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Can we find a self-similar set on the line with positive 
Lebesgue measure and empty interior? Currently, we do 
not have the answer for this question for deterministic self-
similar sets. In this paper we answer this question negatively 
for random self-similar sets which are defined with the 
construction introduced in the paper by Jordan et al. (2007) 
[6]. For the same type of random self-similar sets we prove the 
Palis-Takens conjecture which asserts that at least typically 
the algebraic difference of dynamically defined Cantor sets is 
either large in the sense that it contains an interval or small 
in the sense that it is a set of zero Lebesgue measure.
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1. Introduction

In this paper we consider only Random self-similar Iterated Function Systems (RIFS) 
which are defined on the line and which can be obtained as a small random perturbation 
of a deterministic self-similar Iterated Function System (IFS) on the line. First we give 
a short description of our results for the expert, and then we provide a more detailed 
introduction. We do not write “self-similar” in the abbreviation since all iterated function 
systems considered in this paper are self-similar (random or deterministic).

1.1. Informal description of the main result for experts

Using the construction introduced by Jordan, Pollicott and Simon [6, p. 521], we define 
self-similar Random Iterated Function Systems (RIFS) F on the line as follows: We start 
with a self similar IFS S on the line and we add a small random additive error to every 
map in every step of the iterative construction of the attractor (see Definition 2.1 for the 
precise definition of RIFSs). The scaling parts of the similarities of the deterministic IFS 
S are left unchanged. So, the similarity dimension s(F) of the RIFS F is the same as 
the similarity dimension of the deterministic self-similar IFS S. Our main result is that

s(F) > 1 =⇒ int(CF ) �= ∅, almost surely, (1)

where CF is the attractor of the RIFS F . This implies that whenever C1, C2 are two 
independent copies of the attractor of the RIFS F then the algebraic difference set 
C2 − C1 := {c2 − c1 : c1 ∈ C1, c2 ∈ C2} satisfies

s(F) > 1
2 =⇒ int(C2 − C1) �= ∅, almost surely. (2)

1.2. A gentle introduction

A deterministic self-similar Iterated Function System (IFS) on R is a finite list of 
contracting similarities of R:

S := {Si : Si(x) = rix + ti, x ∈ R}Li=1 , (3)

with contractions ri ∈ (−1, 1) \ {0} and translations1 ti ∈ R for all i ∈ [L] := {1, . . . , L}. 
The attractor CS of the IFS S is what we are left with after infinitely many iterations of 
the system. More formally, it is easy to see that we can find a non-degenerate compact 
interval I such that Si(I) ⊂ I holds for all i ∈ [L]. For all i ∈ [L]n we consider the n-fold 
iterate

1 We do not assume that the ti are distinct.
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Si := Si1 ◦ · · · ◦ Sin (4)

and form the corresponding n-cylinder interval Ii := Si(I). Then the union of all n-
cylinders 

{ ⋃
i∈[L]n

Ii
}∞
n=1 is a nested sequence of non-empty compact sets. The attractor 

is their intersection:

CS :=
∞⋂

n=1

⋃
i∈[L]n

Ii. (5)

In this paper, we consider random IFSs (RIFS) on R, which are small (translational) 
perturbations of a self-similar IFS of the form (3).

Informally, the attractor of an RIFS is obtained by a formula similar to (5) with the fol-
lowing difference: Instead of the deterministic n-cylinder intervals Ii in (5), we work with 
the random intervals Îi = fi1◦· · ·◦fin(I), where the random mappings fik are small trans-
lational perturbations of Sik . Namely, fik = Sik +Yik for small random translations Yik .

The precise description of the distribution of these random translations is given in 
Definition 2.1. The attractor CF of the RIFS F := {fi}Li=1 is defined by a formula 
analogous to (5): we just replace Ii with Îi in (5).

Jordan, Pollicott, and Simon [6] studied this kind of RIFSs in the more general self-
affine case. As an immediate consequence of the results in [6], we get that the Hausdorff 
dimension dimH CF is the minimum of 1 and the similarity dimension sF (solution of 
(12)) almost surely. Moreover, if sF > 1 then the Lebesgue measure of CF is positive 
almost surely.

1.3. Motivation: the interior of the difference of random Cantor sets

In 1987, Palis and Takens [10] studying the dynamical behavior of diffeomorphisms 
presented a conjecture about the size of the algebraic difference of two Cantor sets. 
Informally, the conjecture states that if the size of the Cantor sets is large (see Equation 
(6)), then the difference contains an interval. More precisely, if C1 and C2 are two Cantor 
sets then the algebraic difference

C2 − C1 = {y − x : x ∈ C1, y ∈ C2}

contains an interval if

dimH C1 + dimH C2 > 1, (6)

where dimH denotes the Hausdorff dimension.
In 2001, De Moreira and Yoccoz ([9]) proved the conjecture for generic dynamically 

generated non-linear Cantor sets. The conjecture has not been proven for generic linear 
Cantor sets. See also [14].
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Fig. 1. The construction of the Cantor set Ca,b. The figure shows the level 1 and level 2 cylinder intervals 
C1

a,b and C2
a,b.

In 1990, Per Larsson put the problem into a probabilistic context in [8], (see also 
[7]). He considered a very special family of two parameter random Cantor sets Ca,b and 
proved the conjecture for a certain subset of a’s and b’s. Although the main idea of 
Larsson’s argument is brilliant, unfortunately the proof contains significant gaps and 
incorrect reasonings. In 2011, three out of the four authors of the present paper gave a 
precise proof for Larsson’s family in [1]. We briefly recall the Larsson family from [1]: 
let

a >
1
4 and 3a + 2b < 1.

Since

dimH Ca,b = − log 2
log a,

the first condition is equivalent to dimH Ca,b > 1/2, which is equivalent to equation 
(6).

Larsson’s construction is as follows (see also Fig. 1): first remove the interval[
1
2 − a

2 ,
1
2 + a

2

]
from the middle of [0, 1], then the length b parts from both the beginning and the end 
of the unit interval. Next, put intervals of length a according to a uniform distribution 
in the remaining two gaps 

[
b, 1

2 − a
2
]

and 
[1

2 + a
2 , 1 − b

]
. These two randomly chosen 

intervals of length a are called the level one intervals of the random Cantor set Ca,b.
We write C1

a,b for their union. In both of the two level one intervals we repeat the 
same construction independently of each other and of the previous step. In this way we 
obtain four disjoint intervals of length a2. We emphasize that, because of independence, 
the relative positions of these second level intervals in the first level ones are in general 
completely different. Similarly, we construct the 2n level n intervals of length an. We call 
their union Cn

a,b. Then Larsson’s random Cantor set is defined by

Ca,b :=
∞⋂

Cn
a,b.
n=1
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As a corollary of the main result of this paper, we prove that the conjecture by Palis 
and Takens holds for a very broad class of random linear Cantor sets, including the 
Larsson family.

The following result is a generalization of the result in [1]:

Theorem 1.1. Let F be an RIFS (see Definition 2.1) with similarity dimension larger 
than 1

2 . Let C1 and C2 be two independent copies of the attractor CF . Then

C2 − C1 contains an interval a.s.

The proof is presented in Section 5.
It is important to note that in our setting the Hausdorff dimension equals the (the 

minimum of 1 and) the similarity dimension given by the unique solution of equation 
(12).

We remark that if the Hausdorff dimension of CF is smaller than 1
2 then the set 

C2 −C1 has Hausdorff dimension less than 1 so it cannot possibly contain any intervals.
The essential part of the proof of this theorem is completely different of that of the 

main result in [1]. The proof in [1] was tailored for the Larsson’s family, and does not 
have the potential for generalizations. However, we show that it is possible to prove a 
much more general result with a shorter proof. For this we combine the ideas of the proof 
in [1] with the method introduced in Rams, Simon [12], and invoke an observation from 
Peres, Shmerkin [11]. Namely, both in [1] and the present paper we have to verify that the 
associated multi-type branching processes are uniformly supercritical, where uniformity 
is meant in the type of the ancestor. In both papers this is stated as the Main Lemma 
and their proofs follow the same path. However, the step where using the Main Lemma 
one proves the existence of intervals in the arithmetic difference of the random Cantor 
sets, is where we use the method introduced in [12] to obtain our powerful Theorem 9, 
and this makes our present proof much more efficient.

We remark that if also the scalings are random, with a uniform distribution over the 
parameters, then the problem becomes easier ([13]), and can be treated by a method 
introduced by Hochman and Shmerkin ([4]).

2. RIFS

2.1. The formal description of our random Cantor set

First, we give the formal definition of the Random Iterated Functions System (RIFS) 
F , whose attractor CF is the random Cantor set which is the object of our investigation in 
this paper. It is convenient to identify the collection of all finite words over the alphabet 
[L] = {1, 2, . . . , L} with the nodes of the L-ary tree T . The empty word is identified with 
the root of T , and denoted as ∅. For any n ≥ 1 the level n sets Ln of T are defined by

L0 = {∅}, Ln = {i1 . . . in : ij ∈ [L], 1 ≤ j ≤ n}.
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Definition 2.1 (RIFS). Let

F = {fi : fi(x) = rix + Di}Li=1 . (7)

The contraction ratios r1, . . . , rL ∈ (−1, 1) \ {0} are deterministic. We assume the fol-
lowing about the random translations (D1, . . . , DL), of the functions in F in (7):

(a) (D1, . . . , DL) is an L-dimensional random vector such that for any i = 1, . . . , L, 
the random variable Di is absolutely continuous w.r.t. the Lebesgue measure, with a 
density function ϕi which is strictly positive, bounded and continuous on (ti−θi, ti+
θi) and ϕi is zero outside (ti − θi, ti + θi), where the ti and θi > 0 are real numbers.

(b) To define the random translations of the iterates of this system we introduce

{
D(i) =

(
D

(i)
1 , . . . , D

(i)
L

)}
i∈T

as a set of i.i.d. random vectors having the same distribution as that of (D1, . . . , DL).
The iterates fi for i ∈ Ln are defined for n ≥ 1 by:

fi(x) = fi1 ◦ · · · ◦ fin(x)

= ri1

(
ri2

(
. . .
(
rin−1(rinx + D

(i1...in−1)
in

) + D
(i1...in−2)
in−1

)
. . .
)

+ D
(i1)
i2

)
+ D

(∅)
i1

= rix + Ti (8)

where ri = ri1 · · · rin and

Ti = D
(∅)
i1

+ ri1D
(i1)
i2

+ ri1ri2D
(i1i2)
i3

+ . . . + ri1 · · · rin−1D
(i1...in−1)
in

. � (9)

In addition, we define T∅ := 0.

Using that the random mappings fi, i ∈ [L] are contractions and the supports of the 
Di are bounded, we immediately obtain that there exists a deterministic interval [α, β]
such that

fi([α, β]) ⊂ [α, β], for all i ∈ [L]. (10)

We call [α, β] a supporting interval for F .

The attractor CF of the RIFS F is defined by (see Fig. 2)

CF =
∞⋂ ⋃

fi([α, β]). (11)

n=1 |i|=n
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Fig. 2. Level 1 and 2 cylinder intervals of our Cantor set when L = 3 and [α, β] = [0, 1]. The randomly 
chosen left endpoints Ti and some of the Tij , i, j = 1, 2, 3 are indicated.

