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Abstract

Tactile Internet (TI) is, the next frontier of connectivity development where
not only information but interaction can be exchanged digitally. Much effort
in the field of TI has been spent towards developing the necessary technolo-
gies needed to transmit interactions over the internet in a naturally perceived
way. However not much has been done on improving the evaluation of these
TI technologies, that is, Mean Opinion Score score or Peak Signal to Noise
Ratio measures for audio-video applications. Existing measures and mea-
suring methods only give coarse-grained indications of performance and lack
the depth for good comparison. By using Dynamic Time Warping as start-
ing point we propose our new measures Effective Time & Value -Offset that
fundamentally changes the way to evaluate performance.

We verify our measures by showing it performs significantly better com-
pared to existing work by using data from a new testbed designed to allow
testing in stringent network conditions and to be usable for many future
works.

Our contributions will push forward TI development allowing both incre-
mental and novel developments to be tested more easily and with improved
verification.
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Preface

After just shy of two years of master study i will be finalizing my studies in
Embedded Systems. This thesis is the last report i will be writing towards
finishing my master studies.

After finishing both “Real-time Systems” and “Embedded Systems Lab-
oratory” courses i became interested in what the then called “Embedded
Software” department could have in possible Thesis projects for me. After
several talks with different people of the department i found to have the
best connection with my now supervisor Dr. Ir. R.V. Prasad (VP). From
his topics TI really popped out, the promise of providing real remote in-
teraction sounded as something that should be pursued. So that is what
i chose for. Dtarting what i thought to be a year of doing my thesis in a
relaxed manner. But already from the start VP had other plans and was
able to challenge me by asking me to improve my grades to be eligible for
Cum Laude. Which i did by improving four grades by on average 1.5 points,
which was a very fulfilling experience in itself.

After the first month of literature research i was joined by VP’s PHD-er
Ir. Kees Kroep, he initially focused on developing TI solutions. From the
literature research it became clear that there was a clear lack in ways to
properly measure TI. This sparked heavy brainstorm sessions between me
and Kees on how to actually measure the TI solutions coined so far. We
came up with a fundamental new way of looking at errors by splitting it
into two orthogonal challenges. We then used this new concept to design
our measures. After completing the first version of our measures we had
a great lack in proper test data. This motivated the development of our
testbed. While developing the testbed we used initial data and the finding of
Dynamic Time Warping (DTW) to significantly improve our measures. The
final result is a high quality testbed usable for our current and future work
and a high quality measures usable for testing a wide variety of solutions.

A paper has been written on this work and has been submitted to INFO-
COM 2020. The paper is 10 pages long and carries the title “Setting the
Yardstick: A Quantitative Metric for Effectively Measuring Tactile Inter-
net”.
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Chapter 1

Introduction

1.1 Tactile Internet

Tactile Internet (TI) the field of techniques and systems enabling remote
interaction of humans and machines. The TI goal is to be able to transport
touch and interaction over long distances in a naturally perceived way. This
allows interaction with people, environments and machines without the need
of physical presence. This allows humans to interact in environments which
was previously not possible or safe to do so. Situations like disaster relief,
waste cleanup, physical labor and more can have human interaction without
the risk to the human performing said interaction.

The introduction of transmitted interaction, also called human-in-the-loop
communication creates new much higher demands for the communication
such as sub-10 ms end-to-end (E2E) latency and reliability requirements of
up to five 9’s. These requirements originate from high responsiveness and
sensitivity of human touch.

These requirements drive the innovation towards Ultra Reliable Low La-
tency Communication (URLLC). For example the limits of new techniques
like the Fifth generation of mobile networks (5G) are being pushed by these
requirements. This in turn allows other fields like automotive driving to
benefit of the existence of URLLC infrastructure.

In parallel to the developments made in telecommunications TI also fueled
advancements in sensors, displays and communication protocols. To make
these advancements in TI proper evaluation is essential. So far evaluation
for the most part has been done using Quality of Experience (QoE) and
Quality of Service (QoS). Where QoE is very time consuming and QoS is
often limited to network performance. There have been attempts to solve
this by tying QoE to quantitative measures by creating so called perceived
measures which we will discuss in Section 2.3.2. However these have in
common that they assume unrealistically ideal circumstances like zero delay
and/or loss. What we saw from all measures that the focus is always on one
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aspect, either value-offset or time-offset. With time-offset we mean shift in
signals caused by time differences between the two signals. With value-offset
we mean all differences measured in changes in signal value like error.

To improve upon this a new measure is needed that takes both time-offset
and value-offset into consideration showing that these are two orthogonal
peaces of information that both should considered when evaluating TI so-
lutions. We identify DTW as a measure that handles both time-offset and
value-offset and use it as starting point for developing our measures. Be-
sides a new measure a testbed is needed where realistic situations containing
both time-varying delay and loss can be simulated in which you implement
TI solutions.

1.2 Research goals

The goal of our research is to forward the field of TI. To achieve this we
create the following three main goals:

• A consistent method of measuring TI solutions. Current measuring of
TI solutions do not employ a singular method of measuring making it
difficult to develop, optimize and compare different TI solutions.

• A good quantitative measure that is employable in most situations.
Current measures are only usable under certain conditions greatly lim-
iting their usability as a good performance measure.

• A testbed with all critical components of a TI system.

We achieve these goals by introducing a better measurement method, two
new measures and a new testbed to test them.

1.3 Thesis Organization

This Thesis is organized into six chapters. In Chapter 2 we delve deeper
into TI and explain what the applications of TI are and the work already
done in measuring TI systems. In Chapter 3 we introduce our measures and
it’s precursor. In Chapter 4 we introduce our testbed and it’s precursor. In
Chapter 5 we evaluate the performance of our testbed and use it to evaluate
the performance of our measures. Finally in Chapter 6 we discuss the things
learned, conclude the work we have done and future work.

2



Chapter 2

Related work

Since the inception of the internet we have conquered the transmission of
text, audio and video. The next frontier is the transmission of touch. This
is the field of TI [1]. Transmission of touch is expected to revolutionize the
way we interact with each other and physical environments. Introducing
the transmission of touch to the wider public comes with great challenges.
It is shown by Kandel et al. that when touch is involved a human is much
more sensitive, a human touch can perceive changes up to 1 kHz [2]. While
our sensitivity to for example audio and video is much lower where we can
tolerate delays of up to 80 ms [3]. This means that slight variations or error
can have a large impact on the experience of the interaction.

Because touch is more sensitive, below 10 ms E2E delay and reliability
of at least five 9’s is needed [1]. Achieving these constraints is not possible
using existing commodity communication protocols like TCP or UDP, where
the first incurs high delays when loss is introduced and the latter has no way
of recovering lost data [4, 5]. Since the inception of TI extensive effort has
been spent on improving communication as can be seen by the existing
works [6–8]. As we will see in the following Sections many advancements
have been made, however there is still room for extensive improvements.

However, TI already has applications with positive societal impact with
much more applications to come.

2.1 Tactile Internet Applications

The application of TI is tele-operated systems. A tele-operation is a ses-
sion wherein a tele-operator interacts with a remote physical environment
through the use of Human to Machine Interface (HMI) on the local side
and physical effectors on the remote side. A good example of this is a tele-
operator using a HMI and a robotic arm as effector, the HMI in this situation
is both responsible for recording the position as well as giving feedback to
the tele-operator. A visual representation can be seen in Figure 2.1. In this

3
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Figure 2.1: Typical domains and their components present in a TI session.

Source: Vijay Rao

work we take this example as a typical TI session.

2.1.1 Construction

In the field of construction tele-operation can be used to easily transport
experienced operators to a construction site without needing the operator
to physically anywhere near to the construction site. A good example can
be seen of the tele-operation of an excavator digging in South Korea tele-
operated from Germany [9,10]. This can be extended even further into tele-
operation in construction situations where it would not be safe for a human
to be, like construction of high rise buildings, underground excavation and
more. An example of this can be seen in a unmanned Coal mining robot
presented in Huh et al. [11].

2.1.2 Remote Surgery

A well-known example of tele-operation can be found in the medical field.
The tele-operation of medical operations, especially complex surgery requir-
ing a high degree of expertise and experience [12]. Tele-operation of surgery
allows for the transport of surgeons, actions of qualified surgeons without
the inherent time cost, financial cost and risk for either surgeon or patient.
This enables also the transport of surgeons to area’s of the world that previ-
ously would not be able to get access to surgeons, because they are too costly
or unwilling to live there. A good example of where tele-surgery could be
beneficial is for initiatives like Mercy Ships where only the equipment would
need to be shipped and any surgeon could participate without the inherent
risk of such area’s [13]. Besides preventing the need to transport surgeons,
tele-surgery also has the benefit of enhancing the view and interaction of
the surgeon with information and processing that is normally not possible.
Current solutions include multi-angle view, real-time hand tremor reduction
and overlaying heat and other information on video streams [14].
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Figure 2.2: All technologies involved in Industry 5.0, most of which benefit
from improved communication reliability and low latency due to TI research.

Source: Gem Newz [16]

2.1.3 Disaster Relief

Another area of great interest for tele-operation is disaster relief robots.
Remote controlled robots can provide a critical role in providing disaster
relief in situations when the risk has not subsided for rescue workers. Clean-
up of toxic or nuclear waste where it is too hazardous for a human to come
anywhere near the disaster zone. This has been extensively used in the
ongoing effort in the cleanup of the Fukushima disaster [15].

While all these area’s already give great examples of the usability of cur-
rent TI technologies, we envision it going much further. We envision the
possibility to give real touch enabled interactions over long distances. This
can revolutionize human interaction any will change our daily lives.

2.2 Tactile Internet benefits in other fields

The innovations within TI have a beneficial interplay with many other fields.
The promise of providing URLLC and real remote physical interaction fuels
innovations in the other topics. In the following Subsections we describe the
main fields that benefit from TI research.

2.2.1 Industry 5.0

Industry 5.0 has the aim is to enable more communication between devices
and humans [17]. To allow a new advent of productivity and flexibility in
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Figure 2.3: A situation where 5G can be used to transmit interaction, this
shows that 5G can also be used to power TI applications.

