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Abstract

Gross Primary Production (GPP) is the amount of carbon dioxide (CO2) that is fixed by
an ecosystem through photosynthesis. It is a key variable to understand the carbon cycle and
biodiversity conservation. In-situ measurements of GPP are possible at a local scale. To estimate
GPP on a global scale, models based on remote sensing data are used. One of them is the
Penman-Montheith-Leuning (PML) model, which is constructed on physical processes.

In this thesis, a sensitivity analysis of the PML model is performed for the case study of
Torgnon subalpine grassland. It is defined around three aspects: the application of the PML
model to Torgnon subalpine grassland, the impact of the input data on the output data, and
the reliability of the calibration procedure. We found out that the PML model can be applied
to the study site, but the value of the parameters presented in the literature are not optimal (R2

= 0.57 using the literature calibration and R2 = 0.94 in the optimised case).
Moreover, the model is extremely sensitive to the Leaf Area Index (LAI), and, to a lesser

extent, to temperature and Photosynthetically Active Radiations (PAR). However, it is weakly
dependent on the CO2 concentration of the atmosphere. The analysis of the calibration procedure
showed that a simplified PML model, that does not consider the CO2 concentration and Vapour
Pressure Deficit (VPD), performs similarly to the initial model. An ensemble estimation of GPP
is obtained by using an ensemble of optimal parameters. It suggests that errors in the calibration
principally impact the spring and summer estimations.
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1 Introduction

Ecosystems are sources of many benefits for species, including humans. They provide essential
resources like freshwater, food, and clean air. They also act as natural buffers against hazards such
as floods and landslides [1]. To measure the health and changes of ecosystems, Essential Biodiversity
Variables (EBV) have been created. They cover many aspects of environmental sciences, such
as genetic composition, species populations and traits, community composition, and ecosystems
structure and functions [2].

Gross Primary Production (GPP) is defined as the total mass of carbon that an ecosystem
produces in a given surface and length of time through photosynthesis [3]. It is usually expressed in
grams of carbon per square meter per day (gC.m−2.day−1). It is a key indicator for measuring the
dynamics of carbon dioxide (CO2) variations. Therefore, the assessment of GPP leads to a better
understanding of the evolution of the environment [4]. Due to its importance, it is considered as an
ecosystem and species physiology EBV [5].

However, GPP can only be directly measured at the leaf level scale [6]. At the canopy scale,
the estimation of GPP is done by measuring the Net Ecosystem Exchange (NEE) using the Eddy
Covariance (EC) technique. NEE is the net CO2 flux from an ecosystem to the atmosphere. The
concentrations of CO2 and water are measured near EC towers with a high frequency. From those
values, many algorithms exist to derive GPP near the tower of measurement ([7],[8],[9],[10]). But,
the footprint zone that influences the CO2 measurements has a typical length scale of only 100m
to 2000m around the tower [11].

To estimate GPP on a larger scale — for example continental or global scale — Remote Sensing
(RS) data are used. Satellites capture images of the Earth at different wavelength bands, from
which we can derive indicators relating on the state of vegetation [12]. Historically, the used RS
data in models were captured by the Moderate Resolution Imaging Spectroradiometer (MODIS)
instrument. It contains 36 spectral bands having a resolution from 250 m to 1000 m [13]. Therefore,
models that uses MODIS data like MOD17, estimates GPP with a 1 km spatial resolution [14].

Different strategies for modeling GPP using RS data exist. For instance, the Light Use Effi-
ciency (LUE) models compute GPP by estimating the Absorbed Photosynthetically Active Radia-
tions (APAR) and the actual LUE. Processed-based models use biophysical non-linear equations to
estimate GPP. Statistical models use equations containing a combination of parameters to calibrate.
The complexity of the equations can vary from the linear regression to machine learning structures.
The input RS data of such models can either be Vegetation Index (VI), that is transformation of
image bands representing vegetation properties; or physical vegetation variables - like the Leaf Area
Index (LAI) - that are estimated using satellite images. Moreover, Environmental Variables (EV)
are conjointly used with RS information to derive GPP [15].

However, the parameter values, assumptions, and the choice of relevant variables of any model
are subject to change and error [16]. A sensitivity analysis is ”The study of how uncertainty in the
output of a model (numerical or otherwise) can be apportioned to different sources of uncertainty
in the model input” [17]. With this, modelers can determine which inputs are the most significant
for the output, and what the consequences are if the input gets changed [18]. Therefore, sensitivity
analyses have to be performed to fully understand the solution of a model [19]. For instance, in the
case of LUE models, Pei et al. relate that the input variables for the representation of environmental
stress factors differ from one model to another [15].

The aim of this study is to perform a sensitivity analysis on the estimation of GPP. Among the
many GPP models that utilises RS data, processed-based models have the most complex mathe-
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matical process chain. We can consequently identify which intermediate variables and mechanisms
are the most subject to changes in input data. Therefore, this study will focus on the Penman-
Monteith-Leuning (PML) model, a commonly used processed based model.

There are two types of input in the PML model: input variables and input parameters. Input
variables, like temperature, are provided directly by datasets. Therefore, a first objective is to
quantify how the input data affect the model’s output data. Input parameters have to be determined
through a calibration procedure. They represent biophysical proprieties of the plants. Hence, we
will also study the reliability of this calibration procedure. This will lead to an ensemble prediction
of GPP by evaluating the model with a set of adjusted parameters.

To conduct this study, we will implement the PML model in the Torgnon subalpine grassland
in northern Italy. The values of parameters will initially correspond with the ones founded in
literature.

Thus, the research questions to tackle are:

1. Can we apply the PML model to Torgnon subalpine grassland?

2. How does input data affect the model’s output?

3. Is the calibration procedure reliable? Can similar low objective function scores predict similar
outputs?

Indeed, the PML model is applied and calibrated globally, where the parameters are computed
per vegetation type (grassland, savannas, wetlands...). However, the study site is a special moun-
tainous grassland. Moreover, in literature, the influence of variables is not explicitly studied, and
the calibration procedure is only performed, not analysed.

This thesis is structured as follow:

• Chapter 2 presents how GPP is modelled in literature,

• Chapter 3 explains the specific mathematical tools used in this thesis,

• Chapter 4 introduces the used data and it’s processing,

• Chapter 5 displays the results obtained,

• Chapter 6 discusses those results, drawing limits and perspectives,

• Chapter 7 concludes this study.
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2 The modelling of GPP

2.1 The Carbon Cycle

Plants grow using the photosynthesis process. It is a chemical reaction that uses the energy from
photons to happen. Therefore, the light energy is converted into chemical energy. Only the radia-
tions in the 400nm-700nm spectral band can be used by plants for photosynthesise. The energy of
those radiations is called Photosynthetically Active Radiation (PAR).

A simple representation of the chemical equation is:

nCO2 + nH2O
photons−−−−−→ CnH2nOn + nO2 (1)

Hence, GPP corresponds to the amount of carbon that is on the left-hand side of this chemical
equation.

The full process of photosynthesis is complex, but can be divided into two phases: the light
dependent reactions and the light independent reactions. In the light dependent phase, the reaction
uses the energy of photons to create some intermediate chemical components: adenosine triphos-
phate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). The light independent
phase consists of a cycle that transforms carbon dioxide into carbohydrates. The capture of CO2

is possible thank to the RuBisCO enzyme. It is a catalyst of the photosynthesis reaction. Its
regeneration is possible thank to the ATP and NADPH produced in the light independent phase
[20].

2.2 The PML model

Several processed-based models exist to estimate GPP. They describe the exchanges processes be-
tween the atmosphere and the vegetation. Among those models, we will work with the Penman-
Montheith-Leuning (PML) model that is described below. It estimates simultaneously evapotran-
spiration (ET) and GPP. There are two versions of the PML model: PML-V1 developed by Zhang
et al. [21] and PML-V2 created by Gan et al. [22], and improved by Zhang et al. [23]. For our
study, only the latest version is considered.

The gross assimilation rate of carbon Ag is calculated using Thornley’s model that considers it
as a rectangular hyperbola function of PAR and the atmospheric CO2 concentration Ca [24]:

Ag =
AmβηCaI

AmβI + βηCaI + ηAmCa
(2)

where Am is the maximum photosynthetic rate at saturation of PAR and CO2, β is the initial
slope of the light response curve to assimilation rate (also know as quantum efficiency), η is the
carboxylation efficiency, and I is the PAR expressed as a Photosynthetic Photon Flux Density (µmol
m−2s−1). By dividing by βIηCa we obtain:

Ag =
Am

1 +Am

(
1
βI + 1

ηCa

) (3)

With the formulation in equation 3, we can see more clearly that this model is built around a
maximum production restricted by limiting factors. Here, the limiting factors are the quantity of
available CO2 to capture and the amount of available light.
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We approximate Am by the maximum catalytic capacity of RuBisCO per unit leaf area Vm [25].
This value mainly depends on temperature T and is expressed as:

Am = Vm = Vm,25
exp(a(T − 25))

1 + exp(b(T − 41))
(4)

where Vm,25 is the value of Vm at 25°C, and a = 0.031 and b = 0.115 are temperature coefficients
[26]. Those parameters will be considered fixed, and will not be studied.

The intensity of light vanishes through the vegetation depth, as leafs create shadow. This
vanishing process is modelled using Beer-Lambert law:

I = I0 exp(−kql) (5)

having I0 the flux density at the top of the canopy, kq is the extinction coefficient, and l is the unit
leaf area from top to the bottom of the canopy. It is the ratio of the one side green leaf area over
the ground surface area, on an infinitesimal surface.

These equations correspond to the values at the local leaf scale. Therefore, the get the gross
assimilation rate at the canopy scale Ac,g, we integrate Ag over the leaf area index (LAI). The
LAI is the ratio of the one green leaf are over the full canopy surface. It quantifies the amount of
vegetation. Thus, we obtain:

Ac,g =

∫ LAI

0
Agdl (6)

=

∫ LAI

0

VmβηCaI0 exp(−kql)

(Vmβ + βηCa)I0 exp(−kql) + ηVmCa
dl (7)

Ac,g =
VmηCa

kq (Vm + ηCa)

kqLAI + ln

(
VmβI0 + ηCaβI0 + VmηCa

VmβI0 + ηCaβI0 + VmηCa exp (kqLAI)

) (8)

Moreover, Zhang et al. implemented a constraint depending on the Vapour Pressure Deficit
(VPD) [23]. VPD is defined as the difference between water vapour pressure at saturation and the
observed water vapour pressure. Therefore, the closer it is to zero, the more humid the atmosphere
is. This constraint takes the form of a ramp function:

f(V PD) =


1 if V PD < V PDmin

V PDmax−V PD
V PDmax−V PDmin

if V PDmin < V PD < V PDmax

0 if V PDmax < V PD

(9)

In other words, if V PD < V PDmin, then the assimilation is not restricted because air is humid
enough. On the contrary, if V PD > V PDmax, the assimilation is no longer possible because the
air is too dry. Therefore, V PDmin and V PDmax are respectively the minimum and maximum
thresholds for the assimilation constraint.