2.2. The ambient probability space

The sample space is Ω := [RL]T . The corresponding σ-algebra B is the generated 
Borel σ-algebra. The probability measure of our Cantor set is

P =
∏
i∈T

d
(
D(i)

)
,

where d(X) denotes the probability distribution of a random vector X. Then the ambient 
probability space is (Ω, B, P ).

A realization ωωω ∈ Ω is a labeled tree, ωωω =
{
D(i)}

i∈T , where the i.i.d. collection of 
random vectors 

{
D(i)}

i∈T was defined in Definition 2.1.

The dimension theory of the RIFS described above is well understood. The following 
theorem is a direct consequence of the results in [6].

Theorem 2.1 (Dimension of an RIFS). Let F be an RIFS of size L and let s(F) denote 
the solution to the equation

L∑
i=1

|ri|s(F) = 1. (12)

We say that s(F) is the similarity dimension of F . Then we have for almost all realiza-
tions:

dimH CF = dimBCF = dimBCF = min {1, s(F)}

Moreover, if s(F) > 1 then for almost all realizations:

Leb (CF ) > 0, (13)

where Leb(·) is the 1-dimensional Lebesgue measure.
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With these definitions we can state our Main Theorem:

Theorem 2.2 (Main Theorem). Let CF be the attractor of an RIFS F with s(F) > 1. 
Then

int(CF ) �= ∅. (14)

The proof is presented in Section 5.

2.3. The n-th order RIFS

To handle the notion of an n-th order RIFS we consider the height n subtrees of T
defined by

Tn(∅) =
⋃

j=0,...,n−1
Lj , Tn(k) =

⋃
j=0,...,n−1

{i ∈ L�+j : i1 . . . i� = k},

for each k = k1 . . . k�.

Definition 2.2. Let F = {fi}Li=1 be an RIFS. The n-th order of F , written as Fn, is 
defined for n = 1, 2, . . . by

Fn = {fi}i∈Ln
.

Actually Fn is itself an RIFS.

Lemma 2.1. Let F be an RIFS and let Fn be its n-th order, for some n ≥ 1. Then Fn

is an RIFS.

Proof. Recall that the elements of Fn indeed have the form fi(x) = rix + Ti, and (see 
(9)) that the random translations Ti satisfy

Ti = D
(∅)
i1

+ ri1D
(i1)
i2

+ ri1ri2D
(i1i2)
i3

+ . . . + ri1 · · · ri1...in−1D
(i1...in−1)
in

. (15)

Note first that (Ti : i ∈ Ln) is an Ln-dimensional random vector such that for any i, 
the random vector Ti is bounded, and absolutely continuous w.r.t. the Lebesgue measure, 
supported on an interval with strictly positive and continuous density on its interior.

For a set of nodes N , let us write DN for the random vector with elements D(i) with 
i ∈ N .

We see from Equation (15) that the translations of the fi’s with i ∈ Ln are completely 
determined by DTn(∅). More generally, for all k ≥ 1 the translations of the fi’s with 
i ∈ Lkn are completely determined by DTn(j), where j is the unique ancestor of i in 
L(k−1)n. Note that DTn(j) has the same distribution as DTn(∅) for all j ∈ T . Since the 
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DTn(j) are independent for all k ≥ 1 and j ∈ L(k−1)n, by disjointness of the height n
subtrees rooted at the levels that are multiples of n, it follows that we have the required 
independent iteration scheme for Fn. �

At the cost of lowering the similarity dimension with an arbitrary small amount, we 
can assume that all the scalings in an RIFS are positive: see [2, Lemma 2.10] and a 
remark in the proof of Proposition 6 in [11]. For completeness, we combine the results 
of these references in the following proposition and its proof.

Proposition 2.1. Let F = {fi : fi(x) = rix + Di}Li=1 be an RIFS with attractor CF . Then 
there exists for every ε > 0 an RIFS F̃ with CF̃ ⊂ CF , such that all the contraction 
ratios of the similarities in F̃ are positive, and s(F̃) > s(F) − ε.

Proof. In case all ri are positive, there is nothing to prove. Otherwise we may assume 
w.l.o.g. that r1 < 0. For a natural number n, which will be chosen conveniently large 
later in the proof, we define for all i = i1 . . . in ∈ Ln

r̃i = r1ri if ri < 0, r̃i = ri if ri > 0.

Here the ri are the contraction ratios of the fi(x) = rix + Ti mappings from Fn. Since 
s := s(F) is the solution to 

∑L
1 |ri|s = 1, we must have 

∑L
1 |ri|s−ε > 1 for all ε > 0. So∑

i∈Ln

|r̃i|s−ε =
∑
r̃i<0

|r̃i|s−ε +
∑
r̃i>0

|r̃i|s−ε =
∑
ri<0

|r1|s−ε|ri|s−ε +
∑
ri>0

|ri|s−ε

≥ |r1|s−ε
∑
i∈Ln

|ri|s−ε = |r1|s−ε
( L∑

1
|ri|s−ε

)n
> 1,

where we have taken n such that 
(∑L

1 |ri|s−ε
)n

> |r1|−s+ε. Conclusion: if we choose F̃
with functions f̃i defined by f̃i(x) = r̃i(x) +Ti, then CF̃ ⊂ CF and s(F̃) > s(F) − ε. �
3. It is enough to consider homogeneous systems

We call an RIFS homogeneous if all contraction ratios are the same. Using a simple 
combination of [2, Lemma 2.8] and [11, Proposition 6] it appears that any RIFS can be 
well-approximated by a homogeneous RIFS. This is Proposition 3.1.

Given an RIFS F of the form (7). Let U ⊂ Ln, #U ≥ 2 for an n ≥ 1. We define

FU = {fi}i∈U = {fi : fi(x) = rix + Ti}i∈U . (16)

Here the random vectors Ti are defined in (9). According to Lemma 2.1, Fn is an RIFS. 
Then FU is also an RIFS since FU is a subsystem of Fn. For all realizations, the random 
attractor CFU

of FU is a subset of the random attractor CF of F , for the same realization.
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Proposition 3.1. Let F = {fi : fi(x) = rix + Di}Li=1 be an RIFS as in Definition 2.1.
Then there exists for every ε > 0 a number n, a set U ⊂ Ln, and an a ∈ (0, 1) such 

that the RIFS FU has the form

FU = {fi : fi(x) = ax + Ti}i∈U , (17)

and satisfies CFU ⊂ CF , s(FU ) > s(F) − ε.

For the convenience of the reader, we give a detailed proof of this result in the Ap-
pendix.

4. Lemma 4.1, the Main Lemma

A homogeneous system H has the form

H := {Hi : Hi(x) = ax + Di}Li=1 , a ∈ (0, 1). (18)

Here we are motivated by Proposition 2.1: with an arbitrary small loss in similarity 
dimension we may assume that a ∈ (0, 1) instead of a ∈ (−1, 1) \ {0}.

It is convenient to introduce a slightly unusual notation. The support of a function
f : X → R, for an arbitrary set X, is the set-theoretical support. That is

supp(f) := {x ∈ X : f(x) �= 0} . (19)

This is slightly unusual since supp(f) most commonly means the closure of the set in 
(19).

Theorem 4.1. Let H be a homogeneous RIFS and let C1 and C2 be two independent copies 
of the attractor of the RIFS. Then the algebraic difference C2 − C1 is the attractor of a 
homogeneous RIFS H� with similarity dimension s(H�) = 2s(H).

Proof. Let the homogeneous RIFS H be given by

H := {Hi(x) : Hi(x) = ax + Di}Li=1 , a ∈ (0, 1), (20)

where Di = (D1, . . . , DL) is an L-dimensional random vector such that for every i ∈ [L]
the random variable Di is absolutely continuous w.r.t. the Lebesgue measure, with a 
density ϕi which is bounded, continuous with supp(ϕi) = (ti − θi, ti + θi).

For every i ∈ [L] let D̂i
d= Di and D̃i

d= Di. Moreover, we require that D̂i and D̃i are 
independent. We define

Di,j := D̃i − D̂j , (i, j) ∈ [L] × [L]. (21)
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Then Di,j is absolutely continuous w.r.t. the Lebesgue measure, with a density function 
ϕi,j which is continuous, bounded with

supp(ϕi,j) = (ti − tj − θi − θj , ti − tj + θi + θj).

That is, ϕi,j satisfies all the requirements we set for the density function in Part (a) 
of Definition 2.1. Using that, we can define the homogeneous RIFS which consists of a 
number of L2 functions H� := {ax + Di,j}Li,j=1. It is straightforward to check that the 
attractor Λ� of H� is the algebraic difference of two independent copies of the attractor 
of H. �

In the rest of the paper, we always assume that the following two assumptions hold:

A1 H is a homogeneous RIFS {Hi : Hi(x) = ax + Di}Li=1 with supporting interval I =
[α, β], and s(H) > 1.

A2 H is a random perturbation of the deterministic IFS S := {ax + ti}Li=1, i.e., for all 
i ∈ [L]

Di
d= ti + Yi, (22)

where the absolutely continuous random variable Yi has a continuous, bounded prob-
ability density function f̃i with supp(f̃i) = (−θi, θi), for some θi > 0.

The self-similarity property of an RIFS is expressed by the position of a point x ∈
Ji := Hi(I) relative to the endpoints of Ji, for i ∈ [L]. This corresponds to the position of 
a point that we call Φi(x) relative to the endpoints of the supporting interval I = [α, β]. 
This leads to the following definition.

Definition 4.1.

(a) For an i ∈ [L], we write Ji = Hi(I) =: [Ai, Bi], and we define the random variable

Φi(x) := x−Ai

a
+ α if x ∈ Ji, Φi(x) := Θ if x �∈ Ji, (23)

where the symbol Θ represents that x �∈ Ji.
(b) For an x ∈ int(I) let φi(x, ·) be the density function of Φi(x). Then an easy calcu-

lation yields that

φi(x, y) = af̃i (x− ti − ay) , (24)

where f̃i is the density of the random variables Yi defined by (22).
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The following function plays a crucial role in our argument

mI(x, y) :=
L∑

i=1
φi(x, y), (x, y) ∈ I2. � (25)

Lemma 4.1 (Main Lemma). There exists a set T (0) ⊂ I = [α, β] (the pre-type space) 
which is composed of a finite number of disjoint open intervals, and there exists a real 
number εMAIN > 0 such that for every ε ∈ (0, εMAIN), the so-called type space

T (ε) := T (0) \B(∂T (0), ε), (26)

where B(E, ε) :=
⋃
{(x − ε, x + ε) : x ∈ E} for an E ⊂ R, satisfies

(i) The compact set T (ε) consists of as many intervals as T (0).
(ii) Let mε := mε

1 := mI · 1T (ε)×T (ε) and for n ≥ 1 let

mε
n+1(x, y) :=

∫
T (ε)

mε
n(x, z) ·mε

1(z, y) dz. (27)

Then there is an index Q for which the function mε
Q is uniformly positive and 

bounded on T (ε) × T (ε).
(iii) The Perron-Frobenius eigenvalue of the operator

F ε : h(x) �→
∫
T

mε
1(x, y) · h(y) dy, x ∈ T (ε)

acting on L2(T (ε)) is larger than 1.
(iv) The corresponding eigenfunction fε(x) is continuous on T (ε).
(v) Hi(T (0)) ⊂ T (0) for every i ∈ T .

