Circuits and Systems
Mekelweg 4, CAS-2018-42

2628 CD Delft
The Netherlands
http://ens.ewi.tudelft.nl/

M.Sc. Thesis

Design Space Exploration of a
Neuromorphic ECG Classification System
using a Spiking Self-Organizing Map

Johan Mes B.Sc.

Abstract

The Self-Organizing Map (SOM) is an unsupervised neural network
topology that incorporates competitive learning for the classification
of data. In this thesis we investigate the design space of a system incor-
porating such a topology based on Spiking Neural Networks (SNNs),
and apply it to classifying electrocardiogram (ECG) beats.

We present novel insights into the characterization of the SOM
and its encapsulating system by exploring configuration parameters
such as learning rate, neuron models, potentiation and depression ra-
tios, and synaptic conductivity parameters by performing high-level
architectural simulations of the system whose SNN is developed with
the aim of being implemented using power efficient neuromorphic
hardware.

Due to the amount of manual work needed to monitor and analyze
ECG signals when diagnosing cardiovascular problems, and because
it is the leading cause of death in the world, an automated, realtime,
and low power detection & classification system is essential.

Unsupervised and in realtime, this system performs beat detec-
tion with an average True Positive Rate (TPR) of 99.10% and a Pos-
itive Predictive Value (PPV) of 99.58% and classification of 500 de-
tected beats with a Multidimensional Scaling Error (Ejyps) of 0.0169
and a beat recognition percentage of 100%.
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Abstract

The Self-Organizing Map (SOM) is an unsupervised neural network topology that incor-
porates competitive learning for the classification of data. In this thesis we investigate
the design space of a system incorporating such a topology based on Spiking Neural
Networks (SNNs), and apply it to classifying electrocardiogram (ECG) beats.

We present novel insights into the characterization of the SOM and its encapsulating
system by exploring configuration parameters such as learning rate, neuron models,
potentiation and depression ratios, and synaptic conductivity parameters by performing
high-level architectural simulations of the system whose SNN is developed with the aim
of being implemented using power efficient neuromorphic hardware.

Due to the amount of manual work needed to monitor and analyze ECG signals
when diagnosing cardiovascular problems, and because it is the leading cause of death
in the world, an automated, realtime, and low power detection & classification system
is essential.

Unsupervised and in realtime, this system performs beat detection with an average
True Positive Rate (TPR) of 99.10% and a Positive Predictive Value (PPV) of 99.58%
and classification of 500 detected beats with a Multidimensional Scaling Error (Eyps)
of 0.0169 and a beat recognition percentage of 100%.
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Introduction

Neuromorphic computing introduced by Carver Mead presents a novel information
processing method based on biological processes [13]. When implemented on simple
low power specialized hardware it promises a high energy efficiency approach to many
computational problems that today can be solved with conventional digital computer
architectures like Harvard and Von Neumann implemented using standard CMOS de-
vices.

While neuromorphic computing can also be performed on processors based on these
conventional computer architectures, as will be done for this thesis, the goal is to limit
ourselves to emulating the specialized hardware so that the essential parts of the system
architecture can later be conveniently translated to using the mentioned specialized
hardware.

Computing that is inspired by biological phenomena is not new. An older method
called the Artifical Neural Network (ANN), often combined with backpropagation, has
proven to be an effective information processing method especially in fields where the
computational task to be performed is not clear cut like in the field of recognizing
and classifying patterns in data formats like images and voice. ANNs mimic biological
processing methods like neural networks but on a more abstract level.

Natural
ANNs > SNNs » Neural
Networks

Abstracted biological concepts More accurate biological concepts
Less device variables to optimize More device variables to optimize
Higher computation cost Improved power efficiency
Backpropagation Biophysical learning

Figure 1.1: ANNs and SNNs can be seen as abstraction steps from actual biological learning

The Spiking Neural Network (SNN) is a more recent concept from the neuromorphic
computing field. This network type mimics biophysical properties more accurately and
uses computation blocks that can be conveniently implemented on custom mixed signal
hardware, as shown in the diagram in Figure 1.1. This implementability is the key to
the promise of achieving drastically improved computational efficiency.

Like ANNs, the SNN is an excellent candidate for processing unlabeled badly defined
data where the exact computation to be performed is not immediately obvious. For



both types this processing incorporates learning: if configured correctly they can adapt
their computational behaviour to input data to generate an arbitrary preferred func-
tion from input to output. The main difference between learning algorithms of ANNs
like backpropagation [14] is that learning is based on biological models implementing
Hebbian learning like Spike Timing Dependent Plasticity (STDP).

1.1 Problem Statement

Currently in literature various VLSI implementations and biological models of indi-
vidual concepts of neuromorphic computing exist but there is a limited amount of
content available that investigates how to properly configure a full classification or
categorization device incorporating an SNN for a specific use case. There is also lim-
ited information available about characterization: SNN behaviour changes as various
essential configuration parameters are modified.

To fill this gap in the state of the art a Design Space Exploration (DSE) will be
performed on an SNN device that is tasked to categorize electrocardiogram (ECG)
beats using features like the ones presented in Figure 1.2. This categorization will be
performed by a spiking Self-Organizing Map (SOM) topology. Configuration parame-
ters like neuron models, network learning rate, network size, input dataset, and input
dataset processing will be investigated. When implementing the SNN special care is
taken to keep neuromorphic hardware implementability in mind which is one of the
main reasons for investigating this SNN approach.

QRS
Complex

R

PR Interval Q
L S

Figure 1.2: ECG beat features used for categorization [!] of beats

QT Interval

This categorization task is a good example of a computational task that is ill-
defined: it is not immediately clear what the exact approach would be beforehand.
Therefore tools like ANNs and SNNs that can approximate an almost universal variety
of functions are good choices to tackle these tasks. When comparing these kinds of
tools the SNN promises superior power efficiency, making it an excellent choice for this
problem.



1.2

Goals

In this thesis the main goals that are presented are to:

1.3

Develop the software architecture of a SNN based classifier, and all other compu-
tation blocks required to allow end users to utilize the SNN concept.

Develop an SNN that can be realized as a physical hardware block based on the
specialized neuromorphic hardware mentioned earlier.

Develop that device such that all steps from raw ECG data feeding into the net-
work to SOM output mapping analysis are fully automated and can be performed
faster and preferably more accurate than manually or competing automation tech-
niques.

Present results and discussion of the behaviour changes of this device as various
essential configuration parameters are modified in the form of a DSE.

Combining all of that, discuss and conclude if an SNN based neuromorphic device
can be applied to comparable tasks and if it is able to provide the promised power
savings compared to current techniques.

Contributions

The main contributions of this thesis are:

A full system architecture for a device that can categorize ECG signals using
unsupervised SNNs based the SOM topology.

An easy to use outer MATLAB configuration interface of this device, making it
possible to perform fast exploration and optimization, that can be used to generate
any kind of SNN layout with STDP and apply it to almost any kind of dataset.

A synthesizable inner SNN block implemented in C that is able to simulate ar-
bitrary SNN layouts orders of magnitude faster than biological time. It bypasses
inefficiencies in MATLAB where performance matters and is hidden from the end
user.

A detailed presentation of beat recognition and mapping error changes as a result
of changing various essential configuration options.

An optimal configuration option set that makes the device capable of recognizing
and positioning 500 consecutive real-time ECG beats from the MIT-BIH dataset,
using an unsupervised Self-Organizing Map with STDP. The final mapping error
defined by the Ej/ps metric is equal to 0.0169.



1.4 Outline

In Chapter 2 the biological background of the components inside the SNN is discussed.
In Chapter 3 the architecture of the device incorporating the SNN is presented. In
Chapter 4 the design space exploration of the configurable components in the device is
given. In Chapter 5 the conclusion and future work are presented.



Biological Background

In this chapter a thorough introduction of the biological background of both neuromor-
phic computing and the application use case is given. The background of neuromorphic
computing covers the neural mechanisms in the brain that are modeled in a simplified
manner allowing them to be used in artificial information processing.

In Section 2.1 the neuron will be discussed. This can be considered as the informa-
tion processing and generating unit or mathematical graph vertex V of neuromorphic
networks. In Section 2.2 the synapse will be discussed. This complements the neuron
and functions as the information transfer unit and can be considered as the mathe-
matical graph edge E of neuromorphic networks. Combining these to into a graph
g(V,E) yields a Spiking Neural Network (SNN). Network level properties are discussed
in Section 2.3. It is followed by an introduction to the electrocardiogram (ECG) in
Section 2.4.



2.1 The Spiking Neuron

The neuron is the primary building block of the central (CNS) and peripheral (PNS)
nervous system responsible for information processing using chemical and electrical
signals. Although they are also found in other forms in the peripheral nervous system
we will focus on the neurons found in the central nervous system only.

Cell body

v
Nucleus \

Endoplasmic
reticulum 5

Mitochondrion Y™ Dendrite

\
I/ \
/ % Dendritic branches

Figure 2.1: Anatomy of a biological multipolar neuron [2]

A neuron is comprised of three main functional blocks shown in Figure 2.1: the
dendrites, the soma (also called cell body), and the axon. The dendrites are the inputs:
branch like structures that accept and transport electrochemical input from other neu-
rons to the processing area of this data called the soma. The result of this processing
is generated in the axon hillock and sent via the axon to the output the neuron: the
synaptic terminals.

Even in the just the CNS neurons exist in many different shapes and sizes but we
will focus on a specific subset of these called the multipolar neuron. This means that
the neuron we are examining can accept input from many different neurons using a
branched out dendritic structure but only has one output channel and generator. This
output can still be propagated to many different neurons. The multipolar neuron is the
most common type of neuron in the CNS.

The soma membrane potential can be considered as an approximation of the state
of a neuron. Like a capacitor, this potential exists across the bilipid outer layer of all
biological cells. Also like a capacitor this state variable can be modified by changing the
concentration of charge carrying ions including K™ and Na* ions on both sides of the
membrane. In the resting state the measured voltage across this layer of a biological cell
is actively maintained between —70 mV and —50 mV [15] where the interior is more
negative than the exterior. Ion transportation and concentration gradient maintenance
between the inside and outside is facilitated by ion channels and pumps that can be



membrane potential dependent themselves creating a feedback loop.

The action potential or simply spike is the primary way of communication between
neurons. This is a sudden change in the membrane potential of the neuron. This spike is
generated at the axon hillock and the result of a rapid change in ion concentrations that
define the membrane potential. These spikes are sent through the axon via synaptic
connections described in Section 2.2 to dendrites of the next neuron. The next neuron
receives this information carrier in its dendritic branches and sends it to its soma where
the spike is accumulated and can result in the generation of another spike.

Action
potential

+40

\Voltage (mV)

-55
-70

Time (ms)
Figure 2.2: Various membrane potential phenomena shown over time [3]

In the labeled action potential in Figure 2.2 we can observe the resting membrane
potential of a neuron at —70 mV being changed by two possible stimulations: first the
arrival of input action potentials of insufficient magnitude only generating a slight raise
in membrane potential that, again, similar to a capacitor leaks away to resting state
over time (failed initiations). Second, if sufficient spikes arrive within a short time
frame of each other before the additional ion concentration gradient can leak away the
neuron generates its own spike that it transports to all of its neighbours. This example
assumes that the subject neuron is of the potentiaton type which is not always the
case. For more information on this subject refer to Section 2.2.

2.1.1 Neuron Models

The electrophysiological phenomena described above are extremely complex to model
accurately but we are not looking for such a detailed model of single neurons in the
brain. What we are looking for is a more simple model that only needs to be accurate
enough so that it can be used for spike-based learning but not more. Overly accurate
models are an unneccesary burden in total system complexity.

The following three neural models have been investigated: the complex but accurate



Hodgkin-Huxley model [1], the simpler Izhikevich model [16] and the Integrate & Fire
model [17]. The Integrate & Fire model has been chosen because it is a commonly
used as-simple-as-possible model that can generate unique spike events. The Izhikevich
model is investigated because it is presented as computationally similar to Integrate &
Fire but with more detailed functionality. For a more thorough list of neural models
available, see [15].

2.1.1.1 Hodgkin-Huxley Model

The Hodgkin-Huxley is a more complex electrical modeling of current flow through a
membrane of a biological neuron. This model provides a more reference of modeling
of the biological neuron and is meant to show what simpler models discussed further
down are approximating.
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Figure 2.3: Equivalent circuit of the Hodgkin-Huxley membrane model [/]

As can be seen in Figure 2.3 the Hodgkin-Huxley (HH) model describes the mem-
brane as a capacitance that stores the membrane potential in parallel with various
nonlinear ion channels for sodium and potassium (Na and K) and a leakage current (L)
that are able to change the membrane potential. The membrane potential F is defined
as the voltage between the top and bottom node.

The full HH model consists of four differential equations and is strictly nonlinear.
Unlike the Integrate & Fire model described in Section 2.1.1.2 it is able to produce a
vast array of behaviours generally coming from the equations for the ion channels being
dependent on the membrane voltage in intricate ways.

2.1.1.2 Integrate & Fire Model

The Integrate & Fire model is a more formal model that describes a neuron as a much
simpler electronic circuit. This electronic circuit is shown in Figure 2.4. It models the



neuron membrane as a simple constant value parallel capacitor C,,.,, and resistor Rj.qz
(an RC circuit). The membrane potential is defined as the voltage across the capacitor
plates and therefore also across the resistor. If leaking is included the model is called
the Leaky Integrate & Fire Model, that includes leakage of capacitor charge through
the parallel resistance. If the voltage across the capacitor plates is high enough, a spike
is generated and the capacitor is reset.

Outside ?¢ inpu

Vimem

I:{Ieak Cmem

Inside 4)

Figure 2.4: Equivalent circuit of the Leaky Integrate & Fire Model membrane model. Com-
plexity can be compared with Figure 2.3. For both circuits threshold detection logic is omitted.
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We can observe its electrical behaviour if we write down the accumulating capacitor
equation:

dvmem

mem =1 2.1
dt (2.1)

dv, V,
Cmem o = Im U, e 2.2
dt put Rleak ( )

dt V,
Vmem = Vmem (Im U, mem) 2.3
i Cmem put Rleak ( )
if Vmem > V;hresh : .

Vmem = V;"eset (25)

As can be seen in Equation 2.3 the membrane accumulates external charge and
simulatenously leaks away through a parallel resistance.

This model only consists of one differential equation (Equation 2.3) and one reset
conditional (Equation 2.4) that detects and handles spiking events and is therefore
very computationally efficient but does not take into account any physical or chemical
properties of the neuron.

When Integrate & Fire is mentioned it is from now on assumed that the leak com-
ponent is present.



2.1.1.3 1Izhikevich Model

The model by Izhikevich is presented as a model that combines the biological plausibility
of the HH model and the computational efficieny similar to the Integrate & Fire model.
It consists of two simple differential equations compared to four more computationally
expensive ones in HH. This is complemented with one reset conditional that detects
and handles spiking events similar to the Integrate & Fire model.

In mathematical form the model is as follows:

d
d—: — 0.040% + 50+ 140 —u+ I (2.6)

d
d_itt =a(bv —u) (2.7)
if V > Vthresh - (28)
v — ¢ (2.9)
u=u-+d (2.10)

This model is a mathematical fitting of biological neural membrane potential be-
haviour over time aimed at reducing simulation costs. The model equations and vari-
ables should be viewed as abstract mathematical objects that are not based on physical
units or quantities. The variable descriptions can include physical units even though
they would not make sense in the equation context.

The variable v is to be interpreted as the membrane voltage and accumulates a
current I. The variable u describes the activity of membrane ion channels related
to recovery from spike events. When v reaches a certain threshold it is reset to a
configurable zero point ¢ and u increases by d that is to be interpreted as a measure
of how much a neuron has to recover from a spike event. The constant a describes the
time scale of recovery from spikes. The constant b can be used to tune the neuron to
exhibit different kinds of oscillatory behaviour.

2.1.1.4 Computational Comparison

A overview that summarizes the models from a computational viewpoint is shown below
in Table 2.1.

Table 2.1: Computational complexity comparison of selected neural models

Property Hodgkin-Huxley | Integrate & Fire | Izhikevich
Diff. equations 4 1 2
Aux. equations 6 1 1
State variables 4 1 2
Config. variables 74 6 eq. 4 5
Hardware cost high low medium
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This table shows that if one requires high model accuracy the HH model is preferred.
However this comes at a larger hardware cost, increased computational complexity and
configuration difficulty. For quantitative hardware cost figures please refer to various
survey publications by Indiveri et al. [19][20] Other hardware implementations of com-
parable but not equivalent Izhikevich and Integrate & Fire models can be found in [21]
and [22] respectively.

2.2 The Synapse

The synapse is the primary way in which a biological neural network transports in-
formation in the form of action potentials from spiking neuron A to spiking neuron
B.

The biological synapse that we are modeling consists of three basic parts: the presy-
naptic terminal or axon terminal, the synaptic cleft and the postsynaptic terminal or
dendritic receptor. In Figure 2.5 the presynaptic terminal is the upper part of the
zoomed in picture, and the lower part is the postsynaptic terminal. Terminology for
the gap in between varies, and includes the terms synaptic gap, synaptic cleft (this
document), and simply synapse.

Figure 2.5: A chemical depiction of a neural synapse [5]

The critical component of the synapse is the synaptic cleft that physically separates
both terminals. When a presynaptic neuron generates an action potential and it arrives
at the axon terminal it causes a release of neurotransmitters from the presynaptic ter-
minal into the cleft that subsequently drift towards the dendritic terminal and activate
receptors that are a part of the receiving postsynaptic neuron. The subsequent activity
in the postsynaptic neuron is called the postsynaptic potential (PSP).

Two types of PSPs exist: the excitatory postsynaptic potential (EPSP) and the
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inhibitory postsynaptic potential (IPSP). Depending on the physiology of the neuron
it is able to release either excitatory or inhibitory neurotransmitters into the cleft. In
response to those transmitters the postsynaptic membrane potential either depolarizes
or hyperpolarizes (see Figure 2.2). Depolarization can be seen as activating and is
required for action potentials to be generated while hyperpolarization can be seen as
suppressing.

Similar to the biological neuron the biological synapse is extremely complex to model
accurately. Again, we are not interested in the detailed electrophysical behaviour of
a single synapse, but the behaviour of a population of synapses in a network coupled
with neurons to form a network. To increase network scalability we would like to use
a model that is as accurate as possible while being simple to compute.

2.2.1 Synaptic Properties

The synapse has various properties that are of interest in our exploration, namely: its
conductivity or weight, propagation delay, and changeability of conductivity and delay
or synaptic plasticity.

The conductivity is a measure of the response of a synapse to an incoming action
potential. When comparing synapses to wires they are modeled as the Rsyiapse of a
RC wire delay model that spikes have to pass through. This model is depicted in Fig-
ure 2.6. It is determined by the neurotransmitter emission of the presynaptic terminal,
the physical dimensions and drift characteristics of these neurotransmitters across the
cleft and response properties to these transmitters in the postsynaptic terminal. The
variation of conductivity due to learning is further discussed in Section 2.2.3.

The delay is a measure of the time it takes for a spike to traverse the synapse.
Looking at the wire analogy again, think of the delay as a factor primarily determined
by the to-ground capacitance Cgypapse of a RC wire model. In biology this property is
a combination of the delay of the axonal part of a neuron (which is officialy outside of
what we call a synapse in this document) and the delay of the synaptic cleft. For spike
transport, the axon needs to be depolarized along its entire length which takes time
depending on things like membrane capacitance and leakage factors, both modified by
myelin sheath quality, axon length and more. For the synaptic cleft delay occurs due to
earlier explained consecutive chemical processes of receptor binding, release of response,
travel distances, and further such iterations.

Rsynapse

Presynaptic neuron Postsynaptic neuron

Figure 2.6: Synapse electrically modeled as an RC circuit
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2.2.2 Synaptic Delay Plasticity

Although the existence and potential of synaptic delay plasticity in artificial learning is
known to the author, due to time constraints of this project it has not been investigated
further. All plasticity from here on is targeted at modifying conductivity.

2.2.3 Synaptic Plasticity

Synaptic plasticity is the ability of synapses to change their response strength to stim-
ulus in the form of action potentials or spikes generated by the neurons they are con-
nected to. Conventionally this research topic only covers Rsyiapse conductivity changes
and resulting modification of action potential amplitude. Much less research is available
on the use in artificial learning of changes in synaptic delay caused by C and resulting
changes in spike timing.

In neurophysiology this conductivity plasticity is described by two opposing con-
cepts: Long Term Potentiation (LTP) and Long Term Depression (LTD). In LTP, there
is a lasting (in the time frame of hours or longer) increase in conductivity of the synapse
while in LTD there is a lasting decrease in the conductivity of the synapse.

In 1949, Donald Hebb presented a theory that describes how biological systems
implement plasticity known as Hebb’s rule [23] that can be summarized as follows:
‘a metabolic change in a synapse takes place if repeated firing of a presynaptic neuron
induces firing of a postsynaptic neuron causing the efficiency of the synapse to increase’.
An even shorter summary would be ‘cells that causally fire together wire together’.