Thus, the expression of GPP is:

GPP = f(V PD)Ac,g (10)
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The complete process chain also includes equations related to the estimation of ET. They are
not described here but are available in the appendix of [23]. The list of the different parameters
and variables are available in table 1. We distinguish 4 categories: parameters to calibrate, fixed
parameters, RS variables and environmental variables from meteorological data.

Parameter
or Variable

Definition Unit Estimation
Method

β Quantum efficiency µmol CO2 (µmol PAR)−1 Calibration
η Carboxylation efficiency µmol m−2s−1 (ppm)−1 Calibration
kq Extinction coefficient of PAR - Calibration
Vm,25 Maximum catalytic capacity

of RuBisCO per unit leaf area
at 25 °C

µmol m−2s−1 Calibration

V PDmin Minimum VPD value for as-
similation constraint

Pa Calibration

V PDmax Maximum VPD value for as-
similation

Pa Calibration

a, b Temperature coefficients - Fixed
LAI Leaf Area Index m−2/m−2 Remote sens-

ing
I0 Photosynthetically Active

Radiations (PAR)
µmol m−2s−1 Meteorological

data
Ca Concentration of CO2 in the

atmosphere
ppm Meteorological

data
V PD Vapour Pressure Deficit Pa Meteorological

data
T Temperature of the atmo-

sphere
°C Meteorological

data

Table 1: List of the parameters and variables in the PML model with their units. ppm is parts-per-
million.

To sum up, the PML model relies on three concepts: There is a maximum photosynthesis rate
per vegetation unit, this rate is limited by the meteorological context (PAR, CO2, temperature,
VPD), and the amount of available light vanishes with the amount of vegetation. This last concept
introduces non-linearity in the model.

2.3 Other models

Processed based models are not the only way to estimate GPP. Other categories exist such as Light
Use Efficiency (LUE) models, simple statistical model and artificial intelligence.

2.3.1 Light Use Efficiency (LUE) models

LUE models compute GPP as the product of the Absorbed PAR (APAR) and the actual LUE.
Not all of the PAR is actually absorbed, so we introduce the Fraction of PAR (fPAR) as the ratio
of APAR and PAR. In LUE models, this last variable is modeled by VI’s. The actual LUE is
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expressed as the maximum LUE multiplied by constraint functions depending on Environmental
Variables (EV) such as air temperature or humidity ([15]). Thus, LUE models are characterised by
the equations:

GPP = APAR× εg (11)

APAR = PAR× fPAR (12)

εg = εmax × f(EV ) (13)

Having εg being the actual LUE, εmax the theoretical maximum LUE, EV the list of environ-
mental variables used in a specific model. The chosen function and the list of EVs are specific to
every models [15]. The maximum LUE and the function depend on parameters that are constant
per vegetation type.

MOD17 Among the LUE models, the MOD17 model is one of the most widely used to estimate
GPP [14]. For this one, fPAR is approximated by the popular Normalised Difference Vegetation
Index (NDVI) [27], and the EVs are minimal air daily temperature T , and the Vapour Pressure
Deficit V PD. The EV functions are ramp functions. We therefore have to define two thresholds
per function: EVmin and EVmax. Consequently, the MOD17 equation is:

GPP =PAR×NDV I × εmax × f(T )× f(V PD) (14)

f(T ) =


0 if T < Tmin

T−Tmin
Tmax−Tmin

if Tmin < T < Tmax

1 if Tmax < T

(15)

f(V PD) =


1 if V PD < V PDmin

V PDmax−V PD
V PDmax−V PDmin

if V PDmin < V PD < V PDmax

0 if V PDmax < V PD

(16)

The variables PAR, T , and V PD are available in several databases. The variable NDV I is com-
puted using RS data. The values of εmax, Tmin, Tmax,V PDmin and V PDmax are constant per
vegetation type and available in a Look-up Table. The visualisation of the ramp functions and the
Look-up Table are present in Appendix A.

2.3.2 Statistical models

Statistical models find a strong relationship between VIs, environmental variables (EV) and GPP.
A first structure of such models are linear regression. In this case, the model’s equation is simply:

GPP = a× V I × EV + b (17)

where a and b are parameters to tune. In most cases, the VI that is the most correlated to GPP
depends on the study area. For instance, NDVI tends to be related to GPP in low biomass areas
[28], [29], whereas, in dense biomass areas, the Enhanced Vegetation Index (EVI) [30] shows strong
connection [31], [32]. Moreover, other VIs have been used to predict GPP. For example, Cai et
al. used a Two-bands Enhanced Vegetation Index (EVI2) [33] in the northern European forests
[34]. Bagley et al. created the Near-Near-Infrared Reflectance of terrestrial vegetation (NIRv) that
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models well GPP [35]. Spinosa et al. compared the correlation of several VIs and EVs combination
with GPP in a southern Spanish wetland. They concluded that the Red-edge Index (CLr) [36] leads
to the best estimation [37].

2.3.3 Artificial Intelligence

More recently, advanced artificial intelligence models have emerged. One of them is the random
forest [38]. This method has showed good results in predicting different ecosystem structure EBVs
such as soil moisture [39], Net Primary Production (NPP) [40] and GPP [41] [42] [43]. Likewise,
due to the temporal dependency of GPP, Recurrent Neural Networks (RNN) may constitute a new
generation of models [44], [45], [46].
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3 Mathematical methods

3.1 Methods for data processing

3.1.1 Whittaker Smoother

The input RS data is noisy, irregular, and with differences in the quality of measurements. The
Whittaker smoother ([47]) is a method to filter and smooth time-series, that will be applied on the
LAI dataset.

Let y be the noisy data of size N , and z the optimal smoothness of y. Because not all the
measurements are of the same quality, we introduce the weight vector w. For an order 1 smoother,
the residuals S and smoothed metric R are respectively defined as:

S =
N∑
i=1

wi (yi − zi)
2 (18)

R =

N∑
i=1

(zi − zi−1)
2 (19)

Using matrix notation we rewrite S and R as:

S = (y − z)TW (y − z) (20)

R =


−1 1

−1 1 0

0
. . .

. . .

−1 1

 z = Dz (21)

Where W = diag(w). We therefore introduce the cost function Q as:

Q = S + λR (22)

having λ being a smoothness scalar.
The optimal smoothness is founded when Q is minimal with respect to z, which yields:

∂Q

∂z
= 0 (23)

⇐⇒ −2W (y − z) + 2λDTDz = 0 (24)

⇐⇒ (W + λDTD)z = Wy (25)

Equation 25 is of the form Ax = b and can be solved using matrix decomposition.
The order of the smoother corresponds to the number of previous measurements the metric R

takes into account. It is also the order of the difference method that is used. When the employed
order is greater than one, the structure of equation 25 is unchanged, but the matrix D gets modified.
For example, an order 2 smoother yields:
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R =
N∑
i=1

(zi − 2zi−1 + zi−2)
2 (26)

D =


1 −2 1

1 −2 1 0

0
. . .

. . .
. . .

1 −2 1

 ∈ RN,N−2 (27)

3.2 Methods for the sensitivity of input variables

3.2.1 Pearson’s correlation

Pearson’s correlation coefficient, denoted as r, is a statistical measure that quantifies the linear
relationship between two continuous variables [48]. Let (X,Y ) be a pair of variables containing N
samples. The Pearson correlation variable is defined as [49]:

rxy =
cov(X,Y )

σxσy
(28)

=

∑N
i=1(xi − x)(yi − y)√∑N

i=1(xi − x)2
√∑N

i=1(yi − y)2
(29)

Where cov(X,Y ), is the covariance between X and Y , σx and σy are respectively the standard
deviations of X and Y , and x and y are the mean values of X and Y .

The value of r ranges from -1 to 1 where:

• r = 1 : Indicates a perfect positive linear relationship,

• r = -1 : Indicates a perfect negative linear relationship,

• r = 0 : Indicates no linear relationship.

The closer the absolute value is to 1, the more linear the relationship is.
However, Pearson’s correlation is limited to linear relationships. Variables can have correlation

score close to 0, but still be dependent [50].

3.2.2 Rank correlation

Unlike Pearson’s correlation that uses the nominal values of variables, a rank correlation uses the
ordinal values. Let X be a time-series. Time-series are originally ordered by time, which, in the
general case, is not by value. Let R(X) be the X vector sorted by increasing values. Therefore, the
rank of Xi is the index of R(Xi). Rank correlation test have the advantage to go beyond the linear
relationships, but it does not measure the differences in values within the sample [51].

For instance, the Spearman rank correlation coefficient between (X,Y ) is Pearson’s correlation
coefficient applied to (R(X),R(Y )) [52]:

ρ = rR(x)R(y) =
cov(R(X), R(Y ))

σR(x)σR(y)
(30)
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Therefore, a Spearman’s score of 1 (respectively -1) is for a monotonous increasing (decreasing)
relationship between X and Y .

3.2.3 One variable at the time procedure

The One-Variable-at-a-Time (OVAT) procedure is used to understand the impact of individual
input variables on the output of a model. This method involves shifting one input variable at a
time, while keeping all of the other variables constant, by taking their temporal average value. This
approach isolates the effect of a single variable on the model’s output [53].

The main limitation of this method is that it does not capture the interactions between variables
and should be used with caution [54]. For example, the LAI finds it’s peak in summer, when the
daylight (PAR) is also at high values. By only varying the LAI, we do not consider the evolution
of PAR that goes with it.

However, this method gives a clear picture of the mathematical contribution of the variable in
the model. For instance, it shows how the model can evolve with variable values going beyond
the ones in the dataset. Also, in the PML model, each variable is associated to a parameter. By
changing the value of this parameter, we can illustrate it’s impact on the estimate across a range
of variable values.

Moreover, we can derive asymptotic equations, corresponding to extreme values of the variables
and parameters. Since the PML model is based on a maximum assimilation (Vm) that can be limited
by the availability of certain factors (PAR, CO2 concentration) and the climate conditions (tem-
perature, VPD), those asymptotic equations represent the model without constraints. Therefore,
those asymptotic models reduce the dimensionality of the equation. Consequently, the calibration
procedure of the simplified models is performed on a fewer numbers of parameters.

3.3 Methods for the calibration procedure

The goal of the calibration procedure is to find the combination of parameters that minimises an
objective function. Those objective functions are also called metrics.