Source: 5G-Enabled Tactile Internet [18]

products and production. Where Industry 4.0 aimed to improve industry by
incorporating the innovations from AI. Industry 5.0 aims to improve upon
this even further by using the innovations of TI in both communication and
robotics. An consumer example of Industry 5.0 can be found in the medical
field where users of medical devices like insulin pumps and insulin sensors
get insight into their own data via apps. An production example of Industry
5.0 can be found in the greater production performance by using real-time
data from in field products and production facilities by connecting both the
product and production facilities.

2.2.2 Fifth generation of mobile networks

The development of 5G is heavily influenced by developments in TI. Re-
quiring URLLC for TI created a demand during the development of 5G to
greatly improve latency and reliability guarantees within 5G with relation to
the previous generation of mobile networks (4G) [19, 20]. Where 5G is now
enabling 1 ms latency compared the >50 ms delay of 4G [21]. The interplay
between 5G and TI works two ways. For example the creation of new TI
applications inspired by 5G as shown by the developments done by Pandi et
al. where they used edge computing together with 5G to enable very low la-
tency multiplayer gaming experiences [22]. That Miao et al. demonstrate by
developing a remote surgery architecture using 5G and TI technologies [23].

2.3 Tactile Internet measuring

While the field of TI is quickly developing there is so far little effort has
been put into streamlining the efforts. By streamlining we mean the fact
that most of the work is difficult diagnose and compare and thus to iterate

6



on. This difficulty stems from the lack of good measures that are univer-
sally applicable. This creates a situation where most works do not share
common measurement methodologies thus making comparison between the
works difficult. In the following Subsections we delve into three categories of
existing measures. For each measure we explain their workings and examine
why they are not sufficient to measure TI systems.

2.3.1 Subjective measuring

Measuring using subjective measurements is being used in TI research to
determine the QoE of different TI systems. Some examples can be found in
Yuan et al. testing the QoE of a sensory system and Brandi et al. testing a
network coding technique [24,25]. Using statistical tools like Mean Opinion
Score (MOS) or Mean Ranking Score (MRS) it is possible to obtain results
that have some stability. However, after these improvements the measure-
ments contain quite some noise and are very hard to reproduce, requiring
significant time investment for basic verification.

Furthermore doing subjective measurements is very resource, time and
potentially financially intensive. Also much care has to be taken to produce
a TI session with sufficiently rotates different scenarios such that a subjects
increasing experience with the system does not influence scenario results too
much.

We conclude that subjective measurements are not a efficient way to de-
velop TI systems.

2.3.2 Deadband measuring

Deadband based measuring is based on the concept that human perception
is relative. Originally coined through Weber’s Law by Ernst Weber in 1834,
which describes that the Just Noticeable Difference (JND) of an sensory
impulse is proportional to the original impulse as shown in Equation (2.1).
Jones et al. later verified that indeed human perception follows Weber’s
Law [26].

∆I

I
= k ⇒ ∆I = kI (2.1)

∆I describes the JND, the smallest amount of change to an sensory impulse
that can be perceived. I is the original sensory impulse. k the constant
describing the relation between the JND and the original impulse. Generally
k is between 5 % and 15 % depending on which part of the body the sensory
impulse is received [27].

The concept of sensory deadband is used extensively in TI research to
reduce the amount information that needs to be transmitted, by only trans-
mitting when the JND threshold has been reached. As shown by the work
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done by Hirshe et al. where deadband is used to decrease the amount of pack-
ets needed to transmit kinaesthetic information [28]. They achieve a packet
rate reduction of up to 89 % without significantly impacting the experience.
In the work by Hinterseer et al. they extend this approach by representing
kinaesthetic information as a vector in 3D space and applying the deadband
as a spherical boundary instead of a per coordinate deadband [27].

The use of deadband however, introduces a new problem, traditional mea-
sures like Root Mean Square Error (RMSE) and Signal to Noise Ratio (SNR)
greatly increase when deadband is used. The increase in RMSE due to dead-
band data reduction is however not in line with the actual experience of an
tele-operator. To remedy this, kinaesthetic measures focused on perception
were introduced.

Haptic Perceptually Weighted Peak Signal to Noise Ratio

The work by Sakr et al. introduces Haptic Perceptually Weighted Peak Sig-
nal to Noise Ratio (HPWPSNR) [29]. HPWPSNR uses the concept of JND
to reduce the influence of any errors below the JND threshold. HPWPSNR
is described in Equation (2.2) and (2.3).

HPWPSNR = 10 log10
||xmax − xmin||2

MSE ·HPW
(2.2)

HPW =
1

N

N−1∑
i=0

{
C if |xi − yi| ≤ JND(xi)

α · (|xi − yi| − JND(xi)) + C otherwise

(2.3)
xmax and xmin describe the maximum and minimum value of the kinaes-
thetic attribute respectively. MSE is the mean square error between the
input (x) and output (y). JND(xi) is the JND of input value i defined as
JND(x) = k · x where k is the perception deadband, often 5 %. C is a con-
stant that signifies errors below the perception threshold, value of 1 is given
as default. α is an penalty factor for values above the JND threshold, value
of 1 is given as default.

Perceptual Mean Square Error

Chaidhari et al. propose an alternative to HPWPSNR called Perceptual
Mean Square Error (PMSE) [30]. PMSE is based on the hypothesized idea
that the perception of the brain varies logarithmically with size of an im-
pulse. PMSE is described in Equation (2.4).

PMSE =
c2

N

N−1∑
i=0

(ln
x(i)

y(i)
)2 (2.4)
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c is a scaling constant typically determined experimentally. x(i) and y(i)
are the i-th input and output sample respectively.

Haptic Structurally SIMilarity

Hassen et al. propose an improvement to the previous two works: Haptic
Structurally SIMilarity (HSSIM) [31]. HSSIM is based on the Structurally
SIMilarity (SSIM) index, the SSIM index an method of image quality as-
sessment. The introduction of the SSIM index greatly improved the image
quality assessment compared to Mean Square Error (MSE) [32]. The goal
of HSSIM is to use the same method as SSIM and apply it to kinaesthetic
signals. This is achieved by relating the luminance, contrast and structure of
SSIM to force strength, distinguishable force difference and temporal neigh-
bourhood of a signal respectively. HSSIM uses an alternative to JND to take
into account perceivability of certain signals and signal changes. This alter-
native is based on Steven power law, which describes that human perception
can be described as a power law [33].

xp = k · xb , yp = k · yb (2.5)

xp and yp are the perceived input and output signal modified with Steven’s
power law. k is a scaling constant, default of 1.4. b the power exponent,
default of 1.8 based on research in [33].

l(xp, yp) =
2µxpµyp + C1

µ2xpµ
2
yp + C1

(2.6)

c(xp, yp) =
2σxpσyp + C2

σ2xpσ
2
yp + C2

(2.7)

s(x, y) =
σxy + C3

σxσy + C3
(2.8)

The above three equations describe the luminance (l), contrast (c) and struc-
ture (s) respectively. µxpandµyp are local means of xp and yp. σxp , σyp , σxandσy
are local standard deviations of their respective signals. σxy is the local cor-
relation of x and y. C1, C2, C3 are positive stabilizing constants. The local
distribution is determined using a window size of 600 to 1200 samples.

HSSIM =
1

N

N−1∑
i=0

(l(xp(i), yp(i))
α · c(xp(i), yp(i))β · s(x(i), y(i))γ)r (2.9)

α, β and γ are tuning parameters used to tune the importance of each com-
ponent, default of 1, 1 and 0.5 respectively. r is the power of the Minkowski
pooling, default of 8 is used.
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Concluding

The above three described measures introduce good methodologies to in-
corporate human error perception into their measures, making them usable
to determine the QoE of a TI session. However none of the three measures
have considered delay present in a typical TI session. This results in that
when a typical TI sessions is considered where some delay (1 ms to 10 ms) is
present all three measures are expected to deteriorate while the experience
is not impacted.

The work of Hassen et al. compares the performance of HSSIM, PMSE
and HPWPSNR [31]. They demonstrate best performance for their mea-
sure HSSIM. Their comparison is well constructed using various statisti-
cally sound metrics. However HSSIM only works for force feedback while
the deadband reduction for positional information is equally important, thus
falling short of PMSE that is usable for both positional and force informa-
tion. Moreover the implementation and computation complexity of HSSIM
is much higher then HPWPSNR and PMSE.

But what all three measures have in common is that only value-offset
is considered an delay is assumed to be not present, however, in a typical
TI session delay is an important component that influences system per-
formance. Moreover the improvements are also presented in packet rate
reduction which is counter intuitive to the assumption that delay is not
present.

2.3.3 Network measuring

Using network statistics is widely used method to quantitatively measure
networked TI sessions. In the work by Eid et al. in developing Admux, a
multiplexing scheme for combining tactile, audio and video jitter and delay
was used to to show the improvements by the system [34]. In the work by
Gokhale et al. in developing a kinaesthetic congestion control scheme delay
was used to test the performance of the scheme [35]. In the work by Cizmeci
et al. in developing an adaptive kinaesthetic encoding scheme Delay is used
to show improved stability in changing network situations [36]. What all
these works have in common is that network delay is used as measure while
omitting the value-offset. It is assumed that this is matched perfectly, while
this is unlikely to be the case.

If we just look at the network statistics besides packet delay, packet loss
and packet rate are also relevant for the performance. Depending on the
other protocols deployed packet loss can have detrimental impact on QoE.
For example deadband protocols as introduced in Section 2.3.2, they greatly
reduce packet rate but this makes any packet loss have extra impact. More-
over, any changes in packet rate may also impact both loss and delay, this
should at least should be covered for a good network based measurement.
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When looking outside of the scope of just the network there are also other
components influencing delay present in an TI session. For some solutions
it might be enough to just look at network statistic. However, this is not
always the case and the other components that introduce delay must be
considered.