Various mathematical processes have been proposed and hardware-implemented to
describe this biological process in a simple mathematical way [11]. These processes can
be divided into a group of discrete spike based algorithms and more abstract spiking
activity based algorithms. This thesis will limit itself to purely spike timing based
algorithms that are also implemented in VLSI. Other spike timing or spike activity
based algorithms like BCM [24] and SDSP [25][20] exist, even in VLSI, but are only
shown as a point of comparison in Table 2.2.
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2.2.3.1 Spike Timing Dependent Plasticity

The Spike Timing Dependent Plasticity (STDP) algorithm [0] attempts to describe
synaptic plasticity observed in dissociated rat hippocampal neurons using two simple
spike timing dependent rules:

Awt = fi(w)- Ay - exp(_—At) At >0 (2.11)
T+
_ —At
Aw™ = —f_(w)-A_ - exp(—) At <0 (2.12)
T
At = tlast,post - tlast,pre (213)

These equations are the result of a fitting of the change in synaptic conductivity Aw
observed as a function of the At between two neurons connected by a synapse. This
At is the time difference between the last occurrence of a spike in the postsynaptic
neuron and presynaptic neuron and is positive when the postsynaptic neuron spikes
later. When combined the first two equations form the STDP window. The original
experimental results that led to these equations are shown in Figure 2.7 below.
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Figure 2.7: STDP time window measurements of possible potentiation or depression [(]

By closer inspection it is possible to observe the two exponentially decaying fitting
functions in this data. The area of effect where synaptic conductivity changes signifi-
cantly depending on the spike time difference At stretches to roughly 100 ms both ways
around each spike. No significant synaptic conductivity change happens for At higher
or lower than that.
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These two equations accurately describe synaptic conductivity change only in an
isolated environment of one biological synapse connecting two neurons where for each
spike event in any of the two neurons all neurons including the spiker itself only spike
up to one time in the significant portion of the STDP window around that event.

This algorithm contains four parameters to configure: the positive learning mag-
nitude A, (100% normalized in Figure 2.7), negative learning magnitude A_ (about
-50%), positive time decay 7, and negative time decay 7_. The current conductivity
dependency function f,(w) is optional and can be left at 1.

2.2.3.2 Triplet STDP

The Triplet Spike Timing Dependent Plasticity (TSTDP) algorithm [7] is an extension
to STDP that takes the two most recent (instead of one) spike events per neuron into
account to compute plasticity. It was proposed to fit experiment data where up to two
spike events per neuron connected by a biological synapse were present in the significant
portion of the STDP window. Recall from Section 2.2.3.1 that this is a region where
STDP fails to reproduce experiment data.

The full triplet rule algorithm consists of four exponential equations that describe
the conductivity change Aw as a result of the spike time difference At, between four
key combinations of spikes at the presynaptic and postsynaptic end of the synapse.
These combinations are shown in Figure 2.8.
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Figure 2.8: TSTDP pairs taken into account [7]

As seen in the figure above, the first and third pair are simply the conventional
STDP pairs. The second and fourth set extend from this and take into account one
more spike event in the spike event history of the presynaptic and postsynaptic neuron
respectively. The four exponential equations are shown below:

—Aty

At = £ (Ao -een(20) ¢

(As, - exp(fyt?)) At > 0 .
D™ = ) (Ao eap(“20)

(As. - e,rp(_its)) At <0 o
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As opposed to STDP this algorithm contains eight parameters to configure: the
positive learning magnitudes Ay, and As,, negative learning magnitudes As_ and As_,
positive time decays 7, and 7,, and negative time decays 7_ and 7,. As with STDP
the current conductivity dependency function f, (w) is optional and can be left at 1.
A keen eye will observe that if both A3, and As_ are set to 0 we arrive at the STDP
equation set.

To summarize, TSTDP is a more advanced and biologically correct variant of STDP
that does not break down at higher spike event rates like STDP does when multiple
spikes appear in its window. However, it comes at the cost of significantly higher
configuration and hardware complexity.

2.2.3.3 Computational Comparison

A overview that summarizes the plasticitiy models by various properties is shown below
in Table 2.2.

Table 2.2: Selection of synaptic plasticity models implemented in VLSI [11]

Model Neural properties used for synaptic plasticity Config variables
Pair STDP last spike time 4
Triplet STDP last-1, last spike time 8

SDSP spike event, membrane voltage, ion concentration >8 [25]
BCM abstracted spike activity into currents see [24]
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2.3 Network Level Properties

The SNN combines the spiking neuron and synapse to form a network through which
information in the form of spikes can flow. The layout of this network decides the flow
of and response to stimulus provided to the network. Adaptation to stimulus is defined
by the network layout, network learning methods, and synaptic level learning methods.
This is explained in Section 2.3.2.

2.3.1 Network Layout

Classical neural networks are divided into three layers composed of five computation
steps as seen in Figure 2.9. First we have an input layer built up from neurons (circles)
each performing a certain fixed computation on their (external) input. Their response
is propagated into the rest of the network as x. Then there is the hidden layer with
connectivity (rectangle) in between that performs computation f and generates re-
sponse y; = f(z), and the output layer with connectivity in between that performs a
computation g but whose response y, = g(f(x)) is presented to the outside world.

@ Synaptic Synaptic Q
Ext. all-to-all all-to-all Ext.
input connectivity connectivity output
—> _— > _— > —>
Input layer Q
Hidden layer: f(x) Output layer: g(x)

Figure 2.9: Generalized information flow in a multilayer NN

Although the hidden layer might seem unnecessary because it seems like we can
perform what f does inside g thereby saving on network complexity this is not the
case. Each computation layer is limited to performing a function on its input that
is composed of a sum of functions that comply with the UAT (nonlinear, bounded,
monotonous). For some classification tasks like the classic XOR problem it is not
possible to define a single layer g with UAT compliant functions that solves it. Such
a limited network without a hidden layer f is called the perceptron [27], and was
fundamentally limited as was later proven. The above does not mean that some generic
function fxor(z1,x2) = XOR(x1,z5) does not exist but it means that we cannot learn
it using networks with one computation layer.
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For SNNs, the above concepts are similar but the computational functions that
describe neurons, layers, and combinations of layers are less abstract and are defined in
terms of spikes instead of arbitrary values in the real domain. In this project, a three
layer network layout called the Self-Organizing Map is used, that also contains two
synaptic all-to-all connectivity layers with one mayor difference being that the second
synaptic layer feeds back to the same neurons. It is further explained in Section 3.2.8.

2.3.2 Learning Methods

There is a wide variety of network level learning methods that can be used for learn-
ing in SNNs. While the synaptic level learning rules like STDP, TSTDP and others
define adaptation in their microscopic scale, learning methods like supervised learning,
unsupervised learning, and others define the network level learning approach. These
network level methods define the environment in which the whole SNN is being taught,
and define the type and amount of help it receives from outside sources.

In unsupervised learning, the task of learning and adaptation in the synaptic level
purely depends on the characteristics of data provided, and no signal is present that
teaches the network what to do. The data provided to the network also does not
contain explicit information called labels that inform the network how to process it.
Hebbian learning and related synaptic plasticity are considered to be a part of un-
supervised learning where the learning that these concepts define happens based on
implicit characteristics of the data provided, like spike timings. Another characteristic
of unsupervised learning is that the resulting input to output function from learning
cannot be compared to a reference results as there is no such defined function present.

In its counterpart supervised learning, there is an external teacher signal available
that teaches the network how to adapt to input provided. It does this by labeling input
data during learning and informing the network how this data should be processed. By
computing the difference between the network functionality that the teacher desires
and the actual network functionality adaptation strategies can be followed by back-
propagation to achieve the desired functionality.

In this project pure unsupervised learning is used, with learning only occurring
using spike timing characteristics of data provided to the network.
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2.4 The Electrocardiogram

The electrocardiogram (ECG) is an electrical recording of heart activity used in the
medical field of cardiology and can be used as a tool to determine cardiovascular health.
The output of an ECG is a voltage measurement over time that exists between any
combination of two points distributed across the body. This voltage is a component of
the electrical field produced by current flow in the heart muscle and the control system
of the heart. Since these systems work using the concept of ion transport from A to B
one can associate an electrical dipole between high and low points of ion concentrations.
This in turn produces the mentioned electric field that is finally measured between any
two points.
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Figure 2.10: Snippet from a ECG recording from the MIT-BIH database [3] showing mea~
surements between two pairs of points named in Table 2.4. Annotations of each beat type
are shown at each peak where N stands for a normal beat.

2.4.1 Measurement Setup

A standard ECG setup has ten standardized points or electrodes where a conducting
pad is positioned on the skin [28]. The term lead often found in literature refers to the
wire connecting to the electrode. Since electrodes are used for multiple wire connections
in the standard ECG setup, the setup can be called the 12-lead setup or 10-electrode
setup telling the reader that there are two leads that do not have their own individual
electrode.
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Table 2.3: Standard 12-lead ECG electrode positions

Electrode name | Electrode placement

RA On the right arm, avoiding thick muscle.

LA In the same location where RA was placed, but on the left arm.
RL On the right leg, lower end of medial aspect of calf muscle.

LL In the same location where RL was placed, but on the left leg.
V1 In the fourth intercostal space just to the right of the sternum.
V2 In the fourth intercostal space just to the left of the sternum.
V3 Between leads V2 and V4.

V4 In the fifth intercostal space in the mid-clavicular line.

Vb5 Horizontally even with V4, in the left anterior axillary line.
V6 Horizontally even with V4 and V5 in the midaxillary line.

Based on these ten measurement points the conventional setup measures twelve po-
tential differences to generate a three dimensional map of current flow in the heart.
Each lead can be seen as a viewpoint of the three dimensional heart dipole and its
surrounding electrical field. Conventionally, the right leg (RL) is only used as a ground
and for common-mode noise reduction while the left leg (LL) is used for actual mea-
surement.

The following table shows the setup for the 12-lead ECG configuration:

Table 2.4: Standard 12-lead ECG lead configuration

Lead name | Description

(ML)I LA - RA

(ML)II LL - RA

(ML)ITI LL-LA

aVR RA - (LA + LL)

aVL LA - 3(RA + LL)

aVF LL - 5(RA + LA)

V1..V6 V1.V6 - £(RA + LA + LL)

The oldest of these leads are I, IT and III and combined they form the most basic
ECG setup called the 3-lead setup. They are the measurements across the edges of
Einthoven’s triangle [29]. A graphical description of this measurement triangle is shown
in Figure 2.11. The common ECG measurement shape people are most familiar with
is shown in the introduction as Figure 1.2 and is usually the result of lead II. Note that
with Kirchoff’s law it can be proven that I + III = II (or any other combination) so
any two leads are sufficient to do a 3-lead ECG measurement. The 3-lead setup is not
able to show all important current flow directions in the heart. However it is the setup
for which data is most commonly available.
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Figure 2.11: Diagrams of the first 3 ECG leads [9]

2.4.2 Features

The process of reading an ECG wave can be seen as an exercise in pattern recognition.
Various specific features of the ECG readings are associated to certain cardiovascular
diseases. For ease of reading the ECG feature picture is repeated Figure 2.12:
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Figure 2.12: ECG features used for categorization [1] of beats

QT Interval

Heart beats and frequency are initiated by the sinoatrial node. This clump of cells
generates an action potential triggering the start of the P-wave of each full ECG beat.
The complete P-wave is the result of atrial depolarization (generation of a positive
membrane potential), expansion and subsequent contraction. The QRS-complex is the
result of ventricular depolarization, expansion and subsequent contraction. The peak
of the QRS-complex is of extra importance in this document and is called the R-peak.
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The T-wave is a recovery phase of the heart, where control and muscle cells reset to
their resting potential.

Careful analysis of the shape, occurrence, and temporal location of these features
of the ECG wave in various measurement leads helps the cardiologist to diagnose car-
diovascular problems. There are multiple orders of beat features that can be analysed
for this purpose: first order features that are measurements inside a single beat, second
order measurements that have a two beat scope like the R-to-previous-R (RR) interval,
and third order measurements such as the RR-minus-previous-RR interval.

An example list of feature anomalies and possible causes is shown in Table 2.5.

Table 2.5: Example selection of ECG features linked to diseases [12]

Feature Description ‘ Possible Causes

Double peak P wave L/R Atrial enlargement (LAE, RAE)
Wide QRS complex Ventricular tachycardia (VT)

Abnormal QRS and T, no P wave | Premature ventricular contraction (PVC)
ST segment elevation Ischemia

2.4.3 Motivation For Automation

The ECG analysis process can be seen as a tedious and error-prone task for a cardi-
ologist. First he or she has to manually find and annotate each beat in up to twelve
parallel signals per patient. After finding all beats which by itself is extremely difficult
to do perfectly in ‘complicated’ cases where beats do not even remotely look like the
textbook version (see Figure 2.12) they have to be manually annotated with a beat type
label. Even though work on the MIT-BIH database [3] started more than 38 years ago,
fixes to the manual annotations are being uploaded to this day proving that human
analysis for this task is far from perfect.

To improve the throughput to at least real time, maintain or increase the quality
of work, and reduce power consumption to wearable levels we propose an architecture
presented in the next chapter as a fully automated solution from raw lead data to beat
categorization. This system includes raw lead data filtering with DSP, beat detection
with DSP, and beat categorization using a neuromorphic hardware-implemented SNN.

Compared to current options for automated ECG analysis like a full DSP solution
or a DSP+ANN mix the DSP+SNN approach offers much reduced power consumption,
but at the cost of increased system design space complexity.
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Architecture

In this chapter the architecture of the learning system incorporating an SNN from raw
ECG signal input to categorization output is discussed. Let us call this system the
device from now on.

First in Section 3.1 the state of the art of devices implementing SNNs is provided.
Although the application and way of implementation are different, they still provide a
reference of recent and not so recent ways of incorporating and making use of SNNs.
Nexxt in Section 3.2 the device will be discussed in a top-down block by block fashion.
It presents the architectural details of how the biological concepts from Chapter 2 have
been used. It contains the implementation details of all device blocks between extract-
ing beats from raw ECG signals and categorization output. Of utmost importance
is the core concept of the device called the Self-Organizing Map, and its underlying
workings. They are described in Section 3.2.8.
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3.1 State Of The Art

The state of the art for this chapter covers other projects that have incorporated neuro-
morphic SNNs into their devices. In this field of implementations of large scale models,
the state of the art includes the following significant works:

The SpiNNaker project [30] aims to deliver a massively parallel million-core com-
puter with the goal of simulating up to a billion neurons in real time [20]. It uses ex-
pandable arrays of custom VLSI chips that contain conventional Harvard architecture
ARM cores that are able to simulate various neural and synaptic models. Interconnect
between these chips uses the AER protocol. This device is able to simulate arbitrary
connectivity, plasticity and neural behaviour. However because it is still based on con-
ventional load/store computer architectures it still suffers from traditional computing
problems like memory performance limitations, interconnect limitations and high en-
ergy per computation. In summary it mimics biological behaviour on the functional
level but not on the device level.

The TrueNorth project by IBM [31] attempts to depart from conventional computer
architectures and uses a custom made digital CMOS device to implement an array
of leaky Integrate & Fire neurons linked together by three-level weighted synapses
without delay. These three levels are distributed from maximal inhibition to maximum
excitation. The connectivity graph is not arbitrary: only 256 neurons can be targeted
by any individual neuron. No plasticity algorithms are implemented on the hardware
level. In summary this is an array of biological neurons implemented in custom made
hardware allowing for a significant reduction in power consumption but there is a lack
of flexibility on the hardware level since synaptic weights and delays are limited and
learning has to be done off-chip.

Other projects like NeuroGrid [32], ROLLS [33] and Intel Loihi [31] exist that also
explore neuromorphic concepts including SNNs to accelerate computing. For more
information please refer to surveys like [20].

Various smaller but more comparable works to this device have created an SOM
network topology based on SNNs. These include Ruf [35] and Rumbell [36]. Authors
like Bohte [10] have touched upon the concept of mapping using SNNs using Population
Offset Encoding.
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3.2 System Architecture

The device consists of five global building blocks: the Feature Detector discussed in Sec-
tion 3.2.3, the Feature Selector discussed in Section 3.2.4, the Input Encoder discussed
in Section 3.2.5, the core SNN simulator discussed in Section 3.2.6 and finally the
Output Decoder discussed in Section 3.2.7.

When combined, these five blocks are able to categorize ECG signals using a two
state process: they can be trained by feeding it raw ECG waveforms and can subse-
quently be tested by feeding it individual ECG waves that it is able to categorize. This
state system is explained in Section 3.2.1.
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Figure 3.1: Top-level system overview
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3.2.1 Training & Testing

From a functionality standpoint the device can be in two states as seen in Figure 3.2:
training (1) and testing (2). Before any of these states are entered, the device exists
in a blank state with connectivity being defined by the user’s configuration (0). When
the training state is entered the device is designed to accept raw ECG lead data and
feed it to the network. The network will be trained: it adapts its connectivity to the
input data provided to extract meaningful information from it. If training results are
deemed adequate the testing phase will start. In this phase connectivity is fixed, a
specific testing (sometimes called validation in literature) set of ECG beats is provided
and the device will categorize these beats, a process that is presented to the user in
image or raw data form.

1) Training

Raw ECG
lead data

Final
Connectivity

Device
(plasticity enabled)

2) Testing

Device
(plasticity disabled)

Beat array to

. Classification
classify

Figure 3.2: Overview of the training and testing states for the ECG use case

3.2.2 Input Dataset

Before covering the five top level blocks of the device, it is important to understand
what is being fed into it at the Feature Detector stage. This data is called the input
dataset. In the for this thesis relevant literature the most common benchmark dataset
for ECG measurements is the MIT-BIH dataset [¢] [37]. It is a part of the PhysioBank
recording archive and contains half hour lead readings for 48 patients with varying
backgrounds, symptoms and underlying conditions. It is employed for training and
testing of the device. For each patient three data files are provided: the .dat data
file that contains lead readings, the .hea header file that contains patient and reading
properties and the .atr file that contains annotations for the data in the .dat file.

3.2.2.1 Lead Data

For 46 out of the complete set of 48 patients in MIT-BIH two leads are available inside
the .dat file: lead II from the classic 3-lead ECG setup and one auxilliary lead, most
often a chest lead like V1 to V6. Since the common denominator of these readings is
lead II and since that lead is also used in relevant Feature Extraction literature the
other remaining lead from these patient file is ignored. The full half hour recordings of
lead II of these 46 patients are used as the data set for the device.
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3.2.2.2 Lead Data Annotations

The MIT-BIH dataset not only contains voltage readings over time but also manually
inserted annotations that describe the type of beat detected at the annotation position
as seen in Figure 3.3. Each waveform that has been deemed a beat by cardiologists
contains exactly one annotation roughly at the R-peak. These annotations use the
PhysioNet format [35].
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Figure 3.3: First 0.2 minutes of patient 100 in MIT-BIH with PhysioNet format annotations

As seen in the figure above all except the middle beat have been labeled by car-
diologists as an N standing for Normal beat following the PhysioNet standard. The
abnormally early beat is an A or Atrial premature beat (APB) also known as a prema-
ture atrial contraction [12]. A non-beat annotation + is shown at the very start and
denotes a rhythm change. For more information about the possible annotations see the
PhysioNet format website.
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3.2.3 Feature Detector

The first block in the system is the Feature Detector. The core task of the Feature
Detector is to extract the most valuable properties or features from a raw ECG input
signal. In the training state of the device, data of a list of patients is presented to
the input. For each patient only the MLII lead data is used although multiple leads
are supported. This block was designed and implemented in cooperation with Eralp
Kolagasioglu [39]. The step by step process of the Feature Detector is as follows and is
depicted in Figure 3.4:

1. Data acquisition from a database file from MIT-BIH.
2. Performing a feature detection algorithm on the voltage readings:
(a) Filtering of the data signal to reduce noise. Noise sources include 50/60 Hz

power supply noise, patient movement noise and baseline drift.

(b) (optional) Transformation to a domain that expresses required features the
most.

(c) Detection of simple features like peaks and zero crossings in the transformed
domain that are associated with desired features in the time domain.

3. Construction of the full output data file from the features detected by step 2c.

1 2 3
Filtering, %gss-i}:dn Compute
patient (X) .dat Read Format212 —MLII V(ty > Transform, — R-peak —> Derived features (X) .mat
Detection Features

Figure 3.4: Feature Detector block diagram

3.2.3.1 Data Acquisition

The first step is data acquisition. Like most databases in the PhysioBank the MIT-
BIH database uses the format 212 encoding [10], graphically explained in Figure 3.5.
For each patient it stores 650000 samples of two leads at a measurement frequency of
360 Hz for a total sampled time of 30.09 min. Each sample is a 12 bit two’s complement
integer that needs to be biased with a zero value and multiplied by a gain defined for
each patient reading.

Although a reference implementation called rdsamp() for reading the lead voltage
files is available [11] it was deemed too slow for use so a custom fast implementation
was made. For reading lead annotation files the reference implementation rdann() was
used.
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<—8 bits—> < 12 bits >
Signal 1, sample 1 Sigpal 2, sample 1
Time (650000x) Signal 1, sample 2

Figure 3.5: Format 212 encoding used for the lead voltage files in the MIT-BIH dataset

Since only the MLII lead is required, only one column of data is selected from
the patient files. An algorithmic depiction of the data extraction process is shown in
Algorithm 3.1.

