
Delft Center for Systems and Control

Modeling and scheduling an
autonomous sorting system
using a switching max-plus
linear model

Lucy Smeets

M
as

te
ro

fS
cie

nc
e

Th
es

is





Modeling and scheduling an
autonomous sorting system using a
switching max-plus linear model

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Lucy Smeets

June 28, 2022

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology



The work in this thesis was supported by Prime Vision BV. Their cooperation is hereby
gratefully acknowledged.

Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.



Abstract

Sorting systems form an example of event driven systems. These types of systems are referred
to as discrete event systems (DES), and they consist of jobs that need to be performed at
available resources. In an autonomous sorting system, jobs consist of robots receiving and
delivering parcels at the correct locations. With scheduling, optimal allocation of the jobs to
those resources over time is computed, where the decisions that need to be made are routing,
ordering and synchronization. The behaviour of DES is often described by non-linear models,
but max-plus linear (MPL) systems are a class of DES that can be described by a model
that is linear in the max-plus algebra. This algebra uses two operators maximization (⊕) and
addition (⊗). Allowing different routes and switching between orders of jobs extends an MPL
system to a switching max-plus linear (SMPL) system. Robots in a sorting system often have
many routes to choose from, and need to make order choices with respect to other robots in
the system.

In this thesis, a general SMPL model is made for the autonomous sorting system at software
company Prime Vision, which can be applied to any sorting area design. The solution to
the scheduling problem for the model results in a time schedule for the active robots at the
correct locations in the sorting area, as well as the optimal decisions on routing, ordering
and synchronization. The optimization problem is solved with a model predictive scheduling
(MPS) approach and recast as a mixed integer linear programming (MILP) problem. The
model is created in Python and the optimization problem is solved with Gurobi. The resulting
schedule is visualized with a simulation, in which the decisions of the robots are clearly shown.
An idea for implementation of the optimization into the sorting system is given as well.

Master of Science Thesis Lucy Smeets



ii

Lucy Smeets Master of Science Thesis



Table of Contents

Acknowledgements v

1 Introduction 1
1-1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1-2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1-3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1-4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Autonomous Sorting 5
2-1 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2-2 Room for improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2-3 Autonomous sorting as a scheduling problem . . . . . . . . . . . . . . . . . . . . 7

3 Switching max-plus linear systems 9
3-1 Introduction to max-plus algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3-1-1 Basic definitions and operations . . . . . . . . . . . . . . . . . . . . . . 9
3-1-2 Matrix definitions and operations . . . . . . . . . . . . . . . . . . . . . . 10

3-2 Graphs and max-plus algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3-3 Max-plus linear systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3-3-1 Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3-3-2 Solving max-plus linear systems . . . . . . . . . . . . . . . . . . . . . . . 13

3-4 Switching max-plus linear systems . . . . . . . . . . . . . . . . . . . . . . . . . 14
3-4-1 Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3-4-2 Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3-4-3 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Master of Science Thesis Lucy Smeets



iv Table of Contents

4 Modeling the sorting system 21
4-1 Sorting areas and graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4-1-1 Nodes and edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4-1-2 Paths and Segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4-1-3 Graphs and subgraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4-2 Choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4-2-1 Choice types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4-2-2 Creating the system matrices . . . . . . . . . . . . . . . . . . . . . . . . 24
4-2-3 Targets and inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4-3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4-3-1 Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4-3-2 Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4-3-3 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4-3-4 Additional constraints on control variables . . . . . . . . . . . . . . . . . 42

5 Scheduling 47
5-1 Model predictive scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5-1-1 MPS for SMPL systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5-1-2 Optimization problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5-2 Online optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5-2-1 Update model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5-2-2 Update system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Visualization 65

7 Conclusion 71

A Constraints 75
A-1 Routing constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A-2 Ordering constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

B Optimization 85
B-1 The optimization problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
B-2 A setup for MPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

C Visualization 93

Glossary 101
List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Lucy Smeets Master of Science Thesis



Acknowledgements

This document is the final deliverable for my Master of Science thesis. Before I started working
on my thesis, I knew I wanted to conduct my thesis research at a company. During my years
in Delft, I did not gain much working experience and I felt like graduating at a company
would be a nice opportunity to do so. Right at the time I needed to define my project, my
friend Umit asked me if I wanted to do an internship at the company he worked at, Prime
Vision. He felt like my background in mathematics and systems and control could be of use
in one of their innovations regarding navigation of automated guided vehicles. I turned to
my thesis supervisor dr.ir. Ton van den Boom and asked for the possibilities of conducting
my thesis research at Prime Vision. Ton was immediately excited, and after meeting with
my company supervisor Mart Ruijs, we came up with an idea to use max-plus algebra for a
sorting application, which would eventually become the subject of this thesis.

Many people around me warned me for the ups and downs that are a part of the thesis life.
I was naive and thought I could plan better and work more well-structured than they did,
especially after hearing their tips and tricks. Nonetheless, I experienced the same emotional
roller coaster as anyone else. I started my thesis during lockdown with a curfew, in which I
found it very hard to find focus. After the lockdown, it became even harder to concentrate
on finishing a research that would mean the end of my student life. But here we are. As I
am writing this, it becomes more and more clear to me that my thesis is actually coming to
an end. And to my own surprise, I find myself to be excited to start my career, which I had
been dreading for a long time during my thesis.

It might sound a bit dull, but I learned so much more during my thesis than I ever expected.
The theory on max-plus algebra, which was completely new to me, and the experience of
working in a different environment were the two things I expected to learn from. In addition,
I learned some practical things like programming in Python, object-oriented programming
and how to use Git. But also, I learned that I can do more than just study for exams and
reproduce proofs and find solutions to difficult equations. Whenever I got stuck or I needed
to do something which was completely new to me, I managed to find a way to make it work.

I would like to thank my roommates Rob, Roland and Matthijs for providing support during
lockdown, the many coffee breaks and evenings filled with silly TV shows and laughter. Also,
I want to thank my study buddy Victor, who was also graduating. He kept me motivated and
joined me along the highs and helped me through the lows. I am also very grateful to my good
friends Rieneke, Katja and Joram for the many fun walks, talks and dinners during lockdown,

Master of Science Thesis Lucy Smeets



vi Acknowledgements

and for giving their insight on problems I ran into, whether they were thesis related or not. I
would also like to thank my family, Ron and Marie, Emma, Ben and Cécile for always looking
after me and showing interest in what I do. Thank you to all the friends that supported me
and have proofread my thesis. A big thank you to Umit is in order for inviting me to Prime
Vision and being a great colleague and friend throughout the whole project. Finally, I would
like to thank my supervisors Ton and Mart for guiding me during the thesis, and giving me
the opportunity and freedom to form my research project. Thank you to both for the nice
talks we had during coffee, lunch and drinks at the office. Even though I did not always
like the thesis life, I really liked the project itself. Thanks to all people mentioned above, I
managed to finish my master thesis, a work of which I am proud.

Delft, University of Technology Lucy Smeets
June 28, 2022

Lucy Smeets Master of Science Thesis



Chapter 1

Introduction

1-1 Background

In this modern world, automation is all around us. There are many reasons for processes
to be automated, such as the ability of robots to perform tasks that are too dangerous or
difficult for humans, achieving higher quality and making less production mistakes, or simply
increasing production quantities or process speed. Moreover, machines can work continuously
over time, whereas people get tired and need to take breaks. On the other hand, machines
are programmed to perform under certain circumstances, and if anything changes, they are
less flexible to adapt to the situation. Extensive research and development is focused on how
to make automated processes faster, cheaper and more reliable. A general approach to get a
better understanding of automated systems is to describe it with a mathematical model and
simulate the process.

Automated systems consist of various events, where interactions between these events form the
basis of the system dynamics. Such a system is referred to as a discrete event system (DES),
where the states have discrete values and state changes are initiated by the occurrence of
events, as opposed to time instances, which is the case in discrete time systems [1]. The
interpretation of the states is therefore the time instant at which these events happen, and
not a value of a physical quantity such as displacement or speed. The coordination of multiple
sheets in a printer [2], departures and arrivals of trains [3] or the legs of a robot touching or
lifting off the floor [4] are examples of events that define the dynamics of a DES.

There is more that defines a DES than just the occurrence of events. A DES consists of jobs,
which are sequences of operations that need to be assigned to the available resources. For
example, printing one sheet of paper is a job, consisting of transporting the sheet through
the printer and transferring the image to the paper [2]. Finding the optimal assignment of
operations to resources is called scheduling. The three main components in scheduling are
routing, ordering and synchronization. Routing determines the sequence of resources that a
job follows, ordering is needed when multiple jobs need to make use of the same resource and
synchronizations specify when a certain operation can start, depending on the status of an

Master of Science Thesis Lucy Smeets



2 Introduction

operation from another job. Jobs k and k + 1 are situated in resources R2 and R3 in the
example system in Figure 1-1. Both jobs choose a route, which is the order in which they
enter the resources to get from R1 to R4. Since they both want to enter the same resource
R4, an order between the two jobs needs to be chosen, where one job has to wait for the other
to finish its operation in R4. If the operation at resource R4 is for example an assembly task,
and jobs k and k + 1 contain products that need to be assembled, a synchronization takes
place. The operation in R4 is allowed to start only if the operation from job k in resource R2
and the operation from job k + 1 in R3 are finished.

Figure 1-1: Two jobs move through the resources of a DES.

Modeling a DES to achieve an optimal schedule can result in complex, non-linear descriptions
in the conventional algebra. However, there is a class of DES that can be described by a model
that is linear in the max-plus algebra, which is an algebra that only uses the basic operations
maximization and addition. Such models are called max-plus linear (MPL) systems. A great
advantage of working with MPL systems is that max-plus linear system theory has a strong
analogy to the conventional linear system theory [5, 6].

MPL systems have a fixed system description, in which changes in the structure cannot be
modeled. Structure changes are needed when there are multiple routes to take, or orders
between operations are variable. Every possible sequence of operations defines a mode, and
each mode has its own MPL system description. By introducing a switching element, choosing
a different mode for each job is made possible. The resulting system is called a switching
max-plus linear (SMPL) system. The examples from before can be extended into SMPL
systems by adding the possibility of using different types of paper sheets or simplex and
duplex printing [5], switching orders of trains due to disturbances on the network [3], and
including multiple gaits that the robot can choose from [4].

Scheduling in SMPL systems has many applications in a wide range of fields, including logistic
systems. Meanwhile, the market for automated systems in logistics keeps on growing. Prime
Vision is a software company in the sorting industry that works on these types of systems. As
global market leader in computer vision integration and robotics for logistics and e-commerce,
the company designs innovative solutions to optimize the automation of sorting processes.
Their solutions make it easier to scale up the sorting operation, and for operators to sort
parcels faster [7]. One of their latest innovations is Autonomous Sorting, where automated
guided vehicles form the main element for sorting parcels in warehouse-like environments,
such as distribution centers. A test setup is shown in Figure 1-2.

Lucy Smeets Master of Science Thesis



1-2 Problem statement 3

Figure 1-2: Prime Vision robots sorting parcels [8].

In this environment, jobs consist of picking up and dropping off parcels, where the robots can
choose between a variety of routes. The situation may occur where robots want to drive on
the same location, so they need to wait for each other. Deciding which one can go first asks
for the possibility to switch orders. Therefore, the system can be modeled with an SMPL
system, where optimal scheduling plays an important role in the efficiency of the system.

1-2 Problem statement

Despite their recent advancements, Prime Vision also continues to conduct research to improve
their automated systems. The company aims to both increase the amount of robots and
decrease the sorting area in the future. This means that the systems will get more complicated
and the robots become harder to control while avoiding conflicting situations like deadlock [9].
Scheduling the robots through the sorting area in a correct and efficient way is hereby of
interest. This leads to the main research question for this thesis:

Can the Autonomous Sorting system at Prime Vision be modeled with an SMPL model?

If an SMPL model can be used to describe the sorting system, a scheduling method can be
applied to create a proof of concept. Since Prime Vision is flexible in designing floor plans,
the model should be flexible as well in order for the model to be of use. The optimal schedules
resulting from the model contain information on the navigation on the robots over time. This
information can be useful for application to the system. Therefore, three sub questions arise:

1. Is it possible to create a flexible SMPL model that can be applied to different sorting
areas?

2. How can an optimal schedule be obtained from the SMPL model?

3. How can the resulting optimal schedule be used to control the system?

After creating the proof of concept, interesting follow-up questions would be whether this
method increases the throughput, which is the amount of parcels that gets sorted per hour,
and if the optimization is fast enough to execute the computations online.

Master of Science Thesis Lucy Smeets



4 Introduction

1-3 Contribution

Existing theory on SMPL systems and model predictive scheduling (MPS) is used to create
a versatile model of the sorting system. Modeling the sorting system in chapter 4, an imple-
mentation plan of the optimized schedules into the system in chapter 5 and a visualization of
the results in chapter 6 are the contributions of this thesis.

1-4 Outline

This thesis is structured as follows. Chapter 2 gives an overview of the sorting process at
Prime Vision, where situations that could be improved with scheduling are pointed out. The
basics of max-plus algebra and SMPL systems are defined in chapter 3, which are needed to
find such optimal schedules. Chapter 4 gives an overview of the equations that describe the
dynamics of the sorting system, and a way to turn them into constraints for the optimization
problem. Chapter 5 contains theory on a control strategy commonly used for SMPL systems,
and the structure and implementation of the optimization problem in Python [10]. The results
of the optimization are visualized in chapter 6 and chapter 7 concludes this thesis and gives
recommendations for future research.

Lucy Smeets Master of Science Thesis



Chapter 2

Autonomous Sorting

One of the sorting solutions that Prime Vision created is Autonomous Sorting, where the
sorting process is made easier and faster by the deployment of robots. The company developed
robots that drive autonomously through the sorting area. This chapter describes the workflow
of the sorting process. A connection between the sorting process and scheduling is made to
illustrate the improvement possibilities of modeling Autonomous Sorting as a switching max-
plus linear (SMPL) system.

2-1 Workflow

Figure 2-1: Workflow of the sorting process [11].

The sorting system consists of robots, a sorting area where they can drive around, sorting
directions where parcels need to be delivered, and inputs where robots can pick up parcels to
sort. Operators scan parcels and place them on the robots at the inputs. Figure 2-1 shows an

Master of Science Thesis Lucy Smeets



6 Autonomous Sorting

overview of the process. When a parcel is scanned, the robot receives the sorting direction and
calculates its path towards it, taking into account planned paths of other robots in the field.
For example, the operator on the left scans a parcel that needs to go to sorting direction 2,
and the robot plans its path which is depicted by the dotted line. When a robot has delivered
the parcel, it finds its way back to an operator to receive the next parcel. In the figure, the
robot at sorting direction 1 has planned to drive back to the operator on the right.

2-2 Room for improvement

Each sorting area is described by a floor plan, which can be seen as a graph. A graph consists
of nodes and edges, representing locations where the robots can drive to and their connections.
An example of a graph representing a random floor plan is shown in Figure 2-2. This graph
is designed for the purpose of this thesis and is not being used for real sorting applications.
The two green nodes at the bottom are input nodes, where robots can pick up parcels. Some
of the blue nodes represent sorting directions where parcels can be dropped off, and others do
not have a specific function, other than that they are locations for robots to drive through.

Figure 2-2: Graph representation of a random floor plan.

When a robot picks up a parcel at an input node, it finds its way through the graph to its
sorting direction and back to an input node. Details on the current path planning need to
stay confidential, but it is important to know that robots can claim a node until they have
traveled past it to avoid collisions. The order in which robots currently claim nodes does
not always prove to be efficient at crossing or merging paths. In Figure 2-3, an example of a
simulation is shown at the crossing at the top of the graph. Even though robot 2 is closer to
the crossing and there is enough time for it to go first without robot 10 having to slow down,
it waits. This is because robot 10 has claimed a node on the crossing first. The result is that
both robots 2 and 8 have to decelerate and wait at the crossing, slowing down the system.
These types of situations can be improved on by choosing the optimal order with scheduling.
Since the path planning is based on weighted, directed graphs, it allows for modeling the
system as an SMPL system, which will become clear in chapter 3. By computing optimal
choices in these kinds of situations, the flow of robots through the sorting area would be
increased, which in turn increases the throughput of the system.

Lucy Smeets Master of Science Thesis



2-3 Autonomous sorting as a scheduling problem 7

(a) The crossing is currently not occupied. (b) Robots 2 and 8 wait for robot 10 at the crossing.

Figure 2-3: An example of inefficient ordering at a crossing. Robot 2 could cross before robot
10 without raising any conflicts, but robot 10 claimed the nodes on the crossing first.

2-3 Autonomous sorting as a scheduling problem

The sorting process can be described in terms of events, where the event counter k resembles
the kth time a robot receives a parcel to sort. In this system, k can be referred to as an
event, job or robot, since each robot k has one job. This job consists of a sequence of
operations on the available resources, which are the nodes in the graph. The operations in a
job consist of picking up and dropping off a parcel, and arriving at nodes. In this description,
two assumptions are made. First of all, robots cannot overtake other robots between two
consecutive nodes. Secondly, each node can be occupied by only one robot at a time.

As previously mentioned, the states in a discrete event system (DES) resemble time instants
at which events happen. The states in this system are denoted by xi(k), which is the time
at which robot k enters node i. The states of robot k in all nodes in the graph therefore
resembles the route that robot k travels, along with a schedule on when it arrives in each
node. The route description for robot k also depends on the travel time between any two
consecutive nodes i and j, denoted by τi,j(k), and on the moment that an operator scans a
parcel. This moment can be seen as an external input signal, denoted by ue(k).

All elements needed to describe the movements of one robot through the graph have been
defined. The route description is a set of constraints for each of the nodes visited by the
robot. Say that robot k receives a parcel at node 46. The robot can enter the next node on
the path after the parcel became available, and after robot k entered node 46. This leads to
the following constraints:

x41(k) ≥ ue(k) + τ46,41(k)
x41(k) ≥ x46(k) + τ46,41(k)

(2-1)

Since both constraints need to be respected, they can be combined and simplified into one
constraint:

x41(k) ≥ max
(
ue(k), x46(k)

)
+ τ46,41(k) (2-2)

Such a constraint can be obtained for each node on the path of robot k. Note that the
constraints only consist of the operations maximization and addition. Traveling a route can
therefore be modeled by a max-plus linear (MPL) system. In most floor plans, multiple routes

Master of Science Thesis Lucy Smeets



8 Autonomous Sorting

are available. Each route has its own system description. Every time a robot starts a new
job, it can choose between these routes. Enabling and disabling routes is made possible by
introducing a switching element, which is characteristic for SMPL systems.

Another characteristic of SMPL systems is the switching or orders of different jobs on the
same or different resources. This is the case when multiple robots are driving through the
graph. When robots meet each other at a crossing, a choice needs to be made for the order in
which the robots may cross. This introduces a different type of constraints, where the state
of robot k depends on the states of other robots k ± µ, where µ = 1, . . . , µmax. The different
types of constraints are discussed in more detail in chapter 3 and 4.

Lucy Smeets Master of Science Thesis



Chapter 3

Switching max-plus linear systems

Making a model of a discrete event system (DES) can result in complex, non-linear system
descriptions. However, max-plus linear (MPL) systems that describe a DES are linear in the
max-plus algebra. This algebra has maximization and addition as its basic operators, and
has a strong analogy to the conventional algebra. This chapter gives an introduction to max-
plus algebra and MPL systems. A general framework for constructing switching max-plus
linear (SMPL) systems is shown, which touches upon the three main elements in scheduling:
routing, ordering and synchronization. The information in this chapter is based on [5, 6, 12].

3-1 Introduction to max-plus algebra

This section discusses the basics of the max-plus algebra, which are needed to understand the
differences with working in the conventional algebra. The max-plus algebra defines different
operations for scalars and matrices.

3-1-1 Basic definitions and operations

The max-plus algebra is defined by the structure (Rε,⊕,⊗). Here, the set Rε consists of
R ∪ {ε}, with ε = −∞. The operator ⊕ denotes a maximization, and ⊗ an addition. In
Equation 3-1, the definition of these operators is shown for x, y ∈ Rε.

x⊕ y = max(x, y)
x⊗ y = x+ y

(3-1)

The appearance of these symbols is chosen to emphasize the analogy between both the max-
plus addition ⊕ and conventional addition, and the max-plus multiplication ⊗ and con-
ventional multiplication. By substituting + with ⊕ and × with ⊗, many properties from

Master of Science Thesis Lucy Smeets



10 Switching max-plus linear systems

conventional linear algebra still hold in the max-plus algebra. One important example is the
distributive property of ⊗ over ⊕, as × also has priority over +. Associativity and com-
mutativity for ⊕ and ⊗ also hold. Note that ε acts as the neutral element for ⊕, since
a ⊕ ε = a = ε ⊕ a,∀a ∈ Rε. In the same way, 0 acts as the neutral element for ⊗, as
a⊗ 0 = a = 0⊗ a,∀a ∈ Rε.

For r, x ∈ R, x⊗r is the rth max-plus algebraic power of x and it translates to rx in conventional
algebra. Therefore, x⊗0 = 0, and by definition also ε⊗0 = 0. When r > 0, ε⊗r = ε, and for
r < 0 the max-plus algebraic power of ε is not defined.

Lastly, the max-plus binary variable w is defined. Let w ∈ Bε = {0, ε}, then its adjoint
w̄ ∈ Bε is defined as follows:

w̄ =
{

0 if w = ε

ε if w = 0
(3-2)

Max-plus binary variables and their adjoint are related to conventional binary variables, which
are denoted by w[, as follows:

w = βw[

w̄ = β(1− w[)
(3-3)

Here, β is a large negative number, for example -10.000. The max-plus binary variables are
related to the conventional binary variables as follows:

w[ =
{

0 if w = 0
1 if w = ε

(3-4)

3-1-2 Matrix definitions and operations

For matrices A,B ∈ Rm×nε and C ∈ Rn×pε , the basic max-plus algebraic matrix operations are
defined as follows for all i, j.

[A⊕B]ij = [A]ij ⊕ [B]ij = max([A]ij , [B]ij)

[A⊗ C]ij =
n⊕
k=1

[A]ik ⊗ [C]kj = max
k=1,...,n

([A]ik + [C]kj)

[A�B]ij = [A]ij + [B]ij

(3-5)

The bottom equation defines the max-plus Schur product, denoted by �. The max-plus
algebraic zero matrix Em×n ∈ Rm×nε is defined as [Em×n]ij = ε for all i, j. The max-plus
algebraic identity matrix En ∈ Rn×nε is defined as [En]ii = 0, ∀i, and [En]ij = ε,∀i 6= j.
Examples of max-plus algebraic matrix operations and the zero and identity matrices are
shown in Equation 3-6 and Equation 3-7.

Lucy Smeets Master of Science Thesis



3-1 Introduction to max-plus algebra 11

[
2 0
ε 5

]
⊕
[
3 1
6 ε

]
=
[
2⊕ 3 0⊕ 1
ε⊕ 6 5⊕ ε

]
=
[
max(2, 3) max(0, 1)
max(ε, 6) max(5, ε)

]
=
[
3 1
6 5

]
[
2 0
ε 5

]
⊗
[
3 1
6 ε

]
=
[
(2⊗ 3)⊕ (0⊗ 6) (2⊗ 1)⊕ (0⊗ ε)
(ε⊗ 3)⊕ (5⊗ 6) (ε⊗ 1)⊕ (5⊗ ε)

]

=
[
max(2 + 3, 0 + 6) max(2 + 1, 0 + ε)
max(ε+ 3, 5 + 6) max(ε+ 1, 5 + ε)

]
=
[

6 3
11 ε

]
[
2 0
ε 5

]
�
[
3 1
6 ε

]
=
[
2 + 3 0 + 1
ε+ 6 5 + ε

]
=
[
5 1
ε ε

]
(3-6)

Em×n =


ε ε . . . ε

ε ε
...

... . . . ε
ε . . . ε ε

 En =


0 ε . . . ε

ε 0
...

... . . . ε
ε . . . ε 0

 (3-7)

The max-plus algebraic power of a matrix A ∈ Rn×nε is defined as A⊗k = A ⊗ A⊗(k−1) for
k = 1, 2, . . . , where A⊗0 = En. The inverse of a matrix S ∈ Rn×nε in max-plus algebra is
denoted by S⊗−1 , where S⊗−1 ⊗ S = S ⊗ S⊗−1 = En. A matrix S is only max-plus invertible
if it has precisely one entry in each row and column different from ε, so S should be diagonal
up to a permutation of rows. Therefore we can write it as a max-plus diagonal matrix
S = diag⊕(s1, . . . , sn), where the diagonal elements are s1, . . . , sn and all other elements are
ε. Its inverse is defined as S⊗−1 = diag⊕(−s1, . . . ,−sn).

Finally, the max-plus Kleene star of a matrix is defined as A∗ =
⊕∞

k=0A
⊗k . It exists for any

square matrix A, with only non-positive circuit weights in its precedence graph G(A). These
terms are explained in section 3-2. The max-plus Kleene star is needed to solve a max-plus
linear equation of the form x = A⊗x⊕ b with x, b ∈ Rnε . In Equation 3-8, the solution to this
type of equation is shown. This is important for solving max-plus linear state space models,
as will be shown in section 3-3.

x = A∗ ⊗ b (3-8)

Another form of max-plus linear equations is A ⊗ x = b, with A ∈ Rm×nε , x ∈ Rnε and
b ∈ Rmε . This type does not always have a solution, but the largest subsolution can always
be computed. We call x a subsolution of the system of max-plus linear equations A⊗ x = b
if A⊗ x ≤ b. The largest subsolution is denoted by x∗(A, b) and defined as

[x∗(A, b)]j = min
i∈{1,...,m}

(bi − aij), for j = 1, . . . , n (3-9)

Master of Science Thesis Lucy Smeets



12 Switching max-plus linear systems

3-2 Graphs and max-plus algebra

Any square matrix A ∈ Rn×nε has a precedence graph G(A), which is a weighted, directed
graph. It has a finite set of nodes and edges, denoted by N (A) and D(A) ⊂ N (A) × N (A)
respectively. An edge (i, j) ∈ D(A) is an outgoing edge at node i and incoming at j. The
weight of this edge is denoted by τij , which represents the time it takes to go from node i to
node j. The weights are elements of the matrix A:

Aji =
{
τij if there exists an edge from node i to node j: (i, j) ∈ D(A)
ε otherwise

(3-10)

A path p = {(ik, jk)}, for k = 1, . . . ,m from node i to j is a sequence of m edges, such that
(ik, jk) ∈ D(A), ∀k ∈ {1, . . . ,m}, where i1 = i, jm = j and ik+1 = jk for k < m. The length
|p|l of path p is the amount of edges in the path, which is m. The weight |p|w is the sum of
the weights on the path, which is calculated as follows:

|p|w =
m⊗
k=1

τikjk (3-11)

When a path ends in the starting node, so when i = j, it is called a circuit. The length and
weight of a circuit are determined in the same way as for a regular path.
The max-plus algebraic power of matrix A ∈ Rn×nε has a certain practical meaning associated
to the precedence graph G(A). For k ∈ N \ {0}, (A⊗k)ij is the maximal weight of all paths in
G(A) from node j to i of length k, which is computed by

(A⊗k)ij = max
i1,i2,...,ik−1∈N (A)

(aii1 + ai1i2 + · · ·+ aik−1j) (3-12)

If no paths of length k from j to i exist, the maximal weight is defined as ε.
A directed graph G is strongly connected if there exists a path from i to j for any two different
nodes i, j ∈ N . A matrix A ∈ Rn×nε is irreducible if its precedence graph G(A) is strongly
connected. This translates to the following mathematical definition: a matrix A ∈ Rn×nε is
irreducible if

(
n−1⊕
k=1

A⊗
k

)
ij

6= ε for all i, j with i 6= j (3-13)

Indeed, this shows that for any two different nodes i and j of G(A), there exists at least one
path from j to i of length 1, 2, . . . or n− 1.