The proof is given at the end of Section 8.

The contents of the following theorem form the essential part of the proof of our main 
result Theorem 2.2.

Theorem 4.2. Let H be a homogeneous RIFS with s(H) > 1. Then int(CH) �= ∅ almost 
surely.

Theorem 4.2 will be proved in Section 7, as a consequence of Lemma 4.1 (the Main 
Lemma).
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5. Proof of Theorem 1.1 and Theorem 2.2 assuming Theorem 4.2

Since the proof of Theorem 1.1 uses Theorem 2.2, we first prove Theorem 2.2.

Proof of Theorem 2.2. Given an RIFS F with similarity dimension s(F) > 1. Then 
according to Proposition 3.1, we can find a homogeneous RIFS H := FU , with s(H) > 1. 
It follows from Theorem 4.2 that the attractor CH of the homogeneous RIFS H contains 
an interval almost surely. Then this interval is also contained in the attractor CF of the 
RIFS F . �
Proof of Theorem 1.1. Given is an RIFS F with similarity dimension larger than 1

2 . Let 
ε > 0 so that ε < s(F) − 1

2 . Using Proposition 3.1 there exists a homogeneous RIFS 
H := FU , with CH ⊆ CF and s(H) > s(F) − ε > 1

2 . Let C1, C2 be two independent 
copies of the attractor of F . Then we also have two independent copies C1

H ⊆ C1 and 
C2

H ⊆ C2 where s(H) > 1
2 . According to Theorem 4.1 we can find another homogeneous 

RIFS H� whose attractor is C1
H − C2

H, and s(H�) = 2s(H) > 1. So by Theorem 2.2
C2

H−C1
H contains an interval almost surely. But then also C2 −C1 � C1

H−C2
H contains 

an interval almost surely. �
6. The multi type branching process Z

On the probability space Ω we define a multi type branching process Z = (Zn)∞n=0.
For a fixed 0 < ε < εMAIN let T := T (ε) be the type space from Equation (26).
Let Z0 = {x}, where x ∈ T , and for i ∈ [L] let Zi := Φi(x). Then

Z1 := {Zi : i = 1, . . . , L} .

Note that Θ is a state of the branching process, but not an element of the type space 
T ⊂ [α, β].

To define the Zn, we need some preparations. We follow the definition of an RIFS 
given in Definition 2.1, but now from the viewpoint of the Y -vectors, instead of the 
D-vectors. So we are given {

Y (i) =
(
Y

(i)
1 , . . . , Y

(i)
L

)}
i∈T

as a set of i.i.d. random vectors having the same distribution as that of (Y1, . . . , YL).
For an i = i1 . . . in we define

ti :=
n∑

k=1

ak−1 · tik , Yi :=
n∑

k=1

ak−1 · Y (i1i2...ik−1)
ik

and θi :=
n∑

k=1

ak−1 · θik . (28)

Here we interpret by convention i1i2 . . . ik−1 as ∅ when k = 1.
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Clearly, the iterates from (8) take the following form for a homogeneous RIFS

Hi(x) = anx + Ti, where Ti := ti + Yi. (29)

It follows from our assumption on the density f̃i of Yi that (identifying somewhat care-
lessly the support of an absolutely continuous random variable with the support of its 
density function)

supp(Yi) = (−θi, θi). (30)

Let I = [α, β] be the supporting interval of H. We define the level-n (random) cylinder 
intervals

Ji := Hi(I) = [anα + Ti, a
nβ + Ti] ⊂ [anα + ti − θi, a

nβ + ti + θi].

The collection of all of these random level n intervals is denoted by In. Note that these 
are intervals of length (β − α)an. The endpoints of the random interval Ji ∈ In are 
Ai = anα + Ti and Bi = Ai + (β − α)an. That is, by definition Ji = [Ai, Bi].

We get the level n children of an x ∈ T with Hi(x) ∈ Ji as follows:
If H−1

i (x) = α + x−Ai

an �∈ T then the level n child of x is Θ. Otherwise, the level n
child of x is H−1

i (x) = α + x−Ai

an .

Note that H−1
i (x) = Φi(x), where Φi was defined in Definition 4.1. In the sequel we 

will use the notation with the H−1
i and their iterates.

In general, if x ∈ T and Z0 = {x} and A ⊂ T is a Borel set, then for any n ≥ 1 the 
set of level n descendants of x contained in A is denoted by Dn(x, A). So,

Dn(x,A) :=
{
i ∈ Ln : H−1

i (x) ∈ A
}

(31)

and

Zn(x,A) = #Dn(x,A). (32)

We remark that the process (Zn)∞n=0 is a Markov chain since an individual in Zn gives 
birth to descendants independently of the individuals of the same generation if Zn−1 is 
given.

A major role in our analysis is played by the expectations E[Zn(x, A)], for A ⊂ T , 
n ≥ 1. For n = 1 we have

E[Z1(x,A)] =
∫
Ω

Z1(x,A) dP =
∫
Ω

L∑
i=1

1{Φi(x)∈A} dP

=
L∑

i=1
P (Φi(x) ∈ A) =

L∑
i=1

∫
φi(x, y) dy, (33)
A
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where φi(x, y) was defined in part (b) of Definition 4.1. It follows that M1(x, ·) :=
E[Z1(x, ·)] has a kernel, given by

m(x, y) := m1(x, y) =
L∑

i=1
φi(x, y), (x, y) ∈ T × T. (34)

Let for n ≥ 1 and A ⊂ T and x ∈ T ,

Mn(x,A) := E[Zn(x,A)]

We remark that if M1 has a kernel then Mn also has a kernel. Let us write mn(x, ·) for 
the kernel of Mn(x, ·). That is

Mn(x,A) =
∫

y∈A

mn(x, y) dy. (35)

The branching structure of Z yields (see [3, p. 67])

mn+1(x, y) =
∫
T

mn(x, z)m1(z, y) dz,

which was already introduced in (27), where one has to realize that in the notation we 
suppressed the dependence on ε of the kernel function m(·, ·) in Section 6 and 7.

6.1. Supercritical branching processes with uniformly positive kernel

Harris in his book [3, Condition 10.1] considers the following condition on the kernel 
function.

There exist amin, amax and N0, such that for all x, y ∈ T we have

0 < amin ≤ mN0(x, y) ≤ amax < ∞. (36)

We next consider the following two operators:

F : ϕ(x) �→
∫
T

m1(x, y) · ϕ(y) dy, x ∈ T (37)

G : ψ(y) �→
∫
T

ψ(x) ·m1(x, y) dx, y ∈ T.

These operators are closely related to the expectations of the branching process. Note 
in particular that
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E[Zn(x,A)] =
∫
T

mn(x, y)1A(y) dy = Fn(1A(x)). (38)

We cite the following theorem from [3, Theorem 10.1]:

Theorem 6.1 (Harris). It follows from the condition in (36) that the operators in (37)
have a common dominant eigenvalue ρ. Let f and g be the corresponding eigenfunctions 
of the first and second operator in (37) respectively. Then the functions f and g are 
bounded and uniformly positive on T . Moreover, apart from a scaling, f and g are the 
only non-negative eigenfunctions of these operators. Further, if we normalize f and g so 
that 

∫
f(x)g(x) dx = 1, then for all x, y ∈ T as n → ∞

∣∣∣mn(x, y)
ρn

− f(x)g(y)
∣∣∣ ≤ C1 f(x)g(y)Δn,

where the bound Δ < 1 can be taken independently of x and y, and the constant C1 is 
independent of x, y and n.

7. The proof of Theorem 4.2 assuming Lemma 4.1, the Main Lemma

For ε with 0 < ε < εMAIN let T := T (ε) be the type space defined in (26), and let be 
f an F -eigenfunction. We define for 0 < η < εMAIN − ε

W := T (η + ε), and fW := f · 1W . (39)

Lemma 7.1. Let f be an F -eigenfunction. Then there exist 0 < ε, η < εMAIN
2 and C0 > 0

such that

FfW (x) > C0f(x) holds for all x ∈ T. (40)

Proof. By the fact that f is a right eigenfunction of F corresponding to the Perron-
Frobenius eigenvalue ρ we obtain that for every x ∈ T we have

∫
T

m(x, y) dy ≥ ρ
f(x)

max
z∈T

f(z) ≥ ρ
min
z∈T

f(z)

max
z∈T

f(z) .

Hence, for all x ∈ T ,

Ff(x) =
∫
T

m(x, y)f(y) dy ≥ min
z∈T

f(z)
∫
T

m(x, y) dy

≥ ρ
(
min
z∈T

f(z)
)2
/max
z∈T

f(z) =: C∗ > 0. (41)
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The fact that C∗ > 0 follows from Harris’ Theorem (Theorem 6.1).
Using the definition of m in (34), (24), and the properties of f̃i in A2 we obtain that 

there exists a number U such that

0 ≤ m(x, y) ≤ U, for all (x, y) ∈ T × T. (42)

We choose η > 0 so small that the second inequality below holds:∫
T\W

m(x, y)f(y) dy ≤ Leb(T \W ) · U · max
z∈T

f(z) < C∗/2. (43)

Putting together (41) and (43) we obtain that

FfW (x) =
∫
W

m(x, y)f(y) dy = Ff(x) −
∫

T\W

m(x, y)f(y) dy > C∗/2.

Hence for all x ∈ T

FfW (x) > C∗

2 max
z∈T

f(z)f(x).

That is, (40) holds with C0 := C∗/2 max
z∈T

f(z). �
Corollary 7.1. For any n ≥ 1 we have ∀x ∈ T, Fn1W (x) > C1ρ

n−1, where C1 :=
C0 · min

z∈T
f(z)/ max

z∈T
f(z).

Consequently, there exists a positive integer r such that

∀x ∈ T, E[Zn(x,W )] = Fn1W (x) > 6 for each n ≥ r. (44)

Proof. Let x ∈ T . Since 1W (x) = fW (x)/f(x), Equation (40) of Lemma 7.1 implies

F1W (x) ≥
∫
T

m(x, y) fW (x)
max
z∈T

f(z) dy = FfW (x)/max
z∈T

f(z) > C0f(x)/max
z∈T

f(z) > C1.

Using that Fn−1 is a monotone operator for all integers n ≥ 2, we obtain from this that

Fn−1F1W (x) > C0F
n−1f(x)/max

z∈T
f(z) = C0ρ

n−1f(x)/max
z∈T

f(z)

≥ C0ρ
n−1 min

z∈T
f(z)/max

z∈T
f(z).