Algorithm 3.1 ECG data reading algorithm
headerdata = ReadHeaderFile();
if Contains(headerdata.leads,’MLII") then
samplerows = ReadDataFile();
for all samples do
samplerow_12bit = From3x8To2x12Bits(samplerows(i))
sample_12bit = SelectFrom (samplerow_12bit,’MLII’)
signal mV (i) = (samplel2bit - headerdata.zero) x headerdata.gain
time(i) = i x headerdata.sfreq
end for
end if
return signal mV
return time

3.2.3.2 Data Processing

For the next step in the three step process, namely feature detection, as part of the de-
sign space exploration (see Section 4.3) a selection of four algorithms were implemented
and compared:

Table 3.1: Selection of ECG Feature Detection algorithms

Name Features Detected Domain

Pan-Tompkins [12] QRS-start, QRS-end Time

Zong [13] QRS-start, QRS-end Curve Length

Modified Li [14] QRS-start, QRS-end, R-peak Wavelet

Tekeste [15] (impl.: [16]) | QRS-start, QRS-end, R-peak, P-start, | QRS: Curve Length,
P-peak, P-end, T-start, T-peak, T-end | Others: Wavelet
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3.2.3.3 The Pan-Tompkins Algorithm

The Pan-Tompkins algorithm [12] is one of the oldest QRS detection algorithms and
uses simple filtering and thresholding in the time domain to find the start and end of
the QRS-complex as seen in Figure 2.12. It maintains an adaptive threshold that finds
R peaks and scans backwards and forwards to find the QRS-complex. Since it is not
used in the final design only a summary of the algorithm is provided. Extensive effort
was put into mimicing the algorithm from the original paper. For more information
please refer to the original paper.

Algorithm 3.2 Pan-Tompkins QRS detector summary
signal mV = ApplyLPF(signal . mV)
signal mV = ApplyHPF (signal mV)
signal mV = Square(signal . mV)
signal mV = MovingWindowIntegrate(signal . mV)
signal mV = CorrectForFilterDelay(signal mV)
for all signal mV do
if signal mV (i) >R_thresh then
QRS_start(end+1) = ScanBackwards(signal . mVi)
QRS_end(end+1) = ScanForwards(signal mV i)
R_thresh = Adapt(R_thresh,signal mV(i));
end if
end for
return QRS_start
return QRS_end

A plot of the relevant signals in the Pan-Tompkins is presented in Figure 3.6. The
first 0.05 minutes of patient 100 are used to generate this image. The top plot shows
the unfiltered input signal with QRS-complex start and end marks alpha and omega.
The bottom plot shows the filtered signal on which thresholding is performed.
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Figure 3.6: Relevant signals in the Pan-Tompkins algorithm applied to patient 100
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3.2.3.4 The Zong Algorithm

The central feature of the Zong algorithm [13] is the Curve Length Transform (CLT).
The Curve Length Transform calculates the length of a signal in a time window around
each point. Before this transform is used a notch filter is applied to the input ECG
signal to remove power supply noise. Unlike Pan-Tompkins the algorithm by Zong et
al. performs a CLT before applying a similar adaptive thresholding scheme. Since
the algorithm described in the original paper does not reveal all the required details
and since the cited source code [17] is also slightly different in crucial locations our
implementation and its results cannot be directly compared to the results in the paper.

Algorithm 3.3 Zong QRS detector summary
signal mV = ApplyNotchLPF(signal mV)
signal mV = CorrectForFilterDelay(signal mV)
signal CLT_mV = ApplyCurveLengthTransform(signal mV)
T_thresh = InitialGuess(signal CLT _mV(1...N_learn))
for all signalCLT_mV do
if signalCLT_mV(i) >T _thresh then
QRS_start(end+1) = ScanBackwards(signal CLT_mV i)
QRS_end(end+1) = ScanForwards(signal CLT_mV i)
T_thresh = Adapt(T_thresh,signal CLT_mV(i));
end if
end for
return QRS start
return QRS_end

A plot of the relevant signals in the Zong algorithm is presented in Figure 3.7. Note
that although a completely different domain is used compared to Pan-Tompkins the
resulting curve is similar. Note that around the R peak the curve length is maximized:
this is the result of the high amplitude changes around the R peak that allow for each
R peak detection. Again, alpha and omega are used to denote QRS starts and ends.

1 T T T T T
P ﬂ | ﬂ
sosr | H
% or | ‘H\ \‘ H
=4 [ [P | I |
s ™ O e
_1 L L L Il Il
0 0.5 1 1.5 2 25 3
Time [s]
0.08
£ 0.06 R
5 | M N
S 0.04 M | || I
e | [ - [
focep | | | | |
o
ol 1 | N |
0 0.5 1 1.5 2 2.5 3
Time [s]

Figure 3.7: Relevant signals in the Zong algorithm applied to patient 100
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3.2.3.5 The Modified Li Algorithm

The third candidate is an adaptation of the algorithm presented by Li et al. [14] Tt
first performs the Discrete Wavelet Transform (DWT) on the input signal and then
does adaptive thresholding and zero crossing detection in the wavelet domain. In the
original publication the Quadratic Spline Wavelet (QSW) [18] is used. Using this
wavelet the DW'T transformed signal tends to produce zero crossings at sharp changes
in the untransformed signal. For ECGs, these zero crossings hint at the locations of
QRS-start, QRS-end, R-peak.

To reduce computational cost of the transform the a trous version [19] of the DWT
is used in our implementation.

Table 3.2: Wavelet transform specifications of modified Li

Property ‘ Value
Transform Type DWT, algorithme a trous
Low Pass Wavelet g;[n] | [1/8, 3/8, 3/8, 1/8] (QSW)
High Pass Wavelet h;[n] [2, -2] (QSW)
Transform Depth 4 detail + 1 approximation

The a trous version of the DWT performs the following computation on the input
signal x[n] where each wavelet is upsampled by a factor of two compared to the previous
one:

Figure 3.8: The filter bank that implements a 4 detail + 1 approximation DWT algorithme
trous
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After the DWT is performed the signals in Figure 3.9 are returned. As with the
previous algorithms the o and €2 text points are used to denote QRS starts and QRS
ends that are the end result of the algorithm.

0 0.5 1 1.5 2 2.5
Time [s]

Figure 3.9: Results of a 4 detail + 1 approximation DWT algorithme a trous

As with the pictures of other detectors the top signal x[n] is the first 0.05 minutes of
patient 100 in the MIT-BIH database. This signal is decomposed into a series of four
detail coefficients d[n] and a remainder a[n]. These coefficients represent the occurence
of wavelet shapes g[n] in x[n] of increasing temporal scale. This is roughly comparable
to Fourier Decomposition where a signal can be decomposed into coefficients of a series
of four sine waves of increasing frequencies. One important difference is that the sum
of these detail levels and approximation is not equal to the original signal.

Since most ECG features are found at the first four detail levels, the remainder
a[n] is ignored and not decomposed any further. Roughly speaking, the R-peak feature
in x[n] is then found where nearby high amplitude opposite modulus maxima (MM)
are found at all four detail levels d[n| within a certain window. Initial scanning is
done at dy[n] The zero crossing of the line between high positive and high negative
detail coefficients is the location of the R-peak. From these points subsequent scanning
backwards and forwards until signal amplitude drops reveals QRS-start and QRS-end.
A similar approach is used in the Tekeste algorithm explained in Section 3.2.3.6 for
detection of the P-peak and T-peak.
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Algorithm 3.4 Modified Li QRS detector summary
[d1,d2,d3,d4] = DWTWithHoles(signal mV ,coeffs)
for i = 1:length(d4) do > Build reference peak list from d4
if IsModulusMaximum(d4(i)) AND MoreThanThreshold(d4(i)) then
if FarFromPreviousPeak(d4(i)) OR OppositeSignOfPreviousPeak(d4(i)) then
d4peaks(end+1) = i

end if
end if
end for
d4peakpairs = RemoveLongPairs(d4peaks) > Filter peaks to valid peak pairs
d4peakpairs = RemoveLonePoints(d4peakpairs) > idem
for i = 1:length(d4peakpairs) do
for j = 4:2 do
dj = SelectDetailLevel(j) > If the peak is also there in d(j)...
djpeakpairs = SelectPeaks(j-1) > ... add it to peak list d(j-1) ...

if IsModulusMaximum(dj(i)) AND MoreThanThreshold(dj(i)) then
if FarFromPreviousPeak(dj(i)) OR OppositeSignOfPreviousPeak(dj(i)) then

djpeakpairs(end+1) = dj(i) > ... if it matches requirements
end if
end if
end for
end for
for i = 1:length(d1peakpairs) do > Get R, QRS from gold list

R_peak = ZeroCrossing(d1peakpairs(i),d1peakpairs(i+1))
QRS_start(end+1) = ScanBackwards(signal mV,R_peak)
QRS_end(end+1) = ScanForwards(signal mV,R_peak)

end for

return R_peak

return QRS_start

return QRS_end
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3.2.3.6 The Tekeste Algorithm

The algorithm proposed [15] and implemented [10] by Tekeste et al. combines the work
of Zong on the Curve Length Transform and the novel work similar to the approach
by Li to detect QRS-start, QRS-end, P-peak and T-peak features. A block diagram of
the algorithm is replicated in Figure 3.10.

Detect P
P — search ,| peak, onset

window and offset
T using DWT

ECG Band Pass ,|Cuvelength] pe[;ite:r:sgtRaSnd
_— ) T f " ;
Filter fansiom offset

,|, Detect T
_| T —search N peak, onset

window and offset

using DWT

Figure 3.10: Block diagram of data flow of the algorithm proposed by Tekeste et al.

In the implementation of this algorithm in the SNN device the data flow from the
raw ECG signal to the QRS detection block is equivalent to the one used for the Zong
algorithm. For more details regarding these processing steps see Section 3.2.3.4.

The P-peak and T-peak feature detection part is based on the same concept of the
Li algorithm: finding nearby high amplitude opposite modulus maxima (MM) in all
detail levels of a wavelet transformed ECG signal. However, unlike Li where these MMs
are used to find the R-peak and surrounding QRS-complex, the algorithm by Tekeste
attempts to find the much smaller P-peaks and T-peaks by scanning for MM pairs in the
region around the QRS-complex found by the Zong algorithm. For more information
on the details of our adaptation please refer to the work by Eralp Kolagasioglu [39].

35



3.2.3.7 Owutput Matrix Format

For each succesful reading of a patient’s .dat file a matrix of ECG features is computed.
This matrix is dimensioned as m by n. Each column of length m stores the list of
features from a single beat in the .dat file of a patient. Therefore if the Feature
Detector algorithm detected n beats in the readings, the resulting matrix will have the
size m by n. This layout is depicted in Figure 3.11.

The final list of ECG features extracted contains m = 25 items. This list is composed
of the features returned by the algorithms themselves (see Table 3.1) and values derived
from those. Derived features include computed heart rate from R peak counts over time,
R-peak to R-peak intervals, QRS-end to T-peak and so forth.

A\ 4

n

Feature 1

Feature 2

Feature 3

m Beat 1 Beat 2 Beat 3 Beat 4 Beat N

Feature
25

Figure 3.11: Output matrix data format

This format provides an excellent information density increase. To compute this,
and give an idea of the scale of this database, let us look at the first patient in MIT-
BIH who is a very average patient with average readings. Patient 100 is turned into
a matrix of 25 by 2273 32 bit floating point data points or 217 KiB of data, resulting
in a compression ratio of 11.7% from the original raw file of 1.95 MB. If needed that
figure could even be much lower as the original data only provides 12 bits of precision.
The full MIT-BIH dataset is turned into a database of 20.81 MiB of data, resulting in
a compression ratio of, again, 11.7% from the original raw file set.
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Table 3.3: ECG beat feature list and labels

Index (m) | Name Comments
1 Heart Rate

2 R - RMS not implemented
3 QRS - Width

4 R - Voltage

5 QR - Width

6 RS - Width

7 P - Exists

8 PR - Interval

9 PR - Segment

10 P - RMS not implemented
11 P - Voltage

12 P - Width

13 T - Exists

14 PT - Interval

15 QT - Interval

16 ST - Segment

17 ST - Interval

18 T - RMS not implemented
19 T - Voltage

20 T - Width

21 RR - Prev RR

22 PP Basis for heart rate
23 PP - Prev PP

24 QRS - Lowest Voltage

25 Annotation Uses PhysioNet format

37




3.2.4 Feature Selector

This device compresses the beat array data size to reduce the amount of data processing
needed by the rest of the system: the resulting compressed beat array (or parts of it) will
be used as the training and testing (see Section 3.2.1) dataset of the device and is fed
to the Input Encoder. This component was designed and implemented in cooperation
with Eralp Kolagasioglu [39] and subsequently incorporated into the data flow of the
device as shown in Figure 3.1.

features (X) .mat features (X) .mat

Feature Selector

size=myxn size=moxn

mo<my

Figure 3.12: Feature selector block diagram

The beat array from the Feature Detector is described in Section 3.2.3.7. Two meth-
ods of data compression were implemented and tested: Principal Component Analysis
(PCA) and correlation matrix analysis. Both attempt to convert a possibly correlated
set of data into a reduced set of data that is able to statistically describe the full set
of data to a user defined extent. From this it follows that the ideal reduced set is the
set where the correlation between each set item to all other set items is minimized and
correlation between set items and nonset items is maximized.
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3.2.4.1 Correlation Matrix Inspection

The correlation matrix or the related covariance matrix are statistical tools that can
be used to discover inherent relationships between items in a set of measurements. A
computation of the correlation matrix of the Feature Detector output matrix of MIT-

BIH patient 100 is shown in Figure 3.13.
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Figure 3.13: Correlation matrix computation of all detected features of patient 100 (MIT-BIH
patient index 1)

In this figure a high positive correlation between two features (items in the set) is
shown as a red block while a high negative correlation between two features is shown
in dark blue. Only correlations with a P value of less than 0.01 have their R value (top
item) and P value (bottom item) written in their corresponding box. Therefore the
targets of this method are the blocks with saturated red or blue colors and text written
in them.

Looking at this result it is possible to manually delete features from the output
matrix by inspection. For example features 13 up to and including 20 are consistently
correlated through the whole half hour recording of this patient. Therefore all but one
of these features can be removed and the remaining features can be statistically derived
from the behaviour of the selected feature.
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3.2.4.2 Principal Component Analysis

Principal Component Analysis (PCA) is a statistical procedure that can be used to
remove correlated pairs within a set of observations. It applies algorithms like eigenvalue
decomposition and singular-value decomposition (SVD) to the correlation matrix shown
in Figure 3.13 to reduce the amount of items in the set needed. If applied properly it
informs the user of how much information is lost as a function of how many (and which)
items are deleted. This is a more automated approach compared to manual correlation
matrix reading. This option was implemented, investigated, and ultimately discarded
in favor of matrix inspection by Eralp Kolagasioglu [39].

3.2.5 Input Encoder

The Input Encoder is tasked with converting the list of ECG features from an analog
format (implemented as floating point) to the language of SNNs: the action potentials
or spikes. This is done in a real time fashion where each beat is considered a sampling
point of that real time signal.

Input Encoder

For each beat vector B:
For each element in vector B (i) :
SpikeCode (i) = POE (B(1i))
End
End

features (X) .mat

Realtime spike
encoded beats

10 Hz beat vector rate

Figure 3.14: Input Encoder block diagram

Since the output of this block is directly connected to neurons in the Core SNN
Simulator we need to look at how we can stimulate these neurons and the subsequent
layers. For the computationally simple neuron models used (Izhikevich and Leaky
Integrate & Fire) it is possible to provide input in three distinct ways:

1. Generating current waveforms from input data using DSP logic and providing
them as inputs to the input layer neurons of the SNN. This way one can say that
the input neurons become part of the Input Encoder as a separate additional filter
to the input data.

2. A special case of the above option is accepting current waveforms and feeding
them through to the input neurons directly. In this way the Input Encoder is
implemented in an SNN.

3. Generating spike patterns in a separate DSP Input Encoder block and using these
spikes directly as the outputs of the input layer neurons of the SNN. These neurons
can be considered as fake placeholders that do not generate activity themselves
and whose output connectivity is used to transport spikes to subsequent layers.
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Although multiple encoding schemes were implemented and tested for the format
of the ECG output data matrix returned by the Feature Detector only the population
offset encoding (POE) [10] scheme is used. Since we believe that this algorithm pro-
duces a satisfactory temporal spike encoding, coupled with project time constraints, no
alternatives were investigated.
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3.2.5.1 Population Offset Encoding

This method uses the third option in the list provided above. The POE scheme accepts
values in the range of [0 ... 1] in real numbers and encodes this information into the
timing of spikes generated by a population of neurons. Spike rate plays no role here
as each neuron spikes only once for each input signal sample. In our implementation
this scheme is applied to each feature from each beat individually, resulting in up to 25
POE blocks in parallel.

Beats are provided to the device in real time with a frequency of 10 Hz. For each
beat presented to the device all selected features of that beat are encoded using POE
blocks. In the time domain this results in a scheme that is set up comparable to
Figure 3.15. Note that this figure presents a generic configuration customized for ex-
planatory purposes not used in the device.
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Figure 3.15: Realtime flow of spike timing based information through time with POE. In this
example, the input neuron range is from 1 up to 90, divided into 3 POE blocks of 30. The
red arrows highlight the most sensitive neuron in each POE block: POE block 1 encodes a
value of 0.6 with neurons [1 ... 30], POE2 encodes 0.4 with [31 .. 60], and POE3 encodes 0.95
with [61 ... 90]. Neurons responding to the input are numbered 91 up to 140.
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Each beat that is composed of up to 25 items depending on Feature Selector settings
is encoded into spikes, where each individual feature is sent into its own POE unit in
parallel. All of these blocks are configured so that they start and stop generating output
at the same time. This active time is a percentage of the input signal period and is
called mazoffset. In Figure 3.15, the input signal frequency is 10 Hz and maxoffset is
set to % resulting in an active time of 50 ms. Depending on network delay this leaves
between 50 ms and 100 ms of time for the network to respond to this pattern. When
the next input signal sample is presented, all neuron capacitances are reset and the
whole process repeats.

Ta — {*,*,*’9’2,0,8,*’*,*

Figure 3.16: Single population conversion function from the real domain into action poten-
tials [10]. In this example, N = 8 neurons are used to encode a value from 0 (leftmost on
x-axis) to 1 (rightmost on x-axis). The example value a to encode has a value of 0.5 and is
encoded into the spike times shown. The values in the curly brace array denote the time to
spike of each neuron where lower is faster.

For each of the parallel encoders the POE scheme from Bohte et al. [10] is used, as
shown in Figure 3.16. Each consecutive encoder is assigned a consecutive identically
sized group of neurons from the input neuron group where encoder 1 is assigned input
neurons 1 up to N, encoder 2 is assigned neurons N-+1 up to 2N, and so forth. For the
maximum of 25 items, 25N neurons are used.

We will now zoom into a single POE unit that is tasked with encoding consecutive
values of one specific feature. For this feature the range of values to be expected is
computed before any encoding is done. The minimum and maximum values found are
usually assigned the value 0 and 1 in the encoding scheme input. When encoding, the
feature value presented is normalized to this range (can be below 0 or above 1) and
assigned a value in the range (a in the image). For all neurons assigned to this unit the
time to spike is computed by Equation 3.1.
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(inputvalue — sensitivitycenters(i))?

. ) 3.1
a(i) = exp( receptivespacing ) o

a(1) giserete = Tound(a(i) X mazxoffset) (3.2)

Each consecutive unit neuron has a certain consecutive value to which it is most
sensitive (spikes earliest) stored in sensitivitycenters(i), i loops through all the unit
neurons, receptivespacing modifies the width of all the bell curves, and recall that
mazoffset determines the maximum active time as seen in Figure 3.15 where it is set
to 2.

2In the image the time to spike a(i)giscrete ranges from ¢t = 0 (fastest) to t = 9
(slowest). These step sizes and counts determine the resolution of the output signal.

One more variable to configure exists and is called activationminimum. In Fig-
ure 3.16 this is presented as population neurons spiking at time ‘*’ for example value a.
This spike time means that the neuron is so unsensitive to the value a to be encoded
that its extremely late response spike time (later than 9 in the image) is considered
noise and not encoded. In Figure 3.15 this feature is also implemented and configured
so that spikes generated after 49 ms are not generated. Note that using this option
violates the one spike per neuron per signal sample property of POE.
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3.2.6 SNN Simulator

The SNN Simulator performs a simulation of the neuromorphic component in the de-
vice: the SNN. It is a simulator that uses discrete time steps of 0.1 ms to solve the
equations of the neurons and synapses in the network.

Before simulation starts, the network itself is generated by the Network Generator
(not shown in the system overview) that introduces a noise factor into instances of
the device: although the distribution of the initial conductivity values of synapses is
known, the actual values samples from this distribution are computed with the help of a
random number generator. To ensure consistent results, the seed to this random number
generator is set to a fixed configurable value. This noise factor will be investigated in
Section 4.7.

The core loop of the simulator that performs the time stepped calculations is the
only part that has been written in C, and has been designed in such a way that it can
be easily converted into neuromorphic hardware in the future. It is currently capable
of being hardware synthesized into digital logic without loss of functionality.