The primary other components present in a typical TI session are listed
below:

• Hardware communication. Communication between a device and
your machine takes time. For example an Serial bus operating at
115200 bits/sec will take 3.3 ms to transmit one sample for a six degree
of freedom device (assuming 64 bit floating points).

• Filtering. Signal filtering to reduce noise or improve stability could
introduce delay. For example a filter with a 2 sample delay at 1 kHz
introduces 2 ms delay.

• Packetization. Converting raw data into packets introduces delays.
Also packetization strategies that include deadband reduction or pre-
diction can introduce even more delays.

• OS Scheduling. Scheduling delays because the OS scheduler may
not give your program all the time it needs to process information or
may not give it time exactly when there is new data for your program
to process.

All these components can introduce noticeable delay into a TI session which
in current work is being neglected.

Besides delay, error also needs to be considered. Currently when delay
is used error is always ignored, while the delaying or reordering by delay
and/or jitter may introduce considerable signal error.

2.3.4 Concluding

What all three measuring categories have in common is that the performance
is measured using a single measure. This essentially collapses the fine grained
performance information into a single value. From the usage of value-offset
in Section 2.3.2 and time-offset (delay) in Section 2.3.3 we can see there
more then just either value-offset or time-offset. Especially because one may
impact the other, effects that are currently completely ignored by existing
measure options.

2.4 Tactile Internet testbed

While a good measure is important in testing TI sessions, the usage of an
good testbed is equally important. In the field of TI there is only one usable
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Communication Renderer

Display

Computer

Figure 2.4: Schematic overview of the testbed presented in Bhardwaj et
al. [37]

testbed for testing TI sessions. This testbed is introduced in the work by
Bhardwaj et al. [37]. It uses a HMI to interact with a virtually simulated
environment. A schematic overview of the testbed can be seen in Figure 2.4.
In the testbed 3D positions are read from the HMI at a rate of 1 kHz and
then scaled to the workspace (device radius of 4 cm is converted to 130 cm
in the virtual space). The position of the spherical effector in the virtual
environment is updated and another 1 ms step of the physics simulation is
calculated. The forces present on the effector in the virtual environment are
then scaled and transmitted back to the HMI. In parallel to these physics
updates the graphics renderer uses the information from virtual environment
to render an image to the display.

The testbed uses the Chai3D engine to simulate and render [38]. The
advantage of using Chai3D is the native support for several fairly affordable
HMIs. The HMI used is a Novint Falcon, a HMI with 3 degrees of freedom
(x, y and z) and gives kinaesthetic feedback with 3 degrees of force feedback
up to 8 N [39]. Using this device, the testbed is able to replicate close to
real physical interactions within the virtual environment.

12



Chapter 3

Effective Time & Value
-Offset

In this chapter we introduce our measures and their origin. To be able to
properly use our measures we introduce our own measurement method. We
describe measures usable within our method and examine why they are not
suitable as good TI measures. Afterwards we explain our new measures that
solve these shortcomings.

All measures discussed in Section 2.3 collapse the error either into the
time or value domain. However, both domains need to be considered simul-
taneously. To do this first the time-offset has to be calculated after which
the signal has to be corrected for the time-offset. After this a signal remains
with only value-offsets.

3.1 Blackbox measuring

The first goals as described in Section 1.2 is the lack of a consistent measuring
method within current work. To solve this we introduce the blackbox mea-
suring method. The method is straightforward, we take the whole system

input output

Performance

black
box

Measure

Figure 3.1: High-level overview of the blackbox methodology to illustrate
that no information is needed from the tested system just input and output.
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and it’s properties as a blackbox, hence the name. We then only measure at
the input and output and use that information to determine the performance
of the system present in the blackbox. The Blackbox method is illustrated
in Figure 3.1. The advantage of this approach is that no information of the
system is needed to be able to determine it’s performance.

3.2 Discrete signals and discretization

For the following sections it is important that the used signals are properly
defined. We define two discrete signals, one ideal signal denoted g and one
non ideal signal denoted f . If not otherwise specified g and f both have
equal length N . For systems that assume the input is ideal, g and f can
be seen as input and output respectively. However, we explicitly do not use
them in this way because the input may contain noise and the output may
be actually the ideal signal.

However, not all signals can be measured perfectly discrete. To solve this
we discretize our timestamped signal using the below described Matlab code.
Here T contains the timestamps, X contains the data values and Y is the
discrete version of X. We define the timescale we want to discretize to to
be the same as the timescale of the timestamps. For our purposes that is
the millisecond timescale.

% starting time, timestamp do not have to start at zero

T_start = min(T);

% Initialize discrete signal

Y = zeroes(max(T) - T_start, 1);

idx = 1; % Starting index

for i=1:size(T)

% Find the index of the previous non discrete sample

% before the time point we want to calculate

while T(idx + 1) < T_start + i

idx = idx + 1;

end

% determine the velocity between previous and next

% non discrete sample

velocity = (X(idx + 1) - X(idx)) / (T(idx+1) - T(idx));

% calculate discrete sample using calculated velocity

% and elapsed time since previous non discrete sample

Y(i) = X(idx) + velocity * (T_start + i - T(idx));

end

This Matlab code interpolates missing discrete values using the previous and
next non discrete sample for a given discrete time point.
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3.3 Fixed time-offset as static improvement

The initial solution to calculate the time-offset is to use a fixed time-offset.
We implement this by calculating the Euclidean distance between the input
and output signal and taking the offset that has minimal distance. Essen-
tially finding the n such that minimum value is obtained, as described by
Equation (3.1).

min
n∈Z

N−1∑
i=0

|f [i]− g[i− n]| (3.1)

n is the amount of samples time-offset. Thus this gives us εtime = n. Using
this we can calculate the value-offset of each sample using:

εvalue[n] = |g[n]− f [n+ εtime]| (3.2)

To handle the boundaries we define the following: 0 ≤ n + εtime ≤ N − 1.
While the calculation using fixed time-offset is very straightforward it has
one huge drawback, it cannot cope with any changes in time-offset.

3.4 Dynamic Time Warping as dynamic improve-
ment

A dynamic solution for time-offset estimation is DTW [40]. Created to im-
prove voice recognition of spoken words. The goal of DTW is to find a warp
path such that the Euclidean distance between two signals is minimized.
With warp path (w) we mean the path that connects the two signals with
minimal Euclidean distance. The warp path is a list of tuples (i, j) that con-
nects two points between the two signals. The length (K) of the warp path
is bound by N and 2N − 1. The warp path has one restriction to preserve
time continuity, one sample of a signal may not be mapped to a point that
is before mapped points of previous signal samples, thus w(n) < w(n + 1)
which means that every next tuple in the warp path must have at least one of
the two values increase thus w(n, 0) > w(n+ 1, 0) or w(n, 1) > w(n+ 1, 1).
For the boundary conditions the following is defined: w(0) = (0, 0) and
w(N − 1) = (N − 1, N − 1). To describe what DTW is trying to solve we
can use Equation (3.3) for the best possible warp path.

DTW (g, f) = min
w

K−1∑
n=0

|g[w(k, 1)]− f [w(k, 2)]| (3.3)

3.4.1 Implementation

The calculation of DTW goes in three steps.
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I II III IV

Figure 3.2: An illustrative example of how DTW behaves when aligning two
signals, the two solid lines indicate two discrete time series and the dashed
lines indicate how DTW aligns the samples

1. Calculate a distance matrix A of size NxN using

A[i, j] = |g[i]− f [j]| (3.4)

2. Calculate a cumulative distance matrix C using

C[i, j] = A[i, j] + min


C[i− 1, j]

C[i, j − 1]

C[i− 1, j − 1]

(3.5)

3. Backtrack through C to calculate the warp path using

C[w(k−1, 0), w(k−1, 1)] = min


C[w(k, 0)− 1, w(k, 1)]

C[w(k, 0), w(k, 1)− 1]

C[w(k, 0)− 1, w(k, 1)− 1]

(3.6)

This means that the time-offset increases, decreases or stay the same,
which is equivalent to moving left, moving down and moving diagonally
down respectively.

3.4.2 Shortcomings

While DTW offers considerable improvements compared to Cross Correla-
tion, it does not offer a good solution to calculate time-offset. This stems
from the fact that the objective of DTW is to minimize Euclidean distance
and not offer time-offset information. To achieve minimal Euclidean dis-
tance it tries to resolve every error as time-offset. This means that the warp
path that DTW produces is not accurate as time-offset indicator. We iden-
tify four shortcomings of DTW that need to be solved to make it usable as
time-offset. Too illustrate these problems we use Figure 3.2.

16



Start and finish behavior

Due to the boundary conditions of DTW it has to start at zero time-offset
and go back to zero offset at the end. This means that DTW has to as-
sume the signals start and finish with zero time-offset, which in nearly all
situations is incorrect. This creates a situation where at the start and finish
DTW has to sacrifice value-offset to catch up and let go respectively of the
signals behavior. This is especially bad in signals that have a large start or
finish time-offset. For example, if a signal is perfectly replicated but with a
large constant time-offset, DTW will incorrectly conclude large signal mis-
match while even fixed time-offset will come to the correct conclusion that
the signals match perfectly. This can also be seen at the start and finish of
the signals in Figure 3.2, there is an start and finish time-offset of 3 samples
but DTW has to first jump by 3 samples and in the end has condense back
the same 3 samples.

Erratic decision making

When two low velocity signals are compared which have minute variations
relative to each other DTW tends to create very erratic time-offset changes.
This is due to the fact that DTW optimizes the remaining value-offset even
when that remaining value-offset is infinitesimal. An example of this can be
seen in Segment II of Figure 3.2 where both signals have low velocity and
experience a small amount of noise. DTW decides to significantly increase
and decrease time-offset just to optimize for the noise completely ignoring
the broader signal.

Insensitive to shape

DTWs design is to optimize for minimal Euclidean Distance no matter the
cost in the time domain. This means that the warp path is designed to
change frequently. This is useful when comparing two different people saying
the same word but with a different pitch, for DTW these two signals are very
similar. However, for TI applications a different velocity of a signal might
have a completely different result. For example when looking at Segment
III of Figure 3.2, the top signal is moving at a higher speed than the bottom
signal. However, for DTW the signals have zero value-offset because every
signal sample can be matched by adjusting the time-offset.