Hence for all n ≥ 1
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Fn1W (x) > C0

min
z∈T

f(z)

max
z∈T

f(z)ρ
n−1 = C1ρ

n−1. (45)

So we can take

r :=
⌈
(log(6) − log(C1))/ log(ρ)

⌉
. (46)

To finish the proof, note that E[Zn(x, W )] = Fn1W (x), according to (38). �
Our next lemma is a corollary to the Hoeffding inequality [5]:

Lemma 7.2 (Hoeffding). Assume Y1, . . . , YC are independent random variables such that 
for any i = 1, . . . , C we have ai ≤ Yi ≤ bi for some real numbers ai, bi. Let SC =

∑C
i=1 Yi

and let t be a positive real number. Then we have

P (SC − ESC > t) ≤ exp
{
− 2t2∑C

i=1(bi − ai)2
}
.

The following statement, Lemma 7.3, is an assertion similar to the easy part of the 
Cramér theorem.

Lemma 7.3. Let C ∈ N, K > 0 and Z1, . . . , ZC be a sequence of independent random 
variables such that Zi takes values in an interval of length K, and mi = E [Zi] > 6 for 
all i = 1, . . . , C. Then there exists 0 < τ = τ(K) < 1 such that

P
(
Z1 + · · · + ZC < 2C

)
≤ τC .

Proof. Let mi = E Zi. Observe that

P
(
Z1 + · · · + ZC < 2C

)
= P

(
m1 − Z1 + · · · + mC − ZC >

C∑
i=1

(mi − 2)
)
. (47)

Motivated by this, we introduce

Yi = mi − Zi, and t =
C∑
i=1

(mi − 2).

Then Y1, . . . , YC are independent, and they are contained in an interval of length K. So, 
we can apply Lemma 7.2 with the choice of bi − ai = K. Clearly, E [SC ] = 0. Now we 
use (47), and the fact that by mi > 6 we have t2 ≥ 16C2. We get

P (Z1 + · · ·ZC < 2C) = P (SC − E [SC ] > t)



M. Dekking et al. / Advances in Mathematics 448 (2024) 109724 19
≤ exp
(
− 2t2∑C

i=1(bi − ai)2

)
≤ exp

(
−2 · 16C2

C ·K2

)
=
(

exp
(
− 32
K2

))C

= τ(K)C ,

where τ(K) := exp
(
− 32

K2

)
< 1. �

Definition 7.1.

(a) In Lemma 7.3 we choose the constant K equal to K := Lr, where r is defined in 
(46). So τ = τ(r) from now on.

(b) Let c1 be the length of the smallest interval in T (0). We choose n1 such that 
an1

Leb(W ) ≈ c1, specifically, n1 :=
⌈

loga
c1

Leb(W )

⌉
.

(c) Let N(n) := Leb(W )
2(β−α) (La)n. We will show in Lemma 7.4 that N(n) can serve as a 

lower bound for the growth of the number of intervals. We remark that it will be 
very important for us that N(n) tends to infinity exponentially, which follows from 
our assumption that La > 1 (equivalently, the similarity dimension of the IFS H is 
greater than one).

(d) We define the sequence (a0(n), a1(n), a2(n), . . . ) by

ak(n) := Ln+krτ2k−1·N(n).

(e) Let �1 be the length of the smallest interval in W .
(f) We fix a small ξ > 0. Let n2 ≥ n1 be chosen such that for any n ≥ n2 we have 

�1
η ≤ (La)n (where η was defined in Lemma 7.1), and such that for any n ≥ n2

∞∑
k=0

ak(n) < ξ. � (48)

For an A ⊂ T we defined Zn(x, A) in (31) and (32) by

Zn(x,A) := #Dn(x,A) := #
{
i ∈ Ln : H−1

i (x) ∈ W
}

only for x ∈ T . Using this formula we extend these definitions to all x ∈ T (0).

The sample space Ω was defined in Section 2.2. A realization ωωω ∈ Ω was given by the 
i.i.d. collection of L-dimensional vectors 

{
D(i)}

i∈T . Using (29) we get for all i = i1 . . . in

Hi(x)(ωωω) = anx+Ti(ωωω) = anx+ti+Yi(ωωω) = anx+
n∑

k=1

ak−1tik +
n∑

k=1

ak−1Y
(i1i2...ik−1)
ik

(ωωω),

(49)
where Ti was defined in (9), ti was defined in (28), and according to (22)

Y
(i1i2...ik−1)
i (ωωω) = D

(i1i2...ik−1)
i (ωωω) − tik . (50)
k k
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So, we can, and from now on we will, identify a realization ωωω ∈ Ω with the labeled tree {
Y (i) = (Y (i)

1 , . . . , Y
(i)
L )
}

i∈T
. Clearly, by (49) we get

H−1
i (x) = x

an
−

n∑
p=1

1
an+1−p

tip −
n∑

p=1

1
an+1−p

Y
(i1i2...ip−1)
ip

. (51)

Lemma 7.4. For every ωωω ∈ Ω there exists a (random) interval J = J(ωωω) ⊂ T (0) of length 
Leb(J) = 1

2�1a
n such that for any x ∈ J

Zn(x,W )(ωωω) ≥ Leb(W )
2(β − α) (La)n = N(n).

Proof. The proof uses the observation that for any bounded integrable function h∫
T (0)

h(x) dx ≤ Leb(T (0)) · ||h||∞ ≤ (β − α)||h||∞.

By the definition of Zn(x, W ) (see (31)) we have∫
T (0)

Zn(x,W ) dx =
∫

T (0)

∑
|i|=n

1H−1
i

(x)∈W dx

=
∑
|i|=n

∫
T (0)

1H−1
i

(x)∈W dx

=
∑
|i|=n

Leb({x ∈ T (0) : H−1
i (x) ∈ W})

=
∑
|i|=n

Leb (T (0) ∩Hi(W ))

= Ln
Leb(W )an = 2(β − α)N(n),

where we use in the one but last step that Hi(W ) ⊂ T (0). This follows from part (v) of 
the Lemma 4.1 (Main Lemma) since W ⊂ T (0).

In this way, for every ωωω ∈ Ω there exists an xmax = xmax(ωωω) ∈ T (0) such that

Zn(xmax,W ) ≥ 2N(n).

Let Gn :=
{
i ∈ Ln : H−1

i (xmax) ∈ W
}
. Then by definition #Gn = Zn(xmax, W ). For 

each i ∈ Gn, H−1
i (xmax) is contained in a connected component Ci of W . By definition, 

Leb(Ci) ≥ �1.
We write Gl

n for the collection of those i ∈ Gn for which the center of Ci is to the left 
from H−1

i (xmax). So, for an i ∈ Gl
n there is an interval of length at least �1/2, contained 
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in W with right endpoint H−1
i (xmax). Let Gr

n := Gn \Gl
n. Then at least one of the sets 

Gl
n or Gr

n — say Gl
n — has cardinality at least N(n). This means that for

J := (xmax − an�1/2, xmax) , (52)

and for every x ∈ J and for every i ∈ Gl
n we have H−1

i (x) ∈ W . So, by (31), we have 
Zn(x, W ) ≥ #Gl

n ≥ N(n) for all x ∈ J. To verify that J ⊂ T (0), pick an i ∈ Gl
n. 

Then J ⊂ Hi(Ci). Using part (v) of Lemma 4.1 (the Main Lemma) we obtain Hi(Ci) ⊂
Hi(W ) ⊂ T (0). Hence, J ⊂ T (0). �

Recall that n is fixed. We partition each interval of T (0) into intervals of length �1an/6. 
In general there will of course be one interval in this partition that is shorter. We take 
this to be always the rightmost interval. Let L̃ = L̃(n) be the total number of intervals 
in T (0) obtained in this way. Let J1, . . . , JL̃ be the intervals in increasing order from left 
to right in T (0).

Let J be the random interval defined in (52). Since J = J(ωωω) ⊂ T (0), one of the 
intervals J� is starting exactly at the left border of J, and since J is at least three times 
as long, this is in fact one of the intervals of length �1an/6 from the partitioning intervals. 
We denote the index of this unique interval by the number �max = �max(ωωω). Let

Ωl = {ωωω ∈ Ω : �max(ωωω) = l} for l = 1, . . . L̃.

It follows from (51) that

for an ωωω = {Y (i)}i∈T the event {ωωω ∈ Ωl} depends only on Y (i) with i ∈
n−1⋃
k=0

Lk.

(53)
Clearly, we also have

Ω =
L̃⋃

l=1

Ωl.

For two finite words i, j, in general, Hij �= Hi ◦Hj. To get equality in this formula, in 

Hj = a|j|x + tj +Yj we need to replace the random part Yj =
|j|∑
p=1

ap−1 ·Y (j1j2...jp−1)
jp

by its 

shifted version Y (i)
j :=

|j|∑
p=1

ap−1 · Y (ij1j...jp−1)
jp

, where ij1j . . . jp−1 is the concatenation of 

the words i and j1 . . . jp−1, and where by convention we interpret ij1j . . . jp−1 as i when 
p = 1.

Lemma 7.5. Let i ∈ Ln and j ∈ Lm for some n, m > 0. We define the random function 
Hi→ij on T by
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Hi→ij(x) := amx + tj + Y i
j = amx +

m∑
p=1

ap−1 tip +
m∑

p=1
ap−1 Y

(ij1j2...jp−1)
jp

. (54)

Then Hij(x) = Hi ◦Hi→ij(x). Consequently, H−1
ij (x) = H−1

i→ij ◦H
−1
i (x), and

H−1
i→ij(x) = x

am
−

m∑
p=1

1
am+1−p

tip −
m∑

p=1

1
am+1−p

Y
(ij1j2...jp−1)
jp

. (55)

Proof. Immediate from the definitions. �
Let x ∈ T (0) and U ⊂ T . Recall that Dn(x, U) =

{
i ∈ Ln : H−1

i (x) ∈ U
}
. For an 

i ∈ Dn(x, T ) we define xi := H−1
i (x), and

Dr,i(x, U) :=
{
j ∈ Lr : H−1

ij (x) ∈ U
}

=
{
j ∈ Lr : H−1

i→ij(xi) ∈ U
}
.

Finally, for an i ∈ Dn(x, T ) we write

Vi := #Dr,i(x,W ).

Now we observe that, since the H−1
ij have the same distribution as the H−1

j , by Corol-
lary 7.1 we have

E [Vi] > 6 holds for all i ∈ Dn(x, T ). (56)

Moreover,

{Vi}i∈Dn(x,T ) are independent and conditionally independent on Ωl. (57)

Namely, the independence is obvious from the definition. To verify the conditional in-
dependence, recall that by (53) for an ωωω =

{
Y (j)}

j∈T ∈ Ω, the event {ωωω ∈ Ωl} depends 

only on Y (j) for which j ∈
n−1⋃
k=0

Lk.

On the other hand, it follows from (55) that the value of Vi(ωωω) depends only on Y (j)

for j ∈
n+r−1⋃
k=n

Lk.

By the definitions and the last two sentences we obtain the conditional independence 
stated in (57).

