error less than 0.17 mm on the test dataset (i.e.,
0.34% of the workspace’s width). With such accurate predictions
generated byNfk andNJ , we can obtain IK solutions efficiently
and accurately (see the behavior study given in Section IV).
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Fig. 5. Comparison of learning results by using a different number
of layers as h and a different number of neurons b per layer (i.e.,
the total number of neurons in a network is hb). Tests are conducted
on (a) robotic setup without redundancy (the three-chamber actuator
with m = n = 3) versus (b) setup with redundancy (the planar finger
manipulator having m = 3 and n = 2). Red crosses indicate the network
parameters used in the physical experiment.

Fig. 6. Experimental study for the performance influence in the sim-
to-real network Ns2r by using (a) different numbers of neurons; and
(b) datasets in different sizes. With the properly selected complexity of
network structure, the overfitting problem can be avoided. The distance-
predict error can be controlled within 1% of the workspace width for
both setups when a limited number of training samples are used [see
part (b)].

2) Training for Sim-to-Real Transfer: When training for
Ns2r, an important parameter here is the number of neurons,
which is selected as η times the number of samples to avoid
overfitting on the training dataset. Fig. 6(a) shows the behavior
on both the training dataset (denoted by the solid curves) and the
test dataset (denoted by the dashed curves) when using different
values of η. Based on the analysis, η = 1/4 is selected for our
experiment to avoid overfitting.

As the time used to collect physical data points should be
controlled, we also study the behavior of Ns2r with different
numbers of training samples. For this purpose, the prediction
errors as the ratios of the distance errors over the workspace
widths are shown in Fig. 6(b) to study the effectiveness of
using different numbers of samples. In these tests, the num-
ber of neurons is always assigned as η = 1/4 of the training
samples. For both setups, we find that the network Ns2r can be

Fig. 7. Results of the path-following task on two soft robots with the
same design, but fabricated with different materials [shown as robots
1 and 2 in Fig. 3(a)]. (a) Trajectory of the soft robots by applying
IK solutions with (solid line) and without (dashed line) the sim-to-real
network. (b) Visualized tracking errors on trajectory waypoints.

well-trained when using a limited number of training samples. In
our implementation, 1% is selected as the threshold of accurate
prediction, and this threshold is used to determine the number
of samples for training Ns2r. As a result, 343 samples are used
for the three-chamber actuator and 620 samples are conducted
for the finger manipulator. The datasets for training Ns2r on two
hardware setups can both be collected within 30 min.

IV. EXPERIMENT RESULTS

In this section, we present all the experiment results of IK
computing for soft robots by using our learning-based Jacobian
iteration. The results are generated in both the virtual and the
physical environments. Computation of the learned neural net-
works in prediction is implemented in C++ and integrated into
our control platform to gain the best computational efficiency.
All the IK computations were efficiently run on a laptop PC with
Intel i7-9750H 2.60 GHz CPU and 16 GB memory. Note that
the prediction made by networks and the IK algorithm is entirely
run on a CPU.

A. Path Following by Actuator With 3-D Motion

We first test the behavior of the learning-based IK comput-
ing method in the task of path following on the soft actuator
with three chambers. Given 3-D trajectories of the “flower”
shape (see Fig. 7) and the “box” shape (see Fig. 8), 120 and
240 waypoints are sampled on the paths in uniform distances,
respectively. The proposed IK solver is then used to compute
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Fig. 8. Results of path following for the “box” shape trajectory demon-
strate the vertical motion of three-chamber soft robot. It can also find
that the maximal tracking errors are reduced from 4.5 to 1.0 mm for both
robots after applying the sim-to-real network.

the actuation parameters for each waypoint. This leads to the
actuation sequence that can drives soft robot to move along
the trajectories. When running in the simulation environment,
the trained networks can generate actuation that results in very
accurate trajectories with the average tracking error as 0.13 mm.
In the physical environment, we learned the sim-to-real networks
separately on two soft robots, as shown in Fig. 3(a). If we directly
apply the actuation parameters obtained from IK computing
in the simulation environment, the error of path following is
high (i.e., up to 5 mm). At the same time, the variation caused
by fabrication and material can be clearly observed from the
difference between robots 1 and 2, as shown in Fig. 7. By
incorporating the sim-to-real transfer in our method, we can
successfully reduce the error in the physical environment to less
than 1.2 mm for both robots [see Fig. 7(b)], which is 1.71% of
the workspace width. For the tests shown in Fig. 8, the maximal
errors are reduced from 4.5 to 1.0 mm. It is interesting to see that
tests with circular and line trajectories shown similar tracking
error. This is because the IK mapping from task space to actuator
space is nonlinear.