Counter intuitive stalemate resolution

When there are multiple warp path’s that yield the same Euclidian distance
DTW makes a decision that is consistently counter intuitive. For example
looking at the transition of Segment III into Segment IV of Figure 3.2 DTW
reduces the time-offset to zero to align the signals for the change that has
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yet to come. This means that DTW pre-aligns the signals to accommodate
for changes in the future, which is counter intuitive. A more logical choice
would be to wait until the time-offset would actually need to be changed,
the moment the change happens not earlier.

3.5 Defining Effective Time-Offset

In the previous Section we discussed DTW and it’s shortcomings when us-
ing it as time-offset, in this Section we are gonna show how DTW can be
used create a measure that is usable as time-offset by solving these short-
comings. Thus we use DTW as starting point to introduce Effective Time-
Offset (ETO) and Effective Value-Offset (EVO). ETO is defined as the
estimated time-offset between a signal (f) and the ideal version of that sig-
nal (g), this means that f [n] is mapped onto g[n − ETO[n]]. This is our
replacement of DTWs warp path. EVO is defined as the value-offset between
the time-offset corrected version of f and the ideal signal (g). In the follow-
ing Subsections we explain how we solve the problems that exist in DTW
to create our two new measures for the TI.

3.5.1 Removing boundary conditions

As discussed in Section 3.4.2 DTW creates unneeded error during the begin
and end of a signal. The root cause of this is because DTW needs to compare
two signals of equal length and give a difference score. To resolve this we
define the maximum allowed time-offset for ETO as M samples. With this
change in definition we also introduce four important changes:

1. Change the length of the ideal signal g to be N + M instead of N .
This is needed to deal with possible starting time-offset.

2. Change the size of the cumulative distance matrix C to MxN , this
implements the limit of M time-offset. This changes the cumulative
distance matrix to:

C[i, j] = Λ(i, j) + min


C[i− 1, j]

C[i, j − 1]

C[i− 1, j − 1]

(3.7)

Λ(i, j) = |f [i]− g[i− j +M ]| (3.8)

C[i, j] was originally defined as the distance between g[i] and f [j] this
now changes to the distance between f [i] and g with a time-offset of
j.
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3. Set the first column of the cumulative distance matrix (C) to 0 en-
suring that the correct initial delay is chosen during the backtracking
step of the algorithm.

C(0, ∗) = [0]M

4. Set the last value of ETO to be the index of the cheapest value of the
last column of C.

ETO[N − 1] = i ∈ [0, N)|min{C(N − 1, i)}

These changes ensure that at the start and end of f the time-offset of 0 no
longer needs to be enforced and thus the correct time-offset can be chosen.
This has the added benefit that it limits the time-offset search space to M
samples instead of DTWs N samples, thus not exponentially growing the
search space with signal length. For those with previous experience with
DTW, this is a similar complexity improvement as introduce by Sakoe et
al. [41].

3.5.2 Reduce erratic decision making

As discussed in Section 3.4.2 DTW has very erratic time-offset changes
when dealing with low velocity sections of non ideal signals. To combat
this we introduce Pstep penalty proportional to the amount by which the
time-offset changes. This means that the cumulative distance matrix calcu-
lation changes to the following:

C[i, j] = Λ(i, j) + min


C[i− 1, j]

C[i, j − 1] + Pstep

C[i− 1, j − 1] + Pstep

(3.9)

Pstep suppresses the magnitude of adjustment to the time-offset. This also
makes ETO noise resilient.

How Pstep should be chosen depends on the desired behavior, however we
found that setting Pstep to 5 % of the maximum signal value produces a stable
time-offset result. 5 % was chosen based on the concept that most deadband
implementations found that 5 % is a good trade off between reduction and
still reasonable performance, this seems to hold as well for our algorithm.

3.5.3 Creating context awareness

As discussed in Section 3.4.2 DTW has low awareness for shape because it
matches on value and thus can warp a signal significantly to match it. The
previously introduced Pstep does not address this because for large changes
this is a penalty that does not influence the decision and has to be payed
anyway. Thus still resulting in many time-offset changes. To resolve this
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we introduce Pchange, a penalty that has to be payed when a change occurs,
thus every time ETO[n] changes. While it is an similar change as Pstep, the
implementation much more complex. To implement this we have to define
what a change is. We define a change by splitting changes into an increase
or decrease of time-offset.

• An increase in time-offset is gradual, time-offset cannot progress more
then time can. This means that the largest increase of time-offset can
be a diagonal line. Thus we define an increasing change as one or more
directly following diagonal steps. We can calculate this using Equation
(3.10).

C↗[i, j] = min
k∈N+

{
C[i− k, j − k] + Pstep + Pchange+

k−1∑
l=1

Λ(i− l, j + l) + Pstep

} (3.10)

k is the amount of diagonal upward steps made in this single change.
All the k− 1 steps in between have to be payed via the difference and
step penalty but only one change penalty needs to be payed.

• An decrease in time-offset can happen instantaneously, suddenly new
information can be present decreasing time-offset instantaneously. Thus
we define an decreasing change as one or more vertical downward steps.
We can calculate this using Equation (3.11).

C↓[i, j] = min
k∈N+

{
C[i, j + k] + Pstep + Pchange+

k−1∑
l=1

Λ(i, j − l) + Pstep

} (3.11)

k is the amount of vertical downward steps made in this single change.
Again all the intermediary steps have to be counted.

• For uniformity we also change the way we write forward changes into
Equation (3.12).

C→[i, j] = C[i− 1, j] (3.12)

Combining Equation (3.10) to (3.12) into the cumulative distance matrix
(C) gives us Equation (3.13).

C[i, j] = Λ(i, j) + min
{
C→[i, j], C↓[i, j], C↗[i, j]

}
. (3.13)

This successfully introduces Pchange into the algorithm, giving us control
over how many adjustments are made to the time-offset instead of many
frequent changes like DTW. How Pchange should be chosen depends on the
desired behavior, however we found that setting Pchange to 2Pstep has the
most realistic effect.
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3.5.4 Improved stalemate resolution

As discussed in Section 3.4.2 DTW tends to anticipate on future changes
and prematurely changes the time-offset to accommodate them. This way
of handling future changes is not realistic, instead changes should be han-
dled when they happen and not earlier. The previously introduced penalties
address the magnitude and frequency of adjustments to the time-offset, but
not the timing of when these changes occur. To address this a final penalty
is added Plazy. This penalty introduces laziness into our algorithm, post-
poning a change until it is more costly to wait then Plazy. The penalty is
introduced differently compared to Pchange in that it is only included in the
final value. This means that Plazy does not influence the conditions on which
the cumulative distribution matrix are determined only the resulting value.
This results in the cumulative distribution matrix (C) being calculated as
shown in Equation (3.14).

C[i, j] = Λ(i, j) +


C→[i, j] if C→[i, j]<min

{
C↓[i, j], C↗[i, j]

}
,

C↓[i, j]+Plazy if C↓[i, j]<min
{
C→[i, j], C↗[i, j]

}
,

C↗[i, j]+Plazy otherwise

(3.14)
This change introduces laziness which makes the timing of the algorithm
more intuitive. How Plazy should be chosen depends on the desired behavior,
however we found that setting Plazy = 0.5 · Pchange strikes a good balance
between being too lazy and skipping over changes or making changes too
early.

3.5.5 Concluding

The introduction of the boundary conditions and the three penalties creates
a measure that produces much more intuitive time-offset and value-offset
compared to DTW. These changes do increase the value-offset, however
that is for the better because the value-offset is now realistic instead of the
over optimized value-offsets of DTW.

3.6 Defining Effective Value-Offset

In the implementation of DTW the value-offset is added together to produce
a single measure of the distance between the two signals. For EVO we are
interested in value-offset as an time series, this allows to be able to identify
value-offset introducing portions of the signals. Moreover, it also allows
other further measures to be applied on top on the value-offset information.
Calculation of EVO is non trivial because when the time-offset changes a
sample from the ideal or non ideal signal may be used to calculate multiple
value-offsets. This results in two problematic cases:
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1. When time-offset increases multiple samples of f should be calculated
against a single sample of g.

2. When time-offset decreases multiple samples of g should be calculated
against a single sample of f .

However this first case is not relevant for the calculation as we calculate
EVO from the perspective of the non ideal signal (f). To cover this second
case we need to calculate all intermediary errors and add them together.
This results in the formula for EVO being Equation (3.15). The first case
is covered using the fact that ETO[i] will increase and thus every sample
of f is correctly calculated against the same value of g. The second case
is covered by summing all the intermediary value-offsets together onto the
sample before the time-offset decrease.

EVO[i] =

{∑ETO[i]
j=ETO[i+1] Λ(i, j) if ETO[i]>ETO[i+1],

Λ(i,ETO[i]) otherwise.
(3.15)

3.7 Implementation of Effective Time-Offset

Using the mathematical description as explained in Section 3.5 we propose
an algorithm for calculating ETO. The implementation of ETO is more
complex due to the addition of Pchange, increasing the amount of considered
options from 3 to M for every cell of the cumulative distance matrix. Ad-
ditionally due to the fact multiple steps are considered when calculating a
cell of C a simple backtracking algorithm won’t work anymore because C
does not contain the amount and direction of steps that need to be taken.

To solve both these problems we introduce an alternative to the cumula-
tive distance matrix, the direction matrix D. Every cell of D contains the
amount of steps either up or down that the back tracker needs to take to
reach the next sample. This gives use the following three options:

• Downward steps. This is a negative value indicating the amount of
diagonal downward steps that need to be taken. This is the inverse
of the original cumulative distance matrix because we are storing val-
ues for the back tracker so they need to direct a path backwards not
forwards.

• Upward steps. This is positive value indicating the amount of ver-
tical upward steps that need to be taken. This is again the inverse,
because we are tracking backwards.

• Horizontal steps. This is indicated as the value 0.

While the introduction of D solves these problems we cannot completely
remove C because we still need to keep track of the cumulative distance.

