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Abstract

We study cluster sizes in supercritical d-dimensional inhomogeneous percolation mod-
els with long-range edges —such as long-range percolation— and/or heavy-tailed
degree distributions —such as geometric inhomogeneous random graphs and the age-
dependent random connection model. Our focus is on large deviations of the size of
the largest cluster in the graph restricted to a finite box as its volume tends to infin-
ity. Compared to nearest neighbor Bernoulli bond percolation on Z?, we show that
long edges can increase the exponent of the polynomial speed of the lower tail from
(d—1)/dtoany ¢, € ((d —-1)/d, 1). We prove that this exponent ¢, also governs the
size of the second-largest cluster, and the distribution of the size of the cluster con-
taining the origin C(0). For the upper tail of large deviations, we prove that its speed
is logarithmic for models with power-law degree distributions. We express the rate
function via the generating function of |C(0)|. The upper tail in degree-homogeneous
models decays much faster: the speed in long-range percolation is linear.
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1 Introduction

For supercritical nearest neighbor Bernoulli bond percolation on Z? (NNP), it is a
classical result that the graph restricted to a volume-#z box around the origin contains
a giant, i.e., a linear-sized component C\’, with probability tending to one as n — oo.
Its number of vertices satisfies a Law of Large Numbers (LLN): |C|/n converges to
0 := Pnnp(0 <> 00) almost surely. Regarding large deviations of |C\)’], the speed is
known in all dimensions d > 2, and an interesting discrepancy occurs: the lower tail
decays slower than the upper tail.

For the upper tail, the event {|C}’| > (0 + ¢)n} requires linearly more edges to
be present than expected, which comes at an exponential cost. So, the speed of large
deviations is linear in the volume of the box: for each p € (8, 1), there exist constants
Cy > cp > Osuch that foralln > 1,

1
—Cp < ;logIP’NNp(|C§l”| > pn) < —cp. (1.1)

We refer to [31, 33, 57] for the speed of large deviations of a closely related quantity,
and to Theorem 2.4 below for the precise result. For the lower tail, the 2 (n (d-Dy/dy
many edges on the “outer surface boundary” of a linear-sized cluster have to be absent.
So, the speed of the lower tail is sublinear [69]: foreach p € (0, 0), there exist constants
C;) > c"o > 0 such that

1
— C,/o < n(d——l)/dlogPNNP(lcy)l < pn) < —C;). (1.2)

We can interpret that the speed of the lower tail is caused by surface tension (more
precise results are known for closely related quantities, see [6, 21, 31, 33] and
Section 2 below).

In this paper, we study large deviations of the giant in long-range percolation [71],
and also in models with regularly-varying edge-length— and degree distributions. Our
driving question is:

How do high-degree vertices and long-range edges influence Q)

the tails of large deviations of the giant component?

We describe three new phenomena that encompass the answer. First, high-degree
vertices slow down the upper tail enormously: the speed becomes logarithmic. Second,
long-range edges speed up the lower tail: the speed is still polynomial, but is no longer
determined by surface tension alone. Since the lower tail decays much faster than the
upper tail, the discrepancy of speeds is the opposite of the one in NNP. Third, we
prove that the speed of the lower tail is closely related to the size of the second-largest
connected component, and to the cluster-size distribution of the origin in the infinite
model. We explain these phenomena after motivating this topic with an application
and an informal model description.
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Large deviations of the giant in supercritical KSRGs

Fig.1 Simulations of 2-dimensional long-range percolation (LRP), a 2-dimensional geometric inhomoge-
neous random graph (GIRG), and a 1-dimensional soft Poisson—-Boolean model (sPBM). In the sPBM, the
y-axis reflects the vertex marks. The presence of long edges in these models leads to delocalized compo-
nents, and affects the distributions of the sizes of three components: the speed of the lower tail of large
deviations of the largest component (blue), the size of the second-largest component (red), and the distri-
bution of the size of the cluster containing the origin (green) are all governed by the exponent ¢, which is
defined in (1.4). The upper tail of large deviations of the giant’s size has linear speed in (mark)-homogeneous
models as LRP, and logarithmic speed in inhomogeneous models as GIRG and sPBM (color figure online)

Motivation. Many real networks have been found to have underlying geometry, inho-
mogeneous degrees, clustering, and long-range connections [5, 66]. In biological
contexts, the component sizes (under percolation of an initial graph) correspond to
the final size of a Reed-Frost or SIR epidemic on the network [1, 10, 58], and to
activity patterns in brain networks [20, 28, 53]. In the context of statistical physics,
there are many models with long-range interactions, such as models of gravitational
and charged systems, turbulent hydrodynamic systems, dipolar systems, and two-
dimensional elasticity, see among others [19, 25, 26] for examples. In the last decade
many random graph models have been invented to mimic real networks and systems
with long-range interactions, see the next paragraph. For many of these models, an
analysis of basic properties of their component structure —such as their approximate
size-distribution— has been lacking in the literature. In this paper we fill this gap and
develop new, robust proof techniques that allow for the presence of long-range edges
and inhomogeneous degrees.

Spatial inhomogeneous percolation models. The most well-known spatial degree-
inhomogeneous models are hyperbolic random graphs [54], geometric inhomogeneous
random graphs [16], the (soft) Poisson—Boolean model with random radii [35, 43],
and the age-dependent random connection model [36]. The degree-inhomogeneity
leads to arbitrarily long edges. While the degree distribution of long-range percolation
(LRP) is light-tailed, LRP also contains long edges. The presence of long edges leads
to components that might be ‘delocalized in space’, see Figure 1. Our formal setup,
introduced informally now, captures these models all at once.

The vertex sets are formed by a d-dimensional ergodic point process: either Z¢ or a
homogeneous Poisson point process (PPP) on R¥ . Each vertex u € Vat location x,, is
equipped with an independent and identically distributed (iid) mark w, > 1, which is
Pareto-distributed for degree-inhomogeneous models, and a constant for long-range
percolation. The expected degree of a vertex is proportional to its mark (sometimes
also called ‘weight’). Conditionally on all vertex locations and marks {(x,, wy)},ey,
each edge {u, v} is present independently with probability ¢ (8, wy, wy, |x, — Xy ).
The (model-dependent) edge-connectivity function ¢ is non-increasing in the distance,
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non-decreasing and symmetric in both marks. The parameter § > 0 controls the edge-
density. We often assume that the model is supercritical, i.e., B > B, where S is the
infimum over 8 > 0 such that the graph contains an infinite connected component
almost surely.

Law of Large Numbers for the size of the giant. In this general model class, even the
existence of a linear-sized component in finite boxes is not guaranteed/known in the
whole supercritical regime. When ¢ allows for sufficiently many long edges, we prove
existence and uniqueness of the giant for all 8 > .. Its size satisfies a Law of Large
Numbers: |C|/n — 6 := P(0 <> 00) in probability (for some cases the convergence
holds almost surely). The long edges that are necessary for this LLN, come either from
a slow decay of the connectivity function ¢ as ||x, — x,|| — 00, or from the presence
of high vertex marks, or from a combination of both.

Upper tail of large deviations. We now state informally our result on the upper tail.

Meta-theorem 1.1 (High-degree vertices cause slow upper tails). Consider a spatial
inhomogeneous percolation model with regularly-varying degree distribution, so that
|C\V|, the size of the giant, satisfies a Law of Large Numbers. The upper tail of |C\)|
has logarithmic speed. We identify the non-negative rate-function I(-) such that for
allp € (6,1),

—inf I(r) < liminf log P(IC)’| > pn)
o ]

r>p n— ogn
< lim sup logP(IC’| > pn) = — inf I(r) = I (p). (1.3)
n—00 n rzp

On the contrary, the speed in Bernoulli bond percolation or long-range percolation
on 74 is linear.

We formalize Meta-theorem 1.1 in Theorem 2.4 and Theorem 2.5 below. Meta-
theorem 1.1 is the first result that identifies the rate function for the size of the giant
in a spatial random graph model. Moreover, the rate function for the giant is not even
known for many classical non-spatial random graph models such as the rank-one
inhomogeneous random graph with iid Pareto weights [22, 67], and the configuration
model with iid Pareto degrees [63]. Some known results for non-spatial graphs are the
following: The LDP of the giant in the configuration model with fixed degree sequence
has linear speed when linear-degree vertices are absent [13]; in sparse inhomogeneous
random graphs with bounded weights the speed is linear as well [8], similar to sparse
Erd6s-Rényi random graphs [9, 68]. A work in progress by the first author and Zwart
shows an LDP for the giant in inhomogeneous random graphs with iid heavy-tailed
vertex weights [50].

We briefly explain the reason for the logarithmic speed: with polynomially decaying
probability, the vertex set contains a few hubs: vertices with mark ®(n). These hubs
connect to the giant and to linearly many small components. Small components do not
merge with the giant with a probability that is exponentially small in their size and in
the number of hubs. This allows us to express the rate-function /(-) via the generating
function of the cluster-size distribution of the infinite model.

@ Springer



Large deviations of the giant in supercritical KSRGs

A similar phenomenon occurs for the sum of 7 iid (fully asymmetric) Pareto random

variables: this sum also satisfies an LDP with logarithmic speed of the upper tail.
Having a single summand whose value is linear in n comes at a polynomial cost. On
the contrary, the lower tail for such variables has linear speed because linearly many
summands need to be small [65].
Lower tail of large deviations. Similar to the sum of iid Pareto random variables, the
lower tail of the size of the giant decays much faster than the upper tail. However,
due to the underlying geometry, the speed is not linear, but polynomial. Contrary to
NNP in (1.2), in models with long-range edges the speed is not determined by surface
tension alone. Instead, the speed is given by the solution of a variational problem that
describes the most likely way that a box of volume n, denoted by A, is isolated from
its complement A§ [48]. For most edge-connectivity functions ¢, the probability that
A, is isolated decays as exp(—© (n%*)) for some exponent ¢, € [0, D! The exponent
¢, can also be determined via the expected size of the downward vertex boundary that
we define now. We say that the edge {u, v} = {(x,, wy,), (xy, wy)} is a ‘downward
edge’ from u if w, > w,. We define?

10g]E[|{u € A, : u has a downward edge to A,‘;}|]

Ly = lim
n—o00 logn

, 1.4
The restriction of counting vertices with downward edges to A§ is necessary for some
(but not all) edge-connectivity functions ¢. This excludes counting (potentially many)
vertices on the vertex boundary that are connected by an edge to a small number of high-
mark vertices spatially close to A,,. In NNP all marks are identical and ¢, = (d —1)/d:
the expectation in ¢, is governed by surface tension. As we will see, ¢, provides the
right generalization of surface tension to spatial inhomogeneous percolation models
with long edges. For these latter models, ¢, = max({iong, (d — 1)/d), where?

log E[}{u € Ay2 ¢ u has a downward edge to AZ}!])
(1.5)

glong = nll>n(;o (0 \% logn

describes the number of vertices incident to long downwards edges of length €2 (n'/4).
The value of {jong can be explicitly computed based on the exact model specifications.
Importantly, Zjong can be larger than (d — 1)/d for any fixed d € N. In that case,
¢« = Clong and long edges speed up the decay of the lower tail of large deviations.

Meta-theorem 1.2 (Long edges speed up the lower tail). Consider a supercritical
spatial inhomogeneous percolation model so that |C\)|, the size of the giant, satis-
fies a Law of Large Numbers, ie., {long > 0. Assume that the expected downward
vertex boundary in (1.4) has size ® (n®*). For each p € (0, 0), there exist constants

! For some connectivity functions ¢, slowly-varying correction factors appear inside the “®(-)” in the
exp-function.

2 The limits in the definitions of {x and long are well-defined in the models that we study. We will never
use {long When it equals 0. The truncation ensures that the limit always exists.
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C, > ¢, > 0 such that for alln > 1,
1
-C, < E1og]P>(|c;,'>| < pn) < —cp. (1.6)

When the expected downward vertex boundary has slowly-varying correction factors,
(potentially different) slowly-varying correction factors appear in the lower bound.

We formalize Meta-theorem 1.2 in Theorem 2.7. Meta-theorem 1.2 implies the
existence of the giant with stretched exponential error probability, which is novel
for several spatial inhomogeneous percolation models mentioned above on page 3.
Moreover, this result includes long-range percolation and improves upon the currently
known best bound there as well, as we explain now.

In long-range percolation, two vertices x,y € Z< are connected by an edge
independently with probability ©(1 A [lx — y[|7%¢) as lx — y|| — oo, for a long-
range parameter ¢ > 1. An elementary computation shows that {jopg = 2 — o, and
e = max(2 —a, (d — 1)/d). In [14], Biskup showed that there exists 6 > 0 such that
P(IC| < 8n) < exp ( — n*7%7°(). Meta-theorem 1.2 improves upon [14] in two
ways when 2 — o = {jong > (d — 1)/d. First, the power of n in the exponent in (1.6)
has no o(1)-term. Second, the decay in (1.6) holds for arbitrary p € (0, 6), instead of
a small constant §.

Returning to the general model setting, we give some intuition why jong drives
the lower tail when {jong > (d — 1)/d. The definition of Zjong in (1.5) tells us that
A, contains about ® (néln¢) many vertices that are incident to long edges of length
Q(n'/?). We partition A,, into subboxes of size ® (n' ~%lone), 50 that a subbox typically
contains constantly many vertices incident to these long edges. Then, we couple the
graph with an ERRG with large constant expected degree. In this coupling, each vertex
corresponds to a local giant inside one of the ® (n¢n¢) many subboxes, and we use
the long edges to estimate the probability that two local giants are connected. Then
we apply the LDP on the giant in ERRGs by O’Connell [68]. This LDP has linear
speed in the number of ‘Erdds-Rényi vertices’, and yields that P(IC)’| < pn) <
exp ( -0 (n§1°“g)). We apply this coupling after proving the LLN, which allows us to
choose any p < 6.

The Law of Large Numbers is a crucial ingredient to make this sketch work. The

LLN ensures thatlocal giants in subboxes exist and have the right size. We first establish
the existence of the giant via two multi-scale renormalization schemes. To obtain the
right size for the giant, it suffices to prove an upper bound on the cluster-size decay
P(k < |C,(0)],0 ¢ C") in finite boxes [45, 48].
Cluster-size decay and second-largest component. In our third main result, we prove
that ¢, also governs the cluster-size decay of the origin and the size of the second-largest
connected component |C}?|. In [48], we already showed that both sizes are determined
by ¢, for some parameter settings of spatial inhomogeneous percolation models. In
this paper, in Theorems 2.9 and 2.10, we prove the same relation for complementary
parameter settings. Combining the present paper and [48], we obtain the following
result. Here, C(0) is the cluster of the origin in the model on R4,
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Large deviations of the giant in supercritical KSRGs

Meta-theorem 1.3 (Cluster-size decay and the second-largest component). Consider
a supercritical spatial inhomogeneous percolation model with {iong > (d — 1)/d.
Assume that the expected downward vertex boundary in (1.4) has size ® (n%). There
exist constants C > ¢ > 0 such that for all k > 1,

1 IC] n—00
_CfﬁlogP(k<|C(0)|<w)§—c, IP’(CSWSC — 1.
(1.7)

When the expected downward vertex boundary has slowly-varying correction factors,
(potentially different) slowly-varying correction factors appear in the lower bound.

For long-range percolation, Crawford and Sly proved a polylogarithmic upper

bound on CY in [24] with some unspecified exponent. Meta-theorem 1.3 finds the
correct exponent of this polylog. For supercritical NNP and other homogeneous per-
colation models, surface-tension-driven behavior for the speed of the lower tail, for the
cluster-size decay, and for the second-largest component is known, see Pisztora [69].
Moreover, when {jong < (d — 1)/d (equivalently ¢, = (d — 1)/d), we proved in [49]
that Meta-theorem 1.3 holds for long-range percolation with high edge-density. That
is, for (high edge-density) LRP with @ > 1 + 1/d, the cluster-size decay and the size
of the second-largest component are both driven by surface tension.
Another exponent determining the presence of a supercritical phase. Combined
with [48], this paper completes the following picture: ¢, = max({iong, (d — 1)/d)
in (1.4) is the correct generalization of the surface-tension exponent (d — 1)/d for
supercritical spatial inhomogeneous percolation models. It governs the size of the
second-largest component, the connected component containing a vertex at the origin,
and the lower tail of large deviations of the giant component.

The value of jong, defined in (1.5), is related to the effective decay exponent et
defined in [47]. In words, 2 — d.ff measures the size of the “long-edge” edge-boundary
of a large box. To define it, say that u € A, X [a, b] if its location x;, is in A, and its
mark wy, is in the interval [a, b], and let w;™ denote the maximal expected mark of a
vertex in A,,.

log E[| {edges between A, /2 x [0, wi™] and A§ x [0, w,‘?a"]}”

2— 8eff = lim
n—00 logn

(1.8)

When 2 — St > 0 and d = 1, [47] proves that the models studied here admit a

supercritical phase, i.e., B, < 00.If 2 — §efr < 0 and d = 1, there is no supercritical

phase [47]. For dimensions d > 2, . < oo holds in spatial inhomogeneous perco-

lation models, since such models at high edge-density dominate supercritical random

geometric graphs or Bernoulli bond percolation on Z¢. Further, when 2 — 8e¢ > 0,

in this model class annulus-crossing probabilities do not decay with the size of the
annulus. This is denoted by ic = 0 in the recent work in [47].

By its definition in (1.5), {iong describes the size of the “long-edge” downward
vertex-boundary. Hence, 2 — Jefr has the same sign as {jong throughout the model
class. Combining this observation with the results in [47], positivity/negativity of
{x = max(long, (d — 1)/d) also gives finiteness of 8. and Xc = 0 in this model class.

@ Springer



J. Jorritsma et al.

The difference between {1ong and 2 — Sefr becomes apparent as soon as degrees are
inhomogeneous. High-degree vertices can have many edges leaving the box. Edges
leaving the maximal vertex mark in A, can form the dominating contribution to the
edge-boundary. In this case, the formula in (1.8) is sensitive to truncation of marks
and to the actual presence of the high-mark vertex. This is expressed in the non-
concentration of the size of the edge-boundary around ® (n2~%). On the contrary,
the size of the downward vertex boundary is robust to random fluctuations of the
maximal degree, and its size concentrates around © (non2). Summarizing, we observe
that regarding presence/absence of supercritical phase, ¢t may be replaced by ¢,
(or Ziong), and that ¢, also drives the behavior of the three important distributions
mentioned above in Meta-theorems 1.2 and 1.3. In the following section we formalize
Meta-theorems 1.1-1.3 that answer the question (Q).

2 Formal statements of model and main results
2.1 Kernel-based spatial random graphs

We give a formal definition of a large class of spatial inhomogeneous percolation
models. This class appeared under various names in the literature. The first general
version of the model appeared in [52], called general geometric inhomogeneous ran-
dom graphs, and independently in [37] where it was called weight-dependent random
connection model. Afterwards, it was called spatial inhomogeneous random graphs
in [73]. Due to the important role of a kernel function driving the connection proba-
bilities, we called them kernel-based spatial random graphs in [48]. Since this paper
ties in with [48], we keep this last name here. This model class includes classical
homogeneous models such as Bernoulli bond percolation on Z¢ [17], long-range
percolation [71], and random geometric graphs [34, 42]. It also includes (degree-)
inhomogeneous models such as hyperbolic random graphs [54], the Poisson-Boolean
model with random radii [43], geometric inhomogeneous random graphs [16], scale-
free percolation [27], the age-dependent random connection model [36], and the
scale-free Gilbert model [44]. We give now a formal definition.

Definition 2.1 (Kernel-based spatial random graphs (KSRG)). Fix adimensiond > 1.
A KSRG is then a random graph defined as follows. Let the vertex set V be formed by
an ergodic point process: either Z¢ or a unit-intensity Poisson point process (PPP) on
R?. Given V, we equip each vertex u € V with an independent mark w, > 1 following
distribution Fy . Letx : Ri — R, beasymmetric function, called the kernel function.
Let ¢ : Ry — [0, 1] be non-decreasing, called the profile function, and let 8 > O.
Conditionally on the realization of the marked vertex set V = {(x,, wy)}uey C
RY x Ry, the edge {u, v} € V2 is present in the edge-set £ independently of other
edges with probability

p(u, v) :=Pw iy, p(u connected by an edge tov | V) = (p(,B~ (W, Wy) ) 2.1

B _xv”d
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We denote the obtained infinite graph by G = (V, &), and by G, = (V,,, &) the
graph induced by vertices in A, = [—n!/?/2,n1/4/2]9. We write C? for the ith
largest component of G,, and C, (0) and C(0) for the component containing a vertex
at the origin in G, and in G, respectively. We write P* for the Palm-measure when the
vertex set of a unit-intensity Poisson point process is conditioned to contain a vertex
at location x € RY with unknown mark.

We omit the subscripts W, k, ¢ of P as they are fixed and always clear from the
context. Sometimes we emphasize the dependency of P on the edge-density parameter
B by writing Pg. We define

0 =0(p) := }P’%(O < 00) = IP’%(|C(O)| =00) > 0. 2.2)
Then, the critical edge-density S, is given by

Be:=inf {B = 0:6(8) > 0}. (2.3)

We call the model subcritical if 8 < B, critical if 8 = ., and supercritical if 8 > f..
For a fixed choice of W, ¢, k, and d, some phases may not exist [38, 39].

Definition 2.1 allows for general kernel and profile functions. In the rest of the paper
we restrict them to a few choices that are commonly used, and which cover the specific
models in the introduction [16, 27, 36, 43, 44, 54, 71]. Our results remain valid for
(or can be extended to) other sufficiently similar kernels, profile functions, and mark
distributions. There is no additional technicality in the proofs if one includes slowly
varying functions in any of these functions, and the only change in the results is that
lower order correction terms (for instance, slowly varying functions multiplying the
polynomial exponent of cluster-size decay) appear in the results below. These lower-
order corrections can be traced throughout the proofs. For ease of presentation, we
thus work with functions satisfying the following assumption. We follow the notation
of our previous work [48], and write for any a, b, € R, a A b for min(a, b), and a Vv b
for max(a, b).

Assumption 2.2 We assume that the mark distribution is either W, = 1 for all v, or a
Pareto distribution with parameter T > 2:

- Fy(w) =P(W, >w)=w "D w>1 (2.4)

We assume that the profile function ¢ is either threshold or polynomial: for constants
pe@O1],a>1,let

Pihres(8) = plis=1y,  or  @poi(s) := p(1 As™%), (2.5)
and we assume that the kernel « is one of the following:
l/d)d

1/d
Kaum (w1, w2) = (w,"" 4+ w, or  Ko(wi, wp) = (wi vV w)(wy Awp),

(2.6)
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for a parameter o > 0. By abuse of notation, when W, = 1 for all v € V we say that
T = 00; when ¢ = @res We say that o« = 00; when k = kgym we say that o = 0.

Assumption 2.2 ensures that the model is parametrized so that the expected degree
of a vertex is proportional to its mark wheno < 7 —1. Therestrictionst > 2ando > 1
ensure that the graph is locally finite. Increasing t and/or « leads to less inhomogeneity
(lighter-tailed degrees and fewer long edges, respectively). All our results below for
T = oo except Theorem 2.4 can be directly extended to all distributions Fy with lighter
tail than any power-law in (2.4). The parameter p in (2.5) makes the model closed
under Bernoulli percolation of the edges, while the parameter o controls assortativity:
increasing o makes it more likely that high-degree vertices are connected by an edge.
The parameter o allows us to continuously interpolate between well-known models
that are special cases. Therefore, we call k,; the interpolation kernel, see more in [48].

Our earlier work [48] as well as the papers [37, 73] describe how the above models
can be reconstructed as special cases. In short, in long-range percolation, the vertex
set is Zd, and the marks are a constant, i.e., T = 00, and @« < o0. The kernel «q,
corresponding to the product wjwy, is used to obtain hyperbolic random graphs,
geometric inhomogeneous random graphs, and scale-free percolation [16, 27, 54],
kr—p to obtain the age-dependent random connection model [36], and kgym, With
additionally p = 1, to obtain the (soft) Poisson—-Boolean model [43]. The soft Poisson—
Boolean model uses the polynomial profile ¢p01, while the classical Poisson-Boolean
model uses the threshold profile ges. The kernel «g is sometimes called the max-
kernel, and is closely related to ksym, as ko < ksum < 2ko. Since the latter two kernels
are qualitatively similar, we simply set ¢ = 0 for kgm; we never prove® explicitly
results for xgum.

2.2 Dominant connection types

To make Meta-theorems 1.1-1.3 formal, we give the values of ¢, in (1.4) and jong
in (1.5) in terms of the model parameters for KSRGs satisfying Assumption 2.2. We
follow the notation of [48], and write ¢, and {jong as a maximum of simple expressions
of the parameters d, 7, o, 0. As we will show below, they take the form

& = max(Cshorts §11> Chis Shh)s  Slong = Max(&u, &t Shn)- 2.7

Each term inside the maxima describes the expected number of vertices with a certain
type of downward edge leaving A, . Each of these types contributes to the downward
vertex boundary of VN A, in (1.4). If the maximum is unique, the size of the downward
vertex boundary is dominated by exactly one of these four types. If the maximum is
non-unique, we say that the parameters are on a phase-transition boundary. We provide
some back-of-the-envelope calculations to compute ¢, in (1.4) and jone in (1.5) when
o < 0o. When o = 00, one has to take the limit in the expressions below as ¢ — oo.
The precise computations are given in [48].

3 The corresponding results are straightforward, in lower/upper bounds we use the corresponding bound
from kg < ksum < 2k, and constant factors do not matter in our calculations.
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Short edges — of constant length: there are roughly © (n?~1/?) vertices incident to
such edges crossing the boundary of A, in (1.4), giving the ‘surface-tension’ exponent

Cshort := (d = 1)/d. (2.8)

Next, we start counting ‘long edges’, that is, edges of length ® (n'/?) crossing the
boundary of A, and thus also contributing to {jone in (1.5). These edges fall into three
categories.

Low-low edges connect two vertices of constant (low) mark between A, 2 and AS.
The expected number of low-low edges is ®@(n - n - n~%), and this is the same as
the number of low-mark vertices having a low-low edge. Abbreviating ‘/ow-mark to
low-mark’ by 11, we obtain

:=2—-a. 2.9)

The other two types describe long edges incident to ‘*high-mark’ vertices in A, 2. We
say a vertex has a high mark if its mark is at least n"on¢ | where

Viong := min {y >0: l%irgioréf]EO[Hedges between 0 and AS} | (0,n") € V] > O].
(2.10)
Then, a constant proportion of vertices of mark at least n"'" inside A, /> contributes
to the vertex boundary. By the Pareto distribution of the marks in (2.4), there are
O (n'~1one ™=y many high-mark vertices inside A, 2. The values T in (2.4), 0 in (2.6),
and « in (2.5) jointly determine the value of yio,g. We compute two possible values
of Yiong, that then yield the two remaining types.

High-low edges are dominant if the other end-vertex of an edge emanating from ver-
tex (0, n¥) to A§ typically has constant mark. There are ® (n) constant-mark vertices
at distance @ (n!/4). By the connection probability in (2.1) with k, or kgyy from (2.6)
and @pol from (2.5), for y > 0, the expected number of edges between vertex (0, n?)
and constant-mark vertices in A§ is roughly n(n” /n)¥. As required in (2.10), this
expression is of constant order when

Yy =vn:=1-1/a, (2.11)

which leads to
i=1l—mE -1 =@—-D/a—(t—-2). (2.12)

High-high edges occur dominantly if the other end-vertex of an edge emanating
from vertex (0, n”) in (2.10) typically has a high mark. There are © (n' =¥ (*~1) many
vertices of mark Q(n?) at distance ®(n'/?) from 0. Using the interpolation kernel
in (2.6), the expected number of edges between (0, n”') and these other vertices is
roughly n! =7 =D v ©@+D /)@ This expression is of constant order when

1-1 .
e TS0 +2, (2.13)

%H, ift >0 +2,

Y = Yhh =
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which leads to

1 e T S )
thh =1 =yt — 1) = { o421 if7> 042 (2.14)
o+l ‘

We will never use the second row for yn, and {hy: ¢hp is negative there, and some other
connectivity type is dominant. The choice of yy, in this second row ensures continuity
and monotonicity in the parameters. High-low connections can be dominant when o
is small, for example in the age-dependent random connection model and the soft
Poisson—Boolean model. The high-high type of connection can be dominant for large
values of o, e.g. in geometric inhomogeneous random graphs and random hyperbolic
graphs. The infimum in (2.10) indicates that yjong is the minimum of y1; and ypn, and
the switch is when the denominator o + 1 — (7 — 1) /& crosses 1. Indeed, the following
claim makes the above back-of-the-envelope computations formal: the integrals in the
definitions of ¢, in (1.4) and {jong in (1.5) are dominated by the above four cases.
Vertices incident to edges of intermediate length £, (1 < ¢,, < n'/?) crossing A,, do
not significantly contribute to the vertex boundary.

Claim 2.3 (Phases of ¢y, [48, Lemma 7.6]) Consider any KSRG with kernel and profile
satisfying Assumption 2.2. Then

Clong = max(0, ¢u, &n Shn), & = max({shorts Slong)- (2.15)

The values of ¢, and {jong do not depend on p, B, and {jong not even on d. We refer
to [48] for phase diagrams that illustrate for which values of the parameters (z, «, o, d)
the four different connection types are dominant. We call the areas in the parameter
space corresponding to unique dominant types the phases of ¢,. On the boundaries
of these phases, multiple connection types are dominant simultaneously. These cause
poly-logarithmic factors in the expectation in the numerator of ¢, in (1.4). These factors
vanish in the limit, but they do appear in some of our lower bounds. So, for a given
parameter setting of 7, «, 0, d, we let mz count the number of dominant connection
types. Formally, we define the multiplicity of the maximum of Z := {{y1, ¢h1, Chhs Cshort }
as
mgz:= Zﬂ{{ = max(2)}. (2.16)

ez
We now formalize Meta-theorems 1.1, 1.2, and 1.3 to answer the question (Q).
2.3 Upper tail of large deviations

First we state the upper tail of the giant’s size for LRP on Z¢ and Bernoulli bond
percolation on Z¢ (NNP), making (1.1) precise.

Theorem 2.4 (Linear speed in degree-homogeneous models). Consider long-range
percolation or Bernoulli bond percolation on 7¢ with parameters such that 0 < 1.
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For all p € (0, 1), there exists A > 0 such that for alln > 1,
1 a
—A< —10gIP’(|Cn)| > ,on) < —1/A.
n

Theorem 2.4 applies for any edge density 8, i.e., regardless of whether the model is
supercritical, subcritical or critical. Linear speed for the upper tail of large deviations
of a closely related quantity is known for NNP [31, 33]: the number of vertices in the
intersection of a finite box and the infinite component.