Lemma 7.6. For any l = 1, . . . , L̃, any n ≥ r, and any x ∈ Jl

P (Zn+r(x,W ) ≤ 2N(n) | Ωl) ≤ τN(n). (58)
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Proof. Since x ∈ Jl ⊂ J, Lemma 7.4 gives that Zn(x, W )(ωωω) ≥ N(n), i.e., there are 
at least �N(n)� descendants i at level n. Each of these gives Vi descendants at level 
n + r. Since n ≥ r, and since E [Vi] > 6 (see (56)), we obtain by (57) that we can apply 
Lemma 7.3 with K = Lr and C = �N(n)�. This gives Equation (58). �

Let Xk be a ηa2n+kr dense set in Jl, where η has been set in Lemma 7.1. Xk can be 
chosen such that

#Xk ≤ �1a
n

ηa2n+kr
= �1

η
a−(n+kr) < Ln+kr if n ≥ n2. (59)

The most important step towards our goal of proving Theorem 4.2 is to verify the 
following inequality:

P
(
Zn+kr(x, T ) > 2k ·N(n),∀0 ≤ k ≤ M, ∀x ∈ Jl | Ωl

)
>

M∏
k=0

(1 − ak(n)), (60)

holds for any positive integer M if P (Ωl) > 0. This will be the key step in the proof of 
Lemma 7.8 which will easily imply the assertion of Theorem 4.2.

For M = 1, by (58) we obtain:

P (∃x ∈ X1 : Zn+r(x,W ) ≤ 2N(n)|Ωl) ≤ #X1 · τN(n).

Recall that X1 was defined as an ηa2n+r-dense subset of Jl. Recall that by (59) we have 
#X1 ≤ Ln+r. Hence,

P (∀x ∈ X1 : Zn+r(x,W ) > 2N(n) | Ωl) ≥ 1 − Ln+rτN(n). (61)

Next, our purpose is to extend the inequality (61) from all x ∈ X1 to all x ∈ Jl, and 
from 1 to all k ≥ 2.

Lemma 7.7. For any k ≥ 1 and l = 1, . . . , L̃ we have

{
∀x ∈ Xk : Zn+kr(x,W ) > 2kN(n)

}
∩ Ωl ⊂

{
∀x ∈ Jl : Zn+kr(x, T ) > 2kN(n)

}
∩ Ωl,

(62)
and the set

{
∀x ∈ Jl : Zn+kr(x, T ) ≥ 2kN(n)

}
(63)

is measurable.

Proof. Let us fix k ≥ 1. Since Xk is ηa2n+kr dense in Jl, for any x ∈ Jl we can find 
x′ ∈ Xk such that |x − x′| < ηa2n+kr < ηan+kr.
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We claim that if for some x′ and ωωω one has Zn+kr(x′, W ) > 2kN(n), then for the 
same ωωω and for any x such that |x − x′| < ηan+kr, and the larger set T , we also have 
Zn+kr(x, T ) > 2kN(n).

The point is here that if x and x′ are ηan+kr close, then their images with the function 
H−1

i are η-close if i is a word of length n + kr. So if i is a word of length n + kr such 
that H−1

i (x′) ∈ W then H−1
i (x) is in the η-neighborhood of W . But T is exactly the 

η-neighborhood of W since W = T (0) \ B(∂T (0), ε + η) and T = T (0) \ B(∂T (0), ε), 
where ∂ means boundary. This proves (62).

It remains to be proved that the set in (63) is measurable which is formally not 
straightforward since x is running over an interval Jl.

First, we note that it is enough to prove that for any fixed x′ ∈ Xk the set

{
∀x ∈

[
x′ − ηan+kr, x′ + ηan+kr

]
∩ Jl : Zn+kr(x, T ) ≥ 2kN(n)

}
is measurable since Xk is a finite set.

We have to take into consideration two facts. T is a union of finite number of intervals 
and according to (32) Zn+kr(x, T ) is a sum of a finite number of indicator functions:

Zn+kr(x, T ) = #Dn+k(x, T )

Therefore, the function Zn+kr(·, T ) for any ωωω is a jump function on T with a finite 
number of jumps. Let {ιi : i ∈ I} denote the partition of T into the intervals on which 
Zn+kr(·, T ) is constant. So, Zn+kr(x, T ) depends on the interval ιi which x falls into. 
Therefore,

{
∀x ∈

[
x′ − ηan+kr, x′ + ηan+kr

]
∩ Jl : Zn+kr(x, T ) ≥ 2kN(n)

}
={

∀i ∈ I such that ιi ∩
[
x′ − ηan+kr, x′ + ηan+kr

]
∩ Jl �= ∅ : Zn+kr(ιi, T ) ≥ 2kN(n)

}
.

The last set is given by a measurable function of a finite number of random variables 
hence measurable. �
Lemma 7.8. Fix an arbitrary n ≥ n2 and l ∈ {1, . . . , L̃}. Then

∀x ∈ Jl and ∀ωωω ∈ Ωl, Zn(x, T )(ωωω) > N(n). (64)

Further, if P (Ωl) > 0 we have

P
(
Zn+Mr(x, T ) > 2M ·N(n),M = 0, 1, . . . , ∀x ∈ Jl | Ωl

)
>

∞∏
k=0

(1 − ak(n)). (65)

Proof. Equation (64) follows from Lemma 7.4.
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Concerning (65), it is enough to verify that (60) holds for every M . To do so, as a 
consequence of Lemma 7.7 we can exchange X1 with Jl at a price of replacing the set 
W with the larger set T in (61). In this way, as we have already pointed out in (61), we 
obtain

P (Zn+r(x, T ) > 2N(n),∀x ∈ Jl | Ωl) ≥ 1 − Ln+rτN(n) = 1 − a1(n).

For k = 0, using Lemma 7.4, the definition of Ωl and W ⊂ T , we have

Zn(x, T )(ωωω) ≥ Zn(x,W )(ωωω) ≥ N(n) for all ωωω ∈ Ωl.

Therefore, we have (60) for M = 1:

P
(
Zn+kr(x, T ) > 2kN(n), 0 ≤ k ≤ 1, x ∈ Jl | Ωl

)
≥ 1 − Ln+rτN(n) =

1 − a1(n) > (1 − a1(n))(1 − a0(n)).

Now, assume that we have proved (60) for M − 1. We will prove it for M . Yet again 
we use the simple fact that for any three events A, B, D of positive probability we have: 
P (A ∩B|D) = P (A|B ∩D) · P (B|D) in the following way:

A :=
{
Zn+Mr(x, T ) > 2M ·N(n), ∀x ∈ Jl

}
,

B :=
{
Zn+kr(x, T ) > 2k ·N(n),∀0 ≤ k ≤ M − 1,∀x ∈ Jl

}
, D := Ωl. Then we have

P

⎛⎝Zn+kr(x, T ) > 2k ·N(n),∀0 ≤ k ≤ M, ∀x ∈ Jl︸ ︷︷ ︸
A∩B

| Ωl︸︷︷︸
D

⎞⎠
= P

⎛⎝Zn+Mr(x, T ) > 2M ·N(n), ∀x ∈ Jl︸ ︷︷ ︸
A

|

Zn+kr(x, T ) > 2k ·N(n),∀0 ≤ k ≤ M − 1,∀x ∈ Jl︸ ︷︷ ︸
B

, Ωl︸︷︷︸
D

⎞⎠ ·

· P

⎛⎝Zn+kr(x, T ) > 2k ·N(n),∀0 ≤ k ≤ M − 1, ∀x ∈ Jl︸ ︷︷ ︸
B

| Ωl︸︷︷︸
D

⎞⎠
By induction, it is known that

P (B | D) ≥
M−1∏
k=0

(1 − ak(n)). (66)

Now we prove that
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P (A | B ∩D) > 1 − aM (n). (67)

As in the proof of (58) we use Lemma 7.3. Let n′ = n + (M − 1)r, C = Zn′(x, T ). By 
induction, we know that for ωωω ∈ Ωl and x ∈ Jl we have C ≥ 2M−1 ·N(n).

Then for any x ∈ Jl we have

P
(
Zn′+r(x,W ) ≤ 2 · 2M−1N(n) | B ∩D

)
≤ τ2M−1N(n).

This can be proved in exactly the same way as (58) was proved. The continuation is also 
similar, we first take a dense set XM and prove the counterpart of (61), that is,

P
(
Zn′+r(x,W ) > 2 · 2M−1N(n), x ∈ XM | B ∩D

)
≥ 1−Ln+Mrτ2M−1N(n) = 1−aM (n).

Applying Lemma 7.7 yields

P (A | B ∩D) = P
(
Zn+Mr(x, T ) > 2M ·N(n), ∀x ∈ Jl | B ∩D

)
≥ 1 − aM (n),

where we used that Zn+Mr(x, T ) = Zn′+r(x, T ). So, we have verified (67). This and (66)
together implies that (60) holds for every M . Hence, we get that (65) also holds. This 
finishes the proof of Lemma 7.8. �

Now, we are ready to present the proof of Theorem 4.2.

Proof of Theorem 4.2 assuming Lemma 4.1, the Main Lemma. Using Lemma 7.8 and 
Lemma 7.9, we have that whenever P (Ωl) > 0

P (CH contains an interval | Ωl) ≥ P (CH contains Jl | Ωl) ≥

P
(
Zn+Mr(x, T ) > 2M ·N(n),∀M, ∀x ∈ Jl | Ωl

)
>
∏∞

k=0(1 − ak(n)) > 1 −
∑∞

k=0 ak(n).

Getting rid of the condition, we obtain that

P (CH contains an interval) =
∑∞

l=1 P (CH contains an interval | Ωl)P (Ωl) >

(1 −
∑∞

k=0 ak(n))
∑L

l=1 P (Ωl) = 1 −
∑∞

k=0 ak(n) > 1 − ξ,

where in the last step we used (48). Since ξ can be chosen arbitrarily small this proves 
Theorem 4.2. �
Lemma 7.9. Let (ak)k≥0 be a sequence of positive real numbers. Then 

∏∞
k=0(1 − ak) >

1 −
∑∞

k=0 ak.

Proof. First note that for two positive numbers x and y one has: (1 −x)(1 −y) > 1 −(x +y), 
simply because xy > 0. So we have (1 − a0)(1 − a1) > 1 − (a0 + a1).
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We continue by induction. Suppose that the formula holds with upper index n ≥ 1
instead of ∞.

Let x = 1 −
∏n

k=0(1 − ak), and y = an+1. Then 1 −x =
∏n

k=0(1 − ak) > 1 −
∑n

k=0 ak. 
So

n+1∏
k=0

(1− ak) = (1− x)(1− y) > 1− (x+ y) = 1− x− y > 1−
n∑

k=0

ak − an+1 = 1−
n+1∑
k=0

ak.

This finishes the induction proof. Letting n → ∞ we obtain the statement of the 
lemma. �
8. Construction of the pre-typespace T (0) and the type space T (ε)

In this section we prove Lemma 4.1, the Main Lemma.
We consider the support of mI :

supp(mI) =
L⋃

i=1
{(x, y) : y ∈ supp Φi(x)} .

It is immediate that

supp(mI) =
L⋃

i=1
Ŝi, (68)

where,

Ŝi :=
{

(x, y) : x ∈ Ŵi, y ∈ supp Φi(x)
}

for Ŵi := (aα + ti − θi, aβ + ti + θi).