22



However we can reduce this to just 2M + 1 values since D contains the in-
formation to do the back tracking and thus only the cumulative distance of
the previous values are needed. 2M + 1 because M values of the previous
column, M values for the diagonal value tracking and a value for the ver-
tical change. This reduces the memory cost of the cumulative values from
dynamic signal dependant to fixed memory cost dependant only on M . The
previous column values are stored in C→, these are needed to store the nec-
essary information needed for the first option in Equation (3.14). Diagonal
values in C↗ and indices in idx↗ are needed to store the starting cost and
index respectively of a diagonal change as seen in Equation (3.10). Vertical
value in C↓ and index in idx↓ are needed to store the starting cost and index
of a vertical change as seen in Equation (3.11). Our proposed algorithm of
populating D is visualized in Figure 3.3. Finally using D back tracking
becomes fairly trivial, our implementation is visualized in Figure 3.4. Using
the resulting ETO, EVO can be calculated using Equation (3.15).
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! %
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C→[j] > C↓ + Pchange

C→[j] > C↗[j] + Pchange

C↓ > C→[j]

C↗[j] > C→[j]

C→[j] = C↓ + Pchange + Plazy
D[i, j] = idx↓

C→[j] = C↗[j] + Pchange + Plazy
D[i, j] = idx↗[j]

C↓ = C→[j]

idx↓ = j

C↗[j] = C→[j]

idx↗[j] = j

C↗[j + 1] = C↗[j] + Λ[i, j] + Pstep

idx↗[j + 1] = idx↗[j]

C↓ = C↓ + Λ[i, j] + Pstep

C→ = C→ + Λ[i, j]

j ≥ 0

i < N

j = M − 1
C↓ =∞

C↗[0] =∞

i = i+ 1 j = j − 1

!

%

!

%

finishstart

D = [0]M×N

C↗ = [∞]M

C→ = [0]M

i = 0
idx↗ = [0]M

idx↓ = 0

Figure 3.3: Flowchart of the algorithm that finds the optimal way of travers-
ing the time offset, given the constraints specified for ETO.

24



i >= 0

l > 0

D[i, j] < 0

D[i, j] > 0

!

%

!

%

!

%

l = l − 1
j = j − 1

l = −D[i, j]

j = j + D[i, j]

ETO[i] = j − L
i = i− 1

%

!

i = N − 1
ETO = [0]N

l = 0
j = jstart

finish

start

Figure 3.4: Flowchart of the backtracking algorithm used to extract the
ETO from direction matrix D.
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Chapter 4

Tactile Internet Testbed

To be able to test, verify and compare TI solutions a good testbed is needed
that produces typical TI sessions. In this Chapter we first elaborate on the
requirements for a good TI testbed. Afterwards we apply these requirements
to a TI testbed presented in Section 2.4 and analyze how well it meets the
requirements. Using the requirements and lessons learned from the existing
testbed we design an improved architecture. We explain our implementation
of this architecture including code details. Finally, we demonstrate how
protocols can be implemented.

4.1 Requirements

To produce a typical TI session (as described in Section 2.1) several compo-
nents are needed. A testbed needs to be able to support multiple protocols
without impacting the whole testbed. To clearly differentiate between the
different required components we distinguish the following four main testbed
components.

1. Human to Machine Interface (HMI). Producing position data
is done using a HMI because this matches a real world TI session.
The position data produced when a human is operating a HMI has
interplay with the feedback received from the HMI. This is hard to
replicate without a HMI.

2. Networking. To be able to test real world scenario’s, networking
needs to be part of the testbed. Moreover this allows the use of a
variety of existing network simulators without needing to modify the
testbed when changing the simulation.

3. Feedback enabled interaction. Being able to physically interact
remotely is an component of TI. Introducing the feedback is essential
to having actual interaction in a TI session. Moreover it has been
proven that adding feedback improves the operator performance [42].
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4. Modulair. The testbed must be modulair in such a way that different
protocols can be tested without affecting the behavior of the rest of
the testbed. Moreover, this allows others to easily implement protocols
without needing to understand the whole testbed codebase.

4.2 Standard testbed

The testbed from existing work as described in Section 2.4 uses a program
to simulate a physical environment. The testbed is able to produce a very
convincing experience providing a good TI session. This is thanks to the
use of the Chai3D engine, an engine that is capable of driving a physics
interaction at a high refresh rate. However, the testbed does not contain
networking, so this missing component needs to be added for it to qualify
our requirements. Furthermore after code inspection, the current implemen-
tation is not modular. It is possible to implement other protocols but there
is no Application Program Interface (API) or code present to do this in a
consistent manner.

4.3 Networked testbed architecture

The design of our testbed is inspired by the Standard testbed. From this
testbed we adapted the same concept of a virtual environment with a ren-
derer and a physics engine, where the latter provides a close-to-reality solu-
tion in simulating a realistic experience.

To add the second testbed component, the positional information of the
HMI has to to travel over a network connection before being processed in a
virtual environment. Similar for the feedback information it first needs to
travel over a network connection before being transmitted to the HMI for
display to the tele-operator. To achieve this we introduce a second machine
which runs a second virtual environment responsible for the physics engine.
We remove the physics engine in the original virtual environment, making
it purely responsible for containing the information the renderer needs to
render to the display. The communication between the two sides works
by communicating the positional information from the HMI to the second
machine. The second machine then computes the feedback and virtual in-
formation and communicates this back to the original computer which uses
this information to update the feedback to the operator and to update vir-
tual environment used for rendering. By rendering the virtual environment
this way also has an added benefit of not needing to transmit any video.
For clarity we label the original computer “Master” en the new computer
“Slave”.

To fulfill the fourth testbed requirement the communication is split up into
two sides with each 3 parts. A Packetizer and Depacketizer responsible for
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Figure 4.1: Schematic overview of our testbed architecture.
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writing to and reading from the network respectively. A Protocol component
containing the logic of the currently tested protocol.

All these changes result in a new architecture visualized in Figure 4.1.

4.4 Testbed implementation

Falcon Protocol Transmitter

renderer Protocol Receiver

Physics
Engine

Protocol Transmitter

Protocol Receiver

Network
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network
communication

network
communication

1 2 3

4 5

9

7 8

10
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Master

Slave

Figure 4.2: Overview of the components in our testbed.

To implement this new architecture we first create an high level implemen-
tation overview shown in Figure 4.2. Our implementation contains six com-
ponents.

• Physics Engine. The physics engine handles converting position
information into virtual interactions resulting in feedback and virtual
object information.

• Renderer. The renderer is responsible for rendering virtual object
information to a display.

• Network communication. The network communication handles
reading and writing from the underlying Operating System (OS) net-
work sockets.

• Protocol. The protocol reads data from and writes data to the HMI
and network communication component. Depending on the employed
protocol some read data may be ignored or changed. This is the only
component that changes when a different protocol is tested.

• Application Main. The application main instantiates all compo-
nents and ties them together.
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• Logging. The logging is responsible of writing the logged data to file.

The testbed is implemented using 3 machines as shown by the dotted boxes
in Figure 4.2. Two Windows machines running the Master and Slave side.
One Linux Machine running the Netem Network Simulator, block 6 in Fig-
ure 4.2.

In the following subsections we go into depth on how all the components
are implemented and what their APIs look like.

4.4.1 Physics engine

For the implementation of the physics engine we use the same engine as in
the standard testbed: Chai3D. There were several reasons for doings this,
we list them below.

• HMI support. Chai3D supports various HMIs that are fairly afford-
able and that offer a decent feature set. Currently 8 device types are
supported and support for more devices can easily be added using the
available API of the engine [38].

• Fast physics. The physics engine of Chai3D is optimized to provide
feedback for HMIs, which require much higher update frequencies then
normal for physics engines (1 kHz versus 20 Hz to 60 Hz). The cause
for this is that most physics engines are built for the use in games
where an low update rate does not impact the experience.

• Developed for kinaesthetic applications. Chai3D is developed
with kinaesthetic feedback in mind which reflects in various parts
playing nice even when updating at high frequencies. For example
updating the position of objects at a high rate does not trigger com-
plex render logic, this is only done when a new graphics frame needs
to be rendered.

To simulate the interaction of the HMI with the virtual objects the posi-
tion of the HMI is simulated as a small sphere hereafter called effector that
interacts with the virtual environment, as shown in Figure 4.3.

We implemented the physics simulation using an update loop that is run at
1 kHz. Every step of the simulation we calculate 1 ms of physics interactions.
We then record the force present on the effector and the positions of the
virtual objects. The recorded information is then returned to the Protocol
as ToolFeedbackInformation object. This object contains the following
information:

• numDofs. The number of double values present in the dofs array.

• numFeedbacks. The number of double values present in the feed-
backs array.
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Figure 4.3: Snapshot of the rendered virtual environment, showing the ef-
fector as a dark gray sphere.

• originalTimestamp. The timestamp (µs) of when the dofs were
recorded at the Master side. Stored as an unsigned 64 bit integer.

• feedbackTimestamp. The timestamp (µs) of when the feedbacks
were recorded at the Slave side. Stored as an unsigned 64 bit integer.

• dofs. The degrees of freedom recorded at the Master side used in the
calculation of this feedback. Stored as an array of double values.
Position 0 to 2 contain x, y and z.

• feedbacks. The information used to represent the feedback. Stored
as an array of double values.
Position 0 to 2 contain x, y and z feedback force.
Position 3 to 5 contain x, y and z feedback torque.
Position 6 to 17 contains the positions of the virtual objects.

The API of the Physics engine is as follows:

• ToolFeedbackInformation updateTool(ToolInformation * info);

This function takes as input a pointer to ToolInformation which is
used to update the position of the effector. The function returns a
ToolFeedbackInformation object calculated using the physics engine.

This API is used by the Protocol to execute a physics simulation step. In
every update loop iteration the Protocol executes this function using the
ToolInformation it wants to apply at that step.