Besides the accuracy, another advantage of our learning-based
approach is its low computational cost. Thanks to the efficient
forward propagation process of FNN networks and fast converge
speed of the Jacobian-based algorithm, the time used to compute
single waypoint IK for the three-chamber setup is less than
30 ms, even when a large number of neurons hb = 128 is
used. As a final result, the time used to compute IK solutions
for the entire “flower” and “box” are 2.53 and 4.12 s, respec-
tively. The quantitative analysis of the converge speed and IK
computing time of our algorithm is shown in Fig. 9, and also
compared with other existing solutions (see Table II). It can be
found that the learning-based method (for both analytical and
numerical methods) can generally provide a more accurate IK
result than the model-based solution, as it can well-captured the
uncertainties that are hard to calibrate (e.g., material shifting,
fabrication error, etc.). When compared between learning-based
methods, direct IK learning is the fastest [see Fig. 9(b)]. Our

Fig. 9. Quantitative analysis for (a) speed of convergence; and (b)
time efficiency of our Jacobian-based training method. Three learning
strategies for computing IK are compared in part (b).

TABLE II
COMPUTING SPEED AND IK ACCURACY BY DIFFERENT METHODS

†Same dataset was applied to learn the direct IK mapping [19] and sim-to-real network
Ns2r in our pipeline.

Jacobian-based method provides the best accuracy and can also
ensure a real-time computing speed (i.e., at the rate of 35+
waypoints per second). In addition, also as aforementioned in
Section I-A, our solution can well-handled the redundant soft
robots to ensure minimum variation when travelling along the
trajectory. This is difficult to be handled by direct IK training.

B. Experiment With Soft Finger Manipulator

The soft finger manipulator, as shown in Fig. 3(b), is a redun-
dant system, which has a higher degrees of freedom (DOFs) in its
actuation space (m = 3) than the task space (n = 2). Therefore,
an input waypoint can have multiple IK solutions. Both the path
following and the interactive positioning tasks are conducted to
validate the performance of our learning-based IK solver on the
redundant systems.

1) Path Following: We first present the results of following an
“8”-shaped trajectory that contains 200 waypoints, as shown in
Fig. 10(a). The actuation parameters obtained from the Jacobian-
based method are compared with those resulting from the direct
IK-learning. Our Jacobian-based IK by learning demonstrates
excellent performance in the accuracy of tracking precision.
The average and maximum tracking errors for all waypoints are
0.08 and 0.18% of the workspace width, respectively. As shown
in Fig. 10(c), our method is able to ensure a smooth motion
that minimizes the variation in actuator space. As a comparison,
large variation (i.e., jumps) in the actuator space can be found
in the results of direct IK-learning [circled by dashed lines in
Fig. 10(c)]. This problem of direct IK learning is mainly caused
by its lack of capability to support the one-to-many IK mapping.
For this trajectory, the IK solutions can be efficiently computed
by our method at the average speed of 39 ms per waypoint.

It is worth mentioning that the configuration of motion com-
puted by our method is highly dependent on the selection of the

Authorized licensed use limited to: TU Delft Library. Downloaded on January 09,2023 at 08:56:02 UTC from IEEE Xplore.  Restrictions apply. 



FANG et al.: EFFICIENT JACOBIAN-BASED INVERSE KINEMATICS WITH SIM-TO-REAL TRANSFER OF SOFT ROBOTS BY LEARNING 5303

Fig. 10. (a) Path-following result on the soft finger manipulator with
the “8”-shape trajectory. (b) Comparison of tracking errors in the task
space from the direct IK learning versus the Jacobian-based iteration by
learning (our method). (c) Visualization of IK solutions in the actuator
space, where C1, C2, and C3 present the actuation parameters (i.e.,
pressures) in three different chambers—large variation can be found
from the results obtained by direct IK learning.

Fig. 11. Two different configurations of motion are shown in (a) and (b),
both of which are feasible IK solutions for following the “8”-shaped path
by the soft finger manipulator. (c) Smoothness in motion is guaranteed
by the Jacobian-based iteration for both results is shown, where the
actuation in every chamber has minimal variation in control parameters
between neighboring waypoints.