3.3.1 Metrics

A metric is a function that transforms elements of a metric-space (here the vector space Rn) into
R [55]. In particular, it is a way of measuring the distance between a reference and a predicted
time-series. For this study, two metrics are considered: the Root Mean Square Error (RMSE) and
Pearson’s coefficient of determination (R2).

Root Mean Square Error (RMSE) The Root Mean Square Error (RMSE) computes the
Euclidean (order 2) norm of the difference vector. In the case of GPP, it is computed as:

RMSE(GPP, ĜPP ) =

√∑N
i=1(GPPi − ĜPP i)2

N
(31)

Having,

• GPPi being the reference value of GPP on the ith day,

• ĜPP i being the predicted value of GPP on the ith day,
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• N the sample size.

Because of the square component in the formula, the outliers, that is to say model points that
deviate from the reference data, are strongly penalised [56]. The RMSE is expressed in the same
units as the variable (here gC m−2 day−1).

Pearson’s coefficient of determination Pearson’s coefficient of determination, also known as
the R2 coefficient, is a metric to determine the linear correlation between variables. It is defined as:

R2(GPP, ĜPP ) = 1−
∑N

i=1(GPPi − ĜPP i)
2∑N

i=1(GPPi −GPP )2
(32)

Where GPP is the mean value of the reference GPP. Contrary to the RMSE, it is a dimensionless
number. Its maximum value is 1 corresponding to a perfect estimate. When the value is negative,
then the model performs worse than the average model.

3.3.2 Grid search

The grid search is an exhaustive optimisation method that consist in evaluating the objective
function on all the points of a grid. For every parameter to optimise, we define a set of finite points
that will constitute one dimension of the grid. So, each one of those points is a candidate for being
the optimal value of the parameter. We therefore get a finite number of evaluation of the model,
for which the objective function can be computed. Thus, the minimum of this finite set can easily
be selected.

The main issue of this method is the ”curse of dimensionality”, that is the explosion of com-
putational time and memory usage when the number of dimensions increases [57]. However, the
computation can easily be parallelised [58]. In our case, the dimension space to optimise is equal to
the number of parameters, that is to say 6 (β, η, Vm,25, kq, V PDmin, and V PDmax). The paralleli-
sation is performed using the outer product. In the execution of the model, instead of performing n
times a scalar product for n parameter values, we create a parameter vector of size n, and use the
outer product between the parameter vector and the variable vector. This method allows multiple
evaluation of the model at the same time. The process is much faster, but is limited by the available
memory usage.

Nevertheless, the grid search method gives a clear picture of the objective function to optimise.
Since our aim is to study the reliability of the calibration procedure (and not only it’s execution),
this method can lead to a better understanding of the behaviour of the objective function near the
global minimum. Indeed, with this exhaustive evaluation of the objective function, we can select all
of the combinations of parameters that results in low score. This creates an ensemble of parameters
that can be analysed.

To reduce, the useless computational cost and to increase the comprehension of the obtained
result, we first decrease the dimensionality of the equation using the methodology describe in section
5.4. Then we increase it by discarding known in advance degenerative values.

3.3.3 Cross-validation

Cross-validation is a validation of model technique that allows the generalisation of a model to an
independent dataset. It relies on the splitting of the available data into a ”training” and a ”test” set.
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The training set is used for the tuning of the parameters. The test set is utilised for the evaluation
of the model, once the tuning is done [59].

More specifically, in the case of a grid search, the training phase will consist of drawing and
selecting the minimum of the objective function taking into account data from the train set. The
testing phase will be the evaluation of the model and the objective function for the selected value
of parameters, using the test dataset.

One cross-validation method is the k-fold cross-validation. It consists in splitting the training
data into k subsets. In turns, k − 1 of those subsets are used for the training and one is left for
the testing. This operation is repeated k times, once every subset has been once the testing subset.
This procedure reduces the overfitting of a specific train set [60].

3.4 Ensemble forecasting with parameter uncertainties

Ensemble forecasting is a technique used on deterministic models with high uncertainties. For
example, this is the case in weather and hydrological forecasting, where the studied systems are
complex. Indeed, there are uncertainties in the construction of models that could lead to errors in
the output [61]. With the example of forecasting, errors in initial conditions induces mistakes in the
long-term predictions. To cope with this issue, an ensemble prediction would apply an ensemble
set of perturbations on the initial conditions. The model will then be applied for every perturbed
cases [62]. This creates a prediction ensemble.

Another source of uncertainty in modelling concerns the parameters. This is the case we will
focus on in this study. Likewise, perturbation can be applied to the parameters, and an ensemble
prediction can be made. Many perturbations schemes exist. For instance, the Stochastically Per-
turbed Parameterization Tendencies (SPPT) uses a multiplicative noise on the parameter’s tendency
(i.e. the variation of the parameter over time) [63]. For complex models depending on hundreds
of parameters, a bayesian optimisation approach may be taken. The Ensemble Prediction and Pa-
rameter Estimation System (EPPES) is one particular method that also predicts uncertainty in the
parameter values. We can therefore apply a perturbed parameter scheme to obtain an ensemble
estimation [64].

The previous methods that we talked about are based on Monte-Carlo estimations. The ap-
proach we use in this study is different. Indeed, the studied model ”only” has six parameters to
optimise, who each matches to a different process. Therefore, we will use an exhaustive procedure
for looking at the almost optimal parameter values, using the grid search optimisation. The term
”almost” signifies the tolerance of small errors in the retained values. Nevertheless, this method
has an exponential computational complexity with respect to the number of dimensions in the grid
(number of parameters).

To obtain an ensemble spread, we will select not one combination of parameter values as it is
done is classical optimisation, but we will select an ensemble of almost optimal parameter values
by evaluating the RMSE in the calibration phase. For this, we will tolerate all combination of
parameters that result in a objective function value that is lower than 1% more than the minimal
value of the objective function. In a mathematical formulation, we select all parameters p̃ such that:

RMSE(p̃) ≤ 1.01× min
p∈Grid

RMSE(p) (33)
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4 Data availability and processing

4.1 Remote Sensing Data

The available remote sensing data used in this study will be provided by two datasets: MODIS and
GLDAS-2.1.

4.1.1 The MODIS satellite characteristics

MODIS is a sensor embedded into two National Aeronautics and Space Administration (NASA)
satellites: Terra launch in 1999, and Aqua launched in 2002. Therefore, MODIS data has been
available and used for research over the last 20 years.

There are four types of resolution for remote sensing images: spatial, temporal, spectral and
radiometric.

The spatial resolution corresponds to the size of the pixels. This depends on the spectral band
that is used. For MODIS data, bands B1 and B2 have a 250m resolution, B3 to B7 have a 500m
resolution and bands B8 to B36, a 1000m resolution.

Unlike spatial resolution, temporal resolution is not a constant value across the globe. Surely,
each Terra and Aqua satellite have a 5 day revisit. But, due to overlap in adjacent orbits, the actual
temporal resolution spans from 1 to 2 days.

The spectral resolution concerns which wavelength of the electromagnetic spectrum is captured.
MODIS has 36 bands spanning from violet (band 8 at 405nm) to thermal infrared (band 36 at
14000nm) with no overlapping. The visualisation of the spectral bands is available in the appendix
B.

Radiometric resolution is the capacity of the instrument to measure a diverse range of the energy
of an electromagnetic wave, for a given spectral band. It is expressed in bits. For example, an 8-bit
radiometric resolution of a black and white image, will lead to 28 = 256 discrete values of gray [65].
MODIS satellites have a radiometric resolution of 12 bits per spectral band, which leads to 4096
discrete values of intensity [66].

Information about MODIS characteristics are summarised in Table 2. For comparison, the
same characteristics are also given for the Sentinel-2 satellite, another remote sensing data source
for estimating GPP in statistical models.

Characteristics MODIS Sentinel-2

Date of first capture 18-02-2000 28-03-2017

Spatial resolution (m) 250, 500, 1000 10, 20, 60

Spectral resolution 36 bands 13 bands

Temporal resolution (days) 1 2-5

Radiometric resolution 12 bits 12 bits

Table 2: Comparative table between MODIS and Sentinel-2 characteristics.

4.1.2 The Global Land Data Assimilation System (GLDAS) dataset

The Global Land Data Assimilation System (GLDAS) is a meteorological dataset that combines
in ground based and satellite observations [67]. It is a collaborative project between the NASA,
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the Goddard Space Flight Center (GSFC), the National Oceanic and Atmospheric Administration
(NOAA), and the National Centers for Environmental Prediction (NCEP). The spatial resolution is
off 0.25°, corresponding to 27830m. Therefore, this dataset is not locally precise, but still provides
a global availability. So, a generalisation of the results to a larger scale is possible. The 2.1 version
of this dataset is used in this study.

4.1.3 Available Products in Google Earth Engine

The ”raw” remote sensing data is captured by the instrument owners, i.e. NASA for MODIS.
Before sharing their images, the owners have to preprocess the data. Several processing levels are
available. Level-0 is the unprocessed data. Level-1 focuses on decompressing, radiometric correction,
and geometric corrections. Level-2 includes an atmospheric correction. Level-3 adds some map
projections and temporal homogenisation. Level-4 are products that are indirectly captured by
remote sensing data, and that have received extra processing [68]. For our study, we will work with
the Level-4 MCD15 and MOD17 datasets. Nevertheless, despite being a level-4 product, MCD15
still needs supplemental processing before being used.

Some useful products of certain algorithms that uses remote sensing data are available with the
Google Earth Engine (GEE) catalog. This is the case of the GPP and ET of PML model at a
global scale [23], the GPP and NPP of MOD17 [69], the environmental variables from GLDAS-2.1
(temperature, air pressure, Short-Wave (SW) radiations, and specific humidity (Qair)) [67], and the
surface classification dataset MCD12 [70]. Details of the available products in the GEE catalog are
available in table 3. The data availability in time of the in-situ measurements is in the data time-
window of the diverse remote sensing products. Therefore, only the in-situ measurements define
the data’s temporal range.

Datasets Beginning date End Date Spatial Temporal
resolution resolution

PML 26-02-2000 26-12-2020 500m 8 days
GPP& ET

MOD17 18-02-2000 10-02-2023 500m 8-days
GPP&NPP

MCD15A3H.061 04-07-2002 Today 500m 4 days
LAI

MCD12Q1.061 01-01-2001 01-01-2022 500m Yearly
surface classification

GLDAS-2.1
Temperature, Pressure, 01-01-2000 Today 500m 3 Hourly
SW radiations, Qair

Table 3: Datasets available in the Earth Engine Data Catalog [71]. Dates are in the DD-MM-YYYY
format.