Due to the discrete time step based simulation architecture, a slight loss of spike
timing accuracy has resulted. This type of simulation architecture is also known to
introduce errors into differential equations that it ‘solves’ through discrete time.

Experiments have been performed with variations in simulation time step, which
have shown thatthe current step of 0.1 ms is a good balance between computational
load and simulation accuracy.
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3.2.7 Output Decoder

Finally the Output Decoder applies various analysis techniques to output neuron spik-
ing activity that help to quantify network response. These techniques can be divided
into two groups: a group that returns image-based analysis like the actual mapped
points of the SOM, and a group that compresses output activity into scalar Figures of
Merit (FOM). Only the last group will be discussed here.

Quantified response
- Emps

- BPR

- Output map

Network spike

response to beat Output Decoder

Figure 3.17: Output Decoder block diagram

The scalar FOMs that are used in this device are the Multidimensional Scaling Error
(Eups) and the Beat Pair Recognition (BPR).

3.2.7.1 Multidimensional Scaling Analysis

The Eyps [O0] is a tool that can assess the ability of a SOM [35] to map its input
dataset to its output. Effectively what an SOM performs is a dimension reduction
process: starting from the dimensions of a beat (see Section 3.2.4) in its predefined
input space it is tasked to reduce these n dimension to a two-dimensional map, which
is its output space. The quality of this dimension reduction, also called map formation,
can be assessed my many tools including the aforementioned E);ps that is used in this
project.

Ideally, the distance metric between two data points in the input space and output
space should be perfectly related. This means that identical points in the input space
should be mapped to equal points in the output map. Similarly, maximally distant
(again dependent on the distance metric used) should be mapped to maximally distant
points in the output map.

The Eyps is computed as follows:

N j<i

Eups = > 3 (Fli,j) — GOL(), M(7))) (3.3)

i=1 j=1

In this equation, N is the total amount of items in the dataset (beats in this case),
F(i,j) is a normalized distance or dissimilarity computation function in the input space
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for any beat pair i and j of beats, M(i) is the location in the output space of beat i,
and G(M(i),M(j)) is a normalized distance or dissimilarity computation function in the
output space for beat pair ¢ and j transformed by M.

Essentially, for all possible combinations in the dataset of size N, the difference or
error between the normalized input space and output space coordinates is computed
and summated. Usually, as is the case for this project, the end result is normalized
for the total amount of combinations iterated through to be able to compare results
between different dataset sizes.

Both F(i,j) and G(M(i),M(j)) require a suitable normalization function so that
the maximum possible distance reliably returns 1 and the minimum distance returns
0. For the input dimension F(7,j) the normalized sum of normalized differences of all
beat features is taken. The normalization factor for beat features is identical to the
optimized data range for that feature (see Section 4.5.1.2). For the output dimension
the maximum possible distance in the toroidal map was taken as the normalization
factor (see Section 3.2.6) which is equal to half the diagonal length of the map.

A value of zero for Eypg is interpreted as a perfect mapping result since output
distances between all beats are perfectly related to input distances between all beats.
For a purely randomly generated mapping a value of 0.5 for Eypg is expected. Values
above 0.5 require performance worse than just rolling a die and are practically useless.

3.2.7.2 Beat Pair Recognition

This brings us to the next FOM: Beat Pair Recognition, or BPR. This should be
combined with Fjps as that alone does not reveal if the device does not recognize
certain beats. In the state of the art, failure of a SOM to generate a coherent output
is either ignored or a maximum possible Ey;ps of 0.5 or 1 is assigned to that item.

In this thesis the BPR figure is used. It reveals the percentage of pairs of beats that
are coherently detected. Coherence in this context means that a single interconnected
population of neurons with a maximum size of 25 out of 100 map neurons is allowed to
spike first. This population of neuron that spikes first is called the winner. If multiple
unconnected neuron groups spike first at the same time, if the single population is
too large, or if no neuron spikes at all in response to a beat, the response is deemed
incoherent. For each pair of coherent beats the BPR is incremented.

As an example computation of the BPR is shown in Table 3.4.

Table 3.4: Example computation of the BPR

Property Value | Notes

N 100 Number of beats in testing set

Npair 4950 Number of possible pairs: 1 + 2 + ... + 99
Coherent responses | 60 Number of beats recognized

Coherent pairs 1770 Number of pairs for which Ej;ps can be computed
BPR 35.8% | (1770/4950)*100
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3.2.8 The Self-Organizing Map

Standard multilayer feed forward networks as described in Section 2.3.1 are conven-
tionally meant to be used in combination with supervised learning protocols. However,
the scope of the bigger project that this thesis is a part of is limited to unsupervised
networks. Therefore one type of neural network designed for unsupervised learning has
been selected as the network topolgy and it is called the Self-Organizing Map (SOM),
derived from the Kohonen Map named after its inventor [51]. The way that the SOM
is integrated into the final device is depicted in Figure 3.18.

SNN
o) n x n toroidal grid
neurons
O
@]
o
o
m nxn
Spike trains . FC : Spike trains
Input Encoder > > > Output Decoder

@]

m input

neurons

Figure 3.18: System overview of SNN with accompanying input and output data flow

The multilayer properties of neural networks described in Section 2.3.1 do not di-
rectly translate to the SOM layout since there is only an input layer and an output
layer with a single computation like f in between. However a complex feedback net-
work from each output layer neuron to all other output layer neurons is present that
provides a second layer of computation like g.

The input layer is implemented as a row of neurons that directly feed binary spike
trains received from the Input Encoder to their output as explained in Section 3.2.5.
They do not perform any computation on their input. The output layer is a two
dimensional grid of neurons that receive spikes from the input layer. Their response to
the input layer is fed to the Output Decoder and are analyzed to compute Fjypg and
BPR.

The first computation f implemented by the synapses from the input layer to the
output layer is where learning happens: these synapses implement STDP or TSTDP
plasticity and adapt their conductivity based on spike timing activity of the neurons
connected at both ends.

3.2.8.1 SOM Feedback Function & Spike Based Mapping

Up to this point, apart from g, we have basically described a simple single layer SNN
perceptron. The core functionality of the SOM is inside this feedback of the output
layer g. Each neuron in the 2D grid is connected to all other neurons in the grid (except
itself like an XOR) with a conductivity that scales with the distance between each pair
of neurons. The neighbourhoud function described in this thesis is called the Mexican
Hat function and is described and investigated by [52].
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It is computed by three parameters a, b, and r that determine its negative magni-
tude, negative spread, and radius respectively:

—d? —d?
hat = (1 + a)ea:p(ﬁ> — (a)emp(W> (3.4)
When configured correctly, hat describes the feedback conductivity between two
neurons in the 2D output layer depending on the distance r between these two neurons.
The output layer is shown in Figure 3.18 as a n by n grid of neurons. For low r,
potentiation will occur. For higher r, depression will occur. For even higher r, no
significant conductivity is present. This characteristic allows neurons that are activated
by the input layer to potentiate close neighbours in an attempt to help them also spike
to the same or related input pattersn. Should a neighbouring neuron also spike as
a result of this feedback, the synapse from the input layer to that layer will then
be strengtened. This process allows neighbouring neurons to respond to similar, but
slightly different, input patterns. This in turn describes the concept behind mapping
in a spiking Self-Organizing Map.
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Device Design Space
Exploration

The device described in Section 3.2.6 can be configured and simulated in an infinite
amount of ways assuming infinite computing power and storage is available. Think of
each of those configuration options as a dimension in a certain space where the available
range of values to set that option to is the range of that dimension. If we add up all of
these dimensions to a space we call that a design space.

This design space of this device is made extremely complex, or in other words
difficult to find a usable set of dimension values, by the fact that there are so many
of these dimensions available. This rules out approaches like an exhaustive search of
possible combinations of dimension values. It also makes navigating the space towards
the global maximum difficult since every single dimensional value change can result in
all other dimensions taking up different optimal values or ranges. Another problem
is the fact that for some device blocks, especially in the SNN, the optimal ranges of
various dimensions in this space is extremely small, as will be shown in this chapter.

This chapter presents an exploration of the above mentioned difficult to crack design
space. The exploration reveals a subspace that produces a neuromorphic learning device
that is independently capable of creating and improving a 2D mapping of a patient’s
ECG beats, using the biological properties discussed in Chapter 2, and is implemented
using the architecture discussed in Chapter 3.

THIS 15 YOUR MACHINE (EARNING SYSTETT?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF UNEAR ALGEBRA, THEN COLLECT
THE ANSLJERS ON THE OTHER SIDE.

WHAT IF THE ANSWERS ARE. WJRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT




4.1 State of the Art

To the knowledge of the author no previous work is available on unsupervised catego-
rization of beats in the MIT-BIH database, and design space exploration thereof. In the
more general field of ECG classification using various type neural networks numerous
works are available, but results are difficult to compare due to differences in input data
sets and output metrics used.

For a state of the art comparison of more general ECG classifiers, but not cat-
egorizers, please refer to Eralp Kolagasioglu [39], Table 2.4. Tt lists various software
and hardware implementations of classifiers and shows their accuracy, learning method,
hardware costs primarily.

For a comparison of SOM map formation metrics, but with different dataset, please
refer to [30] and [35]. These give a point of comparison of the performance expressed
in Fyps that can be expected from a SOM that can be used to assess performance of
this device. Directly comparable metrics to the BPR are not covered in the state of the
art due to differences in the ways that SNN response is assessed (see Section 3.2.7.2).

The state of the art of the Feature Detector stage comprisis mainly of the authors
covered in the architecture section (see Section 3.2.3). Comparison is difficult since
essential details including database preference, patient selection, lead selection, and
beat type to detect selection are different and underreported in comparable works.
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4.2 Chronology & Approach

To efficiently explore this high dimensional space it is essential that independent di-
mension groups are uncovered and explored separately, thereby drastically reducing the
amount of points in the design space volume to cover. For this reason a two way split
was put in place at the start of the exploration. From a top-level view looking at the
five main blocks in Figure 3.1 the combined Feature Detector and Feature Selector are
the most independent group of blocks available. They are also the two blocks that are
easiest to test and compare to golden values. Splitting the device up this way reduces
the design space volume V in the following way as a function of exploration point count
N, with example values for all N being 100:

‘/before = NFS’ X NFS X N]E X NSNN X NOD — 10000000000 (41)
Vafter = NFS X NFS -+ NIE X NSNN X NOD — 1010000

Therefore the workflow will be as follows:

1. Firstly, these two blocks were the first to be explored, and their configuration
was fixed. This fixed configuration will therefore present a fixed dataset to the
remainder of the network for the remainder of the exploration. For the remainder
of this document this dataset will be called features.mat.

2. Secondly, using features.mat a usable baseline for the Input Encoder, SNN, and
Output Decoder was obtained. This process starts in Section 4.5.1 and it leads
to a baseline configuration shown in Table 4.5.

3. Finally, this baseline and its surroundings in the design space was explored using
parameter sweeps in various dimensions of the Input Encoder, SNN, and Output
Decoder. The results of these sweeps are shown in Section 4.7.7.1.

4.3 Feature Detector

The first block to be explored is the Feature Detector described in Chapter 3.2.3. As
selecting and optimizing of data is done in the Feature Selector we only want this block
to obtain as much correct data from raw ECG data as possible. Optimal configuration
of this block, independent of the state of other device blocks, is relatively easy to find
as there is a defined golden result available and its output, in the correct range of
possibilities, does not vary much.

The analysis functions at our disposal are the Pan-Tompkins algorithm, the Zong
algorithm, the modified Li algorithm and the Tekeste algorithm. As the work for the
Tekeste option was performed by project member Eralp Kolagasioglu [39], please refer
to that document for an exploration of the Tekeste based Feature Detector. The other
three algorithms were algorithms written by or contributed to by the author of this
document.

Although Tekeste is the only option available if features from P, T, and QRS are
to be used (see Table 3.1) in subsequent device blocks it is useful to consider the other
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three algorithms. This is because Tekeste uses Zong for QRS and a Li based technique
for P and T detection. Also, computation and hardware cost need to be taken into
account as they vary wildly between algorithms: for some use cases it might be better to
only use QRS related features for learning and use the simple Pan-Tompkins algorithm
instead. Therefore, for completeness sake, a shorter cost and performance analysis will
be done here for these other three algorithms even though they will not be used in this
document.

4.3.1 Analysis of QRS Detectors

Each algorithm except for Li was replicated from the original publication and adapted
to our dataset. For the Li algorithm, remember that extensive modifications were done
due to lack of details in publication and possible optimizations.

For each algorithm tuning was performed to optimize the following figures of merit:
the number of correct beats detected or the true positives (TP), the incorrect detections
or false positives (FP), and missed beats or false negatives (FN). All three algorithms
were applied to the .dat file of every patient that had an MLII lead.

The reference used for testing the TP, FP and FN is the R-peak location of each
beat. This R-peak is at the location of the annotations manually added to all patient
data files by a human professional in the MIT-BIH dataset.

This reference is used as follows: if a QRS-start is before an R-peak and if the
matched QRS-end is after the same R-peak but before the next R-peak then a detection
is true. So the test for the QRS detectors is actually only finding the correct time
range where the R-peak is. Checking for correctness of the actual points of QRS-start
and QRS-end is only done by manual inspection and automated bounds checking for
reasonable values.

This limitation comes from the fact that MIT-BIH only stores R-peaks reference
values. In the ideal case we would like to have a database that stores QRS-start, R-
peak, QRS-end, and others for all beats for all patients. To the author’s knowledge
only one such database exists, called the QT database, but it is of a much smaller size
with only around 3600 fully annotated beats in total [54] compared to 105210 partially
annotated ones in MIT-BIH.

Table 4.1: Performance of dedicated QRS feature detection algorithms

Algorithm Count TP ‘ FP ‘ FN ‘ TPR ‘ PPV ‘ Complexity [39]
Reference (mean) 2287

Zong (mean) 2291 2262 29 25 | 98.86% | 98.66% High
Pan-Tompkins (mean) | 2279 2250 29 38 | 98.47% | 98.79% Lowest

Li (mean) 2274 2265 9 22 | 99.10% | 99.58% Highest
Reference (sum) 105210

Zong (sum) 105387 | 104047 | 1340 | 1163

Pan-Tompkins (sum) | 104822 | 103477 | 1345 | 1733

Li (sum) 104606 | 104205 | 401 | 1005
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Table 4.1 shows that the total number of beats in all files is 105210 with an average
of 2287 per file. At first glance all the algorithms seem capable of detecting between
99.4% and as much as 100.2% of all beats. However, false positives need to be removed
from this figure and false negatives also need to be considered.

After filtering, the modified Li algorithm is deemed the most effective because it
has the highest precision (PPV) of 99.58%, meaning that its detections are more likely
to be true, and because it has the highest sensitivity (TPR) of 99.10%, meaning that
is it capable of finding most beats in the first place.

From a complexity standpoint the Pan-Tompkins algorithm deserves special men-
tion. It has much lower computational demands, is easier to implement in hardware
and is more easy to tune than both Zong and especially Li. Looking at these figures it
can be deduced that Zong has no clear advantages compared to Pan-Tompkins. How-
ever, this table only shows the average performance for an average type of patient with
average-shaped beats. For a more detailed per beat type analysis, please see [39].

Full algorithm performance results can be found in Appendix A.1.4, Appendix A.1.2
and Appendix A.1.1.

4.3.2 Analysis of P, QRS, T Detector

Work on the only candidate of this type of detector, Tekeste, is done by Eralp Kola-
gasioglu [39]. For completeness the results of the final testbench applied to the same
dataset as for the other QRS detectors is provided. It is summarized in Table 4.2.

Table 4.2: Performance of the QRS block of the Tekste algorithm

Algorithm Count | TP | FP | FN | TPR | PPV | Complexity
Reference (mean) | 2297

Tekeste (mean) 2291 | 2269 | 22 | 29 |98.71% | 98.97% |  High
Reference (sum) | 105682

Tekeste (sum) 105380 | 104359 | 1021 | 1323 |

Note that the total amount of beats is slightly different than in Table 4.1. This is
because a different list of PhysioNet beat types was selected (see Section 3.2.2.2) as the
reference set of beats to find.

Also note that the reference data only contains information as to where the R-peak
is: this is at the location of the manual annotation. No information is provided for the
true location of the P-peak and T-peak or if there even is one. The lack of these peaks
is not uncommon. Testing for correctness of the P and T related feature detection was
done by inspection.

As was to be expected the implementation of Tekeste performs very similarly to
the author’s implementation of Zong when looking at QRS detection. Some minor
differences can be attributed to minor differences in tuning, implementation details,
and the aforementioned different selection of beats to be found.

Full algorithm performance results can be found in Appendix A.1.3.
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4.4 Feature Selector

The second block to be explored is the Feature Selector. As discussed in the Architec-
ture chapter it receives output from the Feature Extractor in the data format explained
in Section 3.2.3.7. Its job is to select the most useful features (rows) from this matrix
and send it to the Input Encoder.

Two algorithms were investigated by Eralp Kolagasioglu [39]: PCA and manual
correlation matrix optimization. The PCA option was investigated but dropped as
results were not deemed an improvement compared to the simpler manual approach.
Manual correlation matrix analysis was performed independently by both researchers.

4.4.1 Manual Inspection Process

Manual correlation matrix analysis was performed on the first 20 patients of the MIT-
BIH database. This limitation was put into place as a step up to using the full database
set and also served to speed up the DSE of subsequent blocks. This set of 20 corresponds
to patient files named 100 up to and including 121. We start with a data matrix row
selector containing all 25 features or rows represented by their indices:

i=[123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25]

Recall that these indices are listed in Table 3.3. Then, we remove the manual beat
annotations as they would only be available in scenarios where annotated data would be
available for training. Note that they can still serve as backup features in case learning
needs access to more data. We also remove features that were not implemented and
verified in time as noted in Section 3.3. These indices remain:

i=[1 3456789 11 12 13 14 15 16 17 19 20 21 22 23 24 ]

Afterwards, the correlation matrix with corresponding probability values is investi-
gated. Analysis of it shows that the features obtained from the P-wave, QRS-complex,
and the T-wave tend to form groups of significant correlation (p<0.01, r>0.8). There
rarely is any significant correlation between these three groups. This effect is most
pronounced in the P-wave and T-wave group.
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Figure 4.1: Correlation matrix for patient 100 showing correlation blocks (p<0.01) for P-exists
and T-wave only
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Figure 4.2: Correlation matrix for patient 102 showing rare occurence of correlation blocks
(p<0.01) for P-wave, QRS-complex, and T-wave features
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In the above figures two common cases of these correlation grouping expressions
are shown. Patient 100 shown in Figure 4.1 is a case where the mentioned correlation
blocks are not all present. Only the T-wave block is red meaning high correlation
exists within this group and superfluous information is present. Only weak correlation
between the P-exists and P-width features exists. In patient 102 shown in Figure 4.2
all three groupings are present.

The boolean values P-exists and T-exists, which show if the P-wave and T-wave
are present or not, are the most common properties inside these groups that are highly
correlated to other properties of P and T respectively. Therefore we will remove them.

i=[1 3456 89 11 12 14 15 16 17 19 20 21 22 23 24 ]

Further analysis of the P-wave, QRS-complex, and T-wave correlation groups of
the first 20 patients reveal that only 1 patient (5%) has significant correlation in QRS-
complex (index 3 up to 6), 9 patients (45%) have significant correlation in P-wave
(index 8 to 12), and all patients (100%) have significant correlation in T-wave (15-17).
Furthermore 16 patients (80%) have significant correlation in a bigger T-wave portion
(14-17), but this is not universal and cannot be removed for all patients. For T-wave
more similar even bigger index groups up to 14-20 with high correlation are present in
smaller patient counts. Raw analysis data can be found in Appendix A.2.1.

It has been decided to remove all but one of the highly correlated 14-17 index group
that is present in 89% of all patients.

i=[1 3456 89 11 12 14 19 20 21 22 23 24 ]
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4.5 Baseline Observations

For the remainder of the device the exploration consists of the second and third steps
mentioned in Section 4.2. Final results of the first part are fixed and referred to as
features.mat.

4.5.1 Input Encoder

The third block to be discussed is the Input Encoder. It is responsible for translating
a continuous stream of beat features to the language that the fourth block, the SNN,
understands. This block is the first block to be explored as part of the second step in
Section 4.2 and usage of features.mat is implied.

For the specific use case of the ECG beats only one encoding scheme was explored
in the end: population offset encoding (POE). That is not the end of the story as this
algorithm contains various configuration options.

4.5.1.1 Population Offset Encoding

For POE three variables can be configured and are explored here: receptive spacing (1),
mazimum offset (2), and minimum activation level (3).

The first variable, receptive spacing, determines the selectivity of the neurons in each
POE block. Increasing this value decreases the range of input values that each neuron
is sensitive to. While this value is set to 1.5 in the original publication of the scheme [10]
the sensible range in our device is in the orders of magnitude [0.1 ... 10]. For the lower
limit of 0.1 every neuron is at least 50% activated for any input value, while above
the upper limit of 10 the neurons get so sensitive that dead spots in the input range
become problematic. The average activation time is another problem experienced when
reaching into the lower limits of this variable: a preference for spiking early arises in the
middle of the input range making these values’ spike pattern a more potent candidate
for plasticity. A flat dotted line in the figures below is preferred.