It is easy to see that for all i ∈ [L], Ŝi is a parallelogram with two horizontal sides: 
{(x, y) : y = α}, {(x, y) : y = β} and the two other sides are the following two lines of 
slope 1/a

�̂2i (x) := 1
a
x− ti

a
+ 1

a
θi, �̂1i (x) := 1

a
x− ti

a
− 1

a
θi.

That is

Ŝk =
{

(x, y) : x ∈ Ŵk, max
{
α, �̂1k(x)

}
< y < min

{
β, �̂2k(x)

}}
(69)

= {(x, y) : y ∈ (α, β), ay + ti − θi < x < ay + ti + θi} .

Clearly,

width(Ŝk) = 2θk height(Ŝk) = 2θk
. (70)
a
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Fig. 3. Parallelograms Ŝi on the left and parallelograms Sk on the right.

In general the open filled parallelograms Ŝi are not disjoint. Their union 
L⋃

i=1
Ŝi has 

say M connected components {Sk}Mk=1. By elementary geometry, for all k ∈ [M ] the 
connected component Sk is also an open filled parallelogram having two horizontal sides 
and the left non-horizontal side is one of the lines from 

{
�̂2i (x)

}L

i=1
. Let us call it �2k(x). 

While the right non-horizontal side of Sk is one of the lines from 
{
�̂1i (x)

}L

i=1
. Let us call 

it �1k(x).
Observe that the open filled parallelograms Sk can be adjacent to each other. That 

is, it can happen that for a 1 ≤ k ≤ M − 1, we have �1k(x) ≡ �2k+1(x).
We introduce the orthogonal projections to the coordinate axes:

π1(x, y) := x and π2(x, y) := y.

We have

Sk =
{
(x, y) : x ∈ π1(Sk), max

{
α, �1k(x)

}
< y < min

{
β, �2k(x)

}}
. (71)

The collection of parallelograms having two horizontal sides such that the slopes of the 
other two sides are equal to 1/a is denoted by P. Particular attention will be given to 
the parallelograms of the form P k

〈u,v〉 ∈ P, where u ≤ v, and 〈a, b〉 stands for an interval 
with endpoints a ≤ b about which we do not know if it is closed or open or half-closed 
and half-open.

P k
〈u,v〉 := {(x, y) ∈ Sk : y ∈ 〈u, v〉} . (72)
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When u = v then P k
[u,v] is the horizontal line segment {(x, y) ∈ Sk : y = u = v}. Without 

loss of generality, we may assume that 
M⋃
k=1

Sk is contained in the region between the left 

side of S1 (which is determined by the graph of the function �21(x)) and the right side of 
SM (which is determined by the graph of the function �1M (x)).

We define α < α̃ < β̃ < β by

�21(α̃) = α̃, �1M (β̃) = β̃ and Ĩ := [α̃, β̃] ⊂ I. (73)

Definition 8.1. Let A be the collection of all finite unions of sub-intervals of Ĩ, including 
all open, closed, half-open and half-closed, and even degenerated intervals. In particular 
there exists a q such that H ∈ A, H =

q⋃
j=1

〈ai, bi〉, where α̃ ≤ ai ≤ bi ≤ β̃ for all i ∈ [q]. 

We define

UH :=
⋃

k∈[M ]

⋃
i∈[q]

P k
〈ai,bi〉 =

⋃
i∈[q]

{(x, y) : y ∈ 〈ai, bi〉}
⋂ M⋃

k=1

Sk (74)

and

Ψ(H) := π1 (UH) =
⋃

k∈[M ]

⋃
i∈[q]

π1

(
P k
〈ai,bi〉

)
. (75)

Lemma 8.1. The mapping Ψ satisfies

(a) Let y ∈ Ĩ. Then

Ψ ({y}) =
L⋃

i=1
(ay + ti − θi, ay + ti + θi) . (76)

(b) Ψ is a self-mapping of A. That is, Ψ : A → A.
(c) Ψ is monotone in the sense that A ⊂ B implies Ψ(A) ⊂ Ψ(B).

Proof. Part (a) follows from the second part of (69). It is clear that for all k ∈ [M ] and 

i ∈ [L], π1

(
P k
〈ai,bi〉

)
is an interval, and so Ψ(H) consists of finitely many intervals. The 

fact that all of these intervals are contained in Ĩ follows from the definition of α̃ and β̃. 
Part (b) and (c) are obvious from the definition. �

Set

Vm := Ψm(int(Ĩ)) with V0 := int(Ĩ). (77)

It follows from part (b) and (c) of Lemma 8.1, that Vm+1 ⊂ Vm. Put
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N0 := inf {m ∈ N ∪ {∞} : Vm \ Vm+1 = ∅} . (78)

We will prove in Lemma 8.3 that N0 is finite. A short heuristics for this is as follows: 
Below, we introduce a construction of level m green intervals and level m red intervals. 
These are the connected components of Vm and Vm−1 \ Vm, respectively. We will prove 
that the length of a level m red interval is less than or equal to g̃m(β̃ − α̃), where g̃m

is the m-th iterate of the function g̃(x) := ax − θmin. The fixed point of this function 
is negative and {g̃(x)}∞m=1 converges to this fixed point for every x. So, for sufficiently 
large m, we have g̃m(β̃ − α̃) < 0. For such an m, there are no red intervals since the 
length of an interval cannot be negative. That is Vm = Vm+1. Hence, N0 is finite.

Definition 8.2. The pre-type space is defined by T (0) := VN0 .

8.1. Elementary properties of the pre-type space T (0)

Using that both Vm ∈ A and int(Ĩ) \ Vm ∈ A for every m we can find an n̂m, nm and 
α̃ ≤ α

(m)
i < β

(m)
i ≤ β̃ and α̃ ≤ u

(m)
i ≤ v

(m)
i ≤ β̃ such that

Vm =
⋃

i∈[n̂m]

(
α

(m)
i , β

(m)
i

)
, Vm−1 \ Vm =

⋃
i∈[nm]

〈u(m)
i , v

(m)
i 〉

and 
{(

α
(m)
i , β

(m)
i

)}n̂m

i=1
and 

{
〈u(m)

i , v
(m)
i 〉

}nm

i=1
are the connected components of Vm and 

Vm−1 \ Vm respectively. We say that the intervals in the first union are level m green 
intervals and the intervals in the second union are the level m red intervals. See Fig. 4. 
Their collections are denoted by Gm and Rm respectively. That is

Gm :=
{(

α
(m)
i , β

(m)
i

)}n̂m

i=1
and Rm :=

{
〈u(m)

i , v
(m)
i 〉

}nm

i=1
.

For an m ≥ 1, the level-m green and red areas are:

Gm := UVm−1 =
⋃

i∈[n̂m−1],k∈[M ]

P k(
α

(m−1)
i ,β

(m−1)
i

),
Rm := UVm−1\Vm

=
⋃

i∈[nm],k∈[M ]

P k

〈u(m)
i ,v

(m)
i 〉.

(79)

Hence,

π1(Gm) = Vm, Rm ⊂ Gm, and Gm+1 = Gm \Rm.

In words, we obtain the level m +1 green area if we take away the level m red area from 
the level m green area. This implies that the sets {Ri}i are pairwise disjoint and
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Fig. 4. Level 1 red and green intervals. (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)

Gm+1 = G1 \
m�
i=1

R�, (80)

where � means disjoint union. In words: we get the level-m + 1 green area if we take 
away from the level 1 green area all the first m level red areas. That is

Gm+1 = G1 \
m⋃
�=1

⋃
1≤i≤n�,k∈[M ]

P k

〈u(�)
i ,v

(�)
i 〉. (81)

The following Lemma plays an important role in our proofs.

Lemma 8.2. The set π1(Gm−1) \ π1(Gm) is the union of the disjoint closed (possibly 

degenerated) intervals Rm =
{

[u(m)
i , v

(m)
i ]
}nm

i=1
.

Proof. This follows from elementary geometry by mathematical induction. As we have 
mentioned, it is immediate from the construction that for every � the open set π1(G�) ⊂
(α̃, β̃) has finitely many components. It follows from (73) that if π1(G1) \ π1(G2) is not 
empty then it is the disjoint union of finitely many compact intervals. Assume that the 
same holds for an m ≥ 2 for the non-empty π1(Gm−1) \ π1(Gm). That is

π1(Gm−1) \ π1(Gm) = Vm−1 \ Vm =
⋃ [

u
(m)
i , v

(m)
i

]
. (82)
i∈[nm]
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Clearly, this is the case if and only if all endpoints of π1(Gm−1) are also endpoints of 
π1(Gm). That is, our induction hypothesis yields that for all i ≤ nm and j ≤ n̂m(

u
(m)
i , v

(m)
i

)
⊂
(
α

(m−1)
j , β

(m−1)
j

)
=⇒

[
u

(m)
i , v

(m)
i

]
⊂
(
α

(m−1)
j , β

(m−1)
j

)
. (83)

Using this, we prove that whenever π1(Gm) \π1(Gm+1) is non-empty then it is the union 
of finitely many disjoint closed intervals. To verify this we assume that

x ∈ π1(Gm) \ π1(Gm+1) ⊂ π1 (Gm \Gm+1) = π1(Rm). (84)

Then by (79) there is a k ∈ [M ] and i ∈ [nm], j ∈ [n̂m] and 
[
u

(m)
i , v

(m)
i

]
∈ Rm, (

α
(m−1)
j , β

(m−1)
j

)
∈ Gm−1 such that by (84) and the induction hypothesis we have

x ∈ π1
(
P k[

u
(m)
i ,v

(m)
i

]) ⊂ π1
(
P k(

α
(m−1)
j ,β

(m−1)
j

)\Gm+1
)
. (85)

Using that 
[
u

(m)
i , v(m)

i

]
⊂
(
α

(m−1)
j , β(m−1)

j

)
⊂ Vm−1 is a connected component of Vm−1 \

Vm, there exists an ε > 0 such that(
u

(m)
i − ε, u

(m)
i

)
⊂ Vm ∩

(
α

(m−1)
j , β

(m−1)
j

)
,
(
v
(m)
i , v

(m)
i + ε

)
⊂ Vm ∩

(
α

(m−1)
j , β

(m−1)
j

)
.

(86)
Putting together this, (85), (84), and (79) we obtain that

x ∈ π1
(
P k[

u
(m)
i ,v

(m)
i

]) \ (π1
(
P k(

u
(m)
i −ε,u

(m)
i

)) ∪ π1
(
P k(

v
(m)
i ,v

(m)
i +ε

))). (87)

Then by simple elementary geometry this implies that the distance between x and the 

boundary of the set π1

(
P k

α
(m−1)
j ,β

(m−1)
j

)
is at least θmin := mini∈[L] θi. Having a look at 

formula (79) we can see that x cannot be an endpoint of a component of π1(Gm). Hence, 
any endpoint of any component of π1(Gm) is also an endpoint of a certain component 
of π1(Gm+1). �

Actually we proved a little more.