4.2 In-situ measurements

As said in the introduction, GPP can be measured locally. This study focuses on the Torgnon
subalpine grassland. Torgnon is mountainous site, having an average elevation of 2168 m, and a
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cold mean temperature of 3.27°C [72]. Therefore, the GPP and meteorological conditions are greatly
influenced by seasons, having a snowy context in Winter. The data availability is from 01-01-2016
to 01-01-2020, which constitutes four full years of study. Torgnon is a member of the FLUXNET
group. It is a network of flux measurements of carbon dioxide, and water vapour between the soil
and the atmosphere [11]. Moreover, Torgnon is one of the study sites that served for the training
of the PML model available in GEE [23].

The measure of GPP is performed indirectly by first measuring the Net Ecosystem Exchange
(NEE) using the Eddy Covariance (EC) method. From those measurements we can derive GPP
using various mechanisms. For this study, we use Papale’s methodology [8], having the specific
processing for the Torgnon grassland developed by Spinosa et al. [37]. The procedure mainly consist
of data correction (outlier detection, velocity friction filtering and gap filling), physical equation to
derive GPP (carbon fluxes partitioning), and a daily aggregation. The obtained time-series of GPP
is presented in figure 5 (black curve).

Even though, those measurements are subject to uncertainties, they constitute the reference
data for our study.

4.3 Data processing

In order to compare more precisely the PML output of this study with the one available on GEE,
we use the same input datasets and processing as described in Zhang et al. article [23].

4.3.1 Climatic variables

The considered climatic variables are temperature, VPD, CO2 atmospheric concentration, and PAR.
The first two can either be obtained with in-situ measurements or with remote sensing data. In
the first case, the methodology developed by Spinosa et al. [37] is used. The time series have a 30
minutes time step and are aggregated to a daily time step by averaging their values over 24 hours.

In the second case, we use the environmental variables available in the GLDAS-2.1 dataset with
a 3-hourly time step [67]. VPD is not directly available and needs to be computed. For this we
used the same methodology as Zhang et al. [23]. The vapour pressure of water is computed using
Tetens equation [73]

es = 0.6108 exp
17.27T

T + 237.3
× 103 (34)

having T being the temperature in °C and es the vapour pressure of water in Pa. The maximum
and minimal daily vapour pressure of water (es,max and es,min respectively) are computed using the
maximum and minimum daily temperature.

The saturation water pressure ea is calculated with Bolton’s formula [74]:

ea =
qP

0.622 + 0.378q
(35)

where q is the relative humidity (kg/kg) and P the pressure in Pa. Both variables are available
in the GLDAS-2.1 dataset. Finally, daily VPD in obtained by subtracting the saturation water
pressure to the average of the maximum and minimum daily vapour pressure of water:

V PD =
es,max + es,min

2
− ea (36)
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Many literature models evaluate GPP on an 8-day period, resulting in smoother results [23],
[34]. To imitate this smoothness, an 8-days moving average is applied to the daily value of the time
series.

The visualisation of temperature and VPD in both in-situ and remote sensing measurements is
given in figure 1. We observe in both cases an underestimation of the GLDAS data.

(a) Temperature (b) VPD

Figure 1: Smoothed temperature and VPD time series. The blue and red curves respectively
correspond to the in-situ and remote sensing measurements.

4.3.2 CO2 atmospheric concentration

CO2 atmospheric concentration is available in the NOAA globally averaged marine surface monthly
mean data [75]. The values are given monthly and need to be interpolated to daily. This dataset is
global so not specific to the study site. However, it makes the upscaling of the model to a regional
scale easier.

A visualisation of the time series is available in figure 2. Over the four years of study, the CO2

atmospheric concentration raises of about 10 ppm corresponding to a relative augmentation of 2.5%.
We can also notice the sinusoidal variation of CO2 over the seasons. Because the CO2 variations
are significant at a larger scale then the four years of this study, it is likely that the uncertainties
in the atmospheric concentration of CO2 will have a minor impact in the estimation of GPP.

Figure 2: CO2 concentration from the NOAA dataset linearly interpolated to daily values.
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4.3.3 Photosynthetically Active Radiations (PAR)

Photosynthetically Active Radiations (PAR) are the sunlight radiations that are in the 400-700nm
band. They correspond to 45% of the shortwave downward radiation. Similarly to temperature
and VPD, the shortwave downward radiations are taken in the GLDAS-2.1 dataset, with a 3-hour
temporal resolution [67]. Shortwave radiation is an instantaneous variable (expressed as a power
per surface area), so the aggregation must be done by averaging the value over the day. The units
are then converted into a photosynthetic photon flux density (µmol.m−2.s−1).

Similarly to the smoothing of temperature and VPD, the PAR signal is recomputed using an
8-days moving average. This has a strong effect in filtering high frequencies information. The
visualisation of the PAR time series is presented in figure 3. We see that the radiations follow
the natural season cycle. It is bounded by a sinusoidal function representing the inclination of
Earth with respect to the sun. However, the presence optical masks, like clouds, lowers the received
amount of light.

Figure 3: Time series of PAR expressed as a photon flux density in µmol m−2day−1 from the
GLDAS-2.1 dataset

4.3.4 Leaf Area Index

LAI is estimated using the MCD15A3H dataset, with a 4-day resolution. This dataset is a level-4
product of the MODIS instrument. However, the available LAI is contaminated by noise coming
from clouds, shadows, aerosols and cirrus. To remove it, we use a weighted Whittaker smoother
[47]. A description of the Whittaker smoother is given in section 3.1.1. In practice, the module
whittaker eilers from python is used. It is based on the sparse LU-decomposition solver from scipy.

The goal of the weighted smoother is twofold. First the weights model the quality of the mea-
surements and filter outliers. A weight is applied to each measurement, regardless of the neighbors.
Second, the smoothing keeps the low frequencies in the signal and removes noise. By using an order
3 smoother, the values of the 3 previous measurements are used to rectify the current measurement.

The initial weights are set as:

• 1 if the image is not contaminated,

• 0.5 if the image is contaminated by aerosols or cirrus,
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• 0.05 if the image is contaminated by snow, cloud or shadow

The updating of the weights at the k-th iteration proceeds as follow:

ri,k =LAIi,k − LAIi (37)

MADk =median(|ri,k|) (38)

wi,k+1 =


(
1−

(
ri,k

6MADk

)2)2

wi,k if 0 < ri,k < 6MADk

wi,k if − 6MADk < ri,k < 0
0 if 6MADk < |ri,k|

(39)

where wi,k is the weight value of the point i at iteration k, LAIi is the value of the LAI from
the MCD15 product of the point i, and LAIi,k is the value of the smoothed LAI of the point i at
iteration k.

This algorithm is applied for 2 iterations, with the smoothing scalar λ set at 100. The time
series of the unprocessed and smoothed LAI products is shown in figure 4. We observe a much
smoother data and many filtered measurements. The increasing and decreasing phases happening
in Spring and Summer are regular. Also, the amplitude of the smoothed signal less important.

Figure 4: Time series of LAI. The blue curve is the MCD15 unprocessed product. The orange curve
is the smoothed LAI. The red dots are the totally filtered outliers (weight set to 0).
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5 Results and analysis of the PML model

5.1 Estimation using parameters from literature

GPP depends on both the meteorological and environmental context, and on how plants adapt to
this context. In the PML model, the climate situation is represented by the variables. The ability of
primary production of the vegetation, given the climate conditions, is modeled by the parameters.
Hence, the values of the parameters in the PML model are specific to the type of plants.

Zhang et al. use the land classification of the MCD12 product to cluster vegetation types.
According to this same classification, the Torgnon site is considered being a grassland. Therefore,
the corresponding parameter values are given in table 4 [23].

Parameter β η kq Vm,25 V PDmax V PDmin

Unit µmol C µmol C m−2s−1 - µmol m−2s−1 Pa Pa
(µmol PAR)−1 (ppm)−1

Values 0.03 0.03 0.72 46.4 3630 660

Table 4: Value of the parameters in Torgnon grassland according to literature.

Therefore, we can compute the daily GPP time-series using those values. Their representation
is shown in figure 5. We can notice first of all, that the model identifies correctly the seasonal
aspect of GPP, having low amounts in Autumn and Winter, growth in Spring, a peak in July, and
a decrease for the rest of Summer. However, there is a global overestimation, especially around the
maximum values. In Autumn and Winter, our LAI is estimated as 0. This explains the flat zero
value of the PML output in Autumn and Winter. Moreover, there is a minor difference between
the GEE PML product and our self-implemented PML. This can be explained by the difference
in the processing of LAI. Indeed, the value of LAI is sensitive to the tuning of the Whittaker
smoother, resulting in different input data. Further discussion on this difference is discussed in
section 6.1.3. Furthermore, there is a minor difference in the PML output if we rather use in-situ
or remote sensing measurements of Temperature and VPD (respectively orange and green curve in
the figure). However, the ramp function from literature is barely constraining GPP. Indeed, the
minimum threshold for which the constraint is applied (V PDmin) is 660 Pa. In our dataset, this
value is only exceeded once. Therefore, the constraint is active only for one day out of the four
years studied.

Besides, the MOD17 model tends to underestimate the reference data. Its estimation pattern is
different from the three PML outputs.

In addition, table 5 gives the RMSE and Pearson’s coefficient of determination R2 for the
different outputs. The definitions of both metrics are given in section 3.3.1. The products from
GEE perform significantly better than our own PML, highlighting the importance of the optimal
processing of LAI. Also, as observed in the figure, the source of input temperature and VPD exerts
minimal impact on the PML output.

5.2 Correlation analysis

To have a first understanding of the link between the variables themselves, and between the variables
and the GPP, we perform a correlation analysis. The correlation matrix is shown in figure 6. The
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Figure 5: Time series of the PML model using parameter values founded in literature. The black
curve is the reference data. The blue and green curves are the output of the PML model using
the methodology describe in section 4.3. They respectively use the in-situ measurements, and the
remote sensing estimation of temperature and VPD. The red curve is the product available in GEE.
The purple curve is the MOD17 product.

In-situ EVs RS EVs GEE product MOD17

RMSE (gC m−2 day−1) 1.80 1.73 1.15 1.04

R2 0.53 0.57 0.81 0.84

Table 5: RMSE and Pearson’s R2 of the GEE products and the self-implemented PML model using
parameter values from literature.

correlation score is written in each cell of the matrix. However, the color of each cell corresponds
to the absolute value of the correlation score.