We proceed to the upper tail for models with power-law degree distributions, when
the speed is logarithmic, heading towards making Meta-theorem 1.1 precise. At an
increased cost of technicality our subsequent results can be extended to KSRGs on Z;
in order to keep the proof simpler, we refrain from this and restrict to Poisson vertex
sets for degree-inhomogeneous KSRGs, i.e., with 7 < oo. To state the rate function,
we introduce some notation. We write C(0) for the cluster of the origin in the model
on R¥, and recall from Definition 2.1 that we use the superscript x when the vertex
set has a vertex at location x with unknown mark. Let

He(2) := E2“OM1000) ) <00)]

be the probability generating function of the size of C(0) restricted to be finite. The
function Hc¢(z) is continuous and increasing, and has range (0, 1 — 6] for z € (0, 1].
Hence, the inverse Hé_l)(y) is well-defined and increasing when y € (0, 1 — 6]. For
p € (0, 1), define
log HSV (1-p) .
hubs(p) := { gloé(l——(p)p) if p <1, 2.17)
1, if p=1.

The distinction based on p ensures that log(1 — p) is well-defined. We prove that
[hubs(p)] many linear-mark vertices are required to increase the density of the giant
from the typical density 6 to p, see Section 3.2 below for intuition. The function
hubs(p) is positive, increasing in p and tends to infinity as p 1 1: similar to [50], it
can be shown that hubs(p) = log(1l — p)/log(l — p) + o(1) as p approaches 1. The
following theorem gives the rate function for the upper tail. Recall {1ong from (1.5).

Theorem 2.5 (Logarithmic speed in degree-inhomogeneous models). Consider a
KSRG satisfying Assumption 2.2 with a unit-intensity Poisson point process as vertex

set and power-law mark distribution with Tt < oco. Fix p € (0, 1). There exists A > 0
such that for alln > 1,

P(ICY| > pn) < An~(r=2[hubs(o)], (2.18)

If either the model is supercritical with {iong > 0, or 6 = 0, then there exists A > 0
such that for alln > 1,

P(ICY| > pn) = (1/Ayn~ =D limrypfhubs], (2.19)
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The formulation of the either/or above (2.19) excludes critical models from the
lower bound with 6(8.) > 0, where B, is the critical edge-density in (2.3). For KSRGs
in general it is unknown when 6(8.) is positive: this may sensitively depend on the
short edges of the model [3, 4]. The preprint [64] by Monch shows that 8(8.) = 0 for
KSRGs in dimensions d > 2 with Zjong > 0.

Combining (2.18) and (2.19) gives that when hubs(p) ¢ N, we identify the decay
rate 0fP(|C£Ll)| > pn) up to a constant factor. If hubs(p) € Nand p < 1, the lower and
upper bounds are no longer of the same order, because the necessary “wiggle room”
in the proof of the lower bound is lost. Nevertheless, Theorem 2.5 gives logarithmic
speed for the upper tail with rate function

I(p) := (r — 2)[hubs(p)].

Corollary 2.6 (Rate function for the upper tail). Consider a KSRG satisfying Assump-
tion 2.2 on a unit-intensity Poisson point process as vertex set and power-law mark
distribution with T < oo. If the model is either supercritical with {iong > 0 0r 0 =0,
then for all p € (0, 1),

—inf I(r) < lim inf1 log P(IC’| > pn)

r>p n—oo logn

< lim sup
n—00 log n

10g[P’(|C§l”| > ,on) < —rirg)](r). (2.20)
Proof Since hubs(p) in (2.17) is continuous and non-decreasing, both bounds follow
directly from Theorem 2.5. O

When we compare this result to Theorem 2.4 we see that the speed drops from
linear to logarithmic when degree-inhomogeneity enters the models. The assumption
Qlong > 0in (2.19) reflects the aim to study the influence of degree and edge-length
inhomogeneity in (Q). However, {jong > 01is a technical condition here. It comes from
our bounds for the lower tail, which serves as a tool for proving (2.19).

2.4 Lower tail of large deviations

Our next result determines the speed of the lower tail of large deviations of the giant
component for supercritical KSRGs, i.e., when 8 > B, in (2.3). This will make Meta-
theorem 1.2 precise. Contrary to Bernoulli bond percolation, the lower tail decays
faster than the upper tail when 7 < oo: the speed is polynomial, with exponent
¢« = max(Llong, Lshort) Where Sshort = (d — 1)/d and iong is defined in (1.5). Recall
the definition of ¢, from (1.4), its value from Claim 2.3, and the multiplicity mz
from (2.16).

Theorem 2.7 (Speed in the lower tail of large deviations for the giant). Consider

a supercritical KSRG satisfying Assumption 2.2 with a unit-intensity Poisson point
process as vertex set, or consider supercritical long-range percolation on 74 Assume
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that the model satisfies {iong > 0. Fix p € (0, 0). There exists a constant A > 0 such
that for alln > 1,

logP(ICY| < pn) € (— An®(logm)™2~!, —Ln%). (2.21)

The lower bound in Theorem 2.7 is proved in our earlier work [48, Theorem 2.5].
When a single connection type is dominant (i.e., mz = 1, see Section 2.2), the lower
and upper bound on the right-hand side differ by a constant factor, matching Meta-
theorem 1.2. For such parameters, Theorem 2.7 determines the exact speed of large
deviations for the lower tail. When mz € {2, 3, 4}, the bounds differ by a poly-log
factor.

We discuss a few related results. For Bernoulli nearest neighbor percolation on
74 (NNP), the exponent of the polynomial speed of the lower tail is {, = {short =
(d — 1)/d, see (1.2) and [69]. We expect that Theorem 2.7 remains true* also for
KSRGs with Zjong < 0ind > 2. In view of (Q), this is beyond the scope of our paper.
For Bernoulli NNP on Z? or Z3, the works [6] and [21] identify the rate function of
the lower tail for the size of the intersection of the infinite component with A,,. Keep
in mind that this is not necessarily the size of the largest component in A,,.

For long-range percolation, Biskup proved in [14] that P(IC)’| < dn) <
exp(—O (> *=°My) for § > 0 sufficiently small, which is an almost sharp upper
bound, see our comment below Meta-theorem 1.2. Hyperbolic random graphs [32,
54] are equivalent to one-dimensional threshold geometric inhomogeneous random
graphs and are a special instance of the KSRGs [52] by setting p = 1,0 = 1,0 = 00
in Assumption 2.2. Independent of our work, the recent preprint [15] proves the upper
bound P(IC’| < én) < exp(—0O(nB~/2)) for § > 0 sufficiently small. This is a
special case of the upper bound here, and (3 — 7)/2 matches the exponent ¢y, in our
earlier general lower bound in [48] for « = oco. In comparison, Theorem 2.7 allows
(beyond other kernels) for p < 1 and long-range profiles. It also shows that § can be
chosen arbitrarily close to 6.

The previous three theorems give the strong Law of Large Numbers as a corollary
for KSRGs with finite-variance degree distributions, which is not known for (specific)
models in the KSRG class® . For KSRGs with an infinite-variance mark distribution,
we obtain a weak LLN.

Corollary 2.8 (Law of Large Numbers). Consider either supercritical long-range per-
colation on 74 with Qlong > 0, or Bernoulli nearest neighbor bond percolation on 74,
or a supercritical KSRG satisfying Assumption 2.2 on a unit-intensity PPP witht > 3
and Liong > 0. Then

CYl as.
1G] as 0=0(8,p ad, asn— oo. (2.22)

4 In dimension d = 1 there is no lower tail since the model is subcritical when Clong < 0, see below (1.8).

5 While the result seems folklore to us for Bernoulli NNP, we could not find a reference for the exact
quantity we look at here. We are also not aware of strong LLN for other models in the class.
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For a supercritical KSRG satisfying Assumption 2.2 on a unit-intensity PPP with
Qlong > 0and t € (2,3],

IC] P
— 0 =0(8,p,a,1,0,d), asn — o00. (2.23)

Proof For NNP, a lower bound follows from the lower tail of large deviations by
Pisztora in [69], an upper bound follows from Theorem 2.4. The weak law of large
numbers follows directly from Theorem 2.4, Theorem 2.5 and Theorem 2.7. The error
terms are summable for LRP, NNP, and KSRGs with 7 > 3 (in (2.18)): an application
of the Borel-Cantelli Lemma gives the strong law, while the weak law still holds also
for KSRGs with T € (2, 3]. |

Related work on LLN. Fountoulakis and Miiller in [32] proved a weak LLN for the
giant in hyperbolic random graphs, which is a threshold one-dimensional KSRG with
infinite variance degrees satisfying ¢, > 0, and is contained here in (2.23). In [48,
Corollary 2.3], we extended the weak LLN of [32] to general KSRGs on PPPs with
¢hn > 0. Finally, for general long-range percolation models with {jong < 0, Bdumler
in [11, Theorem 1.6] recently showed that P(|C\’| > pn) — 1 for any p € (0, 6).
Below, we first prove a weak LLN when jong = max(hn, ¢ni, ) > 0. This weak
LLN serves as a tool to proving Theorems 2.5 and 2.7. When simultaneously ¢pn < 0
and max(&n1, &1) > 0, the LLN requires new methods compared to the methods in [32,
48]. These theorems give the strong law in some cases.

2.5 Cluster-size decay and second-largest component

We proceed to formalizing Meta-theorem 1.3. We start with the cluster-size decay of
the origin. Let C(0) denote the cluster of the origin in the infinite model. Recall gjong
from (1.5), {short = (d — 1)/d and mz from (2.16).

Theorem 2.9 (Cluster-size decay). Consider a supercritical KSRG satisfying Assump-
tion 2.2 with a unit-intensity Poisson point process as vertex set, or consider
supercritical long-range percolation on Z4. Assume that the model satisfies llong >
max{0, ¢hn}. Then there exists a constant A > 0 such that for all k > 1 and
n € [Ak, 0o],

1og P°(IC,(0)] > k, 0 ¢ C) € (— Ak Clone:Lshor) (g )Mz Lgbonz) - (2.24)

The result remains valid when {iong = {hn and o < © — 1 [48, Theorem 2.2(i),(ii)].
When Siong = {nn and o > 1T — 1, the lower bound on the right-hand side remains valid
while the upper bound changes to —(1/A)k'/ @ H1=C=D/®) 148 Theorem 2.2(i),(iii)].

We proved the bounds for the case {iong = ¢nn in our earlier work [48]: then high-
high connections are dominant. Theorem 2.9 extends the result for the phases when
L4 1s either ¢y in (2.9) and/or ¢y in (2.12). This corresponds to parameter settings
where long-range connections incident to at least one vertex of small mark dominate
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the expectation in (1.4). The techniques for these latter phases are different from those
in [48], see Remark 3.2 on the details.

The lower and upper bound in (2.24) are of the same order if the maximum in Z'is

unique and {jong > (d — 1)/d (excluding the sub-optimal bound for {jong = ¢hn and
o > 7 —1). If the maximum is non-unique, i.e., mz € {2, 3, 4} and {iong > (d —1)/d,
then the two bounds differ by a polylog factor. The exponent of k in the two bounds
only differs when (d — 1)/d is strictly larger than {1ong. We conjecture that the lower
bound is sharp, and that the correct exponent must be &ghort = (d — 1)/d generally
in the KSRG class in this regime. The additional restriction that 0 < v — 1 when
{nh = Clong comes as a technical assumption from [48].
Related work on cluster-size decay. There are many percolation models where the
cluster-size decay is determined by surface tension. For Bernoulli nearest neighbor
bond percolation on 74 a series of papers [2, 41, 51, 55] showed that the exponent of
the decay is short, 1.€., for some C), > ¢, > 0,

log P(k < |C(0)| < 00)

o 1
~Cr =it ana

< lim sup
k—o00

1
WlogP(k < |C(0)| < 00) < —cp. (2.25)

For dimensiond € {2, 3}, the constants C, = ¢, above are known, and determined by
the Wulff construction [6, 21]. For Bernoulli percolation on more general, transitive
infinite graphs with polynomial ball-growth, [23, 46] obtain similar bounds. In [49], we
derived (2.25) for high edge-density long-range percolation when ¢, = (d — 1)/d >
2 — «, i.e., when short-range edges are dominant. Our techniques in [49] differ from
those here and in [48], see more on the difficulties when (d — 1) /d = ¢, in Remark 3.1
below.

The second-largest component. Our last result identifies the size |C’| of the second
largest component in KSRGs in boxes of volume 7.

Theorem 2.10 (Second-largest component). Consider the same setting as in Theo-
rem 2.9. There exist constants A, 5 > 0 such that for all n > 1, with probability at

least 1 —n—9%,

1/ max(Siong. Eshort)

L S |Cl(12)| E (A IOgi’l)l/{k’"g.

A(loglogn)mz—1

The result remains valid when {iong = {hn and o < © — 1 [48, Theorem 2.4(i),(ii)].

When {iong = ¢hnand o > T —1, the lower bound on the right-hand side remains valid
while the upper bound changes to (Alogn)° T1=C=D/ 148 Theorem 2.4(i),(iii)].

Theorem 2.10 accompanies the results from [48, 49] exactly as Theorem 2.9. The
lower and upper bounds are matching exactly when the bounds on the cluster-size
decay are matching, and differ by a “poly-loglog” factor on phase transition boundaries
(excluding the sub-optimal bound for {jong = ¢hn and o > © — 1). Since the size of
C? is polylogarithmic in 7, this theorem implies uniqueness of the giant component.
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Moreover, it makes a result by Crawford and Sly [24] sharp: that paper proves a
polylogarithmic upper bound on |C’| for long-range percolation with unidentified
exponent.

For readers interested in classical long-range percolation models (LRP), we state
all our results valid for LRP in a single corollary, gathered from [48, 49] and this
paper. Here, we assume that the model is on 74 for some d > 1 and two vertices of
7@ are connected by an edge with probability that is asymptotically of order 1/[x —
y|1%?, independently of all other edges. We assume o # 1 + 1/d so that lower-order
corrections in the lower bounds are not present (for the case « = 1 + 1/d see the
individual theorems above, setting m z = 2). When we talk about high edge-density
below, we assume that the model follows the connectivity function

p(x ~y) = pmin (1, B/x — yI)™, (2.26)

where we assume for 8 < 1 that pB9% is sufficiently close to 1, and we assume for
B > 1 that g is sufficiently large (given p). In the proof of this corollary we give the
exact place of the proof of each result.

Corollary 2.11 (Summary of results for LRP). Consider supercritical long-range per-
colation on Z¢ with connection probability p(x ~ y) decaying up to constant factors
as |x — y|~®, and let & = P(0 € Co) > 0. In the model spanned in a box of
volume n, let C,(0), C)’, C?, be respectively the connected component of the origin,
the largest and the second largest connected component.

Assume o € (1,2)anda # 1+ 1/d.
Let p € (0, 1). There exists a constant Ag such that for alln > 1,

— Aon < logP(IC’| > pn) < —ALOn. (2.27)

Let p € (0, 0). There exists a constant Ay such that for alln > 1,

_Alnmax(2—o¢,l—l/d) < log]P)(|C;ll)| < p}’l) < _Allnmax@—a,l—l/d). (228)

There exist constants A>, § > O such that with probability at least 1 — n=s,

1= (logm) /MG 1=/ < e®) < (Aylogn) /7). (2.29)
There exists a constant Az > 0 such that for all k > 1 and n € [A3k, 00],
— AskmxCmed =) < 160 P(1C,(0)] > k,0 ¢ C) < —A%kz_“~ (2.30)
All lower bounds and the upper bound in (2.27) extend to long-range percolation with
>
Zs;uliing high edge-density and o > 1 + 1/d, the upper bounds in (2.29) and (2.30)

can be sharpened to match the lower bounds foralla > 1+ 1/d:

A5 Glogm)/I7VD < 1CP| < (Aylogm)!/ (71D (2.31)
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—Ask' V9 < 10g P(IC,(0)] > k,0 ¢ C) < —Aigk]”/d. (2.32)

Proof Large deviations of the giant. The proof of the upper tail in (2.27) can be found
in Section 7.1 of this paper, and the statement is present in Theorem 2.4 (note that
both bounds are valid for all « > 1). The statement of the upper bound on the lower
tail in (2.28) can be found in Theorem 2.7, where the condition {jong > 0. translates to
a € (1, 2) for LRP. For the proof, see Section 5 (Proposition 5.1 in particular). When
the exponent is 2 — «, the proof is in Section 5.1, while for the exponent 1 — 1/d, we
refer to Section 5.2. The lower bound of the lower tail in (2.28) is [48, Theorem 2.4],
while its proof can be found in Section 7 of the same paper.

Cluster-size decay. The upper bound in (2.30) follows from Theorem 2.9 of this
paper, and its proof can be found in Section 6.2. Its proof heavily relies on [48, Section
6], where we developed a general technique to extend results on the decay of small
components in finite boxes to the cluster-size decay of the infinite model. Moving
on to the lower bound on the cluster-size decay in (2.30), the statement itself is in
Theorem 2.9, while its proof is in Section 6, after Proposition 6.8 of this paper. The
proof there heavily relies on [48, Proposition 7.1, Section 7] where the actual lower
bound appears as a localized event: we find, with probability given in the lower bound,
a localized component in a box of volume order k centered at 0.

Second-largest component. The bounds on the second-largest component are a
consequence of Theorem 2.10. The proof of the lower bound is in Section 6.2, and
relies on the same proof as for the cluster-size-decay, namely the localized component
in [48, Section 7, in particular Section 7.3]. The proof of the upper bound (2.29) on
the second-largest component follows a four-step revealment scheme described in the
proof of Proposition 6.1. As the lower bound on the localized component event in [48,
Section 7] is valid for all @ > 1, all lower bounds remain valid for o > 2.

Upper bounds for « > 1 4 1/d. Finally, when we assume high edge density and
a > 1+ 1/d (which is actually below 2 for dimensions 2 and higher), the proofs of
the upper bounds in (2.32) and (2.31) are the main results of [49]. The proof of (2.31)
uses a decomposition of any component into nearest-neighbor connected blocks that
are connected by edges longer than 2, then carries out a spanning tree counting method
combined with estimates based on isoperimetry. The extension to the upper bound on
the cluster-size decay in (2.32) follows the same method as here in Section 6.2, which
is essentially [48, Section 6]. O

We believe that many of our proof techniques can be extended to other models with
long-range interaction, for instance the random cluster model (FK-percolation) with
q > 1. To deal with the additional dependencies coming from boundary conditions
in renormalization arguments, techniques from [69] and [30] could serve as a starting
point. Extension to FK percolation would match the picture for large deviations of the
largest component for Bernoulli bond percolation on Z¢ obtained by Pisztora [69].

Notation. Let G = (V, E) be a graph. We write u <> v if there exists a path
between u, v € V, and |A| for the number of vertices in a set A of vertices, whereas
for two subsets Vi, V, containing (marked) vertices we write V| ~g V> if there exist
vertices v; € V1, vy € V; such that vy is connected by an edge to vy (in case Vi = {v}
and/or Vo = {vp} we write simply v; ~g V», or v ~g vy, respectively). We also
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write V| =g V> if there is no edge between vertex pairs in Vi x V5. If the graph G
is clear from the context we omit the subscript. If H = (Vy, ) is (a subgraph of) a
KSRG G = (V, &), we write H|a, b) for the induced subgraph of H on vertices with
mark in the half-open interval [a, b), denoted by Vy[a, b). Foraset B C R4, we write
Vg for the vertices with locationin B.If B = A,, = [—nl/d/2, nl/d/Z]d, we simply
write V,. For two random variables X and Y, we write Y < X, if X stochastically
dominates Y, that is, P(X > x) > P(Y > x) for all x € R. For two random graphs
G = (W1, E1), Gp = (Va, E>) we say that G stochastically dominates G5 if there
exists a coupling such that ]P(E 12 Ey, V12 V2) = 1. A sequence of events (A, ),>1
holds with high probability (whp) if P(A4,) — 1 asn — oo. We use standard Landau
notation for asymptotics of functions: for two not necessarily positive real functions
f(n). g(n) we say that f = O(g) if limsup, o, | f(n)/g(m)] < oo, f = o(g) if
limyo | f(1)/g()] = 0, f = Q) if g = O(f). f = w(g) if g = o(f), and
f =0(g)ifboth f = O(g) and g = O(f).

3 Roadmap of the paper

Theorems 2.5-2.10 are closely linked together. We prove them in (almost) reverse
order, in six main steps. All except Step 4 rely on (often multi-scale) renormalization
techniques. Here we sketch these steps and explain their relation, the role of the
condition jong > 0, and the connection to the methods used in our earlier works [48,
49]. This sketch assumes a unit-intensity Poisson point process and power-law vertex
marks. In the sections below we make the adaptation for the other settings. We start
with the lower tail of large deviations.

3.1 Route to the lower tail of large deviations

The lower bound is given in [48], so we focus on the more involved upper bound.
Using ¢jong > 0, for p € (0, 8) we sketch how to prove

P(IC"| < pn) < exp (— ©(n%)). (3.1)

Step 1. Existence of a giant (Section 4). For supercritical settings with max(¢yy, 1) >
0, we prove for a small constant ¢ > 0 that {|C}’| > en} whp. For ¢y, > O this step
is already given by the weak law of large numbers for |C!’| in our earlier work [48].
To prove P(|C}| > en) — 1, we first adapt a multi-scale renormalization technique
by Berger [12] which relies on ergodicity and uniqueness of the infinite component.
This technique yields a polynomial lower bound on |C}}’|. We use this lower bound as
the initialization of another multi-scale renormalization scheme, inspired by a method
that Biskup introduced for long-range percolation [14]. The two techniques combined
yield that for some ¢ > 0, A > 0,and y € (0, 1) satisfying¢ =1 —y(r — 1),

P(IC[1, An?)| < en) < exp ((— n™@*Cu-s=o(D) (3.2)
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where C’[1, An?) denotes the largest connected component in the graph induced on
vertices with location in A, and mark in [1, An?).

Step 2. Sharp bounds on the giant’s existence (Section 5). The inequality (3.2) is worse
than (3.1). In the next step we improve it: we show the implication that if

A, has whp a giant component of density at least p > 0 (Req)

containing all vertices with mark at least p{=o)/G@=)
then for any ¢’ > 0 and some A’ = A’(¢') > 0,
P(IC[1, A'n?)| < (p — &)n) < exp (— @ @M@t @=D/d)y) (3 3)

Compared to (3.2), the o(1) disappeared from the speed-exponent while (d — 1) /d and
¢nn entered the maximum. To prove (3.3) when {jone > (d — 1)/d, we reduce the event
{IC’| < (p — &')n} to a large-deviation event for Erdds-Rényi random graphs, see
below Meta-theorem 1.2. When (d — 1)/d is the unique maximum and jong > 0, we
prove (3.3) with a different renormalization. Using boxes of constant volume M, the
renormalized model dominates supercritical site-bond percolation on Z¢. Using long-
edges present due to {jong > 0, two neighboring boxes of volume M are connected by
an edge with probability tending to 1 as M — oo.

We also prove the condition (Req) of (3.3): all vertices with mark at least (log n)”/
for an explicit n” > 0 are in the giant component: using an ‘extra layer’ on the
renormalization leading to (3.2) we prove in the case max(¢y, ¢1) > O that

P(3 component Cin G, : V,[(logn)”,00) 2 C,|C| = en) —> 1. (3.4)

We combine this with (3.3), and set p = ¢,&’ = ¢/2 when Clong = max(Snr, Su)-
When {iong = ¢nn, We use the results from [48] and set p = 6 — &. In Section 5 we
thus prove that for some ¢ > 0,

P(IC'[1, A'n?)| < en) < exp (— O(n™)). (3.5)

After having proven an improved value of p = 6 — ¢ in Step 5 below, requirement
(Req) shall imply an improved version of (3.5) with the new density.

Step 3. Non-giant components are small (Section 6.1). In this step we prove the upper
bound on the second-largest component in Theorem 2.10, using (3.5). For KSRGs
with PPP vertex sets, for any k = k(n), we prove

P(ICY| > k) < 3(n/k) exp (— ©(kTne)) =: erry . (3.6)

Given (3.6), substitute k = (A log n)/%ong for a large constant A = A(S) to obtain
the upper bound in Theorem 2.10. The lower bound there follows by verifying a
prerequisite from our earlier work [48]. There we also proved (3.6) when {iong = Chh.
The method in [48] breaks down for the cases when jong € {¢11, ¢ni}, see Remark 3.2.
So, we use a new method that we explain now.
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We sequentially reveal the graph. After the last revealment stage a non-largest
component of size at least k is present in A, with probability at most err, ;. We
partition A, into boxes of volume k. The probability that all boxes contain a linear-
sized component on vertices with mark at most A’kY is at least 1 — %errmk by (3.5).
When iong = ¢n1, we sprinkle in vertices of mark larger than A’k forming the PPP
Vi We say that a vertex v € V" is box-wedging if it connects to the local giant
in its own box and also to the local giant in the neighboring box. We prove that the
number of box-wedging vertices in each box is ® (k%lon): see the back-of-the-envelope
calculations in Section 2.2 for intuition on this. So, all local giants exist and are in the
same connected component in G,, via box-wedging vertices with probability at least
1-— %errn, k- We call this component the backbone.

We now take care of small components: in the third stage we reveal edges between

vertices that are not in local giants but in different boxes, obtaining G,. In the fourth
revealment stage we reveal edges between the components of G and the backbone.
If a component of G is larger than k, then we show that with probability at least
1 - exp( - G)(kQO“g)) it connects to a box-wedging vertex in the backbone. So,
all components of size at least k merge with the backbone with probability at least
1 —erry k.
Step 4. LLN for the giant, cluster-size decay (Section 6.2). In [48, Proposition 6.1], we
showed how the combination of the bounds (3.4), (3.6), and the whp existence of a
polynomially-sized largest component (a weaker bound than (3.5)), leads to the upper
bound on the cluster-size decay in Theorem 2.9 and the weak LLN

G 1/n —> 6(B, p.a.T.0),  asn— oo 3.7

Step 5. Lower tail of large deviations of the giant (Section 6.3). The LLN in (3.7) gives
that |C}’|/n > 6 — & holds whp for any ¢ > 0. So the condition (Req) holds with
p = 6 —e. We can reuse (3.3), combine it with (3.4), so that the unique giant contains
all highest-mark vertices whp. Then combination with (3.6) results in (3.1).

Remark 3.1 (Difficulties when surface tension is dominant). When (d — 1)/d > {iong,
Theorem 2.7 on the lower tail of LDP is sharp, while Theorems 2.9 and 2.10 are not
sharp. In the proofs we connect local giants in subboxes via edges with length of the
same order as the box-diameter. These edges are present under the assumption that
Qlong > 0. This is enough to give Theorem 2.7: to be able to estimate the giant’s size,
not every subbox needs to contribute to the global giant. The condition jong > 0 could
only be dropped by developing more information about the position of local giants
inside subboxes. They must come close to the boundary to be able to connect them
without using long edges. This is beyond the scope of this paper.

For proving Theorems 2.9 and 2.10 with ¢ = (d — 1)/d in the upper bound, we
need sharper estimates. Between the giant component and any other component of
size at least k, we need to find at least 2 (k(d_l)/ d) non-connected vertex pairs within
constant distance, with probability at least 1 — n exp(—2(k¢~1/4)). Our techniques
do not focus on the geometry of short missing edges around components, so this case is
beyond the scope of this paper. For NNP, such geometric information is known, see [40]
for references. For high edge-density long-range percolation our recent work [49]
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Fig. 2 Strategy for the upper tail. The giant induced on lower-mark vertices (filled component) increases
in size: hubs (vertices of mark €2(n)) connect to it by an edge, and also to smaller-size components. The
resulting giant component in the entire graph is colored red. If p < 1, the hubs do not connect by an edge to
all vertices (missing edges are dashed in gray), leaving some small components or isolated vertices (blue).
The probability for a component of size exactly k to have no edge to one of at least # many hubs is (1 — p)kh s
so the giant’s size increases by roughly Y, P(C(0) = k)(1 — (1 — p)kh). The function hubs in (2.17) gives
the minimal number of hubs, so that the size of the giant increases above pn (color figure online)

solves this issue, and obtains matching upper and lower bounds for |C}’| and the
cluster-size decay. For long-range percolation, we refer also to the recent work by
Biumler [11] for related results.

Remark 3.2 (High-high regime is different). In [48], we proved the bound on |C?|
in (3.6) when ¢y, is maximal. When high-high type connections dominate, the like-
liest way to connect two boxes is via edges between two high-mark vertices. So,
building a backbone with error probability err,, x in (3.6) is more straightforward than
the multi-scale renormalization techniques here. However, the sequential revealment
method sketched in Step 3 above breaks down when we look at small components
of size at least k. When ¢, = ¢,, we also need to show that the giant has @ (k%)
many high-mark vertices within “connection probability” ®(1) to every one of these
components, with probability err, . The revealment method from Step 3 does not
guarantee that, since the diameter of the box ® (k!/ 4y is a too crude bound on the
distance between previously revealed small components and high-mark vertices. So,
in [48] we developed a geometric method that we call cover-expansion, which allows
us to control this distance based on the geometry of the cluster. See [48, Section 3] for
a comparison.

3.2 The upper tail of large deviations (Section 7.1)

First we present the intuition behind the formula of hubs(p) in (2.17), sketched in
Figure 2. Afterwards, we outline the proof of Theorem 2.5 and Theorem 2.4.
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Hubs increase the giant linearly. We investigate an unlikely event. Take R to be a large
constant. When £ vertices with mark at least Rn — so called hubs — are present in a box
of volume n, the size of the giant increases linearly in 7, since each hub connects by an
edge to every other vertex in the box with probability p independently. By the Pareto
distribution of the marks in (2.4), the probability of having 4 hubs is ® (n~"=2) For
the exact rate function, we need to compute how the giant’s size increases when there
are h hubs present. We reveal the edges in two stages: first all edges between non-hub
vertices, obtaining the graph G,[1, Rn). Then we reveal all edges incident to hubs,
obtaining G,. We capture |C}"| via its complement: small components of G,[1, Rn)
do not merge with the giant in the second step if none of the vertices in the component
connect to the hubs. Distinguishing all component sizes, we write

LG NG ) Lic, w11, Rn)hubs)

n n n
veV,[1,Rn)

=5 % fﬂ%?@ﬂ. (3.8)

£>1CeGy[1,Rn):
IC|=¢

The probability that no edge exists between a size-¢ component and the /# hubs is
(1 — p)**. Moreover, by local convergence (see [72] for a detailed explanation and
references), the proportion of vertices in components of size-¢ converges in probability
toP°(|C(0)| = £). Therefore, the total number of size-£ components in A, concentrates
around (n/¢) - P°(|C(0)| = £). Hence,

(1)
- % ~ Y Pl =6) - (1= p" =E [0 - "0 39)

>1

1

On the event {|C’|/n > p}, the right-hand side above should be at most 1 — p. Thus,
letting & to be the smallest integer satisfying

E'[(1 — p)MCOI] <1 — p, (3.10)

the presence of 4 hubs implies the event {|C}’|/n > p}. The solution to (3.10) with
equality is exactly hubs(p) in (2.17).