3-3 Max-plus linear systems

When working with max-plus linear discrete event systems, the states do not get evaluated at
time instances, but at each event, where the event counter is denoted by k. The MPL system
for a DES is defined in Equation 3-14.

Lucy Smeets Master of Science Thesis



3-3 Max-plus linear systems 13

{
x(k) = A⊗ x(k − 1)⊕B ⊗ u(k)
y(k) = C ⊗ x(k) (3-14)

Here, A ∈ Rn×nε , B ∈ Rn×nuε and C ∈ Rny×nε are the system matrices, with n the number of
states, nu the number of inputs and ny the number of outputs. The vector x(k) ∈ Rnε is the
state vector, u(k) ∈ Rnuε is the input vector and y(k) ∈ Rnyε the output vector. The values of
the states, inputs and outputs all represent event times.

3-3-1 Linearity

The linearity of the system can be shown by first studying the input-output behaviour. By
Equation 3-14, the following holds:

x(1) = A⊗ x(0)⊕B ⊗ u(1)
x(2) = A⊗ x(1)⊕B ⊗ u(2)

= A⊗
2 ⊗ x(0)⊕A⊗B ⊗ u(1)⊕B ⊗ u(2)

...

x(k) = A⊗
k ⊗ x(0)⊕

k⊕
i=1

A⊗
k−i ⊗B ⊗ u(i)

(3-15)

The bottom equation in Equation 3-15 gives the general state event times for any event k in
the future. Substituting this expression into the output equation from Equation 3-14 yields

y(k) = C ⊗A⊗k ⊗ x(0)⊕
k⊕
i=1

C ⊗A⊗k−i ⊗B ⊗ u(i) (3-16)

Define two input sequences u1 = {u1(k)}∞k=1 and u2 = {u2(k)}∞k=1 and let y1 = {y1(k)}∞k=1
be the output sequence corresponding to the input sequence u1 and y2 = {y2(k)}∞k=1 to input
sequence u2, with initial conditions x1(0) = x1,0 and x2(0) = x2,0. Now, the linearity of the
MPL system is shown by substituting the input sequence α⊗u1⊕β⊗u2 with initial condition
α⊗ x1,0 ⊕ β ⊗ x2,0 into the expression from Equation 3-16, resulting in the output sequence
α⊗ y1 ⊕ β ⊗ y2 [13].

3-3-2 Solving max-plus linear systems

Often in max-plus linear systems, the output is the same as the states, so y(k) = x(k). An
explicit state equation for the description of the system remains:

x(k) = A⊗ x(k − 1)⊕B ⊗ u(k) (3-17)

Master of Science Thesis Lucy Smeets



14 Switching max-plus linear systems

As will be shown in subsection 3-4-1, the states often do not only depend on state values from
previous events, but also on states from the same event k. This results in an implicit model
of the form

x(k) = A0 ⊗ x(k)⊕A1 ⊗ x(k − 1)⊕B0 ⊗ u(k) (3-18)

Remember from Equation 3-8 in section 3-1 that the solution to an equation of the form
x = A⊗ x⊕ b is x = A∗ ⊗ b. Define b = A1 ⊗ x(k− 1)⊕B0 ⊗ u(k), then the explicit solution
to Equation 3-18 is as given in Equation 3-19, if A∗0 exists. The max-plus Kleene star of any
square matrix exists if its precedence graph has only non-positive circuit weights.

x(k) = A∗0 ⊗A1︸ ︷︷ ︸
A

⊗x(k − 1)⊕A∗0 ⊗B0︸ ︷︷ ︸
B

⊗u(k) (3-19)

In max-plus linear models, states from event k can depend on states from both the same and
the previous event, as shown before. It is also possible that states depend on earlier events
k − µ, where µ can go up until a certain number µmax. This results in an implicit model of
the following form:

x(k) =
µmax⊕
µ=0

(
Ãµ ⊗ x(k − µ)

)
⊕B0 ⊗ u(k) (3-20)

To solve for x(k), define b =
⊕µmax
µ=1

(
Ãµ ⊗ x(k − µ)

)
⊕B0 ⊗ u(k). Then if Ã∗0 exists:

x(k) =
µmax⊕
µ=1

(
Ã∗0 ⊗ Ãµ︸ ︷︷ ︸

Aµ

⊗x(k − µ)
)
⊕ Ã∗0 ⊗B0︸ ︷︷ ︸

B

⊗u(k) (3-21)

3-4 Switching max-plus linear systems

Some discrete event systems might have multiple ways for jobs to be executed on the available
resources. Each of these job routes has a different structure and therefore results in a different
system description. The dynamics of such a system can not be captured in one MPL system.
Each possible route and order of events is called a mode of the system and can be modeled
by its own MPL system. As a result, each event k can choose from the available modes and
the system matrices become dependent on k. Max-plus binary variables are introduced which
enable the possibility to switch between modes; they enable or disable certain modes. The
complete system containing all max-plus binary variables is called a switching max-plus linear
system.
In scheduling, three aspects are important. Routing is used to determine the sequence of
resources for the operations of a job, ordering determines the order of operations of different
jobs on one resource and synchronization handles situations where an operation depends on an
operation from another job, and on a different resource. In this section, a general framework
to model all three scheduling aspects is discussed for SMPL systems, where the max-plus
binary variables resemble choices for routes, orders and synchronizations.

Lucy Smeets Master of Science Thesis



3-4 Switching max-plus linear systems 15

3-4-1 Routing

Each job consists of multiple operations, which take place on resources. The order in which
these resources are visited defines the route of the job. The solution to the system equations
for a route defines the time instants that each operation can start on its assigned resource,
depending on the starting and processing time of the previous operation on the preceding
resource.

Consider a system that has one job per cycle k, consisting of pk operations, that each take
place on a resource r ∈ {1, . . . , n}. Only the systems with at least as many resources as
operations are considered, where each resource can only be visited once per job. Define the
sequence of used resources as (r1, . . . , rpk). Let τrj (k) ≥ 0 be the time it takes to execute
operation j on resource rj for job k for j = 1, . . . , pk, also called the processing time. Let
x(k) = [x1(k) . . . xn(k)]T be the vector of starting times on all resources for job k, where
a state xr(k) ≥ 0 if resource r is visited by job k, and xr(k) = ε if not. This routing
structure raises the following set of inequalities, which ensure that an operation on resource
ri can only start after it has finished its previous operation j on resource rj , with i > j and
i, j ∈ {1, . . . , pk}:

xri(k) ≥ xrj (k) + τrj (k) (3-22)

Equation 3-22 is not an equality, since ordering and synchronizations could delay starting
times. Note however, that the operations can not start sooner than when the previous oper-
ation has finished. For the simple case where each resource is visited in ascending order, the
inequalities can be combined into max-plus matrix notation as follows:


x1(k)
x2(k)

...
xn−1(k)
xn(k)

 ≥


ε . . . . . . . . . ε
τr1(k) ε . . . . . . ε

ε
. . . ...

... . . . ...
ε . . . ε τrn−1(k) ε


⊗


x1(k)
x2(k)

...
xn−1(k)
xn(k)

 (3-23)

This can be written compactly as x(k) ≥ Aroute(k) ⊗ x(k). But in practice, a job does not
always use all available resources, let alone visit them in the same, fixed order. Each job k
can choose its own route, and the presence of such a choice is what distinguishes an SMPL
system from an MPL system. Choices can be made by introducing max-plus binary variables.

Let L be the number of alternative routes, and let w`(k) ∈ Bε for ` = 1, . . . , L be the variables
that indicate whether route ` is used in job k or not:

w`(k) =
{

0 if route ` is used in job k
ε if route ` is not used in job k

(3-24)

Note that only one route can be chosen for each job. If job k uses route `, then w`(k) = 0
and all other routing variables are forced to be wl(k) = ε for all l 6= `.

Master of Science Thesis Lucy Smeets



16 Switching max-plus linear systems

Each route consists of a path through the resources. As discussed in section 3-2, an SMPL
system has a precedence graph, in which the resources are represented by the nodes and the
edges between nodes denote the possible transitions between resources. Each route ` visits a
sequence of nodes, using certain edges in the precedence graph. Let route ` consist of edges
(ri, rj), where i ∈ {1, . . . , pk − 1}, j = i + 1 and ri, rj ∈ {1, . . . , n}. Let sri,rj (k) ∈ Bε be the
variables that denote whether edge (ri, rj) is used by job k:

sri,rj (k) =
{

0 if edge (ri, rj) is used in job k
ε if edge (ri, rj) is not used in job k

(3-25)

Each route has a unique set of active edge variables. Whether an edge is active or not is
determined by the following relation, where Li,j is the set of routes that include edge (ri, rj):

sri,rj (k) =
⊕
l∈Li,j

wl(k) (3-26)

If the chosen route for job k is in that set, sri,rj (k) will be active, and when none of the routes
in the set are chosen, sri,rj (k) will be inactive.

Each route has a different set of edges, and therefore has its own system description, result-
ing in the system matrix Aroute(w(k)), where w(k) = [w1(k) . . . wL(k)]T . The general
structure of the system matrix is shown in Equation 3-27, where the job index k is left out
for clarity. Note that since each resource can only be visited once, each row has at most one
element that is different from ε after substituting the values of the edge decision variables.


x1(k)
x2(k)

...
xn−1(k)
xn(k)

 ≥


ε τ2 ⊗ s2,1 . . . . . . τn ⊗ sn,1
τ1 ⊗ s1,2 ε

...
... . . . ...
... . . . τn ⊗ sn,n−1

τ1 ⊗ s1,n . . . . . . τn−1 ⊗ sn−1,n ε


⊗


x1(k)
x2(k)

...
xn−1(k)
xn(k)

 (3-27)

By substituting the values for sri,rj (k) into this matrix, which follow directly from the chosen
route w`(k) through Equation 3-26, the system matrix for route ` is obtained, denoted by
Aroute
` (k). Finally, the routing system matrix for job k can be obtained through

Aroute(w(k)) =
L⊕
`=1

w`(k)⊗Aroute
` (k) (3-28)

3-4-2 Ordering

In practice, multiple jobs take place in a DES at the same time, and it is likely that operations
from different jobs are assigned to the same resource. Since a resource can only be used by
one operation at a time, the order of operations on that resource needs to be determined. A

Lucy Smeets Master of Science Thesis



3-4 Switching max-plus linear systems 17

distinction is made between nodes in the precedence graph that have one incoming edge and
nodes with multiple incoming edges. Due to the restriction that jobs can not overtake one
another on edges, the order of operations on nodes with one incoming edge is fixed. If two
jobs use the same (part of a) route, the job that started first on that route also enters all
nodes on the common part of the route first.

Let Nord be the set of nodes with multiple incoming edges. To be able to choose the order
of operations at such a resource, a new max-plus binary variable is needed that takes into
account other jobs. These could be jobs that started earlier or later than job k, therefore let
±µ = 1, . . . , µmax. Setting a negative value for µ allows for switching orders with future jobs.
Let zr,µ(k − µ) ∈ Bε be the ordering variable for all r ∈ Nord, defined as

zr,µ(k − µ) =


0 if the operation from job k − µ in resource r precedes

the operation from job k in resource r
ε otherwise

(3-29)

The general max-plus linear state equations for ordering are given by

xr(k) ≥ xr(k − µ)⊗ τr(k − µ)⊗ zr,µ(k − µ) (3-30a)
xr(k) ≥ xr(k + µ)⊗ τr(k + µ)⊗ z̄r,µ(k) (3-30b)

These inequalities only define time constraints for job k, given that it has to wait for job k+µ
or k−µ in resource r. If the choice is made for job k to go first, the following inequalities are
needed:

xr(k − µ) ≥ xr(k)⊗ τr(k)⊗ z̄r,µ(k − µ) (3-30c)
xr(k + µ) ≥ xr(k)⊗ τr(k)⊗ zr,µ(k) (3-30d)

Provided that both job k and job k − µ use resource r, exactly one of the inequalities in
Equation 3-30a and 3-30c holds. The other becomes negligible since it requires the state to
be larger than ε, which is always true. The same holds for k and k + µ in Equation 3-30b
and 3-30d.

For µ < 0 define µ+ = −µ and note that the ordering variable becomes zr,−µ+(k+µ+), which
defines the relation between job k and a future job k + µ+ in each resource with multiple
incoming edges. Furthermore, zr,−µ+(k + µ+) is defined as z̄r,µ+(k).

Let Z = |Nord| be the number of nodes with multiple incoming edges and let zµ(k − µ) be a
vector of length Z containing the ordering variables between jobs k and k−µ on all resources
with multiple incoming edges, such that for ζ ∈ {1, . . . , Z}, [zµ(k − µ)]ζ = zrζ ,µ(k − µ). The
ordering constraints for job k from Equation 3-30a and 3-30b can be captured in system
matrices Aord

µ (zµ(k−µ)) for all ±µ = 1, . . . , µmax. The state equations for ordering are given
by Equation 3-31, where the general structure of Aord

µ (zµ(k − µ)) is shown, in the case that
every node has multiple incoming edges. The job indices (k−µ) for both the processing times
and the ordering variables are left out for clarity.

Master of Science Thesis Lucy Smeets



18 Switching max-plus linear systems


x1(k)
x2(k)

...
xn(k)

 ≥

τ1 ⊗ z1,µ ε . . . ε

ε τ2 ⊗ z2,µ
...

... . . . ε
ε . . . ε τn ⊗ zn,µ

⊗

x1(k − µ)
x2(k − µ)

...
xn(k − µ)

 (3-31)

Compactly written, the system considering all µ becomes

x(k) ≥
µmax⊕
±µ=1

Aord
µ (zµ(k − µ))⊗ x(k − µ) (3-32)

Each node rζ ∈ Nord provides a separate system matrix Aord
µ,ζ (k−µ) with only finite elements

on the diagonal, given by

[Aord
µ,ζ (k − µ)]rr =

{
τr if job k has to be scheduled on resource r after job k − µ
ε otherwise

(3-33)

The ordering system matrix for job k with respect to k − µ is obtained by Equation 3-34,
which is a unique matrix for every feasible combination of orders between any two jobs.

Aord
µ (zµ(k − µ)) =

Z⊕
ζ=1

[zµ(k − µ)]ζ ⊗Aord
µ,ζ (k − µ) (3-34)

3-4-3 Synchronization

A situation where operations from different jobs have to wait for each other, in which they are
assigned to different resources, is called a synchronization. The choice is to be made which of
the operations can be executed first. Synchronizations therefore have many similarities with
ordering.

Let Lsyn be the set of synchronization modes in which each mode is coupled to two resources,
and let b`,µ(k − µ) ∈ Bε be the synchronization variable for all ` ∈ Lsyn, defined as

b`,µ(k − µ) =
{

0 if synchronization ` is made where job k waits for k − µ
ε otherwise

(3-35)

The general max-plus linear state equations for synchronization are given by

xi(k) ≥ xr(k − µ)⊗ τr(k − µ)⊗ b`,µ(k − µ) (3-36a)
xi(k) ≥ xr(k + µ)⊗ τr(k + µ)⊗ b̄`,µ(k) (3-36b)

Lucy Smeets Master of Science Thesis



3-4 Switching max-plus linear systems 19

They are defined for any combination of resources i, r ∈ {1, . . . , n} that requires a synchro-
nization. These inequalities only define time constraints for job k, given that k has to wait
for job k + µ or k − µ. If the choice is made for job k to go first, the following inequalities
are needed instead:

xr(k − µ) ≥ xi(k)⊗ τi(k)⊗ b̄`,µ(k − µ) (3-36c)
xr(k + µ) ≥ xi(k)⊗ τi(k)⊗ b`,µ(k) (3-36d)

Let S = |Lsyn| be the number of nodes that need synchronization and let bµ(k−µ) be a vector
of length S containing all synchronization variables, such that for σ ∈ {1, . . . , S}, [bµ(k−µ)]σ =
b`σ ,µ(k − µ). The synchronization constraints for job k from Equation 3-36a and 3-36b can
be summarized in system matrices Asyn

µ (bµ(k − µ)) for all ±µ = 1, . . . , µmax. The state
equations for synchronization are given in Equation 3-37 with the most general structure of
Asyn
µ (bµ(k−µ)). The job indices (k−µ) for both the processing times and the synchronization

variables are left out for clarity.


x1(k)
x2(k)

...
xn−1(k)
xn(k)

 ≥


ε τ2 ⊗ b`1,µ . . . . . . τn ⊗ b`n−1,µ

τ1 ⊗ b`n,µ ε
...

... . . . ...

... . . . τn ⊗ b`S−n−1,µ

τ1 ⊗ b`S−n−2,µ . . . . . . τn−1 ⊗ b`S ,µ ε


⊗


x1(k − µ)
x2(k − µ)

...
xn−1(k − µ)
xn(k − µ)

 (3-37)

In short notation, the system for all µ reads

x(k) ≥
µmax⊕
±µ=1

Asyn
µ (bµ(k − µ))⊗ x(k − µ) (3-38)

Each synchronization mode ` ∈ Lsyn is coupled to unique resources i and j and provides a
unique system matrix Asyn

µ,` (k − µ) with only one finite element, given by

[Asyn
µ,` (k − µ)]ij =


τj if synchronization ` is made where job k on resource i has

to be scheduled after job k − µ has finished on resource j
ε otherwise

(3-39)

The synchronization system matrix for job k with respect to k−µ can be found in Equation 3-
40, which is a unique matrix for every possible combination of synchronizations between two
jobs.

Asyn
µ (bµ(k − µ)) =

S⊕
σ=1

[bµ(k − µ)]σ ⊗Asyn
µ,`σ

(k − µ) (3-40)

Master of Science Thesis Lucy Smeets



20 Switching max-plus linear systems

Lucy Smeets Master of Science Thesis



Chapter 4

Modeling the sorting system

The previous chapter provided a general framework to construct a model for a switching
max-plus linear (SMPL) system. This chapter describes how to use the tools from that
framework to make a model for Autonomous Sorting. The first steps are to define the types
of choices which form the building blocks of the SMPL system and how to find them in
any graph representing a sorting area. Thereafter, the constraints for routing, ordering and
synchronization for the sorting system are derived. Some information on the implementation
is confidential, but some code is included in the appendix. The entire model is made in
Python.

4-1 Sorting areas and graphs

Prime Vision designs floor plans for each sorting area. The graph representing a random
example of a floor plan is shown in Figure 4-1, on which the model is based. The model is
made to fit each strongly connected graph that consists of nodes and edges. In a sorting area,
there are one or more input nodes, which are the green nodes indicated by arrows in the figure,
and multiple regular nodes to drive through, some of which are target nodes representing the
sorting directions. The edges between nodes indicate the connections in the allowed driving
direction and the edge weights represent the distances between connected nodes. In some
situations, nodes have multiple incoming edges and an order needs to be chosen between
two robots such that they do not enter the node at the same time. Some nodes overlap or
are close to each other. In such situations, a safe distance between robots on those nodes
cannot be guaranteed. Therefore, a synchronization needs to be defined, as will be discussed
in section 4-2.

The model automatically defines all nodes, edges and locations for orders and synchronizations
based on a given sorting area, and finds all paths starting and ending in input nodes. It divides
the paths into parts in which robot orders stay the same, called segments. All these elements
are the building blocks of a graph. The construction of the elements in the model is discussed
in more detail in the next sections.

Master of Science Thesis Lucy Smeets



22 Modeling the sorting system

Figure 4-1: Graph on which the model is based.

4-1-1 Nodes and edges

Each node in the graph consists of a unique node ID, a node type, a position and connections
to other nodes. Node types are input nodes, target nodes and regular nodes without a
particular function. Connections are defined for all preceding and succeeding nodes. If there
are multiple preceding nodes, the node needs to define orders between incoming robots. Nodes
also contain information on other nodes that are too close to keep a safe distance between
robots.

The connections between nodes are called edges, which form an important element of a
weighted, directed graph. Each edge has its own weight and direction. The model constructs
edges from a node and a connection to a successor node. The most important attributes of
an edge are the tail and head nodes, which are the starting and ending nodes respectively,
and its weight. The weight of an edge is calculated by by the model using the positions of
the nodes, and represents the distance between the nodes.

4-1-2 Paths and Segments

A series of nodes and edges form a path. In the sorting system, each robot has the job to
deliver a parcel. When the job is done, it returns to an input to receive a new parcel and to
start a new job. Therefore, only paths starting and ending in input nodes are desired. This
requires the graph to be strongly connected, such that each node can be reached from any
input node, and the other way around. To model a path of a robot correctly, it should end in
a node that precedes an input node. As a result, the next job starts in the input node that
directly follows the last node of the previous job. This way, each node in the graph is used
at most once per job. A path consists of nodes and edges, and a weight equal to the sum of
all edge weights along the way.

In addition, the segments in the graph are computed. Segments are simple subsets of a path,
which means that the nodes on the segment do not have multiple outgoing or incoming edges.
They are found by the parts of a path between input nodes and nodes with multiple incoming

Lucy Smeets Master of Science Thesis



4-2 Choices 23

or outgoing edges. If multiple robots travel the same segment, they will enter each node on
the segment in the same order that they entered the first node on the segment.

4-1-3 Graphs and subgraphs

For a given sorting area, the model automatically defines the nodes, edges, paths and segments
and all their useful information. Many helpful characteristics of the graph are also defined,
such as lists containing all nodes of type input, and all nodes with multiple incoming and
outgoing edges. Other useful characteristics are for example which segments form a path and
which segments precede or succeed other segments.

Finally, the model allows to take any subgraph resembling one or more paths from the original
graph. Any subgraph has the exact same structure as the original graph, but only contains
the nodes that are on the desired paths. All information is maintained, and therefore any
subgraph is a subset of the original graph.

4-2 Choices

Once all information for the graph is obtained, the essential elements that form the basis of
the SMPL system need to be defined. This section gives an overview of all the choices that
need to be made in Autonomous Sorting and how these choices are included in the system
matrices of the SMPL system.

4-2-1 Choice types

The precedence graph of the total sorting area can be seen as the union of subgraphs, where
each subgraph is a path. The union of two subgraphs is shown in Figure 4-2. Each robot
k has to choose one subgraph to travel, which is the choice made in routing. When a robot
reaches node 41, it needs to choose one of the two routes, indicated by the light blue arrows.

Figure 4-2: Subgraph with two paths. Different choice types are indicated with coloured arrows.

Master of Science Thesis Lucy Smeets



24 Modeling the sorting system

When taking the intersection of the two subgraphs, nodes and edges at common locations are
left where choices need to be made. Note that nodes at the same locations are also included
in the intersection, and not just nodes with the same ID, since in some situations nodes are
placed on the same location with a different direction. An example is indicated with green
arrows at the top middle of the graph. At this location, both subgraphs cross each other.
The green arrows both point to a different node, but since they are on the same location, a
synchronization choice needs to be made such that robots do not enter the nodes on the same
location at the same time.

The intersection of the two graphs also results in the orange node, node 61. At this node,
the two paths merge and a choice in order between robots coming from different directions
needs to be made. The order between those robots is fixed for the nodes in the intersection
that follow node 61, which are indicated by the empty orange arrows.

In summary, when looking at the intersection of multiple subgraphs, there are three types of
choices to be made. Where the intersection has multiple connected nodes, the last node splits
into the different subgraphs. This is where robots choose a route. The first node of the series
of connected nodes is a node where subgraphs merge and where the order between robots
from different routes needs to be chosen, which is then fixed for all nodes on that part of the
intersection. Orders between robots from the same subgraph are maintained on this part as
well. Where an element of the intersection consists of one node, which actually consists of
two nodes on the same location, subgraphs cross and robots on the different subgraphs need
to be synchronized, such that they do not cross at the same time.

4-2-2 Creating the system matrices

All choice types in an SMPL system are represented by max-plus binary variables, which
are included in the system matrices. The general system matrices for routing, ordering and
synchronization as given in section 3-4 are adapted to fit the sorting system. A big difference
between the general structure and the SMPL system describing Autonomous Sorting is that
the processing times τi(k) on resource i for robot k are replaced by travel times τi,j(k) from
node i to node j for robot k.

Routing
The routing matrix Aroute(k) contains the weights of all edges in the graph. The weight
of an edge is defined as the distance between two nodes connected by the edge, divided by
the maximum velocity of the robots, representing the nominal travel time on the edge. The
structure of the total routing matrix is shown in Figure 4-3, where the node numbers from 0
to 65 are on the axes. The element in row i and column j is grey if there exists an edge from
node j to node i and black if not. Note that for implementation, the system matrices do not
contain value ε, but the conventional algebraic equivalent 0.