This matrix shows that the atmospheric concentration of CO2 is poorly (in absolute value) and
negatively correlated to the other variables and to GPP. This goes against the physical model of
photosynthesis that is influenced by that the amount of CO2. This can be explained by the stability
of the quantity of carbon dioxide within four years in the used dataset. Moreover, the global aspect
of the dataset may not be applicable to the specific Torgnon case. Other influential variables have
more fluctuating values, which explain the variations of GPP. This is why temperature, VPD, and
PAR are highly correlated to GPP. Moreover, LAI is extremely correlated to GPP with a correlation
score over 0.9. More specifically, the smoothed time series has a higher correlation than the raw
one, which highlights the need of processing LAI.

To get a better view of the seasonal aspect, the correlation matrix is computed per season (see
figure 7). The correlation scores remain good in Spring, Summer and Autumn, but plummet in
Winter. Therefore, in Winter, the PML model and the used variables cannot predict the low GPP
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Figure 6: Correlation matrix of the variables and GPP.

values. This is probably due to the extreme Winter conditions in the Alps, with the presence of
snow, low temperatures and pressure, and a small amount of vegetation (LAI ≈ 0).

Similar conclusions can be derived from the Spearman’s rank correlation matrix in appendix C.

5.3 One at the time procedure and asymptotic analysis of parameters

To understand the link between input and output data, we perform an OVAT procedure with an
asymptotic analysis. The detailed steps for the computation of the limits and asymptotic equations
that will follow are presented in appendix D. For each variable, we select a range of possible values.
We consider the other variables constant by taking their mean value over the study period. We
then evaluate the model on the range values. This last step is repeated by changing the value of
relevant parameters. In this analysis, the VPD constraint is ignored for simplicity.

5.3.1 Temperature and VPD constraint

In the PML model, both temperature and VPD act has constraints to the growth of GPP. The
temperature constraint is given in equation 4. This constraint only acts on the value of the maximum
catalytic capacity of RuBisCO Vm. The VPD constraint is a ramp function given in equation 9,
that acts on the global assimilation rate. The visualisation of both function is represented in figure
8.
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(a) Spring (b) Summer

(c) Autumn (d) Winter

Figure 7: Correlation matrix over the seasons. The color bar is the same as in figure 6.

5.3.2 GPP response to PAR and CO2 atmospheric concentration

The assimilation of carbon at the canopy scale without the VPD constraint is expressed in equation
8. The parameter β corresponds to the initial slope of carbon assimilation response to PAR. It is
therefore linked to the quantity of PAR I0. The primary production due to light exposure appears
in the logarithmic terms of equation 8. When either I0 or β goes to infinity, the GPP response is
bounded by the value:
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(a) Temperature (b) VPD

Figure 8: Temperature and VPD constraints. The values of the parameters for the visualisation of
both functions are from [26] (temperature) and [23].

lim
I0,β→+∞

Ac,g =
VmηCa

Vm + ηCa
LAI (40)

Likewise, the parameter η corresponds to the initial slope of carbon assimilation response to
the atmospheric CO2 concentration. This production is also bounded when the variable or the
parameter goes to infinity:

lim
Ca,η→+∞

Ac,g =
Vm

kq

kqLAI + ln

(
βI0 + Vm

βI0 + Vm exp (kqLAI)

) (41)

The visualisation of the GPP value when those two variables vary are shown in figure 9. We
notice that for high values of β and η, the GPP reaches quickly the limit value. Therefore, for the
calibration phase, the differences between a large and an extraordinary large value of β and η will
have little consequences in the output.

Furthermore, the values of I0 in our dataset are where the GPP is in the transient state. There-
fore, the parameter β relates on how much GPP will vary with variations of I0.

Moreover, due do the small variations of Ca in the dataset, the GPP response to it is very stable.
Therefore, uncertainties in Ca have a negligible impact on GPP. Hence, the global atmospheric CO2

dataset that is used, which has a poor temporal resolution (monthly) is sufficient for this study.

5.3.3 GPP response to LAI

When building the PML model, equation 5 highlights that the kqLAI expresses the extinction factor
of PAR. The LAI states how much vegetation there is to stop the light, and the parameter kq shows
how effective this extinction happens. When either LAI or kq goes to zero, we can linearise the
PML model as follow:
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(a) Evolution of GPP with respect to I0 for several
values of β.

(b) Evolution of GPP with respect to Ca for several
values of η.

Figure 9: Evolution of GPP with respects to specific variables and their associated parameter. The
red curve represents the asymptote when the variable or the parameter goes to infinity. The green
curve parameter value is the one from literature. The black vertical lines delimit the interval that
contains the dataset values.

Ac,g ∼
LAI,kq→0+

VmηCaβI0
VmηCa + VmβI0 + ηCaβI0

LAI (42)

The fact that kq does not appear in the linearisation shows that for low values of LAI, this
coefficient does not have an impact on primary production. This means that GPP is proportional
to the amount of vegetation, in the case where light does not extinct.

Also for high values of LAI we reach the following limit:

lim
LAI→+∞

Ac,g =
VmηCa

kq(Vm + ηCa)
ln

(
(Vm + ηCa)βI0 + VmηCa

VmηCa

)
(43)

Figure 10 shows that the linearisation is efficient over the hole dataset for low values of kq. Also,
for the values of LAI in Autumn and Winter, the value of kq is not significant. This means that we
need to Spring and Summer data in the train set for an accurate calibration of this parameter.

Moreover, when kq is high but not very high, we reach the limit in equation 43 within the dataset
values, without that limit being 0. Therefore, the exploration of the value of kq going beyond 2 will
probably neutralise the estimate.

5.4 Calibration of parameters and uncertainties

The PML model relies on six parameters: β, η, Vm,25, kq, V PDmin, and V PDmax. They model the
photosynthesis proprieties of vegetation, in a given meteorological context. The goal of studying
the reliability of this calibration procedure is to determine what are the physical proprieties we can
extract from this procedure. Also, it provides information on the influence of the linked variables
for estimating GPP.
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Figure 10: Evolution of GPP with respect to LAI and for several values of kq. The red curve rep-
resents the asymptote when the variable or the parameter goes to zero. The green curve parameter
value is the one from literature. The black and gray vertical lines delimit the interval that contains
the raw and smoothed dataset values respectively.

For that, we will need to have a global picture of the objective function we want to minimise.
Therefore, classical optimisation algorithm such as the gradient descent cannot be applied, as they
only give one local minimum. Nevertheless, as six parameters are being optimised, the objective
function is six-dimensional, which is quite challenging to represent. Consequently, we will start
studying simplified cases that reduces the number of dimensions. Once the understanding of the
simplified model is done, we will increase the number of dimensions. To do so, we start by ignoring
the VPD constraint. Then, by using the asymptotic equations, we decrease the number of dimen-
sions. Next, we perform the grid search optimisation on the simplified equations. This method is
memory and computational expensive but gives a global picture of the objective function. Once
this picture is analysed, the dimensionality can be increased. Eventually, the VPD constraint is
reset and an optimal ramp function is founded.

In this section, we will denote p∗ the optimal value of any parameter p.

5.4.1 One-dimensional equations

The PML model is built on the availability of PAR and CO2, and the maximum catalytic capacity
of RuBisCO Vm. When we set two of those three quantities to an infinite value, it means that the
remaining variable is the only limiting factor of CO2 absorption. We therefore get the following
equations:
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lim
β,Vm,25→+∞

Ac,g = ηCaLAI (44)

lim
β,η→+∞

Ac,g = Vm,25f(T )LAI (45)

lim
η,Vm,25→+∞

Ac,g =
βI0
kq

(1− e−kqLAI) −−−→
kq→0

βI0LAI (46)

Where f(T ) is the temperature constraint defined in equation 4. In equations 44 and 45, when β
goes to infinity, the vanishing of the light kq also disappears from the equation. Physically speaking,
when the ecosystem has an infinite quantum efficiency, then the amount of available light is no longer
a relevant factor. Therefore, the quantity of light that is extinct also becomes irrelevant. In the
case of equation 46, the light availability is the only limiting factor, so both β and kq are present.
However, if we put our self in the extreme case where light does not extinct (kq = 0), then the
simplified equation becomes one -dimensional.

Figure 11, shows the RMSE of those equation. All of the four equations are strictly convex and
the minimum is easy to find.

Critical values Using the one-dimensional equations, we can derive ”critical values” for the
parameters. Let βc, ηc, Vm,25c be the critical values for β, η and Vm,25. Let b represent the rest of
the parameters in the PML equation. By definition:

∀β < βc, RMSE(PML(β, b)) > RMSE(PML(βc, b)) (47)

∀η < ηc, RMSE(PML(η, b)) > RMSE(PML(ηc, b)) (48)

∀Vm,25 < Vm,25c , RMSE(PML(Vm,25, b)) > RMSE(PML(Vm,25c , b)) (49)

Having b = (η, Vm,25, kq, V PDmin, V PDmax) in equation 47, b = (β, Vm,25, kq, V PDmin, V PDmax)
in equation 48, and b = (β, η, kq, V PDmin, V PDmax) in equation 49.

Those critical values are equal to the parameter values that minimises the MSE in the one-
dimensional case. It is the parameter that solves the equation:∑

i

∂PMLi(ac)

∂ac
(GPPi − PMLi(ac)) = 0 (50)

where i is a point in the training dataset, GPPi is the reference value, and ac is the critical value of
a parameter a. The proof of the existence and the expression of the critical values cannot be given
analytically because of the non-linearity of the model. But it can be verified numerically as it will
be the case in the following sections.

For the parameter kq, a similar numerical proof can be given to derive an upper bound value,
but this last one depends on the value of β. Indeed, it is impossible to have a one-dimensional
version of the PML model that only depends on kq. Therefore, no general formula can be derived.

Similarly, critical values for the VPD parameters will also depend on the other parameters.
However, a minimum threshold that is bigger than the maximum value in the time series, will
always result in a VPD constraint of 1 (so never active). Likewise, a maximum threshold that is
lower than the minimum value in the time series will result in a VPD constraint of 0, so always
active.

The founded critical values on the training set are summed up in Table 6.
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(a) RMSE of infinite β and Vm,25 model (b) RMSE of infinite β and η model

(c) RMSE of infinite β, Vm,25, and kq = 0.72 model (d) RMSE of infinite β, Vm,25, and minimal kq model

Figure 11: RMSE in the cases when there is only one limiting factor. The red dot corresponds to
the minimum of the function.