Examples of the low and high cases are given in Figure 4.3 and Figure 4.4. Initially
a value of 1 is selected.
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The second variable, mazimum offset, determines the duty cycle of network spike
exposure. Combined with the input signal sampling frequency and receptive spacing
this determines the resolution of the output signal of the Input Encoder in simulation
environments where discrete time steps are simulated. This resolution can be calculated
using the POE conversion function from Equation 3.1.

(inputvalue — sensitivitycenters(i))?

a(i) = eap(—

) (4.3)

a(1) giserete = Tound(a(i) X mazoffset) (4.4)

receptivespacing

With this equation we can compute the smallest inputvalue change that changes
the spike timing of the most sensitive neuron by the smallest step possible: changing
a(1)giserete Dy 1. The POE output value corresponding to that step is computed using
Table 4.3. This table contains values used in the final setup of exploration step two.

Table 4.3: Computation variable values

Variable Value Comments
maxoffset 0.5 50% duty cycle
sim timestep 0.1 ms Simulation time step
sampling step 100 ms From 10 Hz ECG beat rate
POE steps 500 Time steps in 50% duty of sampling step
POE exp. step (a) 5(1)0 = 0.002 POE exponent step for 1 timestep
receptivespacing (b) | 0.1 ... 10 Usable range, lit. uses 1.5
population size (¢) | 10 Single POE block

First we need to determine the most sensitive neuron responding to a certain value
change. For an inputvalue that changes infinitesimally by x the most sensitive neuron
index 4,4, (note i in Equation 4.3) can be found at the roots of the second derivative
of the exponential function in Equation 4.3. This is where the rate of change in the
exponential is highest. This neuron index is not the neuron that is tuned to the value
nearest to inputvalue because that one is at or near the maximum of the exponential.

d(e_%)
) 4.
dx? 0 (4.5)
Vb
’xmax‘ = = (46)
V2
tmaz = TmazC (4.7)

Using the neuron offset i,,,, from the center neuron of the population we can obtain
the inputvalue step ing., that causes this most sensitive neuron to change the smallest
possible step a. We compute this by dividing the smallest possible timestep a by the
rate of change of the most sensitive neuron.
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_ 4.8
Tat dr ( )
21‘6_%
Tat = — b (4.9)
imaxrate = xdt(xma;r> (410)
Mistep = ———— = 0.00074(b = 0.1),0.0023(b = 1),0.0073(b = 10) (4.11)
Ymazrate

So within the normalized range of inputvalue there is enough but not spectacular
resolution available. Keep in mind that this is a far-reaching best possible case (using
these configuration variables) since this in., means that only one neuron of the whole
population will change its spike time by the smallest possible step. Potential resolution
problems can be e.g. mitigated by optimizing the input value range and by keeping b
low.

The third variable, minimum activation level, did not seem to have any measurable
effect on performance during this stage of the exploration and was left at -1, meaning
full participation of all neurons. However, original literature [10] does mention a signif-
icant improvement in categorization performance as would be expected by preventing
unrelated late-spiking neurons from spiking at all.

4.5.1.2 Dataset Composition

The composition of the training dataset has to meet certain demands for it to be useful
as SNN training data. One such demand is that it needs to include the full scope of
data points that are expected to be fed to the SNN after training. If this is not the case
and data outside of the training data scope is presented to the network, one generally
cannot predict how the network will respond. This kind of scoping problem has been
known for a long time and is, among others, also discussed in the field of autonomous
driving by Pomerleat et al [55].

For this project, to limit scope, during testing only values that have also been
presented to the network during training will be used. In addition to that solution the
SNN is helped by optimization of the minimum and maximum values corresponding
to 0 and 1 in the POE blocks. These normalization values are set the minimum and
maximum values found in the full training set. This ensures that the Input Encoder
makes maximum use of the available dynamic range of its output and that unknown
values are not able to be converted. As seen in Equation 4.8 a tighter fit around the
predicted data range results in a higher input range resolution.

One also needs to make sure that overstimulation does not occur. Since an SNN
learns or modifies itself to better respond to the data provided if a similar pattern of
activity is presented multiple times in a row, overlearning can occur: the network will
then respond strongly to the overlearned pattern while very weakly responding to other
patterns. Similarly if the data does not present a balanced share of activity of patterns
to be learnt it might overlearn to the overrepresented data.
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Shown below in Table 4.4 is the count of occurrence of each type of beat in the
output of the Feature Detector as it is fed to the Feature Selector:

Table 4.4: Count of beat types in data set returned by Feature Selector

Beat Type (uint8) | Beat Type [38] | Count
0 False Positive 1070
33 ! 250
47 / 7021
65 A 2542
69 E 104
70 F 784
75 J 83
76 L 8062
78 N 74520
81 Q 21
82 R 7214
83 S 2
86 A% 6852
97 a 69
101 e 16
102 f 969
106 j 223
124 | 42
Sum 109844

As is obvious from this table the normal beat (N) type is severely overrepresented.
If this data set is used as the training set directly the amplitude of adaption to N beats
will be much greater than other beats. However, rare occurrences of non-normal beats
tend to be more clinically significant [¢] and useful for further diagnosis.

Recall that per beat fed to the network an array of properties of that beat is used.
Inside of each group of beats with identical Beat Type there is still significant spread
in properties present. To stimulate the SNN with an as complete input set as possible
it is essential to not only highlight rare beats but also determine an orthogonal set of
each beat type.

Although the author is aware of these problems this subject was not investigated
further due to time constraints.
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4.5.2 Neuron Model

We want our SNN to be able to approximate any continuous function from input to
output as a result of learning. A mathematical theorem called the Universal Approx-
imation Theorem deals with this subject for simple multilayer feed forward networks.
Summarizing, it states that for this type of network to be a universal approximator of
continuous functions either of the following criteria should be met:

1. The activation function of hidden layer nodes of the network should be bounded,
nonlinear and monotonously increasing [56]. No rules apply to the amount of
nodes needed.

2. The amount of available nodes in hidden layers is unbounded with some general
requirements on activation function of these nodes [57]. Result quality is very
dependent on node activation function.

In this thesis only the first solution is considered while the second one is considered
to be purely of theoretical use. The activation function of our neurons should therefore
be a bounded, nonlinear and monotonously increasing function.

We will take a closer look at the relation between input current and output current
(in the form of discrete charge packets per second or spike rate) for the two biological
models available in this project. In Figure 4.5 and Figure 4.6 the typical transfer func-
tion of the Leaky Integrate & Fire and Izhikevich neurons respectively are presented.
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Figure 4.5: Typical input to output relationship for the Leaky Integrate & Fire neuron
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Figure 4.6: Typical input to output relationship for the Izhikevich neuron
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As can be seen from the images above, the Leaky Integrate & Fire model presents
the nonlinearity that we are looking for. Although the Izhikevich model is capable of
producing nonlinear membrane voltages over time its input to output relation is not
nonlinear. Therefore from here on, the neuron model that will be used is the Leaky
Integrate & Fire model. Other advantages are its lower computational complexity and
configuration complexity (see Table 2.1).

The variables to configure for this model are as follows: membrane capacitance
Cinem, membrane resistance Ryen, refractory period T.f, reset membrane voltage
Vinemo, and threshold membrane voltage Vi esh-

4.5.2.1 Constraints & Considerations

Initially, the combination of Rem, Cmem, and Vipqesn is configured so that spiking
activity is in the biological time scale, with possible spike frequencies up to 1 kHz [53].
The range for Ve, being Viemo up to Vipresn Was not biologically inspired and set to
0 mV up to 50 mV. Refractory period tuning is covered in Section 4.5.3.2.

From this starting point membrane charge leakage determined by R,.emCnemn has
two other constraints related to the spike acitivity schedule presented in Figure 4.10.
First, accumulated charge during the active input phase (50 ms, see Figure 4.5.1.1)
should not leak away too fast during each exposure as this prevents learning from
the full spike pattern. Second, as this device is not made to learn from relationships
between beats, accumulated network charges need to leak away before the next sample
is presented.

This rate of forgetting information/charge determines how much history of each
pattern is relevant. Note that this forgetting phenomenon also occurs between actually
generated spikes in STDP which is covered in Section 4.5.3.3.
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4.5.3 Synapses & Learning Rules
4.5.3.1 Weight Storage

In state of the art hardware implementations of SNNs either low resolution digital
storage of synaptic conductivity or weight storage or continuous analog storage [33] is
used. A common digital approach is storing weights as 2 or 3 bit signed integers. This
allows for reduced area costs of synapse hardware which is a component that tends to
scale with more than linearly (up to square) with neuron count. It also reduces the
complexitiy of learning rule updating blocks since they can perform calculations in a
lower precision.

Research tends to show that below ten weight levels spread across excitatory and
inhibitory connections is enough. As a result in digital synapses limiting the precision
to i.e. 3 bit two’s complement is a common occurrence.

In this project the effects of changing digital synaptic weight storage formats and
severely limiting usable weight levels were not investigated but a simulated analog
synaptic weight storage system was implemented. All synaptic weight related compu-
tation and storage was performed both in exclusive 32bit and exclusive 64bit IEEE754
floating point formats [59] and no differences in SNN device behaviour were noted.
Unless otherwise noted 64bit IEEE754 is used in this project.

4.5.3.2 Learning Rules

The simulator can be used to investigate both second order (STDP) and third order
(TSTDP) spike timing based learning rules. Spike frequency based rules like BCM
were not investigated further or implemented. Given that the STDP rule is much
cheaper to implement (see Section 2.2.3) and easier to configure than the TSTDP one
we should find out in which scenarios TSTDP provides an advantage instead of just
using it because of its higher biological accuracy and increased functionality.

Our first area of interest is the spike activity frequency range in which both algo-
rithms are usable. Recall that the experiments that the STDP rule were derived from
used isolated single presynaptic and postsynaptic spikes [6]. The STDP rules do not
define response to multiple recent spike events on either end of the synapse. That is
where TSTDP comes in (see Section 2.2.3.2).
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Figure 4.7: Typical second order (STDP) learning window showing conductivity change as a
function of spike time difference. STDP configuration parameters are 7. = 7— = 20 ms

In Figure 4.7 a typical STDP window is provided. Recall that this is a mathematical
fitting of original data shown in Figure 2.7. Line tlcausal describes the potentiation
window while line tlanticausal describes the depression window. Because of the expo-
nential relationship between spike time difference At and rate of change the range of
significant change for i.e. 1% of maximum is ~4.6 times the configured decay constant.
Let us call this the STDP window. When there are multiple spike events found in the
STDP window in both directions around any spike event simply applying the STDP
rule to all possible pairs leads to unpredictable learning: the STDP model does not de-
scribe what would happen biologically. This leads to what can be called the pingpong
effect.

"'tgpike"'

R ‘ ‘ STDP depression
Presynaptic spikes | ! !

Postsynaptic spikes r r r ‘

Time

Figure 4.8: Diagram showing spike activity of two LIF neurons connected by an STDP
synapse. Presynaptic neuron produces spikes at fs,x. and postsynaptic neuron responds
accordingly
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In the scenario depicted in Figure 4.8 the spike timestep of the presynaptic neuron
is tspike in the range of the STDP time of effect. When blindly applying the STDP rule
to all available pairs the net result can vary from no change at all to depression even
though a causal relationship exists between each consecutive pair of spike events. This
problem presents itself most clearly when investigating the conductivity of a synapse
over time if a sawtooth pattern is observed there and steady learning in either direction
is expected.

A frequency analysis based depiction of this effect is shown below in Figure 4.9.
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Figure 4.9: Comparison of conductivity change behaviour as a function of input frequency
for STDP and TSTDP synapses.

In the above figure a similar simulation setup is used as in Figure 4.8: two LIF
neurons are connected by either an STDP or TSTDP synapse. The presynaptic neuron
fires at a timestep of t,px. for one second. The ¢, variable is varied across the
biological time scale of spike frequencies [58]. The postsynaptic neuron is programmed
to initially respond in a one-to-one fashion. In this simulation the STDP window
parameters from the original paper are used [0]: 7, = 33.7 ms, 7 = 16.8 ms. The
problem of the pingpong effect is clearly evident in the blue line: as causal spike
activity increases, learning performance only does so up to 21 Hz. After that STDP
potentiation and depression changes equalise in amplitude. This is unexpected and
wasteful behaviour. Please note that the amplitude of what happens after the peak
depends on the relation between the STDP amplitudes A,;,s and A,,;,.

Note that the unexpected dips in the STDP line are due to finite simulator timestep
effects: one notable example is that if spikes are produced at a timestep of ¢,k for one
second the total amount of spikes —— tends to jump at some increments of tspike and

tspike

will not increase for others. Another side effect of this test setup is that it is not always
the same ping or pong that occurs last, thereby slightly altering the final conductivity
change value.
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4.5.3.3 Approach to using STDP

To avoid the uncertainty that using STDP results in when unknown frequency spike
rates are present, one can design their SNN in such a way that high frequency spike
trains are avoided or that deletion of STDP spike pairs from the loghook of neurons
occurs. The first method is implemented in the final design.
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Figure 4.10: Realtime flow of spike timing repeated from Figure 3.15. Note the spacing
between input and output layer spike time ranges. Red arrows highlight the neuron most
sensitive to the input value encoded by each POE population.

The final device will use the spike timing schedule as can be seen in Figure 4.10.
The following measures were taken to ensure that STDP provides enough functionality
in the final device and TSTDP is not needed.

First, the two neuron populations (input layer U and output layer V) in the final
network layout are configured in such a way that they cannot generate high frequency
spike trains. The input layer is limited to up to (recall activationminimum) one spike
per input signal sample. Since the input sample step is 100 ms the maximum spike
frequency of that layer is only 10 Hz. The output layer responding to that is forced to
only respond up to one time per input pattern by setting the refractory period ¢,.; of
all its neurons to the active period of the POE (50 ms in the image).

Second, using knowledge of the boundaries of spike timing from the setup above we
can tune the STDP window width to prevent unwanted significant anticausal plasticity.
The significant portion of the STDP window needs to be narrower than 50 ms minus
maximum output layer propagation delay so that any spike pairs emanating from sep-
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arate beats do not lead to significant plasticity change. It is convenient to also take
the STDP considerations mentioned in Section 4.5.2.1 into account now. The window
width determines how much of the POE population shapes are taken into account dur-
ing learning. One could say that input neurons spiking much later or much sooner are
not relevant to the spike event caused in the output layer, and therefore learning should
not occur there.

Combining these two considerations, initially a value of 8 ms for 7, and 7_ was
chosen so that no inter-beat false learning occurs and that for spikes in the middle of
the active period are significantly affected by the whole 50 ms input pattern.

4.5.3.4 When to upgrade to TSTDP

On the other hand if continuous learning is required with spike rates exceeding the
pingpong onset point or if no strict learning regime preventing spike bursts exists one
could opt for TSTDP. As explained in previous chapters, TSTDP accounts for two spike
events in each direction of time and is able to fix the pingpong problem. TSTDP is also
more biologically accurate describing what happens when higher spike rates occur. If
the added cost of TSTDP is not an objection there is no real need to stick with STDP
as TSTDP is a superset of STDP and can replicate all behaviour of it.

The TSTDP synapse is also an excellent candidate to be used to experiment with
spike rate based systems. However, in this thesis the rate dependency is not of further
importance.
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4.5.4 Network Topology

For the network topology an enumeration of guidelines was used to obtain a baseline
configuration:

Initially, a 10 by 10 grid of neurons as the output layer is used, primarily because
it provides adequate map formation space, and because it is the most often inves-
tigated grid size in literature. This is combined with an input layer population of
16 times 10, where each consecutive 10 neurons are connected to a POE block.

Ensure that input layer to output layer initial conductivity distribution is both
not too low and not too high. Too low initial weights inhibit further usage of these
synapses during training, while too high values can early and permanent cause
short-circuiting. For now, only the uniform distribution is used and investigated.

Check if the sum of all input neuron to output grid neuron synaptic conductivities
is proportional and not too much more than the spike charge required to generate a
spike in the output layer. Recall that spiking is caused by an instantaneous charge
of 50 pC (from @ = Ciuem Vipire) arriving, where each spike arriving contributes
an amount of charge dictated by its conductivity. If this balance is not present
overactivation or short-circuiting across all of the output map can occur, especially
when feedback conductivity is added.

Make sure that when using feedback synaptic delay, the delay is larger than the
refractory period of neurons. Otherwise feedback activity is ignored.

Tune the mexican hat function so that at least one but not more than 2 units in a
radius from each neuron are potentiated for a 10 by 10 grid. This tends to result
in a optimal population of inter-potentiating neighbours of roughly 1-25 items,
which is the upper limit of BPR testing (see Section 3.2.7.2).

Make sure that for each grid neuron in the output layer the sum of potentiation
(positive) and depression (negative) from the feedback layer is proportional to the
same type of sum of connections from the input layer. If the strength of feedback
synaptic layer is too low compared to the input synaptic layer short-circuiting can
occur in the input synaptic layer. If input connectivity is lacking the circuit may
lack enough spike activity required for learning.

Ensure that the maximum allowable conductivity does not restrict synape
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4.6 Obtained Baseline & Workflow

The analysis described in this chapter up to this point are what results in the baseline
configuration of the device for the Input Encoder, SNN Simulator, and Output Decoder.
Speaking in design space terms, this is a selection of points and ranges along the critical
design space dimensions of the device. A summary is provided in Table 4.5. Recall
that this is part two of the workflow described in Section 4.2 and will be summarized
here.

For this baseline and further configurations two Figures of Merit (FOM) will be
investigated: E)jps and BCR. Both of these figures are explained in Section 3.2.7.1. To
summarize, Fyps defines the quality of the output mapping generated where lower is
better, and BPR defines how many beats the SNN recognizes and places on the map.
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Table 4.5: Baseline configuration as starting point for sweeps

Index ‘ Configuration Name Value ‘ Notes

1.1 Input layer (U) Type 1D layer See Section 3.2.8
1.2 Input layer feedback None See Section 3.2.8
1.3 Input layer size 160 neurons See Section 4.4
14 Output layer (V) type 2D layer See Section 3.2.8
1.5 Output layer feedback Full XOR feedback See Section 3.2.8
1.6 Output layer size 100 neurons See Section 4.5.4
2.1 U to V initial distribution Uniform See Section 3.2.8
2.2 UV conductivity limit 20 pC See Section 4.5.4
2.3 UV min. initial conductivity | 3 pC See Section 4.5.4
2.4 UV max. initial conductivity | 5 pC See Section 4.5.4
2.5 UV plasticity Enabled See Section 4.5.4
2.6 V to V initial distribution Mexican hat See Section 3.2.8
2.7 VV distribution tuning ”2dgridgauss 4, 3, 2.5” See Section 3.2.8
2.8 VYV conductivity scaling 10 pC See Section 4.5.4
2.9 VV plasticity Disabled See Section 4.5.4
2.10 Conductivity generation seed | Fixed, configurable, 4 See Section 3.2.8
3.1 Neuron model Leaky Integrate & Fire See Section 4.5.2
3.2 Neuron capacitance 1 nF See Section 4.5.2
3.3 Neuron resistivity 15 MOhm See Section 4.5.2
3.4 Neuron threshold 50 mV See Section 4.5.2
3.5 Neuron refractory period 50 ms See Section 4.5.3.2
4.1 Input encoding scheme POE See Section 4.5.1
4.2 Input encoding layout 16 POE blocks of 10 See Section 4.4
4.3 POE receptive spacing 1 See Section 4.5.1.1
4.4 POE max offset 0.5 See Section 3.2.5.1
4.5 POE activation minimum -1 See Section 4.5.1.1
5.1 Training dataset Patient 100, all 2272 beats | See Section 4.5.1.2
5.2 Training dataset repeats 5 See Section 4.5.1.2
5.3 Testing dataset Patient 100, first 100 beats | See Section 4.5.1.2
5.4 Testing dataset repeats 1 See Section 4.5.1.2
6.1 Plasticity algorithm STDP See Section 4.5.3.2
6.2 Plasticity implementation TSTDP See Section 4.5.3.2
6.3 STDP As, 50 fF See Section 4.5.3.2
6.4 STDP As_ 100 fF See Section 4.5.3.2
6.5 STDP 7 8 ms See Section 4.5.3.2
6.6 STDP 7_ 8 ms See Section 4.5.3.2
6.7 Triplet properties All A to 0, all T to oo See Section 2.2.3.2
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4.7 Critical Dimension Exploration

Starting from the discovered point or volume in the design space described in Sec-
tion 4.6 we will conduct a more detailed analysis of critical configuration dimensions.
From the starting volume the values of certain critical combinations of up to three
dimensions/options will be sweeped in a sensible range and performance of each com-
bination is measured by the multidimensional SOM scaling error Eyps and BPR (see
Section 3.2.7.1).

No detailed performance figures for the initial set point are given due to extreme
FOM variability as a result of the initial conductivity generation. Although the initial
weights can be set to a fixed value by fixing the random seed (option 2.10), resulting
in a fixed FOM, changing this seed still throws the FOM all over the place. This effect
of the initial conductivity generation will be used as the noise robustness test in the
remainder of this chapter. For more information about this process see Section 3.2.6.