Because each path has its own max-plus linear (MPL) system description, the routing matrix
Aroute
` (k) for a specific path ` can be found from the complete routing matrix by keeping

only the travel times for the edges that are on path `. Choosing which elements are enabled
and disabled is regulated by max-plus binary variables si,j(k), which have value 0 if robot k
travels from node i to node j, and value ε if not. Note that the matrices are defined in the

Lucy Smeets Master of Science Thesis



4-2 Choices 25

Figure 4-3: Structure of the routing matrix of the complete graph.

conventional algebra, so whenever an edge is on a path, it has a non-zero value and when
it is not on a path, it becomes zero. The routing matrices for each path are also created
automatically. The structures of the routing matrices of the two paths in the subgraph from
Figure 4-2 are given in Figure 4-4, where path ` = 0 is the path that travels the rightmost
part of the graph, and ` = 1 is the path that goes to the far left. Note that the set of active
elements in the routing matrix of a specific path is a subset of the active elements of the
complete routing matrix, depending on the edge variables si,j(k).

(a) Structure of Aroute
0 (k). (b) Structure of Aroute

1 (k).

Figure 4-4: Structure of routing matrices for the two paths in the subgraph.

Ordering
By replacing the processing times with travel times, xi(k)⊗τi(k) becomes xi(k)⊗τi,j(k) for a
successor node j of node i. This last expression can be simplified to xj(k). This changes the
general structure of the equations for ordering. Remember the original ordering constraints:

xi(k) ≥ xi(k − µ)⊗ τi(k − µ)⊗ zi,µ(k − µ) (4-1)

Master of Science Thesis Lucy Smeets



26 Modeling the sorting system

This can now be rewritten as

xi(k) ≥ xj(k − µ)⊗ zi,µ(k − µ) (4-2)

which is easier to implement as it contains less variables. This definition of order also main-
tains a safe distance between the robots, as they can enter a node only when the robot directly
in front of them has reached a successor node. Due to this structural change in the order-
ing equations, the general structure of the ordering matrix as defined in Equation 3-31 also
changes. Instead of a diagonal matrix, Aord

µ (zµ(k− µ)) becomes a matrix with non-zero (for-
mer non-ε) elements outside of the diagonal only. In fact, the new ordering equations relate
node i to successor node j, where the routing constraints relate node i to predecessor node
j. Therefore, the structure of the ordering matrix is the transpose of the complete routing
matrix. Since xi(k)⊗ τi(k) is replaced by xj(k), the elements of the ordering matrix are not
travel times, but binary values, regulated by decision variables.

Figure 4-5: Structure of the ordering matrix.

Rows and columns in the ordering matrix with one non-zero element are nodes with one
incoming and outgoing edge. On these nodes, the order between two robots is fixed and
decided by the order in which the robots entered the segment that they are on, since robots
cannot overtake each other. The order in these nodes is defined by the following variable
fl,µ(k − µ). Rows in the ordering matrix with more than one non-zero element represent
nodes with multiple outgoing edges. At these nodes, a type of ordering equations are needed
to make sure that robots still keep a safe distance, even if they choose different routes. This
type of ordering is called splitting. Finally, if a column in the ordering matrix has multiple
non-zero elements, it concerns a node with multiple incoming edges. Here, ordering variables
zi,µ(k− µ) are needed. The structure of the ordering matrix is equal for each combination of
robots k and k − µ, where the values of the variables with respect to those robots construct
the different ordering matrices. In subsection 4-3-2, the different types of ordering variables
and all ordering equations are explained in detail.

Synchronization
The same substitution of travel times instead of processing times can be made for the general
synchronization equations:

Lucy Smeets Master of Science Thesis



4-2 Choices 27

xd(k) ≥ xr(k − µ)⊗ τr(k − µ)⊗ bi,µ(k − µ) (4-3)

becomes

xd(k) ≥ xj(k − µ)⊗ bi,µ(k − µ) (4-4)

where d is the successor node of i that robot k travels to, r is a node too close to d, and
j is a successor node of node r. Remember the situation in Figure 4-2 where two nodes
are on the same location. This is a typical situation where a synchronization occurs. In a
synchronization, a robot is on a node (i) and wants to travel to a successor node (d) that has
a node too close-by (r). The robot can only enter that successor node if the node close-by
has been left by another robot. This is the case if the other robot that occupied the nearby
node has reached its successor node (j).

Each node that has a node too close-by requires a synchronization mode, which is represented
by the synchronization variable bi,µ(k−µ). For each node with such a variable, a synchroniza-
tion matrix is implemented consisting of all zeros (former ε), and a synchronization variable
in row d and column j. Synchronization matrices Asyn

µ (bµ(k − µ)) are automatically created
for a particular node for each pair of robots k and k − µ.

4-2-3 Targets and inputs

The choices that need to be made depend on an external, uncontrollable factor. Each robot
is assigned a target node, which restricts the amount of possible paths. Another external
factor is the input time for robot k, denoted by ue(k). To get an accurate representation of
the sorting system, the chosen target nodes and input times should be based on real data.
For the floor plan considered in Figure 4-1, there is no data available since the floor plan is
not being used. Therefore, the assumption is made that all target nodes have equal chance
to get assigned to a robot. For the input times, it is important to know what the average
time is for an operator to place a parcel on a robot. A distribution for the time between two
parcels is derived from data from a different floor plan. This is assumed to be representative
for all operators and floor plans.

The sample data consists of approximately 1,800 parcels being sorted in a floor plan containing
one input node. A histogram of the difference in time between two robots receiving a parcel
(ue(k+ 1)− ue(k)) is shown in Figure 4-6. A gamma probability density function is fitted to
the histogram, taking into account the location parameter. The location parameter defines
a starting point, which is needed to give a lower boundary on the time between two parcels.
An operator can not scan parcels in less time than the value of the lower boundary. The
smallest value in the data set is chosen as the location parameter. The shape parameter and
the scale parameter of the gamma distribution are fitted to the histogram. The input times
ue(k) are drawn from the fitted distribution and applied to each input node to obtain an
accurate representation of the working system. For confidentiality reasons, the numbers in
the figure are changed and no information on the parameters for the fitted distribution can
be given.

Master of Science Thesis Lucy Smeets



28 Modeling the sorting system

Figure 4-6: A gamma distribution fitted to a histogram of the time between two parcels.

4-3 Constraints

The general equations for all three choice types have been shown in the previous sections.
For a robot entering node i, multiple constraints may be present regarding routing, ordering
and synchronization. Each of these constraints is a function of max-plus linear expressions
that depend on states and decision variables for all ±µ = 1, . . . , µmax:

xi(k) ≥ f route(x(k), si,j(k))
xi(k) ≥ ford(x(k − µ), zµ(k − µ))
xi(k) ≥ f syn(x(k − µ), bµ(k − µ))

(4-5)

The equations are inequalities, because they have to meet all the constraints and choices in
order and synchronization can delay the times that robots are allowed to enter nodes. Finally,
the optimal schedule will have minimal values for the states, which are equal to the maximum
of all constraints [5]:

xi(k) = max(f route, ford, f syn) (4-6)

How the routing, ordering and synchronization constraints are defined and how they are
built from the system matrices in subsection 4-2-2 is discussed in this section. Furthermore,
additional constraints that are needed to restrict the binary decision variables are defined.
From now on, successor nodes of node i are denoted by σ(i) and predecessor nodes by π(i).

4-3-1 Routing

The general routing constraints for robot k are defined for each node in the graph. The robot
can enter node i after it has entered a preceding node. These two events must be apart at least

Lucy Smeets Master of Science Thesis



4-3 Constraints 29

the travel time in seconds, given that the robot is actually traveling from that predecessor to
node i. The max-plus linear expressions read

xi(k) ≥
⊕
j∈π(i)

xj(k)⊗ τj,i(k)⊗ sj,i(k) (4-7)

This is equivalent to the conventional expressions

xi(k) ≥ max
j∈π(i)

xj(k) + τj,i(k) + βs[j,i(k) (4-8)

where the max-plus operators ⊕ and ⊗ are replaced by the regular max and + operators
respectively, and the max-plus binary variable sj,i(k) is converted to the conventional binary
variable s[j,i(k) with β a very large negative number. For robot k, each node in the graph gets
a routing constraint for each preceding node.

Remember routing matrix Aroute(k), containing all travel times between each pair of con-
nected nodes. All routing constraints can be created from the routing matrix, for which the
implementation algorithm is shown in Algorithm 1. The implementation can be found in
section A-1.

Algorithm 1 Creating routing constraints for robot k
for row ∈ Aroute(k) do . row represents node i

for j 6= 0 ∈ row do . j ∈ π(i)
add routing constraint for node i with respect to node j

end for
end for

The constraints are implemented in a certain structure, which is compatible with the opti-
mization solver. More information on this can be found in subsection 5-1-2. The basic idea
is that the constraints are converted to inequalities with a less than or equal to symbol, and
that all known variables are placed on the right-hand side and all variables that need to be
optimized on the left-hand side. Variables that need to be optimized are the states and binary
decision variables. This results in the following set of routing constraints for each node i in
the graph, where p is the number of predecessors of node i:

xj1(k)− xi(k) + βs[j1,i(k) ≤ −τj1,i(k)
...

xjp(k)− xi(k) + βs[jp,i(k) ≤ −τjp,i(k)

(4-9)

Assume that the travel times for robot k are known and therefore on the right-hand side of
the constraints, even though the edge has not been traveled by the robot yet. They are given
by the nominal travel times in the routing matrix. Note that at most one of the routing
constraints per node i is active, since at most one edge variable can be 0 in the max-plus
algebra. Due to the conversion definition to conventional algebra, given by βs[i,j(k) = si,j(k),

Master of Science Thesis Lucy Smeets



30 Modeling the sorting system

an edge variable is active if also the conventional variable equals 0. Therefore,
∑
j∈π(i) s

[
j,i(k) =

p− 1. In other words, a robot can only travel from one predecessor to i.
A special case of routing constraints is found around input nodes, where parcels enter the
sorting system. The states in nodes that succeed an input node do not only depend on the
time that a robot entered the input node, but also on the moment that the robot receives a
parcel, denoted by ue(k). A robot at an input node has to wait there until it has received a
parcel to start its job. For an input node q, this raises the following constraint:

xσ(q)(k) ≥
(
xq(k)⊕ ue(k)

)
⊗ τq,σ(q)(k)⊗ sq,σ(q)(k) (4-10)

The conventional constraints become

xσ(q)(k) ≥ xq(k) + τq,σ(q)(k) + βs[q,σ(q)(k)

xσ(q)(k) ≥ ue(k) + τq,σ(q)(k) + βs[q,σ(q)(k)
(4-11)

Note that the top constraint is a regular routing constraint, and the bottom constraint is the
input constraint.
Each robot visits a set of nodes, which leaves another set of nodes unvisited. If a certain node
i stays unvisited (xi = 0) for more than µmax robots in a row, the next robot k that enters
node i does not take previous robots k−µ with µ > µmax that visited node i into account. If
one of those robots has not left node i yet, it will not be seen by robot k. Therefore, unvisited
nodes do not get state value 0, but the latest time instant that it was visited. For each node
i, the following constraint is added, where Li = {`|i ∈ w`} is the set of paths that include
node i:

xi(k) ≥ xi(k − 1)⊗
⊗
`∈Li

w̄`(k) (4-12)

If robot k travels path l that includes node i, this constraint is disabled, since wl(k) = 0 and
consequently, w̄l(k) = ε. When robot k does not visit node i, the state takes the value of the
state in node i of the previous robot. In conventional algebra, the constraint becomes

xi(k) ≥ xi(k − 1) +
∑
`∈Li

β(1− w[`(k)) (4-13)

4-3-2 Ordering

Each node in the graph needs an ordering constraint. There are three different types of
ordering constraints, as discussed in subsection 4-2-2. Nodes with a single incoming and
outgoing edge need so-called following constraints, where the order between robots on a
segment is fixed. Nodes with multiple outgoing edges need splitting constraints to maintain
a safe distance between robots that choose different routes at that node, and nodes with
multiple incoming edges need ordering constraints, where the order of robots is chosen. Each
type of ordering constraints is explained in this section, starting with the following constraints.

Lucy Smeets Master of Science Thesis



4-3 Constraints 31

Simple nodes
Following constraints apply to path segments that are straightforward: robots cannot enter
or leave a segment other than at the start of end of the segment. For example, look at the
subgraph in Figure 4-7. Generally speaking, path segments are defined as the shortest paths
between input nodes, nodes with multiple incoming edges and nodes with multiple outgoing
edges. The segments in this subgraph are indicated by the alternating solid and dotted lines
on the orange path ` = 0 and the green path ` = 1. Segments are automatically found by
traveling a path, starting at the input node until a node with multiple incoming or outgoing
edges or an input node is reached. Orders between robots on a segment cannot be changed.

Figure 4-7: Subgraph with two paths, divided into segments.

For the following constraints, two types of max-plus binary variables are needed. Let pl(k)
be the variable that denotes whether robot k uses segment l ∈ {1, . . . , Ls}, where Ls is the
total amount of segments in the graph. In short:

pl(k) =
{

0 if robot k travels segment l
ε if robot k does not travel segment l

(4-14)

In addition, the following variable fl,µ(k−µ) is needed which entails information on the order
of robots k and k − µ on segment l:

fl,µ(k − µ) =
{

0 if robot k − µ enters segment l before robot k
ε otherwise

(4-15)

Following constraints are defined on all nodes on a segment but the last, since the last nodes
are also the first node of the next segment(s), for which following constraints will be defined.
In following constraints, the moment that robot k can enter a node on a segment depends on
the time that other robots on the same segment in front of robot k have reached a successor
node. Therefore, following constraints are active when both robots travel the same segment.
The following constraints are given in Equation 4-16.

xi(k) ≥ xσ(i)(k − µ)⊗ fl,µ(k − µ)⊗ pl(k)⊗ pl(k − µ)
xi(k − µ) ≥ xσ(i)(k)⊗ f̄l,µ(k − µ)⊗ pl(k)⊗ pl(k − µ)

(4-16)

Master of Science Thesis Lucy Smeets



32 Modeling the sorting system

The constraints are defined for all nodes i on segment l but the last and all ±µ = 1, . . . , µmax.
Each i has only one successor node since the segment is a path where each node has only one
outgoing edge, until possibly the last.

The following constraints for robot k, taking into account all robots in the range µmax that
started their job later and earlier than robot k, are summarized as follows, for each node i
and for all segments l = {1, . . . , Ls}:

xi(k) ≥
µmax⊕
µ=1

(
xσ(i)(k − µ)⊗ fl,µ(k − µ)⊗ pl(k)⊗ pl(k − µ) ⊕

xσ(i)(k + µ)⊗ f̄l,µ(k)⊗ pl(k + µ)⊗ pl(k)
) (4-17)

The union of all segments contains all nodes in the graph, so each node is sure to have a
following constraint. Multiple following constraints occur for nodes with multiple outgoing
edges, since those types of nodes are the starting point of multiple segments. This happens
for example in node 41 in the subgraph, where both p1 and p2 start.

To convert the max-plus linear expressions for following into conventional constraints, the
max-plus binary following and segment variables are replaced by conventional binary variables
in the same way as in Equation 3-3. For example, the following variables are linked as

fl,µ(·) =
{

0 if f [l,µ(·) = 0
ε if f [l,µ(·) = 1

f̄l,µ(·) =
{
ε if f [l,µ(·) = 0
0 if f [l,µ(·) = 1

(4-18)

The conventional following constraints are formulated as

xi(k) ≥ max
µ=1,...,µmax

(
xσ(i)(k − µ) + βf [l,µ(k − µ) + βp[l(k) + βp[l(k − µ) ,

xσ(i)(k + µ) + β(1− f [l,µ(k)) + βp[l(k + µ) + βp[l(k)
) (4-19)

Equation 4-19 consists of many single inequalities for each node i on segment l:

xi(k) ≥ xσ(i)(k − 1) + βf [l,1(k − 1) + βp[l(k) + βp[l(k − 1)
xi(k) ≥ xσ(i)(k + 1) + β(1− f [l,1(k)) + βp[l(k + 1) + βp[l(k)

...
xi(k) ≥ xσ(i)(k − µmax) + βf [l,µmax(k − µmax) + βp[l(k) + βp[l(k − µmax)
xi(k) ≥ xσ(i)(k + µmax) + β(1− f [l,µmax(k)) + βp[l(k + µmax) + βp[l(k)

(4-20)

Each node i gets an amount of 2 ·µmax following constraints for each segment that it belongs
to, except for the last node in the segment, since it gets its following constraints from the
next segment.

Lucy Smeets Master of Science Thesis



4-3 Constraints 33

To illustrate the importance following constraints, consider two robots. First, assume that
robot k and k− 1 travel the same path, say w1, as indicated by the green path in Figure 4-7.
This path consists of segments 0, 1 and 3. Since both k and k− 1 travel on w1, the values of
the segment variables are as shown in Table 4-1.

Segment
Robot 0 1 2 3
k − 1 0 0 ε 0
k 0 0 ε 0

Table 4-1: Segment variables for robots k − 1 and k travelling the same path.

The following constraints for robot k and k − 1 are shown in Equation 4-21 for all nodes il
and their successor jl on segment l.

xi0(k) ≥ xj0(k − 1)⊗ f0,1(k − 1)⊗ p0(k)⊗ p0(k − 1)
xi0(k − 1) ≥ xj0(k)⊗ f̄0,1(k − 1)⊗ p0(k)⊗ p0(k − 1)

xi1(k) ≥ xj1(k − 1)⊗ f1,1(k − 1)⊗ p1(k)⊗ p1(k − 1)
xi1(k − 1) ≥ xj1(k)⊗ f̄1,1(k − 1)⊗ p1(k)⊗ p1(k − 1)

xi2(k) ≥ xj2(k − 1)⊗ f2,1(k − 1)⊗ p2(k)⊗ p2(k − 1)
xi2(k − 1) ≥ xj2(k)⊗ f̄2,1(k − 1)⊗ p2(k)⊗ p2(k − 1)

xi3(k) ≥ xj3(k − 1)⊗ f3,1(k − 1)⊗ p3(k)⊗ p3(k − 1)
xi3(k − 1) ≥ xj3(k)⊗ f̄3,1(k − 1)⊗ p3(k)⊗ p3(k − 1)

(4-21)

By definition, robot k − 1 started its job before k, so the following variable fl,1(k − 1) = 0
for each l on the path, and thus f̄l,1(k − 1) = ε for segments l = 0, 1, 3. Only for segment
2, f2,1(k − 1) = ε and f̄2,1(k − 1) = 0. Still, the constraints for nodes on segment 2 are
inactive, due to the segment variables p2(k) and p2(k − 1). This can be seen by substituting
the variable values into all constraints:

xi0(k) ≥ xj0(k − 1)⊗ 0⊗ 0⊗ 0 =⇒ xi0(k) ≥ xj0(k − 1)
xi0(k − 1) ≥ xj0(k)⊗ ε⊗ 0⊗ 0 =⇒ xi0(k − 1) ≥ ε

xi1(k) ≥ xj1(k − 1)⊗ 0⊗ 0⊗ 0 =⇒ xi1(k) ≥ xj1(k − 1)
xi1(k − 1) ≥ xj1(k)⊗ ε⊗ 0⊗ 0 =⇒ xi1(k − 1) ≥ ε

xi2(k) ≥ xj2(k − 1)⊗ ε⊗ ε⊗ ε =⇒ xi2(k) ≥ ε
xi2(k − 1) ≥ xj2(k)⊗ 0⊗ ε⊗ ε =⇒ xi2(k − 1) ≥ ε

xi3(k) ≥ xj3(k − 1)⊗ 0⊗ 0⊗ 0 =⇒ xi3(k) ≥ xj3(k − 1)
xi3(k − 1) ≥ xj3(k)⊗ ε⊗ 0⊗ 0 =⇒ xi3(k − 1) ≥ ε

(4-22)

Master of Science Thesis Lucy Smeets



34 Modeling the sorting system

As expected, only the constraints on segments 0, 1 and 3 are active for robot k, since it is
driving behind robot k − 1 on the same path. Constraints on segment 2 are neglected, since
neither of the robots travel on that segment.
Now assume that both robots travel a different path. Say robot k − 1 travels on path 1, and
robot k on path 0. The values of the segment variables in this case are shown in Table 4-2.

Segment
Robot 0 1 2 3
k − 1 0 0 ε 0
k 0 ε 0 0

Table 4-2: Segment variables for robots k − 1 travelling path ` = 1 and k path ` = 0.

Substituting the variables into the following constraints results in

xi0(k) ≥ xj0(k − 1)⊗ 0⊗ 0⊗ 0 =⇒ xi0(k) ≥ xj0(k − 1)
xi0(k − 1) ≥ xj0(k)⊗ ε⊗ 0⊗ 0 =⇒ xi0(k − 1) ≥ ε

xi1(k) ≥ xj1(k − 1)⊗ ε⊗ ε⊗ 0 =⇒ xi1(k) ≥ ε
xi1(k − 1) ≥ xj1(k)⊗ 0⊗ ε⊗ 0 =⇒ xi1(k − 1) ≥ ε

xi2(k) ≥ xj2(k − 1)⊗ ε⊗ 0⊗ ε =⇒ xi2(k) ≥ ε
xi2(k − 1) ≥ xj2(k)⊗ 0⊗ 0⊗ ε =⇒ xi2(k − 1) ≥ ε

(4-23)

xi3(k) ≥ xj3(k − 1)⊗ f3,1(k − 1)⊗ 0⊗ 0 =⇒ xi3(k) ≥ xj3(k − 1)⊗ f3,1(k − 1)
xi3(k − 1) ≥ xj3(k)⊗ f̄3,1(k − 1)⊗ 0⊗ 0 =⇒ xi3(k − 1) ≥ xj3(k)⊗ f̄3,1(k − 1)

(4-24)

Note that following constraints for segments are always inactive if at most one of the robots
travels the segment, since then at least one of the segment variables pl(k) or pl(k− µ) equals
ε. Furthermore, both robots drive on segment 3 after they have been apart, so a new robot
order needs to be chosen on segment 3. Which one of the constraints in Equation 4-24 gets
activated, is decided by the following variable f3,1(k − 1). This situation will be studied in
the paragraph on nodes with multiple incoming edges.

Nodes with multiple outgoing edges
The following constraints ensure a safe distance between robots that travel the same segment.
If two robots reach the end of a common segment, but choose different successor segments,
the distance between the robots in the last node of the common segment is not protected by
following constraints, since the robots choose different successor nodes. Therefore, splitting
constraints are needed, where the order of the robots in the previous segment is taken into
account. For each successor node j of node i with multiple outgoing edges, and for all segments
l that finish in node i, the basic splitting constraints are given by

xi(k) ≥ xj(k − µ)⊗ fl,µ(k − µ)
xi(k − µ) ≥ xj(k)⊗ f̄l,µ(k − µ)

(4-25)

Lucy Smeets Master of Science Thesis



4-3 Constraints 35

The total set of splitting constraints for robot k, taking into account a range of µmax robots
that started their job earlier and later than k, are given by

xi(k) ≥
⊕
j∈σ(i)

⊕
l∈πs(i)

µmax⊕
µ=1

(
xj(k − µ)⊗ fl,µ(k − µ) ⊕

xj(k + µ)⊗ f̄l,µ(k)
) (4-26)

Here, σ(i) is the set of all successor nodes of node i and πs(i) is the set of segments that end
in node i. Translating this into conventional constraints gives

xi(k) ≥ max
j∈σ(i)

max
l∈πs(i)

max
µ=1,...,µmax

(
xj(k − µ) + βf [l,µ(k − µ) ,

xj(k + µ) + β(1− f [l,µ(k)
) (4-27)

Since these constraints hold for each successor node j of i with multiple outgoing edges, and
for each segment l that ends in node i, node i has an amount of 2 ·µmax · |πs(i)| · |σ(i)| separate
max-plus linear expressions for splitting.

An example of a node that needs splitting constraints is node 41 in the subgraph, a closeup of
which is shown in Figure 4-8. Node 41 is the only node in the subgraph with multiple outgoing
edges, of which it has two (|σ(41)| = 2), and it has one incoming segment (|πs(41)| = 1).
Therefore, the total amount of splitting constraints for the subgraph is 4 · µmax.

Figure 4-8: Two segments start in node 41.

Say that two robots k − 1 and k enter node 41, and robot k − 1 is in front of k. Therefore,
f0,1(k−1) = 0 and f̄0,1(k−1) = ε. If both robots continue to travel on the same segment after
node 41, their movements are covered by the following constraints. On the other hand, if they
choose different segments, the following constraints are deactivated, as seen in the example in
Equation 4-23. Robot k still needs constraints to wait until robot k−1 has left node 41, which
is done by the splitting constraints. Substituting the variables into Equation 4-25 results in

Master of Science Thesis Lucy Smeets



36 Modeling the sorting system

x41(k) ≥ x62(k − 1)⊗ f0,1(k − 1) =⇒ x41(k) ≥ x62(k − 1)
x41(k − 1) ≥ x62(k)⊗ f̄0,1(k − 1) =⇒ x41(k − 1) ≥ ε

x41(k) ≥ x64(k − 1)⊗ f0,1(k − 1) =⇒ x41(k) ≥ x64(k − 1)
x41(k − 1) ≥ x64(k)⊗ f̄0,1(k − 1) =⇒ x41(k − 1) ≥ ε

(4-28)

Note that only one of the remaining constraints is active, since robot k−1 can not enter both
node 62 and 64.

Nodes with multiple incoming edges
Remember the segments defined in the subgraph in Figure 4-7, where segments 1 and 2 both
continue to segment 3. The constraints for segment 3 depend on the order in which the
robots enter this segment, but this is yet to be determined. This is decided by max-plus
binary ordering variable zi,µ(k − µ):

zi,µ(k − µ) =
{

0 if robot k − µ enters node i before robot k
ε otherwise

(4-29)

This control variable is used for nodes with multiple incoming edges. These nodes are located
at the start of a segment and already have following constraints as defined before, but they
need a new type of constraint in case two robots enter the segment from two different segments.
These constraints are called ordering constraints and they are defined in Equation 4-30.

xi(k) ≥ xj(k − µ)⊗ zi,µ(k − µ)⊗ pl(k)⊗ pm(k − µ)
xi(k − µ) ≥ xj(k)⊗ z̄i,µ(k − µ)⊗ pl(k)⊗ pm(k − µ)

(4-30)

The ordering constraints are defined for all successor nodes j of node i with multiple incoming
edges, and for all segments l 6= m that finish in node i. The constraints make sure that a
robot has to wait to enter node i until earlier robots, coming from another segment, have left
i. The constraints hold for each combination of robots k and k− µ for µ = ±1, . . . , µmax and
can be summarized for robot k:

xi(k) ≥
⊕
j∈σ(i)

⊕
l,m∈πs(i)

µmax⊕
µ=1

(
xj(k − µ)⊗ zi,µ(k − µ)⊗ pl(k)⊗ pm(k − µ) ⊕

xj(k + µ)⊗ z̄i,µ(k)⊗ pl(k + µ)⊗ pm(k)
)
, l 6= m

(4-31)

Using the same method to replace the max-plus binary ordering variables with conventional
binary variables as before, the conventional ordering constraints are given by:

Lucy Smeets Master of Science Thesis



4-3 Constraints 37

xi(k) ≥ max
j∈σ(i)

max
l,m∈πs(i)

max
µ=1,...,µmax

(
xj(k − µ) + βz[i,µ(k − µ) + βp[l(k) + βp[m(k − µ) ,

xj(k + µ) + β(1− z[i,µ(k)) + βp[l(k + µ) + βp[m(k)
)

l 6= m

(4-32)

These constraints hold for each successor node j of i and for each combination of different
segments l and m that end in node i. Therefore, each node i with multiple incoming edges
has a total amount of 2 · µmax · |σ(i)| · |πs(i)| · (|πs(i)| − 1) ordering constraints.