Parameter Critical value Type of bound Method to derive it

β 0.00561 µmol C m−2s−1 (µmol PAR)−1 Lower
∑

i GPPiI0iLAIi∑
i I

2
0i
LAI2i

η 0.00581 µmol C m−2s−1 (ppm)−1 Lower
∑

i GPPiCaiLAIi∑
i C

2
ai
LAI2i

Vm,25 4.40 µmol C m−2s−1 Lower
∑

i GPPif(T )LAIi∑
i f(T )2LAI2i

kq Depends on β Upper

V PDmin 734 Pa Upper max(V PD)

V PDmax 0 Pa Lower min(V PD)

Table 6: Critical parameter values
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5.4.2 Two-dimensional equations

For the two-dimensional case, we will only look at the cases where β → ∞ (equation 51) and
Vm,25 → ∞ (equation 52).

lim
β→+∞

Ac,g =
VmηCa

Vm + ηCa
LAI (51)

lim
Vm,25→+∞

Ac,g = ηCa

[
LAI +

1

kq
ln

(
βI0 + ηCa

βI0 + ηCaekqLAI

)]
(52)

The case of η → ∞ will be discussed in section 5.4.4. For now, we assume that the value of the
coefficient of extinction is the literature value (0.72). With this the non-linearity with respect to
LAI is kept.

The RMSE is evaluated for the following values of parameters (Table 7):

Parameter Min value Max value Number of points Type of scale

η 0.9 ×ηc 5 1000 Log scale

Vm,25 0.9 ×Vm,25c 10 498 Log scale

Table 7: Grid proprieties for the evaluation of the RMSE for β = ∞ having ηc and Vm,25c respectively
being the critical values for η and Vm,25.

In the case where β goes to infinity, the PML model only depends on Vm and η. Figure 12
displays aspects of the objective function. In order to work with one-dimensional curves instead
of surfaces, the minimum of the RMSE with respect to one of the two parameters is represented
per picture. On image (a), the scale is purposely zoomed in at the extreme. We notice that the
optimised score of the RMSE is very close to the optimal value when η goes to infinity. Indeed,
there is a only a difference of 0.005% between both values. So the implementation of the CO2

information is very limited. On the contrary, the graph (b) shows a clear minimum with respect to
Vm,25, having a strong difference between the optimal RMSE and the RMSE when Vm,25 diverges.
We can also notice some waves and irregularities in the functions, making their representation non
convex. However, those last ones are due to the discretisation of the grid. There is indeed, a small
difference between the optimal parameter that is present in the grid, and the optimal parameter in
R.

The figures (c) and (d) represent the argument of the minimum with respect to η and Vm,25. We
can note that the optimal parameters are indeed bounded by the critical values. The functions η →
argminVm,25 RMSE(PML(η, Vm,25)) and Vm,25 → argminη RMSE(PML(η, Vm,25)) are decreasing,
bounded by the limit values, being the critical values. Furthermore, the horizontal shape of the
curves or low parameter values is justified by the limited range of the parameters. Therefore, those
function are injective.

With a finer discretisation, the results could have been more precise (fewer waves, larger range...).
However, the computing of those results is limited by time and especially memory. Thus, this coarse
grid is sufficient for this analysis.

For Vm going to infinity, the GPP now depends on β, η and kq. For simplification, we use
kq = 0.72 as in the literature. The used grid is described in table 8.

Figure 13 represents the same facets of the objective function as in figure 12. Similar comments
can be given on the critical values, the monotony of the argument of the minimum, the convexity,
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Figure 12: Visualisation of RMSE proprieties in the case where light availability is not a limiting
factor. Figure (a) and (c) display respectively the minimum and the argument of the minimum
of the RMSE with respect to Vm,25 in function of η. Figure (b) and (d) display respectively the
minimum and the argument of the minimum of the RMSE with respect to η in function of Vm,25.

Parameter Min value Max value Number of points Type of scale

β 0.9 ×βc 2 501 Log scale

η 0.9 ×ηc 5 1000 Log scale

Table 8: Grid proprieties for the evaluation of the RMSE for Vm,25 = ∞, kq = 0.72 having βc and
ηc respectively being the critical values for β and η.

and the ”wave” aspect in the RMSE. Furthermore, there is a clear optimal value for β. Nevertheless,
the optimal value of the RMSE with respect to η is significantly lower than the optimal value when
it goes to infinity. This can be explained by the fact that, in the case of assimilation without light
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constraints (equation 51),VmηCa/(Vm+ηCa) is the GPP per unit leaf area. In the case of Vm → ∞,
η becomes the only controllable parameter of that phenomenon.

Moreover, the value of β∗ when η diverges, is different from the computed critical value. This
is because, β’s critical value is a decreasing function with respect to the extinction coefficient kq.
Indeed, in case of light extinction, we have

βc(kq) =

∑
iGPPiI0i(1− e−kqLAIi)/kq∑

i I
2
0i
(1− e−kqLAIi)2/k2q

(53)

where βc(kq) is the critical value of β depending on kq. Figure 33 in the appendix E shows a similar
graph when kq = 0.

5.4.3 Three-dimensional equations with η ̸= ∞.

Now, we consider that all the efficiencies play an active roll in gross primary production. We still
set the vanishing term at 0.72. Because of the memory usage and the difficult representation of
three simultaneously varying parameter, we did this optimasation and representation of RMSE on
two different grids (Tables 9 and 10).

Parameter Min value Max value Number of points Type of scale

β 0.9 ×βc
√
10 6 Log scale

η 0.9 ×ηc 100 241 Log scale

Vm,25 0.9 ×Vm,25c 10 252 Log scale

Table 9: Grid proprieties for the evaluation of the RMSE for kq = 0.72 having a small number of
evaluations for β.

To display information about the RMSE, we use similar curves as in section 5.4.2, where each
layer represent one value of the third parameter. For instance, in figure 14, each colour is for one
value of β. Notice that the value β = ∞ that has been studied in section 5.4.2 is also included in
the graph. The same analysis applies for every values of β. More particularly, for every values of β,
the optimal RMSE is very close to the RMSE when η → ∞. On the other hand, the value of V ∗

m,25

clearly depends on the value of β.

Parameter Min value Max value Number of points Type of scale

β 0.9 ×βc
√
10 252 Log scale

η 0.9 ×ηc 100 241 Log scale

Vm,25 0.9 ×Vm,25c 10 6 Log scale

Table 10: Grid proprieties for the evaluation of the RMSE for kq = 0.72 having a small number of
evaluations for Vm,25.

Likewise, in figure 15 every colour represents one value of Vm,25. In this situation, the optimal
value of β is quite stable per layer of Vm,25, with the exception of the blue curve, where Vm,25 is
below it’s critical value.

Moreover, η∗ is very dependent on the value of Vm,25. However, the global minimum in picture
(a) is for when η → ∞.
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Figure 13: Visualisation of RMSE proprieties in case the case where the catalytic capacity of
RuBisCO is not a limiting factor. Figure (a) and (c) display respectively the minimum and the
argument of the minimum of the RMSE with respect to β in function of η. Figure (b) and (d)
display respectively the minimum and the argument of the minimum of the RMSE with respect to
η in function of β.

Thus, we will consider henceforth that η∗ = ∞. This leads to a simplified model that has a
marginal impact on the accuracy, and is easier to calibrate. We should nevertheless keep in mind
that there is large range of acceptable values of η for having a well calibrated model.

A similar figure representing a layers of η is given in figure 34 of Appendix E.
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Figure 14: Visualisation of RMSE proprieties in the case where the catalytic capacity of RuBisCO,
the CO2 and the light availabilities are limiting factors. The extinction coefficient of PAR is fixed
at kq = 0.72. Each curve represents a different value of β. Figure (a) and (c) display respectively
the minimum and the argument of the minimum of the RMSE with respect to Vm,25 in function of
η. Figure (b) and (d) display respectively the minimum and the argument of the minimum of the
RMSE with respect to η in function of Vm,25.

5.4.4 Three-dimensional equations with η → ∞

The simplified model is presented in equation 54. This time we will also consider variations in the
light extinction.

lim
η→+∞

Ac,g = Vm

[
LAI +

1

kq
ln

(
βI0 + Vm

βI0 + VmekqLAI

)]
(54)

Figures 16, 17, and 18 represent the RMSE characteristics but with a different point of view
every time. The proprieties of the grids are respectively given in Tables 11, 12, and 13.

First of all, figure 16 displays layers of kq. For each curve, the optimal value of β is always
significantly different: it suggests that β∗ is strongly dependent on kq. Furthermore, there is a
small, but not negligible difference between the optimal value of the RMSE and the limit value
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Figure 15: Visualisation of RMSE proprieties in the case where the catalytic capacity of RuBisCO,
the CO2 and the light availabilities are limiting factors. The extinction coefficient of PAR is fixed at
kq = 0.72. Each curve represents a different value of Vm,25. Figure (a) and (c) display respectively
the minimum and the argument of the minimum of the RMSE with respect to β in function of
η. Figure (b) and (d) display respectively the minimum and the argument of the minimum of the
RMSE with respect to η in function of β.

when β goes to infinity. On the other hand, V ∗
m,25 does not majorly vary on the set of curves

(figures b and c). More largely, the observations done when kq = 0.72 and kq = 0 can be generalised
to all the other values. For instance, we obverse the same monotony and injectivity propriety
between V ∗

m,25(β) and β, and between β∗(Vm,25) and Vm,25. However, the values of V ∗
m,25 and β∗

seem to increase with kq. Indeed, if the amount of light in the model is diminishing, then the global
estimation of GPP will lower. To balance that phenomenon, the efficiencies must rise.

In figure 17, we have the confirmation that β∗ as a strong dependency relation to kq. Reversely
k∗q also depends on β (figure a and c), but seems stable with the variations of Vm,25 (figure b and d).
We also have the validation, that k∗q (β) is a strictly increasing function of β, and β∗(kq) a strictly
increasing function of kq.

Finally, figure 18 is in agreement with the previous statements. For each curve corresponding
to a different value of β, the optimal value of kq also varies. On the other hand, V ∗

m,25 remains in a
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Parameter Min value Max value Number of points Type of scale

β 0.9 ×βc
√
10 261 Log scale

Vm,25 0.9 ×Vm,25c 70 262 Log scale

kq 0.1 2 7 Linear scale

Table 11: Grid proprieties for the evaluation of the RMSE for η = ∞ having βc, and Vm,25c

respectively being the critical values for β, and Vm,25. The results of this configuration is illustrated
in figure 16.

Figure 16: Visualisation of RMSE proprieties in the case where the CO2 availability is not a limiting
factor. Each curve represents a different value of kq. Figure (a) and (c) display respectively the
minimum and the argument of the minimum of the RMSE with respect to Vm,25 in function of
β. Figure (b) and (d) display respectively the minimum and the argument of the minimum of the
RMSE with respect to β in function of Vm,25.

small interval. At last, the same monotony propriety for the argmin functions is observed.
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Parameter Min value Max value Number of points Type of scale

β 0.9 ×βc
√
10 261 Log scale

Vm,25 0.9 ×Vm,25c 70 7 Log scale

kq 0.1 2 263 Linear scale

Table 12: Grid proprieties for the evaluation of the RMSE for η = ∞ having βc, and Vm,25c

respectively being the critical values for β, and Vm,25. The results of this configuration is illustrated
in figure 17.