To reduce the amount of points required a divide-and-conquer method has been
used, comparable to what was done previously by breaking up the device into a Feature
Detector /Selector part and the remainder, see Section 4.2.

4.7.1 FOM Interpretation

In this section the E);ps and BPR will be compared to the state of the art as well
as reasonably possible. For comparison, any value for Fjypg more than 0.1 can be
considered bad enough to be insignificant. Values below 0.02 can be considered com-
petitive. For BPR, although a value of 100% would be preferred, values above 90% can
be considered good and above 95% considered competitive.

4.7.2 Sweep Result Color Scheme

The colors in the figures that follow in this section combine the Ej;ps and BPR values
into one. Ejypg is used directly and has a range of [0 ... 1] by definition where 0 is a
perfect score and 1 is the worst possible score. BPR was used in the range of [0 ... 1]
where 1 means a perfect 100% BPR value. The final color is then computed as follows:

Eyps + (1 — BPR)
2

color = (4.12)

The value color is then mapped to a colormap that smoothly transitions between
three points: pure green for color = 0 (best possible result), grey for color = 0.3
(average result), and pure red for color = 1 (worst possible result). A BPR of zero is
treated as an invalid result and mapped to color = 1.

For example, an average Fjpg of 0.1 combined with a good BPR of 90% results
in color = 0.1 which is a relatively bright green. However, an average Fjps of 0.1
combined with a very bad BPR of 10% results in color = 0.5 which is a relatively
bright red meaning a bad result even though Ej/ps is good.
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4.7.3 Input Encoder

The first block to be explored in this fashion is the Input Encoder. It was done first
since it is the earliest block in the device flow of information (see Figure 3.1) and its
changes should therefore have the biggest effects on all other blocks. Changes as a
result of this section are summarized in Table 4.6.

Table 4.6: Summary of Input Encoder changes as a result of sweeps for this block

Option | Old Value New Value

4.1 POE same

4.2 16 POE blocks of 10 | same

4.3 1 same (1.5 possible)
4.4 0.5 same

4.5 -1 0.025

To arrive at these results a total of 276 combinations were tested. From these, 156
(56.5%) are shown and discussed in this section. All sweep results, full configuration
information for all sweeps, and analysis logs can be found in Appendix A.2.2.
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4.7.3.1 POE Activation Minimum & Noise

First, the effect of POE activation minimum (option 4.5) was investigated. Know-
ing from baseline investigations that the initial conductivity values generated by the
random generator seed (option 2.10) have a huge effect on FOM, we performed a two-
dimensional sweep for 4.5 and 2.10 to average out its effect. The setup for this sweep
is shown in Table 4.7.

Hypothesis: option 4.5 values slightly above zero reduce the amount of insignifi-
cant spike events. This should help the SNN with learning. Too high option 4.5 values
reduce information density and should be avoided.

Table 4.7: Input Encoder sweep 1 setup information. Total combinations = 32

Option 4.5 Values (8x)

-1 (current) 11\10186 (4x)
0.000 9
0.025 3
0.250 4

-1.000

0.000

0.025

0.050

0.100

Activation Minimum

0.150

0.200

0.250

1 2 3 4
Initial Weight Noise

Figure 4.11: Sweep results for this combination. Along the vertical dimension is sweep variable
1 (option 4.5). Along the horizontal dimension is sweep variable 2 (option 2.10). Top text
values show the Fj;ps while bottom text values show the BPR. Color values are explained
in Section 4.7.2.
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The resulting Eyps and BPR distribution is seen in Figure 4.11. Each colored box
represents one combination of both sweep variables for a total of 32. Since for this
sweep the horizontal dimension is the noise test, the mean and variance of each row
is the most important piece of information of this matrix. The next-best data part to
look at are individual columns with equivalent starting conductivity values.

From this exploration we can learn that in this whole subspace Ejpg is not very
competitive with non-spiking solutions. However, although not shown in the figure,
there is a clear improvement of the Fjpg through time as a result of the full device
architecture meaning that the concepts of SNN based learning do work. Fj/ps values
obtained by testing without training (recall Section 3.2.1) tend to show values around
0.5.

Apart from the above global observations there is a slight increase in BPR and
general performance color (see Section 4.7.2) for low values of option 4.5 above zero up
to roughly 0.2.

Conclusion: increase option 4.5 slightly from -1 (effect not used) to 0.025. More
investigation in this value range is needed.
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4.7.3.2 POE Activation Minimum Zoom & Noise

Now we will zoom in on the best region of option 4.5: low values around 0.025.
Hypothesis: for this experiment results comparable to the last experiment are
expected, but with a bigger higher performance region around 0.025.

Table 4.8: Input Encoder sweep 2 setup information. Total combinations = 48

Option 4.5 Values (12x)
-1

0.000

0.005

Noise (4x)
1

2
3
0.025 (current) 4

0.050

-1.000

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Activation Minimum

0.035

0.040

0.045

0.050

1 2 3 4
Initial Weight Noise

Figure 4.12: Results for the sweep of option 4.5 (down) versus option 2.10 (right).

The resulting FOM shown in Figure 4.12 slows a slight improvement in the region
around 0.025 when looking at row averages.

Conclusion: there is still slight preference for the region around 0.025 but no
improvement from that point. Option 4.5 will be kept at 0.025.
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4.7.3.3 High POE Receptive Spacing & Noise

Now we will take a look at the high range of the receptive spacing option of the POE
algorithm. This is option 4.3 in the baseline table. In the original publication this
values was set to 1.5, and a usable range of [0.1 ... 10] is presented in Section 4.5.1.1.
Hypothesis: at the higher limit of the presented range performance should decrease
due to the earlier mentioned effects. Values around 1 or 1.5 should perform comparably.

Table 4.9: Input Encoder sweep 3 setup information. Total combinations = 44

Option 4.3 Values (11x)
1 (current) Noise (4x)
1.5 1

2

10

1.0

1.5

2.0

3.0

4.0

5.0

6.0

Receptive Spacing

7.0

8.0

9.0

10.0

1 2 3 4
Initial Weight Noise

Figure 4.13: Results for the sweep of option 4.3 (down) versus option 2.10 (right).

As seen in Figure 4.13 there is a slight improvement in E)j/ps and sometimes even
BPR for extremely high values (9 and 10) of option 4.3 at the cost of lowered BPR. In
the lower receptive spacing value range no significant effects were observed.

Conclusion: extremely high receptive spacing values like 9 and 10 perform slightly
better than the order of magnitude below them, albeit only for some noise cases. How-
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ever, no major noise independent effects are observed across this range at this step
resolution.
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4.7.3.4 Low POE Receptive Spacing & Noise

Next we will take a look at the low range of the receptive spacing of the POE algorithm.
Recall that a usable range of [0.1 ... 10] is presented in Section 4.5.1.1. No results are
given for the very lowest values (below 0.4) since mapping performance completely
breaks down there.

Hypothesis: at the lower limit of the presented range performance should decrease
due to the earlier mentioned effects. An expected high point of option 4.3 should be
around 1 to 1.5.

Table 4.10: Input Encoder sweep 4 setup information. Total combinations = 32

Option 4.3 Values (8x)
0.4 Noise (4x)
0.7 1

1 (current)

4

1.5

0.4

0.7

—_ —_ —_
N - o

Receptive Spacing

-
w

1.4

1.5

1 2 3 4
Initial Weight Noise

Figure 4.14: Results for the sweep of option 4.3 (down) versus option 2.10 (right).

For the top row in this region Fj;ps improves to good values far below 0.1, but this
is misleading as this excellent mapping performance only applies to a small selection of
the training dataset.

Conclusion: at receptive spacing values below 1, especially 0.4, BPR drops. At
other parts no conclusion could be drawn. Maybe a slight preference for values around
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1 to 1.2 can be observed across the remainder of the sweep, as denoted by the block

colors.

4.7.4 UV Connectivity

The next block of configuration options to investigate is the connectivity between the
input layer and the output layer. As with the choice of the first block to investigate,
this is the next device piece in the flow of information through it. Changes as a result
of this section are summarized in Table 4.11.

Table 4.11: Summary of UV conductivity changes as a result of sweeps for this block

Option | Old Value | New Value

2.1 Uniform same

2.2 20 pC 60 pC (up to 70 pC possible)
2.3 3 pC same (2.5 pC possible)

2.4 5 pC 4.5 pC (up to 4.7 pC possible)

These results were obtained by simulating a total of 1003 combinations. From these,
553 (55.1%) are shown and discussed in this section. All sweep results, full configuration
information for all sweeps, and analysis logs can be found in Appendix A.2.3.
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4.7.4.1 Minimum & Maximum UV Initial Conductivity Limits & Noise

The first test subject is the range of the uniform distribution used to generate the U
to V layer synaptic conductivity. In this experiment the lower (option 2.3) and upper
(option 2.4) limit of this distribution are tested. For this layer the first attempt will
be the lower sensible range of values where between 50 (1 pC per spike) or 5 (10 pC
per spike) spikes are required to generate a spike at the other end of a synapse. Recall
that in the simulator synaptic conductivity can be expressed in terms of the amount of
charge per spike a synapse transports to the other end.

Hypothesis: for values where the upper limit is lower than the lower limit, the
device should fail. For too high UV conductivity values short-circuiting is expected
meaning that uncontrolled mass activity will occur in the V layer due to any kind of
activity in the V layer. For a too low range a lack of V layer excitation is expected.

Table 4.12: UV conductivity sweep 1 setup information. Total combinations = 200

Option 2.3 Values (10x) Option 2.4 Values (10x)

1 pC 1pC Noise (2x)
3 pC (current) 5 pC (current) ;

10 pC 10 pC

1pC

2pC

~ w
° o
[¢] o

Minimum Initial Weight
(6]
T
o

6 pC

7pC

8pC

9pC

2pC 3pC 4pC 5pC 6 pC 7pC 8pC 9pC 10 pC
Maximum Initial Weight

Figure 4.15: Results for the sweep of option 2.3 (down) versus option 2.4 (right). Block colors
and text values are averages of all noise runs. Note that a pure red block without text means
that any one of the noise runs failed to recognize any beats.
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The results in Figure 4.14 show that there is a vague optimal range of initial conduc-
tivity around lower = [2 ... 3] and upper = [4 ... 5] when looking at FEypgs. However, as
with the data Section 4.7.3.4, the Eypg is only low because the amount of recognized
beats (BPR) is low.

Conclusion: the simulation failure triangle is present as expected and for other
extreme combinations of both options no good performance could be found. The only
possibly interesting part is around the initial point found using qualitative methods.

85



4.7.4.2 Minimum & Maximum UV Initial Conductivity Limits Zoom & Noise

We will zoom into the good part of Section 4.7.4.1. Recall that a low Ejps ideally
below 0.1, and a high BPR, ideally above 90%, is considered a good result.
Hypothesis: a more detailed blob of high performance combinations is expected.

Table 4.13: UV conductivity sweep 2 setup information. Total combinations = 200

Option 2.3 Values (10x)

1 pC Option 2.4 Values (10x)

1.333 pC 3 pC Noise (2x)
3.222 pC 1

3 pC (current) 2

5 pC (current)

4 pC

1.00 pC

1.33pC

1.67 pC

2.00 pC

2.33pC

2.67 pC

Minimum Initial Weight

3.00 pC

3.33pC

3.67 pC

4.00 pC

3.00 pC 3.22pC 3.44pC 3.67 pC 3.89 pC 4.11 pC 4.33pC 4.56 pC 4.78 pC 5.00 pC
Maximum Initial Weight

Figure 4.16: Results for the sweep of option 2.3 (down) versus option 2.4 (right). Results are
averages of all noise runs. Again, note that a pure red block without text means that any
one of the noise runs failed to recognise any beats.
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Figure 4.16 shows that the optimal value blob is indeed more detailed. The greenest
part with the best mapping performance unfortunately has a low BPR. Focus should
be put on the area to the right of the green blob where E)jps is only a bit worse at
about 0.15 but BPR increases to up to 49.56%.

Conclusion: a more detailed small blob of good candidates is present. No ideal
combination of very low Eyps (< 0.1) and very high BPR (> 90%) is found yet.
Suggest reducing option 2.4 from 5 pC to 4.5 pC from now on.
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4.7.4.3 Maximum Overall UV Conductivity Limits Zoom & Noise

The next topic of interest is the maximum possible conductivity a synapse in the UV
layer can obtain through learning (option 2.2). This will be swept between 10 pC and
100 pC. From earlier experiments the lower value has been proven to severely inhibit
the learning process, and that although synapses with conductivity more than 50 pC
are equivalent when it comes to spike transport, a higher allowed limit during learning
is sometimes needed to arrive at a better learning result.

Hypothesis: for maximum conductivity up to about 50 pC better learning should
occur. Too high limits might cause short-circuiting if mass overlearning happens.

Table 4.14: UV conductivity sweep 3 setup information. Total combinations = 153

Option 2.2 Values (51x)

10 pC Noise (3x)
20 pC (current)
71pC
10 pC 41pC 73 pC
12pC 42 pC 75 pC
14 pC 44 pC 77 pC
15pC 46 pC 78 pC
17pC 48 pC 80 pC
19 pC 50 pC
z 82 pC
21pC 51 pC g
k=) i S = 84pC
[ [ o
= 23pC = 53pC g
o o c 86pC
Qo e} a
S24pc g55pC Q
L‘? § § 87 pC
g 26 pC g 57 pC E
E E 3 89 pC
% 28 pC % 59 pC =
= = 91 pC
30 pC 60 pC
93 pC
32pC 62pC
95 pC
33 pC 64 pC
35pC 66 pC 96pC
37pC 68 pC 98 pC
39 pC 69 pC 100 pC
Mean Mean Mean
Initial Weight Noise Initial Weight Noise Initial Weight Noise

Figure 4.17: Results for the sweep of option 2.2 (down). Results are averages for all noise
runs.
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From Figure 4.17 it is clear that the initial conductivity was previously set to a too
low value and that high maximum conductivity is advantageous for learning. For values
far above (70 pC+) the one-to-one spike transport boundary of 50 pC BPR tends to
drop down a bit.

Conclusion: as expected more available conductivity range set by option 2.2 allows
for better learning. Too high allowed maximum conductivity tends to cause short-
circuiting. Suggest increasing maximum conductivity from 20 pC to at least 60 pC. A
value of 60 pC is chosen from now on.

4.7.5 VYV Connectivity

For the next sweep block the shape and magnitude of the feedback connectivity will
be modified and its effects investigated. Again, this is the next device piece in the
flow of information through it. Changes as a result of this section are summarized in
Table 4.15.

Table 4.15: Summary of UV conductivity changes as a result of sweeps for this block

Option | Old Value New Value
2.6 Mexican hat | same
2.7 74,3, 2.57 same
2.8 10 pC 14 pC

To arrive at these results a total of 721 combinations were tested. From these, 453
(62.8%) are shown and discussed in this section. All sweep results, full configuration
information for all sweeps, and analysis logs can be found in Appendix A.2.4.
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4.7.5.1 VYV Layer Mexican Hat Feedback Shape & Noise

As part of block 3, the shape of the Mexican Hat pattern (option 2.7), but not the
magnitude (option 2.8), will be investigated first. Recall from Section 3.2.8 that this
pattern is tuned by parameters a, b, and r. Values below 2 of any of the three tuning
variables have shown dissapointing results during the qualitative phase and are not
included in the sweeps.

Hypothesis: for small variations in Mexican Hat pattern generation huge differ-
ences in device performance should occur. Current set point should be nearly optimal.

Table 4.16: VV conductivity sweep 1 setup information. Total combinations = 189

Option 2.7 Values (27x)
2dgridgauss 2.0, 2.0, 2.0 (a, b, 1) Noise (7x)
1

2dgridgauss 4.0, 3.0, 2.5 (current)

2dgridgauss 4.0, 4.0, 3.0

2.0,2.0,2.0
2.0,2.0,25
2.0,2.0,3.0
2.0,3.0,20
2.0,3.0,25
2.0,3.0,3.0
2.0,4.0,2.0
2.0,4.0,25
2.0,4.0,3.0
3.0,2.0,20
3.0,2.0,25
3.0,2.0,3.0
3.0,3.0,2.0
3.0,3.0,25
3.0,3.0,3.0
3.0,4.0,2.0
3.0,4.0,25
3.0,4.0,3.0
4.0,2.0,2.0
4.0,2.0,25
4.0,20,3.0
4.0,3.0,2.0
4.0,3.0,25
4.0,3.0,3.0
4.0,4.0,2.0
4.0,4.0,25
4.0,4.0,3.0

Mexican Hat Feedback Shape

1 2 3 4 5 6 7
Initial Weight Noise

Figure 4.18: Results for the sweep of option 2.7 (down) versus option 2.10 (right). Values are
shown side by side for improved readability.
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As seen in Figure 4.18 this is a complicated subject that requires closer inspection.
No linear relationships are present. Closer inspection reveals that the worst performers
are anything with ¢ = 2, anything with b = 2, or r below 2. For higher values of a and
b, good candidates are 3,4,2, 4,3,2.5, and maybe 4,3,2.3.

Conclusion: as expected option 2.7 is an extremely critical dimension to explore
because high performance variation occurs due to small changes. The initial baseline of
4,3,2.51s already a good candidate when limited to 0.5 increments in tuning variables.
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4.7.5.2 VYV Layer Mexican Hat Feedback Shape Zoom & Noise

Next the ideal point of feedback shape 4,3,2.5 is investigated more closely by zooming
in.

Hypothesis: a more stable region than in the previous sweep should be found
around 4,3,2.5 when reducing r step size from 0.5 to 0.1.

Table 4.17: VV conductivity sweep 2 setup information. Total combinations = 104

Option 2.7 Values (13x)
2dgridgauss 4.0, 3.0, 1.9 (a, b, 1) Noise (8x)
1

2dgridgauss 4.0, 3.0, 2.5 (current)

2dgridgauss 4.0, 3.0, 3.1

4.0,3.0,1.9

4.0,3.0,2.0

4.0,3.0, 2.1

4.0,3.0,2.2

4.0,3.0,2.3

4.0,3.0,2.4

4.0,3.0,2.5

4.0,3.0,2.6

4.0,3.0,2.7

Mexican Hat Feedback Shape

4.0,3.0,2.8

4.0,3.0,2.9

4.0,3.0,3.0

4.0, 3.0, 3.1

1 2 3 4 5 6 7 8
Initial Weight Noise

Figure 4.19: Results for the sweep of option 2.7 (down) versus option 2.10 (right).
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From Figure 4.19 it is clear that zooming does provide a more stable region of
performance. Observing a trend requires some serious squinting. Also there are still rare
cases where performance completely breaks down due to a change in initial conductivity
generation or miniscule changes in feedback connectivity (red blocks).

Conclusion: a more stable region was found around 4,3,2.5, but looking at the
combination of low Fjps and high BPR no improvement is observed by changing r
from 2.5. Shape will stay at 4,3,2.5.
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4.7.5.3 VYV Layer Mexican Hat Feedback Amplitude & Noise

With the feedback shape fixed at 4,3,2.5, we will focus our attention to the scaling
factor applied to the shape obtained (option 2.8). During initial conductivity genera-
tion, this value is used directly as a multiplier of the normalized Mexican Hat shape
generated. The resulting total UV conductivity magnitude should ideally be tuned in
relation to total VV conductivity that we are changing now.

Hypothesis: it is expected that this parameter, like previous VV parameters, has
a large effect on performance since the VV layer is a defining factor in SOM map
formation.

Table 4.18: VV conductivity sweep 3 setup information. Total combinations = 160

Option 2.8 Values (20x)
1 pC Noise (8x)
1

10 pC (current)

20 pC

1pC
2pC
3pC
4pC
5pC
6 pC
7 pC
8 pC
9pC
10 pC
11 pC
12 pC
13 pC
14 pC

Mexican Hat Feedback Amplitude

15 pC
16 pC
17 pC
18 pC
19 pC
20 pC

1 2 3 4 5 6 7 8
Initial Weight Noise

Figure 4.20: Results for the sweep of option 2.8 (down) versus option 2.10 (right).
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In Figure 4.20 a clear trend appears, showing that a correct relationship between
UV conductivity magnitude and VV conductivity magnitude is of great importance.
Detailed simulations of cases in the lower and upper show that there is widespread
short-circuiting and open-circuiting in the UV layer respecitively.

Conclusion: the feedback amplitude has a large effect on device performance. The
initial value of 10 pC was adequate but is close to the fall-of area where performance
breaks down. A safer higher value of 14 pC was chosen instead.

4.7.6 STDP Window

The fourth and final block options to explore is related to the STDP window. Changes
in this block relate to the rate of learning and the balance between potentiation and
depression. Changes as a result of this section are summarized in Table 4.19.

Table 4.19: Summary of STDP changes as a result of sweeps for this block

Option | Old Value New Value

5.3 Patient 100, first 100 beats | Patient 100, first 500 beats
6.3 50 fF 40 fF

6.4 100 fF 78.9 fF or 793 fF

6.5 8 ms same

6.6 8 ms same

To arrive at these results a total of 4732 combinations were tested. From these, 2633
(55.6%) are shown and discussed in this section. All sweep results, full configuration
info for all sweeps, and analysis logs can be found in Appendix A.2.5.
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4.7.6.1 STDP Window Amplitude & Ratio

The first two options to check are the positive and negative magnitudes of the STDP
window. By checking a range of values for both of these, the relationship between
potentiation amplitude and depression amplitude is also tested.

