
Optimizing SGLR Parser Performance

Justin de Ruiter
Supervisors

Eelco Visser, Jasper Denkers, Daniël Pelsmaeker

Delft University of Technology
The Netherlands

Abstract

The Scannerless Generalized-LR (SGLR) parsing algorithm allows parsing of declar-
ative and modular syntax definitions. However, SGLR is notorious for having low per-
formance, negatively impacting its adoption in practice. This paper presents several
performance optimizations for JSGLR2, which is an implementation of SGLR. All opti-
mizations are implemented and evaluated in parallel, which is possible due to JSGLR2’s
modular architecture. The evaluation is performed using existing sources from three
different languages. A combined speed-up of 9% up to 44% is achieved, improving the
practicality of JSGLR2.

Keywords SGLR parsing, performance optimization

1

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering



1 Introduction
Computers usually apply parsers to perform source code analysis. Parsers transform the
source code to a more computer-readable parse or syntax tree for a given language. Creating
or maintaining a parser can require substantial effort, especially for complex or rapidly
evolving languages.

Parser generators aim to simplify creating and maintaining parsers. They can generate
parsers based on a formal language description, eliminating the need to write or modify
parsers by hand. However, traditional parser generators such as ANTLR [10] use deter-
ministic parsing algorithms. These algorithms only support a subset of possible languages,
sacrificing declarativeness [5] for performance.

The Scannerless Generalized-LR (SGLR) [13] parsing algorithm solves the declarative-
ness issue of traditional parser generators. SGLR extends GLR [8], which means it supports
non-deterministic and ambiguous languages. Furthermore, support for scannerless parsing
[11] allows character-level instead of token-based languages. These features result in SGLR
supporting the entire class of context-free languages, enabling modular language definitions
for increased maintainability.

However, the greater complexity of SGLR does have a performance cost, limiting its
adoption in practice. GLR’s non-determinism results in a worst-case run-time complexity of
O(n3) [6], where traditional parsing algorithms run in linear time. Ideas from Elkhound [9]
improve this by hybridly switching to a deterministic parsing mode whenever possible. It
is nonetheless still slow for heavily non-deterministic languages. SGLR’s lower performance
impacts its practicality, e.g., for use in interactive IDE environments.

To facilitate improving SGLR’s performance, Denkers introduced a modular architec-
ture for SGLR [3]. The architecture splits the algorithm into several components, allowing
systematic improvement of individual parts of the algorithm in parallel. Furthermore, it
simplifies maintaining several parser variants with different features. An implementation of
this architecture known as JSGLR2 is available as part of the open-source Spoofax Language
Workbench1. JSGLR2 supports defining languages using SDF3 [2] which includes features
such as modular language definitions.

As Denkers mentioned, there is a limited amount of time spent on optimizing JSGLR2’s
performance. Spending additional time on optimizations can therefore lead to further im-
provements. Furthermore, the usefulness of the modular architecture for implementing
optimizations can be evaluated more extensively.

This paper presents several performance optimizations for JSGLR2 to improve its prac-
ticality. The performance of the optimizations is evaluated using existing sources from
three different languages. An additional evaluation of all optimizations is also performed.
Furthermore, the usefulness of its modular architecture for implementing optimizations is
evaluated.

The remainder of this paper is structured as follows. First, an overview of the SGLR
parsing algorithm is provided in Section 2. Section 3 describes the method used to discover
and evaluate optimizations. Following in Section 4, the optimizations including implemen-
tation details are presented. Section 5 shows the benchmark results for these optimizations.
In Section 6 the reproducibility of the results is briefly discussed. Finally in Section 7 the
resulting conclusions are given.

1http://www.metaborg.org/en/latest/

2

http://www.metaborg.org/en/latest/


2 Scannerless Generalized-LR Parsing
This section gives an overview of the relevant parts of the SGLR algorithm used as a reference
for Section 4.