Concentration on the number of size-{ components. To move from (3.8) to (3.9), we
need that the rate of concentration of the number of size-£ components is o(n~(T—2hyy,
Local convergence (LC) does not provide any convergence rate. We boost the perfor-
mance of LC by applying it to disjoint subboxes of A,, binomial concentration, and
a bound on the number of components containing edges that cross box-boundaries.
When vertex-marks are at most a linear function in »n, this yields a polynomial con-
vergence rate with a tunable exponent.

Linear-scale hubs are required to increase the giant’s size. For the lower bound
in (2.19), we use that the graph without hubs contains a giant component of den-
sity almost 6 by the lower tail of large deviations. The hubs connect to this giant with
error probability exponential in n. When hubs(p) ¢ N, our concentration bound on
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size-¢-component is strong enough to guarantee that the presence of [hubs(p)] hubs
increases the giant’s size to a value above pn. We also show that any event that has
fewer than [hubs(p)] hubs means that too many size-¢ components remain outside
of the giant with probability at least @(n_(r_z)h). So, the complement of the giant
remains larger than (1 — p)n on such events. This gives the upper bound.
Homogeneous percolation models. In Bernoulli bond percolation or long-range perco-
lation on Z¢, the degree-distribution has (super-)exponential tails, so no linear-scale
hubs are present. We show that the number of size-¢ components concentrate with
error probability exponentially small in n for each constant £ € N. We capture the
giant’s size by its complement, and Theorem 2.4 follows.

4 Existence of a giant

The main goal of this section is to prove the existence of a giant, i.e., a linear-sized
component, for the whole supercritical regime when max(¢y, ¢;1) > 0. For ¢y > 0,
we already proved existence in our recent work [48]. The first proposition corresponds
to (3.2) in the roadmap in Section 3.

Proposition 4.1 (Existence of a giant). Consider a supercritical KSRG satisfying
Assumption 2.2 with a Poisson point process as vertex set. Assume that the parameters
satisfy max(¢ny, ¢n) > 0. For each constant § > 0, there exists a constant A > 0 such
that for alln > 1,

(hl) when ¢p > 0,
P(ICP[1, An™)| < Ln) < exp (— Lnt7?), (4.1)
(1) when & > 0,
P(IC[1, A)| < +n) <exp(— £n87?). 4.2)
The statements (4.1) and (4.2) remain valid for the Palm version P* of P for any
x e R4,

Proposition 4.1 generalizes [14, Theorem 3.2] by Biskup from long-range perco-
lation on Z? to a wider class of KSRGs. The presence of vertex marks in KSRGs,
and the truncation of them in the statement of Proposition 4.1 require new ideas. We
will prove Proposition 4.1 via a multi-scale renormalization scheme. To initialize this
scheme, we need an initial lower bound on |C!’].

Lemma 4.2 (Existence of an “almost”-giant). Consider a supercritical KSRG under
the same setting as in Proposition 4.1. For all ¢ > 0

P(ICP| <n'™f) — 0,  asn — oc. (4.3)

The statement remains valid for the Palm version P* of P for any x € RY.

The proof of this lemma is inspired by a multi-scale renormalization technique
introduced for long-range percolation by Berger in [12]. When ¢ =2 — « > 0 and
the vertex set is formed by a PPP, [37, Proposition 3.9] already proves (4.3) using
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an adaptation of [12]. For the case ¢y > 0 we give a new proof in Appendix B that
explicitly relies on the vertex-marks. The rest of this section is devoted to proving
Proposition 4.1. We first introduce some additional preliminaries.

4.1 Preliminaries

We describe a sprinkling technique that enables us to reveal the vertex set of a KSRG
on a PPP in multiple stages, so that the graph is supercritical already before sprinkling.

Definition 4.3 (Scaled-thinned KSRG on a PPP). Consider a KSRG on a PPP. Let
q €10, 1]1and n > 0. We write ngf ‘9 for a scaled-thinned KSRG as follows: first, we
keep each vertex of the PPP V independently with probability g. Then we sample the
edges according to Definition 2.1 with edge-density parameter 8 > 0. Finally, we we
assign a new location to each retained vertex, i.e., wemap u = (x,,, w,) € RY x [1, 00)
to (nxy, wy).

It is not hard to see that the scaled-thinned KSRG with n = ¢ is distributed like the
original graph with a smaller parameter 8 in a smaller box. This is the content of the
following observation.

Observation 4.4 (Sprinkling trick-A). Consider a supercritical KSRG on a PPP, i.e.,
with B > B.(p,a,1,0). Let ¢ € (0, 1]. Then the following distributional identity
holds: J ny .

aGn < G < Gy (4.4)

In particular, the graph qgf “©is supercritical whenever the new edge-intensity Bq® >

Be.

Proof Denote by V9 the marked vertex set of qgf 1, Since the projection of V onto
the spatial dimensions in R is a PPP with intensity being the Lebesgue measure,
thinning V gives intensity gLeb(-). Then, re-scaling with n = g maps the box A, to
Agn. For any set A C Ay, the expected number of points in it is qLeb(n"A) =
Leb(A). Hence V99 has the same distribution as VN A4, since the spatial intensity
of the new point process V99 is Leb(-) again, and the distribution of the mark-
coordinate is unchanged. We now inspect the connection probabilities in qgﬁ ¥ Let
us denote the new connectivity function by p4-?). Consider two points u = (x,,, wy)
and v = (xy, wy) in V99, Since we connect u to v by an edge in qg,’f"f iff we
connect their inverse points (q’lxu, w,) and (q’lxv, wy) in G, by an edge, the new
connection probability p4-?) is given by

K (W, Wy) )

, _ -1 -1 _
P(q q)((xu, wy), (Xv, wv)) = P((CI Xy Wy), (@ X, wv)) = w(ﬁm

Thus, the new graph has the same distribution as a graph on VN A, with the same
connection probabilities but new edge-density parameter 8’ = Bg?. This graph is

denoted by Qg,,’l, since in this latter notation the thinning factor is ¢ = 1, and the
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box is Agp. The last identity in (4.4) says that omitting ¢ = 1 from the superscript is
consistent with the notation. Finally, the new graph is supercritical whenever the new
edge-intensity Bg? is at least B, as well. O

Throughout the paper we will use the following construction of KSRGs when we
consider PPPs as the underlying vertex set, following the setting of Assumption 2.2.

Definition 4.5 (Alternative KSRG construction on a PPP). Consider a KSRG on a PPP
with parameters and kernel « from Assumption 2.2. If 8 > B, let ¢ € (0, 1] be such
that B¢? > B, i.e., the scaled-thinned graph qgf "% in (4.4) is supercritical. If 8 < S,
set ¢ = 1. Let V**° and V" be two independent PPPs with intensity gLeb x Fy (dw)
and (1 — g)Leb x Fy (dw), respectively, with Fy as in Assumption 2.2. Define

Vi Uy,
which is equal in distribution to a Poisson point process on R? x [1, oo) with intensity

dx x (t — Dw™ "dw, if T < o0,

dx x 61(dw), if T = o0, 3)

Leb x Fy(dw) = {

where 81 (-) denotes a Dirac measure at one. Conditionally on the realization of Y, let g
be the graph on ) where two vertices u, v € Vare connected by an edge independently
with probability

. Ky wy) ¢ .
p(u’ v) = !p(ﬁ ”xu_xv)”d A 1) ’ J lfa < 00, (46)
PL{Brc(wy, wy) =[x — x|}, if @ = 0.

Let gf sbase 4 Q,/z ! be the induced subgraph on V***. If ¢ < 1, we call G5 the thinned
KSRG. We omit the superscript g if it is clear from the context.

Observation 4.6 (Sprinkling trick-B). Consider a supercritical KSRG on a PPP, and
let aﬁ and G"™° be as in Definition 4.5. Write B = Bq. Let Cyuse and C;lr)l g be the

largest component in G"™™ and gq,,, respectively. Then
Jbase 41 (1) (1)
g == gﬁy gg we = ggn» |C qn ﬂ/| |Cn,base|‘

Proof Cﬁ has the same law as G/ since V has the same law as ) and the connection
probabilities are the same. Qf b2 has the same law as 1g§ 4 in Definition 4.3, i.e., we
just apply thinning but do not rescale. We write this now as ¢~ (qgf "1y and apply
the identity (4.4) to the scaled-thinned graph, and we get the second distributional
identity above. The last identity about the largest component holds since edges (and

thus connected components) do not change under rescaling. O

Let us also state a well-known statement about the connectivity of Erdés-Rényi
random graphs. We give a short (suboptimal) proof for the sake of completeness.

@ Springer



J. Jorritsma et al.

Claim 4.7 (Connectivity of G(n, p,)). Consider the Erdds-Rényi random graph
G (n, py) with np, = w(logn). For all sufficiently large n,

]P’(G(n, Pn) is not connected) < 3(en)2(1 — p,,)"/z. .7

Proof If G(n, p,) is not connected, then there must exist a connected component of
size k, forsome 1 < k < [n/2]. For k = 1, this probability is at most n(1 — p,,)”_l <
(en)?(1 — p,)™'* by a union bound over all vertices. For k > 2, by Cayley’s formula,
there are k¥~2 spanning trees on k vertices, and a connected component of size k has
to contain such a tree. So by a union bound over the spanning trees, the probability
that a connected component of size between 2 and /2 exists without being connected
to the other n — k vertices, is at most

[n/2] " /2] ok ) k
; (k)kk72(1 — Pn)k(nfk) < 1; (?> kk72(1 — pn)k(n—k) < ]; (en(l _p”)n—k) )

Using n — k > [n/2], we get that the right-hand side is bounded from above by

ln/2] 2 2Mn/2]
ek em) (= py) 2002
>~ (en(1— p)/?)" < I —en(l = py/ <2(en)“(1 — pp)"'~.

k=2

Combining the cases of k = 1 and k > 2 we obtain the desired statement. O

4.2 Alinear-sized component (high-low regime)

We turn to the proof of Proposition 4.1 for the hl-regime, so we restrict to KSRGs
on PPPs. We describe the adjustments for the 1l-regime at the end of this section. A
sketch of the argument can be found in Figure 3.

4.2.1 Multi-scale renormalization - sketch

We set up an iterative boxing scheme. The initial box size is a constant ng. We check
if the largest component of a thinned KSRGs inside a level-0 box has size at least
pong = n(])fg. Next, we sprinkle vertices of sufficiently high (but constant) mark that
connect to this largest component. If both of these steps succeed, we call a level-0 box
good. This happens with constant probability using Lemma 4.2.

For each iteration i > 1, we group m; level-(i — 1) boxes of volume n;_1 into a
larger level-i box B of volume n; := m;n;_;. We always work with only the ‘good’
subboxes of the previous level i — 1 inside B to determine whether the level-i box B
is good, and control the probabilities of the following three events:

(Sub) Using independence across subboxes, at least (1 — g;)m; of the level-(i — 1)
subboxes of volume n;_; of B are level-(i — 1)-good with sufficiently large
probability. That is, the subboxes satisfy the next events (Con), (Mark) at level
i — 1: they have a local component of density at least p;_1, which contains
enough level-(i — 1) high-mark vertices.

@ Springer



Large deviations of the giant in supercritical KSRGs

WA

1/d
L]

Fig. 3 Sketch of the multi-scale renormalization for the hl-regime. The level-(i — 1) box situated second
from the left is bad because its largest connected component is too small (e.g. due to failure of Con at a
previous level). The fifth box is bad because the Mark step failed at level i — 1, even though it contains a
large component. The large components in the first, third, and fourth box are connected using the connector
vertices, forming the dark red component. Edges between local giants and connector vertices appear with
continuous lines, while non-edges appear with dotted lines. At the end of considering level-i, we reveal the
high-mark vertices in [”1}'/ , 2n3./) and their edges to the local giant in the level-i box. If there are sufficiently
many high-mark vertices, the box passes the Mark-step. We will only use these vertices in the next level
(color figure online)

(Con) Each good level-(i—1) subbox of B has enough high-mark vertices inside a local
component by the event (Mark) on the previous level. We use these high-mark
vertices to connect the level-(i — 1) subboxes to each other. This is done by a
stochastic domination of an Erd6s-Rényi random graph G((l —&)m;, qi): the
giant component of each good level-(i — 1) subbox is represented by a vertex
in G. We ensure that g; is above the connectivity threshold of Erdds-Rényi
random graphs. The outcome is that the level-i box B contains a connected
component of density atleast p; := p;_1(1—¢;) with error probability stretched
exponential in n; (and not n;_1 that we had on level i — 1).

(Mark) The sprinkling trick from Section 4.1 allows us to sprinkle level-i high-mark
vertices that were not exposed in previous levels. We make sure enough of
them connect to the large connected component in B built in the Con-step. We
will then use these vertices in the Con-step of level i 41 later.

If the steps Con and Mark succeed then we call B level-i good. (The first step Sub is only
atool to control error probabilities of these latter steps). We will ensure thatinf; p; > 0,
so the size of the connected component we construct in the Con-step is linear in n;.
Currently we use Lemma 4.2 for initializing the level-0 boxes: this guarantees local
largest components of size n(l)_g, i.e., density ny*, and error probability tending to
0 at an unspecified rate. This proof of Proposition 4.1 here will ‘boost’ the giant to
have density at least of order n; ®n;, which is linear in n; (as i — oo, because ny
is a constant), and the error probability becomes stretched exponential in n;. This
renormalization gives Proposition 4.1 along the subsequence (#;);>0 of box sizes. A
final boxing argument will ensure that Proposition 4.1 holds for all n > 1.
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4.2.2 Formal setup of the renormalization

We formalize the boxing scheme with all its parameters. Fix any small constant § > 0
that appears in the statement of Proposition 4.1. We define an extra constant, that shall
describe the growth rate of the box sizes (n;);>1:

82
t+@—1)—8/2

& :=§&() = (4.8)

The value of &; is defined both for ¢y = (t — 1)/a — (r —2) and for { =2 — «
whenever these are positive. Since o > 1, & > 0 for all § < ¢. Unless explicitly
stated otherwise, we abbreviate in the rest of the section

y=m=1-1/a, =tn=(@-D/a—(t-2). (4.9)
We recall the PPPs V"¢ and V*" with thinning constant ¢ < 1 from Definition 4.5. We

will choose any ¢ with g¢ > f.. We recall the parameters p, 8 from the connectivity
function in (4.6). We define one extra constant depending on ¢:

§ =1(1—q)1—27"D). pprd—ed/2, (4.10)

Slightly abusing notation, if Vis a set of vertices and C is a component, we write VN C
for the set of vertices in V that belong to the component C.

Definition 4.8 (renormalization scheme). Consider a KSRG under the same setting as
in Proposition 4.1. Fix ¢ > 0, and § € (0, {/2), and £5(¢) as in (4.8), and a thinning
constant ¢ < 1 with Bg¢ > B.. Let ng be a large constant. We iteratively define for
i>1

d
5/d
m; = {nfi/lj , n; == min;_1. 4.11)

Let Q; (x) denote a box centered at x € R? of volume n;. We define the level-i vertex
set of Q;(x) to be

Y ase 2 -1 T
Vi = Vs [Lng/ TV) UVE 1 2n]). 4.12)

We write @ni for the induced subgraph on T/,-. Define the sequences

—5/4 ...
1 —n, ifi =0
;= ’ ’ 4.13
& {(i+1)‘2, ifi>1, (4.13)
i i+1
—5/4 . .
pi=[la=ep=n [T = pi=lim pj. @14
j=0 j=2
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We call Q;(x) i-good (and i-bad otherwise) if it satisfies the event (with 8’ in (4.10))

Ai-gooa () i= {3comp. € in G, + G| = i,
(4.15)
|Vgi(x)[n3'/’ 2"3/) neCil = 5/,0,'115}.

The definitions of (m;);>o and (n;);>0 in (4.11) ensure that they increase doubly
exponentially in i: indeed, ignoring integer parts, n; ~ nllff‘s son; X n(()l+g‘3)t. This
also implies that 2"3/—1 < ”3/ and so for any level-(i — 1) subbox centered at any
v, ]7,'_1, y is disjoint of V’gl (x)[nl?’, 2n3’). Thus, in Q; (x) we sprinkle in new vertices
with mark in [ng/, 2n3’) in level-i compared to previous levels. Summability of (g;);>0
in (4.13) implies that p > O for any starting value o (n¢) in (4.13—4.14).

The next claim provides useful bounds on the sequences that will appear in subse-
quent computations. Actually, &5 in (4.8) is chosen precisely such that (4.16)—(4.18)

are satisfied below. The label on the inequalities indicate where we will use the bounds
later.

Claim 4.9 (Useful bounds). Fix any ¢ € (0, 1) and then £5(¢) in (4.8). Assume § €

(0, £ /2) and consider the quantities in Definition 4.8. For each constant C > 0, there
exists a constant n(*) > 0 such that for all ny > n6 and all i > 1, the following hold:

=5 (Sub) Cn§_6

emin;_; = FE (4.16)
(Con) _
piz_lml-lfanf_l > Cnf 5, 4.17)
(Mark) _
pint = Cnfl (4.18)
Further,
i i i—1 i—1
0 e [n(()1+§a/2) 1) ] mi e [%nga(l+&s/2) e ] 4.19)
gim; "= C. (nioi/n0)* " = Clog(e/ei).  (4.20)
Moreover, for allm < m;41 and n := n;m,
mns T > pt=o, 4.21)
Finally, when ¢ = tppandy =1 — 1/a, then
Y Y
n! >2nl . (4.22)

We postpone the proof to Appendix B.2.
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4.2.3 Induction base of the renormalization

We now carry out the multi-scale renormalization outlined in Section 4.2.1 by induc-
tion. We first constitute the induction base.

Claim 4.10 (Induction base). Consider a supercritical KSRG under the setting as in
Proposition 4.1 and consider Definition 4.8. There exists a constant n > 0 such that
for all ny > njj in Definition 4.8, and all x € RY,

P(Qo(x) is 0-bad) < 1/e°.

Proof By translation invariance, we assume w.l.0.g. that x = 0, and abbreviate Qg :=
Qo (0). We use the the definition of i-goodness in (4.15) for i = 0 in Definition 4.8,
and substitute pp = n, 8/4 by (4.14). Then,

IP’(QO is O—good) = P(EI component C in ano IC] > n] 8/4,

(4.23)

ICOVYnY, 20| = 8'ng*nf).
Following Definition 4.5, we use the alternative KSRG construction with the g-
thinning of the vertex set. Let g;ﬂge be the thinned KSRG restricted to 9, which is a

subgraph of ano ; let C;lg be dse[ né/ (r_l)) be the largest component in the induced sub-

graph on the restricted marks [l nz/(r 1)) in Qb“e and letCp 2 C(” base[l ng/(r_l))

be the component in the whole Qno containing this component. We define the event
that this latter component is large enough:

Alarge — {IC“) [ ’ (2)/(r 1))| > n(l)_‘m}, 424)

ng,base

Conditionally on Afa‘;ge, the component Cy is large enough to play the role of Cin (4.23).
So, by the law of total probability,

P(Qo is 0-good) > P(AL, ) P(IConVE [n.2n) | = 8'ng™ nf | AL,.). (4.25)

We show that both factors on the right-hand side tend to one as nyp — oo.
(Con)-step of level-0. We first consider P('Aﬁﬁ'ge) with the event defined in (4.24).
If the thinned PPP Vb“Se contains no vertices of mark at least né/ (=1

cv [1 nz/(T 1)) and CV coincide. Here C"

ng,base ng,base ng,base
of the thinned PPP in Q. By a union bound over the complementary events, it follows
that

, then

is the largest component

IP)("Lllarge) = (|Vbabe[ 2/@=1) oo)| |C('> | > 1- 6/4’)

no,base ny
= 1= P(IChy pusel <79 8/4) P(Vge[ng/ "V, 00)l = 0).  (4.26)
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By Observation 4.6, qu'(; base Nas the same distribution as the largest component of a

supercritical KSRG with edge density Sg? > B inside the box Agng» With g € (0, 1)
from Definition 4.5. Hence, by Lemma 4.2, the first probability on the right-hand side
in (4.26) tends to zero as ngg — oo (we absorb the factor g into the exponent 1 — §/4
by choosing ¢ < §/4 in Lemma 4.2). The intensity of V*** is gLeb x Fy (dw) =
gleb x (t — Dw~"dw and the box has volume ng. So, the expected number of
vertices in VQE‘? [né/ (T_l), o0) is ®(n(1)na 2), which tends to zero. Hence, the second
error term in (4.26) also tends to zero. This shows that P(Afa(;ge) — 1in (4.25).
(Mark) step of level-0. We now carry out the (Mark)-step of level 0: We inspect
the second factor in (4.25). The vertices Vgo [ng , an) form a PPP with intensity

(1 — g)Leb x (r — Dw~"dw in a box with volume ng. Its expected size is

E[IVE 1), 20§)1] = (1 = )(1 = 2= g 770 = (1 = ) (1 = 27~ D)nf.
4.27)

Further, V™ is independent of V**° and thus also of the graph Q',’;’se[l, n(z)/ (T_1)>,

the graph induced by vertices whose marks are in the interval [1, n(z)/ (F])) and the

event Aﬁﬁge. On this event, there are at least n(l)_a/ 4 vertices in the above mentioned
component, and each vertex there has mark at least one. We use that the maximal
distance between two vertices in 9y is \/c_ln(l)/ d. Given Af’a(}ge, for each vertex v in

0,10+ 200,

2/(x=1) pn} ny M
(1) T— n o
P(v ~ G sl ! Alaofge) =1- (1 —p(In dd/2n0) )
>1— exp ( _ pﬂad—ad/2n(;5/4n())/ol—(ol—l))

=1—exp ( — pﬂ“d_“d/2n68/4).

We used that y < 1, so n(’)/ — o(1) and the minimum is attained at the second term
for ng sufficiently large to obtain the first inequality. Then we used that y = (¢ — 1)/«
to obtain the second row. For ng sufficiently large, we use the bound 1 —e™ > x/2
for x < 1. Therefore, the right-hand side is at least pg%d—*¢/ 2n5 5/4 /2. This is the
connectivity estimate for a single vertex. Since each vertex in V’Qp'o [ng , an ) connects

2/(t—1 . . . .
;;g’base[l, ”0/ @ )), the number of connecting vertices is Poisson

with mean at least the mean in (4.27) multiplied with this connectivity estimate. So,

independently to C

using pg = na‘m in (4.14),

P(IVE, [nf, 2n8) N Col < 8 pon | Affye)
< IP(POI((I _ q)(l _ 2—(1’—1)) . %pﬁad—(xd/Z . n6—5/4) < 8/n(§)—5/4)
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By the choice of §’ in (4.10) and concentration of Poisson variables in Lemma A.1, the
right-hand side tends to zero as ng — oo. This proves that the second factor in (4.25)
tends to 1 as well. This finishes the proof of Claim 4.10. O

4.2.4 Advancing the induction: the iterative step.

Claim 4.10 shows that level-0 boxes are good with constant probability. In the next
claim we advance the induction by bounding the probabilities of the steps (Sub), (Con),
(Mark) in Section 4.2.1 for level-i boxes.

Claim 4.11 (Advancing the induction). Consider a supercritical KSRG on a PPP with
parameters such that ¢y > 0. Assume 6 € (0, ¢/2). There exists a constant n6 >0
such that for all ny > n(*) in Definition 4.8, for all i > 0,

P(Q; (x) is i-bad) < exp (— 6(n;/ng)* %) := err;. (4.28)

Proof When i = 0 the statement follows from Claim 4.10. Let i > 1 and assume
that (4.28) holds for level-(i — 1) boxes. We now follow the steps (Sub), (Con), (Mark)
in Section 4.2.1 and bound their error probabilities. Like in Claim 4.10, we assume
w.Lo.g. that x = 0, and write Q; := Q;(0).

Enough subboxes are good. We start with the (Sub) step. Since n; = m;n;_
by (4.11), we can partition Q;(x) into m; subboxes of volume n;_1. Let (x;);i<m,
denote the centers of these boxes. Define the event

Asup = { D Wity is G — ebad) < Simi}~ (4.29)

J€lm;]

In words, Q, (x) contains at least (1 — &;)m; many (i — 1)-good subboxes. Using that
disjoint boxes are i.i.d., the induction hypothesis yields that the number of bad boxes
is stochastically dominated by a Bin(m;, err;_1) random variable, i.e.,

m;
: mi
P(=Asub) < P(Bln(mi,errifl)) > Simi) < D (,;)el‘ffr
k=[eim;]

We use that (r;’c’) < (em;/k)¥, so the binomial coefficient is at most (e/g;)¥ for all
k > ¢;m;. Hence, using the definition of err;_; from (4.28),

o0

P(—Awb) < Y exp(—k(6(ri-1/n0)* "> —log(e/e:)).
k=[eim;]

We use that &; = (i + 1)72 by definition in (4.13): when i = 1 we compute 6 —
log(e/e1) = 6—log(4e) = 5—log(4) > 3;fori > 2, by the second inequality in (4.20)
for C = 4/6, we obtain that 6(n;_1 /ng)* % — log(e/e;) > 3(nj—1/no)* % when ng
is sufficiently large. We obtain a geometric series with base exp(—3(n;_ /no)C_‘s),
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which is at most 1/2 for all i > 2 by choosing n¢ sufficiently large. Evaluating the
geometric sum and then using the bound (Sub) in (4.16) yields

P(~Aw) < Y exp(—3(mi_1/n0)* )" < exp (—3eimi(ni—1/no)*%)/2
k=[ejm;]
< Lexp (= 6(n;i/no)* 7). (4.30)

This finishes the (Sub)-step of level-i.
Connectivity: the local giant is big enough. We now move on to the (Con)-step

in Section 4.2.1. In level i — 1, we used the vertex sets Vbase ey )[1 nz/(T 1)) U

Vo aplls 2n!_|) in each subbox j € [m;], see (4.12). We denote the level- (i—1)
graphs on these vertex sets by Gy,_, x,. We now reveal the realization of (Gy,_, x,) j<m;

for all j < m; in the level-(i — 1) subboxes of Q; (x), and assume that the realization
satisfies the event A for Q; (x). We write

pre-’g\n,- = L-Jj<m,-/g\n,- 1xj On
2 1 r
Vpre = Ujzm V3 o[ 1- ng YUy Lol 2nlp. 4.31)

Since the realization satisfies Agyp, at least (1 —&;)m; many subboxes are (i — 1)-good.
We re- label boxes so that the boxes with indices j < (1 — g;)m; are all (i — 1)-good.
In pre- gn, we did not reveal yet whether vertices in different level-(i — 1) subboxes
are connected to each other or not. The graph gn, which contains pre- gnl additionally
contains these edges between subboxes.

The Erdos-Rényi type auxiliary graph. The definition of (i — 1)-goodness in (4.15)
gives us components C;_1, X; in each good subbox with size at least p;_jn;_1. Consider
the auxiliary graph H = (Vy, &) in which the vertex j € Vy = [[(1 — &;)m;]]
corresponds to Ci—j x;, and two vertices j, k € Vy are connected by an edge if the
components C;_j x : and C;_j x, are connected by an edge in @ni. If the auxiliary
graph H is connected, then Q;(x) contains a component that has size at least (1 —
g)ym; - pi—1nj—1. Since m;n;_1 = n; and p;—1(1 — &) = p; by (4.11) and (4.14),
respectively, this size is at least p;n;. Therefore, it satisfies the first criterion for being
i-good in (4.15). Hence, for all realizations pre-/g\,,l. satisfying Agyp,

P(3 component C; : |Ci| > pin; | pre-@ni) > IP(H connected | pre-@ni). (4.32)

We now prove that H stochastically dominates an Erds-Rényi graph. The criteria for
being (i — 1)-good in (4.15) guarantee that the level-(i — 1) good subboxes contain a
component C;_, x; with size at least p;_jn;_1, and this component contains at least
8 pi_ 1n{ | vertices of mark in [n 1 2n _1)- We bound the probability that there
is an edge between two such components in different good subboxes by checking

whether any of the potential edges between the §’ p,-_lnf_l many level-(i — 1) high
mark vertices in one box and the p;_1n;—; many vertices in the component of mark
at least 1 in the other box is present. Any two vertices in Q;(x) are at distance at
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most \/Enll / d, so using the connection probability in (4.6) we compute for any good
subboxes with index j, k that

/ 1+¢
- Bl | \a 807 ym
P(Ci-t.5; %G, Ci-to | Pre-Ga) = (1= p(1A E) )

< exp ( _ palﬁad—ad/pr_lnilj‘lf-i-)/oln.—(x)

l
= oxp (= p8'B*d = pl_ini Tn; %) = 1 - g,
(4.33)

where we used that y = 1 — 1/« to get the last row, and also to see that the minimum
is at the second term in the first row, since ”3/—1 /n; can be made arbitrarily small by
choosing ng sufficiently large, see (4.11). The connectivity between different local
large components is conditionally independent given the realization of pre-@,, .» so the
auxiliary graph H dominates an Erdés-Rényi graph G([(1 — &;)m;7, q;). The reader
may verify that m;q; > logm; foralli > 1 if ng is sufficiently large, so by Claim 4.7
on the connectivity of G,

]l{Asub}IP’(H not conn. | pre-@ni) < 3(em,-)2(1 - q,-)(l_gi)’""/2

3ps'B* o —
< 3em)?exp (— L2Lp7 i my),

84ed/2
(4.34)

where we substituted 1 — g; from (4.33), and used that 1 —¢; > 3/4 foralli > 1. We
substitute n; = m;n;_1 to obtain the first row below, and then use the inequality (Con)
in (4.17) to see that the i-dependent factors together can be bounded from below
by Cnf_(s for any constant C > 0 to get the second row. Here, we can choose ng

sufficiently large so that C cancels out the constant (8, 8, p, d-dependent) prefactors:

PN 3ps' B -
14y P(H not conn. | pre-Gp,) < 3(em;)? exp (- 82“‘52 ,ol»z_lnf_lmi1 “).