IK solution at the starting waypoint (i.e., the initial value). As
shown in Fig. 11, the configuration of the finger manipulator
determined by our IK solver at a waypoint is always close to the
IK solution of the previous waypoint where this dependency
can trace back to the beginning point. This is because our
Jacobian-based iteration tends to minimize the distance-based
objective function defined in (1) while minimizing the change
in actuation parameters. This preferred property is also kept
when computing IK solutions for a motion passing through

Fig. 12. Results for the path-following task passing through the sin-
gularity region. Our method can successfully compute feasible smooth
motions when meeting singularity.

Fig. 13. Interactive positioning results for the soft manipulator with
three finger actuators. (a) With a user-specified position given through
the software interface, our Jacobian-based method is applied to deter-
mine the IK solution. (b) Bar chat presents the tracking errors for different
target positions, where the repeatability is also studied and displayed as
the range of deviation in tracking errors.

the singularity region (see the example in Fig. 12 for follow-
ing an “L”-shaped path). As a Jacobian-based iterative solver,
our method can always generate a nearly optimal solution for
singularity points by applying appropriate terminal conditions
(e.g., minimal variation in the value of the objective function).

2) Interactive Positioning: The experiment of interactive po-
sitioning is also conducted on the soft finger setup. As shown
in Fig. 13(a), users can select the desired point location for
the manipulator’s tip through our interface, and our planner
will compute the IK solutions as the corresponding actuation
parameters. The computation can be efficiently completed at an
average speed of 47 ms together with the sim-to-real network
Ns2r. As a result, users can interactively position the manipu-
lator’s tip—see also the supplementary video1. When different
positions are selected in the workspace, the soft manipulator can
move among configurations with large variations. The errors of
positioning are evaluated and presented in Fig. 13(b) as a bar
chart. It is found that all six target positions can be realized in the
physical environment with tracking errors less than 0.9% of the

1[Online]. Available: https://doi.org/10.1109/TMECH
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Fig. 14. Comparison for studying the performance of sim-to-real learn-
ing on numerical simulation-based (our approach) versus analytical
computation-based [4], [9] training datasets. (a) Visualization of pre-
diction errors in the task space. (b) Histograms show the distributions
of prediction errors when using different numbers (mark as TS #) of
samples to train Ns2r .

workspace’s width. Note that each of these six target positions
is tested ten times in random order to study the repeatability of
our system. The results are displayed as the range of derivation
on the bar chart.

It is observed that our method can generate results in different
configurations for two close waypoints (e.g., the points b and
c shown in Fig. 13) when using initial values that are always
far from the resultant configurations (zero is adopted for all
actuation parameters in this case). Together with the results
presented in trajectory-following experiments (e.g., Fig. 11), our
method shows the capability of determining one “nearest” IK
solution among all feasible IK solutions.

C. Statistical Analysis for Sim-to-Real Transfer

Experiments have been conducted on the setup of three-
chamber soft robot to explicitly compare the behavior of sim-to-
real transfer by using different models in the virtual environment.
Compared to the numerical simulator used in this work, the
reality gap becomes larger when the dataset for training Nfk

and NJ is obtained from an analytical model [4], [9]. When
using the analytical model, more samples are needed for training
the sim-to-real network Ns2r to achieve the similar accuracy. As
observed in Fig. 14(a), the model trained by the dataset obtained
from the numerical simulation (i.e., our approach) shows smaller
prediction errors when using the same number of samples to
learn the sim-to-real network Ns2r. Note that this less accurate
result is still observed even after using more samples generated
from the analytical model (e.g., 64 000 in our experiment) when
the number of real samples is fixed.

This experiment also proves that the sim-to-real network can
effectively eliminate the gap between simulation and reality—
although requiring different numbers of samples for the model
learned from numerical simulation (i.e., our method) and the
analytical model. Fig. 14(b) shows that the accuracy within 1%

Fig. 15. Comparison of the behavior in path following by different
speeds of motion on the three-chamber soft robot.

of the workspace width can be obtained at most points when
TS# = 300 and TS# = 1000 are used by our method and the
analytical model, respectively. As a general case, it is more costly
to generate a large number of physical training samples than
simulation-based samples. Generating a dataset of empirical
samples in a large number is very time-consuming and may
result in material failure. Our method proposed in this article
converts this challenge into an approach, which is easier to
realize; in other words, learning a more accurate predictor from
more accurate samples generated by numerical simulation. As
a result, the gap between prediction and reality can be reduced
and fixed by a light sim-to-real network.