Remark 8.1. Note that as a by-product of the proof above, we obtain that the following 
assertion holds:

If x ∈ π1(Gm) \ π1(Gm+1) then there exist some 
[
u

(m)
i , v(m)

i

]
∈ Rm and k ∈ [M ]

such that x ∈ π1
(
P k[

u
(m)
i ,v

(m)
i

]). In this case the distance between x and the boundary of 

π1
(
P k[

u
(m)
i ,v

(m)
i

]) is at least θmin.

Lemma 8.3. The number N0, defined in (78), is finite.
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Proof. Assume that m ≥ 2 and x ∈ Vm \ Vm+1. Then we can choose 
[
u

(m)
i , v

(m)
i

]
∈ Rm

and k ∈ [M ], x ∈ π1
(
P k[

u
(m)
i ,v

(m)
i

]). Let �1k and �2k be the lines defined in and above Fig. 3. 

Then

v′ := (�2k)−1(v(m)
i ) and u′ := (�1k)−1(u(m)

i ).

By definition, we can choose a j ∈ [nm+1] such that x ∈
[
u

(m+1)
j , v

(m+1)
j

]
. It follows 

from Remark 8.1 and elementary geometry that

v
(m+1)
j − u

(m+1)
j ≤ v′ − u′ ≤ a

(
v
(m)
i − u

(m)
i

)
− θmin. (88)

Let ̃g(x) := ax −θmin. Then the length of the maximal interval in Rm is at most ̃gm(β̃−α̃), 
where g̃m is the m fold iterate of g̃. However, g̃m(β̃ − α̃) < 0 if m is large enough. The 
largest m for which g̃m(β̃ − α̃) ≥ 0 is an upper bound on N0. �

Recall that we defined T (0) as VN0 in Definition 8.2. It is clear that T (0) �= ∅, because 
by the construction Vm �= ∅ for all m.

Definition 8.3.

(a) The minimal width and height of the stripes {Sk}Mk=1 are denoted by w and h. 
Clearly, w ≥ 2θmin and h ≥ 2θmin

a .

(b) To shorten the notation we write τ := n̂N0 , and instead of 
{
(α(N0)

i , β
(N0)
i )

}n̂N0

i=1
we 

write {(αi, βi)}τi=1 for the connected components of T (0) = VN0 .
(c) The intervals {(ai,k, bi,k)}k∈[M ],i∈[τ ] are defined as follows:

(ai,k, bi,k) := π1

(
P k

(αi,βi)

)
.

(d) Set d̂ := min
{
|x− y| : x �= y, x, y ∈

⋃
k∈[M ],i∈[τ ]

{ai,k, bi,k}
}

. �

Lemma 8.4. If x ∈ T (0) ∩
⋃

k∈[M ],i∈[τ ]
{ai,k, bi,k} then there is an i(x) ∈ [τ ] and k(x) ∈ [M ]

such that

d̂ ≤ x− ai(x),k(x) and d̂ ≤ bi(x),k(x) − x. (89)

Proof. Without loss of generality we may assume that x = aî,k̂. We know that T (0) =
VN0 = VN0+1. Hence,

x ∈ T (0) = Ψ(T (0)) =
⋃

π1

(
P k

(αi,βi)

)
=

⋃
(ai,k, bi,k). (90)
k∈[M ],i∈[τ ] k∈[M ],i∈[τ ]



34 M. Dekking et al. / Advances in Mathematics 448 (2024) 109724
So, there is an i(x) ∈ [τ ] and a k(x) ∈ [M ] such that x ∈ (ai(x),k(x), bi(x),k(x)). Then by 
the definition of d̂, (89) holds. �
Proposition 8.1.

y ∈ T (0) =⇒
L⋃

i=1
(ay + ti − θi, ay + ti + θi) ⊂ T (0). (91)

Consequently,

Hi(T (0)) ⊂ T (0), ∀n ≥ 1 and i ∈ Ln. (92)

Proof. The implication in (91) follows from (76) and from the fact that T (0) = VN0 =
VN0+1 = Ψ(VN0). Using this, and the definition of Hi we get that the image Hi(y) of an 
y ∈ T (0) by the random mapping Hi satisfies Hi(y) ∈ (ay + ti − θi, ay + ti + θi) for all 
i ∈ [L]. Successive applications of this inclusion yield (92). �
Proposition 8.2. There is an ε̃ > 0 such that for all 0 < ε < ε̃ the Perron Frobenius 
eigenvalue of the operator F ε is greater than 1.

The proof can be obtained by obvious modifications from the proof of [1, Lemma 8A].

Definition 8.4 (Type space).

(a) First we define

εMAIN := a

10 min
{
w, d̂,min

i∈[τ ]
(βi − αi), ε̃

}
. (93)

(b) Fix an arbitrary 0 < ε < εMAIN. Putting together (26) and (93), we obtain that the 
type space is

T (ε) =
⋃
i∈[τ ]

[αi + ε, βi − ε] . � (94)

Lemma 8.5. For an x0 ∈ T (ε) we define

Eε
1(x0) := {y ∈ T (ε) : mε

1(x0, y) > 0} = {(x, y) : x = x0} ∩ supp (mε
1) . (95)

Then there exists a κ = κ(ε) > 0 such that for all x0 ∈ T (ε) the set Eε
1(x0) contains an 

interval of length κ.

Proof. First recall that T (0) = VN0 = π1 (GN0) and GN0 =
⋃

k∈[M ],i∈[τ ]
P k

(αi,βi) and 

(ai,k, bi,k) = π1

(
P k

)
. Now we define the hexagon
(αi,βi)
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Fig. 5. The definition of Hi,k.

Hi,k := P k
(αi,βi) ∩ {(x, y) : ai,k + ε ≤ x ≤ bi,k − ε, αi + ε ≤ y ≤ βi − ε} . (96)

See Fig. 5. Clearly,

supp(mε
1) =

⋃
k∈[M ],i∈[τ ]

Hi,k. (97)

Observe that by elementary geometry

∀k ∈ [M ], i ∈ [τ ], x0 ∈ π1(Hi,k) we have | {(x, y) : x = x0} ∩Hi,k| ≥ ε

(
1
a
− 1
)
. (98)

Now we verify that

T (ε) ⊂
⋃

k∈[M ],i∈[τ ]

π1 (Hi,k) . (99)

Namely, T (ε) ⊂ T (0) and in this way for all x0 ∈ T (ε) there exists a k ∈ [M ] and an 
i ∈ [τ ] such that x0 ∈ π1(P k

(αi,βi)) = (ai,k, bi,k). Observe that

∃i ∈ [τ ], k ∈ [M ] such that ai,k + ε ≤ x0 ≤ bi,k − ε =⇒ x0 ∈ π1 (Hi,k) . (100)

If the condition of (100) does not hold then we may assume, without loss of generality 
that

ai,k < x0 < ai,k + ε. (101)
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This and x0 ∈ T (ε) imply that ai,k ∈ T (0). We argue by contradiction. If ai,k �∈ T (0)
then there is a j ∈ [τ ] such that ai,k = αj . Then x0 ∈ (αj , αj + ε) ⊂ T (ε)c which 
contradicts to our assumption that x0 ∈ T (ε). So, we have verified that ai,k ∈ T (0). 
Then we can apply Lemma 8.4 to conclude that there exists an � ∈ [M ] and j ∈ [τ ] such 
that aj,� + d̂ < ai,k < bj,� − d̂. Putting together (101) and (93) we obtain that aj,� + ε <
x0 < bj,�−ε. That is the condition of (106) holds, which contradicts the assumption that 
this condition does not hold. This proves that (99) holds. Putting together (99), (98) and 
(97) we obtain that the assertion of Lemma 8.5 is true, with the choice κ = ε ( 1

a −1). �
As a byproduct of the previous proof we obtain that

T (ε) =
⋃

k∈[M ],i∈[τ ]

π1 (Hi,k) =
⋃

k∈[M ],i∈[τ ]

[ai,k + ε, bi,k − ε]. (102)

Namely, the non-trivial inclusion was verified above. The opposite inclusion is obvious 
by the definitions.

Our aim is to prove the following proposition, which is actually Part (ii) of Lemma 4.1
(the Main Lemma).

Proposition 8.3. Fix an 0 < ε < εMAIN. Then there exists an Q such that for every 
x0 ∈ T (ε) we have

Eε
Q(x0) := {(x, y) : x = x0} ∩ supp(mε

Q) =
{
y : mε

Q(x0, y) > 0
}

= T (ε). (103)

8.1.1. The structure of green and red areas
To prove Proposition 8.3 we need to verify some auxiliary facts about the structure 

of the green and red areas and intervals. These will be given in Lemma 8.6, Lemma 8.7, 
and Lemma 8.8.

For an m ≤ N0, we write Bm and Jm for the collection of the left and right endpoints 
respectively, of the level m red intervals (intervals from Rm), and B = ∪N0

i=1Bm and 
J = ∪N0

i=1Jm.

Lemma 8.6.

(a) For all 1 ≤ m ≤ N0 and for all (α′, β′) ∈ Gm there exist v(α′) ∈
m⋃
�=1

J�, and 

u(β′) ∈
m⋃
�=1

B� such that (α′, β′) = (v(α′), u(β′)).

(b) All elements of 
m⋃
�=1

B� are right endpoints of an element of Gm. Similarly, all elements 

of 
m⋃
�=1

J� are left endpoints of an element of Gm.

(c) Let (α′, β′) ∈ Gm. Then (α′, β′) ∩ T (ε) = (α′ + ε, β′ − ε) ∩ T (ε).
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Fig. 6. The red and green intervals.

Fig. 7. The notation of Lemma 8.7.

Proof. (a) and (b) follow immediately from the construction. These imply that every 
endpoint of a component of Vm is an endpoint of a component of T (0), and so (c)
follows. See Fig. 6. �
Lemma 8.7. Let z ∈ T (ε) and k ∈ [M ]. Set L(z, k) := π1 ({(x, y) : y = z} ∩ Sk). Then

L(z, k) ∩ T (ε) �= ∅. (104)

Proof. Fix a z ∈ T (ε) and k ∈ [M ]. Observe that L(z, k) ⊂ T (0). Namely, z ∈ T (0) =
VN0 . So π1(L(z, k)) ⊂ VN0+1 = VN0 = T (0). Then (J ∪ B) ∩ L(z, k) = ∅. Hence, when 
we change from T (0) to T (ε) we can lose in a 1 − 1 way intervals of length ε each at 
the two ends of the interval of L(z, k). Using that |L(z, k)| = wk � 2ε we get that 
|L(z, k) ∩ T (ε)| > w − 2ε, where w is the minimum width of a stripe Sk. �

This implies that

∀z ∈ T (ε), k ∈ [M ] ∃w ∈ T (ε) ∩ L(z, k) such that z ∈
(
�1k(w), �2k(w)

)
. (105)
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Fig. 8. The definition of the parallelograms Pj .

Lemma 8.8. For an 1 ≤ m ≤ N0 let (α′, β′) ∈ Gm. Consider the maximal collection 
of (α′

j , β
′
j) ∈ Gm−1 and k(j) ∈ [M ], j = 1, . . . , � such that for Pj := P

k(j)
(α′

j ,β
′
j)

we have 
�⋃

j=1
π1 (Pj) ⊂ (α′, β′). See Fig. 8. For j �= j′ if (α′

j , β
′
j) = (α′

j′ , β
′
j′) then k(j) �= k(j′). 