Figure 17: Visualisation of RMSE proprieties in the case where the catalytic capacity of RuBisCO,
the CO2 and the light availabilities are limiting factors. The extinction coefficient of PAR is fixed at
kq = 0.72. Each curve represents a different value of Vm,25. Figure (a) and (c) display respectively
the minimum and the argument of the minimum of the RMSE with respect to β in function of
η. Figure (b) and (d) display respectively the minimum and the argument of the minimum of the
RMSE with respect to η in function of β.
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Parameter Min value Max value Number of points Type of scale

β 0.9 ×βc
√
10 261 Log scale

Vm,25 0.9 ×Vm,25c 70 7 Log scale

kq 0.1 2 263 Linear scale

Table 13: Grid proprieties for the evaluation of the RMSE for η = ∞ having βc, and Vm,25c

respectively being the critical values for β, and Vm,25. The results of this configuration is illustrated
in figure 18.

Figure 18: Visualisation of RMSE proprieties in the case where the catalytic capacity of RuBisCO,
the CO2 and the light availabilities are limiting factors. The extinction coefficient of PAR is fixed at
kq = 0.72. Each curve represents a different value of Vm,25. Figure (a) and (c) display respectively
the minimum and the argument of the minimum of the RMSE with respect to β in function of
η. Figure (b) and (d) display respectively the minimum and the argument of the minimum of the
RMSE with respect to η in function of β.

5.4.5 Reset of the VPD constraint

The VPD constraint defined in equation 9 depends on two parameters: a maximum and a minimum
threshold. However, we can also define a ramp function using one threshold (V PDmin) and the
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angle on the slope. The angle is defined as:

α = arctan

(
1

V PDmax − V PDmin

)
(55)

Therefore, we can create many VPD constraints by defining the minimum threshold and angle
of the slope. For this we chose to span V PDmin from the minimal value in the set to the maximum
value, with a number of 100 points. The angle was span in a logspace starting from 10−5 to 90°
with 100 points as well. This builds us 10000 ramp function that are tested. The mean constraint
value that is applied to the time-series in represented in figure 19.

(a) Mean value of the VPD constraint time-series de-
pending on V PDmin. Every curve represent one an-
gle value

(b) Mean value of the VPD constraint time-series
depending on the angle. Every curve represent one
V PDmin value

Figure 19: Visualisation of the mean value of the tested VPD constraints time-series, depending on
the minimal threshold V PDmin, and the angle of the slope.

Using the previous optimisation, we select all the combination of parameters that result in a
RMSE lower than 1% more then the minimal founded value. This is the case for 55195 combinations.
The VPD constraints are applied to the output of each of those previous combinations, and the
RMSE is recomputed on the training data. The constraint that results in the best estimation is
kept. This constraint is shown in figure 20.

Notice that the constraint is never fully activated, and is partially activated only 7% of the time.
This is justified by the low VPD context in Torgnon and the literature values.

5.5 Ensemble estimation and test set evaluation

The previous optimisation analysis described the behaviour of the objective function with respect
to the parameters. We selected all the combinations of parameters that were close enough to the
optimal combination. In this section, we will analyse this selection and investigate the effects of the
perturbations on the test set and the global time series.
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(a) Shape of the VPD constraint. Each red dot rep-
resent a constraint that is applied in the time series (b) Time series of the optimised VPD constraint

Figure 20: Visualisation of the VPD constraint with the general shape of the function (20a), and
it’s value over time (20b).

5.5.1 Evaluation on the test set

The 55195 best points that have been founded on the training set are now evaluated on the test
set. Figure 21 displays the RMSE scores on the test set. We first notice that, in the case where
the computed optimal VPD constraint is applied, two clear clusters appear. We will see further on
that they correspond to the application two different VPD parameters. When the VPD constraint
is removed (or when the parameters are the same as in the literature), we no longer observe a
distinction between the two initial clusters. Moreover, the obtained results are significantly better.
This suggests that the tuning of the VPD constraint creates an overfitting situation. Also, it is
interesting to notice that there is a slight correlation between low RMSE scores on the train set and
low RMSE scores in the test set.

Figure 22 presents the time series of the GPP prediction of the optimised PML model. The
difference between the prediction with and without the VPD constraints only happens on specific
local points. With the VPD constraint, we observe big drops that significantly underestimate GPP.
Those points are not present in the training phase of the PML parameters. Thus, we have a
confirmation that the VPD constraint creates outliers that importantly increase the RMSE.

5.5.2 Distribution of the optimised parameters

Now that we have identified two clusters in the predictions, we will analyse the distribution of the
parameter values. Figure 23 displays the violin plots of the parameter values in the ensemble. A
violin plot is a more advanced form of box plots. In addition to the statistical distribution of values
and quantiles, a violin plot also provides information about density shapes [76].

For the three parameters β, Vm,25 and kq, there are no significant differences between the first
and second cluster. In both of them, the obtained values of β are low, with the optimum value
being close to the one in the literature. A few extreme values are also observed. Contrariwise,
the literature value of Vm,25 (46 µmol m−2s−1) is much larger than the computed candidate values.
This can be explained by the fact that we chose an infinite value for the carboxylation efficiency
(η), which narrows the range of acceptable values for Vm,25. The distribution of the values of kq is
homogeneous, which makes it difficult to predict.

On the contrary, the clusters identified in the RMSE on the test set are clearly visible for the
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Figure 21: RMSE on the test set for the 55195 lowest RMSE scores on the training set. The pale
triangle points are the results when the optimal VPD constraint is applied. They separated in
two obvious clusters (blue and pink). The round dark points are the evaluation but without any
constraint. The navy blue and the red correspond respectively to the first and second cluster.

Figure 22: Time series of the estimated GPP. The black curve is the in-situ reference. The blue
and red curves are the ensemble means of the optimised PML model respectively without and with
the VPD constraint.

VPD parameters. This confirms that they are the cause of the separation of the two groups. Thus,
in the Torgnon region, the measured VPD is too low to have an effect on GPP. The modelling of the
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VPD effect can not only add complexity to the model, but also can worsen the estimates because
of overfitting.

It is also important to mention that the parameter η is not represented in this figure because
we chose a fixed value being +∞. However, with the results obtained in section 5.4.3, we would
expect a homogeneous distribution that would be divergent. Furthermore, the distribution of Vm,25

would have a larger range.

(a) Violin plot of β (b) Violin plot of Vm,25 (c) Violin plot of kq

(d) Violin plot of V PDmin (e) Violin plot of V PDmax

(f) Violin plot of the VPD func-
tion’s angle

Figure 23: Violin plots of the parameter values in the ensemble. The blue and the pink violins are
the parameter values in the first and second cluster respectively. The red and green horizontal lines
are respectively the literature value and the optimal value in the train set.

5.5.3 Ensemble estimation

An ensemble estimation helps to understand to what extend errors in the parameter estimation lead
to errors in the output prediction. Figure 24 shows the time series prediction of the ensemble.

The first observation is that the reference data is not located within the ensemble. This means
that the uncertainties in the predictions goes beyond the uncertainties in the parameters. This is
especially the case in the Winter season, where the spread is very narrow. This is explained by the
extremely low LAI values that puts the estimation to zero.

Secondly, the ensemble spread is narrow. If we look at the standard deviation of the ensemble

50



Figure 24: Ensemble time-series of the estimated GPP. The black curve is the in-situ reference. The
pink curves each represent one prediction of the ensemble. The blue curve is the ensemble mean of
the optimised PML model without the VPD constraint.

over time (figure 25), we notice a larger spread in the Spring and Summer season, when the primary
production is high. Reversely, the spread is low in Winter, when the productivity is low. Thus, the
outputs of the model are similar despite a large range in the parameter values. This is because the
value of one parameter influences another. Therefore, it is hard to asses the ground value of the
parameters.

Figure 25: Ensemble’s standard deviation time series. The blue curve is the value of the standard
deviation over time. The red curve is the average standard deviation value.
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Finally, the ensemble mean has a slight higher RMSE and lower R2 (0.643 gC m−2 day−1 and
0.940) then the optimal combination of parameters on the train set (0.634 gC m−2 day−1 and 0.942).
Moreover, still on the test set, the best and worst predictions of the ensemble have respectively a
RMSE of 0.631 and 0.661 gC m−2 day−1. So a 1% difference between the minimum and maximum
RMSE value in the train set leads to a 4.5 % in the test set.

Thus, the calibration procedure is reliable for the estimation of GPP, having the optimal values
in the train set remaining optimal on the test set. However, it is harder to derive the biophysical
proprieties of the ecosystem.
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6 Discussion

6.1 Uncertainties in the methodology

6.1.1 Uncertainties in situ measurements

The in-situ measurements of GPP were considered as the reference ground truth data. However,
those measurements are also subject to noise and uncertainties.

The first source of errors concerns the acquisition of the Net Ecosystem Exchange of CO2 (NEE).
Those can come from errors in flux data (turbulence, measurements system [77], [78]), footprint
variations in irregular ecosystems [79], and instrumental limits (measurement frequency...).

Moreover, GPP is estimated by following an algorithm that processes the NEE data. For
example, Papale’s method, that was applied to derive the in-situ measurements, uses an algorithm
to filter outlier spikes. Also, it uses turbulence correction and gap filling to derive GPP. The first
and last procedures are destruction and reconstruction of data that result in a better data quality
but that is still imperfect. The u* correction is a specific method for solving underestimations issues
during calm nights. The selection of the thresholds for this method is the main source of inaccuracy.
Overall, Papale estimates that his method has a 10 % uncertainty [8].

Furthermore, Baldocchi remarks that several studies have quantified the measurement error of
NEE in different landscapes [80]. In flat landscapes, the error is low (about 30 gC.m−2.year−1 out of
the 200 gC.m−2.year−1 in the Harvard forest [81]). However, he points out that larger uncertainties
(between 20 and 60 %) happen in more uneven topography ([82], [83], and [84]). This can be
explained by winder conditions.

In our case, the Torgnon measurement tower in located in the mountains at more than 2000m
of altitude. So the measurement errors linked to complex topography are likely to be present.

6.1.2 Uncertainties in input variables

As we saw in chapter 4, there are several ways of retrieving the input data. Those may have
an influence in the obtained results. For instance, we observed in figure 1 underestimations in
temperature and VPD. However, those have a minor impact in the output. For VPD, this is due
to the low values in the Torgnon regions. Therefore the atmosphere is not dry enough to have an
impact on primary production.

The used dataset for concentration of CO2 in the atmosphere has a poor spatial and temporal
resolution. However, looking at the order of magnitude of the variations over the study period, the
impact of the fluctuation is limited.

