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Summary

Software testing is important to make sure that code works as intended. Traditionally,
this verification process has relied on manual testing, which is not only time-consuming
but also susceptible to human errors. Through the use of automated test case generation
techniques, we can automate this process and reduce the time and effort needed to test
software. One of the promising techniques for automated test case generation is Search-
Based Software Testing (SBST), which uses search-based metaheuristics to automatically
generate test cases. SBST has been shown to be effective in generating test cases for a
variety of programming languages and levels of testing (e.g., unit, integration, and system
testing). However, SBST is not without its challenges. One of the main challenges is the
size of the search space that needs to be explored.

In this thesis, we explore the potential to improve the effectiveness and efficiency of
automated test case generation by combining multiple tribes of Artificial Intelligence (AI)
to narrow down the search space. First, we introduce two novel approaches that incor-
porate domain-specific knowledge into the search process to reduce the search space for
automated test case generation. Then, we present two novel crossover operators. One uses
hierarchical clustering to identify and preserve promising patterns within test cases. The
other combines multiple crossover operators at different levels (i.e., structure and data) to
increase the diversity within the population. Next, we propose a model inference approach
that infers dynamic types to allow automated test case generation of dynamically-typed
languages. Finally, we introduce a new testing framework for two languages (Solidity and
JavaScript) where no existing tooling existed.

The results of this thesis show that both approaches for incorporating domain-specific
knowledge into the search process are effective in reducing the search space for automated
test case generation. Thereby improving the effectiveness and efficiency of automated test
case generation and increasing the structural coverage and fault detection capabilities of
the generated test cases. Furthermore, the first crossover operator managed to detect and
preserve promising patterns within test cases, thereby maintaining the structure of the test
cases throughout the search process. The results of the second crossover operator show
an increase in structural code coverage resulting from an improvement in the diversity of
the population. Moreover, our results show that the model inference approach improves
structural code coverage, bringing automated test case generation for dynamically-typed
languages one step further. Finally, our new testing framework has demonstrated to be
effective at generating test cases for Solidity and JavaScript.

In summary, this thesis introduced various novel approaches to improve the effective-
ness and efficiency of automated test case generation by combining multiple tribes of Al
to narrow down the search space. The results show that these approaches improve upon
the state-of-the-art and hopefully are a step towards increasing the adoption of automated
test case generation techniques in industry.
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Samenvatting

Het testen van software is belangrijk om ervoor te zorgen dat code werkt zoals bedoeld.
Normaliter wordt dit verificatieproces handmatig gedaan, wat niet alleen tijdrovend is
maar ook gevoelig is voor menselijke fouten. Door het gebruik van technieken zoals ge-
automatiseerde test generatie kunnen we dit proces automatiseren en de tijd en moeite die
nodig is om software te testen verminderen. Een van de veelbelovende geautomatiseerde
test generatie-technieken is Search-Based Software Testing (SBST), dat zoekgebaseerde
metaheuristieken gebruikt om automatisch testen te genereren. SBST heeft bewezen ef-
fectief te zijn in het genereren van testen voor verschillende programmeertalen en ni-
veaus van testen (bijvoorbeeld unit-testen, integratietesten en systeemtesten). Toch heeft
SBST ook zijn uitdagingen. Een van de belangrijkste uitdagingen is de omvang van de
zoekruimte die moet worden verkend.

In deze scriptie onderzoeken we de mogelijkheid om de effectiviteit en efficiéntie van
geautomatiseerde test generatie te verbeteren door meerdere richtingen van Artificiéle In-
telligentie (AI) te combineren om zo de zoekruimte te verkleinen. Eerst introduceren we
twee nieuwe benaderingen die domeinspecifieke kennis opnemen in het zoekproces om
hiermee de zoekruimte voor geautomatiseerde test generatie te verkleinen. Daarna pre-
senteren we twee nieuwe kruisingsoperators. De eerste maakt gebruik van hiérarchische
clustering om veelbelovende patronen binnen testen te identificeren en te behouden. De
andere combineert meerdere kruisingsoperatoren op verschillende niveaus (i.e., structuur
en data) om de diversiteit binnen de populatie te vergroten. Vervolgens stellen we een
modelinferentiebenadering voor die dynamische typen afleidt om geautomatiseerde test
generatie van dynamisch getypeerde talen mogelijk te maken. Ten slotte introduceren we
een nieuw test framework voor twee talen (Solidity en JavaScript) waarvan nog geen be-
staande tools bestonden om de adoptie van geautomatiseerde test generatie in de industrie
te bevorderen.