2.1 LR Parsing
SGLR is a left-to-right (LR) [7] shift-reduce parsing algorithm. It incrementally builds a
parse tree from a given input by performing Shift and Reduce actions on a stack. The stack
consists of stack nodes connected by links, where each node corresponds to a specific state.
Each link contains a parse node, which represents a sub-tree of the final parse tree. Shift
actions add a new link to the top of the stack. The parse node on this link corresponds to
the current token. The input is advanced to the next token. Reduce actions reduce stack
nodes on top of the stack to a single new node. The state of the new stack node is the goto
state of the given Reduce action. The parse node on the new link is a parent of the parse
nodes on the reduced stack links. Actions are queried from a parse table depending on the
current input and the state of the top stack node. When a parse is complete, the stack
consists of a single link where its parse node represents the final parse tree. This parse tree
is transformed into a syntax tree, which is known as imploding.

2.2 GLR Parsing
Since SGLR extends GLR, it needs to handle non-determinism and ambiguities. For this,
it has to maintain multiple stacks in parallel. An efficient way of doing this is using a
Graph-Structured Stack (GSS) [12]. A GSS represents the stacks as a directed graph,
where the source nodes (nodes without incoming links) indicate the top nodes of the stacks.
Ambiguities are represented by allowing multiple parse nodes on the same link. Figure 1
shows an example of such a graph. SGLR internally keeps track of the top stack nodes
using a collection called active-stacks. It processes the stacks one by one, keeping track
of which stacks are yet to be processed using a collection called for-actor.

Figure 1: A Graph-Structured Stack with two active stacks: [1, 2, 4] and [1, 3, 4].

2.3 Scannerless Parsing
SGLR is a scannerless parsing algorithm, which means it works using characters instead of
tokens. Scannerless parsing introduces additional ambiguities which are handled using reject
productions. Reject productions enable the parser to reject ambiguous stacks if applicable.
Rejectable stack nodes need to be processed in a specific order and after all other stacks are
processed. For this SGLR uses an additional collection called for-actor-delayed.

3



2.4 The Algorithm
The remainder of this section summarizes the relevant parts of each function in the SGLR
algorithm.

PARSE: The main parse loop. active-stacks is initialized after which PARSE-CHARACTER
is called for each character in the input.

PARSE-CHARACTER: A parse round in which a single character is parsed. All active stacks
are copied to for-actor. Stacks are removed from for-actor and for-actor-delayed
which are then processed in ACTOR. SHIFTER is called when both for-actor collections are
empty.

ACTOR: Process actions for an active stack. All applicable actions are queried from the
parse table. Shift actions are stored in for-shifter. Reduce actions are handled directly
in DO-REDUCTIONS.

DO-REDUCTIONS: Perform a reduce action for a given active stack. First, all possible reduc-
tion paths in the graph are collected. Then, for each path, the origin stack node is determined
and its child parse nodes are collected. These are passed on in a call to REDUCER.

REDUCER: Perform a reduce action for a given path. First, a new parent parse node is
created for all child parse nodes on the path. Afterward, this parse node has to be added to
a link from a stack node with the corresponding goto state to the origin stack node. Three
different scenarios are considered to achieve this.

1. The first scenario considers the case where there is no active stack with the goto
state. In this case, a new active stack is created with a link to the origin stack. This new
active stack is now potentially applicable for actions, so it is added to either for-actor or
for-actor-delayed depending if it is rejectable. The other two scenarios handle the case
when there already exists a goto stack with the target state.

2. In the second scenario, the goto stack has a direct link to the origin stack. In this
case, the parse node is simply added to the existing link, introducing an ambiguity.

3. The last scenario handles the case when there is no direct link. In this case, a new link
is added from the goto stack to the origin stack. Since this possibly introduces new reduction
paths, all already processed active stacks have to be reconsidered. The re-processing is done
in DO-LIMITED-REDUCTIONS, handling reduction paths through the new link.

DO-LIMITED-REDUCTIONS: Perform a reduce actions for the given active stack for paths
through the new link. This is done similarly to DO-REDUCTIONS, but here the paths are
additionally filtered on the through-link.

SHIFTER: Perform all shift actions for a single character. All shift actions in for-shifter
are processed, possibly introducing new active stacks for the next parse round.

4



3 Method
This Section describes the process with which useful performance optimizations are elicited
and evaluated. This is done using an iterative approach consisting of the following five steps:
Identifying a bottleneck, finding an optimization to improve this bottleneck, implementing
the optimization, verifying its correctness, and finally evaluating the optimization. These
steps are discussed in more detail in the rest of this Section. Only a single optimization
is considered in one iterative cycle to not allow other optimizations to interfere with its
evaluation. Additionally, multiple cycles might be needed for a single optimization to further
tune its performance.