An example of ordering is given in Figure 4-9. Node 61 has one outgoing edge (|σ(61)| = 1)
and two incoming segments (|πs(61)| = 2), so the total amount of ordering constraints for the
subgraph is 4 · µmax. Assume that robot k − 1 travels on segment 1 and robot k on segment
2. Both segments join in node 61, and the decision which robot can enter first is made by
z61,1(k − 1).

Figure 4-9: Orders of robots need to be defined in node 61.

The set of ordering constraints for node 61 becomes

x61(k) ≥ x43(k − 1)⊗ z61,1(k − 1)⊗ p1(k)⊗ p2(k − 1)
x61(k − 1) ≥ x43(k)⊗ z̄61,1(k − 1)⊗ p1(k)⊗ p2(k − 1)

x61(k) ≥ x43(k − 1)⊗ z61,1(k − 1)⊗ p2(k)⊗ p1(k − 1)
x61(k − 1) ≥ x43(k)⊗ z̄61,1(k − 1)⊗ p2(k)⊗ p1(k − 1)

(4-33)

and substituting the known variables, this results in

x61(k) ≥ x43(k − 1)⊗ z61,1(k − 1)⊗ ε⊗ ε
x61(k − 1) ≥ x43(k)⊗ z̄61,1(k − 1)⊗ ε⊗ ε

x61(k) ≥ x43(k − 1)⊗ z61,1(k − 1)⊗ 0⊗ 0
x61(k − 1) ≥ x43(k)⊗ z̄61,1(k − 1)⊗ 0⊗ 0

(4-34)

Note that ordering constraints are only active for a combination of robots if they approach
the node from different edges. Control variable z61,1(k − 1) decides which robot enters node

Master of Science Thesis Lucy Smeets



38 Modeling the sorting system

61 first. Say that robot k−1 can go first. Then, according to Equation 4-29, z61,1(k−1) = 0,
and thus z̄61,1(k − 1) = ε. The ordering constraints from Equation 4-34 become

x61(k) ≥ x43(k − 1)
x61(k − 1) ≥ ε

(4-35)

Remember the example of following constraints from Equation 4-24, where the following
variable f3,1(k − 1) is still unknown. For each node on p3, the following constraints include
this variable and it is actually defined by the order in which the robots enter the first node of
the segment. That decision has been made by the ordering control variable z61,1(k − 1), and
therefore f3,1(k − 1) should take the same value.

Implementation
Remember ordering matrix Aord

µ (k) from subsection 4-2-2. Each non-zero element in the
matrix resembles an ordering variable with respect to two nodes; the node with multiple in-
coming edges and a successor node. All ordering constraints can be created from the ordering
matrix. The implementation algorithm is shown in Algorithm 2, and the implementation in
Python can be found in section A-2.

Algorithm 2 Creating ordering constraints for robot k
for row ∈ Aord

µ (k) do . row represents node i
if row has > 1 non-zero elements then . i has > 1 outgoing edges

for j 6= 0 ∈ row do . j ∈ σ(i)
for µ = 1, . . . , µmax do

add splitting constraint for robot k and k − µ
add splitting constraint for robot k and k + µ

end for
end for

else if [Aord
µ (k)]:,row has > 1 non-zero elements then . i has > 1 incoming edges

for pl ∈ πs(row) do
for pm ∈ πs(row) \ {pl} do . each combination of preceding segments

for µ = 1, . . . , µmax do
add ordering constraint for robot k and k − µ
add ordering constraint for robot k and k + µ

end for
end for

end for
else . i has 1 incoming and outgoing edge

for µ = 1, . . . , µmax do
add following constraint for robot k and k − µ
add following constraint for robot k and k + µ

end for
end if

end for

Lucy Smeets Master of Science Thesis



4-3 Constraints 39

4-3-3 Synchronization

In situations where robots have to wait for each other in different nodes, synchronization
constraints are needed. This is the case for configurations where nodes are too close to each
other to keep a safe distance between robots. In addition, a concept called coupling is also
a type of synchronization. Coupling is an action that occurs at input nodes, where a robot
k starts a new job and therefore changes into a robot k + γ. Both synchronization types are
discussed in this section.

Safe distance
Some nodes block the availability of another node until the blocking node is free again. This
happens for nodes that are too close to each other, which therefore require synchronization
constraints. An example of two paths crossing is shown in Figure 4-10, where node 36 and
37 in the middle are on the same location. For a robot on node 30 to continue to node 37,
node 36 has to be left by other robots driving there. The same holds for a robot on node 32,
which has to wait before continuing to node 36 until other robots have left node 37.

Figure 4-10: At crossings, synchronization constraints are needed.

To be able to choose which robots can go first in these situations, the max-plus binary
synchronization variable bi,µ(k − µ) is defined:

bi,µ(k − µ) =


0, if robot k has to wait in node i until robot k − µ has

left the node that is too close to a successor node of i
ε, otherwise

(4-36)

Synchronization variables are defined for nodes i in which robots might have to wait for other
robots due to the close proximity of a node to a successor node of i. The nodes that block
the availability of a successor node of i are denoted by b(i). The synchronization constraints
are defined as:

xj(k) ≥ xd(k − µ)⊗ bi,µ(k − µ)⊗ si,j(k)⊗ sc,d(k − µ)
xj(k − µ) ≥ xd(k)⊗ b̄i,µ(k − µ)⊗ sc,d(k)⊗ si,j(k − µ)

(4-37)

They hold for all successor nodes j of node i that have another node too close-by, for all
nodes c that are too close to j, and for all successor nodes d of c. With these constraints,

Master of Science Thesis Lucy Smeets



40 Modeling the sorting system

robots are sure to wait in a node until other robots have reached the node that comes after
the node that is too close to the waiting robot’s next node. This way, no conflicts will occur
at synchronization configurations like crossings. The synchronization constraints for robot k
are summarized as follows:

xj(k) ≥
⊕
c∈b(i)

⊕
d∈σ(c)

⊕
µ=1,...,µmax

(
xd(k − µ)⊗ bi,µ(k − µ)⊗ si,j(k)⊗ sc,d(k − µ) ⊕

xd(k + µ)⊗ b̄i,µ(k)⊗ sc,d(k + µ)⊗ si,j(k)
) (4-38)

They are defined for each node i that needs a synchronization, and each successor j of i for
which nodes exist that are too close-by. In general, node i has a total of 2 ·µmax · |σ(i)| · |b(i)| ·
|σ(b(i))| synchronization constraints. The conventional constraints are given by

xj(k) ≥ max
c∈b(i)

max
d∈σ(c)

max
µ=1,...,µmax

(
xd(k − µ) + βb[i,µ(k − µ) + βs[i,j(k) + βs[c,d(k − µ) ,

xd(k + µ) + β(1− b[i,µ(k)) + βs[c,d(k + µ) + βs[i,j(k)
) (4-39)

Synchronization variables are assigned to all nodes in one configuration where a robot should
be able to wait, but actually only one variable is needed. To illustrate, a crossing configuration
is shown in Figure 4-11 where robots k and k + 1 both want to cross. Robot k travels from
node 30 via 37 to 15 and robot k + 1 from 32 via 36 to 16. The constraints for both robots,
substituting into Equation 4-38 for µmax = 1, are given in Equation 4-40.

Figure 4-11: Robots k and k + 1 use the same synchronization variable at a crossing.

x37(k) ≥ x16(k − 1)⊗ b30,1(k − 1)⊗ s30,37(k)⊗ s36,16(k − 1) ⊕
x16(k + 1)⊗ b̄30,1(k)⊗ s36,16(k + 1)⊗ s30,37(k)

x36(k + 1) ≥ x15(k)⊗ b32,1(k)⊗ s32,36(k + 1)⊗ s37,15(k) ⊕
x15(k + 2)⊗ b̄32,1(k + 1)⊗ s37,15(k + 2)⊗ s32,36(k + 1)

(4-40)

There are two constraints regarding robots k and k+ 1, and precisely one of these constraints
should be active. Since the edge variables (s36,16(k+1) = s30,37(k) = s32,36(k+1) = s37,15(k))

Lucy Smeets Master of Science Thesis



4-3 Constraints 41

are all active, this solely depends on the max-plus binary synchronization variables b̄30,1(k) and
b32,1(k), of which precisely one should be 0. Therefore, it is necessary that b30,1(k) = b32,1(k)
and this should hold for every k and all µ. For any configuration with nodes too close to each
other, only one synchronization variable is needed.

Implementation
In subsection 4-2-2, it was mentioned that each node with a synchronization mode has its
own synchronization matrix Asyn

µ (k) with one non-zero element. This element is one of the
conventional binary synchronization variables that represents the order of robots k and k−µ
in the configuration that node is a part of. The steps to create synchronization constraints
from the matrices are presented in the pseudo-code in Algorithm 3. The implementation is
similar to the implementation of the ordering constraints.

Algorithm 3 Creating synchronization constraints for robot k
for node i with synchronization matrix do

for j ∈ σ(i) with nodes b(i) that are too close-by do
for close node c ∈ b(i) do

for d ∈ σ(c) do
for µ = 1, . . . , µmax do

add synchronization constraint for robot k and k − µ
add synchronization constraint for robot k and k + µ

end for
end for

end for
end for

end for

Coupling
When robots have delivered their parcel, they finish their job by driving back to an input
node. When robot k returns to a node preceding an input, its job is complete. This means
that at the succeeding input node, the same robot starts a new job k + γ. The robot from
job k needs to be coupled to k + γ at input node xq. To find the correct value for γ, new
max-plus binary variables are needed.

Say that a constant amount of r robots is driving through the graph, and the active robots
at a time instant are k, k + 1, . . . , k + r − 1. When robot k is the first to return at an input,
robot k + r starts its job at that input. This is indicated by the coupling variable, where
γ = 1, . . . , γmax:

ck(k + γ) =
{

0 if robot k is coupled to robot k + γ

ε otherwise
(4-41)

This would mean that ck(k+ r) = 0 if robot k is the first robot to finish its job. Note that no
other robots can be coupled to k + r. In addition, all other variables that couple k to a new
robot should also be disabled, since robot k can only be coupled once. The coupling variables

Master of Science Thesis Lucy Smeets



42 Modeling the sorting system

are included in constraints on input nodes q for robot k for all predecessor nodes j of input
node q and for all γ = 1, . . . , γmax:

xq(k) ≥ xj(k − γ)⊗ τj,q(k − γ)⊗ sj,q(k − γ)⊗ ck−γ(k) (4-42)

The constraint ensures that robot k can enter an input node only after another robot has
entered a preceding node and has traveled an edge to the input, under the conditions that
the other robot is coupled to robot k. This can be summarized for all inputs as

xq(k) ≥
⊕
j∈π(q)

γmax⊕
γ=1

xj(k − γ)⊗ τj,q(k − γ)⊗ sj,q(k − γ)⊗ ck−γ(k) (4-43)

In conventional algebra, this reads

xq(k) ≥ max
j∈π(q)

max
γ=1,...,γmax

(
xj(k − γ) + τj,q(k − γ) + βs[j,q(k − γ) + βc[k−γ(k)

)
(4-44)

Earlier, following and ordering constraints were formulated for all nodes in the graph, keeping
a safe distance between each pair of robots that differ at most µmax in index. Since the robot
index changes at input nodes due to coupling, robots at nodes that precede inputs might
not take into account a newly coupled robot that is present at an input node. The distance
between two robots between an input node and preceding nodes can therefore get too small.
This issue can be resolved by defining new constraints for each predecessor node p of input
node q, and for each edge (p, i) and (q, j):

xp(k) ≥ xq(k + γ)⊗ ck+µ(k + γ)⊗ sp,i(k)⊗ sq,j(k + γ) (4-45)

The constraints are considered for all γ = 1, . . . , r. If γ is larger than r, a situation can occur
that robot k must wait for robot k + γ, while they are actually the same robot. In other
words, there is a 0 < κ < γ such that ck(k + κ) = 0 and ck+κ(k + γ) = 0. This makes the
model unsolvable. In addition, all µ = r − 1, . . . , r − γmax, but µ 6= 0 are considered for the
following reason. If ck(k+γ) = 0 for some γ, the constraint would hold and robot k can enter
node p only when robot k+γ, which is coupled to robot k, enters the succeeding node q. This
would result in an infeasible optimization problem. The constraints under these conditions
ensure a safe distance between the robots around the input nodes.

4-3-4 Additional constraints on control variables

In the previous sections, many constraints were formulated that put restrictions on the states
xi(k), using max-plus binary control variables. The control variables need to be properly
constrained as well, since not all combinations of binary values result in a feasible solution.
The constraints apply to conventional binary variables for computational purposes.
Remember that a max-plus binary variable w is active when its value is 0 and inactive when
ε. The corresponding conventional binary variable w[ is also active when it has value 0, and
inactive when 1, due to the relation w = βw[ with β a very large negative number.

Lucy Smeets Master of Science Thesis



4-3 Constraints 43

Paths, segments and edges
Each robot is allowed to choose one path. Equation 4-46 makes sure that precisely one path
variable takes the value 0, and all others take value 1.

L∑
`=1

w[`(k) = L− 1 (4-46)

Note that not all paths are available for a robot, since each robot gets a target node where it
needs to deliver its parcel to and not all paths necessarily contain that target node. Denote
the set of unavailable paths for robot k by Lu(k) = {`| target of robot k /∈ w`}. Each path
variable of the excluded paths gets value 1, since it should be inactive. This leads to the
constraint for robot k:

∑
`∈Lu(k)

w[`(k) = |Lu(k)| (4-47)

To ensure that edge (i, j) is only active when the edge is on the path that robot k travels,
the constraint from Equation 4-48 is added, where Li,j = {`| (i, j) ∈ w`} is the set of paths
that include edge (i, j). The edge variable is equal to 1 when none of the paths that include
the edge are traveled by robot k, and 0 otherwise.

s[i,j(k) =
∑
`∈Li,j

w[`(k)− |Li,j |+ 1 (4-48)

Lastly, the segment variables pl(k) need to be constrained to the correct path, such that a
segment can only be used if it is actually part of the path that is traveled by robot k. This
is done in Equation 4-49, where Ll = {`| pl ∈ w`} is the set of paths that include segment l.

p[l(k) =
∑
`∈Ll

w[`(k)− |Ll|+ 1 (4-49)

Following
The following variables fl,µ(k − µ) are max-plus binary control variables, but they do not
need to be controlled. They are fixed due to dependencies on other variables and the order
in which robots enter the system. The variables are defined for three different cases, when
segment l starts at:

1. a node with one incoming edge:
f [l,µ(k − µ) = f [πs(l),µ(k − µ)

2. a node i with multiple incoming edges:
f [l,µ(k − µ) = z[i,µ(k − µ)

3. an input node:

f [l,µ(k − µ) =
{

0, if µ > 0
1, if µ < 0

Master of Science Thesis Lucy Smeets



44 Modeling the sorting system

Case 1 ensures that robots keep the same order on segments in succession, since overtaking
is not allowed. The constraint in case 2 keeps the chosen order in which robots entered the
first node of the segment for the rest of the segment, and case 3 defines the order of robots
on the entire segment in the same order as they entered the system.

Coupling
When robot k returns to an input node, it gets a new index k + m due to the coupling
variables. The coupling variables need to be constrained in two ways. First, constraints are
needed to allow precisely one robot to be coupled to a certain robot k +m:

γmax∑
γ=1

c[k+m−γ(k +m) = γmax − 1 (4-50)

Secondly, each robot should be coupled precisely once to a new robot:

γmax∑
γ=1

c[k(k + γ) = γmax − 1 (4-51)

Inputs
All paths end in nodes that precede inputs, and therefore edges to input nodes can not be
activated yet. Robots that finish their path need to continue driving to an input to receive
their next parcel. Therefore, activating these edges should be made possible. For each node
p that precedes an input node, the paths that end in node p are known. The edges to input
nodes q are constrained as follows, where Lp = {`| p is the last node of w`} is the set of paths
that end in node p:

∑
q∈σ(p)
q∈Q

s[p,q(k) =
∑

q∈σ(p)
q∈Q

1 +
∑
`∈Lp

w[`(k)− |Lp| (4-52)

On the other hand, robots should travel precisely one edge that starts in an input node.
Equation 4-53 forces this on the edge variables.

∑
q∈Q

∑
j∈σ(q)

s[q,j(k) =
∑
q∈Q

(|σ(q)|)− 1 (4-53)

In addition, the input node that robot k drives back to, should be the starting node of the
robot it is coupled to. Equation 4-53 already restricts the amount of active edges starting
in input nodes to one, but an additional constraint is needed to ensure the right connection.
The number of edges starting from a specific input node that can be active is bounded from
above for each q ∈ Q and γ = 1, . . . , γmax as follows:

∑
j∈σ(q)

s[q,j(k) ≤ |σ(q)|+ c[k−γ(k)− |π(q)|+
∑

p∈π(q)
s[p,q(k − γ) (4-54)

Lucy Smeets Master of Science Thesis



4-3 Constraints 45

1 7

2

5

6

10

4

3

8

9

Figure 4-12: Hypothetical input layout.

To illustrate, Figure 4-12 shows the effect of these constraints. Nodes 1 and 7 are input nodes
of the same graph, with different amounts of incoming and outgoing edges.

For example, say that robot k− 4 enters node 1 via node 5, and gets coupled to robot k. For
both input nodes, Equation 4-54 becomes

∑
j∈σ(1)

s[1,j(k) ≤ 3 + c[k−γ(k)− 2 +
∑

p∈π(1)
s[p,1(k − γ) (4-55)

∑
j∈σ(7)

s[7,j(k) ≤ 2 + c[k−γ(k)− 1 +
∑

p∈π(7)
s[p,7(k − γ) (4-56)

For γ = 4, substitute c[k−4(k) = 0, s[5,1(k − 4) = 0 and all other edge variables as 1:

∑
j∈σ(1)

s[1,j(k) ≤ 2 (4-57)

∑
j∈σ(7)

s[7,j(k) ≤ 2 (4-58)

Since input node 1 has three outgoing edges, one of them is forced to be 0 (active) for robot
k, because of Equation 4-57. The inequality from Equation 4-58 implies that also one of the
edges from input node 7 could be active, but the constraint from Equation 4-53 prevents this,
since only one edge from an input can be active. For γ = 1, . . . , γmax, γ 6= 4, the constraints
become

∑
j∈σ(1)

s[1,j(k) ≤ 3 + 1− 2 +
∑

p∈π(1)
s[p,1(k − γ) (4-59)

∑
j∈σ(7)

s[7,j(k) ≤ 2 + 1− 1 +
∑

p∈π(7)
s[p,7(k − γ) (4-60)

The sum over all incoming edge variables for input nodes on the right-hand side is for each
γ either equal to the amount of incoming edges, or one less. Then the constraints become
either

Master of Science Thesis Lucy Smeets



46 Modeling the sorting system

∑
j∈σ(1)

s[1,j(k) ≤ 3 + 1− 2 + 2 =⇒
∑

j∈σ(1)
s[1,j(k) ≤ 4 (4-61)

∑
j∈σ(7)

s[7,j(k) ≤ 2 + 1− 1 + 0 =⇒
∑

j∈σ(7)
s[7,j(k) ≤ 2 (4-62)

or

∑
j∈σ(1)

s[1,j(k) ≤ 3 + 1− 2 + 1 =⇒
∑

j∈σ(1)
s[1,j(k) ≤ 3 (4-63)

∑
j∈σ(7)

s[7,j(k) ≤ 2 + 1− 1 + 1 =⇒
∑

j∈σ(7)
s[7,j(k) ≤ 3 (4-64)

Robots that do not get coupled to robot k therefore do not influence the enabling of the edges
from input nodes for robot k.

Lucy Smeets Master of Science Thesis



Chapter 5

Scheduling

The model that describes the dynamics of the sorting system is complete, taking into account
all possible routes, orders and synchronizations. The optimal choices for all robots in the
sorting area to minimize the total time for sorting a large amount of parcels with given
targets can be found with scheduling. A well-known and widely used scheduling technique
is model predictive scheduling (MPS). This chapter discusses theory on MPS and gives an
overview of the optimization structure, and how the optimization problem is implemented
into the solver Gurobi [14].

5-1 Model predictive scheduling

One of the most popular control methods is model predictive control (MPC). It is popular
for its ability to anticipate on future events, its flexibility with respect to disturbances and
delays and the possibility of constraining both inputs and outputs. A common approach in
MPC is the receding horizon principle. Each time step, optimal inputs are based on future
predictions over a certain horizon and available information on the past steps. Only the input
for the current step is applied to the system that gives optimal results for the entire horizon,
and the horizon shifts to the next time step. This is done each time step, which makes it
possible to act on any disturbances. This methodology can be extended to scheduling, hence
the term model predictive scheduling [5, 15,16].

5-1-1 MPS for SMPL systems

In many cases, the elements in switching max-plus linear (SMPL) systems that need to be
optimized are binary control variables instead of the input u(k). In the sorting system, only
an uncontrollable, external input ue(k) is present. The control vector consists of all binary
decision variables, which are stacked into control vector v(k):

Master of Science Thesis Lucy Smeets



48 Scheduling

v(k) =



w`(k)
si,j(k)

fl,µ(k − µ)
pl(k)

zi,µ(k − µ)
bi,µ(k − µ)
ck(k + γ)


(5-1)

The total SMPL system of the sorting system for robot k can be summarized as

x(k) ≥
µmax⊕

µ=−µmax

Aµ(v(k))⊗ x(k − µ)⊕B(v(k))⊗ ue(k) (5-2)

Introducing the prediction horizon Np, Equation 5-2 transforms into the following structure:

x̃(k) ≥Ã0(v(k))⊗ x̃(k)⊕ Ã1(v(k))⊗ x(k − 1)⊕ · · ·⊕
Ãµmax(v(k))⊗ x(k − µmax)⊕ B̃(v(k))⊗ ũe(k)

(5-3)

where

x̃(k) =


x̂(k)

x̂(k + 1)
...

x̂(k +Np − 1)

 , ũe(k) =


ue(k)

ue(k + 1)
...

ue(k +Np − 1)

 (5-4)

with x̂(k +m) the predicted state for m = 0, . . . , Np − 1. Ã0(v(k)) is defined as



A0(0) . . . A−µmax (0) En×n . . . En×n
...

. . .
...

...
Aµmax (µmax) . . . A0(µmax) A−1(µmax) . . . Aµmax−Np+1(µmax)
En×n Aµmax (µmax + 1) . . . A0(µmax + 1) . . . Aµmax−Np+2(µmax + 1)

...
. . .

...
. . .

...
En×n En×n . . . ANp−µmax−2(Np − 1) . . . A0(Np − 1)


(5-5)

Inside Ã0(v(k)), the variables v(k+m) are replaced by m in all matrices for brevity. Each of
the matrices Aµ(m) defines relations between robot k +m and k +m− µ. Lastly,

Lucy Smeets Master of Science Thesis



5-1 Model predictive scheduling 49

Ã1(v(k)) =



A1(v(k))
A2(v(k + 1))

...
Aµmax(v(k + µmax − 1))

En×n
...
En×n


, . . . , Ãµmax(v(k)) =


Aµmax(v(k))
En×n
...
En×n

 , (5-6)

B̃(v(k)) =


B(v(k)) En×nu . . . En×nu
En×nu B(v(k + 1))

...
... . . . En×nu

En×nu . . . En×nu B(v(k +Np − 1))

 (5-7)

The goal is to find the optimal control sequence ṽ(k) = (v(k), . . . , v(k+Np−1)) that minimizes
the time needed to deliver all parcels in the prediction horizon Np. In this case, the receding
horizon principle applies the optimal decision variables that are still allowed to change, instead
of the current input only. With a certain objective function J(k), the complete MPS problem
can be formulated for m = 0, . . . , Np − 1 as

min
x̃(k),ṽ(k)

J(k)

subject to x(k +m) ≥
µmax⊕
µ=−µe

Aµ(v(k +m))⊗ x(k +m− µ)⊕B(v(k +m))⊗ ue(k +m)

Ax(k)x̃(k) = cx(k)
Av(k)ṽ(k) = cv(k)

(5-8)

For cycles nearing the end of the prediction horizon, there are no constraints to look µmax
cycles ahead. This is why µe is defined as min(µmax, Np− 1−m). States and binary decision
variables that are not allowed to change are fixed with the constraints in Ax(k) and Av(k)
respectively. Which decision variables need to be fixed, depends on what information is
available at the time instant at which the optimization is done.

Timing issues
In SMPL systems, state changes are initiated by events and the states represent event times
which are often easy to measure. Therefore, the timing in MPS is different from MPC for
conventional continuous-time systems. The MPS problem is still solved at time each instant
t, but since the event counter k is not related to a specific time, it is not directly known which
event is the current event. At a certain time instant t, information on the states for current
and previous events is needed to solve the MPS problem. Define the current event k as

k = max
{
κ | xi(κ− 1) ≤ t, ∀i ∈ {1, . . . , n}

}
(5-9)

Master of Science Thesis Lucy Smeets



50 Scheduling

This means that for the optimization at time instant t, all elements of the state vector x(k−1)
are fully measured and known [5]. In the sorting system, this means that robot k − 1 has
finished its path, and robot k has not yet. It is possible for the states of robot k and future
robots to be partially known, since they already entered the system and have visited some
nodes. Therefore, also some binary decision variables such as traveled edges and orders
between a pair of robots on certain segments are already known. These are not allowed to
change anymore, but the optimization for unknown decision variables is done, based on the
available information. The horizon shifts when robot k has finished its route.