Hypothesis: from earlier testing a higher depression than potentiation factor is
expected to work best.

Table 4.20: STDP sweep 1 setup information. Total combinations = 147

Option 6.3 Values (7x) Option 6.4 Values (7x) Noise (3x)
1{F 11fF 1
... (logarithmic) ... (logarithmic)
10000 fF 10000 fF 3

1fF

5fF

22 fF

100 fF

Positive STDP Amplitude

464 fF

2154 fF

10000 fF

1fF 5fF 22 fF 100 fF 464 fF 2154 fF 10000 fF
Negative STDP Amplitude

Figure 4.21: Results for the sweep of option 6.3 (down) versus option 6.4 (right). Note that
a pure red block without text means that any one of the noise runs failed to recognize any
beats.

96



In Figure 4.21 two things can be observed. First, the general failure of the de-
vice when potentiation is stronger than depression. Second, one very specific region
of interest appears: the one where depression is between 100x and 500x stronger than
potentiation, and only when the potentiation amplitude is equal to 22 fF (at this res-
olution).

Conclusion: the hypothesis was true, but a much smaller region of good perfor-
mance than expected was found.
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4.7.6.2 STDP Window Amplitude Zoom 1 & Ratio

Next, we attempt to zoom into the green area found in the previous experiment by
removing one order of magnitude from the vertical dimension and increasing the amount
of steps from 7 to 9.

Hypothesis: a bigger green blob is expected. Also the device is only expected to
work when depression is stronger than potentiation.

Table 4.21: STDP sweep 2 setup information. Total combinations = 243

Option 6.3 Values (9x) Option 6.4 Values (9x) Noise (3x)
1fF 1{F 1
... (logarithmic) ... (logarithmic)
1000 fF 10000 fF 3

1fF

21fF

6 fF

13 fF

32 fF

75 fF

Positive STDP Amplitude

178 fF

422 fF

1000 fF

1fF 3fF 10 fF 32 fF 100fF 316fF 1000 fF 3162 fF 10000 fF
Negative STDP Amplitude

Figure 4.22: Results for the sweep of option 6.3 (down) versus option 6.4 (right).
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From Figure 4.22 it is clear that tuning the device for the green area to the right
will be very difficult as even the smallest step at this resolution means the difference
between an almost perfect score and nothing at all.

One green data point also appeared, this time with much more mild learning rates.
It is at 2 fF over 1 {F.

Conclusion: a bigger green blob is found. Also the device still one works when
depression is stronger than potentiation.
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4.7.6.3 STDP Window Amplitude Zoom 2 & Ratio

Again, we attempt to zoom more into the green area found in the previous experiment
by removing one order of magnitude from the vertical dimension.

Hypothesis: an more detailed green blob is expected in the region found in the
previous experiment.

Table 4.22: STDP sweep 3 setup information. Total combinations = 243

Option 6.3 Values (9x) Option 6.4 Values (9x) Noise (3x)
10 fF 1{F 1
... (logarithmic) ... (logarithmic)
100 fF 10000 fF 3

10 fF

13 fF

18 fF

24 fF

32 fF

42 fF

Positive STDP Amplitude

56 fF

75 fF

100 fF

10 fF 24 fF 56 fF 133fF 316fF 750fF 1778 fF 4217 fF 10000 fF
Negative STDP Amplitude

Figure 4.23: Results for the sweep of option 6.3 (down) versus option 6.4 (right).
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When zooming in the blob shape of the image is becoming more difficult to observe.
It might require moving your chair back a couple of meters. As was expected from the
previous sweep, the device is very sensitive to minute changes in depression amplitudes.
Repeatedly zooming in does not seem to hide that problem in any way.

At the higher depression amplitudes in the right half of the image very rapid removal
of unnecessary branches in the UV connectivity occurs. For the extreme values in the
order of magnitude of 10000 fF it is not uncommon for any synaptic conductivity
amplitude to decrease to zero instantly by a single close-timed anticausal spike pair.

Conclusion: an even bigger but non-continuous blob was found. It is expected
that the learning rate in this area tends to cause overshooting of its optimal learning
result more than it should.
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4.7.6.4 STDP Window Amplitude Zoom 2 More Data & Ratio

Instead of zooming in even further the performance of the device with a more complex
testing database is investigated. The amount of beats from patient 100 in the testing
datbase is increased from the first 100 to the first 500 (out of 2272).

Hypothesis: with a bigger testing dataset the amount of overshoot might decrease.

Table 4.23: STDP sweep 4 setup information. Total combinations = 300

Option 6.3 Values (10x) Option 6.4 Values (10x) Noise (3x)
10 fF 10 fF 1
w.. (linear) .. (logarithmic)
100 fF 10000 fF 3

10 fF

20 fF

30 fF

40 fF

50 fF

60 fF

Positive STDP Amplitude

70 fF

80 fF

90 fF

100 fF

10 fF 22 fF 46 fF 100fF 215fF 464 fF 1000 fF 2154 fF 4642 fF 10000 fF
Negative STDP Amplitude

Figure 4.24: Results for the sweep of option 6.3 (down) versus option 6.4 (right).
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With the larger testing database the amount of total failures (BPR equals zero) is
drastically reduced in the blob region of interest. Now a two-way split appears between
slow learning and average results to the left of the red part, and fast learning and
excellent but varying results to the right of the red part.

Hypothesis: the bigger dataset has revealed a more complete picture of the blob.
In fact, two blobs or areas are present now. We will investigate both.
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4.7.6.5 STDP Window Amplitude High A>_ Zoom & Ratio

The first region of Figure 4.24 to be explored is the high depression amplitude region.
The goal is to find an optimal combination of option 6.3 (A2, ) and option 6.4 (As_) in
that region.

Hypothesis: an optimum is expected around 40 fF for 6.3 with currently unknown
values of 6.4.

Table 4.24: STDP sweep 5 setup information. Total combinations = 900

Option 6.3 Values (10x) Option 6.4 Values (30x) Noise (3x)
10 fF 100 fF 1
... (linear) .. (logarithmic)
100 fF 10000 fF 3

10 fF

20 fF

30 fF

40 fF

50 fF

60 fF

70 fF

Positive STDP Amplitude

80 fF

90 fF

100 fF

Negative STDP Amplitude

Figure 4.25: Results for the sweep of option 6.3 (down) versus option 6.4 (right). A big X
has been placed at combinations where the Ej/pg is lower than 0.05 and the BPR is higher
than 99%. For combinations where Epg is also lower than 0.05 but BPR is between 95%
and 99% a small x has been placed. Full result data can be found in Appendix A.2.5, line
676.
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The green blob in the fast learning area behaves roughly the same in this zoom
region as in did before. The center row of the green area tends to be at roughly 40 fF.

Conclusion: an optimum was indeed found at 40 fF for option 6.3. The range of
values of option 6.4 that yield the most reliable learning are between roughly 400 fF
and 1400 fF in the fast area.
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4.7.6.6 STDP Window Amplitude Low A, Zoom & Ratio

Next, the low region was investigated more thoroughly, but this time the value of option
6.3 was limited to 40 fF decided on in Section 4.7.6.5.

Hypothesis: for the low depression amplitude range combined with 40 fF for option
6.3 reliable but worse performance than in the fast region is expected.

Table 4.25: STDP sweep 6 setup information. Total combinations = 400

Option 6.4 Values (100x) Noise (4x)
40 fF 1
... (linear)
150 fF 4
40 fF 68 fF
fF 123 fF
41 1F 69 fF % 8
97 fF 124 fF
42 F 70 fF
98 fF 126 fF
43 fF 711F
99 fF 127 fF
44 fF 721F
100 fF 128 fF
46 fF 73 fF
101 fF 129 fF
47 tF 74 fF
102 fF 130 fF
48 fF 76 F
103 fF 131 fF
49 fF 77 fF
104 fF 132 fF
o 50fF o 78fF
e 8 o 106 fF o 1381F
2511fF 2 79fF o S
= = 2107 fF 2134 fF
2 fF fF = =
Es g 80 E0sfF E1361F
o o
'953": |_81 F o 109 fF o 137 fF
@ 541 « 821 & 1101F & 138 fF
2 2 o o
2 56 fF 2 831F 2111 F 2 139 fF
8571F S8atF > >
2 2 S1121F S 140 fF
58 fF 86 fF 13 F 141 fF
591F 87 fF 114 F 142 F
60 fF 88 fF 116 fF 143 fF
611fF 89 fF 17 F 144 fF
62 fF 90 fF 118 fF 146 fF
63 fF 91 fF 119 fF 147 fF
64 fF 92 fF 120 fF 148 fF
66 fF 93 fF 121 fF 149 fF
67 fF 94 fF 122 fF 150 fF
Mean Mean Mean Mean
Initial Weight Noise Initial Weight Noise Initial Weight Noise Initial Weight Noise

Figure 4.26: Results for the sweep of option 6.3 (down). Results are averages for all noise
runs.
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For the region of depression amplitude starting from the point where the amplitude
is equal to the potentiation amplitude up to the red valley in Figure 4.24 where per-
formance breaks down, an optimal region is found where the ratio of potentiation and
depression is roughly %

Conclusion: reliable but worse performance was in fact found in the aforemen-
tioned % region. Peak performance across the four noise runs is shown in Table 4.26.

Table 4.26: Peak performance settings and FOM in the slow learning region

Setting Value . .

Testing Dataset | Patient 100, first 500 beats Figure of Merit | Value
At 40 F Eyps 0.1113
Ay 739 fF BPR 70.03%
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4.7.6.7 STDP Window Amplitude High A>_ Zoom & Ratio

Similar to Section 4.7.6.6, the high region combined with 40 fF for option 6.3 was
investigated.

Hypothesis: for the high depression amplitude range combined with 40 fF for
option 6.3 unreliable but better performance than the low region is expected.

Table 4.27: STDP sweep 7 setup information. Total combinations = 400

Option 6.4 Values (100x) Noise (4x)
500 fF 1
... (linear)
1000 fF 4
626 fF 752 fF
879 fF

631 fF 758 fF
884 fF

636 fF 763 fF
889 fF
641 fF 768 fF 894 fF
646 fF 773 fF 899 F
652 fF 778 fF 004 F
657 fF 783 fF 909 fF
662 fF 788 fF 914 fF
667 fF 793 fF 919 fF
® 672 fF ® 798 fF 924 fF

E Ss03iF )

= 6771F 2 803 2 929fF

E 682 fF 5 808 fF E 934 fF

é 687 fF é 813 fF o o39fF
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Figure 4.27: Results for the sweep of option 6.4 (down). Results are averages for all noise
runs.
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For the region of depression amplitude where depression is between 10 times and 25
times stronger than potentiation narrow bands of excellent performance are observed.
These regions are however mixed with configurations where performance completely
breaks down, even causing an all or nothing scenario in BPR between 793 fF and
794 fF for option 6.4.

Conclusion: extremely unreliable but excellent performance was found in the in-
vestigated region. For option 6.4 equal to 793 fF, across an average of four noise runs,
all 100% of beats were recognized and mapped to the output map with an error of just
0.0169. However, an increase of just 0.13% in this configuration option causes beat

recognition to drop to zero. Peak performance across the four noise runs is shown in
Table 4.28.

Table 4.28: Peak performance settings and FOM in the fast learning region

Setting Value . .

Testing Dataset | Patient 100, first 500 beats Figure of Merit | Value
Eumps 0.0169

Azt 10 1 BPR 100%

Ay 793 fF :

4.7.6.8 STDP Window Widths

The effect of modifying STDP window widths was also investigated. These experiments
can be found at the end of Appendix A.2.5 and can be summarized as follows: as long
as both 7 and 7_ are within 1 ms of each other and both are between 5 ms and 30 ms
no significant difference in learning performance is found. These experiments were
performed in the slow but reliable region of Ay, with As_ equal to 100 fF instead of
78.9 fF.

4.7.7 Training Regime

For this final section of exploratory experiments all baseline modifications up to now
will be collected and applied to the device. Afterwards, experiments on bigger datasets
and training set epoch counts will be performed. Full results, configuration data, and
experiments with even larger datasets can be found in Appendix A.2.6.
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4.7.7.1 Training Dataset Repeat Count With Slow Learning

For this experiment the amount of repetitions of the training dataset (option 5.2) and
its effects are investigated. Up until now this configuration parameter was set to 5
because it was observed that the rate of network conductivity change converges to zero
around this point.

Hypothesis: it is known that reducing the repetition count below 5 leads to worse
performance. Values above 5 should not affect results.

Table 4.29: Training sweep 1 setup information. Total combinations = 110

Option 6.4 Values (11x) Noise (10x)
1 1
10 10

Training Dataset Repeats

1 2 3 4 5 6 7 8 9 10
Initial Weight Noise

Figure 4.28: Results for the sweep of option 5.2 (down) versus option 2.10 (right). Each
column shows one instance of the device through time with a specific noise pattern affecting
it.
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In Figure 4.28 each column represents Figure of Merit changes as the amount of
training set exposure repeats increases. Baseline performance without learning is shown
in the top row. Compared to the baseline each instance improves its performance using
unsupervised learning, with most instances achieving an Fjpg of 0.1 and a BPR of
80%. However most instances suffer from learning instability.

Conclusion: for a repetition count of up to five most instances consistently improve
performance. For higher repetition counts learning instability and drops in peformance
are expected.
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4.7.7.2 Training Dataset Repeat Count With Fast Learning

For this experiment, in contrast to Section 4.7.7.1, fast but unreliable learning is used
and the effect of training exposure time is investigated again. Except for the the change
of Ay from 78.9 fF to 793 fF no changes were made.

Hypothesis: again, it is known that reducing the repetition count below the orig-
inal value of 5 leads to worse performance. Compared to slow learning, more variation
but better performance is expected.

Table 4.30: Training sweep 2 setup information. Total combinations = 110

Option 6.4 Values (11x) Noise (10x)
0 1
10 10

Training Dataset Repeats

1 2 3 4 5 6 7 8 9 10
Initial Weight Noise

Figure 4.29: Results for the sweep of option 5.2 (down) versus option 2.10 (right). Each
column shows one instance of the device through time with a specific noise pattern affecting
it.
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Compared to the experiment in Section 4.7.7.1, fast learning instances of the device
achieve their peak performance in only 3 database repetitions on average. However,
only 3 out of 9 instances with competitive performance, meaning Ej;ps below 0.02 and
BPR above 95%, retain their result after repeated training sessions.

Conclusion: this time, for a repetition count of up to three 9 out of 10 instances
consistently improve performance to much higher levels than slow learning would. For
higher repetition counts learning more dramatic instability and drops in peformance
are expected.
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Conclusion & Future Work

5.1 Conclusion

In this thesis a system architecture for a device incorporating a neuromorphic Spiking
Neural Network (SNN) has been presented. As a result of the design space exploration
that has been performed for this device it can be concluded that accurate categorization
of electrocardiogram (ECG) beats using an unsupervised SNN with the Self-Organizing
Map (SOM) layout and using simple Spike Timing Dependent Plasticity (STDP) as its
learning rule can be performed.

The neuromorphic device consists of five top-level blocks. The first block is the
Feature Detector. For this block four algorithms from literature were implemented
and tested, with modifications ranging from minor to extensive. Using our own imple-
mentations and testing regime the best-performing algorithm achieves a True Positive
Rate (TPR) of 99.10%, a Positive Predictive Value (PPV) of 99.58%, and 104606 total
detected beats when applied to the full length of the MIT-BIH database that contains
MLIT leads, which contains a total of 105210 beats.

The second block is called the Feature Selector. For this block, two algorithms were
implemented and tested, namely Principal Component Analysis (PCA) and correlation
matrix inspection. In this document only correlation matrix inspection is performed.
Depending on the acceptable amount of information loss, this algorithm reduces the
data set to feed to the remaining three blocks by 21% without loss of performance of
the whole device.

The next block is the Input Encoder. For this block only one algorithm was im-
plemented and tested: Population Offset Encoding (POE). This algorithm was imple-
mented using non-neuromorphic concepts, and is an inversible, fully temporal, unique
one-to-one, high resolution encoding scheme from the real domain to the spike domain.
For POE, an extensive design space exploration of all its conventional tuning paramters
has been performed.

The fourth block is the SNN itself. For this block only one network layout was
tested thoroughly: the SOM. This is an unsupervised categorization network layout
that is combined with STDP as the learning rule. For this network layout 28 key
configuration options were extensively tested. The Multidimensional Scaling Error
(Eymps) and Beat Pair Recognition (BPR) metrics of the output layer were used as
Figures of Merit (FOM). Making extensive use of the divide-and-conquer approach
combined with exhaustive exploratory sweeps a detailed characterization of this block
has been presented with well-documented behaviour changes as a result of various
configuration changes. This block is implemented while keeping neuromorphic hardware
implementability in mind, and is also fully digitally hardware syntesizable, conforming
with the goal of designing a low power wearable version of this device. For this block,
when looking at the FOM, two local maxima were found: one region where slow but
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reliable learning occurs, and one region where fast but unreliable learning occurs. In
this region an Fjypg of 0.1113 and a BPR of 70.03% is achieved with excellent UV layer
noise robustness. The other local maximum found uses fast learning and achieves an
Eups of 0.0169 with a BPR of 100%. However, hardness to configuration parameter
changes and UV layer noise is of great concern at this maximum.

The final block is the Output Decoder that decodes spiking information generated
by the output layer of the SNN from spikes back to the real domain. This is the actual
block that calculates the Eypg and BPR for the device.

5.2 Future Work

As mentioned throughout this document many additional steps could be taken to im-
prove the device. These steps could help the device by lowering compute complexity,
lowering hardware cost, improving FOMs, and so forth.

First, for the Feature Detector phase, the author believes that more exhaustive tun-
ing of available configuration options could improve the performance of the algorithms
presented. Also, a more optimal combination of QRS detection and P, T detection
algorithms could be used since the current implementation of P, T detection (Tekeste)
uses information generated by an inferior QRS detection scheme (Zong) and combines
these to generate the full dataset.

Also for the Feature Detector phase and the device as a whole, information from
multiple parallel leads could be used for categorization, in similar manner to which
multiple features of beats from a single lead are used in parallel now. Multiple leads
provide a richer picture of the behaviour of the heart and could therefore be used to
improve categorization.

For the Feature Selection phase, a more robust automated approach like PCA should
be able to outperform the manual approach currently used. Recall that this approach
was abandoned due to unsatisfactory results.

For the Input Encoder, dataset composition and ordering could be taken into ac-
count. Currently no effort is taken to emphasize important types of beats in the training
dataset that should receive a higher than average degree of learning. The lack of this
selection process also makes frequently occurring very similar beats prone to receive
overlearning. Although it is briefly touched upon in this document it was not investi-
gated further due to time constraints.

For the SNN;, there are many possible ways that might improve performance. Firstly,
the conductivity dependency function of STDP was implemented but not thoroughly
tested due to time constraints. This function drastically alters learning rates through
time and can be used to stabilize learning results, an area that the current imple-
mentation has significant problems with (see Section 4.7.7). For example, the concept
of synaptic bistability is easily implemented using an exponential conductivity depen-
dency function. Similarly, time dependency functions of STDP have also been used in
literature for learning result stabilization.

Furthermore, other initial conductivity distributions than the currently used uniform
one can be used. A gaussian distribution would be more biologically relevant and
deserves extra attention.