The first step is to identify bottlenecks. This is useful since bottlenecks usually indicate
parts of the system that benefit the most from optimizations. Bottlenecks are identified
using a profiler, in this case, the free and open-source async-profiler2 is used. async-profiler
supports generating flame graphs3, which gives a visual overview of where the most time is
spent in a process.

In the second step, optimizations are discovered to improve the bottlenecks found in the
first step. Though some bottlenecks might have a simple or known solution, it can be the
case that there is no clear-cut improvement. In this case, finding an optimization can be
trickier since it relies more on creativity. For these bottlenecks, improvements are mostly
found by detecting parts where unnecessary or duplicate work is done. Additionally, JSGLR2
contains measurements that can help with tuning optimizations. These measurements can
be extended if necessary. A subset of these measurements can be found in Appendix B.

After having found an optimization it is implemented in JSGLR2. Each optimization is
implemented in a separate git branch to simplify evaluating each optimization separately.
The implementations conform as much as possible to JSGLR2’s modular architecture to
simplify both the integration into different parser variants and the combination of optimiza-
tions.

The last two steps are to verify the correctness and evaluate the performance of the
optimization. Verification is done using the existing integration tests in JSGLR2. The
evaluation is done using the evaluation suite for JSGLR2. The evaluation suite and the
benchmark setup are described in more detail in subsection 5.1.

2https://github.com/jvm-profiling-tools/async-profiler
3http://www.brendangregg.com/flamegraphs.html

5

https://github.com/jvm-profiling-tools/async-profiler
http://www.brendangregg.com/flamegraphs.html


4 Performance Optimizations
This section presents several performance optimizations for JSGLR2 with descriptions of
their implementations.

4.1 Merging Stack Collections
SGLR maintains three separate stack collections: active-stacks, for-actor and
for-actor-delayed. for-actor in conjunction with for-actor-delayed are used to iter-
ate over active-stacks. for-actor-delayed is ordered to handle reject productions, as
opposed to the other collections which are unordered.

Since for-actor and for-actor-delayed are only used to iterate over active-stacks,
they can be optimized by becoming iterators over active-stacks. This eliminates the need
to copy to- and remove stacks from both for-actor and for-actor-delayed.

This is implemented as a single array-based collection consisting of three segments: The
first segment represents for-actor-delayed, the second segment for-actor and the third
segment contains the remaining active stacks. An example of this representation can be
seen in Figure 2. Adding and removing stacks to for-actor is done by moving the second
cursor to the right or left respectively. Additionally, the first cursor has to be moved when
dealing with delayed stacks.

This ordering of segments is convenient since it avoids having to copy part of the array
when adding to the first or second segment. Adding stacks to the second segment is done
by first appending the new stack to the end of the array and then swapping it with the first
element of the third segment. This places the new stack at the end of the second segment
and the first element of the third segment is placed at the end. This is allowed since both the
second and third segments are unordered. The same swapping trick can be applied a second
time to add an element to the first segment. To maintain the order in the first segment the
new stack is then sorted in-place.

This segmentation has one other advantage, namely in the scenario in REDUCER where
all processed active stacks have to be considered. When using separate stack collections,
these stacks are found by iterating over all active stacks and then checking if they are not
contained in either for-actor or for-actor-delayed. These stacks exactly correspond to
the third segment, allowing for faster retrieval of these stacks.

Figure 2: An example of the three segments for the given stack collections.

6



4.2 Finding Stack Paths
The following few optimizations aim to improve the performance of finding paths in the
stack structured graph. All paths are first collected before being processed. This is done
since subsequent calls to REDUCER alter the graph.

4.2.1 Finding Paths with Through-Link

In DO-LIMITED-REDUCTIONS, SGLR needs to find paths that go through a specific link. In
JSGLR2 this is done by first finding all applicable paths, using the same method used for
DO-REDUCTIONS. Only afterward does it filter the paths that do not contain the link. This
means that JSGLR2 does extra work since it traverses the paths a second time to check if
they contain the through-link. Furthermore, it potentially stores unused paths.