< 3(em;)* exp ( — 7nf_5) < %exp ( — 6nf_5)_
(4.35)

Returning to (4.32), this shows that the first condition of being level-i good in (4.15),
i.e., containing a connected component with size at least p;n;, holds with probability

at least 1 — exp(—6nf_8) /3, given Agyp. This finishes the (Con)-step. We summarize
it as follows: since P(=Agb) < exp (— 6(n;/no)*~?)/3 by (4.30),

P(Q; (x) is i-bad) < P(~Asup) + E[1 {40 P(Q; (x) is i-bad | pre-Gy,)]
< P(—~Asup) + E[14,,)P(H not conn. | pre-Gy,)]
+ E[ 14,0} P(Qi (x) is i-bad | pre-G,,., H connected) | (4.36)
< Sexp (= 6(ni/no)*™)
+ B[4, P(Qi(x) is i-bad | pre-Gy,, H conn.)],  (4.37)
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where the error of the (Con)-step is the first term in the last row, and the second term
still needs to be bounded during the (Mark) step.

Enough high-mark vertices in level-i. Finally, we treat the (Mark)-step in Sec-
tion 4.2.1. That is, we bound the conditional probability in the last row above. This
corresponds to the second criterion in (4.15), i.e., the requirement that C; also contains
enough level-i high mark vertices. On the event Agyp N {H is connected}, we set C;
to be the connected component in @ni that contains U ey, Ci— 1y, = pre-C;. By the
argument leading to (4.32), pre-C; has already size at least p;n;. Hence, by the criterion
in (4.15), we need to bound

]I{Asub}P(|VQpri(x)[n;/, 2n)NC| < S’p,-nl.l_y(f_l) | pre-Gy.. H connected). (4.38)

We argue similarly asfori = 0 around and below (4.27). Since pre-C; € Vpre in (4.31),
and 2n 1 < n by (4. 22) the already revealed vertex set Vpre is disjoint and thus
mdependent of V" [ ,2n!). Hence, the PPP Vo, 0 () [n!,2n]) itself is independent
of the condltlonmg 1n (4 38). Using the intensity in (4 5), its expected size is

E[VE o 201 = (1 = (1 =270y = (1 - gy = 27Dt
(4.39)

with g € (0, 1) from the Definition 4.5. There are at least p;n; vertices in pre-C;, each

with mark at least one, and each pair of vertices inside Q; is within distance \/Enll /d

So we get using the connection probability in (4.6) that each individual vertex in
Q @) [nl , 2n ) connects by an edge to pre-C; € C; with probability at least

1—(1—p(1/\ ﬂr;}/ )a>pfni > 1 —exp(— pBod = pn?* (a— 1))

Vd n;
=1—exp(—pp*d~*p;).

To obtain the second expression, we used that the minimum is at the second term
for ng sufficiently large, and y = (¢ — 1)/« to get the second row. Since p; =
O(n, o/ 4) as ng tends to infinity by (4.14), we may assume that ng is so large so
that the bound 1 — e™* > x/2 applies (for all x < 1), and the right-hand side is at
least pB%d—%?/2 p; /2. Since each vertex in VSQ‘“! ) [n),2n!) connects independently to
pre-C;, the number of connecting vertices forms a PPP with mean at least the product
of (4.39) multiplied with this bound. So,

L) P(1VE (). 207) N Ci| < 8 pin{ | pre-Gy,. H conn.)
< P(Poi((1 — g)(1 =270y . Lppra=ed/2 . pint) < & pins).

The value of 8 in (4.10) is chosen exactly so that 28 is the prefactor of p;n ¢ in the
mean of the Poisson variable. Hence, by the concentration of Poisson Varlables in
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Lemma A.1, there exists ¢ = ¢(8’) > 0 such that
]l{»Asub}]P)(|Vsél;(x)[nl}'/’ 2n)) N Ci| < 8 pint | pre-Gy,, H conn.) < exp (—cpiny),

Finally, by the bound (Mark) in (4.18), the right-hand side is at most exp ( — 6nf78)/ 3
for ng sufficiently large. Combining this bound with (4.36) finishes the proof of
Claim 4.11. O

If the box Q;(x) is i-good, then it contains a giant component on the restricted
marks [1, an). Thus, Claims 4.10 and 4.11 together prove Proposition 4.1 along the
subsequence n;, and when ¢ = {p1. We now prove Proposition 4.1 for arbitrary n.
Proof of Proposition 4.1 when ¢y > 0. W.lo.g. we may assume that § € (0, /2 A
1 — ¢) in the statement of the lemma. Let n( be a constant such that Claims 4.10-4.11
hold for all i > 0. Fix now the sequence n; in (4.11). We may assume that n > ny,
since the constant A in the statement of Proposition 4.1 can be increased to account
for values n < ng. We define
3/ (t 1)}’

ip := min{; : an >n iy :=max{i : n; < n},

4.40
m = Ln/ni,) 144, PR (440

By increasing the constant A in the statement of Proposition 4.1, we may assume
w.l.o.g. that i, > ip. Then, there exist v such that

m > v(n/n;,). (4.41)

By the definition of m and 1, Aj; € A, can be partitioned into exactly m > 1 disjoint
boxes of volume #n;,. We denote the boxes of this partition by Q;, (x1), ..., Qi (Xn).
From here on we argue similarly as in the proof of Claim 4.11: we use (Sub) and Con-
type steps. We will show that at least half of the boxes are i,-good, and afterwards
connect the large components in the first [m /2] many i.-good boxes via a domination
to an Erd6s-Rényi random graph.

Enough subboxes are good. Define

Asup(n) = { D 1@y, () isis bad) < m/2}~

Jj€lm]

We follow the calculations from (4.29) until (4.30) and replace ¢; by 1/2, m; by m
and n;_1 by n;, there. The bound (',’:) < (m/ek)* works forallm > 1 and k < m. We
also use there the second inequality in (4.20) for C = 4/6, which also holds for n;,.
So all bounds except the last row in (4.30) remain valid. Using (4.41) we obtain the
bound

o0

B(~Aun(m) = 37 exp (=30, /n0) )" < exp (= 30m/2)(ni, fno) )2
k=[m/2]
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< exp ( — (v/2n57).- nni—a_l). (4.42)

r—6— n{,(g,

Asn > n;, and ¢ < 1, it follows that n; 1 which, when rearranged

c—5—1

yields that nn;’ > nt~3%, Hence,

P(=Awn(m) < exp (= (/21§ ") - n< ). (4.43)

This finishes the (Sub)-step for general n.

Connecting local-giants of subboxes. Now we move on to the (Con)-step in Sec-
tion 4.2.1. We follow the argument around (4.31), and define the pre-vertex set Vpre
as there, with n; replaced by n, i — 1 replaced by i, and m; replaced by m there:

pre-G; :=Uj<mGn,, x; on

Vore () = Ujen V< o [1ng/ V) UVE (1,20]). (4.44)

We reveal the realization of pre-@n, satisfying the Agup (). Following the argument
above (4.32), we construct the auxiliary graph H, on vertices representing the first
[[m/2]] many i.-good subboxes. Each vertex j represents a large component C;,
guaranteed by the first condition in i-goodness in (4.15). Two vertices j, k are con-
nected by an edge in H,, if there is an edge between C;, ; and C;, . We follow
the computations between (4.32) and (4.34), and replace there (1 — &;)m; with m/2,
replacen;_1, pj—1 withn;_, p;, ,andreplace n; by nn. The latter holds because mn;, = n
by (4.40). Then, for some constant ¢ > 0, (4.34) turns into

1Ay ()} P(Hn not conn. | pre-aﬁ) < A'mexp (- c,o,z* f+ A%m).

By (4.40), m < m;_41, so the bound (4.21) holds for 7 = mn;_, which gives the first
row below. Then, n > vn follows by multiplying both sides of (4.41). Moreover, the
prefactor A’m < A’n can be absorbed by decreasing the constant prefactor in the
exponent. We obtain for some ¢’ > ¢” > 0

14y ()P (M not connected | pre-G;) < A'mexp (— ¢/ p? it =)
= exp (= "pint).

The definition of p; in (4.14) gives that p;, > p > 0 for all i,, which gives our desired
bound for the (Con)-step. Combining the error bound in (4.43) with this, we obtain that
for any A > O sufficiently large that only depends on the fixed value of the constant
no,

}P’(Asub(n) N{Hp, connected}) >1—exp ( — %n;_s)_

By (4.44) and the arguments below, connectivity of the auxiliary graph H,, means that
the large components C;, ; in the first m /2 i-good boxes form a connected graph. In
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pre@ﬁ we only revealed edges between vertices of mark at most 2niy* < 2nY by (4.44).

By (4.40) and the assumption that i, > iy below (4.40), we also have 2n§/* > né/ @D,

Moreover, on Agup (n) N {H, connected}, the [m /2] components of size at least p;,n;,
form a connected graph, and thus G,[1, 2"3;) contains a component of size at least

(m/2) - pi,ni, = pi,n/2 = (v/2)pi,n > (v/2)pn.
This implies that the largest component must be at least this large as well. So,
Agub(n) N {H, connected} < {IC’[1, An¥)| > %n} (4.45)

when A is sufficiently large. This finishes the proof of (4.1). We do not need the (Mark)
step here since there is no further iteration. For the Palm version P* the proof is exactly
the same. m|
Proof of Proposition 4.1 when {1 > 0. When the vertex is formed by a PPP, we obtain
the second statement (4.2) by a straightforward adaptation of the above proofs. We
provide a sketch. When ¢ = 2 — o > 0, we re-define what we call an i-good box by
leaving the requirement on the marks in (4.15) out. We now call Q;(x) i-good (and
i-bad otherwise) if it satisfies the event

Ai—good (x) = [EI component C; in a,,i 2G| = pin,-}. (4.46)

Then, we replace ¢y by ¢y = 2 — « in all computations and definitions, and we
sklp the (Mark)-step on each level. We do this by setting the level-i vertex set to be
V= Vo, 1, ”0/ (= 1)) That is, only the size of the box changes across levels, the
mark-truncation stays put. The (Sub)-step leading to (4.30) carries through unchanged
by the inductive assumption and the concentration of binomial random variables on the
number of level-(i — 1) good subboxes. For the (Con)-step, instead of using high-mark
vertices, we estimate the mark of each vertex from below by 1 in the large components
Ci—1.x : and C;_1 . Using this lower bound, the number of edges between the two
components dominates a binomial random variable. Both components have size at
least p;_1n;_1 because they are contained in (i — 1)-good boxes, and their distance is
at most «/En}/d, so (4.33) simplifies to

~ 0?2
P(Ci—1.; G, Ci—lu | pre-Gn;) < (1 —p(lA \/EL;W)Q) o

= eXp ( - (pﬁdiad/z) . p?,]n?,ln;a) =1- qi-.
Observe that the exponent n = nf+1 since here ¢ = 2 — «. From here on the
computations are identical to those between (4.34) and (4.35), and since the last term
in (4.36) is not present, we conclude the proof at (4.36) for ¢;; > 0. Along the lines we
also use that all statements of Claim 4.9 remain valid also for ¢ = ¢, except (4.22).
But, (4.22) is only used in the (Mark)-step which we omit when we consider the case
tn > 0. O

@ Springer



Large deviations of the giant in supercritical KSRGs

5 Sharp bounds on the existence of a giant

The goal of this section is to improve upon the probability of the existence of the
giant component compared to Proposition 4.1, which is formalized in the next propo-
sition. In Proposition 4.1, the exponent of n in the stretched exponential decay is
max (¢n, &) — 8. Here we remove the error § and ‘append’ (d — 1)/d, ¢y to the list
in the maximum.

For a regime type € {11, hl, hh}, and constants p, § € (0, 1), we define the event

ADP oy { la comp.Cin G, : |C| = pn,C 2D Vint, 00)}, if type € {hl, hh},

giant Jcomp. Cin Gy : [C| = pn}, if type = 11.
6.
Recall the values yy and yhn from (2.11) and (2.13), respectively. Define
= (@—-1/(t =1, (5.2)

which we will only use when ¢;; = 2 — « > 0. In particular, we will not use it when
o = oo.

Proposition 5.1 (Sharp bounds for the giant). Consider a supercritical KSRG satis-
fying Assumption 2.2 on a PPP or consider supercritical long-range percolation on
Z4. Assume that there is a type € {11, hl, hh} so that Siype > 0 and that for a constant
p >0,

P(AZE (0)) —> 1, asn — . (5.3)

gian

(long) Then for all ¢ > 0, there exists A > 0 such that for alln > 1
P(IC[1, An™%)| < (1 — &)pn) < exp(— %nglype). (5.4)

(short) Also, for all ¢ > 0, there exists A > 0 such that for alln > 1
P(IC[1, A)| < (1 —¢e)pn) <exp(— %nggh"“). (5.5)

Proposition 5.1 gives sharp decay for the value of {iype that maximizes {¢n1, {nis Chn,
short}> Which is equal to ¢, by Claim 2.3. When {jong = max{Zy, ¢ni, Shn) > 0 and
(d — 1)/d > 0, the second statement shows that the giant still exists with stretched
exponential error probability even when all vertices with mark above a constant are
deleted from the graph. When ¢, = (d — 1)/d, this decay is even stronger than (5.4).

The requirement (5.3) corresponds to (Req) in Section 3. It demands some initial
density bound p on the size of the giant, and for the (hh) and (hl)-regimes it also
demands that the highest-mark vertices are in the giant. Via edges incident to these
high-mark vertices we can connect large components in subboxes in renormalization
schemes below. We guarantee the presence of these long edges via the reasoning in
Section 2.2. The requirement on high-mark vertices is not needed in the (1l) regime
in (5.1), since we bound all marks from below by one. Thus, in the (11)-regime, (5.3)
is already satisfied for a small p by Proposition 4.1. At the end of this section we
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verify (5.3) also for the (hl) and (hh)-regimes for a small p using Proposition 4.1,
obtaining Corollary 5.7.

We will apply Proposition 5.1 again in Section 6.3 with density p close to 0, as by
then we have proved the weak LLN for |C| for all parameters satisfying {jong > O.
This will result in the upper bound on the right-hand side of (2.21) in Theorem 2.7. The
exponent ¢, of the stretched exponential decay in Proposition 5.1 will also appear in
our upper bounds on |C}”| and the cluster-size decay for Stype € {&n1, ¢} in The-
orems 2.9 and 2.10. Instead of Proposition 5.1, Proposition 4.1 could instead be
used as input to obtain (weaker) upper bounds on |C’| and the cluster-size decay
for Stype € {¢n1, ¢u}. That strategy would still give a weak LLN and also Theorem 2.7,
but would lead to the appearance of an error § in exponents in Theorems 2.9 and 2.10,
which would then never match the lower bounds in Theorems 2.9 and 2.10. This
explains the benefit of Proposition 5.1.

Remark 5.2 (High-level comparison of proofs in Sections 4 and 5). Section 5 sets up
a single-layer renormalization with carefully chosen number and size of boxes that
lead exactly to (5.4) and (5.5), respectively. It needs Section 4 as an input, because in
each of these boxes a linear-sized component has to be present whp on truncated mark
vertices.

It is natural to ask why one could not use ‘more carefully chosen’ box sizes already
in Section 4 and obtain better bounds already there? The rough answer is the following:
here in Section 5 we shall shortly perform a single-layer renormalization. Since it is
a single layer, we can afford to lose a small linear portion of the giant. Thus, we
can renormalize to a supercritical Erd6s-Rényi random graph (ERRG), and use large
deviation results for those. Then, we have © (n*) many boxes, and the probability that
a supercritical ERRG has a too small giant decays exponentially in the the number of
boxes.

On the contrary, Section 4 uses an iterative scheme in order to improve the initial
sublinear bound on the largest component to a linear bound. That is not possible in a
single-layer renormalization. In an iterative scheme, one cannot allow to lose a small
constant fraction of the largest component in each step. That would (again) result in
a sublinear bound on the largest component. Therefore, in Section 4 we renormalized
to a connected ERRG. For that we need slightly larger boxes, and thus we have o(n%)
boxes when reaching total size n. Moreover, the probability of the rare event that
such an ERRG is not connected, decays exponentially in the expected degree, which
is smaller than the total number of boxes. These reasons explain the —§ term in the
exponent in Section 4.

We proceed to the proofs. We start with a claim that allows us to truncate the
vertex marks from above; then we separately present the proof of the two statements
in Proposition 5.1.

Claim 5.3 Consider a supercritical KSRG under the setting of Proposition 5.1. Assume
that Liype > 0 and (5.3) holds for some p > 0, type € {hl, hh}, and § € (0, 1). Then,
as n tends to infinity,

IP’(Elcomp. Cin Qn[l,nf_11> = V[n%nf_ll) cl > pn) — 1. (56)
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Proof We abbreviate w = n(1=9/C=D 5 = »1/@=D throughout the proof. We start
from (5.3) and distinguish whether G, contains vertices of mark at least w: if there are
no vertices of mark at least w, then G,[1, w) = G, . Slightly abusing standard notation,
we write here C C V,[1, w) UV, [w, co) for a set of vertices that is a component when
restricted to marks below w. Then we get

IP’(EI comp. Cin G, : C 2 V[w, 00), |C| > ,on)
=P({3 comp. Cin G,[1,w) : C 2 V[w, W), |C| > pn} N {Mw, o0) = @})
+P({3comp. Cin G, : C 2 Vw, w), [C| > pn} N {V[w, co) # 0}).

Since the vertices are formed by a PPP, V[w, 00) is independent of V|1, w) and thus
also of the graph G,[1, w). So, in the first term on the right-hand side we can take
the product of the probabilities of the two events. Using the intensity of V in (4.5),
P(V[w, o) = ) = 1/e. Hence, conditioning on {V[w, co) # @} in the second term
on the right-hand side yields

P(3 comp. Cin G, : C 2 V[w, W), |C| > pn)

1
= EIE”(EI comp. Cin G,[1,w) : C 2 V[w, w), |C|] > pn)

+ (1 — é)]}v(a comp. Cin G, : C 2 V{w, W), |C| > pn | VIW, 00) # ).

Since the left-hand side converges to 1 as n tends to infinity by the assumed condi-
tion (5.3), the two probabilities on the right-hand side must converge to 1 as well.
Since the event in the first row on the right-hand side coincides with (5.6), the claim
follows. m|

5.1 When relying on long edges

Before the proof of Proposition 5.1(long), we state a result about the giant in
Erd6s-Rényi random graph G (n, p). The result will ‘replace’ Claim 4.7 in the renor-
malization scheme of this section compared to the scheme in Section 4. The claim
follows from a large-deviation principle for the size of the giant component obtained
by O’Connell [68], see also [9]. For our result, we do not need the exact rate function
of this LDP.

Claim 5.4 (Large deviations in G (n, A/n)). Consider the largest connected component
C" (py) of the Erdés-Rényi random graph G (n, py). Fix ¢ > 0. There exist constants
A >0, A = A(e) > 1 such that for alln > 1

P(IC"(h/m)] < (1 —e)n) < exp (— +n).

Proof Denote by g, the survival probability of a Bienaymé-Galton-Watson branching
process with Poi(A) offspring. By [68, Theorem 3.1], forevery A > 1 and & > 0, there
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exists a constant A > 0 such that
P(ICL(/n)| < (1 — E)aan) < exp (- Ln).

It is well known that the survival probability g, tends to one as A — o0, as g, is
the largest solution in (0, 1) to the equation o, = 1 — exp(—Xp,) (see [70, Example
6.1.10]). Hence, given ¢ > 0, we may choose A large enough, and € > 0 small enough,
so that (1 — &), > (1 — ¢). The statement follows. O

Proof of Proposition 5.1(long) We give the proof for KSRGs on a Poisson point process.
The result for long-range percolation on Z¢ follows analogously to the case ¢ > 0.
Fix Ciype € {¢hts Chn, ¢u) such that Cype > 0. Let YVtype € {n1, vhh, yu} be the
corresponding value that solves {iype = 1 — Ytype(t — 1) by the definitions of yq1, Vi,
and yp in (2.11), (2.13), and (5.2), respectively. For readability, we omit the subscript
type throughout the proof.
Definitions of constants and boxing scheme. Below we will suitably define a constant
M > 0 depending on the regime (i.e., high-low, high-high, or low-low). For simplicity,
we assume that (n¢ /M)'/? e N, so that we can partition A, into

my :=n*/M (5.7)
boxes Q1, ..., Qp,. Using that (1 — ¢)/(r — 1) = y, each box has volume
oy = n/my = Mn' =6 = (MY D7) (5.8)

Given any ¢ > 0 in Proposition 5.1(long), define the small €1, &, > 0 as the solutions
of the following equations:

l—e=(—-e)% PMeky’ ", 00) = 1) =1 /4. (5.9)
In a box of volume k,, the expected number of vertices of mark at least 82k,1/ =D
—(z—1 :
equals &, by (2.4), so &> is a constant.

Good boxes and auxiliary graph. We write Vi, ; = VN (Q; x [1, 00)) for the
vertices in Q, Gy, ; for the subgraph of G, induced by the vertices in Q ;, and similar
to (4.31), we set

pre-Gn := Uj<m, Gk, . ;- (5.10)
Wecallabox Q;, j € [m,] good if the following event holds depending on the regime
type € {hl, hh, I1}. When type € {hl, hh},

Acomp. C; in Gy, j[1. k,g/(ffl)) 2 1Cj| = pkn,

Cj 2 Wi, jleaka’ TV M D) 2 g
(5.11)

Apox(j) 1=

When type =11,
N L . /(=D .
Abox(./) = i Jcomp. Cj n gk,,,j[la ky ) . |C]| = pkn} .
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We define the event that there are enough good boxes in A, (similar to Agyp in (4.29)):

Agub = { Z Lidpoe(iyy = (1 — Sl)mn}, (5.12)

J€lmn]

The event Agyp, is measurable with respect to pre-G,, in (5.10).

Enough subboxes are good. We estimate IP’(—'Asub), with Agup defined in (5.12).
For that we analyze the individual probabilities ]P’(.Abox (J )). By the definition of ¢
in (5.9) and the hypothesis (5.3), for all n sufficiently large and any j € [m,]

P(Abox(j)) >1—e/2. (5.13)

Since the graphs Gy, ; are iid across j € [m,], by a standard Chernoff bound on
binomial random variables, there exists a constant ¢ > O such that

}P’(—'Asub) < exp ( - cmn). (5.14)

Introducing the auxiliary graph. Similar to below (4.31) and (4.44), on any realiza-
tion of pre-G, satisfying Agup, we re-label boxes so that the first [(1 — g1)m, ] many
boxes are good. Then we define the auxiliary graph H,, = Vy,, Ex,) on [(1 —e1)m,, ]
many vertices, so that vertex j € Vy, corresponds to the component C; inside Q;
in (5.11), and two vertices j, ¢ are connected in H, if the components C; and C,
are connected by an edge in G,. We write C( ) for the largest component in 7,,. By
construction, the induced connected components C;j ) C(l) in (5.11) are all contained

in the same component in G,. So if the event Agy, N {|C(]) | > (1 —¢&1)|Vp,|} holds,

then the graph G, 1, Ky l)) contains a connected component C with

Cl= Y 1€ = (1= en)’my - phy = (1 = e1)*pn = (1 = &)pn.
jecs)

Here we used that |C;| > pk, by the event Apox(j), that k,, = n/m, by (5.8), and

(1—¢e)?=1-c¢ by (5.9). Clearly, the largest component of G, [1, k,l/(rfl)) is at least
as large as C, so

P(|c;;> [1, k,i/"‘”)‘ < (1—e)pn)
< P(=Aaub) + P(Awb N{ICH) | < (1 — &) [V, 1}). (5.15)
We study the two probabilities on the right-hand side separately.
Large deviation for the giant of ERRGs. We turn to the second term on the right-

hand side in (5.15). We rewrite this second term using the law of total probability: we
first reveal pre-G,,, then integrate over realizations satisfying Agyp:
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P(Aub N {IC | < (1= £)?my) = E[La) P(ICY, | < (1= e1)[V3,| | pre-Ga)]-
(5.16)
Let A = A(e1), A > 0 be the two constants from Claim 5.4 so that for all m > 1,

P(ICY (A /m)| < (1 —e)m) < Aexp(— %m) (5.17)
We will show below that conditionally on the realization pre-@n satisfying Agyp,
Hy = G(IVr, |, AeD) /[ Vr, D- (5.18)

Suppose we have proven this stochastic domination. Then we can apply (5.17), and
use that [V, | = [(1 — e1)my ] =: fiy:

LA P(ICY | < (1= eD)Vi, |1 Gn) < P(ICH (M/iiin)| < (1 — &1)iin)

<exp(— %Vn,l) < exp(— gy ma)

This bound holds uniformly for all realizations of pre-G, with Agyp in (5.16). So,
combined with (5.14), this bounds the two terms on the right-hand side in (5.15).
Recalling that m,, = n%/M,

P(CPIL k' ™) < (1= e)pn) < exp (— Gnt) +exp (— gya=yn)-

The mark bound k,i/ D in the largest component on the left-hand side is equal to
MY (@=Dpy by (5.8). Thus, to finish the proof of (5.4), it remains to prove the stochastic
domination in (5.18).

Showing that the auxiliary graph dominates ERRG. We now prove (5.18) case-by-
case for the three regimes, for ¢ being either {1, ¢hi, or ¢hh. We reveal the subgraph
pre-G, in (5.10), i.e., all induced subgraphs inside boxes (Q;) je[m,1, and assume that
the realization satisfies Agyp. The first [(1 — g1)m, ] boxes are good and these labels
form the vertex set Vy,. Each label corresponds to a component C; in Q;. Edges
between these components (C;) jey,,, have not been revealed yet, and conditional on
pre-G,, they are present independently of each other. Therefore, it is sufficient to show
that for all j, £ € Vy,,

A
P(C; ~g, C¢ | pre-Gy) = . (5.19)
€ Celpeta) 2 155

We will prove this by suitably choosing the constant M in (5.7), case-by-case for the
possible values of ¢ = Siype € {¢h1, Shn, Su}-

1. High-low edges, {type = {n1 > 0. We assume that @ < o0, since & = (t — 1) /a2 —
(t —2) < 0 otherwise. If a box Q; is good, see (5.11), the large component C; with

size at least pk; contains at least one vertex v’ of mark at least 82k,1/ D I there
are more such vertices, choose one arbitrarily. We estimate the probability that C; and
Cy are connected from below by the probability that either v; connects to any vertex
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in C¢ or v} connects to any vertex in C;. We bound marks in the other component
from below by 1. Any two vertices in A, are within distance +/dn'/?. Since vertex
weights are revealed in pre-G,, edges are present independently. So, we obtain from

the connectivity probability p in (4.6):

P(Cj =g, Cr | pre-Gy) < B({v} g, Ce) N {v] g, C;) | pre-Gy)
= ]_[ (1 —p(u, vy)) - ]_[ (1 —p(, v}))

MEC_,' IZEC[
1/(z—1)
,382kn a 2pkp
= (1-r(1n 497, ))

< exp ( — 2pknp(1 A ﬂ“d—“dﬂegkﬁ‘/("“n—“)). (5.20)

There are now two cases. If the minimum is attained at 1 in the last row, then the right-
hand side tends to 0 since k, = Mn'~¢ — oo since ¢ < 1. This means that (5.19)
holds. If the minimum is not attained at 1, some further calculations are required. We
set M as the solution of the equation

ppBd=2es = M~/ Dy /(1 — &), (5.21)
Then the last row in (5.20) equals

exp(_ 2ppﬂad—ad/28gk’£+a/(f—l)n—a) — exp ( _ %kn(kn/M)a/(t—l)n—a)'

We now use that k,, = n/m,, for the first appearance of &, and that k,, /M = nl= jn
the second appearance, see (5.8). The exponent thereis 1 — ¢y = (1 —1/a)(r — 1), so
rewriting the right-hand side yields that the exponents of n cancel each other. Using
also [ Vi, | = [(1 — e1)my ],

2 A
) Vr, |

2 A=twa/(t—1), —a\ _ ( .
e =e —_—
xp (= 125 (n/ma)n ) =exo (- T
for all n sufficiently large. This proves the desired bound (5.19) in the high-low regime.
2. High-high edges, {iype = ¢ > 0, and a < 00. As in the high-low regime, we
reveal pre-G,, and choose in each good box Q; a vertex v;. in C; with mark at least
82/(,1/ =D , see (5.11). We directly estimate the probability that v; is connected to v}
for j, £ € Vy,:

P(Cj ~g, Ct | pre-Gn) = P(v} ~g, v} | pre-Gy)
ﬂsg+1k(”+1)/(‘r71) o
n

447,

> p(l A (5.22)

If the minimum is attained at 1 on the right-hand side, then (5.19) follows, so we assume
it is attained at the second term. We use that k,, = n/m,, by (5.8). The right-hand side
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equals

B2V o k) (oD (=D mL
n

)

where we multiplied by a factor m,, /m,. We use now that m,, = nh /M by (5.7) in
the first occurrence of m, above to compute the power of n. The above expression
equals

pﬂad*("d/zgé""'l)aMa(ﬂJrl)/(f*l)*ln(]*Chh)a(<7+1)/(7*1)*0!+{hh G
my

It is an elementary computation to check that the power of n is 0 using that ¢y, =
(c+1—(r—1))/(c +1—(r — 1)/a) in (2.14). Further, {py is only positive when
o > t — 2. This latter inequality implies that (¢ + 1)/(r — 1) > 1 and so the
exponent of M is strictly positive for all « > 1. So, if we choose M large enough
then the constant multiplying 1/m,, in the above formula becomes arbitrarily large.
So, returning to (5.22),

- pBd /2D oot/ A

P(C; ~¢ C re-G,) > >
(] gn K'p ) |V7—{n|

1

ny
holds for sufficiently large M, since |V, | = [(1 — e1)m,,]. This finishes the proof
of (5.18) for the high-high regime with o < oo.
3. High-high edges, {type = thn = (0 +2—1) /(0 +1) > 0, and o = 0o. This case is
almost the same as the @ < oo case. The only difference is that in (5.22) the minimum
on the right-hand side must be attained at 1, and then the connection probability is p,
otherwise it is 0. So we check whether

ﬁgg‘l’lklfll‘ko')/(ffl)/(dd/Zn) > 1

holds. We use k, = Mn'=%h in (5.8) and 1 — ¢pp = ppn(z — 1) = (z — 1) /(0 + 1)
when o = oo. Thus, the powers of n cancel each other again. Since T < 2 4 o, we
can choose M large enough so that

ety 1)/ =D ygd/2 5 .