4.4.2 Renderer

The Renderer also uses the Chai3D engine to run the virtual environment on
the Master side. The virtual environment is updated by the Protocol when
it has feedback information it wants to apply. When the Protocol applies
ToolFeedbackInformation the Renderer forwards the force feedback to the
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HMI and updates the position of all objects in the virtual environment. This
is done by the Renderer because the driver of the HMI is managed by the
Chai3D engine.

The actual rendering of the virtual environment is done in parallel in a
separate thread that updates the visual image at 60 Hz, the refresh frequency
of the used display.

Because the Chai3D engine manages the underlying HMI driver the Ren-
derer is also responsible for exposing the readout function of the HMI. It
presents these readout’s using a ToolInformation object. This object con-
tains the following information:

• numDofs. The number of double values present in the dofs array.

• timestamp. The timestamp (µs) of when the dofs were recorded.
Stored as an unsigned 64 bit integer.

• dofs. The degrees of freedom read from the HMI. Stored as an array
of double values.
Position 0 to 2 contain x, y and z.

The API of the Renderer is as follows:

• ToolInformation getInformation();

This function exposes the readout function of the underlying HMI
driver. The function executes a new readout of the device and returns
the readout as an ToolInformation object. When a new readout is
stored into ToolInformation object also a timestamp from the glob-
alClock is stored into the same object.

• void applyFeedback(ToolFeedbackInformation * feedback);

This function uses the given feedback to update the force feedback
that should be given by the HMI using the underlying HMI driver. It
also updates the position of the objects in the virtual environment.

4.4.3 Network communication

To handle transmission of data from and to the network we introduce the
network communication component. This is implemented by using two
Packet object queues and two threads. The two queues are responsible
for storing Packet objects ready to be transmitted and Packet objects that
have been received. The two threads are responsible for reading from the
socket and putting the raw data into Packet objects and storing them in
the receive queue and for writing the raw data from Packet objects into the
Socket. The reason for using these two queues and threads is to decouple the
network IO from the rest of the application and thus removing and blocking
delay that the network IO may introduce. This blocking delay exist because
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whenever we call the send function and the send buffer is full we have to
wait until there is space for our packet in the send buffer.

For the underlying socket protocol we considered several options, we ex-
amine them below.

• Transmission Control Protocol (TCP). The most used proto-
col for internet based communication, offering reliability and ordering
guarantees. The downside of how TCP implements the reliability is
that when packets are lost they have to be re-transmitted and the
whole communication has to wait because of the guaranteed ordering.
Furthermore, TCP is a streaming protocol meaning that data is han-
dled as a stream and the application has no control over how data is
divided into packets, this has the downside that packet can be divided
illogically increasing delay even further because all parts are needed
before the packet can be decoded.

• Stream Control Transmission Protocol (SCTP). A protocol
that offers the same reliability guarantees as TCP. SCTP differs from
TCP in that is not stream based but message based. However, it still
has delay downsides because of the same reliability guarantees as TCP.
Furthermore, SCTP is not natively supported on most OSs and often
implemented on top of TCP which readds all the problems TCP has.

• User Datagram Protocol (UDP). A protocol that transmits pack-
ets without making control decisions. This gives the application full
control on how reliability and related delay is managed. It has the
downside that protocol offers no guarantees and thus the implementa-
tion of such features need to be handled by the application.

We chose to use UDP as it does not introduce extra delay and offers full
flexibility to the protocol component to implement reliability and other fea-
tures.

The Packet object used contains the following information:

• type. A one byte unsigned integer value from the first byte of the raw
packet denoting the type of the packet.

• length. A two byte unsigned integer containing the total amount of
bytes stored in the data array, which contains the original packet data.

• data. Raw data stored as an array of unsigned integer one byte values.

The API of the network communication component is as follows:

• void send(Packet);

This function is responsible for queuing the Packet object into the
internal transmission queue.
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• ConcurrentQueue<Packet> receivedPackets; This is the queue where
received packets are stored.

4.4.4 Protocol

The Protocol exists in two parts, a Master and a Slave side. On both sides
the Protocol is responsible (de)packetization and decision making. When-
ever new data is available from either the network or the local environment
it decides based on it’s programmed logic if it should be processed or not.
For example because we use the UDP protocol packets may arrive out of
order and the protocol drops any packets that arrive after newer packets
have already arrived. This how our current protocols deal with out of order
information however in the future there may be other protocols that decide
to use the old information somehow and is thus the reason that this is the
responsibility of the Protocol. Each side has it’s own API and logic which
we describe below.

Master side

On the Master side the Protocol has two responsibilities. Firstly it has to
process Packet objects and convert feedback packets into ToolFeedbackInformation
and call the applyFeedback function of the Renderer. Secondly it is respon-
sible for processing information from HMI and encode it into a Packet object
and place it in the send queue of the Communication component.

The Protocol has an API that is designed in such a way that allows a
wide variety of protocols to be implemented. The API of the Master side is
as follows:

• void onPacketReceive(Packet);

This function is responsible converting Packet objects and deciding if
they need to be applied.

• void onToolInformation(ToolInformation);

This function is responsible for processing HMI information and con-
verting them into Packet objects and placing them in the send queue
of the Communication component.

Slave side

On the Slave side the Protocol has two responsibilities. Firstly it has to pro-
cess Packet objects and convert information packets into ToolInformation

and store it temporarily in it’s local state. Secondly it is responsible for
applying the most recent ToolInformation to the Physics engine using the
updateTool function. The resulting feedback needs to be converted into a
Packet object and placed in the send queue of the Communication compo-
nent.
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The API of the Slave side is as follows:

• void onPacketReceive(Packet);

This function is responsible converting Packet objects and deciding if
they need to be stored.

• void onUpdate();

This function is responsible for applying the most recent information
and converting the resulting feedback into Packet objects and placing
them in the send queue of the Communication component.

4.4.5 Logging

To be able to store and later analyze testbed input and output good logging
facilities are necessary. To facilitate this a Logging component is imple-
mented. To prevent blocking delay due to disk IO we implement the logging
facilities using a ConcurrentQueue and a writer thread. This works by plac-
ing to be logged information in the queue after which the writer thread every
second writes the queue contents to disk. Avoiding blocking disk IO is es-
sential because these delays can easily increase to multiple milliseconds for
traditional hard-drives. Moreover, it is efficient to write to disk using large
chunks.

The logging of both the input and output samples happen on the Master
side of the testbed, this is to follow the blackbox method which is previously
explained in Section 3.1. In our situation the whole testbed is the blackbox,
the Falcon the input and the display the output.

The input and output are logged to separate files. We do this to avoid
needing to link the two asynchronous sample streams at run time and also
because input and output samples may not be linkable at all. Input sam-
ples are logged as timestamp;x; y; z; where output samples are logged as
timestamp;x; y; z; source timestamp, here source timestamp is the input
timestamp as logged in the input file.

The API of the Logging component is as follows:

• void log(string); This function puts the value into the queue after
which it is written to disk by the writer thread. The writer thread au-
tomatically adds a newline character after every entry, this is intuitive
to how conventionally logging is implemented.

4.4.6 Application Main

The application main is responsible for initializing and connecting all the
components.

On both sides on startup a globalClock is initialized, this clock used
throughout the application as high precision clock for both timing and
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recording timestamp. To create the timestamps needed for this clock we
need a timestamp source that is high enough precision and quick to query.
We chose the Time Stamp Counter register (TSC) of the processor (ex-
posed by the QueryPerformanceCounter api), which gives us the accuracy
and querying speed we need (1 µs precision and below 1 µs query time, TSC
provides 333 ns precision and 33 ns query time) [43].

On both sides the main creates a thread to process Packet objects from
the receive queue of the Communication component. Using a infinite loop
and the wait_and_pop function of our ConcurrentQueue implementation
we remove Packet objects from the receive queue with which we then call
the onPacketReceive function of the Protocol.

One more thread is used on the Master side to run a loop used to call the
getInformation function of the Renderer and call the onToolInformation

function of the Protocol with the acquired ToolInformation. This loop
is run at 1 kHz using our own loop delay logic. This loop delay works by
keeping track of the elapsed time during every loop iteration and sleeping
for the amount of time there is left in the 1 ms frame. If by any chance
a certain loop iteration overruns the 1 ms the loop catches up by skipping
sleeps until it’s caught up. This combined creates a stable 1 kHz loop.

One more thread is used on the Slave side using the same loop logic but
this time to run the onUpdate function of the Protocol at 1 kHz.

4.5 Network simulation

As mentioned before we simulate the network by routing the traffic through
a linux machine running Netem as network simulator [44]. The used Linux
variant is Ubuntu Server on version 18.04 [45]. We simulate various network
situations by introducing delay, jitter and/or loss.

The three machines are connected together using a switch. The Mas-
ter computer is assigned the ip 192.168.1.12. The Slave is assigned the ip
192.168.1.11. The network simulator is assigned the ip 192.168.1.10.

4.5.1 Installation

To install Netem we need to use the following steps:

• Install the iproute package using the following command:

sudo apt-get install iproute

• Enable ipv4 forwarding in the linux kernel by editing /etc/sysctl.conf
and uncommenting (remove starting #) the following line:

net.ipv4.ip_forward=1
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Afterwards reboot the system to apply the change.

To setup the routing in the Master and Slave we needed to create a manual
route in the Windows routing table. We did this by executing the following
commands in an elevated Command Prompt. For the Master computer:

route add 192.168.1.11 mask 255.255.255.255 192.168.1.10

For the Slave:

route add 192.168.1.12 mask 255.255.255.255 192.168.1.10

4.5.2 Delay and Jitter

Using Netem we introduce delay with jitter. We specifically chose to use
highly correlated jitter to introduce slowly changing fluctuations to resemble
long term delay changes also present on normal networks. The following
command is used on the network simulator machine to configure the delay:

sudo tc qdisc add dev eno1 root netem delay 30ms 15ms 90%

This command introduces 30 ms delay with 15 ms jitter with a correlation
factor of 90 %. As mentioned by the Netem documentation the correlation
factor is not exactly correlation in the statistical sense, however for our needs
it works well. There are more realistic models to simulate the network delay,
however they actually produce an easier situation for our measures.