This can be improved by keeping track of whether the current path contains the through-
link while finding paths. Paths are then only stored if they contain the through-link. This
way it only has to traverse each path a single time and no unused paths are stored. This is
implemented as a different method than the one used in DO-REDUCTIONS.

4.2.2 Skipping the Path Tree

JSGLR2 stores all found paths as a single tree, where each path corresponds to a leaf in the
tree. The child parse nodes of a specific path are obtained by traversing the tree from the
given leaf to the root. The children are collected in an array and then consumed by REDUCER
for further processing.

The creation of this intermediate tree can be completely skipped by directly creating
the arrays needed for REDUCER. This is implemented by keeping track of the current path
in an array while finding paths. Each time a link is visited, its parse node is inserted at its
corresponding position in this array. When the end of a path is found, the array contains
all its children, which is then copied and stored.

4.2.3 Collecting Paths

JSGLR2 uses an ArrayList to collect the found paths, which is newly instantiated for each
DO-REDUCTIONS and DO-LIMITED-REDUCTIONS call. Afterward, the paths are added one by
one. The JSGLR2 measurements have been extended to tune this collection. The new
measurements are pathsAdds and pathsMaxSize, recording the total amount of add calls
and the maximum size reached. As can be seen in Appendix B, there are a significant
amount of add calls. The maximum size is however relatively small.

An improvement is to re-use the same collection between DO-REDUCTIONS calls. This
removes the need to allocate and grow memory for each call, which is instead done by clearing
the collection. The same collection can not be re-used for DO-LIMITED-REDUCTIONS since
it is called recursively. The implementation extends the optimization from subsection 4.2.1
to differentiate between DO-REDUCTIONS and DO-LIMITED-REDUCTIONS calls. Additionally
using an ArrayDeque is considered over an ArrayList.

7



4.3 Limited Reductions for Source Stacks
In the third scenario in REDUCER as described in Section 2, SGLR needs to reconsider already
processed active stacks due to the newly created link. This is the case since the stack to
which the link is added might have parents, resulting in new possible reduction paths for
those parents. Due to the graph being directed, it is not trivial to find these parents which
considerably impacts performance.

This can be improved by keeping track of which active stacks are sources, i.e., stacks
without parents). For these stacks, no other stacks would need to be reconsidered. Keeping
track of source active stacks is relatively simple. The only way a parent can be added to
an active stack is in the first scenario in REDUCER. Here, stacks are added to a collection
of non-source stacks. Then in the third scenario, it is checked if the stack is contained in
this collection. If this is the case, the slow method has to be used. Otherwise, the new
improved method can be used. This collection is cleared at the start of each parse round in
PARSE-CHARACTER.

4.4 Simultaneous Parse Node Visiting
After a successful parse, JSGLR2 performs several checks on the resulting parse tree. It
does so by visiting its parse nodes in pre-order and post-order. Each check is performed in a
separate visit, where appropriate error and warning messages are generated along the way.
Additionally, some checks do not visit the children of specific parse nodes based on certain
stopping conditions.

This can be improved by performing all checks in a single visit so that the parse tree is
only traversed once. The implementation keeps track of which checks are currently active
to handle the unique stopping conditions for each check. For this, two different types of
stopping conditions are considered. The first is a hard stopping condition, which skips
visiting the child parse nodes for all checks. The second is a soft stopping condition, which
only disables the current check, still allowing the other checks to visit the children. The
check is then re-enabled when the corresponding parse node is post-visited.

8



5 Results
This section provides the benchmark setup and results for the previously described optimiza-
tions. The figures show comparisons of the optimizations to their original implementation.
Complete benchmark data including the different parser variants implemented in JSGLR2
[9, 1, 14] can be found in Appendix C.

5.1 Setup
All benchmarks are performed using the open-source evaluation suite for JSGLR24. The
evaluation suite allows simple configuration of which parser variants, languages, and source
files should be evaluated. The optimizations are evaluated by batch processing source files,
including the imploding of parse trees. The source files are obtained from open-source
projects from three different languages: Java, WebDSL [4] and SDF3 [2]. The complete
sources corpus for each language can be found in Appendix A.