The bound (5.19) also follows in this regime.

4. Low-low edges, {yype = ¢n1 > 0. We may assume that « < 00, since otherwise
&1 = 2 —a < 0. By the definition of a good box in (5.11), |C;| > pk, and each
vertex has mark at least 1. So we compute using the connection probability p in (4.6)
for j, £ € Vy,:

P(C; =g, C¢ | pre-Gy) < (1 — p,l‘B"‘d_"‘d/zn_"‘)lC-’ll'lc‘{|
<exp(— pBd " p*kin"). (5.23)
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Since k, = Mn'=% = Mn*~!in (5.8), k2n™% = M?*n®2. With m,, = n>~%/M, we
may write k%n"" = M /m,, on the right-hand side above. We choose M as the solution
of the equation

pB A~ P M =22 /(1 — &y).

Now we obtain for n large that, using |Vy, | = [(1 — e1)m,],

2\ A
P(C; »g Cy | pre-Gn)=exp (— pped %2 p2p-L) <ex <— 7> <l—-—
( J ™G, Le 1P ") p( p mn) p |V7‘ln| |VH"|

(5.24)

showing (5.19). The same calculation works for long-range percolation on Z¢.

Conclusion for proving (5.5). We conclude that the bound (5.19) holds whenever ¢
equals either &y, ¢hi, ¢hh for a suitable choice of M in (5.7). This proves the stochastic
domination stated in (5.18) and finishes the proof of (5.5) in Proposition 5.1. O

5.2 When relying on constant-length edges

We proceed to proving Proposition 5.1(short). Here, instead of using long edges to
connect boxes and a domination towards an Erdés-Rényi random graph, we use “rel-
atively short” edges and stochastic domination towards nearest neighbor site-bond
percolation on Z?. In that model, each vertex x € Z¢ is independently active with
probability ¢, and each edge between active neighboring vertices is open with prob-
ability r, independently again. We denote the resulting graph formed by open edges
between active vertices by NNP(qg, r), and write L}, (g, r) for the largest component
inside A,. We state a combination of two classical results [29, 59, Theorem 1.1] that
will replace Claim 5.4 in this regime.

Proposition 5.5 (High-density NNP(q, r) has a large giant). Consider nearest neigh-
bor site-bond percolation NNP(q, r) on Z@ with probabilities q, r € (0, 1]. For each
e > 0, there exist constants qo,ro € (0,1), and A > 0 such that for all ¢ > qo,
r=ro,n=1,

P(ILY(q, )| < (1 — e)n) < exp (— +n=1/4).

Proof Fix ¢ > 0. We shall define an ey = ¢1(¢) and set g9 := 1 — &1 and ro =
1 —&1. Let w ~ NNP(qq, r9). We couple w to iid Bernoulli bond percolation w* ~
NNP(1, 1 — 12de;) on Z4, similarly to [7, 59]. By a union bound over the endpoints
of an edge and the edge itself, each edge in is open in w with marginal probability
at least 1 — 3g;. Consider an edge with endpoints (x, y) in w, and let N, y) =
{edges incident to x or y in ZaN\ {(x, y)). Clearly |N(x,y)| = 4d — 2. For any set of
edges S € N(x,y), by a union bound,

P((x, y) open in w |all edges in S open in w) > P((x, y) open and all edges in S open)
>1—@@Ad—-1)-3¢
>1—12de; =: p.
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Edges that do not share a vertex are independently open, so one can iterate this argu-
ment: for every finite set E of edges in Z¢, P(all edges in E are open) > p!l. Hence,
by Strassen’s theorem [60] we can couple w with an independent bond percolation w*
on Z¢ with retention-probability j, where every open edge in w* is open in w. Let us
write C g’i (p) for the largest component of w* N A,,. Given ¢ > 0, by [29, Theorem
1.1], there exists a p,(¢) < 1 so that whenever p > p.(e), for some A > 0,

P(IC (p)] < (1 — &)n) < exp (— {n~ /7).

Hence, setting &1 > (1 — p,(¢))/12d yields p > p(e), and we obtain by the coupling
W = Wy

P(IL (g, )| < (1= &)n) < P(ICR ()] < (1 —&)n) < exp (— xn“~"/),

and the result follows for gy = ro = 1 — ¢1, and by monotonicity for all values ¢ > ¢go
and r > rg. O

Proof of Proposition 5.1(short) We give the proof for KSRGs on a Poisson point pro-
cess. The result for long-range percolation on Z¢ follows analogously to the case
¢ > 0. By the assumptions in Proposition 5.1), there is a type € {hl, hh, 11} so that
{iype > 0. Positivity will ensure that “relatively long” edges are present to keep the
giant together. Let M be a sufficiently large constant. We assume for simplicity that
(n/M)"/? e N. Tessellate A, into m, := n/M may boxes Qj, ..., O, of volume
M. Similarly as before, we write Vy,j := VN (Q; x [1, 00)) for the vertices in Q;,
G, j for the subgraph of G, induced by these vertices in Q;, and pre-G, for the union
of the subgraphs Gy ;, j € [m,]. Fix § > 0 small as in (5.3).
Good subboxes. We call a box Qj, j € [m,] good if the following event holds.
When type € {hl, hh}, we set
Jecomp. C; in Gy [ 1. Ml/(rfl)) HICjl = pM,
Apox ()= C; 2 Vyy jIMI=D/ =D /=Dyl (5.05)
%MIS < |VM,]'[M(178)/(T71), Ml/(ffl))|
When type = 11, we set

Apox (/) :={Elcomp. C;in Gy ;[1, MDY 1 ie;) > pM}. (5.26)
This event is measurable with respect to pre-G,. Our assumption (5.3) directly implies
Claim 5.3, which in turn implies that the first two requirements in Apox (/) — concerning
C; —are satisfied with probability arbitrarily close to 1 by choosing M sufficiently large.
For the third requirement in (5.25) we use the intensity of the PPP (4.5), and compute
for fixed § > 0
P(n}M j[M(l—S)/(T—l)’ Ml/(f—l))l > %MB) — 1,

as M tends to infinity. Since the three conditions on the right-hand side hold with
probability arbitrarily close to 1, we may assume that M is so large that for a fixed
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q € (0,1) and any j € [m,], independently of all other boxes,

P(Abox (1)) > 4. (5.27)

The auxiliary graph and LDP for site-bond percolation. Consider then the auxiliary
graph H,, with vertex set Vy,, C [m,]. By definition of the boxing, the set of vertices
[m,,] can be mapped to the integer points in a box of side-length m,l/ d, such that any
two adjacent boxes are mapped to integer points at distance one from each other. We
call j € Vy, active if the box Q; satisfies Apox (/). Two active vertices j, £ € Vy,
are connected in H,, if they are neighboring vertices in By, , and there exist vertices
v € Cj, ¥ € Cy such that v is connected by an edge to ¥ in G,. Let us write Cy, for
the largest component in ;. Since each C; in a good box Q; has size at least ,on the
event {|C“)’| > (1 — &)m,} implies {|C(”[1 MYy > (1 —¢e)pn}. Letg,r > 0
be such thalt by Proposition 5.5 forafixede > 0, A > 0andalln > 1,

P(LY (q,7)] < (1 — &)my,) < exp (— 2m{™V).
We will show that we can choose M sufficiently large (depending on ¢) so that
‘H, = NNP(q, r). (5.28)

This domination then implies that |C(” | %= |Liy, (g, 7)], and so

P(lcy11, MY D) < (1 = e)pn) < P(ILY) (g, M| < (1 = &)my,)

d—1)/d
< exp (= 4mid %)
:CXp( W”l(d 1)/d) (529)

implying the statement of Proposition 5.1 for a larger value A.

The auxiliary graph dominates site-bond percolation. It remains to prove the dom-
ination (5.28). By (5.27) and the definition of H,, below (5.27), each vertex j € [m,,]
is independently active with probability at least g for M sufficiently large. Thus, it
remains to show that for two large components C;, C, in adjacent good boxes Q, Qp,

P(Cj g, Ce I pre-Ga) = [] (1—p.v) — 0. asM —oo. (530)

ueCj,veCy

We write |£(C;, C¢)| for the number of edges between the two components. Then

P(Cj =g, Ce | pre-G,) < exp ( - > p, v))

MECj,UECg

= exp (— E[IEC;, Co)| | pre-Gp ).
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We will show case-by-case for ¢ € {¢ni, ¢nn, ¢u} that E[|E(C;, Cp)| | pre-G,] — oo
using either high-low, high-high, or low-low connections between two active neigh-
boring boxes j, £. The maximal distance between any two vertices in neighboring
boxes is ZﬁMl/d.

1. Low-low connections help: ¢ > 0. We may assume o < oo otherwise ¢ =2 — «
is negative. Every vertex has mark at least 1. Thus, from the connection probability p
in (4.6) it follows that

E[IEC), Col | pre-Gul = QM ™IC;| - ICcl) = Q(M>™). (5.3D)

Since by assumption ¢ = 2 —a > 0, (5.30) follows for fixed ¢. The same calculation
works for long-range percolation on Z¢.

2. High-low connections help: {n > 0. We may again assume o < 0o otherwise &y is
negative. On the event Apox (), defined in (5.25), the component C; contains at least
M? /2 vertices with mark at least M(1=9/@=D_Then, using possible edges between
a high-mark vertex in C; and the at least pM vertices in Cy that have mark at least 1,
we obtain

M
— Q(MI-HS) A Q(Ml—a(r—Z)/(r—l)+5(1—a/(r—1)))_ (532)

MA=8/@=D «
ELIEC;, Co)l | pre-gnl = Q(M™H) - sz(l rNE=———) )

When¢gy=1—(0—1/a)(t — 1) = (t — 1)/a — (t —2) > 0, the exponent of M
in (5.32) is positive for sufficiently small § > 0. So (5.30) follows.

3. High-high connections help, {nn > 0. We first assume that ¢ < oco. Using that we
only consider good boxes, and that there are at least M°/2 many high-mark vertices
with mark in the interval [M (1—8)/(=D Ml/(f_l)) in both C; and C¢, we compute

M(0+1)(1—8)/(r—1) o
EIIEC;. Co)l | pre-gal = QM) - sz(l A v ) )

From (2.14), ¢hn > 0 only when o > © — 2. So, for § is sufficiently small, the second
factor is ®(1). Thus, the right-hand side tends to infinity with M and (5.30) follows.
When & = oo, it follows analogously that E[|E(C}, Ce)] | Gl = QM) if § is
sufficiently small since the minimum is attained at 1 on the right-hand side above.

Conclusion. We conclude that (5.30) follows in all three cases, proving the stochastic
domination (5.28) and finishing the proof of (5.5). O

5.3 Verification of the requirement
We now verify the requirement (5.3). To do so, we prove the following lemma that we
only need for models with non-trivial vertex marks. We define one more exponent for
each regime hl, 11, hh:

=1 — vy —1)/a, m = 1/a, Nhh = 1 — 0 yhh- (5.33)
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Using the respective values of 11, yh1, ¥hh in (5.2), (2.11), and (2.13), it is elementary
to verify that if {iype = ¢4 for some type € {lI, hl, hh}, then nype > iype holds (see
the proof of Lemma 5.6). Then there are values of « such that y;; > ;. We write
C,(0)[1, w) for the component of the origin spanned on vertices in V,[1, w).

Lemma 5.6 (Poly-logarithmic mark-thresholds). Consider a supercritical KSRG satis-
fying Assumption 2.2 on a PPP. Assume for atype € {11, hl} that {iype = max(&n, {u) >
0. Whenever there exist constants § € [0, ¢), A, p > 0, such that for alln > 1,

P(IC[1, A'n")| < pn) < exp (— Anfr~?), (5.34)
then, for all C > 0, there exists a constant A > 0 such that for all n sufficiently large,
P(|C[1, (Alogn)?eee/ Cowe=0)| > pp) > 1 —n €, (5.35)

and

P(3 comp. Cin G, : C 2 V[(Alog 1) Myve/ (Giype=0) 00),[C| = pn) =1 — n=C.
(5.36)

The statements remain valid for the Palm version P* of P for any x € R¥.

The proof is an adaptation of [48, Proposition 5.12] and we present it in
Appendix B.3. In a nutshell, we apply a boxing scheme —with box sizes
O((logn)'/¢=9)— and apply (5.34) to each box. To form C, we connect boxes to
each other using high- and/or low-mark vertices depending on the regime. Then, we
connect vertices of mark at least (A log n)"€=9 to the constant-mark vertices in C.
Computations are similar to those in Section 6.1.

The corollaries of Proposition 5.1 and Lemma 5.6 motivate the somewhat counter-
intuitive formulation of Lemma 5.6, i.e., the requirement (5.34) with both § > 0 and
8 = 0 allowed.

Corollary 5.7 (A giant with sharper probability). Consider a supercritical KSRG sat-
isfying Assumption 2.2 on a PPP or consider supercritical long-range percolation on
74, Assume that Clong > 0, and {x = Gyype for some type € {11, hl, hh, short}. Set
Yshort := 0. There exist constants A1 > 0 such that for alln > 1,

P(IC[1, Ayn"o»)| < 4-n) < exp (— f-n™Cone:(1=D/D), (5.37)

Proof We first consider KSRGs on a PPP. By Claim 2.3, Clong = max (&1, ¢nls Chh)-
When ¢iong € {S11, ¢ni}, Proposition 4.1 proves the requirement (5.34) of Lemma 5.6 for
some § > 0and a small value of p > 0. Hence, (5.35)-(5.36) holds for these values of §
and p. This implies the requirement (5.3) of Proposition 5.1. When ¢, = ¢hn > 0,(5.3)
follows from the combination of the law of large numbers [48, Corollary 2.3], and
that |C!’| contains all vertices of at least some polylogarithmic weight in n by [48,
Proposition 5.12], which then gives (5.34) and thus Lemma 5.6. This proves (5.37)
when ¢, € {&1, ¢h1, ¢hn}, and gives the requirement (5.3) of Proposition 5.1 whenever
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Qlong > 0. Further, the case for ¢, = Zsort follows from (5.5). For long-range perco-
lation on Z¢, {ni and ¢np are negative, SO Clong = &1 = 2 — «. The requirement (5.34)
of Lemma 5.6 is verified by [14, Theorem 3.2]. O

The actual mark-threshold so that all vertices above that mark are in the giant is as
follows.

Corollary 5.8 (Poly-logarithmic mark-thresholds). Consider a supercritical KSRG sat-
isfying Assumption 2.2 on a PPP or consider long-range percolation on Z.%. Assume
Stype = max (&, ¢n) > 0 for some type € {ll, hl}. For all C > 0, there exist constants
A, ¢ > 0 such that for all n sufficiently large,

]P)(|C£’ll) [1a (A log n)%YPC/;type)

>en)>1—-n"°C, (5.38)
and
P(3 comp. Cin Gy, : C 2 V,[(Alogn)™sre/fme 00),|C] > en) > 1 —n~C. (5.39)

Proof In Corollary 5.7 we have just shown that the requirement (5.34) in Lemma 5.6
is met with § = O for the case {ype = max({y, &n). This yields the first two
bounds (5.38)—(5.39) for KSRGs on a PPP. In long-range percolation, all marks are
equal to one, so that V,[(A log n)Mre/Gype 50) = @, and the two bounds are implied
by Corollary 5.7. O

In Corollary 5.7 we obtain the sharp decay on the probability of having a giant, i.e.,
we obtain the target decay of the lower tail in Theorem 2.7. However, the proportion
of vertices in the giant is not yet close to 6.

6 Lower tail of large deviations

In this section we prove Theorem 2.7. We first show uniqueness of the giant via an
upper bound on the size of the second-largest component C;’. In Section 6.2, we
extend this upper bound on |C}’| to the upper bound on the cluster-size decay in
Theorem 2.9 using our previous work [48]. A Law of Large Numbers for |C\| will
follow. Eventually we prove the lower tail of large deviations.

6.1 Non-giant components are small

We prove an upper bound on |C;f)| when max (&, &) > 0. When ¢y > 0, we proved
a similar upper bound in [48] using different techniques, see Remark 3.2. See also
Remark 3.1 on the difficulties one needs to overcome to extend this result to the case
when surface tension dominates connections, i.e., when ¢, = short.

Proposition 6.1 (Upper bound second-largest component). Consider a supercritical
KSRG on a PPP or supercritical long-range percolation on 7¢. Assume Ctype =
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max(Zy, ¢n) > 0 for some type € {11, hl}. There exists a constant A > 0 such that for
alln >k,
P(ICP| > k) < (n/k)exp (— LkSre). (6.1)

The statement remains valid for the Palm version P* of P for any x € RY.

The proof of Proposition 6.1 is inspired by Sly and Crawford [24] who obtain a
polylogarithmic upper bound with unidentified exponent on the second-largest com-
ponent for long-range percolation. Contrary to long-range percolation, we have to
use the vertex-marks as well when 7 < oco. We present the proof for KSRGs on
Poisson point processes satisfying ¢y > 0, and explain the needed changes for
a1 > 0 and for KSRGs on Z¢ at the end. We abbreviate y = y = 1 — 1/a and
=tm=1—ym(r -1 =(—-1)/a—(r —2).Clearly &, > 0 implies ¢ < co.

We let As 7 be the constant from (5.37) in Corollary 5.7 so that for alln > 1,

1 1
P(ICYIL, Asgn")| < gizn) < exp (= z-n°). (6.2)

For simplicity we assume that (n/k)'/¢

volume-2~?k boxes.

€ N, so that A, can be partitioned into

Definition 6.2 (Boxing scheme). Fix k > 1 sufficiently large. Consider the boxes
O,y Qody Jk that partition A, and that are labeled so that Q; is adjacent to Q|
for all j € [29n/k — 1]. We write V. for the PPP restricted to the box Q;, Gy ;
for the graph G restricted to Q;. We call vertices with mark respectively below and
at least A5 7k” low-mark and high-mark vertices. We call C;{I!)I.[l, As7k?) the local
low-largest component of Q ;. We also define

Uj :={v € Vi j[As7k?, 00) 1 v ~ c;;jj[l, As7k7)). (6.3)
We then define the local giant component of box Q; as
LG, :=U; U c,?jju, As k). (6.4)

In words, U is the set of high-mark vertices in Q; that connect by at least one edge
to the local low-largest component in the same box. So, together they form the local
giant component LG ;. We mention that I/; typically does not contain all high-mark
vertices.

Definition 6.3 (Revealment stages). Consider a KSRG under the same setting as
Proposition 6.1 such that ¢y > 0, with the boxing scheme from Definition 6.2. Ini-
tially, we reveal the realization of vertex set V, and none of the edges. We define the
following four edge-revealment stages:

1 Reveal edges between pairs of vertices both in the same box Q.
2 Reveal edges between pairs of vertices both in U; _ya, /1) LG ;.

3 Reveal remaining edges between pairs of vertices both in V), \ ( U, <0d(nky LG j)
4 Reveal all remaining edges.
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We write stage-j-G,, for the graph obtained after the jth revealment stage for j €
{1,2,3,4}.

Thus, in stage (1) we reveal all ‘local’ edges between vertices inside the same box.
In stage (2), edges between local giants of different boxes. In stage (3), we reveal edges
with both endpoints outside local giants in different boxes. Finally, in stage (4) we
reveal all remaining edges: edges in different boxes where one endpoint is in a local
giant, and the other endpoint s outside a local giant. The set LG ;, (the local-low largest
component and high-mark vertices connecting to it in the same box) is determined
during stage (I). So stages (2—4) are well-defined. These latter stages reveal edges
between different boxes.

Definition 6.4 (Stage (/) and (2) good events). Let § € (0, 1/(24As.7)) be a small
constant. We call a box Q; 1-good if it satisfies the event

Al —g00d(Q;) 1= {Q} 1-good} := {|c,§‘jj[1, As7kV)| > sk} N {lU;| > sk}, (6.5)

For j < 24(n/k), we callu € U; box-wedging if u ~ LG ;1. We say that stage-2-G,
is 2-good if

{stage-2-G,, 2-good} := m Al —g00d(Q;) N ﬂ {Ju el :u~LGj)}
j=<24(n/k) j<24(n/k)
(6.6)

Whether Q; is 1-good is entirely determined by the revealed edges in stage (/), and
whether stage-2-G, is 2-good, is entirely determined by edges revealed by the end of
stage (2). The second intersection in (6.6) means that there is at least one box-wedging
vertex in each local giant, implying that all local giants are part of the same component
in G, that we will call the backbone.

Claim 6.5 (Stage (1) error bound). Consider a KSRG under the same setting as Propo-
sition 6.1 such that &y > 0. There exists a constant ¢ > 0 such that for all k sufficiently
large, for all j < 2%(n/k),

]P’(Qj is I—good) >1— exp(—skg).
Proof We estimate the probabilities of the two events in (6.5). By Corollary 5.7,

P(Ck,j[1, As7k?) < 8k) < exp ((— 2 9%mplh /A5 7). 6.7)

Next, consider v € V,[A57k”,00) in box Q;. We use that each vertex in
Ck,j[1, A5 7kY) has mark at least 1, and that the distance between any two vertices in
Q; is at most Vdk'/?_ Thus, by the connection probability p in (4.6) (with & < 00),
conditional on the vertex set V, and the subgraph Cy_;[1, As7k") having size at least
Sk,
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P(v = Cij[1, As7k?) | |Ci 1, As7k7)| = 8k, Vy)
kY a Ok

If the minimum is at 1, then this probability is at most e ~?%%_ If the minimum is at the
second expression, we substitute y = (¢ — 1)/«a. When we bound 1 — x < e™*, the

powers of k cancel, and the right-hand side is at most
P(v ¢ Uj | [Cr jl1, As 7k = 8k, V) < exp(—pBAS;/d™?).  (6.8)

In both cases, there is §; > O such that any such v connects by an edge to
C}(l,)l [1, As7k7) with probability at least 81, independently of all other vertices. Now,
Vi,j N [As7kY, 00) is by (4.5) a PPP with intensity Leb x Fyw (dw). Therefore, the
vertices in Vi 1 N [A5.7k”, 0o) that connect by an edge to C,(cl))1 [1, A5 7k”) dominate a
Poisson random variable with mean

81 - Vol(Q))(As k")~ D = 527 AJ TVl =D — @ k%),
Thus, by Lemma A.1, there exists § = §(As.7) > 0 small enough so that
P(1Uj| < 8k | |Cr j[1, As7k?)| > 8k) < exp(—ek®).

Combined with (6.7) and the definition of { Q] is 1-good} in Definition 6.4 this finishes
the proof for k sufficiently large and &, ¢ > 0 sufficiently small. O

Claim 6.6 (Stage (2) error bound). Consider a KSRG under the same setting as Propo-
sition 6.1 such that &y > 0. There exists a constant ¢ > 0 such that for all k sufficiently
large,

]P’(stage-Z-g,, is 2-g00d) >1-— 2d+1(n/k) exp(—ek®).

Proof By Claim 6.5, each box Q; is 1-good with probability at least 1 — exp(—ek®).
Denote the first event in (6.6) that all boxes Q are 1-good by Agyp. By a union bound,

P(Asub) > 1 — 24 (n/k) exp(—ek®). (6.9)

We move on to estimating the probability of the second event in (6.6) conditioned
on Agp. Fix some j < 24 /k). Before Stage (2), none of the edges of U/; towards
vertices in Q4 have been revealed yet. The maximal Euclidean distance between
two neighboring boxes is 2+/dk'/¢ /2, so we can bound the probability that a single
high-mark vertex is box-wedging using (4.6). When Q; is 1-good, by (6.5) there
are at least dn vertices of mark at least 1 in LG 1, so

BAs7k” >a>8k

]P’(u € U; not box-wedging ‘ Qj41 1-good, Vn) < (1 — p(] A g

(6.10)
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Then, we can use that there are at least k% candidate vertices to be box-wedging in a
1-good Q;, and that edges are present independently given the vertex set V. Thus,

P(fu € U; : u box-wedging | Q;, Qj+1 1-good, V)

< (1 . p(l A %)Q)(m(ak{). 6.11)

If the minimum on the right-hand side is at 1, this probability is at most exp(—ek!+¢). If
the minimum is at the second expression, using that | —x < exp(—x)andy = 1—1/«,
the powers of k simplify since (k¥ /k)¥ -k = 1, so this probability is at most exp(—&k?)
for ¢ > 0 small enough. So, integrating over the realizations V, and a union bound
over all 2¢ (n/k) boxes, the probability that there is at least one box Q; with no box-
wedging vertices is at most 2% (n/k) exp(—ek®). Combined with (6.6) and (6.9) the
claim follows. O

Claim 6.7 (Stage (3—4) error bound: second-largest component). Consider a KSRG
under the same setting as Proposition 6.1 such that {n > 0. There exists a constant
& > 0 such that for all k sufficiently large and n > k

P({IC(nz)I > k} N stage-2-G, is Z—good) < (n/k) exp(—ek®). (6.12)

Proof We condition on the full realization of the stage-2-G,, that is 2-good. By (6.6),
any such realization satisfies that all local giants (LG ) ; <pd(, k) have size at least 5k
and they are all connected by box-wedging vertices. This gives a component in G, of
size at least §n that contains these local giants. We call this component the backbone
BB = BB, k. In Stage (3) we expose all edges with both endpoints outside the local
giants. If no component of size larger than k except for the backbone remains after
Stage (3), then we are done: In stage (4) all remaining edges to be revealed have one
endpoint in local giants, hence in BB, and one outside.

We may interpret now (6.12) as follows: the second-largest component being larger
than k£ means that there is at least one component above size k that is not BB. If after
Stage (3) there is a component C # BB above size k, then we aim to show that this
component merges with BB in Stage (4) with probability at least 1 —exp(—sk?). Since
there are at most (n/k) components above size k after Stage (3), a union bound over
all such components will yield (6.12).

So, suppose that there exists acomponent C # BB of size larger than & after Stage (3)
and fix a realization of stage-2-G,,. After Stage (3) we revealed already all within-box
edges, but we did not reveal edges between C and local giants in neighboring boxes
‘around’ vertices of C. Since the number of boxes is at least 2¢ (n/k) by Definition 6.2,
a subbox always has a neighboring box. Let j(v) denote index of the box that vertex
v € C belongs to, which is a.s. unique. Since all boxes are 1-good, by (6.5), for each
v € C, there are at least 8k% high-mark vertices at distance at most Jdk'? from v
in the vertex set uj(v)+1 - LGj(U)_H in the neighboring boxes Qj(v)—l and Qj(v)—&-lo
Each vertex of v has mark at least 1. Hence, for a given component C, by the same
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calculations as in the proof of Claim 6.6 around (6.10)—(6.11),

kY N an k-(8k%)
i) )
< exp ( — skg).

P(C = BB |2-g00d-Gy, , Vy, stage-3-G,) < (1 — p(l A BAs7

for ¢ > 0 sufficiently small. Here we used that y = 1 — 1/« and thus some powers of
k cancel. By a union bound over all at most |V, |/k components of size at least k,

P({|Cf,2)| > k} N {stage-2-G, is 2-good}) < IE[IP’(|C,(12>| > k|2-good-Gp, V. stage-3-Gy )]
< E[|Vul/klexp (— ek®) < (n/k) exp ( — ek®).

This finishes the proof of (6.12). O

We are ready to prove Proposition 6.1 that bounds P(|C$’| > k).
Proof of Proposition 6.1 when {11 > 0 By the law of total probability,

P(ICY| = k) < P({IC?| = k} N stage-2-G, is 2-good) + P(stage-2-G,, is not 2-good).

Proposition 6.1 follows from Claims 6.6-6.7. O
We now give a sketch on how to modify the above proof when ¢j; > 0.

Proof of Proposition 6.1 when ¢ > 0 The proofs are identical for KSRGs on PPPs

and on Z<. We follow the ¢i-computations. By Corollary 5.7,

P(IC[1, As7)| < AS%n) <exp(— Asﬁnﬁl). (6.13)

We set LG; := C,%”[l, As 7) to be the local giant of box Q;. We ignore high-mark
vertices here. The revealment scheme in Definition 6.3 is then well-defined with this
LG;. We modify the box being 1-good in (6.5) by only requesting the first event
ILG;| = |C§,"[1, As7)| > 6k there. We define u € LG, to be box-wedging if u ~
LG 1. In the definition of the stage 2-G, being 2-good in (6.6), we then require at
least one box-wedging vertex in each box:

(| BuelG):u~LGji}
j<24(n/k)

Claim 6.5 follows then from Corollary 5.7 as before. We describe how to prove the
equivalent of Claim 6.6 for this regime. Estimating that all boxes are 1-good goes
as before in (6.9). For the second part, estimating that each box has a box-wedging
vertex, we use only the fact that vertices have weight at least 1. We get

1 (3k)?
P(u € LGj :u ~LGj41 | Qj, Q)41 are 1-good) < (1 - P(l A ﬂm)a) .

@ Springer



J. Jorritsma et al.

If the first term is the minimum, this probability is at most exp(—ek?) <
exp(—ek>~%) = exp(—ek®) for ¢ > 0 sufficiently small. If the second term is the
minimum, this probability is also at most exp(—akz_"‘) = exp(—ek®!). The rest of
the claim is as for the hl-regime. For Claim 6.7, we use again that each local giant
contains at least §k vertices of mark at least 1. Thus,

P(C BB | 2-g00d-G,, V1) = (1= p(1 A ﬁﬁ)“)wk)'k.

As before, the right-hand side is at most exp(—ek?>~%) = exp(—ek®"). The proof of
the claim is finished as before. O
We move towards the proofs of Theorem 2.10. We recall a proposition from our
recent paper to prove the lower bounds. To make notation lighter, we state it only for
the case that {jong > 0. We recall from (2.16) that max(Z) is the maximum and mz
is the multiplicity of the maximum in the set Z = {Zshort, &1, Chl, $hh}. We write here
Cn(0)[1, A) for the component of a vertex with unknown weight at 0 € R inside the
vertex set on A, x [1, A), with the idea that if wy > A then C,(0)[1, A) := @.