4.5.3 Bursty loss

Using the Gilbert-Elliot model we simulate bursty loss [46].

Good Loss

p

p− 1

q

q − 1

Figure 4.4: Gilbert-Elliot model used to model bursty packet loss.

The Gilbert-Elliot model uses a two state markov chain to simulate bursty
packet loss also present in normal networks. The markov chain contains a
“Good” and “Bad” state. When in the “Good” state no packets are dropped.
When in the “Bad” state all packets are dropped. The chance to go from
the “Good” state to the “Bad” state is p. The change to go from the “Bad”
state to the “Good” state is q.

We implement this by using the built in support for the Gilbert-Elliot
model in Netem. To add Gilbert-Elliot Model based loss we execute the
following command on the network simulator machine:
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sudo tc qdisc add dev eno1 root netem loss gemodel 5% 50%

This command introduces the Gilbert-Elliot model with a p = 0.05 and
q = 0.50. These are fairly high values for packet loss however due to the
high packet rate of the testbed these values are needed to create noticeable
loss bursts. This essentially means we test under unrealistically difficult
packet loss, however as will be shown in Section 5.1 our setup still operates
without problem.

There are more complex models that produce even more realistic loss as
shown in the work by Ellis et al. [47]. However, these models would only
make the network conditions easier for our testbed and makes reproducing
the setup more difficult as these models would need to be implemented
outside of Netem as they are not supported.

4.6 Testbed protocols

To help testing our measure and to test how modular our testbed is we
implement several protocols. We describe the implemented protocols below.

4.6.1 Simple protocol

The Simple protocol is a protocol that just forwards packets without making
any dropping decisions besides dropping out of order arrived packets. This
means the implementation of this is fairly straight forward. The Master
side always applies the latest received feedback packets and transmits all
recorded ToolInformation objects.

4.6.2 Deadband protocol

The Deadband protocol is a protocol based on the deadband concept as
described in Section 2.3.2. The idea behind this protocol is that it greatly
reduces packet rates because much less packets need to be transmitted.
Which in turn can increase reliability. To implement the protocol both
the Master and Slave side need to keep track of the last information they
transmitted.

The Master side needs to keep track of the last transmitted position
(xlast), we solve this by storing the last transmitted ToolInformation in
memory. On every sample the protocol checks if the the current position
(xcur) changed beyond the threshold and if so queues a new packet contain-
ing the position information for the network communication to handle and
records this position as the last transmitted position in memory. The con-
dition that checks if the information changed sufficiently enough is shown
in Equation (4.1).

|xlast[i]− xcur[i]| > deadbandposition (4.1)
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The Slave side needs to track similarly using ToolFeedbackInformation.
Moreover, the slave side also needs to transmit the position of virtual objects.
Thus for the implementation we also included position of the virtual objects
into the deadband checks.
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Chapter 5

Performance Analysis

In this Chapter we evaluate the performance of our testbed and our measures
Effective Time & Value -Offset (ETVO). We show that the performance of
our testbed meets all our requirements and is recommended for developing
and testing future TI projects. We also show that our measures ETVO are
a huge leap forward compared to the state of the art.

5.1 Testbed

In this Section we characterize the performance of our testbed to verify if
the testbed meets the requirements. The characterization can be used so it’s
properties can be considered when developing with the testbed. Moreover
we look at the signals produced when certain network conditions or protocols
are introduced.

5.1.1 Latency analysis

A key performance measure of any TI testbed is the amount of base delay
they introduce. As described in Section 4.4.5 we log the output containing
the original timestamping allowing us to easily calculate per sample delay.
We then draw a Cumulative Distribution Function (CDF) of the delay dis-
tribution, shown in Figure 5.1. We used two variables:

• Sample rate. The frequency at which data from the device is sampled
and thus transmitted. The purpose is to see if changing the sample
rate would significantly impact the testbed delay.

• Network presence. We simulated both with and without the physi-
cal presence of the network simulator. This means that without both
the Master and Slave are run on the same machine (thus only one
machine is used). While when the network is present the simulation
is ran on two separate machines for the Master and Slave respectively
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connected to each other via the network simulator. This allows use
to observe the impact of the physical presence of a network and the
network simulator.

The results of these simulations can be seen in Figure 5.1. We must
note that the left out frequencies (200, 300, 400 and 750 Hz) show similar
behavior to those that are shown and thus can be safely not shown here
to preserve clarity. When the frequency increases the CDF moves left and
thus the median delay decreases. This behavior is to be expected because
when the sampling frequency increases packets get pushed out more quickly
and the packet inter arrival time decreases. This results in packets with
too much delay getting skipped due to the early arrival of later transmitted
packets. Furthermore the presence of a network introduces a extra delay
while the distribution is mostly unchanged.

Using the data we calculated that 98 % of the packets experience less then
5 ms delay. This does stay below the delay budget of 10 ms. Preferably it
should be smaller so that it does not consume half of the delay budget allow-
ing the budget to be used for other purposes, like longer distances between
parts of the testbed. However, the current testbed performance is greatly
influenced by the use of the Windows OS making it difficult to decrease the
max delay. A significant contributor to the E2E delay in our solution is
that the underlying OS handling of our thread and network scheduling is
not real-time. This is reinforced by the fact that the Windows OS does not
offer APIs to do real-time scheduling.

Figure 5.1: Delay CDF comparison for different sampling frequencies and
presence of a physical network. Other frequencies were measured but not
displayed for clarity.

42



Parameter Value Standard Error
µ 7.6968 0.0032
σ 0.4702 0.0022

Table 5.1: Parameters of the Lognormal fit for delay distribution of the
default testbed situation of 1 kHz sample rate and network included.
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Figure 5.2: Lognormal fit with 99 % confidence interval shown. The default
situation of 1 kHz sample rate and network included is fitted.

Latency distribution

Too get a more concrete idea of the behaviour of the testbed delay we fitted
several distributions to our delay data. The best fit, the Lognormal fit can
be seen in Figure 5.2. The parameters of the Lognormal distribution can
be seen in Table 5.1. From the standard error and very tight confidence
interval it can be seen that the fit is good. However, visually it can be seen
that the fit is not perfect but for this scale of delay values it still is useful
tool for making the testbed behavior concrete.

5.1.2 Binning analysis

During testbed development we noticed that the packet arrival was not ideal
resulting in packets being skipped due to newer packets also being available
simultaneously (binning). After extensive diagnoses we found that there
were two causes either packets arriving simultaneously or being handled si-
multaneously on the Master side. We diagnosed this by logging the process-
ing and arrival timestamp of both usable and unusable packets. The log then
showes packets having same arrival and/or processing timestamps. To get
a better insight into the magnitude and primary source of this problem we
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Figure 5.3: Showing the percentage of unusable packets due to binning
for different situations and sampling frequencies. we measured in four sit-
uations, the inclusion of a network and/or a performance limited system
marked “(lim.)”.

simulated four situations: with and without the network simulator included
and with and without performance limiting the Master side. The results are
shown in Figure 5.3. The Figure contains a dip for the “Network” signal,
the cause of this is due to unstable behavior of the Windows OS. From
this Figure can be seen that both performance and network binning have a
considerable impact on the percentage of packets becoming unusable. The
main cause is that our used OS is not real-time causing the asynchronous
handling of packets to be unaligned creating binning. This is especially clear
when loop overruns occur due to high system utilization. With loop overrun
we mean that the execution time of a single loop iteration is longer than the
allowed 1 ms.

5.1.3 Deadband protocol implementation

A requirement of our testbed is that other protocols should be easy to imple-
ment without needing to change anything else in the testbed. We success-
fully implemented the widely used deadband protocol for both position and
force. This implemented deadband without making changes to any testbed
code. This gives an indication that our modularity is properly designed. We
also tested and verified the working of the deadband protocol. A snippet of
such a signal is shown in Figure 5.4.
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Figure 5.4: Snippet of a signal with both input (without deadband) and
output (with 5 % deadband).

5.1.4 Bursty loss simulation

To check that the bursty loss is simulated correctly and has the impact we
expect, we simulated several traces using Netem. Deploying the Gilbert-
Elliot model for bursty packet loss. A snippet of one of those traces can
be seen in Figure 5.5. The behavior is as we expect it would be, when no
packets arrive (due to bursty loss) the output does not change. In Figure 2.1
two large burst are marked, where the behavior is clearly visible. This same
behavior can be seen for every trace.

5.2 Effective Time & Value -Offset

In this Section we evaluate the performance of our measures ETVO. For
ETO we use the penalties as described in Chapter 3. The data is generated
while sampling at 1 kHz.

5.2.1 Course-grained comparison

In this Subsection we look at the course-grained performance of our measures
compared to existing measures. We show why and how existing measures
perform worse compared to our measures.

Existing TI measures

Existing TI measures cannot differentiate between different time-offsets, to
illustrate this we created two delayed signals by introducing artificial delay
to an existing signal, these signals are shown in Figure 5.6. When calculating
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Figure 5.5: Snippet of a signal where the network conditions contain bursty
packet loss. Two occasions of bursty packet loss marked with a cross.
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Figure 5.6: Two artificially delayed signals next to the original. Delay of
500 ms and 1000 ms was introduced.
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Measure 500 ms 1000 ms
HPWPSNR 9.0141 9.0141
PMSE 0.5506 0.5506
HSSIM 5.4950 5.4524
ETO 500 1000
EVO 0 0

Table 5.2: Calculated measures between the original signal and the 500 ms
and 1000 ms delayed versions, which are shown in Figure 5.6

existing measures HSSIM, HPWPSNR and PMSE using the mathematics
as explained in Section 2.3.2 between the original signal and the two delayed
versions, we can see as shown in Table 5.2 that they cannot correctly iden-
tify the different time-offset. It is interesting to note that HSSIM is able to
see a small difference, however, this is not due it being able to differentiate
between different time-offsets but rather that it is using a very large window
size (600 samples) for it’s statistical values thus running into boundary prob-
lems with the length of our signals (1600 samples). Moreover, our measures
is able to perfectly obtain the correct time and value -offset.