5-1-2 Optimization problem

The optimization in the MPS problem results in an optimal time schedule for the robots
through the sorting area, making routing, ordering and synchronization choices for each robot
in the prediction horizon Np. At each time step t, this optimization is done for the prediction
horizon starting at cycle k. All information on the states of cycles k−1, k−2, . . . , k−µmax is
known and cannot be changed. The result is an optimal schedule for cycles k, . . . , k+Np− 1.

A type of optimization problem for which many solvers are available is called mixed in-
teger linear programming (MILP) problem. In an MILP problem, the objective function
and constraints are linear in the optimization vector, which consists of both real-valued and
integer-valued parameters. MILP problems are in general NP-hard, which means that com-
putation time of an MILP problem grows exponentially with the size of the problem [17].
Nevertheless, there are many fast and reliable solvers available that are able to solve these
types of problems, such as CPLEX, Gurobi or XPRESS [18]. Gurobi is used to implement
the MILP problem for the sorting system. The implementation is shown in section B-1.

A general framework for MILP problems is given in Equation 5-10, where ζ(k) is the opti-
mization vector. The MPS problem from Equation 5-8 consists of constraints that are linear
in the max-plus algebra. Since they consist of maximization and addition only, they can be
converted to inequalities in the conventional algebra. The MPS problem can therefore be
recast into an MILP problem, if also the objective function is max-plus linear.

min
ζ(k)

cT ζ(k)

subject to Hζ(k) ≤ b

ζ(k) =
[
ζr(k)
ζi(k)

]
, b ∈ {θ(k), b0(k), 0, β}

ζr(k) ∈ Rnr , ζi(k) ∈ Zni

(5-10)

The optimization vector ζ(k) consists of two main parts. The first is ζr(k), containing
all real-valued variables, which are the current and future states for the prediction hori-
zon (x(k), . . . , x(k + Np − 1)). The second part ζi(k) contains all integer-valued variables,
which are the binary control variables for the prediction horizon (v(k), . . . , v(k + Np − 1)).
Vector b contains linear combinations of the travel times of each edge from past, current and
future robots in θ(k), all known states and binary control variables that cannot be changed
in b0(k) and potentially the scalar β. In some cases, an element of b is equal to 0.

Lucy Smeets Master of Science Thesis



5-1 Model predictive scheduling 51

The objective function, the constraint matrix H on the left-hand side and the vector on the
right-hand side of the inequality will be discussed separately. But first, an overview of the
vectors in the optimization problem is given.

Structure
The optimization vector ζ(k) and the known vectors θ(k) and b0(k) are filled with many
variables. The structure of these vectors as implemented for the optimization in Python is
shown below. Define P as the graph representing a floor plan.

ζr(k) =


x(k)

x(k + 1)
...

x(k +Np − 1)

 , ζi(k) =

RO
S

 , θ(k) =
[
T
Tp

]
, b0(k) =


Xp

Rp
Op
Sp
I

 (5-11)

where R,O and S refer to binary control variables for routing, ordering and synchronizations
respectively, T and Tp contain travel times of all edges for future and past cycles respectively,
and I refers to the input times. The subscript p indicates that the variables from that set are
from previous cycles, of which all information is known. For ζi(k), the structure is as follows:

R =



si,j(k)
...

si,j(k +Np − 1)
w`(k)

...
w`(k +Np − 1)


∀(i,j)∈D(P ),
`=1,...,L

O =



fl,µ(k)
...

fl,µ(k +Np − 1)
pl(k)
...

pl(k +Np − 1)
zi,µ(k)

...
zi,µ(k +Np − 1)



∀l=1,...,Ls,
µ=1,...,µmax,

i∈Nord
S =



bi,µ(k)
...

bi,µ(k +Np − 1)
ck+γ1(k + r)

ck+γ2(k + r + 1)
...

ck+γp(k +Np − 1)



∀i∈Nsyn,
µ=1,...,µmax,
γ1=0,...,r−1,
γ2=0,...,r,

...
γp=Np−1−γmax,...,Np−2

The structure of the coupling vectors is a bit more complicated than the others. How the
coupling variables are stored will be discussed at the end of this paragraph. For θ(k), the
structure is

T =

 τi,j(k)
...

τi,j(k +Np − 1)

 ∀(i,j)∈D(P ) , Tp =

 τi,j(k − 1)
...

τi,j(k − µmax)

 ∀(i,j)∈D(P )

Master of Science Thesis Lucy Smeets



52 Scheduling

And lastly, b0(k) is built up like

Xp =

 x(k − 1)
...

x(k − µmax)

 , Rp =



si,j(k − 1)
...

si,j(k − µmax)
w`(k − 1)

...
w`(k − µmax)


∀(i,j)∈D(P ),
`=1,...,L

Op =



fl,µ(k − 1)
...

fl,µ(k − µmax)
pl(k − 1)

...
pl(k − µmax)
zi,µ(k − 1)

...
zi,µ(k − µmax)



∀l=1,...,Ls,
µ=1,...,µmax,

i∈Nord
, Sp =



bi,µ(k − 1)
...

bi,µ(k − µmax)
ck−γ1(k)

...
ck−γg(k + γmax − 1)



∀i∈Nsyn,
µ=1,...,µmax,
γ1=1,...,γmax,

...
γg=1

I =

 ue(k)
...

ue(k +Np − 1)



Regarding the coupling variables, the structure is not as straightforward as for the other types
of variables. Other variables are known when the index is in the past, that is for k − µ with
µ > 0. This is also the case for coupling variables, but it also holds that coupling variables
with indices in the future (k − µ with µ < 0) can still be known. This is due to the active,
driving robots which already have been coupled. This holds for all k, . . . , k + r − 1, which
are the active robots. On the other hand, for robots k + γmax, . . . , k + Np − 1, all coupling
variables are unknown and need to be determined in the optimization problem. The robots
in between, robots k + r, . . . , k + γmax − 1, have a few known and a few unknown variables.
From now on, set γmax = µmax, such that only the previous robots that are already taken
into account in the optimization can be coupled to a new robot.

For clarification on the structure of the optimization vector and known vector containing the
coupling variables, the reader is referred to Equation 5-12. To keep the implementation of
the constraints structured, the lengths of the parts of the vectors regarding one index are all
γmax. For indices k + r, . . . , k + γmax − 1, part of the coupling constraints are known, and
others are still to be optimized. Therefore, there are not γmax variables to fill the part of the
vector. The remainder of that part of the vector is replaced with 0.5, to imply that there is
no variable there. The braces at the sides show which variables belong to each index.

Lucy Smeets Master of Science Thesis



5-1 Model predictive scheduling 53

γmax



γmax



γmax



γmax



unknown (in S)

ck+r−1(k + r)
...

ck(k + r)
0.5
...

0.5
ck+r(k + r + 1)

...
ck(k + r + 1)

0.5
...

0.5
...

ck+γmax−1(k + γmax)
...

ck(k + γmax)
...

ck+Np−2(k +Np − 1)
...

ck+Np−1−γmax(k +Np − 1)



known (in Sp)

ck−1(k)
...

ck−γmax(k)
...

ck+r−2(k + r − 1)
...

ck+r−1−γmax(k + r − 1)
0.5
...

0.5
ck−1(k + r)

...
ck+r−γmax(k + r)

0.5
...

0.5
ck−1(k + r + 1)

...
ck+r+1−γmax(k + r + 1)

...
0.5
...

0.5
ck−1(k + γmax − 1)



 γmax

 γmax
γmax


γmax

 γmax

(5-12)

With the introduction of the prediction horizon, the additional constraints on the coupling
variables for cycles nearing the end of the horizon need some adjustment. Remember the
additional constraint that ensures that a robot gets coupled to precisely one new robot:

γmax∑
γ=1

c[k(k + γ) = γmax − 1 (5-13)

This constraint holds for robots k, . . . , k +Np − 1− γmax, since for each of these robots, the
range of robots they can be coupled to is inside the prediction horizon. For later robots,
looking γmax robots ahead is outside the scope of the prediction horizon. It can happen that
a robot is coupled to none of the robots ahead and in the prediction horizon. Therefore,
the equality constraint from Equation 5-13 would raise an infeasible model for robots k′ =
k + Np − γmax, . . . , k + Np − 1. Define γend = k + Np − 1− k′. For robots k′, the additional
coupling constraints become

γend∑
γ=1

c[k′(k′ + γ) ≥ γend − 1 (5-14)

Master of Science Thesis Lucy Smeets



54 Scheduling

Objective function
The optimization minimizes a certain objective function J(k) which is a linear function of the
optimization vector: J(k) = cT ζ(k). The objective function that is defined for the sorting
system consists of two parts. The first part, Jx(k), minimizes the state values, and the second
part, Ju(k), puts a penalty on driving back to the wrong input.

In the sorting system, the goal is to sort all parcels in the prediction horizon as fast as
possible. Therefore, the objective function wants to minimize the largest state value of each
of the robots k, . . . , k+Np− 1. In other words, a robot should enter the last node on its path
at the smallest time instant possible. In addition, the robots should enter the nodes as soon
as they are able to, thus minimizing each state variable. This objective is less important than
returning to an input as fast as possible, therefore they are multiplied by a small scalar value.
The objectives are captured in Equation 5-15.

Jx(k) =
Np−1∑
m=0

max
i=1,...,n

xi(k +m) +
Np−1∑
m=0

n∑
i=1

0.01xi(k +m) (5-15)

In the solver Gurobi, the first part of this objective function is implemented by introducing a
new optimization variable max_x. The objective is to minimize max_x, while its value is being
pushed towards the highest event time by adding the following constraints for i = 1, . . . , n
and robots k, . . . , k +Np − 1:

xi(k) ≤ max_x (5-16)

It is also desired to have robots drive back to the input where the next parcel is expected to
be available for a pickup. Remember that a conventional binary variable equals 0 when it is
active, and 1 when inactive. By penalizing the use of edges starting in the desirable input
node, the minimization will force an edge from that input node to be active. The expected
input nodes for the entire prediction horizon are sorted in time and denoted by qm for robot
k + m. All edges starting in the input node to be used by the robots are then added to the
objective function as follows:

Ju(k) =
Np−1∑
m=0

∑
j∈σ(qm)

100s[qm,j(k +m) (5-17)

The final linear objective function is defined in Equation 5-18, which is a linear combination
of elements from the optimization vector ζ(k).

J(k) = Jx(k) + Ju(k) (5-18)

Constraint matrix
The optimization problem from Equation 5-10 defines a set of linear constraints with respect
to optimization vector ζ(k). These constraints are contained in matrix H. In chapter 4,
all constraints to model the sorting system are given, first in max-plus algebra and then in
conventional algebra. Remember the max-plus linear routing constraints for node i:

Lucy Smeets Master of Science Thesis



5-1 Model predictive scheduling 55

xi(k) ≥
⊕
j∈π(i)

xj(k)⊗ τj,i(k)⊗ sj,i(k) (5-19)

In conventional algebra, this becomes

xi(k) ≥ max
j∈π(i)

xj(k) + τj,i(k) + βs[j,i(k) (5-20)

This is essentially a set of inequalities. The states are larger or equal to the maximum of a set
of linear functions, so the states should be larger than each of the linear functions separately,
as was already shown in Equation 4-5 and 4-6:

xi(k) ≥ xj1(k) + τj1,i(k) + βs[j1,i(k)
...

xi(k) ≥ xjp(k) + τjp,i(k) + βs[jp,i(k)

(5-21)

Here, p is the amount of predecessors to node i. All types of constraints that are defined for the
model can be written into this structure. Therefore, the constraints can be implemented into
the MILP problem formulation Hζ(k) ≤ b, where each row in H represents one constraint. To
make the inequalities less or equal, the constraints need to be multiplied by -1. All variables
that are in the optimization vector are situated on the left-hand side of the equation. The
resulting MILP formulation of the routing constraints therefore becomes

xj1(k)− xi(k) + βs[j1,i(k) ≤ −τj1,i(k)
...

xjp(k)− xi(k) + βs[jp,i(k) ≤ −τjp,i(k)

(5-22)

The values in the constraint matrix H are all in the set {β,−1, 0, 1,−β} with respect to the
correct indices in the optimization vector ζ(k). H is the collection of all constraints in the
model for cycles k, . . . , k + Np − 1. In Python, a part of matrix H is created for each type
of constraints, divided over the variables that appear in the constraints. For the routing
constraints, this means that parts of H are created each with the amount of rows equal to the
amount of routing constraints. The first part is H_x with respect to the states x, which has a
1 in column j1 and -1 in column i for the first row. The amount of columns is the amount of
states, times the prediction horizon. In addition, H_s is made, which contains the constraints
with respect to edge variables si,j . It has β in the column that corresponds to sj1,i(k) in the
first row. The amount of columns is equal to the amount of edges in the graph, multiplied
by the prediction horizon. To illustrate, the structure of H_x is shown in Figure 5-1. In
Figure 5-1a, all routing constraints with respect to x for one robot are shown, where each row
has an element equal to 1 and to -1. Figure 5-1b shows the routing constraints for x for a
prediction horizon of Np = 10 robots. This is a repetition of the routing constraint matrix for
one robot on the diagonal, since routing constraints are the same for each robot individually.

Master of Science Thesis Lucy Smeets



56 Scheduling

(a) Routing constraints for one robot. (b) Routing constraints for 10 robots.

Figure 5-1: Structure of the routing constraints with respect to state variable x.

Index matrix
The vector b is on the right-hand side of inequalities in MILP format, where each element is
a linear combination of known variables for one constraint. For routing constraints, this is
only one parameter, −τj,i(k). For other types of constraints, the right-hand side can consist
of the sum of multiple parameters and even β when the adjoint of a variable is taken. In
other cases, there might be no elements on the right-hand side at all. Take one set of ordering
constraints from Equation 4-32 where robot k is compared to robots k − µ and k + µ:

xi(k) ≥ xj(k − µ) + βz[i,µ(k − µ) + βp[l(k) + βp[m(k − µ)
xi(k) ≥ xj(k + µ) + β(1− z[i,µ(k)) + βp[l(k + µ) + βp[m(k)

(5-23)

The ordering constraints can be recast into the MILP format as follows:

− xi(k) + βp[l(k) ≤ −xj(k − µ)− βz[i,µ(k − µ)− βp[m(k − µ)
− xi(k) + xj(k + µ)− βz[i,µ(k) + βp[l(k + µ) + βp[m(k) ≤ −β

(5-24)

Note that the right-hand side of the constraints can indeed consist of multiple variables and
the scalar β. In other cases, the right-hand side is equal to 0. Therefore, b is constructed as
follows:

b = F → b∗(k)− s

b∗(k) =

 0
θ(k)
b0(k)

 , [s]i ∈ {0, β} ∀i
(5-25)

A matrix-vector multiplication with a large, almost empty matrix is computationally heavy.
This can be avoided by choosing F to be an index matrix, implicated by the → operator [6].

Lucy Smeets Master of Science Thesis



5-1 Model predictive scheduling 57

This is a matrix consisting of pointers to the elements in b∗(k). If no binary decision variables
are on the right-hand side of a constraint, the index matrix points to the first element of b,
which is 0. The scalar vector s takes care of scalar additions due to adjoint variables in the
constraint.

To illustrate, the right-hand side of Equation 5-24 is created with this structure in Equation 5-
26. Indexing starts at 0, since the model is implemented in Python. The integers x, z and p
point to the correct locations in b∗(k) with respect to the state and binary variables −xj(k−µ),
−βz[i,µ(k − µ), −βp[m(k − µ) respectively. Their locations can be deduced from the structure
of b0(k), described before in paragraph Structure.

b =
[
x z p
0 0 0

]
→ b∗(k)−

[
0
β

]
(5-26)

Constraints for a robot that take into account other robots, such as the ordering and synchro-
nization constraints, result in a more complex constraint matrix than the routing constraints
considering only one robot. Consider again the ordering constraints from Equation 5-24. The
following example creates the constraint and index matrices for ordering with respect to the
state variable x. For every node that has an ordering variable assigned to it, constraints are
added for robot k with respect to k − 1, k + 1, k − 2, k + 2, . . . , k − µmax, k + µmax in that
order. The constraint matrix can be restructured such that all constraints regarding a single
robot k − µ are grouped together. This results in the matrix H0 that gets multiplied with
robot k, where each row has one non-zero element equal to -1, and matrices Hµ for robot
k − µ. In Equation 5-27, the constraint and index matrices are shown, where 0 are matrices
of appropriate dimensions containing only zeros.



H0 H+
1 0 · · · · · · 0

H0 0 H+
2 0 · · · · · · 0

...
... . . . . . . . . . ...

H0 0 · · · 0 H+
µmax 0 · · · · · · 0

H1 H0 H+
1 0 · · · · · · 0

0 H0 0 H+
2 0 · · · · · · 0

...
...

... . . . . . . . . . ...
0 H0 0 · · · 0 H+

µmax 0 · · · 0
0 H1 H0 H+

1 0 · · · · · · 0
H2 0 H0 0 H+

2 0 · · · · · · 0
...

...
...

... . . . . . . ...
0 0 H0 0 · · · 0 H+

µmax 0
...
...

0 · · · · · · 0 H1 H0
0 · · · · · · 0 H2 0 H0
... ... ... ... ...

...
0 · · · · · · 0 Hµmax 0 · · · 0 H0




x(k)

x(k + 1)
x(k + 2)

...
x(k +Np − 1)

 ≤



F1
F2
...

Fµmax

0
F1
...

Fµmax−1
0
0
...

Fµmax−2
...
...
0
0
...
0



→


0

x(k − 1)
x(k − 2)

...
x(k − µmax)

 (5-27)

The matrices Hµ are identical for µ = 1, . . . , µmax, where all odd rows have a non-zero element
equal to 1 and thus construct the part of a constraint with respect to x for robot k−µ, and all

Master of Science Thesis Lucy Smeets



58 Scheduling

even rows consist of zeros. The matrices H+
µ represent the disturbed constraints with respect

to robots k + µ and they are the same as Hµ, but the even and odd rows are switched. For
example, all nodes in the considered sorting area that have an ordering variable are the nodes
with multiple incoming arcs. These are nodes 0, 44, 52 and 61. Matrix H0 is built as follows,
where only the non-zero elements are shown:

H0 =



0 ··· 44 ··· 52 ··· 61 ··· 65

−1
−1

−1
−1

−1
−1

−1
−1


(5-28)

Since the ordering constraints consider nodes with multiple incoming arcs and their successor
nodes, matrices Hµ have non-zero elements for the successor nodes, which are 32, 1, 50 and
43 respectively. For all µ = 1, . . . , µmax, the constraint matrices for k ± µ therefore have the
following form:

Hµ =



0 1 ··· 32 ··· 43 ··· 50 ··· 65

1

1

1

1


, H+

µ =



0 1 ··· 32 ··· 43 ··· 50 ··· 65

1

1

1

1


(5-29)

Index matrices Fµ are used as pointers to states of robots that already finished, where no
constraint matrix Hµ is present. The index matrices have non-zero elements on the odd rows
only. To complete the example, the structure of Fµ is as follows:

Fµ =



32 + 66(µ− 1)
0

1 + 66(µ− 1)
0

50 + 66(µ− 1)
0

43 + 66(µ− 1)
0


(5-30)

Note that wherever an index matrix has a 0, the corresponding constraint matrix has a non-
zero element in that row. The other way around also holds: where an index matrix has a
non-zero element, the corresponding constraint matrix has a row with zeros.

Lucy Smeets Master of Science Thesis



5-2 Online optimization 59

5-2 Online optimization

The optimization problem from Equation 5-10 is implemented in Python by constructing all
the constraint matrices and pointer matrices for each type of constraint and each variable
that appears in the constraints. This scheduling problem is solved by Gurobi for robots
k, . . . , k+Np−1. But when the sorting system is running, this optimization needs to be done
online, taking into account available information at the moment of optimization. The online
optimization with a receding horizon approach consists of three steps. At each time step,
the model needs to be updated with real-time information on the system, the optimization
of the updated model is executed, and finally the optimal choices are passed on to the robots
in the system. An overview of the online optimization is given in Figure 5-2. Due to time
restrictions, the receding horizon strategy is not implemented. This section describes an idea
for implementation of the online optimization.

Figure 5-2: Online optimization structure.

5-2-1 Update model

In online optimization, the scheduling problem is solved for robots in the prediction horizon
at each time step t, with a fixed time interval between consecutive time steps. At each time
step, real-time information on the system needs to be updated in the SMPL model. The
states represent time instances, which can be measured precisely. Since some of the states of
the robots in the prediction horizon are not allowed to change anymore, since the robots have
already passed these nodes, they need to be fixed with equality constraints. The same needs
to be done for all decision variables that can not change anymore.

For example, let robot k pick up a parcel at input node 46, and let it at time step t
be somewhere between node 44 and node 1, as shown in Figure 5-3. There are certain
variables that need to be fixed. Robot k has traveled path (46, 41, 64, 44). Therefore,
states x46(k), x41(k), x64(k) and x44(k) are known and should be fixed. Also, the trav-
eled edges are known and the decision variables representing them should not be able to
change: s[46,41(k) = s[41,64(k) = s[64,44(k) = s[44,1(k) = 0. The travel times that robot k needed
to travel these edges until node 44 can also be measured and substituted into θ(k) at the
right-hand side of the MILP problem. Moreover, node 44 has two incoming arcs. Since robot
k has passed this node, the order in which k entered node 44 in relation to robots k ± µ for
µ = 1, . . . , µmax is also known and should be fixed. At certain points in the graph, information
on segments (pl(k)) and paths (w`(k)) is also known. All known information can be included
in the model by adding equality constraints as defined in the MPS problem in Equation 5-8.

Master of Science Thesis Lucy Smeets



60 Scheduling

Figure 5-3: Some edge variables are fixed at time t, indicated by a red arrow.

As mentioned earlier, there is a constant number of r robots driving through the sorting area,
and the prediction horizon Np is taken larger than r. At the start of the sorting process
(t = 0) the horizon consists of robots [0, . . . , Np − 1] and the active robots are [0, . . . , r − 1].
Both lists of robots have a fixed length of Np and r respectively. When a robot finishes its
job and returns to an input node, it is no longer an active robot. It gets removed from the
list of active robots and robots in the horizon, and added to the list with finished robots.
The horizon is extended until it has Np elements, and the list of active robots until it has r
elements. Note that the finished robot is coupled to this new active robot with a coupling
variable.

The list of active robots is an ascending series, and if at time step t > 0 the difference between
the first and last elements is exactly r − 1, the structure of the problem is the same as for
t = 0. It is not a given that the robot at the beginning of the active list is also the first
robot to return. If another robot finishes first, the structure of the MILP problem changes.
Therefore, two types of updates are distinguished. The horizon shifts when the first robot
finishes its job, and the constraint matrices need to be adjusted when another robot finishes.
Assume that the list of active robots at time step t− 1 is [k, . . . , k + r − 1].

Shift horizon
It is important to keep track of the currently active robots and the latest robots that finished
in order to keep the model up to date. When at time step t, robot k has finished its job,
it gets removed from the list of active robots and added to the list of finished robots. This
operation is shown in Equation 5-31.

active finished k
...

k + r − 1

⇒
k + 1

...
k + r


 k − 1

...
k − µmax

⇒
 k

...
k − µmax + 1

 (5-31)

The horizon shifts in the same way as the active robots, and becomes [k + 1, . . . , k +Np]. It
is possible that multiple robots have finished between the time instants t − 1 and t. If the

Lucy Smeets Master of Science Thesis



5-2 Online optimization 61

robots are all at the beginning of the list of active robots, both lists should shift with the
amount of robots that finished. The structure of the scheduling problem does not change in
this case, and the optimization can be executed again. If, on the other hand, a later robot
finishes before the first, the structure of the constraint matrices does change.

Adapt constraint matrices
When a robot has finished at time t that is not the first active robot, say robot k + 1, the
lists change in the following way:

active finished

 k
...

k + r − 1

⇒


k
k + 2
k + 3
...

k + r


 k − 1

...
k − µmax

⇒


k − 1
...

k − µmax
k + 1

 (5-32)

Note that the horizon does not shift, since robot k is still active, and that the length of the
finished list is variable. The robot that finished gets added to that list, but no robots are
removed from the list. This is because robot k is still active, and the constraints for k with
respect to k − µ should not be neglected. Because of this change in structure in the future
and past vectors, the structure of the constraint matrices also changes. This is not the case
for constraint matrices for routing constraints, since these constraints for robot k do not take
into account other robots. Ordering and synchronization constraints, on the other hand, are
created with respect to other robots, so those constraint matrices need to be adapted to fit
the active robots.

Remember the structure of the ordering constraint matrix with respect to state variable x
from Equation 5-27. This structure changes due to the change in active and finished robot
list structures. The changes are shown in bold in Equation 5-33. Note that the amount of
constraints stays constant.

Because robot k+ 1 already finished and is moved to the right-hand side of the equation, the
constraints regarding robot k + 1 do not end up in the constraint matrix, but in the index
matrix. Two types of adaptations are distinguished. The first one applies to robots in the
prediction horizon that started earlier than the already finished robot, and the second one
applies to robots that started later than the finished robot.

When a robot (k) has constraints with respect to a later robot that already finished (k + 1),
the constraints for the whole prediction horizon remain unchanged, except for the finished
robot. This is done by replacing H+

1 with a matrix containing only zeros. Note that in
Equation 5-33, the constraints regarding the remaining part of the prediction horizon are
shifted upwards. Since H+

µ are the same for all µ = 1, . . . , µmax, the only notable change
in the constraint matrix is adding zeros instead of H+

1 . In the index matrix, the same shift
upwards takes place, and the rows where zeros are added in the constraint matrix, pointers
are added in the index matrix. This is denoted with an asterisk. Each constraint has either
a non-zero element in the constraint matrix or in the index matrix. In the nominal case,
zeros and non-zeros alternate rows. But in the case where a later robot finishes earlier, this

Master of Science Thesis Lucy Smeets



62 Scheduling

changes. The pointers in F ∗1 do not only contain the constraints regarding x(k − 1), but on
the other rows, they point to states of robot k + 1, which are added to the bottom of the
previous state vector. F ∗1 is shown in Equation 5-34.



H0 H+
2 0 · · · · · · 0

H0 0 H+
3 0 · · · · · · 0

...
... . . . . . . . . . ...

H0 0 · · · 0 H+
µmax 0 · · · · · · 0

H0 0 · · · · · · 0 · · · · · · 0
0 H0 H+

1 0 · · · · · · 0
H2 H0 0 H+

2 0 · · · · · · 0
0 H0 0 0 H+

3 0 · · · · · · 0
...