Proposition 6.8 (Lower bound prerequisite [48, Prop. 7.1]). Consider a supercritical
KSRG on a PPP or on 7% satisfying Assumption 2.2 with Clong > 0. Assume that there
exist constants ', p > 0 such that for all n sufficiently large,

P°(|C.(0)[1, (logm)")| = pn) = p. (6.14)
Then there exists A > 0 such that for all n € [Ak, oo],
P*(ICa(0)] > k,0 ¢ CV) > exp (— AK™E) (log )™z 1), (6.15)
Moreover, there exist §, ¢ > 0, such that for all n sufficiently large,
P(IC?| > ((elogn)/(loglogn)™=~ 1) /™ @) > 1 _ =3 (6.16)

The proof of this proposition can be found in [48, Section 7]. The key idea is to find
alocalized component containing 0 in the ball of radius ® (k) around 0, simultaneously
ensuring that no edges leave this ball. The probabilistic cost of this event gives the lower
bound on the cluster size-decay. The lower bound on the second-largest component
can be derived from there, using a tesselation of the original space with boxes of
volume ®(n). Each tile corresponds to a repeated trial of the local event, and we
prove that the small balls inside the tiles do not connect to other tiles with sufficiently
high probability. See [48, Section 7.3] for more details. The next claim verifies the
requirement (6.14) for applying Proposition 6.8.

Claim 6.9 (The prerequisite holds). Consider a KSRG under the same setting as The-
orem 2.10 and Theorem 2.9. There exist constants n’, p > 0 such that

P(IC,(O)[1, (logn)” | = pn) = p. (6.17)
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Proof We prove the bound (6.17) for KSRGs on a Poisson point process and leave
it to the reader to adapt it to long-range percolation. We rely on Corollary 5.8. Fix
&, y) € {(&n1, ¥n1), (Cu, yn)} such that ¢ > 0. Let A, ¢ > 0 be so that (5.38) holds
with C = 2. For any u € V,, let Cp (u) be the component of « in the induced graph
in A, x [, (Alog n)¥/¢); and let Cydy (1) be the connected component of u in
Asa, () X [1, (Alogn)?/%). Since Ay € Aga, (), clearly Cp(u) € Coay, ,,(u). If the
giantof A, x[1, (Alog n)Y/%) has size at least en, then there are at least en vertices in a
component of size at least en in A, x [1, (A logn)?/%). This happens with probability
at least 1 — n=2 by (5.38). So,

-2
(I —n"%en = E[ > ]l{lﬁn(unzsn}] = E[ > ﬂ{lﬁzdn,u(umsn}] (6.18)

UeVy ueV,

We now show that

E[ Z H{Ezdll,L((u)lzaﬂ}] - nI[DO(Czdn (O)[l’ (A logn)y/g)l z 8”)' (619)

uev,

For this, we use an alternative KSRG construction. Consider the collection U =
(Uij) j>i=1 of independent Unif[0, 1] random variables, independent of the PPP V).
We can use U to encode the presence of edges: given the PPP V), order the points
with respect to their distance to the origin, and include an edge between the ith and
Jjthvertex u; and u; if U;; < p(u;, u;). The function ]l{lgzd” Izen) is determined by
the realization of the PPP V, and U (i.e., it is measurable w.r.t. the sigma-algebras
generated by these processes/collections). By Mecke’s formula and Fubini’s theorem,

]E[ > ]1{52dn,u<14)|>en}} = E[E[ > 1@, aizeny | Uﬂ

ueyy, ueyy,

= E[/ P*(Cotp )| = en | U, x, = x)dxi|
xX€eA

n

=f P* (Cap. ()] = €n | x, = x)dx.
xeNA, ’

The box Asa,(u) is centered at u. So, by transiation invariance, the integrand is con-
stant and equal to P° (ézdn O] = sn). Since Cya,(0) = Cya, (0)[1, (A log n)’/%) by
definition above (6.18), this proves (6.19). Combined with (6.18), this proves (6.17)
forany ' > y/¢, p = 2%, and any n sufficiently large. The statement is trivial for
smaller n by decreasing p, finishing the proof. O

We are ready to prove Theorem 2.10 on the second-largest component.

Proof of Theorem 2.10 We give the proof for KSRGs on PPPs only: the proof for long-
range percolation Z¢ is identical to the proof of the ¢jj-regime for KSRGs. Assume
Zn1 or &y is strictly positive and maximal in Z = {{short, 11, his $hh}- The lower bound
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holds by Proposition 6.8, since its prerequisite (6.14) is satisfied by Claim 6.9. The
upper bound follows from Proposition 6.1, substituting k = k, = (A log n)!/ ™max @i,
for a large constant A = A(6) > 0. O

6.2 Cluster-size decay and law of large numbers

We proceed to the proof of Theorem 2.9 on the cluster-size decay. The upper
bound (6.1) is the main prerequisite (6.20) of the following general proposition. We
proved this proposition for KSRGs in general in [48]. We recall that P* is the Palm
measure of the PPP with a vertex at x.

Proposition 6.10 (Prerequisites for cluster-size decay [48, Proposition 6.1]). Consider
a supercritical KSRG on a PPP or on 79 satisfying Assumption 2.2. Assume that there
exist £, 1, ¢, ¢/, M. > 0, and a function no(k) = O(k”cl) such that for all k
sufficiently large and whenever n € [ny(k), 00), with w(n, c) := M.(log n)”/ it holds
forall x € A,

P*(IC?| > k) < n exp (- ck®), (6.20)
P(IC| <n®) <n~ ', (6.21)
P (v € Vul[w(n, c),00) v ¢ C) <n”. (6.22)

Then there exists a constant A > 0 such that for all k sufficiently large and n €
[no(k), o0],

PY(ICa(0)] > k,0 ¢ C) < exp (— %k%). (6.23)
and
IC1 e
— 0B, p,a,7,0), asn— oo. (6.24)

In our current setting, (6.1) in Proposition 6.1 proves the first prerequisite and
Corollary 5.8 proves the second, and implies the third prerequisite. We spell out the
details. This is similar to [48, Proposition 5.12].

Claim 6.11 Consider a supercritical KSRG on a PPP satisfying Assumption 2.2 or
consider supercritical long-range percolation on 74. Assume Ctype = max (&, ni) >
0 for some type € {ll, hl}. For each constant C > 0, there exists a constant A > 0
such that all n sufficiently large,

P(3v € V,[(Alog )M/ Sove 50) : p ¢ CP) < nC.

The statement remains true for the Palm-version P* for any x € R%.

Proof We omit the subscript type in the following proof for type € {Il, hl}. Let A =
A(C) > 0 be sufficiently large. Using the upper bound on |C”| in Proposition 6.1,
and the lower bound on |C’| from Corollary 5.8, we obtain

P*({IC?| < (Alogm)/*yN{ICP| = (1/A)n}) = 1 —o(n ). (6.25)
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Hence,

P*(3v € Vu[(Alogn)"/¢, 00) \ C)
{Fv € Vul(Alogn)"¢, 00) \ €}
<P'| N{IC?| < (Alogn)'/¢} +o0(n™°).

1
N{ICY = xn)

On the intersection of the three events on the right-hand side, there is no linear-
sized component in G, that contains all vertices with mark above (A log n)”/ ¢ which
is exactly the negation of the event in (5.39). This has probability at most o(n~C)
by (5.39) in Corollary 5.8, finishing the proof. O

Propositions 6.8 and 6.10 give the respective lower and upper bounds for Theo-
rem 2.9.

Proof of Theorem 2.9 We prove Theorem 2.9 when max(¢hy, £11) > max(Zpp, 0). The
lower bound follows from (6.15) in Proposition 6.8, since the prerequisite (6.14) is
satisfied by Claim 6.9. For the upper bound we verify the three prerequisites needed in
Proposition 6.10. Prerequisite (6.20) about the second-largest component is proven in
Proposition 6.1; prerequisite (6.21) requiring that the largest component is at least poly-
nomial in size follows from Corollary 5.8; prerequisite (6.22) is proven in Claim 6.11.
The upper bound in Theorem 2.9 then follows from (6.23). O

6.3 Lower tail of large deviations

We are ready to combine everything and give the proof of the lower tail of large
deviations for the giant in (2.21). We cite the lower bound from [48]. We write Z =
{Zhn» Chts C11s Cshort }> With maximum value &, and m z the multiplicity of the maximum,
see (2.16).

Theorem 6.12 (Lower bound for the lower tail [48, Theorem 2.7]). Consider a super-
critical KSRG on a PPP satisfying Assumption 2.2 or consider supercritical long-range
percolation on Z.%. There exists a constant A > 0 such that for all p > 0, and n suffi-
ciently large,

P(IC)] < pn) = exp (— A—lpng* (log n)mz_l).
Proof of Theorem 2.7 The lower bound follows from Theorem 6.12, since the above
theorem is valid for all p > O (but is far from being sharp when p > 6). When
max(¢h, ¢n1) > 0 we argue as follows for the upper bound: since we verified the three

prerequisites needed in Proposition 6.10 already in the proof of Theorem 2.9 above,
the second conclusion of Proposition 6.10 gives that

01 /n > 6.
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Hence, we may choose any 5 € (p, 6), and it follows that {|C’| > pn} whp. All
highest-mark vertices are in the giant whp by Claim 6.11. This proves the require-
ment (5.3) in Proposition 5.1, i.e., P(Atgyizren(ﬁ)) — 1 holds. Applying Proposition 5.1
for ¢ > 0 such that p = (1 — &)p proves the upper bound when max(ny, &y1) > O.
When ¢y > 0, |C)| contains all vertices of mark above some polylog of n by [48,
Proposition 5.12], and an LLN for |C{}’ | also holds, see [48, Corollary 2.3]. So, the same
reasoning as above can be applied also when {up > 0. Since {iong = max (S, Shn, C11)

by Claim 2.3, this concludes the proof of Theorem 2.7. O

7 Upper tail of large deviations

In this section we deal with the upper tail, that is, with the event of the giant being too
large, and prove Theorems 2.4 and 2.5 following the roadmap outlined in Section 3.1.
We first show a Law of Large Numbers (LLN) for components of size £ that applies
to both homogeneous models, i.e., T = 00, and degree-inhomogeneous models, i.e.,
T < 0o. Afterwards, we obtain bounds on the convergence rate of this LLN. We prove
that the concentration is exponentially fast when T = oo, and show that Theorem 2.4
follows. Then we analyze the effect of the presence of high-mark vertices (when
T < 00) to prove Theorem 2.5.

7.1 Concentration of size-¢ components

We introduce notation for the probability of the component of the origin being of size
£, and for the total number of size-¢ components in the graph induced by vertices with
mark at most w,:

6, :=P*(IC(0)] = ¢),
Sn,e(Wy) == |{comp. Cin G,[1,W,) : [C| = €},
Sn,( = Sn,Z(OO)- (7.1)

Clearly Zlfkw 0y = P°(|C(0)| < 00) = 1 — @. In models with all marks equal 1
(e.g. long-range percolation) it holds Sy ,(w,) = S¢,, for any w, > 1.

Lemma 7.1 (LLN for size-¢ components). Consider a KSRG on a PPP or on 74
satisfying Assumption 2.2. Let w, = o= be a sequence. Then, for every fixed

L eN,

Y
M i) B¢, asn — o0. (7.2)
n

Proof We give the proof for KSRGs on a PPP with 7 < 00, i.e., non-constant marks.
The proof is analogous when T = oo or when vertex locations are given by Z?. By
the intensity of V), in (4.5), A, contains no vertices of mark at least w, whp. If such
vertices are absent, then S, ¢(w,,) = S, ¢(00). Therefore, for any ¥ > 0,
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P(1£Sn,c(w,)/n — ¢ > ) < P({|£Sn,e(00)/n — O¢| > ¥} N Vylw,,, 00) = ¥)
+ P(Vulw,. o0) # 9)
< P(|£Sp,e(00)/n — 0¢| > V) + o(1). (7.3)

We use local convergence to show that the probability on the right-hand side vanishes.
We refer to [72] for an elaborate discussion on local convergence and give a short
definition.

A rooted graph is a couple (G, o) of a graph G and some, possibly random, dis-
tinguished vertex o of G, which we call the root of G. A finite rooted graph (G, 0)
is said to be uniformly rooted, if o is chosen uniformly at random among the ver-
tices of G. Let G, be the space of all rooted locally finite graphs. Let Bg (v, r)
denote the induced subgraph of G on all vertices that are at graph distance at most
r from a vertex v. For (G, 01), (G2, 03) € G,, we define R(G1, G2) to be the
largest value r € N such that Bg, (o1, r) is isomorphic to Bg, (02, r): there exists
a bijection ¢ : V(Bg,(01,7)) = V(Bg,(02,r) such that ¢(01) = 02 and {u, v} is
an edge in Bg, (01, r) if and only if {¢(u), ¢ (v)} is an edge in Bg, (01, r). We set
d((G1,01), (G2, 02)) :=1/(1 + R(Gq, 01), (G2, 02))) for the distance between two
rooted graphs. A sequence of uniformly rooted graphs (G, 0,),>1 converges locally
in probability towards (G, 0) having law u, if for every bounded and continuous
function 4 : G, — R,

E[h(Gn, 00) | Gn] —> Eulh(Goo, 0)],  asn — oo, (7.4)

where the expectation on the left-hand side is only with respect to the uniform root.
(The limit object (G «, 0) may be random and infinite, we here omit this discussion).

Considering KSRGs in Definition 2.1, the sequence (G, ),>1 of finite KSRGs con-
verges locally in probability to the infinite graph G, conditioned to contain a vertex
at the origin, the root, see [73]. We let h(G,,, 0,) = 1yc(o,)|=¢) be the indicator that
the component of o, has size £. Then, & is bounded, and continuous on the Polish
space (G, d): it only depends on the induced subgraph up to distance £ + 1 from
the root, so (G, 01) = h(Ga, 0p) for any two rooted graphs (G, 01), (G2, 02)
within distance at most 1 /(£ +2). So (7.4) applies and the right-hand side there equals
P(|C(0)] = £) = ;. Instead of explicitly writing out the left-hand side, we first notice
that Zonev,l h(Gp, 0p) = €Sy ¢(00). Therefore,

£50e(00) [Vl 1

Vi
S hGur o) = LGy, 00) | Gal B> 1.0, (7.5)
n n Wl

n
0n€Wy

where we used that the ratio |V, |/n tends to one in probability. Hence, the probability
on the right-hand side in (7.3) tends to zero as n tends to infinity. This finishes the
proof for PPP vertex sets. When the locations are given by Z¢, or T = oo, the result
follows analogously. O
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7.2 Homogeneous models

We prove a bound on the convergence rate in Lemma 7.1 using a boxing argument.

Lemma 7.2 (Concentration for size-¢ components). Consider long-range percolation
with o > 1 or Bernoulli bond percolation on Z¢. For all fixed £ € N and > 0, there
exists a constant ¢y, > 0 such that for alln > 1,

P([Sn.e(00)/0:/6) ~ 1| < ¥) = 1 = exp (= ecyn). (7.6)

Proof Let k be a large constant, and w.l.o.g. assume that A, can be partitioned into
(n/k) volume-k subboxes. Let S,(c’ ¢ denote the number of size-¢ components in the
induced subgraph inside the jth box. Then, by Lemma 7.1, for a small constant ¢y > 0,
independently across boxes it holds that

P(A( ) 1= P(IS{/ K6/ = 11 = 91) = 1=y /2,

The number of boxes for which this event holds dominates a binomial random variable
with parameters n/k and 1 — i1 /2. So if we set

Asun(k) :={] > ﬂwu,k)}—n/k)smn/k},

J€ln/k]

then by a Chernoff bound, there exists a constant ¢ = ¢(y1) > 0 such that
P(=Asub(k)) < exp (= c(n/k)). (1.7)

On Agyp(k), since (n/k)k0y/€ = nby /L, the number of size-£ components of in the
union of the induced subgraphs satisfies

A=y)?nb/t < > S0, <A +y1)nbe/t  on Awp(k).  (7.8)
JEln/k]

We now look at edges across subboxes. Let V5% (k) denote the set of vertices having
an edge to a vertex in a different subbox. Each vertex in V5 °** (k) changes the number
of size-¢ components by at most 1: indeed, this number increases by one when its
crossing edge(s) form a new component of size-¢, and it decreases by one if without
crossing edges its size was {£. Therefore,

Sne(00) = Y S| < VIS H). (7.9)

J€ln/k]

Hence, for sufficiently small y; depending on v and ¢, on the event on {|V5°% (k)| <
Yin} N Agp (k).

(1= y)nbe /L < (1 = Y1)°nb /L — Yrin < S, ¢(00)
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< (L+91)%n60/€ + yrin < (1 + Y)nbe/e.
Combining this with (7.7), the exponential decay in (7.6) holds if

VY1 >0:3k,npeN,e >0 s.t. Vn>ng: ]P’(|Vflr°ss(k)| > wln) < exp ( - 81’1).

(7.10)
For Bernoulli bond percolation on Z¢, the number of vertices with a crossing edge in
each subbox is deterministically at most O (k@=D/dy a5 k — 00, so the total number
of vertices with a crossing edge across the (n/k) many subboxes is n0 (k~'/%). So,
given V1, we choose k large enough so that O (k=) < 4, and then (7.10) holds
(with error probability 0).

Consider long-range percolation on Z¢ with @ > 1. Let V;“rf(t) be the set of
vertices within distance ¢ from the union of the boundaries of all subboxes j < n/k;
and let &, long (t) denote the edges of length at least ¢ inside A,. Clearly, |1/Sllrf )] <
(n/k)2¢k@=D/4 2t + 1). For any ¥ > 0, fix ¢, > 0 such that [V (wzkl/dn <
Y1n/2 holds deterministically for all k sufficiently large (simultaneously). Then, since
each edge has two endpoints,

VS L < [V (k)] 4+ 2165 (Wak /)] < Yran/2 + 216 Wk V).

Therefore,
PV ()] > in) < P(2\5°“‘°’(¢2k1/d)| > l/fln/z) (7.11)

By a standard isoperimetric inequality, the total number of possible edges inside A,
with lengthin the interval [r; ¢, riy 1) := [2/ k4, 21+ Yk 1/ is atmostn-O(rldk)
asi — o0. Each such edge is present independently with probability at most 8*r; "‘d
by the connection probability (4.6). Hence, there exists a constant C > 0 such that for

k sufficiently large
|50ng(1// kl/d)| ZBIH C,‘ﬁ_ nzldk ﬂ w C(dz—ladk )
i=0
where all binomial random variables in the sum are independent of each other. Thus,
(n/cro%(k)l > I/III/[ < P( ZB]H Cl//z n21dk ﬁaw Dtd(zldk)—ot) > wln/2>
i=0

First we apply x — exp(x/2) to both sides of the inequality inside the probability on
the right-hand side, then we use Markov’s inequality and independence of the random
variables:

PV (0l = van) < e TTE] exp (Bin(Cygn2k, g7y 207) ) |

i=0
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Each factor corresponds to the moment-generating function (MGF) of a binomial
random variable evaluated at 1. The MGF of Bin(n, p) at 1 equals (1 + p(e — 1))" <
exp ((e - l)np). Applying this bound to each of the factors yields

]P;(H)EI‘OSS(k)l > 1//ln) < exp ( _ Ipln/4+ (e _ 1)C‘Baw§(l—(x)nkl—(x Zzid(l—a)).

i=0

Since o > 1 by assumption, the sum converges. When k is sufficiently large, the right-
hand side is at most exp(—r1n/5). This proves (7.10) for long-range percolation and
hence (7.6). O

We are ready to prove Theorem 2.4.

Proof of Theorem 2.4 For the lower bound, we observe that |C!,’| = n when all nearest
neighbor edges are present. Its probability decays as exp(—® (n)). For the upper bound,
we argue as follows. We fix p € (0,1), and a small vy < 1 — (1 — p)/(1 — 9).
Since Z,?il 0, = 1 — 6, this gives us a constant £* = £*(p, V) that satisfies (1 —
¥) Zg:l 6¢ > 1 — p. We shall shortly show that

(€Y > pn} S{3C <" +1:8,0(00) < (I = YInbe/L} =t Acomp.  (7.12)

If (7.12) holds, then Lemma 7.2 and a union bound over the finite set £ < £* + 1
gives that Acomp occurs with probability exponentially small in 7, finishing the proof
of the upper bound. To prove (7.12), we show that =Acomp € {C}’ < pn}. Since we
excluded the case in LRP that nearest neighbor edges are present with probability one,
0y = ]P’(|C(O)| = E) > 0 for all £ > 1. So, for all n sufficiently large, on —'Acomp,
there is at least one component of size £* + 1; i.e., |C§Z”| > (* + 1. Hence, vertices in
components of size £ < £* are not in the giant. Thus,

* £*
n—ICP1 =V \VC) = Y £8u6(00) = Y (1= y)nby > n(1 — p).
=1 (=1
Rearranging yields that |C’| < pn on —Acomp, finishing the proof. |

7.3 Inhomogeneous models

Here we start again with the convergence rate of the number of size-¢ components.
Since the degree distribution is heavy-tailed, this is more involved than Lemma 7.2.
We write deg,, for the degree of vertex v in G,, and deg,[a, b) for the number of
neighbors of v in G, with mark in [a, b).

Claim 7.3 (Total degree from high-mark vertices). Consider a KSRG on a PPP satis-
fying Assumption 2.2 with T < oo. For any constants ¥, C > 0, there exists ¢o > 0
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such that for all n sufficiently large and ¢ € (0, ¢o), writing w,, = pn(+¥/ =)

1P>< Z deg,[1, pn) > 1//n> <n €. (7.13)

veV,lw,,on)

Claim 7.4 (High-degree vertices). Consider a KSRG on a PPP satisfying Assump-
tion 2.2 with t < oo. For any constants £, C > 0, there exist constants no, C| such
that for all n > ng, and any w,, > Cilogn,

P(Iv € V,[w,, 00) : deg,[1, w,) < £) <n €.

Claim 7.5 (Crossing edges). Consider a KSRG on a PPP satisfying Assumption 2.2
with T < oo. Let v > 0 be a constant such that (1 + )/(t — 1) < 1. Then, for any
constant C > 0, there exists ng such that for all n > no and any w, < p+¥)/ =1

]P(|{v eVull,w,) v~ A; x [1,w,)} > Wn) < nC. (7.14)

The proofs of the three claims are based on concentration inequalities for Pois-
son/binomial random variables and postponed to Appendix C.2. Their combination
gives a polynomial convergence rate for the size-¢ components in Lemma 7.1, which is
in stark contrast to the exponential convergence rate for degree-homogeneous models
in Lemma 7.2.

Lemma 7.6 (Concentration for size-£ components). Consider a KSRG on a PPP satis-
fying Assumption 2.2 with T < oo. For all constants £, yr, C > 0, there exist constants
¢o > 0 and ng such that for all n > ng and all ¢ € (0, ¢p),

P(|Su,e(pn)/n — 6/ > ¥) <n €. (7.15)

Proof We first reduce the upper mark threshold w,, := ¢n in the event in (7.15) to a

smaller value w,, = n+¥)/E=D (we assume w.l.o.g. that (1 +)/(t — 1) < 1). We

use that each vertex with degree at least £ is in a component of size at least £ 4 1, and

distinguish the case that each vertex of mark w,, is in a component of size larger than
l,ie.,

P(|Sn.e(@n)/n — 0¢/t| > ¥) < P({'S"’“w”)/” e )

N{Yv € Vulw,, wp) : [Ci (W1, )| > £}
(7.16)

+ P(3v € Vulw,, wy) : deg,[1,w,) < £). (7.17)

Now we ‘switch’ w, to w,, in S, ¢(-) on the right-hand side. Let 7,, ; denote the number
of size-£ components in G,[1, w,,) that have an edge towards a vertex with mark in
[w,,, w,). The events on the right-hand side of (7.16) imply that the size-¢ components
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of G,[1, w,) do not contain any vertices with mark at least w,. So, on those events,
Sn,e(Wy,) = Sy,¢(w,) — Ty ¢. Distinguishing also whether 7, ¢ /n < /2 or not yields

{1Sn.e(w,)/n — Tye/n —6p/E| > Yr}
P(|Sp,e@n)/n — 0¢/t] > ) <P | N{Twe/n = ¥/2}
N{VYv € Valw,, wy) : [Co(0)[1, wy)| > £}
+ P(The/n = ¥/2) + P(IveV,[w,, Wy) : deg,[1, w,) <¢).

(7.18)

The first two events in (7.18) imply that {|S, ¢(w,)/n — 6¢/£| > /2}. Moreover,
T,.¢ 1s at most the total number of edges between V[w,,, w,) and V,[1, w,,), which is
at most the total degree of vertices in V[w,,, w,). Hence,

P(|Sp.e(@n)/n — 0¢/] > W) < P(1Sn,c(w,)/n — 0/L] > ¥/2)

+1P>( Z degv[l,wn)zmﬂﬂ)

veV, [ﬂnawn)

+ ]P’(E!v € Vylw

Zno

wn) : degv[lvwn) S Z)

By Claim 7.3, the second term can be made at most n2C if ¢ in the definition of
w, = ¢n is sufficiently small. Since w,, = nI+¥)/=D ‘the third term is also at most
n—2¢ by Claim 7.4. So,

P([Sn,e(n)/n — 0/ > ¥) < P(ISn,e(w,)/n — 0¢/€] > ¥/2) + o(n~C). (7.19)

It remains to bound the first term on the right-hand side with w,, = n(HV)/ =1 et
A be a sufficiently large constant with (A log n)l/d e N and partition A, into boxes
91, ..., Qalogn of volume k;, := n/(Alogn). Let S,((i:’l(wn) denote the number of

components of size exactly £ in the jth box, and V;j; the set of vertices in the jth box.
AP = {18 (w,) fhn — 0e /€] < ¥/12}, (7.20)

and otherwise we call it bad. The probability of being good tends to 1 with &, by
Lemma 7.1, and so it is at least 1 — /32 for all n sufficiently large. Let X :=
> jetkn] Liaty be the number of good boxes. Independence across boxes gives that
X dominates a binomial random variable with parameters A logn and 1 — v/32. So,
by a Chernoff bound there exists a constant ¢ = ¢(y) > 0 such that

]P’(X > (- 1///16)A10gn) >1-— exp(— cA logn) =1—n". (7.21)
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Since k, = n/Alogn, using concentration for Poisson random variables, for all n
sufficiently large,

P(Vj : VML, w)l/ke < 4/3) = 1 — (Alogn)exp (— Q(n/logn)) > 1 — n=cA.
(7.22)
Thus, in the following, we will find bounds on S, ¢(w,,) conditional on the event

Agood = {Vi : V1L, w) I /kn < 4/3} N {X = (1 — ¢/16)Alogn). (7.23)

We write Sf:zd for the sum of S,((’n >’ , over j for which the jth box is good, and similarly
Spd, for the same sum over bad boxes. Finally, let V;,**[1, w,,) denote the set of
vertices incident to an edge that crosses a box-boundary. Since each edge changes the
number of size-£ components by at most 2, similarly to (7.9), it holds that

|Sn.e(w,) — (S5 + SO < V[, w,)- (7.24)

On the event Agooq in (7.23), the at most A logn good boxes contain together at most
(6¢/€+/12)n components of size £. There are at mostn (¥ /16)4/3 = nir/12 vertices
in bad boxes. Assuming the worst case that all of them are in size-¢ components inside
their boxes, we obtain the upper bound SZ?% < nyr/(12¢€). So, by a triangle inequality
on the left-hand side above,

Snew,) —nbe/€ < ny /12 +nyp/(120) + [V,*[1, w, )| < ny /6 + [V, [1, w,)I.

Similarly, for a lower bound we may assume that there are no size-¢ components in
bad boxes. On the event (7.23), this still gives

Sne(w,) —nbg /€ = n(1 — Y /16)(0¢/€ — ¥/12) — Vo [1, w,)|
> —ny7/48 — Vi1, w,)|

Recalling the bounds (7.19), (7.21), and (7.22), we obtain

P(|Sn,e@n)/n — 0¢ /€] > ¥) <2074 4+ 0(n™) + P(IVEp | /n = ¥/3).

We bound the probability concerning the crossing edges. By the pigeon-hole principle,
[V,%'| = ny/3 implies that there exists a box that contains at least (/3)k, vertices
with an outgoing edge towards the complement of the box. Hence, by translation
invariance of the model on R¢ ,

P(Vy%1/n = ¥/3) < (Alogm)P(H{v € Vg, [1, w,) 1 v ~ Af X [1, w,)} = (¥/3)kn).

Claim 7.5 is applicable here for ny 5 = k, = n/(Alogn), since w,, = n(+¥)/@=1 <

k,(,lwﬂ)/(r_l) for any ¥’ > 1. So the right-hand side is smaller than n~¢4 for n
sufficiently large. We conclude that (7.15) follows for ¢ small, setting A > C/c such
that (Alogn)'/¢ e N. O
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We need alast preliminary claim. Recall hubs(p) from (2.17). We introduce notation
for the functions appearing in the upper and lower bound of Theorem 2.5:

hup := Thubs(p)T,
By = 11jn[hubs(r)1 _ { [hubs(p)1, if hubs(p) ¢ Nor p =1,
rip

hubs(p) + 1, if hubs(p) € Nand p < 1. (7.25)

Clearly hio > hyp > hubs(p), and for all p € (6, 1) and p < 1 also hj, > hubs(p)
strictly.

Claim 7.7 (Truncation of the generating function). Consider a KSRG on a PPP satis-
Jying Assumption 2.2 with T < oo. Let p € (0, 1). There exist constants > 0 and
Lo € N such that for all £* > £,

o*

(11— w)2<9 +Y (1-a- P)hml)@z) > p, (7.26)
(=1
and
Z*
A=9)* Y 01— p) e~V > 1 —pty. (7.27)
=1

We postpone the proof to Appendix C.3 and proceed to the lower bound of Theo-
rem 2.5.