Internally, the evaluation suite uses the Java Microbenchmark Harness5 (JMH) to execute
the benchmarks. JMH first performs a specified number of warm-up iterations, allowing time
for the JVM to perform compiler optimizations. Afterward, it runs the given benchmark for
a specified number of iterations. In this case, the benchmarks were run with 10 warm-up
and 10 benchmark iterations.

The figures in the remainder of this section are generated on a machine with an Intel
Core i7 processor. To improve consistency, the processor was set to a constant clock speed
of 2.8 GHz, with Intel Turbo Boost and Hyper Threading disabled. In total 8 GB DDR4
RAM was available to the processor. The operating system used was Manjaro Xfce with
kernel version 5.10.36-2-manjaro. Furthermore, OpenJDK version 1.8.0_292 and Apache
Maven version 3.8.1 were used. Other processes were reduced as much as possible while
running the benchmarks.

To obtain consistent results across different runs of the evaluation suite, the JVM JIT
compiler was serialized with the application. This is done by providing the -XBatch com-
mand line option to the JVM, which is an option specific to the HotSpot JVM. Normally
the compiler would run in a separate thread, which would result in the compiler optimizing
different functions each run depending on the OS’s thread scheduler.

4https://github.com/jussyDr/jsglr2evaluation
5https://openjdk.java.net/projects/code-tools/jmh/

9

https://github.com/jussyDr/jsglr2evaluation
https://openjdk.java.net/projects/code-tools/jmh/


5.2 Merging Stack Collections.
As shown in Figure 3, this optimization resulted in an overall performance improvement. Due
to its implementation, it is not clear how much each aspect of the optimization contributed
to this improvement. It could be the case that only the faster retrieval of processed active
stacks or only the eliminated need to copy and remove elements lead to this improvement.

Figure 3: Merging stack collections

5.3 Finding Paths with Through-Link
Figure 4 shows that this optimization increased the performance for all tested languages.

Figure 4: Finding paths with through-link.

10



5.4 Skipping the Path Tree
As is apparent in the left plot of Figure 5, directly creating the child arrays of paths degrades
the performance. A possible explanation of why this happens is that the collection of a path’s
children now happens while finding paths. This means that in the case that the paths need
to be filtered based on a through-link, it potentially spends time collecting the children for
unused paths. Originally this happened only after the paths had been filtered.

Figure 5: Skipping the path tree (left) applied to finding paths with through-link (right).

By applying the optimization from Section 5.3 this can be negated. This way the paths
are already filtered while finding the paths, avoiding the collection of children for unused
paths. A comparison with the optimization from Section 5.3 is shown in the right plot of
Figure 5. As can be seen, this resulted in a very minor additional improvement.

11



5.5 Collecting Paths
As shown in Figure 6, both re-using the paths collection and using an ArrayDeque resulted in
performance improvements. The right plot is compared with the optimization from Section
5.3. The improvement by using an ArrayDeque instead of an ArrayList is likely due to a
more efficient add operation.

Figure 6: Re-using the paths collection (left) represented as an ArrayDeque (right).

5.6 Limited Reductions for Source Stacks
This optimization resulted in a significant performance improvement as can be seen in Figure
7. This shows that the newly created links are often added to source stacks for the tested
languages.

Figure 7: Limited reductions for source stacks.

12



5.7 Simultaneous Parse Node Visiting
Figure 8 shows that this optimization has a positive performance improvement. Only the
checks that are used for all parser variants are considered. Further possible improvements
for the recovery variant [1] can be achieved by including checks that are unique to this
variant.

Figure 8: Simultaneous parse node visiting.

5.8 Combined Improvement
Figure 9 show the performance of all optimizations combined. The improvement is less
than the sum of individual improvements since some optimizations interfere with each other.
Depending on the language, a speed-up of 9% up to 20% is achieved for the Elkhound parser
variant and a speed-up of 26% up to 44% for the other parser variants. This performance
difference is because most optimizations are in the non-deterministic part of the parser, the
usage of which is reduced in the Elkhound parser variant.

Figure 9: Combined improvement.

13



6 Responsible Research
The reproducibility of results is important to validate the research. Two main aspects impact
the reproducibility: The applied modifications and the evaluation. All modifications are
described in detail in Section 4 and are publicly available6, enabling other parties to replicate
them. The evaluation setup is detailed in Section 5.1. All components of the evaluation are
publicly available, again enabling other parties to replicate the exact evaluation.