...
... . . . . . . . . . . . . ...

0 H0 0 · · · · · · 0 H+
µmax 0 · · · 0

0 H1 H0 H+
1 0 · · · · · · 0

0 0 H0 0 H+
2 0 · · · · · · 0

H3 0 H0 0 0 H+
3 0

...
...

...
... . . . . . . ...

0 0 H0 0 · · · · · · 0 H+
µmax 0

...

...
0 · · · · · · 0 H1 H0
0 · · · · · · 0 H2 0 H0
... ... ... ... ...

...
0 · · · · · · 0 Hµmax 0 · · · 0 H0




x(k)

x(k + 2)
x(k + 3)

...
x(k +Np)

 ≤



F2
F3
...

Fµmax

F ∗
1

0∗

0
F1
...

Fµmax−2
0
0∗

0
...

Fµmax−3
...
...
0
0
...
0



→



0
x(k − 1)
x(k − 2)

...
x(k − µmax)
x(k + 1)


(5-33)

When a robot (k+1) finishes before the first robot in the prediction horizon (k), the constraint
structure of the robots that started later than the finished robot also needs adaptations.
Consider the constraints for robot k + 2 in the second block of constraints in the constraint
matrix. The first row defines constraints with respect to robots k + 2 ± µ for µ = 1, so for
robots k + 1 and k + 3. The constraints in the constraint matrix with respect to robot k + 1
get substituted by an all-zero matrix, and added to the index matrix. The index matrix was
originally a zero vector, but now it becomes 0∗, which is defined in Equation 5-34.

F ∗1 =



32
32 + 66µmax

1
1 + 66µmax

50
50 + 66µmax

43
43 + 66µmax


, 0∗ =



0
32 + 66µmax

0
1 + 66µmax

0
50 + 66µmax

0
43 + 66µmax


(5-34)

The second row of constraints (µ = 2) for robot k + 2 take into account robots k and k + 4.
Therefore, both H2 and H+

2 are present in the constraint matrix, and the index matrix
becomes zero. The result is that for robots that started later than the finished robots, the
index matrix shifts downwards and 0∗ is added above. A setup is made for the implementation
of MPS in section B-2, where a start is made for the adaptations of the constraint and index
matrices.

Lucy Smeets Master of Science Thesis



5-2 Online optimization 63

The adaptations to the matrices of the MILP problem are different for different types of
constraints. For routing constraints that only apply to a single robot k, nothing changes.
This also holds for the additional constraints defined in subsection 4-3-4. For constraints
built for robots k and k ± µ like ordering and synchronization constraints, the matrices are
subjected to systematic adaptations as previously described. The last type of constraints is
coupling, which has a different structure than ordering and synchronization constraints since
it relates robot k to robots k − γ only for γ > 0. The structural changes of the optimization
matrices are comparable to the changes explained for future and past robots, but only taking
into account the past robots. Note that the vectors containing the coupling variables are built
differently than vectors of other variables, as shown in Equation 5-12.

5-2-2 Update system

After the model update, possibly including a shift in the horizon and adaptations to the
constraint matrices, the SMPL system is optimized. This results in an optimal time schedule
for the robots, which can be derived from the states x(k), . . . , x(k + Np − 1), and the corre-
sponding optimal choices, represented by all binary variables in the model. To make online
optimization possible, these choices need to be processed and communicated to the robots in
the sorting system. Due to time restrictions, the optimal choices are not implemented into
the system.

An idea to optimize the sorting process is to use the choices in edges, orders and synchro-
nizations to control the robots. The important variables to use are si,j(k), zi,µ(k − µ) and
bi,µ(k − µ) for all robots. Including the optimal choices for ordering in nodes with multiple
incoming edges and for synchronizations creates a new way of path planning for this system.

A brief explanation on the current path planning was given in chapter 2. Robots claim
nodes, which become available to claim for other robots once that robot has left the node.
The example from Figure 2-3 showed that the claiming method used now does not always
prove to be optimal. Therefore, the orders and synchronizations in practice might differ
from the optimal orders and synchronizations according to the SMPL model of the system.
The optimal decision variables can be used in a certain way to force the orders in which
robots claim nodes into the system. Details on the implementation plan are left out for
confidentiality reasons. What follows is an explanation of the way the optimized decision
variables for synchronizations are stored and how they should be interpreted. This is similar
for the ordering variables.

The optimized synchronization variables are shown in Figure 5-4. Each cell represents a
synchronization variable b[i,µ(k), which defines the order between robots k and k + µ. Each
row contains the variables for robot k for all nodes with a synchronization variable and all
µ = 1, . . . , µmax = 9. There are four locations in the sorting area that need a synchronization
variable, which are nodes i = 41, 56, 30, 43 in the graph. The columns are grouped per µ, and
contain the variables for all those nodes.

The highlighted part defines the order between robot 0 and 1, if there is a synchronization
needed between the two robots. The variable b[41,1(0) = 0, meaning that robot 0 goes before
robot 1 in the synchronization at node 41. The synchronizations for robot 0 with respect to
robot 1 on the other nodes are all equal to 1. This either means that robot 0 has to wait
for robot 1 on these nodes, or that no synchronization is needed. This is the case when the

Master of Science Thesis Lucy Smeets



64 Scheduling

Figure 5-4: Synchronization variables b[i,µ(k) after running an optimization.

robots are traveling the same segment where the synchronization takes place, and thus follow
each other, or when one of the robots does not travel past that synchronization point.

Lucy Smeets Master of Science Thesis



Chapter 6

Visualization

To test the model accuracy and to see the robots navigate through the sorting area according
to their optimal decisions, the results should be visualized. This is done through a simulation
in Python with the help of the matplotlib library. This chapter discusses a simulation and
highlights important moments where robots make certain choices.
The chosen simulation has 8 active robots (r) and a prediction horizon Np of 12, which means
that in total 4 robots are coupled to a new robot and receive a second parcel. At most 8 robots
are driving around at the same time, and in total 12 parcels get sorted. Each robot takes
into account 9 robots that started earlier and later both for ordering and synchronization
(µmax) and for coupling (γmax). The target nodes are chosen randomly, and the input times
are drawn from the gamma distribution defined in subsection 4-2-3 for each input and scaled
for confidentiality reasons. The input times, input nodes and target nodes for all robots are
presented in Table 6-1.

k ue Input q Target
0 1.0 46 29
1 2.0 50 30
2 7.5 50 27
3 9.2 46 7
4 17.5 50 12
5 17.8 46 30
6 20.6 50 29
7 25.6 46 8
8 26.0 50 27
9 30.1 46 22
10 30.9 50 35
11 33.1 46 26

Table 6-1: External factors for the simulation with r = 8, µmax = γmax = 9 and Np = 12.

The figures in this chapter are screenshots taken from the simulation. Robots are red when
they are carrying a parcel and become green when they arrive at their target. There is

Master of Science Thesis Lucy Smeets



66 Visualization

a notable difference between the way the edges are depicted in the screenshots and in the
figures of the floor plan shown before. In the earlier figures, it was important to show which
nodes are connected to each other. In the sorting system, robots drive via certain points.
Therefore in the simulation the edges are drawn accordingly. The code for the visualization
is given in Appendix C.

Ordering and synchronization
The decisions for ordering and synchronization were previously explained separately. In the
used sorting area, all nodes with multiple incoming edges (ordering) are also near synchro-
nization configurations where nodes are too close to each other. Therefore, the choices have
much overlap in the simulation and they are discussed together. Figure 6-1 shows a situation
where two robots travel to node 44 at the bottom left through different edges and an order
needs to be chosen. In addition, the preceding nodes 62 and 64 are not allowed to be occupied
simultaneously due to the small distance between them.

(a) Robots 6 and 7 need to be synchronized.

(b) Robot 6 waits for robot 7.

(c) The order between the robots in node 44 is the same as for the synchronization.

Figure 6-1: Example of two robots switching order.

Lucy Smeets Master of Science Thesis



67

The choice is made to let robot 7 go ahead of robot 6 in the synchronization configuration for
node 42, where the decision variable is b42,1(6) = ε. This means that robot 6 has to stay in
its position until node 64, the node too close to the robot’s successor node, has been left by
robot 7 as shown in Figure 6-1a and 6-1b. As a consequence, the order in node 44 is the same:
z44,1(6) = ε. This is depicted in Figure 6-1c, where a safe distance is maintained between
the robots. Since robot 6 started its job earlier than robot 7, this synchronization enabled a
switch in order between robots.

Delays
In the same simulation, another synchronization is made at the crossing at the top. This
simulation is a nominal case, assuming no delays in the system. Adding a delay to an edge
shows the adaptability of the model. In the nominal case, the order of robots 6, 8, 10 and 11
passing the crossing is shown in Figure 6-2. Robot 6 crosses first, and robots 8, 11, 10 follow
in this order.

(a) Robot 6 passes the crossing before 8, 10 and 11.

(b) Robots 8, 11 and 10 are the next robots to cross.

Figure 6-2: A synchronization without any delays.

The target node for robot 6 is 29. It is possible that the robot takes a longer time to drop the
parcel off than expected. Where in the previous case, robot 6 goes ahead of the other robots,
it might be optimal to change this order if the drop-off takes more time than expected. A
delay of 4 seconds is added to edge (29, 12) for robot 6, which results in a different optimal
schedule. Figure 6-3 shows the same situation as before, but robot 6 is running behind.
Because robot 6 arrives at the crossing later, the optimization indeed returns that robots 8,
11 and 10 should go ahead of robot 6.

The switch in order can also be seen in the synchronization variables, highlighted in Figure 6-
4. The node for the synchronization variables at the considered crossing is i = 30, and

Master of Science Thesis Lucy Smeets



68 Visualization

(a) Robot 6 experiences a delay and arrives at node 12 later than expected.

(b) Because of the delay, robots 8, 11 and 10 pass the crossing before robot 6.

Figure 6-3: The same synchronization with a delay.

the variables are shown for robot 6 in relation to robots 8, 10 and 11. In the nominal
case in Figure 6-4a, robot 6 passes the crossing before the other three robots, and therefore
b[30,µ(6) = 0 for µ = 2, 4, 5. In the case where robot 6 is delayed, the same variables become
equal to 1, as shown in Figure 6-4b. This matches with the visualization, where robot 6 passes
the crossing later than the other three robots.

(a) Nominal case. (b) Robot 6 is delayed.

Figure 6-4: Synchronization variables b[30,µ change due to the delay.

Adding a delay on an edge shows that the model is able to adapt to the situation. This is a
useful characteristic of the model when implementing the online optimization, since at each
time step the model is updated with newly gained information, which might differ from the
situation predicted by the model predictive scheduling (MPS) model.

Lucy Smeets Master of Science Thesis



69

Input choice and coupling
Part of the objective function in the optimization problem is assigned to minimizing the
waiting time for operators at the input nodes. When a robot has dropped off its parcel,
it chooses to return to an input node to receive its next parcel, taking into account the
availability of parcels at the input nodes. Figure 6-5a shows robot 1 and 3 both driving back
to an input. The path to input node 50 is shorter than to input node 46, so the robots would
want to drive back to node 50. But because there is a parcel available at node 46 as well, they
choose different input nodes, as shown in Figure 6-5b. Both figures also show an example of
coupling. Robot 0 returns at input node 46 where it gets is next parcel, and continues on its
next job as robot 9.

(a) Input node 50 is the closest input node for robots 1 and 3.

(b) Robots 1 and 3 choose different inputs. Robot 0 gets coupled to robot 9.

Figure 6-5: Robots choose different inputs to minimize operator waiting time, and at an input
node they get coupled to a new robot.

The switching max-plus linear (SMPL) model for the autonomous sorting system is made to
fit any sorting area in which all nodes can be reached from any other node. The visualization
has been successfully tested on multiple floor plans that are in use at Prime Vision. These
floor plans need to stay confidential, so the results are not shown here.

Master of Science Thesis Lucy Smeets



70 Visualization

Lucy Smeets Master of Science Thesis



Chapter 7

Conclusion

The focus of this thesis research was to create a switching max-plus linear (SMPL) model that
represents the Autonomous Sorting system at the software company Prime Vision. Creating
the model, the optimization and the visualization were the three main topics in this thesis,
where the creation of the model answers the main research question:

Can the Autonomous Sorting system at Prime Vision be modeled with an SMPL model?

This question can now be answered with a simple yes. The process of achieving this answer
and the model will be discussed in this section. In addition, the following sub questions will
be answered:

1. Is it possible to create a flexible SMPL model that can be applied to different sorting
areas?

2. How can an optimal schedule be obtained from the SMPL model?

3. How can the resulting optimal schedule be used to control the system?

The model has been constructed as follows. Three different types of decisions are distin-
guished, and system matrices defining the SMPL system for each decision type are constructed
for the sorting system. The routing matrix describes the paths that robots can choose from,
the ordering matrix defines orders between robots in nodes on merging paths, and the syn-
chronization matrix ensures a safe distance between robots on crossing paths. A general way
to construct the system matrices is found, based on the definition of the sorting area that
can be represented by a graph consisting of nodes and edges. Decision variables are therein
automatically defined for nodes with multiple incoming edges and nodes that are too close to
each other, which form the building blocks for the ordering and synchronization matrices re-
spectively. In addition, the paths between all combinations of input nodes and the segments
between input nodes and nodes with multiple incoming or outgoing edges are computed.
This structural approach makes it possible to create an SMPL model for any sorting area,

Master of Science Thesis Lucy Smeets



72 Conclusion

answering sub question 1 with a yes. The only condition is that the sorting area should be
represented by a graph that is strongly connected.

The system matrices are used to systematically create max-plus linear constraints on the states
of the robots, which form the basis of the model predictive scheduling (MPS) problem. The
constraints only contain the operations maximization and addition, which makes it possible
to convert them to a set of linear inequalities in the conventional algebra. The resulting
optimization problem is a mixed integer linear programming (MILP) problem containing
real-valued and integer-valued variables, if an objective function is stated which is also linear.
The linear objectives of the sorting system are defined to minimize the time it takes to sort a
set of parcels, and to minimize the waiting time of operators at the input nodes. By using an
available solver to solve the MILP problem, optimal decisions for all robots in the prediction
horizon are found to minimize the two objectives, along with a time schedule for all robots in
the sorting area. This concludes the answer to sub question 2.

To provide an answer for sub question 3, a plan for online optimization is proposed which
includes a receding horizon approach. It is important that the model gets correctly updated
with the latest information on the locations of the robots before the next optimization starts.
In the dynamic sorting system, it is possible that robots that started later, finish earlier
than other robots, which gives the prediction horizon a different structure. This structurally
changes the constraints in the optimization problem as well. A method is proposed to adapt
the constraints for an accurate system representation at each optimization step, where certain
parts of the constraint matrix and index matrix shift and other parts get replaced by either
zeros or pointers. The decisions on order and synchronization choices that result from the
optimization can be implemented to the system, potentially resulting in a higher throughput.

To conclude, the constraints and objective functions have been implemented in Python, and
the MILP problem is solved with Gurobi. To make an accurate representation of the sorting
system, the input times are based on real sorting data, but manipulated for confidentiality
reasons. The optimization for a certain prediction horizon, which is equal to the amount of
parcels sorted, is visualized through a simulation written in Python. The simulation clearly
shows the decisions that robots make and lets the robots wait for other robots when necessary.
Adding a distortion on an edge in the floor plan shows the adaptability of the model to
disturbances. The model can be applied to any strongly connected sorting area.

Recommendations
Unfortunately, there was not enough time to implement the MPS problem into the sorting sys-
tem real-time. An implementation plan is presented in chapter 5, which would be interesting
to follow up on as a next step.

An important issue that should be kept in mind, is the optimization time. The computation
time increases as the floor plans become more complex when they include more nodes and
more decision variables. If research shows that the computation takes too long for online
optimization, here are a few ideas that could decrease the computation time.

• The coupling variables are needed to schedule and visualize all robots in the prediction
horizon, with a smaller amount of active robots. When optimizing every few seconds
while the sorting system is running, the coupling variables can be neglected, as they are

Lucy Smeets Master of Science Thesis



73

not important for the navigation of the robots. Only the orders and paths for active
robots are of importance. Removing the coupling variables from the model decreases
the amount of constraints and binary variables, resulting in lower computational costs.

• Reducing the amount of robots ahead and before a robot that are taken into account
(µmax) could also reduce the computation time. Since robots have the possibility to
choose from multiple routes which can differ in length, it can happen that robots driving
near each other are more than µmax apart if that value is taken too small. A way to keep
this value small without running into this problem, is to have a varying µmax for certain
nodes, depending on nominal differences between robots at that location. Another way
is to renumber the robots such that robots driving near each other are inside the µmax
range.

• To speed up the optimization, the previous solutions require adaptations to the model,
but another solution can be found in adapting the MILP problem. The constraint
and index matrix can be restructured to make the centralized MPS problem into a
distributed model predictive scheduling (DMPS) problem. The system gets partitioned
into multiple subsystems, and the constraint matrix is easier for the solver to handle [3].

Before the optimization from the SMPL model gets implemented, it is important to know
whether the optimal scheduling achieves a higher throughput. Worst and best case analysis
for SMPL systems can be done using the maximum and minimum growth rate respectively.
The maximum growth rate is based on random switching and can be solved with a linear
programming problem [15, 19], and the minimum growth rate is based on optimal switching
and is a lot harder to compute [20]. The throughput of the system can also be determined
with Monte Carlo simulation, by running the optimization repeatedly for many different input
times and targets [21].

The MILP problem is solved with Gurobi, which is one of the fastest and most reliable solvers
available and often used for these types of optimization problems. It would be interesting
to see how open source solvers would perform on this model. An open source solver with
promising characteristics is MIPCL [22].

Master of Science Thesis Lucy Smeets



74 Conclusion

Lucy Smeets Master of Science Thesis



Appendix A

Constraints

A-1 Routing constraints

The construction of the routing constraints is shown in this section. Important elements are
H_x, H_s and pointer_vector. The first two are the routing constraint matrices with respect
to the states x and edge variables si,j for the prediction horizon pred_h respectively. They
are created according to Algorithm 1 in the methods x and s. Method pointer creates the
index matrix (pointer_vector) that points to the correct travel times saved in tau_indices.

1 import numpy as np
2 import copy
3
4 from class_graph import Subgraph
5 from class_node import InputNode
6
7
8 class Routing :
9

10 def __init__ (self , graph , max_plus_model ) :
11 self . variables = copy . deepcopy ( max_plus_model . variables [ "states"

] )
12 for var , num in max_plus_model . variables [ "routing" ] . items ( ) :
13 self . variables . update ({ var : num })
14
15 self . n_rc = 0
16
17 self . routing_matrix = max_plus_model . routing_matrix
18 self . graph = graph
19 self . max_plus_model = max_plus_model
20
21 self . H_x = [ ]
22 self . H_s = [ ]
23 self . pointer_vector = [ ]

Master of Science Thesis Lucy Smeets



76 Constraints

24
25 def x (self , pred_h ) :
26 H = np . zeros ( [ 1 , self . max_plus_model . nx ] )
27 for node_i , i in enumerate ( self . routing_matrix ) :
28 if node_i not in self . graph . multi_in and np . any (i ) and not

isinstance ( self . graph . node_dict [ node_i ] , InputNode ) :
29 node_j = np . nonzero (i ) # from node_j to node_i
30 new_constraint = np . zeros ( self . max_plus_model . nx )
31 new_constraint [ node_i ] = −1
32 new_constraint [ node_j ] = 1
33 H = np . vstack ( [ H , new_constraint ] )
34 elif node_i in self . graph . multi_in :
35 for arr in np . nonzero (i ) :
36 for j_index in arr :
37 new_constraint = np . zeros ( self . max_plus_model . nx )
38 new_constraint [ node_i ] = −1
39 new_constraint [ j_index ] = 1
40 H = np . vstack ( [ H , new_constraint ] )
41 H = H [ 1 : ]
42 self . n_rc = H . shape [ 0 ] # amount of routing constraints for

a single cycle
43 self . H_x = np . kron (np . eye ( pred_h ) , H )
44 return self . H_x , self . n_rc
45
46 def s (self , pred_h ) :
47 H = np . zeros ( [ self . n_rc , self . max_plus_model . ns ] )
48 for i , constraint in enumerate ( self . H_x [ : self . n_rc , : self .

max_plus_model . nx ] ) :
49 s_from = np . where ( constraint == 1)
50 s_to = np . where ( constraint == −1)
51 s_index = self . max_plus_model . s_indices [ "s_" + str ( s_from

[ 0 ] [ 0 ] ) + "_" + str ( s_to [ 0 ] [ 0 ] ) ]
52 H [ i , s_index ] = beta
53 self . H_s = np . kron (np . eye ( pred_h ) , H )
54 return self . H_s
55
56 def pointer (self , pred_h ) :
57 tau_pointer = np . zeros ( [ self . n_rc , 1 ] )
58 for i , constraint in enumerate ( self . H_x [ : self . n_rc , : self .

max_plus_model . nx ] ) :
59 tau_from = np . where ( constraint == 1)
60 tau_to = np . where ( constraint == −1)
61 tau_pointer [ i ] = self . max_plus_model . tau_indices [ "tau_" + str

( tau_from [ 0 ] [ 0 ] ) + "_" + str ( tau_to [ 0 ] [ 0 ] ) ] + 1 # +1
because a 0 is added above the theta vector

62 self . pointer_vector = np . zeros ( [ pred_h∗self . n_rc , 1 ] )
63 for i in range ( pred_h ) :
64 self . pointer_vector [ self . n_rc∗i : self . n_rc ∗(i+1) ] =

tau_pointer + (i∗len ( self . max_plus_model . tau_indices ) )
65 return self . pointer_vector
66
67
68 beta = −1000

Lucy Smeets Master of Science Thesis



A-2 Ordering constraints 77

A-2 Ordering constraints

The construction of the ordering constraints is shown in the code below. The important
elements are Ho_x, Ho_p and Ho_z, which are the ordering constraint matrices with respect
to the states x, segment variables pl and ordering variables zi,µ respectively for the whole
prediction horizon. They are created according to Algorithm 2 in the methods o_x and o_p
and o_z. These methods also create the pointers (index matrices) for ordering constraints
with respect to all relevant variables. Lastly, the method o_scalar constructs the scalar
vector containing only elements with value 0 or β.

The creation of only the ordering constraints is shown in this class. Similar methods are
defined for the construction of following and splitting constraints, but they are left out since
the code is repetitive. In those methods, the letter ’o’ is replaced by ’f’ and ’e’ respectively.