Proposition 7.8 (Lower bound of the upper tail). Consider a KSRG on a PPP satisfying
Assumption 2.2 with T < oo. Fix p € (0, 1). Assume either supercriticality and
Qlong > 0, or assume 60 = 0. Then there exists A = A(p) > 0 such that for alln > 1,

P(IC| > pn) = (1/A)n~ Do,

Proof The proof is similar in spirit to the proof of Theorem 2.4 on page 63, but we
also need to deal with high-mark vertices. See Section 3.2 for an outline that we make
formal now. Let R, £* be two sufficiently large constants, and let ¢, ¥ > 0 be two
small constants so that given p € (0, 1), (7.26) holds. Write T}, ; for the number of
components of size £ in G,[1, ¢n) that connect by an edge to the vertices with mark
in V,[Rn, o). Define the events

Acomp = {ICPT1, gm)l/n = 6(1 — )} N {¥E < €% : S, 0(pn) = (1 — YInde/e},
(7.28)

Anup == {[Va[Rn, 00)| = hio} N {Vv € V4[Rn, 00) : v ~ C[1, ¢n) } (7.29)
Acomn = (Y€ < £ : T, 0 = (1= y)(1 = (1 = p)"O)((1 — y)nbe/L)}.  (7.30)

We shall show that

-Acomp N Apab N Aconn € {|C£,1)| > pn}. (7.31)
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By its definition, 7}, , many clusters of size £ connect to the hubs listed in App, which
then all are part of the giant component in the whole graph. Hence, on Apyp, the giant
IC)’[1, ¢n)| increases by at least £7,, , when fully revealing the graph. By the bounds
on T, ¢ and the initial size (1 — ¥ )fn of the giant inside the events, and (7.26) in
Claim 7.7, we obtain that

1 ot o
Cl/n =00 =)+ -3 €T 200 =9) + (1 =9)? Y (1= (1= p)")o
=1 (=1
Z*
> (- W(e +Y (1-a- P)h'°l)6’z> > p,
=1

s0 (7.31) holds. We bound from below the probability of the intersection using the law
of total probability:

P(Acomp N Apybs N Aconn) = ]P(Acomp N Ahubs)IP(Aconn | »Acomp N Ahubs)- (7.32)

To study the first factor, we use the law of total probability again and then also P(A N
B) > P(A) — P(—B) (see (7.28)-(7.29)):

P(Acomp N Ahubs) > P(VU € VulRn, 00) : v~ C'[1, ¢n) | Acomp N {|ValRn, 00)| = hlo})
: (JP(|Vn[Rn, 00)| = hio) — ]P(ﬂAcomp)) (7.33)
For the first term in the row (7.33) we use that |V,[Rn, 00)| ~ Poi(n(Rn)~(—1) by

the intensity in (4.5). Note here that the parameter tends to O since T > 2. Therefore,
since A, is a p-dependent constant that does not depend on n,

(R=(=Dp= (=)o
hio!
> cgpn” (TN (7.34)

P(IVa[Rn, 00)| =hio) = exp (=R~ Vn=(72)

for some constant cg, , > 0. We now bound P(=Acomp) in (7.33).

P(~Acomp) = P(3¢ < €2 €S,.0(6m)/n = (1 - 1))
+P(CLL gml/n < 61 = y)). (7.35)

Lemma 7.6 and a union bound over the £* many £ shows that the first term is at most
n~C for arbitrary large C when ¢ < ¢o(¥). For the second term, there are two cases.
Either 6 = 0 and then this probability is O; or, 6 is non-zero. In the latter case, when
additionally ¢jong > 0, our result for the lower tail of large deviations in Theorem 2.7
guarantees that this event has stretched exponentially decaying probability in n. This
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is where we use that the model must be supercritical with {jong > 0 when® @ > 0. So,
under these conditions, we know that P(ﬂAcomp) is of smaller order than the lower
bound in (7.34) on the first term in (7.33).

We now analyze the conditional probability on the line above (7.33). Take R >
V/d/B. Then a vertex with mark at least Rn connects by an edge to any other vertex
in A, with probability p by (4.6). The giant C|[1, ¢n) has size at least (1 — y/)0n on
the event Acomp in (7.28) in the conditioning. So, by a union bound, the (conditional)
probability that all the /1, many vertices of mark at least Rn connect by an edge to
CP[1, gn) is at least 1 — hjo(1 — p)®®™, which tends to 1 as n — oco. Combining
these with (7.33)—(7.34) gives in (7.32)

IP)(-Acomp N Ahubs) = CR,pni(riz)hlo- (7.36)

We show that the other term in (7.32), P(Aconn | Acomp ﬂAhubs) tendsto 1 asn — oo.
Recall these events from (7.28)—(7.30) and that under the conditioning, 7;, ; denotes the
number of size-£ components of G, [1, ¢n) that connect to one of the /), many vertices
of mark at least Rn (the hubs). As before, each vertex connects independently to these
hubs with probability p. Further, the vertex set counted in 7,, ¢ is disjoint of the vertices
in C;l”[l, ¢n) so their connection to the hubs is independent of whether the vertices in
C[1, ¢n) connect to the hubs, which is an event inside the conditioning Acomp N Anubs-
So, under the conditioning, each component of size £ in G,[1, ¢n) connects to one of
the A1, hubs with probability 1 — (1 — p)™°f independently across size-f components
and across £ < {£*. Hence, given the number of size-¢ components in G,[1, ¥rn),
(Sn,e(¢pn))e<ex, the variables T, ¢ are binomially distributed with parameters S, ¢(¢n)
and (1 — (1 — p)™ot). Further, under the conditioning in Acomp, €ach S, ¢(¢n) is at
least (1 — ¥ )nb¢ /¢, so T, , dominates a binomial random variable with parameters
(1 —y)nb, /€ and (1 — (1 — p)et) for each £ < £*. A union bound over £ < ¢* and
then a Chernoff bound for each ¢ give that IP’(.ACOrln | AcompN Ahubs) — lasn — oo.
Using this in (7.32) and (7.36) gives in (7.31) that for some constant cg , > 0,

]P)(Cill) > pn) > ]P(Acomp N Anubs N Aconn) = CR,pn_(T_z)hlo~

We proceed to the upper bound of Theorem 2.5.

Proposition 7.9 (Upper bound of the upper tail). Consider a KSRG satisfying Assump-
tion 2.2 on a PPP with t < oo. Fix p € (0, 1). There exists A = A(p) > 0 such that
foralln > 1,

P(ICY| > pn) < An~ (T 2w,

Proof Given p, fix ¢, ¢ > 0 sufficiently small and £* sufficiently large so that (7.27)
holds for ¢ and £*. We write T ,, , for the number of components of size £ in G,[1, ¢n)

6 Inspection of the proof of Theorem 2.7 shows that the sprinkling technique used in Section 4 needs
supercriticality. The assumption {jong > 0 is the technical condition of Theorem 2.7 that guarantees enough
long edges.
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that do not connect by an edge to the vertices with mark at least ¢n, and define

Acomp = {Vul/n < 1+ 9} N {VE < €5+ 1:8,0(pn) > (1 — Y)nby/t),
Anubs = {|Vn[¢nv 00)| < hyp — 1}7
Aconn 1= {V€ € [€*1: Ty e > (1 —y) (A — p) "= D((1 —y)nbe/0)}.  (7.37)

We show in the next paragraph that

Acomp N Apubs N Aconn € {|CS)| < pn}. (7.38)
To show this, we bound the size of the complement of the giant on the intersection
of the three events. Since S, ¢+41(¢pn) > 1 for all sufficiently large 7, the largest
component has size at least £*. Hence, vertices in components of size £ < £* are not in
the giant of G, [1, ¥n). Combining the bounds in the events with Claim 7.7, we obtain
for sufficiently small ¢ that

L= G| /n = Va\Cl/n =

v

1 &
- ZETn,Z - W
"

l*

(=92 Y 6= p) oD~y > 1—p

=1

v

Rearranging shows (7.38), which implies that {|C}"| > pn} € (= Acomp) U (—Ahubs) U
(= Aconn). Thus, it follows that
P(|C§;)| > ,On) = IED(_‘«400mp) + IED(_‘~Ahubs) + ]P)(_‘Aconn N »Acomp N Ahubs)

<
= IP>(_‘v400mp) + IED(_‘v‘lhubs) + IP)(_'-Aconn | Acomp N -Ahubs)o (7.39)

By Lemma 7.6 and the concentration of Poisson random variables in Lemma A.1,
IP’(—-Acomp) = on=C) forany C > 0if ¢ = ¢(y) is sufficiently small. For
IP’(—'Ahubs), we use similarly to (7.34) that the number of hubs is Poisson. So, there
exists a constant Cy , > 0 such that forall n > 1,

P(_'Ahubs)z (POl(n(d)n) (T— 1)) )

o0

—exp(— ¢~ T Dn= (D) Z

]:hup

$i- 1>n j@=2)

S C¢’pn—(f—2)hup.

For the conditional probability in (7.39), with the corresponding events defined
in (7.37), we argue similarly as in the proof of the lower bound. The probability that
a single vertex in a size-¢ component of G,[1, ¢n) connects by an edge to each of the
at most /1y, —1 hubs is at most p, independently of each other under the conditioning.
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Hence, the probability that a component of size £ does not connect by an edge to one of
the hubs is at least (1 — p)“"w»=D _and connected components connect independently
by an edge to the hubs. Thus, conditionally on S,, ¢ (¢7) and Acomp N Ahubs. Tn, ¢ domi-
nates a binomial random variable with parameters S, ¢(¢n) and (1 — )= Onthe
event Acomp, Sp,¢(dn) = (1—=1)nb; /€, so T,,, ¢ dominates a binomial random variable
with parameters (1 — ¢ )n6,/¢ and (1 — p)e(h“P_l). A union bound over £ < £* + 1
and then a Chernoff bound shows that IP’(—'AConn | Acomp N Ahubs) = exp ( -0 (n)).
Substituting these three bounds into (7.39) finishes the proof. O

Proof of Theorem 2.5 Recall hy, and hy, from (7.25). The lower bound is given by
Proposition 7.8, the upper bound by Proposition 7.9. O

Appendix A Preliminary lemmas
Lemma A.1 (Concentration of Poisson random variables [62]). For x > 1,

P(Poi(A) > x)\) <exp(—i(1 + xlog(x) — x)), (A1)
and for x < 1,

P(Poi(%) < x1) < exp(—A(l — x — x log(1/x)). (A2)

Appendix B Existence of a giant: postponed proofs
B.1 Polynomially-sized components

The proof of Lemma 4.2 uses a similar strategy as the proof of Proposition 4.1: we first
prove the statement along a subsequence (n;);>1 using a multi-scale renormalization
method, and then extend the result to all n. For the multi-scale renormalization, we
follow the steps (Sub),(Con),(Mark) outlined in Section 4.2.1. The initialization of
the renormalization is different. Here, we shall use the uniqueness of the infinite
cluster to construct large connected components in level-0 boxes. We use slightly
overlapping boxes, so the events that two overlapping boxes contain a large connected
component in their induced subgraph are no longer independent. Therefore, we cannot
use Chernoff bounds as we did in the proof of Proposition 4.1. Markov’s inequality
can still be applied, but it leads to weaker bounds. We start by formally setting up the
renormalization.

We recall the parameter 8 from the connectivity function in (4.6), and the critical
value B, from (2.3). From 4.5, we recall that we can construct the vertex set V as
the union of two independent PPPs V**¢ and V™ with respective spatial intensities ¢
and 1 — ¢, with B¢? > B. gives two independent PPPs. The choice of ¢ ensures that
the graph g™ = (1™, &) induced by vertices in V**° is supercritical itself. Let
6> be the percolation probability of G***. Lastly, w.l.o.g. we assume that @ < 00, as
otherwise ¢ = (. — 1) /o — (7 — 2) < 0.
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Definition B.1 (Renormalization scheme with overlapping boxes). Let £ = ¢ > 0,
and let ¢’ > 0 be a sufficiently small constant. Let

=2(1/¢ = 7. (B1)

Givena € (1, 00), lets = s(a, €’) be the smallest integer satisfying & (s+1) >
1 (so that §5E (5 +1)=* > 1 forall § > s). Let ng > ng > 1 be two large constants.
Then, we iteratively define fori > 1,

i
mj = (i +5)t0d, n; '=n;_ym; =ng H(€+s)(2+”)d, n; = (Ql-l/d—i-n(l)/d—g(])/d)d.
=1
(B2)

Let Q*“b (x) and Qi i (x) denote boxes of volume n; and n; centered at x. We define a
subgraph g, ¥ = (V, Y 6’, ) of the graph G on Q‘“b (x). We call V, + the level-i vertex
set inside Q; (x) and define it as

Vi 1= V55, UVY

By 1 20 (B3)

Let £ be the edges of G™* inside Q; (x). Denote then by é’j‘i’;b“e the set of edges of
G inside Q:*"(x) with one endpoint in V*'[1, 2@3’) and one in V**¢, formally {{u, v} €
€Q§ub(x) cu eV [1, 2@3/), v e V25, . }. Then we say that the level-i edge set

Q30 (x) Q30 (x)
inside Q;(x) is
=g ugn. B4)

We define the graphs @,-,x = (]7,‘,)(,75’\,-,,(). Let pg := 6°*°/2, and define fori > 1
pi =1/ + ). (BS)
We call a box Q;(x) (i, &')-good if the graph @i, » satisfies the event

i
Ai_good, e’ (X) = {Elcomp. CixinGiy:1CixNOM™X)|>n; 1_[ Pe,
£=0

[n 2n; )ﬂC,x|>n§ 25}
(Bo)

| quh( )

The picture about the boxes Q;“b (x), Q;(x) one should have in mind is as follows:
Q; (x), the box of volume n;, is the “fattening” of Q‘;“b (x) by at most an ng-dependent
constant. By construction, Q;"*(x) can be partitioned into exactly n;/n, many non-
overlapping small boxes (Q‘“b (xj))j=1 of volume n,, centered at some (x;) j>1. If we
take the union of the overlapping fatter boxes (Qo(x;));j>1 of volume ng > n,, we
obtain Q; (x). Since ny, ng are both constants, we obtain that

n; = (I +o()n;, asi — oo. B7)
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The edge set at level i consists of all edges in £ whose vertices are in the larger box
Q, (x), and additionally, the edges from certain “high-mark vertices” in V" to V°*°
with both endpoints inside the smaller box Q‘;“b (x).

For the connected component that realizes the event Ai_good’ +(x), we have a lower
bound on the proportion of vertices inside the smaller box Q?“b (x), and also on the
amount of vertices in the range [n}, 2n)) in the sprinkled vertex set in Q;*"(x). These
criteria in (B6) do not require any information about vertices in the ‘box-annulus’
Qi(x)\ 9 (x).

We can compute the density of the component C; . inside the smaller box Q5*°(x).
By definition of n; in (B2) and p; in (B5), for any n, sufficiently large, using that
n/(n +2) < & due to (B1), this density is

i i
[Tee=ro[]€+972 = pot; /ng) 2@ = @™/2) -0 (BY)
=0 =1

Hence, combined with (B7), for all i sufficiently large,
P(IC)| = n}~¢ 6" /4) = P(Ai_gooa &' (0))- (BY)

This is closely related to what we aim for in Lemma 4.2. In the next three claims, we
will show that the right-hand side can be made arbitrarily close to 1 for all i when n,,
is sufficiently large. Afterwards we prove Lemma 4.2 to bound the left-hand side for
arbitrary n.

Claim B.2 (Ergodicity and uniqueness). Consider a supercritical KSRG as in Lemma4.2
and Definition B.1. Then the measure P is ergodic, and there is a unique infinite com-
ponent.

Proof We start with ergodicity. We construct the graph as a marked Poisson point
process V such that the graph remains invariant under translation. These marks are
‘additional’ to the vertex marks w,. Namely, we equip each vertex v = (x,, wy) € V
with asequence of iid Unif[0, 1]random variables (Uy; );>1. Given this marked PPP, we
write U(v) = (u;);>1 forall vertices whose first spatial coordinate is strictly larger than
the first spatial coordinate of v, increasingly ordered with respect to their Euclidean
distance to v. We include an edge between v and u; iff U,; < p(v, u;). This yields
a graph that has the same distribution as in Definition 2.1. By the adaptation of [56,
Proposition 8.13] to marked Poisson point processes (see also [56, Exercise 10.1]),
such a process is ergodic: any event in the invariant o -algebra has either probability 0
orl.

The uniqueness of the infinite cluster follows by the classical Burton-Keane argu-
ment [18], which makes implicit use of ergodicity. We do not sketch the Burton-Keane
argument here, just highlight one point: the argument requires that the expected size
of the vertex boundary of A, (i.e., the number of vertices in A, with an edge leaving
Ap,) is of smaller order than the total number of vertices inside A,. Formally, we have

@ Springer



Large deviations of the giant in supercritical KSRGs

to show that
VB, = E[Hv € A, : v connected by an edge to Afl}|:| (B10)

is o(n). Fix ¢ > 0 arbitrarily small, and let § = §(¢) be a small constant depending
on ¢, such that the expected number of vertices in A, within distance snl/d from the
boundary dA, is at most en. Since ¢ > 0 is arbitrary, we may bound from above
the vertex boundary in (B10) by counting all these vertices in VB,,. The remaining
vertices are in A, (j_s, and they only contribute to the vertex boundary in (B10) if
they have an edge of length 8n'/“. Thus,

VB, < en +E[|{v € A, : v incident to edge of length at least $n'/}|]. ~ (B11)
We use translation invariance of the graph and Mecke’s formula, and arrive at
VB, <en+n(l — 8)dIP’° (0 incident to edge of length at least 8n1/d).

When @ > 1 and T > 2 in Assumption 2.2, the graph is locally finite, see also [27,
44, 61], which implies that the probability on the left-hand side tends to 0 as n — oo.
Therefore, the expected size of the vertex boundary is o(n). By the Burton-Keane
argument, the uniqueness of the infinite cluster follows. O

Claim B.3 (Induction base for overlapping boxes). Consider a KSRG in the setting of
Lemma 4.2 and Definition B.1. Let ¢’ > 0 is a sufficiently small constant. For each
8 > 0, there exists a constant n; > 0 such that for each ny > nj there exists no > 0
such that for all x € RY,

P(Qo(x) is (0, 8’)-g00d) >1-6.

Proof We estimate the probability of Ag_go0d,¢’(x) defined in (B6). We set x = 0,
so that Q3°(0) = A, while Qp(0) = A,,. We write C%° for the unique infinite
component of G™*. By definition, §°* = P(0 € C¥°), so that C2%° typically con-
tains a 6**-proportion of the vertices in A, by translation invariance. By ergodicity
(Claim B.2), the proportion of vertices in An in C2%¢ converges in probability to 6=
as ny — 0. In Definition B.1 we defined pp = 0*"“/2 Hence, for n, sufficiently
large,

P(|Ap, NC¥| = pong) = 1 —68/4.
Since the infinite component is unique (Claim B.2) and the graph is locally finite, given
d, there exists ng = no(ng) such that with probability at least 1 — §/2, the separate
components that C?° induces inside Ay, are all in a single component inside the larger
box Aj,. Formally, let ng be so large that

P(|An, NCEE| = pong, Ap, N Co in same component in Gyo) > 1 —68/2 (B12)
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holds. This also implies that the event Apase := {3 comp. Cin Gy, : [CNAp | > pong}
occurs with probability at least 1 — §/2. We now condition on the realization of the
graph G satisfying Apase. Let C be an arbitrary component in Q,';"ge that the event
Abpase describes. This component only uses vertices and edges of g;ﬂge, which is also
a subgraph of the graph /_C’;o, x- The component C>Cin 6[,0 thus satisfies the first
condition of Ag_good, in (B6). For the second criterion of Ay _good,e’ We will compute
how many vertices of Vng [Qg , 2@5 ) connect to C (and thus form 6). Since we revealed
a realization of G satisfying Apase, C is known, and we obtain

]l{Abase}P(ﬁ-AO—good,s’ x) | gbase)
< Tap)P(Ifu € VPl 208) :u ~ CY| < nf ™% | GP).
The vertices in V; [n), 2n}) form a PPP with intensity (1 —g)Leb(-) x (t — )w~"dw.
We compute the mean and estimate it from below using that 1 — y(r — 1) = ¢:

’

E[Vnh. 205)1] = (1 = qyng 771 =27 D) > pf70

We estimate the mark of each vertex in CN A, from below by one, the spatial distance
by at most the diameter of A, , and the size of C N Ap, by pon,. So, a single vertex
in Vi [nf, 2n{) connects to C with probability at least

= (1= p(1 A p20 )y
- (1= ﬂdd/zﬂ()))

IV

1 —exp (— pB%pod @4/ 2p)* o *1y
=1—exp(— pﬁ“podfad/z) > 2@58/.

Here we used that y = 1 — 1/« to obtain the second row so that powers of ng
vanish, and that the last inequality holds for all n, sufficiently large. Given the vertex
set, vertices in V" connect independently by an edge to C. So, the total number of

vertices in Vjj, [}, 2n!) dominates a Poisson random variable with mean 2@5_28 .By
concentration for Poisson random variables (Lemma A.1), there exists ¢ > 0 such
that

g P(Qo(x) is (0, ')-bad) < exp ( — enf ™).

The right-hand side is at most /2 if n is large. Together with (B12), this finishes the
proof. O

The key idea of Claim B.3 above is that the separate components of the infinite
component in G™* induced in a box Ap, connect to each other in a larger box Ap.
However, we had no control over the relation between ng and n, and thus lose the
density estimate of the connected component in the larger box. The multi-scale renor-
malization in the following claim makes this control possible, using that the added
annulus in the ‘fattened’ box has constant width across levels, see (B7).
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Claim B.4 (Iterative renormalization with overlapping boxes). Consider a KSRG in the
setting of Lemma 4.2, with the boxing scheme from Definition B.1. Assume &' > 0 is a
sufficiently small constant. For each § > 0, there exists a constant ny, = ng(&’, 8) > 0
such that for each ny > ng there exists ng > 0 so that for all x € R and all i > 0,

]P’(Qi(x) is(i,e )-good) >1-6. (B13)

Proof We follow the same steps (Sub), (Con), and (Mark), similar to the proof of
Claim 4.11. By Claim B.3 the statement holds fori = 0, so we may assume inductively
that it holds until i — 1 and thati > 1.

Good subboxes. Consider Q;(x), and take a partition of the smaller box Q?“b(x)
into m; many subboxes of volume n; ; with centers (x;);<m;. We then obtain
((Q(x)). Qi-1(x)))) ;,,,» Where (Q““bl(x]))]<m, are the subboxes forming the
partitioning, and (Q;_1(x;)) j<m, their fattened versions. Since two neighboring fat-
tened subboxes overlap, the events that two fattened boxes are (i — 1, £’)-good are not
independent. Let Agyp, be the event that at least p; m; fattened boxes are (i — 1, &”)-good.
By Markov’s inequality and translation invariance,

P(=Agp) = (|{j D Qi_1(x;j) is (i, &')-bad}| = (1 — pi)m;)

< 1_—IP’(Q, 1(0)is (i, &)- bad)

2 .y
< (1 n m)[@(gi_l(m is (i, ')-bad), (B14)

where for the second bound we used p; = (i + $)~2 5o that 1/(1—pi) <1420+
s) 2 foralli > landd > 1.

Connection between subboxes. We write pre- g, x for the union of the graphs
Uj<m, g, 1,x; inside the subboxes at level i — 1, see (B3) and (B4), and assume

that Agyp holds. Let inter- gl » denote the graph on the same vertex set as pre- Q, )
including also all edges between the vertices in U j <, V, 1,j-

The auxiliary graph. Similar to below (4.31), we re-label the subboxes so that the
subboxes with indices j < p;m; are all (i — 1, &’)-good. We consider the auxiliary
graph H; = (Vx;, Exn,): each vertex j € [pjm;] =: Vy, corresponds to a component
Ci—1x ; thatrealizes the event Ai_good,e’ (xj) in the j-th subbox, see (B6). To determine
the edges of the auxiliary graph, we use the vertices at level i — 1 that belong to inter-
Gi x as follows: we connect vertex j and k in H; if there is an edge between a sprinkled
vertex in C;_1,; N Q‘,‘Ifl (x;) to some base-vertex in C; _1 x N Q‘,‘i'ﬂ’ 1 (xx) or vice versa:

{jNH,' k} <:>{(l ljmvS [z l’znz 1)) ,'.x(l 1kab““b(x))}

[ —i— 1,27’1 )) N@i,x ( i—Lj rjl}ba:ﬁlb(){]))}

sub( )

Y {(CZ lkmvgw"( )

Each good subbox Q; (x;) is contained in Q;I”"(x), and the connected component
Ci—1,; satisfies |Ci—1,j N Q™ (x| = n;_, ng;}) 0¢. On Agyp there are at least p;m;

good subboxes. Thus, if H; is connected, then there is a component C; , satisfying:
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i—1

i
ICix N Q) = pimi -1y [ [ oe =n; [] pe-
=0

£=0

We bound from above the probability that H; is not connected by the probability
that H; is not the complete graph. We already lost sharp bounds in (B14) as opposed
to (4.32) and (4.35) where we used the connectivity of the Erd6s-Rényi random graph.
So even though the edges in H; are conditionally independent given pre-G; ,, we will
use Markov’s inequality to bound edge-presence events. We compute conditionally on
the realization of pre-/g\,-, +» the union of subgraphs inside level-(i — 1)-subboxes that

i
]l{Asub}]P’(ﬂcomponent Cix ininter-G;  : |Ci x N Q;“b(x)l >n; 1_[ e )pre-g,-,x)
(=0

<1 Asub}IP’(H,- is not connected | pre-ai,x)
< i} max g P(f %14 k | pre-Gi.v).

To bound the probability on the right-hand side, we use the two properties of C;_1 ;
of a good (i — 1,¢’) subbox in (B6) about its density in O, (x;) and its level-
(i — 1) high-mark vertices. Since the union of the smaller level-(i — 1)-boxes forms
Q;”b(x) (see reasoning below Definition B.1), the maximal distance between two

vertices in Q; 1(x;) and Q; 1(xg) is \/_ n1 /d . Moreover, by the definition of the

level-(i — 1) edge set in (B4), none of the edges between V7 and V°%,  have
Q, 1(xj) Q,'_](xk)

been revealed in pre-g,-, + and they are thus conditionally independently present. We
bound this probability from above by only requiring that there is no edge between

Y Y ase
Ci_ lijngub( )[ni_l,ZQi_l)andC,-_l,kﬂ le,ibl(x](),andwe:usethatwehawelower

bounds on the sizes of these sets in (B6):

1A} P(H; is not connected | pre-G; )

< m? I1 [T a—paw)

uEC,'_lvjﬂVpr b [n?:lvzﬂ}/,l) Ueci—],kmvbase
qu e =i i qul('\/z)

—2¢’

2 ag}jf iz;()pl
SR

We use that n; = m;n;_; and y = 1 — 1/«, so that the minimum is attained at the
second term for any ng sufficiently large. Hence,

i—1
]l{Asub}P(Hi is not connected | pre—ai,x) < m,2 exp( pB m_“ l(y 1 Daifﬂl 2 l_[ ,Og)
=0
, i—1
=mPexp (= m; n{ " pp* [ oe). (BIS)
{=0
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The expression ]_[ — 0 pe inside the exponentis atleastz; ! by (BS). We would also like
to replace the factor m;“ by n; For this it is enough to show that n _1 = m¥ withm;
and n; from (B2). We show thls by induction. Fori = 1, m{ = (1 + §)Fmde < QS/

holds for any n,, sufficiently large. We advance the induction, assuming ﬂsz >mi_ .
Using the recursion defining n; and the induction hypothesis,

. , | — K 24+n)d /
B (L) L)
l s

by the choice of s just above (B2). Substituting this bound into (B15), and discounting

the prefactor m? | and constant factors inside the exponential by another factor ng/_ 1

we obtain

]l{Abub}]P’<ﬂcomp. C;in inter-lg\i,x G N qub(x)| >n. npg pre g, x)
¢
=i—

’
)

(B16)

<exp( n;

Sprinkling high-mark vertices. Let us denote the opposite event of (B16) by

i
Acomn = [Elcomp. C; in inter—@i,x |G N Q‘l‘l“b(x)| > n; l_[ p/g}.
£=0

On Aconn, @, « satisfies the first criterion of being (i, £’)-good in (B6). We now look
at the second criterion of A;j_good,e(0) in (B6), conditioned on the graph inter—@l X
satisfying the event Aconn N Agup. We reveal the sprinkled vertices V" [n 2n ) with
location in Q‘“b (x). These vertices are independent of inter- Ql, x> Which only contalns
vertices with mark below 2@3:1. This mark threshold is below Qf/ for sufficiently
large n,, and small ¢’ see (B1-B2). The expected number of revealed vertices is then
(1 —q)n} 777D (1 = 27D using Definition 4.5.

We bound from below the probability that such a vertex connects by an edge to one
of the at least n; ]_[ ¢—0 P¢ Many vert1ces inC; N Q3" (x) of 1nter-g, x- The probability
that a single vertex of mark at least Ql does not connect by an edge to C; is at most

Y

ﬁinézopé —ad/2, (y=Da+l1 i
(1_ (lAﬁdd/Z )) 5eXP<_pﬁada i ]_[pe)

£=0

i
=exp (= ppd™ ] pr).
£=0
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using again y = 1 — 1/« and cancellation of the powers of n;. Each vertex in V'™
connects by an edge independently to the vertices in C;. Thus, the total number of
vertices from V" [Qz-/, 2@3’) N Q;Z“h (x) connecting to C; dominates a Poisson random
variable with mean

_ _ ==y, ¢ _ _ o j—ad/2 i
(=)0 =27 - (1= exp (- ppd gpe))

i
_ ! _2 /
> cnf [ [ pe = cpon; ™ = 207,
£=0

where the second bound follows for some constant ¢ > 0, the third bound by (B8), and
the last bound if n is sufficiently large. We apply concentration for Poisson random
variables (Lemma A.1). We recall the definition of A;_¢0d,¢ from (B6), and combine
it with (B16) to obtain for n, sufficiently large that

_4¢' . ~
T Awon Acom) P(~Ai—good ¢ (0)) < 2exp (—n; | inter-G; ).

We combine this bound with P(=Agp) < (1 + 2@ + $)72)P(=Ai-1)—good,e (0))
from (B14). Then

IED(_'~Ai—good,£’ (O)) = (1 +20 + s)izd)]P)(_'-A(i—l)—good,e’ (O)) + ZeXP ( - Q?—Ss )
(B17)
Combining everything: a recursive bound. We finish the proof of (B13) by some
analysis. We show that the right-hand side of (B17) is at most § by working out the
recursion in i. Fix §’ > 0 sufficiently small. By Claim B.3, ]P’(—'.Ao_good, e (0)) < ¢
for all n, sufficiently large. We may assume inductively that forall 1 < j <i —1,

J
, 3
P(_‘Aj—good,s’(o)) <9 E (1 + (Z + S)Zd)'

Then, using this bound in (B17) we obtain

i—1

. / 2 3 —5¢
P(=Ai—good. (0)) <8 (1 + m) 1 (1 + m) +2exp(—n; 7).