7 Conclusion
This paper presented several performance optimizations for JSGLR2 to improve its practi-
cality. Depending on the language, a speed-up of 9% up to 20% is achieved for the Elkhound
parser variant and a speed-up of 26% up to 44% for the other parser variants. JSGLR2’s
modular architecture in general simplified implementing optimizations by being able to op-
timize all variants with a single modification. However, some optimizations required extra
work to conform to the architecture.

7.1 Future Work
JSGLR2’s modular architecture likely introduces a performance overhead. This overhead can
be avoided by applying feature-oriented software development (FOSD). Using FOSD, non-
modular parser variants are automatically generated based on a modular implementation.

While this work focused on optimizations that improve performance, possible optimiza-
tions can be discovered that improve the memory usage of JSGLR2. An example would be
to use primitive java collections when applicable. Default generic Java collections box prim-
itive values into an object, which introduces additional overhead. This boxing is avoided by
using primitive collections. An example where this could be applied is when querying the
goto state from the parse table, which is currently done using an Integer to Integer map.

6https://github.com/jussyDr/jsglr

14

https://github.com/jussyDr/jsglr


References
[1] Maartje de Jonge, Lennart C. L. Kats, Eelco Visser, and Emma Söderberg. Natural

and Flexible Error Recovery for Generated Modular Language Environments. ACM
Transactions on Programming Languages and Systems, 34(4):15, 2012. URL: http:
//doi.acm.org/10.1145/2400676.2400678.

[2] Luis Eduardo de Souza Amorim and Eelco Visser. Multi-purpose Syntax Definition
with SDF3. In Frank S. de Boer and Antonio Cerone, editors, Software Engineer-
ing and Formal Methods - 18th International Conference, SEFM 2020, Amsterdam,
The Netherlands, September 14-18, 2020, Proceedings, volume 12310 of Lecture Notes
in Computer Science, pages 1–23. Springer, 2020. URL: https://doi.org/10.1007/
978-3-030-58768-0_1.

[3] Jasper Denkers. A Modular SGLR Parsing Architecture for Systematic Performance
Optimization. Master’s thesis, Delft University of Technology, 2018. URL: http:
//resolver.tudelft.nl/uuid:7d9f9bcc-117c-4617-860a-4e3e0bbc8988.

[4] Danny M. Groenewegen, Zef Hemel, Lennart C. L. Kats, and Eelco Visser. WebDSL: a
domain-specific language for dynamic web applications. In Gail E. Harris, editor, Com-
panion to the 23rd Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA 2008, October 19-13, 2007,
Nashville, TN, USA, pages 779–780. ACM, 2008. URL: http://doi.acm.org/10.
1145/1449814.1449858.

[5] Lennart C. L. Kats, Eelco Visser, and Guido Wachsmuth. Pure and declarative syntax
definition: paradise lost and regained. In William R. Cook, Siobhán Clarke, and Mar-
tin C. Rinard, editors, Proceedings of the 25th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2010,
pages 918–932, Reno/Tahoe, Nevada, 2010. ACM. URL: http://doi.acm.org/10.
1145/1869459.1869535.

[6] James R. Kipps. GLR Parsing in Time O(n3), pages 43–59. Springer, Boston, MA,
USA, 1991. URL: https://doi.org/10.1007/978-1-4615-4034-2_4.

[7] Donald E. Knuth. On the translation of languages from left to right. Information
and Control, 8(6):607–639, 1965. URL: https://doi.org/10.1016/S0019-9958(65)
90426-2.

[8] Bernard Lang. Deterministic Techniques for Efficient Non-Deterministic Parsers. In
Jacques Loeckx, editor, Automata, Languages and Programming, pages 255–269, Berlin,
Heidelberg, 1974. Springer.

[9] Scott McPeak and George C. Necula. Elkhound: A Fast, Practical GLR Parser Gen-
erator. In Evelyn Duesterwald, editor, Compiler Construction, pages 73–88, Berlin
Heidelberg, 2004. Springer.

[10] Terence Parr, Sam Harwell, and Kathleen Fisher. Adaptive LL(*) Parsing: The Power
of Dynamic Analysis. volume 49, pages 579–598, 2014. URL: https://dl.acm.org/
doi/10.1145/2714064.2660202.