Jitter based tests

To test the stability of our measures we do a course-grained analysis in
different network conditions. We simulated different network jitter magni-
tudes to show the influence of every greater changing network conditions.
We chose the base network delay of 50 ms to allow the testing of a wide
variety of network jitter magnitudes without introducing too much delay so
that the interaction becomes unusable. The results of these simulations can
be found in Figure 5.7. For RMSE we also show a modified DTW where
the boundaries of the calculated value-offset are set to zero, this is to show
that DTW can produce the lowest value-offset but is heavily impacted by
the boundary conditions. The amount of samples set to zero is only 0.5 % of
the total signal length, thus showing the difference in value-offset between
the two can be mainly contributed to the boundary conditions.

What is clear from these results is that ETVO is able to produce a
near identical value-offset performance compared to DTW while requiring
20 times to 100 times less changes in time-offset to do so. Moreover, only
when jitter increases ETO needs to make more changes.

5.2.2 Fine-grained comparison

To show fine-grained performance of ETO we designed four scenario’s, show-
casing the improved decision making of our measures.
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boundary value-offset respectively. This clearly shows that DTW achieves
the lowest RMSE when ignoring boundary problems but requires the highest
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Context-sensitivity

In this scenario we show that DTW keeps changing time-offset even when
there are extremely small gains. While ETO correctly chooses to not change
time-offset. Also can be seen that Plazy is especially important in these
situations to make sure changes are not made where it does not make sense.
This behavior is shown in the first column of Figure 5.8. Here can be seen
that DTW makes changes regardless of velocity, while our system decided
that it is not worth it in periods of low velocity. The version of our measure
with Plazy disabled is marked as NPL. At the marked point 1 you can see
that a counter-intuitive change is made when Plazy is absent.

Lack of updates

In this scenario we compare the performance when deadband is introduced.
We do this by combining the deadband protocol using a 5 % deadband and
bursty loss simulated using the Gilbert-Elliot model. The resulting behavior
can be seen in the second column of Figure 5.8. Here can be seen as denoted
by 2, 3 and 4 large events happening because of bursty loss causing a big
loss in information on the output side. In these three situation our measure
correctly changes the time-offset as seen by the peaks at 5, 6 and 7 while not
changing the time-offset in between because there the offset is value-offset
caused by the deadband protocol.

Comparison between Pchange and Pstep

In this scenario we show how both Pchange and Pstep are relevant to improving
the performance of our measure ETO. In this scenario we keep Plazy = 0 to
remove it’s influence when showing the behavior of the other two penalties.
The behavior is shown in the third column of Figure 5.8. Here it can be seen
that when only Pstep is present and Pchange is removed (as denoted by Pstep)
all changes are made in more frequent smaller steps. Especially present at
the mark 8 where multiple smaller steps are used instead of on large step.
When only Pchange is present and Pstep is removed (as denoted by Pchange)
changes are made in unreasonable large amounts. Especially present a the
mark 9 where a very large but short change is made to optimize for a small
value-offset.

Effect of noise

In this scenario we show how DTW cannot cope when noise is introduced.
We do this by introducing Additive White Gaussian Noise (AWGN) with
an SNR of 70 dB comparing that to behavior of DTW when the noise is no
present. This can be seen in column four of Figure 5.8. Here the behavior
of our measure and DTW with the added noise (marked as DTW ) and
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the DTW behavior without the added noise (marked as DTW!N ) can be
seen. The unreasonable jumps of DTW are increased considerable just by
the addition of a small amount of noise, especially visible at point 9 and 10.
While our measure correctly keeps reporting an stable time-offset.
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Chapter 6

Conclusion and Future Work

6.1 Discussion

To push ETVO further it is important that we study the behaviour of all the
parameters especially how each influences the decision making. Right now
we only have a rough understanding of how the parameters can be chosen.
An improved understanding could be used to design methods or algorithms
to improve parameter tuning.

Our measures are currently not linked to the subjective, this means that
we cannot yet prove that our time-offset or value-offset matches the actual
experience of a user. Thus extensive work still has to be done to test user
experience and tune our measure to match that behavior as closely as pos-
sible.

We expect our measures to be a significant improvement to measuring,
however, we do not yet have the proof to show this is true. There are
probably works that can already work with existing measures. To properly
prove it we need several TI solutions that are tested with our measures and
previous measures to show that our measures significantly improve testing
and comparison.

Our measures are purely an offline solution, this means that they cannot
be used in online systems to evaluate on the fly. An online solution would
allow the measures to be used to calculate system performance and drive
decision making.

In this work we only tested our measures for their use within TI. However,
the measures could also be applicable for other purposes possible greatly
extending the possible uses of the measures. This should be explored to
make sure we are not missing possible uses of our measure.

The current testbed is not built using a real-time OS, this impacts per-
formance and makes synchronizing asynchronous sample streams difficult.
This results in the output data needing to be discretized in post processing.
To solutions is to move the testbed to a real-time OS, however requiring an
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almost complete rewrite depending on the real-time OS used.

Currently the testbeds virtual environment is very simple, this makes it
difficult to design scenario’s for tests. Preferably you would have scenario’s
of different difficulties so that the difference in performance per scenario can
be properly tested.

The purpose of the testbed is to eventually produce datasets that links
measurements to QoE. These datasets would allow future developments to
be simplified. However, these datasets do not yet exist.

As seen by our latency analysis the testbed incurs delays of up to 5 ms, this
means that our testbed uses a considerable amount of delay budget. This
limits the flexibility within this budget. Which limits the possible distance
parts of the testbed can be placed apart.

During our measurements we saw that limiting the system performance
of the Master side impacted the performance of the testbed. This means
that running the testbed requires powerful hardware to guarantee quality
performance. The reason for this should be investigated and improved to
allow the testbed to also be run on less powerful hardware.

We characterized the latency of the testbed using a Lognormal distribu-
tion, while this gives a fairly tight fit distribution it can be further improved.
Possibly by employing multiple convoluted distributions.

The current device used, the Novint Falcon is not being produced anymore
as the original manufacturer went bankrupt some year ago. This means that
there is currently only limited supply, solely available via second hand sale.
Thus making possible replacement when needed difficult. Currently widely
available devices should be investigated for support with the current testbed
as possible replacement of the Novint Falcon to ensure the continued use of
the testbed if the current device were to become unusable.

6.2 Conclusion

In this work we introduced a new method to test and measure TI technolo-
gies. Our solution fundamentally changed the approach to TI measuring by
considering time and value -offset as two orthogonal parts of a signals error.
We showed that this new approach to TI measuring performs considerable
better than DTW and existing TI measures.

Our testbed offers considerable more options to how a TI solution can
be tested. We did this by designing a completely new architecture from
the ground up and implementing it in a way that produced a testbed that
can be employed in wide variety of future research projects. Moreover we
also present extensive tests of the testbed, showing the performance and
characteristics of the testbed. The testbed also has simple and extendable
APIs to make it easily usable in future research projects.

Using the data generated by the testbed we extensively verified the per-

52



formance and behavior of the proposed measures ETVO. We demonstrated
that ETO and EVO have superior performance in solving the stated chal-
lenges when compared to existing solutions. We recommend ETVO as most
suitable measures to evaluate TI sessions with. We also expect our measures
to find use outside of the field of the TI. This is a direct result of our intro-
duced measuring methodology which allows our measure to be employed in
any situation where two signals need to be compared.

6.3 Future Work

We delivered considerable measuring and testing improvements. This opens
the road to many new possibilities. We envision that this work will signif-
icantly help TI to move forward and motivate others to develop and test
innovative TI solutions. In this Section we highlight possible ways forward
for TI research and propose possible future steps enabled by this work.

6.3.1 Testbed Future Work

We identify some modifications that could make the existing testbed perform
better. Below is a non-exhaustive list of possible improvements.

• Linux support. Linux offers better schedulers and especially tun-
ability, possibly allowing some of the testbed delay to be reduced by
employing the better OS scheduling of Linux. The implementation is
challenging because there is no official driver for the current hardware
for Linux. There are custom drivers but these have not been updated
in a while have to be made compatible with Chai3d.

• Implement Real-time scheduler. Implement an own scheduler
by implementing it into the testbed. This can possibly be achieved
by dedicating a cpu core to the testbed process and using that core
continuously to have very reliable loop timing.

• Decouple driver readout. Currently the device information is read
from inside the main loop to make sure we are working the most recent
information. A possible improvement is performing the readout in a
separate thread and whenever a data sample is needed request an
sample from the readout thread that interpolates using velocity from
the samples to bridge the small time gap.

• Implement multiplexer support. Extend the protocol implemen-
tation to allow also transmitting other information like video and/or
audio. Care should be taken that a good API is designed so that easily
different multiplexing methodologies can be implemented and tested.
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• Subjective measurements. Make the testbed ready for subjective
measurements. For this tooling is needed that simulates configured
scenario’s in a way so that subjects can easily perform measurements.

6.3.2 Effective Time & Value -Offset

We identify a set of tasks that could improve the behavior and impact of
ETVO considerably. Below is a non-exhaustive list of possible future steps.

• More sophisticated parameter tuning. Currently we give a in-
dication of good penalty values to use, however more research and
experimentation is required to expand the theory on how to best tune
the three penalty parameters.

• Quality measure. Using the information extracted from two sig-
nals using ETVO design a measure that condenses the quality of the
observed into a single grade indicating how good the session is.

• Coupling with the subjective. Do subjective measurements and
couple the quality of the observed signal to the scores given by sub-
jects and design a metric like R-factor which describes perceived per-
formance of a situation without needing subjective measurements.

• 3 dimensional extension. By changing positions into 3D coordi-
nates it is possible to extend ETVO into a measure that calculates
time and value-offset for 3D coordinates.

• Real time heuristic solution. By changing the ETO algorithm it
should be possible to create a version that works in real time allowing
systems to have real time estimates of time and value-offsets. These
values could then be used in the decision making process of the appli-
cation.

6.3.3 Tactile Internet

We see this work as a new starting point to considerably fuel the development
of TI. Providing improvements that make developing for the TI easier while
also improving verification.
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