On the contrary, variations of PAR have a large outcome in the prediction of GPP. The original
”raw” time series contains many high frequencies terms. Those are filtered using a moving 8 days
average. Therefore, the smoothing of PAR can have an impact in the a posteriori sensitivity
analysis, and in the calibration procedure.

On an even larger note, the LAI has the biggest impact on GPP and is the most uncertain
data. The MCD15 dataset is subject to uncertainties in the methodology of estimation of LAI, and
with presence of noise in the measurements (clouds, snow...). To cope with this issue, a Whittaker
smoother is applied to the signal. This reconstruction is not perfect and it’s parametrisation relies
on arbitrarily choices. Moreover, the change of the smoother’s parameters have large consequences
on the processed time-series. The optimal smoothing of the LAI would be an interesting subject to
investigate in further details.
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6.1.3 Differences between self implemented PML model in GEE product

As we can see in figure 5, the PML model that was implemented in this study has a different output
than the available PML product in GEE. This is the case despite using the same datasets (GLDAS
2.1, MCD15) and parameter values (the values for grassland ecosystems).

First of all, the online product has a temporal resolution of eight days, which is less precise than
the our daily resolution. Also, the data processing follows a slightly different methodology. Unlike
in this study, the computed product uses a spike filter on the meteorological data [85]. Furthermore,
the precise settings of the Whittaker smoother is a sophisticated and computationally expansive
process [86].

On a less important scale, all of the GEE data was captured on a set of pixels corresponding to
the footprint (area for which the GPP measurements are captured). So, the GPP from GEE, the
LAI, and the GLDAS data were spatially aggregated as the average value of the pixels. However,
the PML model is not linear. So, the GPP computed from the spatial mean of the input variables
is different from the spatial mean of the GPP computed for all pixels.

Thus, those differences in the methodology result in differences in the computed product.

6.2 Diversity of data

The results derived in this study fit into a specific framework. Indeed, the data is limited in space
and in time, with unequal quality.

6.2.1 Temporal diversity of data

First of all, the used data is limited in time. GPP is a seasonal variable, so we need at least a full
year of data yo have suitable results. In our case, we have four. This is sufficient to capture the
yearly characteristics but not the long term changes. For instance, after four years, the average
temperature and CO2 concentration have a marginal variations. They are however noteworthy
when longer periods (decades for example) are considered.

Within a year, the data is not equally worthy. We saw with the correlation analysis that all
of the input data of the PML model is not correlated with the reference GPP in Winter. Also,
the non zero values in the in-situ measurements is not compatible with the zero LAI values. This
is either due to a modelling problem (assumptions that no longer stand in Winter), an issue with
methodology in the measurements, or an underestimated LAI.

The seasonal analysis can be pushed in further details by calibrating the model using only one
season as the training data. For this we only consider the simplified model when η → ∞ and we
use the literature’s VPD constraint. The optimisation is done using a grid search whose proprieties
are described in Table 14.

Parameter Min value Max value Number of points Type of scale

β 0.0051
√
10 102 Log scale

Vm,25 3.90 70 103 Log scale

kq 0.1 2 104 Linear scale

Table 14: Grid proprieties for the evaluation of the RMSE using seasonal training

The time series of the calibrated model for each season are illustrated in figure 26. We notice
that when the training is done using only Spring, or only Summer, or only Autumn data, the
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Figure 26: Time series of the PML model when the training data comes from different season.
The black curve is the in situ data. The blue, orange, green, and red curves respectively represent
training in Autumn, Winter, Spring and Summer.

estimates are accurate. Nevertheless, as expected, the model using Winter data overestimates the
in-situ measurements. This is due to the low values of input variables in Winter, coupled with non
zero values in the reference data.

Finally, the calibrated parameters and RMSEs for each scenario are presented in Table 15.
We have the confirmation that, when using the Winter data, we have an overfitting of results.
Moreover, the extinction coefficient is relevant only is Summer. In the three other seasons, it
reaches the minimum value of the search grid. This underlines the fact that light extinction does
no longer effect GPP when the LAI is close to zero. In addition, the values for β and Vm,25 are
different per season. It underlines the difficulty to estimates those biophysical factors. Also, the
PML model simplifies the characteristics of the plants by assuming them constant through time.
However, those proprieties can also have seasonal fluctuation. It is for example the case of the leaf
maximum photosynthetic capacity at 25°C Vm,25 [87].

Season β Vm,25 kq RMSE test set RMSE train set

Winter 3.16 6.67 0.1 2.21 0.29

Spring 1.47 4.24 0.1 0.61 0.74

Summer 0.028 8.37 0.75 0.65 0.81

Autumn 0.022 5.96 0.1 0.70 0.36

Table 15: Optimal parameters with RMSEs on the test and train set using seasonal training

6.2.2 Spatial diversity of data

The PML model and the used datasets are designed to be global. But this study is focused on the
application to the particular case of Torgnon subalpine grassland. It has a different behaviour from
other grasslands because of the mountainous context. So, the specific region very likely overfittes
the results. We can for example observe it with the significant differences between the estimates

55



using the literature’s calibration, and the estimates specifically optimised for Torgnon. For instance,
if we use the constraint derived in the literature, the VPD does not restraint GPP. However, the
optimised constraint on the training data gives VPD a role to play. We then saw on the test set
(figure 21) that is was an overfit. This is probably caused by the particularly low VPD in the region.

It would therefore be interesting to perform the same study on other highlands. The results can
be compared, and the drawn conclusions of this study may or may not be extrapolated.

In addition, the calibration can be perform simultaneously on different study sites. In that way,
the global phenomenons may have larger influence on GPP. This is particularly the case of the
CO2 concentration of the atmosphere. The dataset that was used describes the global temporal
patterns, but not the spatial patterns. The low (negative) correlations between the measured
GPP and the CO2 data may not be observed using distanced study sites. Figure 27 shows the
map of concentration of CO2 in the atmosphere at different time periods. The distribution is not
homogeneous. Nevertheless, the scale of the spatial dispersion is in the same range as the scale in
the NOAA dataset we used. So, the impact of the CO2 concentration in the atmosphere on GPP
can still remain marginal.

Figure 27: Spatial patterns of CO2 at four different dates. Screenshots of a NASA video (https:
//svs.gsfc.nasa.gov/12072)
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7 Conclusion

This study focused on the application and the sensitivity analysis of the input variables and param-
eters of the PML model to the Torgnon subalpine grassland.

First of all, the PML model can be applied to the Torgnon subalpine grassland, but the values
of parameters founded in literature are not optimal. Moreover, using those literature values, the
VPD is no longer a limiting factor for the carbon assimilation.

Furthermore, the sensitivity analysis showed that the inputs are not equally important. LAI is
by far the most influential variable. Temperature and PAR are also meaningful but in a lesser way.
In the case of the low VPD context, the associated constraint is not as consequential as it should
be.

The time-series of CO2 concentration in the atmosphere has a minor impact on GPP. This is
explained by either a low quality of the dataset, a study period being too short, or a phenomenon
that does not limit in practice the assimilation.

Finally, the calibration procedure is reliable in the sense that the founded optimal values in the
train set are also optimal in the test set. Similar low objective function scores predict similar outputs.
However, little conclusions can be said about the founded parameter values. The values resulting
in a good estimate stand on a large range. Moreover, the parameters are strongly dependent with
each other. So, uncertainty in the estimate of one parameter will lead to uncertainty in the estimate
of another parameter.
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A MOD17 functions

Figure 28: Ramp functions of minimal daily air temperature (TMIN) and Vapour Pressure Deficit
(V PD) (picture from [88])

UMD VEG LC ENF EBF DNF DBF MF CShrub OShrub WSavanna Savanna Grass Crop

LUEmax 0.000962 0.001268 0.001086 0.001165 0.001051 0.001281 0.000841 0.001239 0.001206 0.000860 0.001044
(KgC/m2 /d/MJ)

Tmin min (C) -8.00 -8.00 -8.00 -6.00 -7.00 -8.00 -8.00 -8.00 -8.00 -8.00 -8.00

Tmin max (C) 8.31 9.09 10.44 9.94 9.50 8.61 8.80 11.39 11.39 12.02 12.02

VPD min (Pa) 650.0 800.0 650.0 650.0 650.0 650.0 650.0 650.0 650.0 650.0 650.0

VPD max (Pa) 4600.0 3100.0 2300.0 1650.0 2400.0 4700.0 4800.0 3200.0 3100.0 5300.0 4300.0

Table 16: Biome-Property-Look-Up-Table (BPLUT) for MODIS GPP/NPP algorithm with NCEP-
DOE reanalysis II and the Collection5 FPAR/LAI as inputs. The full names for the University
of Maryland land cover classification system (UMD VEG LC) in MOD12Q1 dataset (fieldname:
Land Cover Type 2) are, Evergreen Needleleaf Forest (ENF), Evergreen Broadleaf Forest (EBF),
Deciduous Needleleaf Forest (DNF), Deciduous Broadleaf Forest (DBF), Mixed forests (MF), Closed
Shrublands (CShrub), Open Shrublands (OShrub), Woody Savannas (WSavanna), Savannas (Sa-
vanna), Grassland (Grass), and Croplands (Crop) [88].
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B Remote Sensing Data

(a) 10m resolution bands

(b) 20m resolution bands

(c) 60m resolution bands

Figure 29: Spectral Bands of Sentinel-2 with their resolution [66].
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Figure 30: Modis bands (picture from [89])
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C Spearman’s correlation matrices

Figure 31: Spearman’s correlation matrix of the variables and GPP. The color bar is the same as
in figure 6.
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(a) Spring (b) Summer

(c) Autumn (d) Winter

Figure 32: Spearman’s correlation matrix over the seasons. The color bar is the same as in figure
6.

D Computation of the limits and asymptotic equations
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E Other RMSE figures

Figure 33: Visualisation of RMSE proprieties in case the case where the catalytic capacity of
RuBisCO is not a limiting factor. Figure (a) and (c) display respectively the minimum and the
argument of the minimum of the RMSE with respect to β in function of η. Figure (b) and (d)
display respectively the minimum and the argument of the minimum of the RMSE with respect to
η in function of β.
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Figure 34: Visualisation of RMSE proprieties in the case where the catalytic capacity of RuBisCO,
the CO2 and the light availabilities are limiting factors. The extinction coefficient of PAR is fixed
at kq = 0.72. Each curve represents a different value of η. Figure (a) and (c) display respectively
the minimum and the argument of the minimum of the RMSE with respect to Vm,25 in function of
β. Figure (b) and (d) display respectively the minimum and the argument of the minimum of the
RMSE with respect to β in function of Vm,25.
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