116



Appendix

A.1 Feature Detector
A.1.1 Li QRS Detection Results Log

Running test "Data/100"...
Running test "Data/101"...
Running test "Data/102"...
ERROR: could not find MLII lead, skipping current test
Running test "Data/103"...
Running test "Data/104"...
ERROR: could not find MLII lead, skipping current test

0~ O Ok W

R R R R 0 W W W W W W W W W DNDNDNDNDNDNDNDN e e e e e e
B WP OO IDDUlkE WNFEF O OISOk WNDHFE O OO0 Utk W~ O o

Running test "Data/105"...
Running test "Data/106"...
Running test "Data/107"...
Running test "Data/108"...
Running test "Data/109"...
Running test "Data/111"...
Running test "Data/112"...
Running test "Data/113"...
Running test "Data/114"...
Running test "Data/115"...
Running test "Data/116"...
Running test "Data/117"...
Running test "Data/118"...
Running test "Data/119"...
Running test "Data/121"...
Running test "Data/122"...
Running test "Data/123"...
Running test "Data/124"...
Running test "Data/200"...
Running test "Data/201"...
Running test "Data/202"...
Running test "Data/203"...
Running test "Data/205"...
Running test "Data/207"...
Running test "Data/208"...
Running test "Data/209"...
Running test "Data/210"...
Running test "Data/212"...
Running test "Data/213"...
Running test "Data/214"...
Running test "Data/215"...
Running test "Data/217"...
Running test "Data/219"...
Running test "Data/220"...
Running test "Data/221"...
Running test "Data/222"...
Running test "Data/223"...
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45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

Running test "Data/228"...
Running test "Data/230"...
Running test "Data/231"...
Running test "Data/232"...
Running test "Data/233"...
Running test "Data/234"...
Reference | Li
Patient Truth | Count
Data/100 2273 | 2273
Data/101 1869 | 1864
Data/103 2084 | 2084
Data/105 2602 | 2548
Data/106 2027 | 1994
Data/107 2137 | 2108
Data/108 1771 | 1749
Data/109 2532 | 2523
Data/111 2124 | 2121
Data/112 2539 | 2539
Data/113 1795 | 1795
Data/114 1880 | 1878
Data/115 1959 | 19563
Data/116 2412 | 2395
Data/117 15635 | 1535
Data/118 2278 | 2278
Data/119 1987 | 1987
Data/121 1863 | 1860
Data/122 2478 | 2476
Data/123 1518 | 1518
Data/124 1619 | 1619
Data/200 2601 | 2591
Data/201 1963 | 1970
Data/202 2138 | 2132
Data/203 3006 | 2818
Data/205 2657 | 2635
Data/207 1862 | 1947
Data/208 2963 | 2891
Data/209 3012 | 3005
Data/210 2651 | 2597
Data/212 2749 | 2748
Data/213 3251 | 3245
Data/214 2267 | 2256
Data/215 3363 | 3354
Data/217 2209 | 2191
Data/219 2154 | 2154
Data/220 2048 | 2048
Data/221 2427 | 2414
Data/222 2483 | 2467
Data/223 2605 | 2587
Data/228 2077 | 1974
Data/230 2257 | 2256
Data/231 1571 | 1571
Data/232 1780 | 1850
Data/233 3081 | 3055
Data/234 2753 | 2753
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102 Mean 2287 | 2274 2265 9 22 99.10% 99.58%
103 Sum 105210 | 104606 104205 401 1005 4558.73% 4580.52Y%
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A.1.2 Pan-Tompkins QRS Detection Results Log

Running test "Data/100"...
Running test "Data/101"...
Running test "Data/102"...
ERROR: could not find MLII lead, skipping current test
Running test "Data/103"...
Running test "Data/104"...
ERROR: could not find MLII lead, skipping current test
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Running test "Data/105"...
Running test "Data/106"...
Running test "Data/107"...
Running test "Data/108"...
Running test "Data/109"...
Running test "Data/111"...
Running test "Data/112"...
Running test "Data/113"...
Running test "Data/114"...
Running test "Data/115"...
Running test "Data/116"...
Running test "Data/117"...
Running test "Data/118"...
Running test "Data/119"...
Running test "Data/121"...
Running test "Data/122"...
Running test "Data/123"...
Running test "Data/124"...
Running test "Data/200"...
Running test "Data/201"...
Running test "Data/202"...
Running test "Data/203"...
Running test "Data/205"...
Running test "Data/207"...
Running test "Data/208"...
Running test "Data/209"...
Running test "Data/210"...
Running test "Data/212"...
Running test "Data/213"...
Running test "Data/214"...
Running test "Data/215"...
Running test "Data/217"...
Running test "Data/219"...
Running test "Data/220"...
Running test "Data/221"...
Running test "Data/222"...
Running test "Data/223"...
Running test "Data/228"...
Running test "Data/230"...
Running test "Data/231"...
Running test "Data/232"...
Running test "Data/233"...
Running test "Data/234"...
Reference | Pan Tompkins
Patient Truth | Count

Data/100

2273 | 2273
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Data/101
Data/103
Data/105
Data/106
Data/107
Data/108
Data/109
Data/111
Data/112
Data/113
Data/114
Data/115
Data/116
Data/117
Data/118
Data/119
Data/121
Data/122
Data/123
Data/124
Data /200
Data /201
Data /202
Data /203
Data /205
Data /207
Data /208
Data /209
Data/210
Data/212
Data/213
Data/214
Data/215
Data /217
Data/219
Data/220
Data/221
Data /222
Data/223
Data /228
Data /230
Data /231
Data /232
Data /233
Data/234
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99.
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2287
105210

2279

2250

104822 103477

121

5 99.

1 99.
72 97.
25 98.
15 99.
64 96.
14 99.
3 99.

0 100.

1 99.

3 99.

6 99.
26 98.
6 99.

0 100.

0 100.

3 99

1 99

3 99

4 99

5 99
56 97
23 98
328 89
6 99
25 98
346 88
4 99
149 94
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8 99
11 99
15 99
9 99

3 99

1 99
18 99
17 99
53 97
391 81
1 99

0 100
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7 99.

2 99.
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A.1.3 Tekeste QRS Detection Results Log

Running test "Data/100"...
Running test "Data/101"...
Running test "Data/102"...
ERROR: could not find MLII lead, skipping current test
Running test "Data/103"...
Running test "Data/104"...
ERROR: could not find MLII lead, skipping current test
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Running test "Data/105"...
Running test "Data/106"...
Running test "Data/107"...
Running test "Data/108"...
Running test "Data/109"...
Running test "Data/111"...
Running test "Data/112"...
Running test "Data/113"...
Running test "Data/114"...
Running test "Data/115"...
Running test "Data/116"...
Running test "Data/117"...
Running test "Data/118"...
Running test "Data/119"...
Running test "Data/121"...
Running test "Data/122"...
Running test "Data/123"...
Running test "Data/124"...
Running test "Data/200"...
Running test "Data/201"...
Running test "Data/202"...
Running test "Data/203"...
Running test "Data/205"...
Running test "Data/207"...
Running test "Data/208"...
Running test "Data/209"...
Running test "Data/210"...
Running test "Data/212"...
Running test "Data/213"...
Running test "Data/214"...
Running test "Data/215"...
Running test "Data/217"...
Running test "Data/219"...
Running test "Data/220"...
Running test "Data/221"...
Running test "Data/222"...
Running test "Data/223"...
Running test "Data/228"...
Running test "Data/230"...
Running test "Data/231"...
Running test "Data/232"...
Running test "Data/233"...
Running test "Data/234"...
Reference | Tekeste
Patient Truth | Count

Data/100 2273 | 2273
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Data/124
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Data /208
Data /209
Data/210
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Data/223
Data /228
Data /230
Data /231
Data /232
Data /233
Data/234

2946 2918
3007 3006
2582 2576
2747 2747

N PD»POFR,LROOPFRLPNRPLPFP,LOOOFR,OOF, WK OW

-
N W o0
W 0 o Ww

[y
OO P R, PP FLNFPLNWOOOR

99.
100.
95.
99.
99.
82.
100.
100.
99.
100.
100.
100.
99.
99.
99.
99.
99.
100.
100.
99.
99.
99.
99.
97.
100.

2297
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4 99

3 99
46 98.
39 98.
10 99.
157 91.
10 99.
1 99.

0 100.

0 100.

3 99

6 99
21 99
0 100

0 100

0 100

3 99

2 99

3 99
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3 99
68 96
21 99
120 96.
7 99
230 90.
45 98
6 99
75 97
2 99
11 99
13 99
7 99
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4 99
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31 98
13 99
50 98
213 89.
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57 96
12 99
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A.1.4 Zong QRS Detection Results Log

Running test "Data/100"...
Running test "Data/101"...
Running test "Data/102"...
ERROR: could not find MLII lead, skipping current test
Running test "Data/103"...
Running test "Data/104"...
ERROR: could not find MLII lead, skipping current test
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Running test "Data/105"...
Running test "Data/106"...
Running test "Data/107"...
Running test "Data/108"...
Running test "Data/109"...
Running test "Data/111"...
Running test "Data/112"...
Running test "Data/113"...
Running test "Data/114"...
Running test "Data/115"...
Running test "Data/116"...
Running test "Data/117"...
Running test "Data/118"...
Running test "Data/119"...
Running test "Data/121"...
Running test "Data/122"...
Running test "Data/123"...
Running test "Data/124"...
Running test "Data/200"...
Running test "Data/201"...
Running test "Data/202"...
Running test "Data/203"...
Running test "Data/205"...
Running test "Data/207"...
Running test "Data/208"...
Running test "Data/209"...
Running test "Data/210"...
Running test "Data/212"...
Running test "Data/213"...
Running test "Data/214"...
Running test "Data/215"...
Running test "Data/217"...
Running test "Data/219"...
Running test "Data/220"...
Running test "Data/221"...
Running test "Data/222"...
Running test "Data/223"...
Running test "Data/228"...
Running test "Data/230"...
Running test "Data/231"...
Running test "Data/232"...
Running test "Data/233"...
Running test "Data/234"...
Reference | Zong
Patient Truth | Count
Data/100 2273 | 2273
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A.2 Full DSE Sweep Results

A.2.1 Manual Feature Selection Log

(omitted)

A.2.2 Full Encoder Sweep Log
(omitted)

A.2.3 Full UV Weight Sweep Log
(omitted)

A.2.4 Full VV Weight Sweep Log
(omitted)

A.2.5 STDP Window Sweep Log
(omitted)

A.2.6 Training Sweep Log
(omitted)

126



Bibliography

[1] E. K. Jacob, “Classification and Categorization: A Difference that Makes a Dif-
ference,” Library Trends, 2004.

2] BruceBlaus, “Multipolar Neuron,” 2013. [Online]. Available: https://blausen.
com/?Topic=9495

[3] en:User:Chris 73 and en:User:Diberri, “Schematic of an action potential,”
2007. [Online]. Available: https://upload.wikimedia.org/wikipedia/commons/4/
4a/Action_potential.svg

[4] A.L. Hodgkin, and A.F. and Huxley, “A quantitative description of membrane
current and its application to conduction and excitation in nerve,” The Journal of
Physiology, vol. 117, no. 4, pp. 500-544, 1952.

[5] National Institute on Aging, “Drawing illustrating the process of synaptic
transmission in neurons,” 2013. [Online|. Available: http://www.nia.nih.gov/
alzheimers/publication /alzheimers-disease-unraveling-mystery /preface

(6] G. Bi and M. Poo, “Synaptic Modifications in Cultured Hippocampal Neurons:
Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type,”
The Journal of Neuroscience, 1998.

[7] J.P. Pfister and W. Gerstner, “Triplets of Spikes in a Model of Spike Timing-
Dependent Plasticity,” The Journal of Neuroscience, 2006.

[8] PhysioNet, “MIT-BIH Arrhythmia Database,” 2017. [Online]. Available:
https://www.physionet.org/physiobank /database/mitdb/

[9] Npatchett, “Graphical representation of Einthoven’s triangle,” 2015. [Online].
Available:  https://upload.wikimedia.org/wikipedia/commons/1/19/Limb_leads_
of EKG.png

[10] S.M. Bohte, H. La Poutre and J.N. Kok, “Unsupervised clustering with spiking
neurons by sparse temporal coding and multilayer RBF networks,” IEEE Trans-
actions on Neural Networks, [2002.

[11] M.R. Azghadi and others, “Spike-Based Synaptic Plasticity in Silicon: Design,
Implementation, Application, and Challenges,” Proceedings of the IEEFE, 2013.

[12] ECGPedia, “ECG Reference Card,” 2010. [Online]. Available:  https:
//www.ecgpedia.org/A4/ECGpedia_on_1_A4En.pdf

[13] C.A. Mead, Analog VLSI and Neural systems. Addison-Wesley, 1989.

[14] D.E. Rumelhart, R. Durbin, R. Golden and Y. Chauvin, Backpropagation. Hills-
dale, NJ, USA: L. Erlbaum Associates Inc., 1995.

127


https://blausen.com/?Topic=9495
https://blausen.com/?Topic=9495
https://upload.wikimedia.org/wikipedia/commons/4/4a/Action_potential.svg
https://upload.wikimedia.org/wikipedia/commons/4/4a/Action_potential.svg
http://www.nia.nih.gov/alzheimers/publication/alzheimers-disease-unraveling-mystery/preface
http://www.nia.nih.gov/alzheimers/publication/alzheimers-disease-unraveling-mystery/preface
https://www.physionet.org/physiobank/database/mitdb/
https://upload.wikimedia.org/wikipedia/commons/1/19/Limb_leads_of_EKG.png
https://upload.wikimedia.org/wikipedia/commons/1/19/Limb_leads_of_EKG.png
https://www.ecgpedia.org/A4/ECGpedia_on_1_A4En.pdf
https://www.ecgpedia.org/A4/ECGpedia_on_1_A4En.pdf

[15] D. Nelson and M. Cox, Lehninger Principles of Biochemistry. ~W.H. Freeman,
2013.

[16] E.M. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions on Neural
Networks, vol. 14, no. 6, pp. 1569-1572, 2003.

[17] R.B. Stein, “Some Models of Neuronal Variability,” Biophysical Journal, 1967.

[18] W. Gerstner, and W.M. Kistler, Spiking Neuron Models. ~Cambridge University
Press, 2002.

[19] G. Indiveri and others, “Neuromorphic silicon neuron circuits,” Frontiers in Neu-
roscience, 2011.

[20] G. Indiveri and S. Liu, “Memory and information processing in neuromorphic
systems,” Proceedings of the IEEFE, 2015.

[21] J.H.B. Wijekoon and P. Dudek, “Compact silicon neuron circuit with spiking and
bursting behaviour,” Neural Networks, 2008.

[22] R. Wang and others, “A compact aVLSI conductance-based silicon neuron,” IEEE,
2015.

[23] D.O. Hebb, The Organization of Behavior: A Neuropsychological Theory. Wiley,
1949.

[24] E.L. Bienenstock, L.N. Cooper and P.W. Munro, “Theory for the development
of neuron selectivity: orientation specificity and binocular interaction in visual
cortex,” Journal of Neuroscience, 1982.

[25] S. Fusi and others, “Spike-driven synaptic plasticity: theory, simulation, VLSI
implementation,” Neural Computation, 2000.

[26] J.M. Brader, W. Senn and S. Fusi, “Learning real-world stimuli in a neural network
with spike-driven synaptic dynamics,” Neural Computation, 2007.

[27] M. Minsky and Seymour Papert, Perceptrons: an introduction to computational
geometry. MIT Press, 1969.

[28] Cables And Sensors, “l12-Lead ECG Placement Guide with Illustra-
tions,” 2017. [Online]. Available:  https://www.cablesandsensors.eu/pages/
12-lead-ecg-placement-guide-with-illustrations

[29] W. Einthoven, Galvanometrische registratie van het menschelijk electrocardiogram.
Leiden, 1902.

[30] S. Furber, F. Galluppi, S. Temple, and L. Plana, “The SpiNNaker project,” Pro-
ceedings of the IEFE, 2014.

[31] P. A. Merolla and others, “A million spiking-neuron integrated circuit with a scal-
able communication network and interface,” Science, 2014.

128


https://www.cablesandsensors.eu/pages/12-lead-ecg-placement-guide-with-illustrations
https://www.cablesandsensors.eu/pages/12-lead-ecg-placement-guide-with-illustrations

[32] B.V. Benjamin and others, “Neurogrid: A Mixed-Analog-Digital Multichip System
for Large-Scale Neural Simulations,” IEFE, 2014 .

[33] N. Qiao and others, “A reconfigurable on-line learning spiking neuromorphic pro-
cessor comprising 256 neurons and 128K synapses,” Frontierts in Neuroscience,
2015.

[34] C.K. Lin and others, “Programming Spiking Neural Networks on Intels Loihi,”
IEFEE, 2018.

[35] B. Ruf and M. Schmitt, “Self-Organization of Spiking Neurons Using Action Po-
tential Timing,” IFFFE, 1998.

[36] T. Rumbell and others, “A Spiking Self-Organizing Map Combining STDP, Oscil-
lations, and Continuous Learning,” IFEFE Transaction on Neural Networks, 2014.

[37] A.L. Goldberger and others, “Components of a New Research Resource for Com-
plex Physiologic Signals,” Circulation Electronic Pages, 2000.

[38] PhysioNet, “PhysioBank Annotations,” 2017. [Online]. Available:  https:
/ /www.physionet.org/physiobank /annotations.shtml

[39] A.E. Kolagasioglu, “Energy Efficient Feature Extraction for Single-Lead ECG
Classification Based On Spiking Neural Networks,” Master’s thesis, Delft Uni-
versity of Technology, 2018.

[40] PhysioNet, “SIGNAL(5),” 2018. [Online|. Available: https://www.physionet.org/
physiotools/wag/signal-5.htm#sect9

[41] G.B. Moody, “WFDB Applications Guide,” 2018. [Online]. Available: https:
/ /www.physionet.org/physiotools/wag/wag.htm

[42] P. Jiapu, W.J. Tompkins, “A Real-Time QRS Detection Algorithm,” IEEE Trans-
actions on Biomedical Engineering, 1985.

[43] W. Zong, G.B. Moody and D. Jiang, “A Robust Open-source Algorithm to Detect
Onset and Duration of QRS Complexes,” Computers in Cardiology, 2003.

[44] C.Li, C. Zheng and C. Tai, “Detection of ECG Characteristic Points Using Wavelet
Transforms,” IEEE Transactions on Biomedical Engineering, 1995.

[45] T. Tekeste and others, “Adaptive ECG Interval Extraction,” IEEE, 2015.

[46] T. Tekeste and others, “A Nano-Watt ECG Feature Extraction Engine in 65nm
Technology,” IEEE Transactions on Circuits and Systems, 2016.

[47) W. Zong, G.B. Moody and D. Jiang, “WQRS(1),” 2018. [Online]. Available:
https://physionet.org/physiotools/wag/wqrs-1.htm

[48] S. Mallat, “Zero-Crossings of a Wavelet Transform,” IEEE Transactions on Infor-
mation Theory, 1991.

129


https://www.physionet.org/physiobank/annotations.shtml
https://www.physionet.org/physiobank/annotations.shtml
https://www.physionet.org/physiotools/wag/signal-5.htm#sect9
https://www.physionet.org/physiotools/wag/signal-5.htm#sect9
https://www.physionet.org/physiotools/wag/wag.htm
https://www.physionet.org/physiotools/wag/wag.htm
https://physionet.org/physiotools/wag/wqrs-1.htm

[49] M. Holschneider, R. Kronland-Martinet, J. Morlet and P. Tchamitchian, A real-
time algorithm for signal analysis with the help of the wavelet transform. Springer-
Verlag, 1989.

[50] G.J. Goodhill and T.J. Sejnowski, “A Unifying Objective Function for Topographic
Mappings,” Neural Computation, 1997.

[51] T. Kohonen, “Self-organized formation of topologically correct feature maps,” Bi-
ological Cybernetics, pp. 59-69, 1982.

[52] R. Keith-Magee, “Learning and development in Kohonen-style self organising
maps,” Ph.D. dissertation, Curtin University, 2001.

[53] Randall Munroe, “Machine Learning,” 2017. [Online]. Available:  https:
//xked.com/1838/

[54] P. Laguna and others, “A Database for Evaluation of Algorithms for Measurement
of QT and Other Waveform Intervals in the ECG,” Computers in Cardiology, 1997.

[55] D.A. Pomerleau, “Knowledge-based Training of Artificial Neural Networks for Au-
tonomous Robot Driving,” Robot Learning, 1993.

[56] G. Cybenkot, “Approximation by Superpositions of a Sigmoidal Function,” Math.
Control Signals System, 1989.

[57] K. Hornik, “Approximation Capabilities of Multilayer Feedforward Networks,”
Neural Networks, 1990.

[58] R.F. Schmidt and G. Thews, Human Physiology. Springer, 1989.

[59] American National Standards Institute, “IEEE Standard for Binary Floating-Point
Arithmetic,” Standards Committee of the IEEE Computer Society, 1985.

130


https://xkcd.com/1838/
https://xkcd.com/1838/

	Abstract
	Acknowledgments
	Introduction
	Problem Statement
	Goals
	Contributions
	Outline

	Biological Background
	The Spiking Neuron
	Neuron Models

	The Synapse
	Synaptic Properties
	Synaptic Delay Plasticity
	Synaptic Plasticity

	Network Level Properties
	Network Layout
	Learning Methods

	The Electrocardiogram
	Measurement Setup
	Features
	Motivation For Automation


	Architecture
	State Of The Art
	System Architecture
	Training & Testing
	Input Dataset
	Feature Detector
	Feature Selector
	Input Encoder
	SNN Simulator
	Output Decoder
	The Self-Organizing Map


	Device Design Space Exploration
	State of the Art
	Chronology & Approach
	Feature Detector
	Analysis of QRS Detectors
	Analysis of P, QRS, T Detector

	Feature Selector
	Manual Inspection Process

	Baseline Observations
	Input Encoder
	Neuron Model
	Synapses & Learning Rules
	Network Topology

	Obtained Baseline & Workflow
	Critical Dimension Exploration
	FOM Interpretation
	Sweep Result Color Scheme
	Input Encoder
	UV Connectivity
	VV Connectivity
	STDP Window
	Training Regime


	Conclusion & Future Work
	Conclusion
	Future Work

	Appendix
	Feature Detector
	Li QRS Detection Results Log
	Pan-Tompkins QRS Detection Results Log
	Tekeste QRS Detection Results Log
	Zong QRS Detection Results Log

	Full DSE Sweep Results
	Manual Feature Selection Log
	Full Encoder Sweep Log
	Full UV Weight Sweep Log
	Full VV Weight Sweep Log
	STDP Window Sweep Log
	Training Sweep Log