15

http://doi.acm.org/10.1145/2400676.2400678
http://doi.acm.org/10.1145/2400676.2400678
https://doi.org/10.1007/978-3-030-58768-0_1
https://doi.org/10.1007/978-3-030-58768-0_1
http://resolver.tudelft.nl/uuid:7d9f9bcc-117c-4617-860a-4e3e0bbc8988
http://resolver.tudelft.nl/uuid:7d9f9bcc-117c-4617-860a-4e3e0bbc8988
http://doi.acm.org/10.1145/1449814.1449858
http://doi.acm.org/10.1145/1449814.1449858
http://doi.acm.org/10.1145/1869459.1869535
http://doi.acm.org/10.1145/1869459.1869535
https://doi.org/10.1007/978-1-4615-4034-2_4
https://doi.org/10.1016/S0019-9958(65)90426-2
https://doi.org/10.1016/S0019-9958(65)90426-2
https://dl.acm.org/doi/10.1145/2714064.2660202
https://dl.acm.org/doi/10.1145/2714064.2660202


[11] D. J. Salomon and G. V. Cormack. Scannerless NSLR(1) Parsing of Programming Lan-
guages. PLDI ’89, page 170–178, New York, NY, USA, 1989. Association for Computing
Machinery. URL: https://doi.org/10.1145/73141.74833.

[12] Masaru Tomita. Graph-structured Stack and Natural Language Parsing. In 26th Annual
Meeting of the Association for Computational Linguistics, pages 249–257, Buffalo, New
York, USA, 1988. Association for Computational Linguistics. URL: https://www.
aclweb.org/anthology/P88-1031.

[13] Eelco Visser. Scannerless Generalized-LR Parsing. Technical report, Programming
Research Group, University of Amsterdam, 1997. URL: https://eelcovisser.org/
publications/1997/Visser97-SGLR.pdf.

[14] Tim A. Wagner and Susan L. Graham. Incremental Analysis of Real Programming
Languages. SIGPLAN Not., 32(5):31–43, 1997. URL: https://doi.org/10.1145/
258916.258920.

16

https://doi.org/10.1145/73141.74833
https://www.aclweb.org/anthology/P88-1031
https://www.aclweb.org/anthology/P88-1031
https://eelcovisser.org/publications/1997/Visser97-SGLR.pdf
https://eelcovisser.org/publications/1997/Visser97-SGLR.pdf
https://doi.org/10.1145/258916.258920
https://doi.org/10.1145/258916.258920


A Test sets
This section show the complete test set for each language used for the measurements and
benchmarks. Each source project is limited to thirty files to speed up the evaluation for
large projects.

Language Source Files Lines Size (bytes)

Java apache-commons-lang 30 6626 271354
netty 30 3609 130151

WebDSL webdsl-yellowgrass 30 3665 100600

SDF3
nabl 30 1175 27736
dynsem 4 454 10248
flowspec 20 685 14154

Table 1: Test sets.

B Measurements
This section show a subset of the parsing measurements in JSGLR2 for the standard parser
variant. The extended measurements for collecting paths are also included.

Language Java WebDSL SDF3
characters 401501 100600 52138
activeStacksAdds 2163018 514594 322731
activeStacksMaxSize 75 57 40
activeStacksIsEmptyChecks 803182 201290 104438
activeStacksFindsWithState 2476014 571677 368041
activeStacksForLimitedReductions 198914 41168 33463
activeStacksAddAllTo 401561 100630 52192
activeStacksClears 401561 100630 52192
forActorAdds 2140308 500853 312492
forActorDelayedAdds 22710 13741 10239
forActorMaxSize 33 13 8
forActorDelayedMaxSize 1 4 4
forActorContainsChecks 1611485 257596 212655
forActorNonEmptyChecks 2564579 615224 374923
actors 2158441 513581 322403
doReductions 1636543 386465 227546
doLimitedReductions 695080 111328 80146
reducers 1917282 444890 278719
pathsAdds 4559872 794224 480211
pathsMaxSize 33 13 13

Table 2: Parsing measurements.

17



C Benchmarks
This section shows the batch parsing throughput results from the benchmarks. The results
are normalized to a thousand characters per second. The other parser variants implemented
in JSGLR2 are also included.