V. DISCUSSION

This section discusses the limitation of our learning-based IK
solver, where a rigorous analysis is conducted to show the influ-
ence with different velocities and external loads on soft robot.
On the other hand, the possible extension of pose estimation by
our method is presented.

In the proposed Jacobian-based learning, we focus on the
computation of quasistatic kinematics. The training datasets
in both virtual and physical setups are collected under the
quasistatic status, where the hysteresis problem in soft mate-
rials is neglected. As one major limitation of this work, only
considering the quasistatic model will bring large errors in the
task of path-following when the dynamic behavior of soft robot
is performed (e.g., the velocity of motion is high). Experiments
are conducted to study the influence of speed in motion to the
trajectory’s accuracy, and the results are shown in Fig. 15. When
the speed of motion is set as less than 1.5 mm/s, the tracking
errors can be controlled less than 1.3 mm. However, when the
speed is increased to 4 mm/s, i.e., the maximum speed that the
actuation system shown in Fig. 3(c) can support, a relatively
large error (i.e., the maximal error as 2.7 mm) can be found on
the trajectory. One possible solution to incorporate the hysteresis
property of soft materials and dynamic behavior of soft robots in
IK computing is to apply the time-variant network structure (e.g.,
recurrent neural network [40]) based on datasets generated in
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Fig. 16. Performance of the proposed IK solver when external load is
applied to the end-effector, where black shows the target trajectory.

different velocities. This requires much larger training datasets,
the generation of which is very time-consuming [29].

In this work, the proportional integral derivative (PID con-
troller is applied to achieve stable pressure to drive soft robots.
The vision system is only used to generate ground-truth data for
the training purpose. In the verification process, the open-loop
system is applied to allow soft robots to achieve given tasks. The
trained network with sim-to-real transfer can already achieve an
acceptable precision in motion without using the closed-loop
controller.

On the other aspect, the trained sim-to-real network will lose
its capability to accurately compute the IK solution when exter-
nal loads are added to the end-effector of a soft robot. As shown
in Fig. 16, significantly enlarged tracking errors can be observed
when external load is directly applied (present by dashed lines
in red). As an additional test, we train a new sim-to-real network
by using the soft robot with load. It can be found that the tracking
errors become small again by using this newly trained network.
This demonstrates the functionality of the sim-to-real transfer
to handle external loads.

Another drawback of this work is that we neglect pose infor-
mation in the pipeline. As an important extension of the learning
framework, poses of a soft robot (i.e., including orientation)
are to be considered [41], [42]. One possible solution is to
directly add the rotation into the output layers of Nfk and NJ .
Meanwhile, training positions and orientations together need to
consider the balance between their different units. Higher DoFs
in actuator space are needed to enhance the feasibility of IK
solutions.

VI. CONCLUSION

In this article, we presented a method to train the FK model
and its Jacobian together as two neural networks to realize the
real-time computation of IKs on soft robots, which is formulated
as an optimization problem. As our method can generate smooth
motion in a redundant system, it outperformed the existing
approaches of direct IK learning. Considering the difficulty
in generating large datasets on hardware setups, we adopted
a highly effective simulator to generate the training datasets,
and later applied a sim-to-real network to transfer the kinematic
model onto hardware. A lightweight network was employed
for sim-to-real mapping, so that it can be trained by using a

small number of samples. This sim-to-real strategy allows our
approach to work on different soft robots that have variations
caused by materials and fabrication processes. The main advan-
tages of our method include the efficient computation and the
ease of applying the sim-to-real learning transfer.

We tested the behavior of our learning-based method in the
tasks of path-following and interactive positioning on two differ-
ent soft robotic setups. Our method can solve the IK problem for
soft robots effectively and make a good control for the kinematic
tasks. As a future work, we plan to explore the possibility of
using time-related data for sim-to-real transfer learning that may
further enhance the accuracy of IK computing. Moreover, it is
also interesting to develop a more transferable learning pipeline
that makes the trained model of kinematics can be easily applied
to similar designs (e.g., when only the sizes of soft robots are
changed).
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