1 import numpy as np
2 import copy
3
4 from class_node import InputNode
5
6
7 class Ordering :
8
9 def __init__ (self , graph , max_plus_model ) :

10 self . variables = copy . deepcopy ( max_plus_model . variables [ "states"
] )

11 for var , num in max_plus_model . variables [ "ordering" ] . items ( ) :
12 self . variables . update ({ var : num })
13
14 self . n_oc = 0 # number of ordering constraints
15 self . max_plus_model = max_plus_model
16 self . graph = graph
17
18 self . Ho_x = [ ]
19 self . Ho_p = [ ]
20 self . Ho_z = [ ]
21 self . o_x_pointer = [ ]
22 self . o_p_pointer = [ ]
23 self . o_z_pointer = [ ]
24 self . o_scalar_vector = [ ]
25
26 def o_x (self , pred_h , mu_max ) :
27 H = np . zeros ( [ 1 , self . max_plus_model . nx ∗( mu_max+1) ] )
28 next_nodes = {}
29 pred_segments = {}
30 for node in self . graph . multi_in :
31 if not isinstance ( self . graph . node_dict [ node ] , InputNode ) :
32 row = self . max_plus_model . ordering_matrix [ node , : ]
33 next_nodes [ node ] = [ ]
34 curr_pred_segments = copy . deepcopy ( self . graph .

multi_in_pred_segments [ node ] )
35 pred_segments [ node ] = curr_pred_segments
36 constraint = np . zeros ( self . max_plus_model . nx ∗( mu_max+1) )

Master of Science Thesis Lucy Smeets



78 Constraints

37 constraint [ node ] = −1
38 for array_of_next_nodes in np . nonzero ( row ) :
39 for next_node in array_of_next_nodes :
40 next_nodes [ node ] . append ( next_node )
41 for pred_segment in curr_pred_segments :
42 diff_pred_segments = copy . deepcopy (

curr_pred_segments )
43 diff_pred_segments . remove ( pred_segment )
44 for _ in diff_pred_segments :
45 for mu in range ( mu_max ) :
46 disturbed_constraint = copy . deepcopy (

constraint )
47 disturbed_constraint [ next_node+(mu+1)

∗self . max_plus_model . nx ] = 1
48 H = np . vstack ( [ H , constraint ,

disturbed_constraint ] )
49 H = H [ 1 : ]
50 self . n_oc = H . shape [ 0 ] # amount of ordering constraints for

a single cycle
51
52 # repeat matrix for whole prediction horizon
53 Ho_x = np . zeros ( [ self . n_oc∗pred_h , self . max_plus_model . nx ∗( pred_h

+mu_max ) ] )
54 for i in range ( pred_h ) :
55 Ho_x [ self . n_oc∗i : self . n_oc ∗(i+1) , self . max_plus_model . nx∗i :

self . max_plus_model . nx ∗(i+1+mu_max ) ] = H
56 self . Ho_x = Ho_x [ : , : self . max_plus_model . nx∗pred_h ]
57
58 # add normal constraints for cycles > k, such that they can

switch with earlier robots (filling the lower triangular part
of the matrix)

59 Ho = np . zeros ( [ 1 , self . max_plus_model . nx∗mu_max ] )
60 for node , list_of_next_nodes in next_nodes . items ( ) :
61 for next_node in list_of_next_nodes :
62 for pred_segment in pred_segments [ node ] :
63 diff_pred_segments = copy . deepcopy ( pred_segments [ node

] )
64 diff_pred_segments . remove ( pred_segment )
65 for _ in diff_pred_segments :
66 for mu in range ( mu_max ) :
67 constraint = np . zeros ( [ 1 , self . max_plus_model

. nx∗mu_max ] )
68 constraint [ 0 , next_node + ( mu_max−mu−1)∗self .

max_plus_model . nx ] = 1
69 Ho = np . vstack ( [ Ho , constraint , np . zeros ( [ 1 ,

self . max_plus_model . nx∗mu_max ] ) ] )
70 Ho = Ho [ 1 : ]
71
72 for cycle in range ( pred_h −1) :
73 amount = min ( mu_max , cycle+1)
74 self . Ho_x [ self . n_oc ∗( cycle+1) : self . n_oc ∗( cycle+2) , self .

max_plus_model . nx ∗( cycle+1−amount ) : self . max_plus_model . nx
∗( cycle+1) ] = Ho [ : , −self . max_plus_model . nx∗amount : ]

Lucy Smeets Master of Science Thesis



A-2 Ordering constraints 79

75
76 # create pointer for ordering constraints with respect to

variable x
77 px = np . zeros ( [ 1 , 1 ] )
78 for node , list_of_next_nodes in next_nodes . items ( ) :
79 for next_node in list_of_next_nodes :
80 for pred_segment in pred_segments [ node ] :
81 diff_pred_segments = copy . deepcopy ( pred_segments [ node

] )
82 diff_pred_segments . remove ( pred_segment )
83 for _ in diff_pred_segments :
84 for mu in range ( mu_max ) :
85 px = np . vstack ( [ px , next_node+self .

max_plus_model . nx∗mu + 1 , 0 ] )
86 px = px [ 1 : ]
87 p = px . shape [ 0 ]
88
89 self . o_x_pointer = np . zeros ( [ p∗pred_h , 1 ] )
90 for cycle in range ( mu_max ) :
91 for num in range ( int (p/(2∗ mu_max ) ) ) :
92 self . o_x_pointer [ cycle∗p + 2∗( num∗mu_max+cycle ) : cycle∗p +

( num+1)∗2∗mu_max ] = px [ num∗2∗mu_max : ( num+1)∗2∗mu_max
−2∗cycle ]

93 return self . Ho_x , self . o_x_pointer , self . n_oc
94
95 def o_p (self , pred_h , mu_max ) :
96 H = np . zeros ( [ 1 , self . max_plus_model . np ∗( mu_max+1) ] )
97 next_nodes = {}
98 pred_segments = {}
99 for node in self . graph . multi_in :

100 if not isinstance ( self . graph . node_dict [ node ] , InputNode ) :
101 row = self . max_plus_model . ordering_matrix [ node , : ]
102 next_nodes [ node ] = [ ]
103 curr_pred_segments = copy . deepcopy ( self . graph .

multi_in_pred_segments [ node ] )
104 pred_segments [ node ] = curr_pred_segments
105 for array_of_next_nodes in np . nonzero ( row ) :
106 for next_node in array_of_next_nodes :
107 next_nodes [ node ] . append ( next_node )
108 for pred_segment in curr_pred_segments :
109 pred_index = self . max_plus_model . p_indices [ "

p_" + str ( pred_segment ) ]
110 constraint = np . zeros ( self . max_plus_model . np

∗( mu_max+1) )
111 constraint [ pred_index ] = beta
112 diff_pred_segments = copy . deepcopy (

curr_pred_segments )
113 diff_pred_segments . remove ( pred_segment )
114 for diff_pred_segment in diff_pred_segments :
115 diff_pred_index = self . max_plus_model .

p_indices [ "p_" + str ( diff_pred_segment
) ]

116 for mu in range ( mu_max ) :

Master of Science Thesis Lucy Smeets



80 Constraints

117 disturbed_constraint = np . zeros ( self .
max_plus_model . np ∗( mu_max+1) )

118 disturbed_constraint [ diff_pred_index ]
= beta

119 disturbed_constraint [ pred_index+(mu
+1)∗self . max_plus_model . np ] = beta

120 H = np . vstack ( [ H , constraint ,
disturbed_constraint ] )

121 H = H [ 1 : ]
122 Ho_p = np . zeros ( [ self . n_oc∗pred_h , self . max_plus_model . np ∗( pred_h

+mu_max ) ] )
123 for i in range ( pred_h ) :
124 Ho_p [ self . n_oc∗i : self . n_oc ∗(i+1) , self . max_plus_model . np∗i :

self . max_plus_model . np ∗(i+1+mu_max ) ] = H
125 self . Ho_p = Ho_p [ : , : self . max_plus_model . np∗pred_h ]
126
127 # add normal constraints for cycles > k, such that they can

switch with earlier robots (filling the lower triangular part
of the matrix)

128 Ho = np . zeros ( [ 1 , self . max_plus_model . np∗mu_max ] )
129 for node , list_of_next_nodes in next_nodes . items ( ) :
130 for _ in list_of_next_nodes :
131 for pred_segment in pred_segments [ node ] :
132 diff_pred_segments = copy . deepcopy ( pred_segments [ node

] )
133 diff_pred_segments . remove ( pred_segment )
134 for diff_pred_segment in diff_pred_segments :
135 diff_pred_index = self . max_plus_model . p_indices [ "

p_" + str ( diff_pred_segment ) ]
136 for mu in range ( mu_max ) :
137 constraint = np . zeros ( [ 1 , self . max_plus_model

. np∗mu_max ] )
138 constraint [ 0 , diff_pred_index + ( mu_max−mu−1)

∗self . max_plus_model . np ] = beta
139 Ho = np . vstack ( [ Ho , constraint , np . zeros ( [ 1 ,

self . max_plus_model . np∗mu_max ] ) ] )
140 Ho = Ho [ 1 : ]
141
142 for cycle in range ( pred_h −1) :
143 amount = min ( mu_max , cycle+1)
144 self . Ho_p [ self . n_oc ∗( cycle+1) : self . n_oc ∗( cycle+2) , self .

max_plus_model . np ∗( cycle+1−amount ) : self . max_plus_model . np
∗( cycle+1) ] = Ho [ : , −self . max_plus_model . np∗amount : ]

145
146 # create pointer for ordering constraints with respect to

variable p
147 pp = np . zeros ( [ 1 , 1 ] )
148 for node , list_of_next_nodes in next_nodes . items ( ) :
149 for _ in list_of_next_nodes :
150 for pred_segment in pred_segments [ node ] :
151 diff_pred_segments = copy . deepcopy ( pred_segments [ node

] )
152 diff_pred_segments . remove ( pred_segment )

Lucy Smeets Master of Science Thesis



A-2 Ordering constraints 81

153 for diff_pred_segment in diff_pred_segments :
154 diff_pred_index = self . max_plus_model . p_indices [ "

p_" + str ( diff_pred_segment ) ]
155 for mu in range ( mu_max ) :
156 pp = np . vstack ( [ pp , diff_pred_index+self .

max_plus_model . np∗mu + 1 , 0 ] )
157 pp = pp [ 1 : ]
158 p = pp . shape [ 0 ]
159
160 self . o_p_pointer = np . zeros ( [ p∗pred_h , 1 ] )
161 for cycle in range ( mu_max ) :
162 for num in range ( int (p/(2∗ mu_max ) ) ) :
163 self . f_p_pointer [ cycle∗p + 2∗( num∗mu_max+cycle ) : cycle∗p +

( num+1)∗2∗mu_max ] = pp [ num∗2∗mu_max : ( num+1)∗2∗mu_max
−2∗cycle ]

164 return self . Ho_p , self . o_p_pointer
165
166 def o_z (self , pred_h , mu_max ) :
167 H = np . zeros ( [ 1 , self . max_plus_model . nz ] )
168 next_nodes = {}
169 pred_segments = {}
170 all_z_indices = {}
171 for node in self . graph . multi_in :
172 if not isinstance ( self . graph . node_dict [ node ] , InputNode ) :
173 row = self . max_plus_model . ordering_matrix [ node , : ]
174 next_nodes [ node ] = [ ]
175 curr_pred_segments = copy . deepcopy ( self . graph .

multi_in_pred_segments [ node ] )
176 pred_segments [ node ] = curr_pred_segments
177 z_index = self . max_plus_model . z_indices [ "z_" + str ( node )

+ "_" + str (1 ) ]
178 all_z_indices [ node ] = z_index
179 for array_of_next_nodes in np . nonzero ( row ) :
180 for next_node in array_of_next_nodes :
181 next_nodes [ node ] . append ( next_node )
182 for pred_segment in curr_pred_segments :
183 constraint = np . zeros ( self . max_plus_model . nz )
184 diff_pred_segments = copy . deepcopy (

curr_pred_segments )
185 diff_pred_segments . remove ( pred_segment )
186 for _ in diff_pred_segments :
187 for mu in range ( mu_max ) :
188 disturbed_constraint = np . zeros ( self .

max_plus_model . nz )
189 disturbed_constraint [ z_index+mu∗len (

self . graph . multi_in ) ] = −beta
190 H = np . vstack ( [ H , constraint ,

disturbed_constraint ] )
191 H = H [ 1 : ]
192 self . Ho_z = np . kron (np . eye ( pred_h ) , H )
193

Master of Science Thesis Lucy Smeets



82 Constraints

194 # add normal constraints for cycles > k, such that they can
switch with earlier robots (filling the lower triangular part
of the matrix)

195 Ho = np . zeros ( [ 1 , self . max_plus_model . nz∗mu_max ] )
196 for node , list_of_next_nodes in next_nodes . items ( ) :
197 z_index = all_z_indices [ node ]
198 for _ in list_of_next_nodes :
199 for pred_segment in pred_segments [ node ] :
200 diff_pred_segments = copy . deepcopy ( pred_segments [ node

] )
201 diff_pred_segments . remove ( pred_segment )
202 for _ in diff_pred_segments :
203 for mu in range ( mu_max ) :
204 constraint = np . zeros ( [ 1 , self . max_plus_model

. nz∗mu_max ] )
205 constraint [ 0 , z_index + ( mu_max−mu ) ∗( self .

max_plus_model . nz − len ( self . graph .
multi_in ) ) ] = beta

206 Ho = np . vstack ( [ Ho , constraint , np . zeros ( [ 1 ,
self . max_plus_model . nz∗mu_max ] ) ] )

207 Ho = Ho [ 1 : ]
208
209 for cycle in range ( pred_h −1) :
210 amount = min ( mu_max , cycle+1)
211 self . Ho_z [ self . n_oc ∗( cycle+1) : self . n_oc ∗( cycle+2) , self .

max_plus_model . nz ∗( cycle+1−amount ) : self . max_plus_model . nz
∗( cycle+1) ] = Ho [ : , −self . max_plus_model . nz∗amount : ]

212
213 # create pointer for ordering constraints with respect to

variable z
214 pz = np . zeros ( [ 1 , 1 ] )
215 for node , list_of_next_nodes in next_nodes . items ( ) :
216 z_index = all_z_indices [ node ]
217 for _ in list_of_next_nodes :
218 for pred_segment in pred_segments [ node ] :
219 diff_pred_segments = copy . deepcopy ( pred_segments [ node

] )
220 diff_pred_segments . remove ( pred_segment )
221 for _ in diff_pred_segments :
222 for mu in range ( mu_max ) :
223 pz = np . vstack ( [ pz , z_index + mu ∗( self .

max_plus_model . nz + len ( self . graph .
multi_in ) ) + 1 , 0 ] )

224 pz = pz [ 1 : ]
225 p = pz . shape [ 0 ]
226
227 self . o_z_pointer = np . zeros ( [ p∗pred_h , 1 ] )
228 for cycle in range ( mu_max ) :
229 add_index = np . zeros ( [ p , 1 ] )
230 add_index [ : : 2 ] = cycle∗len ( self . graph . multi_in )
231 pz = pz + add_index
232 for num in range ( int (p/(2∗ mu_max ) ) ) :

Lucy Smeets Master of Science Thesis



A-2 Ordering constraints 83

233 self . o_z_pointer [ cycle∗p + 2∗( num∗mu_max+cycle ) : cycle∗p +
( num+1)∗2∗mu_max ] = pz [ num∗2∗mu_max : ( num+1)∗2∗mu_max

−2∗cycle ]
234 return self . Ho_z , self . o_z_pointer
235
236 def o_scalar (self , pred_h ) :
237 scalar = np . zeros ( [ self . n_oc , 1 ] )
238 scalar [ 1 : : 2 ] = −beta
239 self . o_scalar_vector = np . kron (np . ones ( [ pred_h , 1 ] ) , scalar )
240 return self . o_scalar_vector

Master of Science Thesis Lucy Smeets



84 Constraints

Lucy Smeets Master of Science Thesis



Appendix B

Optimization

B-1 The optimization problem

1 import numpy as np
2 import gurobipy as gp
3
4 from gurobipy import GRB
5 from class_constraints import Constraints , assemble_vectors
6
7
8 class Optimization :
9

10 def __init__ (self , graph , max_plus_model , constraints , pred_h ,
gamma_max , robots ) :

11
12 self . constraints = constraints
13 self . max_plus_model = max_plus_model
14 self . graph = graph
15 self . pickup_time = 2
16
17 try :
18
19 """ Create a new model """
20 m = gp . Model ("test" )
21
22 """ Set objective """
23 m . modelSense = GRB . MINIMIZE
24
25 """ Create variables """
26 # Objective
27 max_x = m . addMVar ( shape=1, obj=1, vtype=GRB . CONTINUOUS , name=

"max_x" )
28

Master of Science Thesis Lucy Smeets



86 Optimization

29 # Routing
30 x = m . addMVar ( shape=max_plus_model . nx∗pred_h , obj=0.01 , vtype

=GRB . CONTINUOUS , name="x" )
31 s_ij = m . addMVar ( shape=max_plus_model . ns∗pred_h , vtype=GRB .

BINARY , name="s_ij" )
32 w_l = m . addMVar ( shape=max_plus_model . nw∗pred_h , vtype=GRB .

BINARY , name="w_l" )
33
34 # Coupling
35 c_k_gamma = m . addMVar ( shape=max_plus_model . nc ∗( pred_h−robots )

, vtype=GRB . BINARY , name="c_k_gamma" )
36
37 # Ordering
38 p_l = m . addMVar ( shape=max_plus_model . np∗pred_h , vtype=GRB .

BINARY , name="p_l" )
39 f_l_mu = m . addMVar ( shape=max_plus_model . nf∗pred_h , vtype=GRB .

BINARY , name="f_l_mu" )
40 z_i_mu = m . addMVar ( shape=max_plus_model . nz∗pred_h , vtype=GRB .

BINARY , name="z_i_mu" )
41
42 # Synchronization
43 b_i_mu = m . addMVar ( shape=max_plus_model . nb∗pred_h , vtype=GRB .

BINARY , name="b_i_mu" )
44
45 """ Add constraints """
46 # Routing
47 self . distortion_routing_rhs = assemble_vectors ( self .

constraints . routing_pointer , [ ] , [ self . constraints .
total_theta ] )

48 m . addConstr ( self . constraints . routing_x @ x + self . constraints
. routing_s @ s_ij <= self . distortion_routing_rhs , name="
routing" )

49
50 # Input
51 m . addConstr ( self . constraints . input_x @ x + self . constraints .

input_s @ s_ij <= self . constraints . input_rhs , name="input"
)

52 m . addConstr ( self . constraints . input_add_s @ s_ij == self .
constraints . input_add_rhs , name="additional_input_path" )

53
54 # Coupling
55 m . addConstr ( self . constraints . coupling_x @ x + self .

constraints . coupling_s @ s_ij + self . constraints .
coupling_c @ c_k_gamma <= self . constraints . coupling_rhs ,
name="coupling" )

56 m . addConstr ( self . constraints . last_node_x @ x + self .
constraints . last_node_s @ s_ij + self . constraints .
last_node_c @ c_k_gamma <= self . constraints . last_node_rhs ,

name="last_node" )
57
58 # Ordering

Lucy Smeets Master of Science Thesis



B-1 The optimization problem 87

59 m . addConstr ( self . constraints . ordering_f_x @ x + self .
constraints . ordering_f_p @ p_l + self . constraints .
ordering_f_f @ f_l_mu <= self . constraints . ordering_f_rhs ,
name="following" )

60 m . addConstr ( self . constraints . ordering_e_x @ x + self .
constraints . ordering_e_f @ f_l_mu <= self . constraints .
ordering_e_rhs , name="splitting" )

61 m . addConstr ( self . constraints . ordering_o_x @ x + self .
constraints . ordering_o_p @ p_l + self . constraints .
ordering_o_z @ z_i_mu <= self . constraints . ordering_o_rhs ,
name="ordering" )

62
63 # Synchronization
64 m . addConstr ( self . constraints . synchr_x @ x + self . constraints .

synchr_s @ s_ij + self . constraints . synchr_b @ b_i_mu <=
self . constraints . synchr_rhs , name="synchronization" )

65
66 # Additional constraints
67 m . addConstr ( self . constraints . add_s_ij_s @ s_ij + self .

constraints . add_s_ij_w @ w_l == self . constraints .
add_s_ij_rhs , name="equality_s_ij" )

68 m . addConstr ( self . constraints . add_w_l_w @ w_l == self .
constraints . add_w_l_rhs , name="equality_w_l" )

69 m . addConstr ( self . constraints . add_p_l_p @ p_l + self .
constraints . add_p_l_w @ w_l == self . constraints .
add_p_l_rhs , name="equality_p_l" )

70 m . addConstr ( self . constraints . add_f_l_mu_f @ f_l_mu + self .
constraints . add_f_l_mu_z @ z_i_mu == self . constraints .
add_f_l_mu_rhs , name="equality_f_l_mu" )

71 m . addConstr ( self . constraints . add_x_x @ x + self . constraints .
add_x_w @ w_l <= self . constraints . add_x_rhs , name="
last_visited" )

72 m . addConstr ( self . constraints . add_to_input_s @ s_ij + self .
constraints . add_to_input_w @ w_l == self . constraints .
add_to_input_rhs , name="to_input" )

73 m . addConstr ( self . constraints . add_from_input_s @ s_ij + self .
constraints . add_from_input_c @ c_k_gamma <= self .
constraints . add_from_input_rhs , name="from_input" )

74 m . addConstr ( self . constraints . add_c_coupling_horizontal @
c_k_gamma == self . constraints . add_coupling_horizontal_rhs ,

name="coupling_horizontal" )
75 m . addConstr ( self . constraints . add_c_coupling_vertical_ineq @

c_k_gamma <= self . constraints .
add_coupling_vertical_ineq_rhs , name="
coupling_vertical_ineq" )

76 m . addConstr ( self . constraints . add_c_coupling_vertical @
c_k_gamma == self . constraints . add_coupling_vertical_rhs ,
name="coupling_vertical" )

77 m . addConstr ( self . constraints . target_w @ w_l == self .
constraints . target_rhs , name="targets" )

78
79 # Objective that includes event times of all parcels
80 for i in range ( pred_h∗max_plus_model . nx ) :

Master of Science Thesis Lucy Smeets



88 Optimization

81 m . addConstr (x [ i ] <= max_x , name="minimize_max_x_value[" +
str (i ) + "]" )

82
83 # Add penalty to states of inputs that should not be visited
84 self . q_list = [ ]
85 for k in range ( pred_h ) :
86 self . q_list . append ( self . constraints . input_info [ k ] [ "input"

] )
87
88 for num , k in enumerate ( self . q_list ) :
89 successor_list = graph . input_succ [ k ]
90 for successor in successor_list :
91 s_index = max_plus_model . s_indices [ "s_" + str (k ) + "_

" + str ( successor ) ]
92 s_ij [ s_index + num∗max_plus_model . ns ] . Obj = 100
93
94 """ Save model """
95 m . write (’model_routing.lp’ )
96
97 """ Optimize model """
98 m . optimize ( )
99

100 # Extract states and binary variables for each node for each
cycle looked ahead

101 self . states = np . zeros ( [ pred_h , max_plus_model . nx ] )
102 self . arcs = np . zeros ( [ pred_h , max_plus_model . ns ] )
103 self . routes = np . zeros ( [ pred_h , max_plus_model . nw ] )
104 self . segments = np . zeros ( [ pred_h , max_plus_model . np ] )
105 self . follow = np . zeros ( [ pred_h , max_plus_model . nf ] )
106 self . order = np . zeros ( [ pred_h , max_plus_model . nz ] )
107 self . synchronizations = np . zeros ( [ pred_h , max_plus_model . nb ] )
108 self . coupled = np . zeros ( [ pred_h−robots , max_plus_model . nc ] )
109 self . targets = np . zeros ( [ pred_h , 1 ] )
110 for i in range ( pred_h ) :
111 self . states [ i , : ] = x . X [ i∗max_plus_model . nx : ( i+1)∗

max_plus_model . nx ]
112 self . arcs [ i , : ] = s_ij . X [ i∗max_plus_model . ns : ( i+1)∗

max_plus_model . ns ]
113 self . routes [ i , : ] = w_l . X [ i∗max_plus_model . nw : ( i+1)∗

max_plus_model . nw ]
114 self . segments [ i , : ] = p_l . X [ i∗max_plus_model . np : ( i+1)∗

max_plus_model . np ]
115 self . follow [ i , : ] = f_l_mu . X [ i∗max_plus_model . nf : ( i+1)∗

max_plus_model . nf ]
116 self . order [ i , : ] = z_i_mu . X [ i∗max_plus_model . nz : ( i+1)∗

max_plus_model . nz ]
117 self . synchronizations [ i , : ] = b_i_mu . X [ i∗max_plus_model .

nb : ( i+1)∗max_plus_model . nb ]
118 if i >= robots :
119 self . coupled [ i−robots , : ] = c_k_gamma . X [ ( i−robots ) ∗

max_plus_model . nc : ( i+1−robots ) ∗max_plus_model . nc ]
120 if i < gamma_max :
121 self . coupled [ i−robots , −(gamma_max−i ) : ] = 0 .5

Lucy Smeets Master of Science Thesis



B-2 A setup for MPS 89

122 self . targets [ i ] = self . constraints . targets [ i ]
123
124 self . visited_states = np . zeros ( [ pred_h , max_plus_model . nx ] )
125 for k in range ( pred_h ) :
126 path_number = np . where ( self . routes [ k ] == 0) [ 0 ] [ 0 ]
127 path = graph . paths [ path_number ]
128 for node in path . all_nodes :
129 self . visited_states [ k , node ] = self . states [ k , node ]
130
131 except gp . GurobiError as e :
132 print (’Error code ’ + str (e . errno ) + ’: ’ + str (e ) )
133
134 except AttributeError :
135 print (’Encountered an attribute error’ )

B-2 A setup for MPS

The code below is the beginning of the implementation of model predictive scheduling (MPS).
Every 5 seconds (step), the model gets updated with the function run_mpc which calls method
update. The update does not measure real-time data on the robots yet, but only uses the
locations of the robots as predicted in the optimization. Lists of active and finished robots
are constructed and updated. The method adapt_double_mu is the beginning of a method
that adapts the constraint and index matrices for ordering and synchronization constraints
according to the structure of the active robots list. This method is not finished yet. Method
adapt_single_mu should adapt the constraint and index matrices for coupling constraints
when the active robots list has a structural change.