Showing that the right-hand side is at most 8’ ]_[2:1 (l + W) is equivalent to
showing that

2 2 exp ( — 45_58/) 3

1+ — + . <l+—0.
G+ S T2y (1 +3/(C +5)%) i +9%

(B18)
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The product in the denominator on the left-hand side is bounded away from 0. Since
n; grows superpolynomially by its definition in (B2), the bound (B18) is satisfied for
all i > 1if n is sufficiently large. This advances the induction, and we conclude that
for all i > 0 and a proper choice of the constant §' > 0,

e¢]

, 3
P("Ai—good,s/(o)) =4 K1:[1 <1 + £+ S)2d> =9

O

We now prove Lemma 4.2. Similarly to the proof of Proposition 4.1 on page 37,
this step generalizes the previous claim to arbitrary box size n (instead of n restricted
along the subsequence (n;);>1).

Proofof Lemma 4.2 Fix ¢’ € (0,&/2). Let ¢ > 0 be a small constant. It suffices to
show that for all 8, there exists n, such that for all n > n,,

P(CP| < n'7%) <s. (B19)

Consider the sequence (n;);>o from Definition B.1, with ng given by Claim B.4 such
that
P(=Ai_good,¢' (X)) < 8/4. (B20)

for alli > 0. Assume n > ng, and define m, i, and 7 as in (4.40), i.e.,
iy =max{i :n; <n}, m:=|/m)), A= nm. (B21)

We will assume that i, is a sufficiently large constant. We consider a box Aj; of volume
n inside A, and partition this smaller box into disjoint subboxes of volume 7; . By
construction, Aj; covers a uniformly positive proportion of the larger box A,, i.e.,
exactly as in (4.41), there exists an absolute constant v > 0 such that

m > v(n/n;,). (B22)

Moreover, we may assume without loss of generality that m is at least a large con-
stant mo, as otherwise the statement is immediately implied by (B9) and Claim B .4.
We denote the boxes of the partition of A; by Q;, (x1), ..., Qi (xn). By (B20) and
Markov’s inequality,

P(Asup) := P( Z L{g;, (x)) is (is.e")-good} = m/2) >1-46/2. (B23)
jelm]

We reveal the subgraphs /Q\i*, xj from Definition B.1 in the subboxes, and denote their
union by pre-Gj;. We condition the graph on satisfying Agyp: each good subbox contains
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a large component C; of size at least nl ¢ If the components C; are all connected by
an edge to each other then G; contams a connected component of size at least

Iy
(A/2mn; [T pe = A/2mnl =" = A/9mn! = > /dnn e = n'=>
=1

using (B8&), (B22), and the fact that n; = n;(14-0(1)) asi — oo for all n is sufficiently
large.

We thus need to study the connectivity between the large connected components
C; in the good subboxes. By the definition of (i, &) goodness in (B6) C; has size

at least n , and contains at least ng ~2¢ Vertices of mark at least n . The edges

between subboxes have not yet been revealed The largest possible dlstance between
two vertices in Aj is Vdi'/? = dmn; *1/ 4 Thus, the probability that the large
components C; and Cy in two good subboxes j, k are not connected by an edge in G,
is at most

14+¢-3¢

Eg/ o 2n;
l_[ (1 —pu, U)) =< (1 —P<I3m) )

ueCj,veCy

< exp ( — pﬁad—ad/ZQZFa-&-l—a-&-{—% m—a) <exp ( _ Qi:4e m—a)’

having used y = 1 — 1/« in the last step, combined with a bound of Qi_sl to account for

the constant prefactors. Considering the at most m? potential edges, and combining it
with (B23), we obtain

P(ICY| < n'~ 28) <8/24+m exp(—ng 4€m_°‘>.

By (B21), m is at most m;, defined in (B2). By the same reasoning as below (B15), it
follows that m~% > n; ¢, Thus, if n, is a sufficiently large constant, the second term
on the right-hand 51de is smaller than § /2. This finishes the proof. O

B.2 Useful bounds for the iterative renormalization

Proof of Claim 4.9 We first discuss (4.19). Its proof is standard and based on simple
estimates relating to integer parts and induction, so we leave it to the reader.

For the first inequality (Sub) in (4.16) we substitute n; = m;n;_ on its right-hand
side. Simplification gives that (Sub)-inequality is equivalent to ¢;m —+e > C for
all i > 1. This follows for any sufficiently large ng since m; is doubly exponentially
increasing, &; = (i + D72, and 1 —¢ = y(r — 1) > 0. For the second inequality
(Con) in (4.17) we define the constant

C=c/[Ja-ep=c/TIa-1//.

j=1 j=2
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which does not depend on ng. It is elementary to check that C/ ,oiz_1 < Eng/ 2 by
definition of p; in (4.14). Hence, dividing both sides with ,01.271 in (4.17), and using
this inequality, it is sufficient to show that for all n¢ sufficiently large

l—a ¢ ~ 8/2 ¢—é
m; "n;_; > Cny"n; .

Usingthatn; = m;n;_1, after rearranging this is equivalent to n;.sf] > 5n3/2m578+a71 .
By (4.11),m; < nlg‘s_1 with & = (§/2)/(¢ + o — 1 —§/2), and raising then both sides
to the power 2/§ gives that (4.17) holds if niz_1 > C¥onon ll :f‘s. This inequality holds
for all i > 1 when ny is sufficiently large (the choice of ng depends on C).

For the bound (Mark) in (4.18) we have to show that ,o,'n;.S > C. The infinite product
of (1 — 1/j?) is strictly positive in (4.14), so p; = O(pg) = @(n(;‘m) as ny — 0o.
Since (n;);>0 is increasing, (Mark) follows again for sufficiently large no.

The bounds in (4.20) follow since ¢; = (i + 1)_2 fori > 1 and m; and n; increase
doubly exponentially in i, while the powers appearing in (4.20) are all positive (e.g.
1 —¢ — 36 > 0). The same is true for (4.22). We turn to the last bound (4.21). We
substitute n = n;m and rearrange to obtain that (4.21) is equivalent to nf > mé—ta—1

Since m < m;1 by assumption, this inequality holds for all such m if nf > mf;f el

Sincem; 1 < nf‘s by (4.11), it follows by definition of &5 in (4.8) that this last inequality
holds if n8 > n?/>7%%2

i

, which clearly holds since &5 > 0. O

B.3 Poly-logarithmic mark-thresholds to belong to the giant

Proof of Lemma 5.6 High-low regime. Assuming (5.34), we will adapt the proof of the
upper bound on |C| from Section 6 to show (5.35) and (5.36). Let { = ni, ¥ = v,
1 = nn1. Since we assume ¢ > 0, we may assume that o < 00.

Take k = k, = (A;log n)/€=9 for a sufficiently large A; > 0 and partition
A, into boxes of volume k, denoted by Qy, ..., Q, similarly to Section 6, and
labeled so that boxes with consecutive labels share a (d — 1)-dimensional side. We
write C}(l,) j[l, A'kY) for the largest connected component induced by the vertices in
Q;x[l, A’k”), where A’ is the constant from the hypothesis (5.34). Now, we construct
a backbone with the following revealment scheme (again similar to Section 6):

1. Foreach j =1, ..., n/k, reveal all edges inside box j belonging to Vy ;[1, A'kY).

2. Let U; = {v € Vi j[AKY,24'kY)| v ~ C,((")j[l, A’k?)}, call the local giant
LG, :=U; U C,(Cl’) j[l, A’k?) and reveal all edges between any pair of vertices in
Uj<n/kLG;.

3. Reveal all vertices of mark at least 2A’k" = 2A’ (A1 logn)"/ ¢ =% and their edges
towards vertices in U<, xLGj.

Define a box Q; then to be 1-good if, for some §; > 0, it satisfies the event
{|c,<jjj[1, AR > pk} 0 {lU;] = 81k }. (B24)

We call (stage-2-)G, 2-good if
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(2a) all boxes Q1, ..., O, are 1-good,
(2b) {fu € Uj : u ~ LGjq1}| = 1 forall j < n/k, ie., each box contains a

box-wedging vertex.
We call (stage-3-)G, 3-good if

(3a) the stage-2-G,, is 2-good,
(3b) all vertices of mark at least 2A’k" are connected by an edge to a vertex in
Uan/kLGj.

By the hypothesis (5.34), for any fixed 1 <i < n/k,
P(IC,, 11, A'KY)| < pk) < Asexp (— 4k70),
and by the same calculations as in Claim 6.5, there exists ¢ > 0 such that
P(1U;| < 81k° | |c,<(‘}j[1, A'K)| > pk) < exp(—ek®).

Let us denote by 2a-good the event that condition (2a) is satisfied. Then, by a union
bound over all n/k boxes, for some & > 0,

P(G, is 2a-good) > 1 — 2(n/k) exp ( — ek*~?).

We estimate the probability of having a box-wedging vertex using the same calcula-
tions as in Claim 6.6. Again for some ¢ > 0,

]P’(|{u eUj :u~LGj11}|=0]Q;, Qj41 are l-good) < exp(—ek?®).
Hence, by a union bound over all n/k boxes, there exists ¢ > 0 such that
IP’(Q,, is 2-good | G,, is 2a—good) >1—2(n/k) exp(—ekz).

Thus, there exists a constant ¢’ > 0 such that for n sufficiently large, using k =
(A logn)l/€=9),

P(Gy is 2-good) > 1 — (n/e’k)exp (— e'k* %) > 1 —exp (— &'As logn + log(n))).

Recall now C > 0 from the statement of Lemma 5.6. Then, for all A1 = Aj(¢)

sufficiently large,
P(Gy is 2-good) > 1 — o(n™ ). (B25)

In the first two stages (1.)—(2.) of the revealment scheme, we only revealed vertices
with mark below 2A4’kY = 2A’(A;logn)?/¢=% to obtain stage-2-G,. Moreover,
conditional on G,, being 2-good, the local giants in all the subboxes are connected to
each other by box-wedging vertices, and their size is at least pk by (B24). So,

ICLL 247 = G124 (A log ) /€™ = 3 7 |LG,| = pn.
j=n/k
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Combining this with (B25) gives that

P(IC,'[1, 24" (A1 log )= = pn) = 1 = o(n™ ).

This proves (5.35) for A := 24’ A7/¢™,

We proceed to the proof of (5.36). We use the same revealment scheme as above
in (1.)—(3.). Choosing k := (A log )/ E=9y for (5.36) it suffices if all vertices of
mark at least 2A’k" connect by an edge to C\[1,2A’kY) with probability at least
1 —om™°).

We first show that vertices with marks at least 2A’k" have not been revealed in the
stage-2-G,, in (1.)—(2.) where marks up to 2A’kY are revealed. To this end, we recall
thatn = 1 — y(r — 1)/« from (5.33). We then need to check that > y, equivalently,
1 —y(r — 1)/a > y. Elementary rearrangements yield that this inequality holds
whenever 1 — y(t — 1) = ¢y > 0. This holds by our assumption in the statement of
Lemma 5.6. In conclusion, any vertex of mark > 2A’k" is not part of stage-2-G,,.

Excluding first the event that stage-2-G, is not 2-good, we can then assume that
stage-2-G, is 2-good and condition on its realization, and also on the realization of
vertices with mark at least 2A’k". We obtain for the complement of the event in (5.36)
that

PAC:C ¢ Vu[2A'k", 00), |C] = pn)
<E []P(EIU € Vu2A'K", 00) 1 v % CD[1, 24K )G, 2 — good, Vu[2A'K, oo))]
+ P(G, not 2-good). (B26)

The second term on the right-hand side is at most o(n =) by the previous calcula-
tions leading to (B25) for any A sufficiently large. For the first term, we consider all
possible connections of a high-mark vertex u to the lower-mark vertices in the ‘local
giant’ in the subbox containing u. By a union bound over all vertices of mark at least
2A’k", and recalling that the maximum distance between two vertices in the same box
is at most ~/dk/¢, we have

P(3C: C £ V,[24'K", 00), |C| > pn)

2A/kn ay prk _c
§IE|:|V"[2A’k",oo)|(l—p(l/\ﬂm> ) :|+0(n )
< nexp (—pﬁ“d*"“’ﬂp(2A’)“k1*“<1*’7>) to (n*c) , (B27)

where we used that the minimum is attained at the second term for k sufficiently large
(this follows because n = 1 — y(r — 1)/a < 1). We compute that 1 — (1 —n) =
1 —y(r — 1) = ¢ and substituting k = (A log n)1/€=9 we see that the right-hand
side is at most o(n~) if A is sufficiently large. Thus, (5.36) follows for the hl-regime
for some constant A > 0.

Low-low regime. We only sketch the adaptation of the method to the low-low regime,
where the calculations are less involved. Setnow ¢ = ¢ =2 — o,y = y1 = (@ —
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)/(r —1),setk =k, = (A log )/ €=9) and partition A, into boxes Q1, ..., Qn/k
of volume k. Set also n = n; = 1/«a. We modify slightly the revealment scheme in
(1.)—(3.) as follows: there are no sets V;; abox Q; is called 1-good if IC};,)j [1, A’kY)| >
pk; the stage-2-G, is called 2-good if all subboxes Qyi, ..., Q,/ are 1-good and
additionally there are box wedging vertices between each consecutive box:

l{u € c,g{)ju, AkYY u~C

Ve [ AR = 1 forall i < n/k.

By calculations similar to those in the proof of Proposition 6.1 when ¢;; > 0 on
page 55, one can show that there exists €2 > 0 such that for all n sufficiently large

P(gn is 2—g00d) >1—nexp ( — 82k£—8) >1-— o(n_c),

substituting k = (A log n)1/€=9 for any sufficiently large constant A. Now (5.35)
follows as in (B25).

We turn to (5.36), for which we first prove that vertices of mark above 2A’k™M
have not been revealed yet in stage-2-G,. For this we need that n; > 3. When
& > max(&py, 0), it follows that « < 7 — 1 and @ € (1, 2) by definition of ¢ and ¢y
in (2.9) and (2.12), respectively. For such values of «, (o — 1) < 7 — 1 holds, which
implies that n; = 1/a > (¢ — 1)/(r — 1) = yy. Thus, no vertices of mark at least
2A’k™ have been exposed in the stage-2-G,. Similar to (B26) and (B27), we obtain
by a union bound over all vertices of mark at least 2A’k™,

PEHC: C € Vu[2A'kM!, 00), |C| < pn)

24K\ "\
rnll —C

z]E|:|Vn[2Ak” , 00)| (1 —p(l/\ﬁm) ) +o(n )

= nexp (—ppd~2p @AY KE) + 0 (n~C),
Here we used that = 1/« implies that the minimum is again attained at the second
term, and we then used that { = 2 — «. Substituting k = (A log n)l/€=9 yields that
when A is large

P(Gy is 2-good) > 1 — nexp(—&2ké %) > 1 —o(n=%),

showing (5.36) for some A > 0. The corresponding statements for the Palm version
P* of P for any x € RY, are proven in exactly the same way. O
Appendix C Postponed proofs: upper tail
C.2 Concentration of degrees and crossing edges
Proof of Claim 7.3 We write w = w,,. To bound (7.13), we first distinguish whether

there are more or fewer than [C /v such vertices, and in the latter case we condition
on their number:
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P( > deg,[1, ¢n) = x/m)

veV,[w,én)

< P(|Vulw. ¢pn)| > [C/41)
+E[]1{vn[w,¢n)|5m/m}ﬂ”< > deg,[1,¢n) = yn ‘ Valw, ¢>n)l>].

veVylw,én)

For the first probability, the intensity of V in (4.5) yields that |V,[w, ¢n)| <
Poi(nw =~V = Poi(n~"). Hence, P(|V,[w, ¢pn)| > [C/y¥]) = On~VTC/¥1+D)
= 0(n~¢). We turn to the term inside the expectation. For the sum > vev, lw.on) 9€gy
[1, ¢n) to be at least yn, by the pigeon-hole principle, there must be a vertex
among the at most [C/y] vertices in V,[w, ¢n) that has total degree at least
yn/T(C/Y)] = 2n1//2/(3C) (we may assume C large so that this inequality holds).
Since at most [C /Y] edges go to other vertices in V, [w, ¢n), this vertex must have at
least 2ny2/(3C) — [C/¥] = ny?/(2C) edges towards vertices with mark below w
(the bound holds for n large). We take a union bound over these high-mark vertices,
and consider the worst-case location y of such a vertex to estimate the second term
above:

]P’( > deg, 1. ¢n) = wn) <o)

veV,[w,én)

151 s P (degy L w) > den | (o w) € Valw, gn).

. w)eA,x[w,¢n)
(CH

Since V,[1, w) is independent of V, [w, 00), the PPP restricted to vertices of mark at
most w is independent of the location y of a high-mark vertex v = (y, w). Since edges
are present conditionally independently, conditionally on v = (y, w), the neighbors
of v in the graph form an inhomogeneous PPP on A, x [1, w) € RY*+! with intensity
p((y, w), (x, z)) (dx X Fy (dz)). By integrating this intensity over A, x[1, w) (see [61,
Proposition 2.1] for an example) the reader may verify that there exists a constant
c=c(d,a,rt,0,B, p) > 0such that for any vertex v = (y, w) with location y € A,
andw > w

<|a

Poi(cw), ifo <t-—1,
degy (1, w) < § Poi((cwlog(n/w)), ifo=1-1,
Poi(cw T D/op!==D/o) it g > 7 — 1.

The intensity is increasing in w in all three cases, so the supremumin (Cl)isatw = ¢n.
Substituting this value, the parameter of the Poisson distribution is order O (n) in all
three cases with constant prefactor at most ¢y := cmax(¢, $*~1/?, ¢ log(1/¢)).
Clearly ¢y tends to zero as ¢ | 0. We conclude that

2

_ . v
P<U€V§,¢j?gv[l’ ¢n) > wn) <o(n %)+ F%]P(POI(ncqs) > n%)
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By concentration for Poisson random variables (Lemma A.1), the second term decays
exponentially in n for any ¢ sufficiently small, finishing the proof. O

Proof of Claim 7.4 We first condition on the set of vertices with mark at least w and
apply a union bound over these vertices:

P(3v € Valw, 00) : deg,[1,w) < €) <E| > P(degy[1,w) < €| Valw, oo))].

veV,[w,00)

We analyze a single summand: since the PPP V,[1, w) is independent of V, [w, 00),
and edges are present conditionally independently, it follows that

P(degv[l,g) <L | Vylw, oo)) < sup ]P’(degv[l,@ <Llv=(Q,w)e V).
O, w)EA, X [w,00)
(C2)

The neighbors of the vertex v form an independent inhomogeneous PPP on A, x
[1, w) with intensity p((y, w), (x,2))(dx x Fw(dz)). By integrating the intensity
over A, X [1, w) (see [61, Proposition 2.1] for an example) there exists a constant
c=cd,a, t,0,B, p) > 0such that deg,[1, w) > Poi(c(w A n)) forany y € A,.
This is also true when y is close to the boundary of A,, since at least a d-dependent
constant fraction of the ball of volume w A n centered at any y falls inside A,. Since
w > w, the supremum in (C2) is attained at w = w, so we obtain that

P(Fv € V,[w, 00) : deg,[1, w) < £) < E[|V,[w, 00)|IP(Poi(cw) < ¢)
< nIP’(Poi(cw) < E).

By concentration inequalities for Poisson random variables (see Lemma A.1), the
probability on the right-hand side is of order o(n~¢~') when w > C logn, where
C1 = C1(C, ¢) is a sufficiently large constant. O

Proof of Claim 7.5 We distinguish three types of vertices inside A, that may be con-
nected by an edge to a vertex outside Aj,: (1) those close to the boundary of A, (2)
those with mark at least a very large constant not close to the boundary, and (3) the
rest. By the pigeon-hole principle, in order for the event inside of the probability of
the statement (7.14) to hold, at least one of these three disjoint sets must have size at
least (y¥/3)n. We write n = (1 — ¥/4)n and Ag := A, \ Aj; for an annulus inside
A,. Formally, the three cases become

P(|{v € Vall,w) : v ~ A§ x [1, w)}| > ¥n)
< P(IVagl = (/3)n) + P(1Vil4/v) =D 00) = (y/3)n)  (C3)
+P(I{v € Va1, @/ ¥V T Dy sy ~ AS x [1, w)} = (¥/3)n).

The size of the annulus in the first term and the mark-truncation value (4/y)!/(=1
in the second term are both chosen so that E[|Vy,|] = E[V;[(4/y) D 00)|] =
(¥ /4)n. By concentration inequalities for Poisson variables (Lemma A.1), the first
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two terms on the right-hand side decay exponentially in z and are thus o(n~¢). In the
remainder, we focus on the third term.

When o = oo, the third term equals zero for n sufficiently large: by the connection
probability p in (4.6), a vertex with mark at most (4/v)!/*=1 cannot be connected
by an edge to a vertex of mark at most w = o(n) at distance 2 (nl/d).

We now study the third term in (C3) when o < 0o. We use a discretization argument:
we decompose A§ x [1, w) into space-mark annuli and count edges according to where
their endpoint falls. Set for i > 1 and j < [log,(w)7,

Aij = (Dgiy \ Agicty) x [27, 271,
E[VNA; j1=2""n. /07D _p=UFDE=Dy < pi=j=D-1, (C4)

To avoid too many crossing edges, a good event is when none of the sets A; ; contains
more than 2(logn)? times the expectation many vertices. Truncating also at 1, we
define this event as

A=) () Auj. with A= {|VmAl-,j| < (logn)? max(2i—/ =Dy, 1)}.
i1 j<[log,(w)]
(C5)
Let us introduce the event that the number of vertices inside A; = A1y 4), does
not exceed n:

Aig := (Vill, &0V <n) and A=A NAow.  (C6)

We first use concentration inequalities for Poisson random variables to show that
IE”(—'.A) decays superpolynomially. To make another case distinction below, we let

Jw(@) :==max {j € [[logy w]]: 27/~ D"1n > (logn)?},
Cy:= C/iggw {Vi = Cilogyn : ju(i) = [logy wl}. (C7)

The number of vertices in A; ; is Poisson distributed with expectation at most
2i=ix=D=1y ‘see (C4). Therefore, by a union bound over all space-mark annuli,

Ju()
P(=Aout) <> > P(Poi(zi—ﬂf—l)—ln) > (1ogn)22i—i<f—1>n>
i>1 j=1
Cilogyn [logy w]
+ Y > B(Poi(@ D7) = (ogm)? max (21D, 1))

=1 j=ju)+1

We use that the function f(1) := P(Poi(x) > 2(logn)*(x Vv 1)) is increasing
on the interval [0, 1], maximal at A = 1, and then decreasing on [1, c0). So,
the summands on the second line can be all bounded from above by P(Poi(l) >
(logn)?) = O(1/(logn)*!). Since w = nI+/=D  there are O((logn)?) sum-
mands, so the second row decays faster than any polynomial. Turning to the first
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row, since the means here are all above 1, for each fixed i, the largest summand is
Jj = J«(i) < [logy w] < [log, n]. We then employ concentration for Poisson random
variables (Lemma A.1) and obtain that there exists ¢ > 0 such that

]P’(—'.Aout) <on % + Z (ﬂogz n exp ( - c2i_j*(i)(f_1)n)).

i>1

Ifi > [Cylog,n], then j,(i) = [log, w] by definition in (C7). For smaller i, again
by definition of j, (i), the argument of the exponential is always at least c¢(logn)?.
Therefore,

P(=Aou) < o(n=C) + Cilog, n1? exp (—c(log n)z)

+ [logy ] Z exp (— c2i—ogy w] (rfl)n)'
i=[Cy logy n]

The second term decays superpolynomially and is absorbed by the o(n~C) term. Since
w < nFV/@=D with (1 +)/(t — 1) < 1, we obtain for a constant ¢’ > 0 that

IP’(—'Aom) <on %+ [log, n] Z exp ( - c/2in_w).
i=[Cylogy n]

Since C; > 2y by definition in (C7), it follows that 2 > n?¥ for all i. Therefore, the
sum decays faster than any polynomial. We recall that A = Aj, N Aoy by (C6). By
Lemma A.1, also ]P’(ﬂ.Ain) = exp(—S2(n)). This proves that

IP’(—-.A) =o(n"°). (C8)

We return to the third term in (C3) and show that it decays exponentially in n when we
condition on any realization of the vertex set ) that satisfies A. Our first goal is to show
that the probability that any fixed vertex v € V;[1, (4/9)!/~1D) is connected by an
edge to a vertex outside A, tends to zero, conditionally on V that satisfies .A. Using
the upper bounds on [V N A; ;| in (C5) and the connection probability p from (4.6),
Markov’s inequality yields for any v € Aj; x [1, (4/y)"/T=D)

P(Au e Ay x[LLw):v~u|V, A
5 i1 Ko ((C/yY)1/(T=D ity a
<ppogm?y. Y @ nv ) )

- A4
i1 jel[log, w1l 187 = As.jl

By the definition of k, in (2.6) the numerator is at most ¢ 27® for some constant ¢ =
c1(C, ¥, 0, a). There exists a constant ¢; > 0 such that |A; — A; ;|| > (c22im)l/d
for all i > 1, and hence there exists another constant ¢ > 0 such that
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PAue Ay x[Lw): v~ul|V A)
< c(log n)2n_"‘ Z Z (zi—j(r—l)n v l)z(j—i)a'

i1 jelllog, wl]

Studying the maximum inside the summation, 2/~ Vy < 1if j e [(G +
log, n)/(r — 1), [log, w1]. Since log, w < log, n, this interval is non-empty only
when i < C3log, n for some constant C; > 0. Using now that x V 1 < x + L,<y,
with these criteria, we obtain the upper bound

]P’(EIueAfl x[l,w):v’vuIV,A)
< c(logn)znl_“ Z Z y—i(@=D+j(a—(r=1)
i>1 je[[logy wi]
[C2logy n] [log, w]

+c(logn)’n™ Y > 2U—ha, (C9)

i=1 j=[(i+log; n)/(t—1)]

We continue to bound the second line. Recall that w < n+¥)/=D where 1+
¥)/(t—1) < 1. Therefore, there exists ¢ > 0suchthat2/ < n'~¢forall j < [log, w]
when n is sufficiently large. Furthermore, we bound 27l <, Consequently, there
exists C3 > 0 such that

P(ue AS x[Lw):v~ul|V A

< c(logn)*n'= Z 2= Z 2/@==1) 4 C3(logn)*n—ce.
i=1 jelllogy w1l

We now bound the first line in (C9) on the right-hand side. Since o > 1, the sum over
i is finite. The sum over j is finite when o« < t — 1, and at most logarithmic when
a =1 — 1. Since @ > 1, in both of these cases the right-hand side on the first line is at
most O(n_é) for some &€ > 0. When o > 7 — 1, we use again that 2/ < nl=¢ sothe
maximal term is at most n0=8@=(=D) When multiplied with n!=%, this is at most
n~(T=D—el@=-1) We conclude that in all cases there exist &, C4 > 0 such that

P(3u e AS[L,w):v~u|V, A) < Cs(logn)’n + Cr(logn)*n=*.

Assuming n is sufficiently large, the right-hand side is at most /6. By definition
of Aj, in (C6) there are at most n vertices inside V;[1, (4/y)/=D). Recall that
edges are present conditionally independently on V. Therefore, conditionally on any
realization of V that satisfies A,

v € Vill, @/y)V =Dy v ~ AS x [1, w)}| = Bin(n, ¥/6).

Returning to the third term in (C3), we obtain that

P(l{v € Vall, @/ =Dy so ~ AS x [1, w)}| = (¢/3)n)
< P(—=A) +E[14P(Bin(n, ¥/6) = (y/3)n | V, A)].
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The first term is of order o(n~C) by (C8). The second term decays exponentially in
by a Chernoff bound. Thus all terms in (C3) are of order o(n’c), finishing the proof.
O

C.3 Truncation of the generating function

Proof of Claim 7.7 We start with the first bound. Using elementary rearrangements
of (7.26), we leave it to the reader to verify that it is sufficient that there exists ¢’ > 0
and ¢ such that

Lo

Lo Lo
p=0+y <D (1= (=p")oe =3 00— (1= p"6
=1

=1 =1

Since Y 2, 0 = 1 — 6, we may choose ¢y is sufficiently large (depending on ¥’) so
that Z?):] 0y = Po(lC(0)| < Eo) > 1 —6 —9/’. Rearranging both sides, it is sufficient
to show that we can choose ¥’ satisfying

Lo
2 < 1—p=> (1—p) ™o, (C10)
=1

If p = 1, then the sum is 0 and the bound is satisfied for any ' € (0, (1 — p)/2).
Now we assume that p < 1, so that hubs(p), defined in (2.17), satisfies the equation

o0
EO[(] _ p)hubS(ﬂ)|C(O)|] — Z(l _ p)hubs(p)eee =1 0. (Cll)
=1

Now the definition of hjo(p) matters: If hubs(p) is an integer, then hjo(p) =
[hubs(p)] + 1 = hubs(p) + 1 by definition of A}, in (7.25). If hubs(p) is not an
integer, then h1o(p) = [hubs(p)], and in both cases we have h1o(p) > hubs(p). So,
using the infinite sum on the right-hand side of (C10) in place of 1 — p gives that (C10)
holds if

Lo

Zlﬂ/ < Z ((1 _ p)hubs(p)é _ (1 _ p)hlof).

(=1

Since hubs(p) < hj,, each summand is nonnegative, so the above bound is satisfied
if y' is chosen as, for instance, ¥ := ((1 — p)MPs(®) — (1 — p)ho) /2 > 0.

We turn to the proof of (7.27) for which we first assume p < 1. Using elementary
rearrangements, it suffices to find for an ¥’ > 0 sufficiently small, and an £ large, so
that for all £* > ¢,

e*
S 01— p)le s 1 p oy, (C12)
=1
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Since we assumed p < 1, the equality (C11) is satisfied. Because Ay, = [hubs(p)],
it holds that 4y, — 1 < hubs(p). Since the left-hand side in (C11) is decreasing in
hubs(p), it follows that

e9]

Z(l — p)r=DEg, = 1 — p. (C13)
=1

Thus, there exists § > 0, and £o > 0 such that for all £* > £

Z*
> = p e, > 1—p+5.
=1

We combine this bound with (C12), and choose v’ = §. This finishes the proof
of (7.27) when p < 1. When p = 1, hyp, = 1 by its own definition in (7.25) and
the definition of hubs(p) = 1 in (2.17). Hence, (1 — p)w=D¢ = | for all £ > 1.
The proof follows as before since Y ;2,6 = 1 — 6, choose £y is sufficiently large

(depending on /) so that 25021 0y = IP’°(|C(O)| < Eo) >1—-0—-vy' ' >1—p. O
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