Variant Java WebDSL SDF3
Score Low High Score Low High Score Low High

standard 383 382 383 458 456 459 406 405 406
elkhound 497 495 498 587 586 588 491 490 491
recovery 326 316 336 385 385 386 318 317 318
incremental 277 265 290 340 340 341 290 290 291

Table 3: Original implementation.

Variant Java WebDSL SDF3
Score Low High Score Low High Score Low High

standard 397 397 398 465 465 465 404 404 405
elkhound 520 519 521 602 601 602 504 504 505
recovery 352 345 359 414 413 414 358 358 359
incremental 293 281 305 347 347 348 290 289 290

Table 4: Merging stack collections.

Variant Java WebDSL SDF3
Score Low High Score Low High Score Low High

standard 396 395 397 476 475 477 416 416 416
elkhound 511 511 512 594 594 594 509 509 510
recovery 346 337 355 400 400 400 334 333 334
incremental 315 302 329 380 380 381 319 318 319

Table 5: Finding paths with through-link.

18



Variant Java WebDSL SDF3
Score Low High Score Low High Score Low High

standard 373 372 373 452 452 452 405 405 406
elkhound 488 487 489 583 583 584 495 494 496
recovery 316 307 326 374 374 374 339 338 339
incremental 270 258 283 334 334 334 281 281 282

Table 6: Skipping the path tree.

Variant Java WebDSL SDF3
Score Low High Score Low High Score Low High

standard 399 398 400 479 478 479 419 418 420
elkhound 520 519 522 597 597 598 518 517 519
recovery 344 335 355 391 390 391 353 354 352
incremental 331 317 347 379 379 379 325 325 326

Table 7: Skipping the path tree applied to finding paths with through-link.

Variant Java WebDSL SDF3
Score Low High Score Low High Score Low High

standard 410 408 411 498 497 499 432 431 433
elkhound 513 512 514 589 587 590 513 512 513
recovery 354 344 364 415 415 416 344 344 345
incremental 322 310 336 392 392 392 329 328 330

Table 8: Re-using the paths collection.

Variant Java WebDSL SDF3
Score Low High Score Low High Score Low High

standard 400 399 400 474 473 475 419 418 419
elkhound 506 505 506 594 593 595 503 503 503
recovery 340 332 350 399 395 403 331 330 331
incremental 287 274 301 349 349 349 294 294 295

Table 9: Collecting paths using an ArrayDeque.

Variant Java WebDSL SDF3
Score Low High Score Low High Score Low High

standard 450 450 451 515 514 516 450 449 451
elkhound 543 542 544 604 603 605 520 519 520
recovery 366 366 367 433 432 433 373 372 373
incremental 364 361 367 406 405 407 343 343 344

Table 10: Limited reductions for source stack nodes.

19



Variant Java WebDSL SDF3
Score Low High Score Low High Score Low High

standard 396 396 397 471 470 471 425 424 425
elkhound 524 523 525 614 613 615 528 527 529
recovery 336 326 346 399 398 400 333 333 333
incremental 286 274 299 348 348 349 299 298 300

Table 11: Simultaneous parse node visiting.

Variant Java WebDSL SDF3
Score Low High Score Low High Score Low High

standard 517 516 518 591 590 591 530 529 530
elkhound 571 564 578 638 637 639 590 590 590
recovery 452 449 455 484 484 484 446 446 447
incremental 399 395 403 443 442 444 389 388 390

Table 12: All optimizations combined.

20


	Introduction
	Scannerless Generalized-LR Parsing
	LR Parsing
	GLR Parsing
	Scannerless Parsing
	The Algorithm

	Method
	Performance Optimizations
	Merging Stack Collections
	Finding Stack Paths
	Finding Paths with Through-Link
	Skipping the Path Tree
	Collecting Paths

	Limited Reductions for Source Stacks
	Simultaneous Parse Node Visiting

	Results
	Setup
	Merging Stack Collections.
	Finding Paths with Through-Link
	Skipping the Path Tree
	Collecting Paths
	Limited Reductions for Source Stacks
	Simultaneous Parse Node Visiting
	Combined Improvement

	Responsible Research
	Conclusion
	Future Work

	Test sets
	Measurements
	Benchmarks