1 import copy
2 import operator
3
4 import numpy as np
5 import sched
6 import time
7
8 from main import equinox , mp_model , Np , mu , r , equinox_constraints ,

equinox_opt
9 from class_optimization import Optimization

10 from class_constraints import Constraints
11
12
13 class MPC :
14
15 def __init__ (self , graph , max_plus_model , pred_h , mu_max , robots ,

tot_parcels ) :
16 self . max_plus_model = max_plus_model
17 self . graph = graph
18 self . active_robots = [ k for k in range ( robots ) ]
19 self . horizon = [ k for k in range ( pred_h ) ]
20 self . finished_robots = [ ]
21 self . past_robots = [ ]

Master of Science Thesis Lucy Smeets



90 Optimization

22 self . n_fut = np . zeros ( [ Np , 1 ] ) # amount of robots > k’ that
finished before k’ (for k’ = k,...,k+Np-1)

23 self . n_past = np . zeros ( [ Np , 1 ] ) # amount of robots k: k’-
mu_max < k < k’ that finished already

24 self . threshold = np . zeros ( [ Np , 1 ] ) # highest number allowed in
pointers (in case that a robot > k finishes before k)

25
26 # self.constraints = Constraints(graph , max_plus_model , pred_h ,

mu_max , robots)
27 self . init_constraints = equinox_constraints
28 self . constraints = copy . deepcopy ( self . init_constraints )
29 # self.optimization = Optimization(graph , max_plus_model , self.

constraints , pred_h)
30 self . init_optimization = equinox_opt
31 self . optimization = None
32 self . test = [ ]
33 self . changed = [ ]
34
35 finish_prediction = {}
36 for robot in self . horizon :
37 finish_prediction [ robot ] = round ( max ( self . init_optimization .

visited_states [ robot , : ] ) , 1)
38 self . sorted_finish_prediction = dict ( sorted ( finish_prediction .

items ( ) , key=operator . itemgetter (1 ) ) )
39
40 def update (self , curr_t ) :
41 """ Call this function each time step, include changes in

structure when a robot finishes a job,
42 update constraints with new measured information and run

optimization with updated constraints """
43 sort_finished_robots = {}
44 for robot in self . active_robots :
45 if max ( self . init_optimization . visited_states [ robot , : ] ) <

curr_t :
46 sort_finished_robots [ robot ] = max ( self . init_optimization .

visited_states [ robot , : ] )
47 sorted_finished_robots = dict ( sorted ( sort_finished_robots . items ( )

, key=operator . itemgetter (1 ) ) )
48 if max ( self . init_optimization . visited_states [ self . active_robots

[ 0 ] , : ] ) < curr_t :
49 self . shift_horizon ( len ( sorted_finished_robots ) , curr_t )
50 for _ in range ( len ( sorted_finished_robots ) ) :
51 if max ( self . active_robots ) < Np−1:
52 self . active_robots . append ( max ( self . active_robots ) + 1)
53 for robot in sorted_finished_robots . keys ( ) :
54 self . finished_robots . append ( robot )
55 self . active_robots . remove ( robot )
56 self . finished_robots = list ( dict . fromkeys ( self . finished_robots ) )
57
58 active_pred = copy . deepcopy ( self . active_robots )
59 while len ( active_pred ) < Np and active_pred :
60 active_pred . append ( max ( active_pred ) + 1)
61 self . n_fut = np . zeros ( [ Np , 1 ] )

Lucy Smeets Master of Science Thesis



B-2 A setup for MPS 91

62 self . n_past = np . zeros ( [ Np , 1 ] )
63 for count , robot in enumerate ( active_pred ) :
64 max_num = min ( len ( active_pred ) − 1 , count+mu )
65 difference = active_pred [ max_num ] − robot − min ( max_num−count

, mu )
66 self . n_fut [ count ] = max (0 , difference )
67 max_back = max (0 , count−mu )
68 difference_back = robot − active_pred [ max_back ] − min ( count ,

mu )
69 self . n_past [ count ] = max (0 , difference_back )
70 self . threshold [ count ] = max (0 , mu−(robot−active_pred [ 0 ] ) )
71 if np . any ( self . n_fut != 0) or np . any ( self . n_past != 0) : # and

if any robot finished! Keep track of this somehow
72 self . constraints . ordering_o_x = self . adapt_double_mu ( self .

init_constraints . ordering_o_x , self . init_constraints .
ordering_o_x_pointer , self . init_constraints . noc , self .
max_plus_model . nx )

73 self . test = self . init_constraints . ordering_o_x − self . constraints
. ordering_o_x

74 return
75
76 def shift_horizon (self , n , t ) :
77 """ Call this function when k finishes and the horizon shifts """
78 shift_amount = 0
79 for robot in range (n ) :
80 if max ( self . init_optimization . visited_states [ self .

active_robots [ robot ] , : ] ) < t :
81 shift_amount += 1
82 print ("shift with " + str ( shift_amount ) )
83 return
84
85 def adapt_double_mu (self , matrix , pointer , n_con , n_var ) :
86 ad_matrix = copy . deepcopy ( matrix )
87 ad_pointer = copy . deepcopy ( pointer )
88 change_odd_rows = {}
89 change_even_rows = {}
90 for i in range (Np−1) :
91 change_odd_rows [ i ] = {"row" : [ ] , "pointer" : [ ] }
92 change_even_rows [ i ] = {"row" : [ ] , "pointer" : [ ] }
93 for row in range ( int ( n_con /2) ) :
94 for m in range ( self . n_fut [ i ] ) :
95 try :
96 if ( ad_matrix [ i∗n_con + 2∗row+1, (i+mu−m ) ∗n_var : (

i+1+mu−m ) ∗n_var ] != 0) . any ( ) :
97 change_odd_rows [ i ] [ "row" ] . append (2∗ row+1)
98 var_ind = np . where ( ad_matrix [ i∗n_con + 2∗row

+1, (i+mu−m ) ∗n_var : ( i+1+mu−m ) ∗n_var ] != 0)
[ 0 ] [ 0 ]

99 change_odd_rows [ i ] [ "pointer" ] . append ( ( m+mu ) ∗
n_var + var_ind + 1)

100 ad_matrix [ i∗n_con + 2∗row+1, (i+mu−m ) ∗n_var : (
i+1+mu−m ) ∗n_var ] = np . zeros ( [ 1 , n_var ] )

101 except IndexError :

Master of Science Thesis Lucy Smeets



92 Optimization

102 pass
103 for m in range ( self . n_past [ i ] ) :
104 try :
105 if ( ad_matrix [ i∗n_con + 2∗row , (i−mu+m ) ∗n_var : ( i

+1−mu+m ) ∗n_var ] != 0) . any ( ) :
106 change_even_rows [ i ] [ "row" ] . append (2∗ row )
107 var_ind = np . where ( ad_matrix [ i∗n_con + 2∗row ,

(i−mu+m ) ∗n_var : ( i+1−mu+m ) ∗n_var ] != 0)
[ 0 ] [ 0 ]

108 change_even_rows [ i ] [ "pointer" ] . append ( ( m+mu ) ∗
n_var + var_ind + 1)

109 ad_matrix [ i∗n_con + 2∗row , (i−mu+m ) ∗n_var : ( i
+1−mu+m ) ∗n_var ] = np . zeros ( [ 1 , n_var ] )

110 except IndexError :
111 pass
112 if ad_pointer [ i∗n_con + 2∗row ] > self . threshold [ i ] ∗ n_var :
113 pass
114 # adapt pointer and matrix here
115 return adapted
116
117 def adapt_single_mu ( self ) :
118 return
119
120 Ntot = 20
121 equinox_mpc = MPC ( equinox , mp_model , Np , mu , r , Ntot )
122
123 s = sched . scheduler ( time . time , time . sleep )
124 step = 5
125 t0 = time . time ( )
126 t_end = 100
127 counter = 0
128
129
130 def run_mpc ( schedule ) :
131 global counter
132 t = round ( time . time ( )−t0 , 1)
133 print ( )
134 print ("run " + str ( counter ) + ": t = " + str (t ) )
135 equinox_mpc . update (t )
136 print ("finished = " + str ( equinox_mpc . finished_robots ) )
137 print ("active = " + str ( equinox_mpc . active_robots ) )
138 if t < t_end−step :
139 s . enter (step , 1 , run_mpc , ( schedule , ) )
140 counter += 1
141
142 s . enter (step , 1 , run_mpc , (s , ) )
143 s . run ( )

Lucy Smeets Master of Science Thesis



Appendix C

Visualization

1 import numpy as np
2 import networkx as nx
3
4 import math
5 import copy
6
7 from main import equinox , equinox_opt , mp_model , Np , r
8 from matplotlib import pyplot as plt
9 from matplotlib import animation

10 from class_node import InputNode
11
12
13 def round_decimals_up ( number : float , decimals : int = 2) :
14 if not isinstance ( decimals , int ) :
15 raise TypeError ("decimal places must be an integer" )
16 elif decimals < 0 :
17 raise ValueError ("decimal places has to be 0 or more" )
18 elif decimals == 0 :
19 return math . ceil ( number )
20
21 factor = 10 ∗∗ decimals
22 return math . ceil ( number ∗ factor ) / factor
23
24
25 class Visualization :
26
27 def __init__ (self , graph , max_plus_model , optimization , pred_h ,

robots , figure ) :
28 self . active = [ k for k in range ( robots ) ]
29 self . robots = [ k for k in range ( optimization . states . shape [ 0 ] ) ]
30 self . node_coordinates = graph . node_positions
31 self . visited_nodes = optimization . visited_states

Master of Science Thesis Lucy Smeets



94 Visualization

32 self . sorted_entry_times = {k : {"nodes" : [ ] , "times" : [ ] , "
coordinates" : [ ] , "arc_lengths" : [ ] , "control_points" : [ ] , "
input_time" : 0 , "target" : None} for k in self . robots}

33 for k in self . robots :
34 path_number = np . where ( optimization . routes [ k ] == 0) [ 0 ] [ 0 ]
35 path = graph . paths [ path_number ]
36 self . sorted_entry_times [ k ] [ "nodes" ] = copy . deepcopy ( path .

all_nodes )
37 last_node = self . sorted_entry_times [ k ] [ "nodes" ] [ −1 ]
38 back_to_input_ids = graph . node_dict [ last_node ] . connects_to
39 back_to_input_node = −1
40 for node_id in back_to_input_ids :
41 node = graph . find_node_number ( node_id )
42 if isinstance ( graph . node_dict [ node ] , InputNode ) :
43 back_to_input_node = node
44 break
45 self . sorted_entry_times [ k ] [ "nodes" ] . append ( back_to_input_node

)
46 self . sorted_entry_times [ k ] [ "input_time" ] = optimization .

constraints . input_times [ k ]
47 self . sorted_entry_times [ k ] [ "target" ] = optimization .

constraints . targets [ k ]
48 for node in self . sorted_entry_times [ k ] [ "nodes" ] :
49 time = round_decimals_up ( self . visited_nodes [ k , node ] , 1)
50 self . sorted_entry_times [ k ] [ "times" ] . append ( time )
51 coordinate = self . node_coordinates [ node ]
52 self . sorted_entry_times [ k ] [ "coordinates" ] . append (

coordinate )
53 for num , node in enumerate ( self . sorted_entry_times [ k ] [ "nodes"

] [ 1 : ] ) :
54 edge = ( path . all_nodes [ num ] , node )
55 weight = graph . edge_weight_dict [ edge ]
56 self . sorted_entry_times [ k ] [ "arc_lengths" ] . append ( weight )
57 control_points = graph . edge_dict [ edge ] . control_points
58 self . sorted_entry_times [ k ] [ "control_points" ] . append (

control_points )
59
60 self . couples = {}
61 for k in self . robots :
62 coupled_to = None
63 for num in range ( pred_h−robots ) :
64 try :
65 if abs ( optimization . coupled [ num , num + robots−1 − k ] )

== 0 and num+robots−1−k >= 0 :
66 coupled_to = num + robots
67 break
68 except IndexError :
69 pass
70 if coupled_to :
71 new_time = round_decimals_up ( self . visited_nodes [

coupled_to , self . sorted_entry_times [ coupled_to ] [ "nodes
" ] [ 0 ] ] , 1)

72 else :

Lucy Smeets Master of Science Thesis



95

73 new_time = round_decimals_up ( self . sorted_entry_times [ k ] [ "
times" ] [ −2 ] + self . sorted_entry_times [ k ] [ "arc_lengths"
] [ −1 ] , 1) + 2

74 self . sorted_entry_times [ k ] [ "times" ] [ −1 ] = new_time
75 self . couples [ k ] = coupled_to
76
77 for input_node , pred_list in graph . input_pred . items ( ) :
78 for node in pred_list :
79 incoming_order = np . argsort ( self . visited_nodes [ : , node ] )
80 for robot in incoming_order :
81 if self . visited_nodes [ robot , node ] == 0 :
82 incoming_order = np . delete ( incoming_order , np .

where ( incoming_order == robot ) [ 0 ] )
83 for num , robot in enumerate ( incoming_order [ : −1 ] ) :
84 if self . sorted_entry_times [ incoming_order [ num +1 ] ] [ "

times" ] [ −2 ] − self . sorted_entry_times [ robot ] [ "
times" ] [ −1 ] < 0 :

85 self . sorted_entry_times [ incoming_order [ num +1 ] ] [ "
times" ] [ −2 ] = self . sorted_entry_times [ robot ] [ "
times" ] [ −1 ]

86
87 self . dt = 0.05
88 self . T = 0
89 for k in self . robots :
90 max_t = max ( self . sorted_entry_times [ k ] [ "times" ] )
91 if max_t > self . T :
92 self . T = max_t + 1
93 self . T = math . ceil ( self . T/self . dt ) + 1
94 self . x = np . zeros ( [ self . T , len ( self . robots ) ] )
95 self . y = np . zeros ( [ self . T , len ( self . robots ) ] )
96 for k in self . robots :
97 t = 0
98 row = 0
99 self . x [ row , k ] = self . sorted_entry_times [ k ] [ "coordinates"

] [ 0 ] [ 0 ]
100 self . y [ row , k ] = self . sorted_entry_times [ k ] [ "coordinates"

] [ 0 ] [ 1 ]
101 reference = max ( self . sorted_entry_times [ k ] [ "input_time" ] [ 0 ] ,

self . sorted_entry_times [ k ] [ "times" ] [ 0 ] )
102 step = round ( self . dt∗self . sorted_entry_times [ k ] [ "arc_lengths"

] [ 0 ] / ( self . sorted_entry_times [ k ] [ "times" ] [ 1 ] − reference ) ,
4)

103 for num , i in enumerate ( self . sorted_entry_times [ k ] [ "times"
] [ : − 1 ] ) :

104 xy_node = self . sorted_entry_times [ k ] [ "coordinates" ] [ num ]
105 xy_node_next = self . sorted_entry_times [ k ] [ "coordinates" ] [

num+1]
106 direction = ( xy_node_next [ 0 ] − xy_node [ 0 ] , xy_node_next

[ 1 ] − xy_node [ 1 ] )
107 normalized_dir = direction/np . linalg . norm ( direction )
108 control_points = copy . deepcopy ( self . sorted_entry_times [ k

] [ "control_points" ] [ num ] )
109 xy_next = xy_node

Master of Science Thesis Lucy Smeets



96 Visualization

110 t += self . dt
111 row += 1
112 while self . sorted_entry_times [ k ] [ "input_time" ] [ 0 ] − t >=

self . dt/2 or self . sorted_entry_times [ k ] [ "times" ] [ 0 ] − t
>= self . dt /2 :

113 self . x [ row , k ] , self . y [ row , k ] = xy_next
114 t += self . dt
115 row += 1
116 while self . sorted_entry_times [ k ] [ "times" ] [ num+1]−t >=

self . dt /2 :
117 next_node = self . sorted_entry_times [ k ] [ "nodes" ] [ num

+1]
118 curr_node = self . sorted_entry_times [ k ] [ "nodes" ] [ num ]
119 if next_node in graph . multi_in or curr_node in graph .

block_number_dict . keys ( ) :
120 nom_time = max_plus_model . routing_matrix [

next_node , curr_node ]
121 if self . sorted_entry_times [ k ] [ "times" ] [ num+1] − i

> nom_time :
122 step = round ( self . dt∗self . sorted_entry_times [

k ] [ "arc_lengths" ] [ num ] / nom_time , 4)
123 while self . sorted_entry_times [ k ] [ "times" ] [ num

+1] − t > nom_time :
124 self . x [ row , k ] , self . y [ row , k ] = xy_node
125 t += self . dt
126 row += 1
127 elif curr_node == self . sorted_entry_times [ k ] [ "target"

] :
128 step = round ( self . dt∗self . sorted_entry_times [ k ] [ "

arc_lengths" ] [ num ] / ( self . sorted_entry_times [ k
] [ "times" ] [ num+1]−i−2) , 4)

129 while i − t >= −2:
130 self . x [ row , k ] , self . y [ row , k ] = xy_next
131 t += self . dt
132 row += 1
133 elif curr_node in graph . input_pred . keys ( ) :
134 step = round ( self . dt∗self . sorted_entry_times [ k ] [ "

arc_lengths" ] [ num ] / ( self . sorted_entry_times [ k
] [ "times" ] [ num+1]−reference −2) , 4)

135 while reference − t >= −2:
136 self . x [ row , k ] , self . y [ row , k ] = xy_next
137 t += self . dt
138 row += 1
139 elif next_node in graph . input_pred . keys ( ) :
140 step = round ( self . dt∗self . sorted_entry_times [ k ] [ "

arc_lengths" ] [ num ] / ( self . sorted_entry_times [ k
] [ "times" ] [ num+1]−i ) , 4)

141 xy_cp = xy_node
142 while control_points :
143 xy_cp_next = control_points [ 0 ] [ : 2 ]
144 direction = ( xy_cp_next [ 0 ] − xy_cp [ 0 ] , xy_cp_next

[ 1 ] − xy_cp [ 1 ] )

Lucy Smeets Master of Science Thesis



97

145 normalized_dir = direction/np . linalg . norm (
direction )

146 xy_next += normalized_dir∗step
147 self . x [ row , k ] , self . y [ row , k ] = xy_next
148 t += self . dt
149 row += 1
150 if abs ( xy_next [0] − xy_cp_next [ 0 ] ) < step ∗0 .9 and

abs ( xy_next [1] − xy_cp_next [ 1 ] ) < step ∗ 0 . 9 :
151 control_points . pop (0 )
152 xy_cp = xy_cp_next
153 direction = ( xy_node_next [ 0 ] − xy_cp [ 0 ] ,

xy_node_next [ 1 ] − xy_cp [ 1 ] )
154 normalized_dir = direction/np . linalg . norm (

direction )
155 xy_next += normalized_dir∗step
156 self . x [ row , k ] , self . y [ row , k ] = xy_next
157 t += self . dt
158 row += 1
159 if self . sorted_entry_times [ k ] [ "times" ][−1]−t >= self . dt

/2 :
160 self . x [ row , k ] , self . y [ row , k ] = xy_node_next
161 step = round ( self . dt∗self . sorted_entry_times [ k ] [ "

arc_lengths" ] [ num+1]/(self . sorted_entry_times [ k ] [ "
times" ] [ num+2]−self . sorted_entry_times [ k ] [ "times"
] [ num+1]) , 4)

162 elif self . sorted_entry_times [ k ] [ "times" ][−1]−t < self . dt
/2 :

163 self . x [ row : , k ] , self . y [ row : , k ] = xy_node_next
164
165 ax = plt . gca ( )
166 self . circles = [ ]
167 for k in self . robots :
168 self . circles . append ( plt . Circle ( ( self . x [ 0 , k ] , self . y [ 0 , k ] ) ,

0 . 15 , color=’black’ , fc=’r’ , zorder=3) )
169 ax . set_aspect (’equal’ )
170 for num , c in enumerate ( self . circles ) :
171 ax . add_patch (c )
172
173
174 def animate ( time ) :
175 for k in visual_graph . active :
176 if time∗visual_graph . dt > max ( visual_graph . sorted_entry_times [ k ] [

"times" ] ) :
177 visual_graph . active . remove (k )
178 if visual_graph . couples [ k ] :
179 visual_graph . active . append ( visual_graph . couples [ k ] )
180 for t , circle in enumerate ( visual_graph . circles ) :
181 if t in visual_graph . active :
182 circle . set_visible ( True )
183 circle . center = ( visual_graph . x [ time , t ] , visual_graph . y [ time

, t ] )
184 if circle . center == visual_graph . node_coordinates [

visual_graph . sorted_entry_times [ t ] [ "target" ] ] :

Master of Science Thesis Lucy Smeets



98 Visualization

185 circle . set_facecolor (’g’ )
186 if circle . center == visual_graph . sorted_entry_times [ t ] [ "

coordinates" ] [ 0 ] :
187 circle . set_facecolor (’r’ )
188 else :
189 circle . set_visible ( False )
190 return visual_graph . circles
191
192 """ Draw graph """
193 fig = plt . figure ( figsize=(20 , 5) )
194 nx . draw_networkx_edge_labels ( equinox . to_draw , equinox . draw_node_positions

, edge_labels=equinox . draw_edge_labels )
195 nx . draw ( equinox . to_draw , equinox . draw_node_positions , node_size=equinox .

draw_sizes , labels=equinox . draw_labels , node_color=equinox .
draw_color_map , nodelist=sorted ( equinox . to_draw . nodes ( ) ) , with_labels=
True )

196 visual_graph = Visualization ( equinox , mp_model , equinox_opt , Np , r , fig )
197
198 """ Animate """
199 anim = animation . FuncAnimation (fig , animate , frames=visual_graph . T ,

interval=1000∗visual_graph . dt , repeat=False , blit=True )

Lucy Smeets Master of Science Thesis



Bibliography

[1] M. Silva, “On the history of Discrete Event Systems,” Annual Reviews in Control, vol. 45,
pp. 213–222, 2018.

[2] M. Alirezaei, T. van den Boom, and R. Babuska, “Max-plus algebra for optimal schedul-
ing of multiple sheets in a printer,” in Proceedings of the American Control Conference,
(Montréal, Canada), pp. 1973–1978, 2012.

[3] B. Kersbergen, Modeling and Control of Switching Max-Plus-Linear Systems. PhD thesis,
Delft University of Technology, 2015.

[4] B. Kersbergen, G.A.D. Lopes, T. van den Boom, B. de Schutter, and R. Babuška, “Op-
timal gait switching for legged locomotion,” in Proceedings of the 2011 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS’11), (San Francisco,
California), pp. 2729–2734, 2011.

[5] T. van den Boom, M. van den Muijsenberg, and B. de Schutter, “Model predictive
scheduling of semi-cyclic discrete-event systems using switching max-plus linear mod-
els and dynamic graphs,” Discrete Event Dynamic Systems: Theory and Applications,
vol. 30, no. 4, pp. 635–669, 2020.

[6] M. van den Muijsenberg, “Scheduling using max-plus algebra,” Master’s thesis, Delft
University of Technology, 2015.

[7] Prime Vision, “Company Profile.” https://www.primevision.com/company-profile/,
2020. Accessed 15.04.2021.

[8] Prime Vision, “Autonomous Sorting.” https://www.primevision.com/autonomous-
sorting/, 2020. Accessed 15.04.2021.

[9] M. Drótos, P. Györgyi, M. Horváth, and T. Kis, “Suboptimal and conflict-free control of
a fleet of AGVs to serve online requests,” Computers and Industrial Engineering, vol. 152,
2021.

Master of Science Thesis Lucy Smeets



100 Bibliography

[10] G. van Rossum and F.L. Drake, Python 3 Reference Manual. Scotts Valley, CA: Cre-
ateSpace, 2009.

[11] Prime Vision: internal report (confidential), “Machine overview - System introduction.”
Internal web page, 2020. Accessed 12.03.2021.

[12] B. Heidergott, G.J. Olsder, and J. van der Woude, Max Plus at Work. Modeling and
analysis of synchronized systems: A course on max-plus algebra and its applications,
vol. 13. Princeton, NJ: Princeton University Press, 2005.

[13] B. de Schutter and T. van den Boom, “Max-plus algebra and max-plus linear discrete
event systems: An introduction,” in Proceedings of the 9th International Workshop on
Discrete Event Systems (WODES’08), (Göteborg, Sweden), pp. 36–42, 2008.

[14] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual.”
https://www.gurobi.com/documentation/9.5/refman/index.html, 2021. Accessed
23.08.2021.

[15] T. van den Boom and B. de Schutter, “Modeling and control of switching max-plus-linear
systems with random and deterministic switching,” Discrete Event Dynamic Systems:
Theory and Applications, vol. 22, no. 3, pp. 293–332, 2012.

[16] T. van den Boom and B. de Schutter, “Model predictive control for perturbed max-plus-
linear systems: A stochastic approach,” International Journal of Control, vol. 77, no. 3,
pp. 302–309, 2004.

[17] A. Schrijver, Theory of Linear and Integer Programming. Chichester: Wiley, 1986.

[18] A. Atamtürk and M.W.P. Savelsbergh, “Integer-programming software systems,” Annals
of Operations Research, vol. 140, no. 1, pp. 67–124, 2005.

[19] R.W.A. Neijenhuis, “Modelling and Analysis Using a Switching Stochastic Max-Plus
Linear Model,” Master’s thesis, Delft University of Technology, 2017.

[20] B. de Jong, “Throughput and Stabilisability Analysis of Mode-Constrained Stochastic
Switching Max-Plus Linear Systems,” Master’s thesis, Delft University of Technology,
2022.

[21] R. Tempo, G. Calafiore, and F. Dabbene, Randomized algorithms for analysis and control
of uncertain systems: with applications. Springer, second ed., 2013.

[22] N. Pisaruk, “Mixed Integer Programming Class Library (MIPCL),” in Tanaev’s Readings
Proceedings of the 7th International Conference, (Minsk, Belarus), 2016.

Lucy Smeets Master of Science Thesis



Glossary

List of Symbols

[A]i,j Element (i, j) of matrix A
w̄ The adjoint of max-plus binary value w
γmax Maximum amount of previous robots that can turn into a new robot at an input

node
B The set of binary numbers {0, 1}
Bε The set of max-plus binary numbers {0, ε}
Rε The set of real numbers including −∞
R The set of real numbers
Rm×n An m× n matrix with real numbers
D(A) Set of edges of graph G(A)
Em×n An m× n matrix containing only ε
G(A) Precedence graph of matrix A
N (A) Set of nodes of graph G(A)
Nord Set of nodes with multiple incoming edges
µmax Maximum amount of robots ahead and behind taken into account
� Max-plus Schur product
⊕ Max-plus addition (maximization)
⊗ Max-plus multiplication (addition)
π(i) The set of predecessor nodes of node i
πs(i) The set of segments that end in node i
σ(i) The set of successor nodes of node i
τi,j(k) Travel time for robot k from node i to node j
θ(k) Vector with travel times of all robots
ũe(k) Future input values
x̃(k) Vector of estimated future states
ε The max-plus zero element (−∞)
ζ(k) Optimization vector

Master of Science Thesis Lucy Smeets



102 Glossary

A∗ Kleene star of matrix A
Aord Ordering matrix for an SMPL system
Aroute Routing matrix for an SMPL system
Asyn Synchronization matrix for an SMPL system
b(i) The set nodes that are too close to a successor node of node i
b0(k) Vector containing known decision variables
bi,µ(k − µ) Binary decision variable that determines the synchronization order between

robots k and k − µ in node i
ck(k + γ) Binary decision variable that determines the coupling between robots k and k+γ
En The max-plus algebraic identity matrix of size n×n with 0 on the diagonal and

ε elsewhere
F Index matrix
F ∗µ Index matrix pointing µ robots ahead and to robots behind that finished earlier
Fµ Index matrix pointing µ robots ahead
fl,µ(k − µ) Binary decision variable that determines the order between robots k and k − µ

on segment l
H Constraint matrix in the optimization problem
H+
µ Part of the constraint matrix that refers to µ robots behind

Hµ Part of the constraint matrix that refers to µ robots ahead
J(k) Objective function
Ju(k) Objective function regarding the input nodes
Jx(k) Objective function regarding the state times
k Product (robot) counter
Lsyn Set of synchronization modes
n Number of states (nodes)
Np Prediction horizon
pl(k) Binary decision variable that determines if segment l is traveled by robot k
r Amount of active robots
si,j(k) Binary decision variable that determines if edge (i, j) is used by robot k
ue(k) The time instant that the parcel for robot k is scanned and ready for pickup
v(k) Control vector containing all binary decision variables
w[ The max-plus binary variable w converted to a conventional binary variable
w`(k) Binary decision variable that determines if route ` is traveled by robot k
x(k) State vector: time instants that internal events happen for robot k
zi,µ(k − µ) Binary decision variable that determines the order between robots k and k − µ

in node i

Lucy Smeets Master of Science Thesis



103

List of Acronyms

DES discrete event system
MILP mixed integer linear programming
MPC model predictive control
MPL max-plus linear
MPS model predictive scheduling
SMPL switching max-plus linear

Master of Science Thesis Lucy Smeets



104 Glossary

Lucy Smeets Master of Science Thesis


	Front Matter
	Cover Page
	Title Page
	Table of Contents
	Acknowledgements

	Main Matter
	Introduction
	Background
	Problem statement
	Contribution
	Outline

	Autonomous Sorting
	Workflow
	Room for improvement
	Autonomous sorting as a scheduling problem

	Switching max-plus linear systems
	Introduction to max-plus algebra
	Basic definitions and operations
	Matrix definitions and operations

	Graphs and max-plus algebra
	Max-plus linear systems
	Linearity
	Solving max-plus linear systems

	Switching max-plus linear systems
	Routing
	Ordering
	Synchronization


	Modeling the sorting system
	Sorting areas and graphs
	Nodes and edges
	Paths and Segments
	Graphs and subgraphs

	Choices
	Choice types
	Creating the system matrices
	Targets and inputs

	Constraints
	Routing
	Ordering
	Synchronization
	Additional constraints on control variables


	Scheduling
	Model predictive scheduling
	MPS for SMPL systems
	Optimization problem

	Online optimization
	Update model
	Update system


	Visualization
	Conclusion

	Appendices
	Constraints
	Routing constraints
	Ordering constraints

	Optimization
	The optimization problem
	A setup for MPS

	Visualization

	Back Matter
	Glossary
	List of Symbols
	List of Acronyms