We say that the intervals (α′
j , β

′
j) ∈ Gm−1, j = 1, . . . , � are the children of the interval 

(α′, β′) ∈ Gm. Then we have

�⋃
j=1

π1 (Pj) = (α′, β′). (106)

Moreover, for all j = 1, . . . , �,⋃
x∈π1(Pj)∩T (ε)

(
�1k(j)(x), �2k(j)(x)

)
∩ T (ε) ⊃ (α′

j , β
′
j) ∩ T (ε). (107)

Proof. Equation (106) is immediate from the definitions (75) and (77). To prove Equation 
(107): Let z ∈ (α′

j , β
′
j) ∩ T (ε). Then it follows from (105) that there exists a w ∈

L(z, k(j)) ∩ T (ε) ⊂ π1(Pj) ∩ T (ε) such that z ∈ (�1k(j)), �2k(j)). �
Before we start the proof of Proposition 8.3 we recall some definitions: We defined 

mI in (25) and we saw that supp(mI) =
M⋃
k=1

Sk. Moreover, in the statement of the 

Lemma 4.1 [Main Lemma] we defined

mε = mI · 1T (ε)×T (ε) and mε
1 := mε. (108)

Furthermore, for n ≥ 1:

mε
n+1(x, y) :=

∫
T (ε)

mε
n(x, z) ·mε

1(z, y) dz. (109)

Similarly, for a k ≥ 1, we defined
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Eε
k(x0) := {(x, y) : x = x0} ∩ supp(mε

k) = {y ∈ T (ε) : mε
k(x0, y) > 0} . (110)

In particular, Eε
1(z) = ∅ if z �∈ T (ε) and

Eε
1(z) =

(
M⋃
k=1

(
�1k(z), �2k(z)

))
∩ T if z ∈ T (ε). (111)

Proof of Proposition 8.3. We fix an 0 < ε < εMAIN and we write T := T (ε), mk := mε
k, 

Ek := Eε
k and κ := κ(ε) (defined in Lemma 8.5). We divide the proof into two steps. First 

we recall (see part (a) of Definition 8.3) that the connected components of T (0) = VN0

are {(αi, βi)}τi=1. So, (αi, βi) ∈ GN0 for all i ∈ [τ ].
Step 1 There exists an N such that for all x ∈ T there exists an n(x) ≤ N , such that 

there exists an i with 1 ≤ i ≤ τ , such that

[αi + ε, βi − ε] ⊂ En(x)(x). (112)

Step 2 For every x ∈ T we have

[αi + ε, βi − ε] ⊂ En(x)(x) =⇒ En(x)+N0(x) = T. (113)

Proof of Step 1. It follows from (108), (109), (110), and (111) that

En+1(x) =
⋃

z∈En(x)

E1(z) =
⋃

z∈En(x)

(
M⋃
k=1

(
�1k(z), �2k(z)

))
∩ T. (114)

Let x ∈ T . Using (99) there exists an i ∈ [τ ], k ∈ [M ] such that x ∈ π1(Hi,k). Then 
either

(a) (�1k(x), �2k(x)) ⊂ [αi + ε, βi − ε] or
(b) either αi + ε or βi − ε is an endpoint of a component of E1(x) of length at least κ

(cf. (98)).

If (b) holds, then E1(x) has a component of length at least κ which has at least one 
endpoint in T . It is easy to see that if this property holds for Ek(x) then the same 
property holds for E�(x) for every � > k.

Now we prove that in case (a) the same property holds for En(x) for a not too large 
n. If (a) holds, then we consider

E2(x) =
⋃

z∈E1(x)

E1(z) ⊃
⋃

z∈(�1k(x),�2k(x))

E1(z).

If J :=
⋃

z∈(�1k(x),�2k(x))
E1(z) is still contained in a component of T then J is an interval of 

length at least (1/a)κ. We continue this process and we obtain that if we choose N1 such 
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Fig. 9. Definition of U1 and U2.

that κ(1/a)N1 > β̃−α̃ then for an n = n(x) < N1, the set En(x) has a component U1 with 

length at least κ and with at least one of its endpoints contained in 
τ⋃

i=1
(αi + ε, βi − ε). 

Without loss of generality, we may assume that

U1 = (αi + ε, w) with w − αi − ε > κ.

Now recall the definition of aj,k, bj,k from Definition 8.3. See Fig. 9. Then there exist 
k ∈ [M ] and j ∈ [τ ] such that αi = aj,k. That is

π1

(
P k

(αj ,βj)

)
= (aj,k, bj,k) = (αi, bj,k). (115)

Observe that ⋃
x∈(aj,k+ε,bj,k−ε)

((
�1k(x), �2k(x)

)
∩ T
)

= [αj + ε, βj − ε]. (116)

If w > bj,k − ε then U1 ⊃ (aj,k + ε, bj,k − ε). Using this, the fact that U1 ⊂ En(x), (116)
and (114), we get that En+1(x) ⊃ [αj + ε, βj − ε]. That is, in this case, we are ready. So, 
from now on, we assume that for the j and k that appear in (115), we have w ≤ bj,k − ε. 
Then, by elementary geometry:

U1 ⊂ π1

(
P k

[αj+ε,βj−ε]

)
. (117)

Now we define

U2 :=
⋃

z∈U1

(
�1k(z), �2k(z)

)
∩ T.

By definition the left endpoint of U2 is αj + ε. If U2 ⊃ [αj + ε, βj − ε] that is the right 
endpoint of U2 is greater than βj − ε, then En+1(x) ⊃ [αj + ε, βj − ε]. Otherwise, if 
U2 ⊂ [αj + ε, βj − ε], that is the right endpoint of U2 is not less than βj − ε, then 
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|U2| ⊂ T (ε) and |U2| > (1/a)|U1|. So repeating the same for U2 instead of U1, we get U3
and so on until after a uniformly bounded number (not more than N2) steps Uk contains 
a component of T . This completes the proof for Step 1 with N = N1 + N2. �
Proof of Step 2. Now we use the notation of Lemma 8.8. Let (α′, β′) ∈ Gm and (α′

j , β
′
j) ∈

Gm−1 be a child of (α′, β′). That is there exists a k(j) ∈ [M ] such that for Pj = P
k(j)
(α′

j ,β
′
j)

we have π1(Pj) ⊂ (α′, β′). We claim that

(α′, β′) ∩ T (ε) ⊂ En(x) =⇒ (α′
j , β

′
j) ∩ T (ε) ⊂ En+1(x). (118)

Namely, assume that (α′, β′) ∩ T (ε) ⊂ En(x). Then

En+1(x) =
⋃

y∈En(x)

(
M⋃
k=1

(
�1k(y), �1k(y)

))
∩ T (119)

⊃
⋃

y∈π1(Pj)∩T

((
�1k(j)(y), �1k(j)(y)

)
∩ T
)
⊃ (α′

j , β
′
j) ∩ T (ε), (120)

where in the last step we used Lemma 8.8 ((Equation (107)). In this way we have proved 
that (118) holds.

Now we fix an x ∈ T and let n = n(x) be defined as in the proof of Step 1. We start 
with (αi, βi) obtained in the first step. That is [αi + ε, βi − ε] ⊂ En(x). By Lemma 8.6
this implies that (αi, βi) ∩ T ⊂ En(x). We apply (118) N0 times. The level N0-th child 
of (αi, βi) ∈ GN0 is the only element of GN0 , which is (α̃, β̃). So, we get that En+N0(x) ⊃
(α̃, β̃) ∩T = T . On the other hand, it is immediate from the definition that En+N0(x) ⊂
T . �

The proof of Proposition 8.3 is immediate if we put together what we obtained in 
Steps 1, 2. �
Proof of Lemma 4.1, the Main Lemma. (i) We take εMAIN as defined in Equation (93). 
Then the number of intervals remains the same, since εMAIN < (βi − αi)/10 for all i.

(ii) This is immediate from Proposition 8.3 with the Q defined there.
(iii) This is Proposition 8.2.
(iv) This follows easily from the fact that the right eigenfunction f is also an eigen-

function of (F ε)2 = F ε ◦ F ε whose kernel m2 is continuous.
(v) This is Equation (92) given in Proposition 8.1. �

9. Appendix: Proof of Proposition 3.1

The proof of Proposition 3.1 is a simple combination of ideas of [2, Lemma 2.8] and 
[11, Proposition 6].
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Proof of Proposition 3.1. Given is the RIFS F = {fi(x) : fi(x) = rix + Di}Li=1 as in 
Definition 2.1, and we write s := s(F) for the similarity dimension (the solution of the 
Equation (12)).

The first step is to replace F by the RIFS F̃ defined in Proposition 2.1:

F̃ =
{
f̃i(x) = r̃ix + D̃i

}L̃

i=1
, (121)

which has the convenient property that all contraction ratios r̃i > 0. Further, let s̃ :=
s(F̃) ≥ s − ε/2 (where we replaced ε by ε/2 in Proposition 2.1).

Let pi := r̃si . For k1, . . . , km ∈ N and k := k1 + · · · + km we introduce

N(k1, . . . , km) := # {(i1, . . . , ik) : # {j ∈ [k] : ij = �} = k�, ∀� ∈ [L]} . (122)

Lemma 9.1 (Farkas and Peres-Shmerkin). There exists a C > 0 such that for all k ∈ N

there exist k1, . . . , km ∈ N, such that 
∑m

i=1 ki = k and

N(k1, . . . km) ≥ Ck−m/2p−k1
1 · · · p−km

m . (123)

Let C > 0 as in Lemma 9.1. For a large k, which will be conveniently chosen at the 
end of the proof, we can choose k1, . . . , kL̃ ∈ N according to Lemma 9.1 such that we 
have the following

N(k1, . . . kL̃) ≥ Ck−L̃/2p−k1
1 · · · p−kL̃

L̃
, (124)

Let J0 :=
{

(i1, . . . , ik) ∈ [L̃]k : # {j ∈ [k] : ij = �} = k�, ∀� ∈ [L̃]
}
.

Note that by definition #J0 = N(k1, . . . kL̃). Put ρk :=
∏L̃

�=1 r̃
k�

� . Then

i ∈ J0 =⇒ ri = ρk and #J0 ≥ C · k−L̃/2ρ−s̃
k . (125)

Let Fk := {fi : i ∈ J0}. Then the similarity dimension sk := s(Fk) is the solution of 
#J0 · ρskk = 1. That is, logN(k1, . . . , kL̃) + sk log ρk = 0. Hence,

sk =
logN(k1, . . . , kL̃)

− log ρk
≥ logC − L̃ log

√
k − s̃ log ρk

− log ρk
= logC − L̃ log

√
k

− log ρk
+ s̃.

Using that − log ρk = − 
∑L̃

�=1 k� log(r�) ≥ − log(rmax) 
∑L̃

�=1 k� = − log(rmax) · k we 
obtain

sk ≥ s̃− L̃ log
√
k − logC

− log(rmax) · k
> s̃− ε

2 > s− ε,

if k is large enough. �
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