De resultaten van deze scriptie tonen aan dat beide benaderingen om domeinspecifieke
kennis op te nemen in het zoekproces effectief zijn in het verkleinen van de zoekruimte
voor geautomatiseerde test generatie. Hierdoor wordt de effectiviteit en efficiéntie van
geautomatiseerde test generatie verbeterd en worden de structurele dekking en foutde-
tectiemogelijkheden van de gegenereerde testgevallen vergroot. Bovendien slaagde de
eerste kruisingsoperator erin veelbelovende patronen binnen testgevallen te detecteren
en te behouden, waardoor de structuur van de testen gedurende het zoekproces behouden
bleef. De resultaten van de tweede kruisingsoperator tonen een toename in de structurele
code-dekking als gevolg van een verbetering in de diversiteit van de populatie. Daarnaast
tonen onze resultaten aan dat de modelinferentiebenadering effectief is in het afleiden
van dynamische typen, waardoor geautomatiseerde test generatie voor dynamisch gety-
peerde talen een stap verder wordt gebracht. Ten slotte heeft ons nieuwe test framework
aangetoond effectief testen te kunnen genereren voor Solidity en JavaScript.



XVvi Samenvatting

Samenvattend introduceert deze scriptie verschillende nieuwe benaderingen om de
effectiviteit en efficiéntie van geautomatiseerde test generatie te verbeteren door meerdere
stammen van Al te combineren om de zoekruimte te verkleinen. De resultaten tonen aan
dat deze benaderingen een verbetering zijn ten opzichte van de stand van de techniek en
hopelijk een stap zijn in de richting van een grotere adoptie van geautomatiseerde test
generatie-technieken in de industrie.
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Introduction

Software testing is a critical activity in the software development life cycle for quality assur-
ance. This manual task, however, is tedious, expensive, and error-prone. As a consequence,
researchers have developed various techniques for automating the process of generating test
cases, thereby reducing the time needed for testing and debugging software. Among these tech-
niques, Search-Based Software Testing (SBST) has shown promising results in finding bugs
and achieving high coverage, and demonstrated its effectiveness in real-world applications.
SBST is the application of search-based optimization techniques to the domain of software
testing, where the goal is to find test cases that satisfy specific criteria, such as structural code
coverage, fault detection, or some other pre-defined quality metric.

In this thesis, we introduce novel approaches for automated test case generation that combine
multiple tribes of Artificial Intelligence (AI) to narrow down the search space and improve the
effectiveness and efficiency of these techniques. These novel approaches (i) improve the cur-
rent state-of-the-art in search-based automated test case generation, (ii) preserve promising
structures within test cases, (iii) improve the diversity of the individuals in the population, (iv)
enable automated test case generation for dynamically-typed languages, and (iv) introduce a
modular and extensible ecosystem for automated test case generation that can generate tests
for multiple programming languages.

This chapter is partly based on [ Mitchell Olsthoorn. More effective test case generation with multiple tribes of AL
44th ACM/IEEE International Conference on Software Engineering 2022 (ICSE’22): Companion Proceeding [1].
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oftware testing is an important part of quality assurance. Manually writing test cases,

however, is a tedious and error-prone task that can take up to 50 % of developers’
time [2, 3]. Over the last decades, researchers have developed techniques for automating
the process of generating test cases [4]. These techniques significantly reduces the time
needed for testing and debugging software [5]. Additionally, recent studies have shown
that search-based approaches can achieve higher code coverage compared to manually
written test cases [6, 7] and can identify unknown bugs [8-10]. Furthermore, automated
test case generation tools have been successfully used in industry (e.g., [11-13]).

Search-Based Software Testing (SBST) stands out as one of the most promising ap-
proaches for automated test case generation [4, 14]. SBST reformulates software testing
as a meta-heuristic optimization problem, where a fitness function is used to measure the
quality of different potential solutions. The purpose of a fitness function is to guide the
search process to more promising solutions from a potentially infinite search space, where
the search space represents the domain of all potential solutions.

The current state-of-the-art automated test case generation approaches use Evolution-
ary Algorithms (EAs) to evolve an initial set of randomly generated test cases over time.
One of the reasons why EAs are so effective is because they mimic the process that devel-
opers use to create test cases. Developers copy, paste, and then either modify the values
of a method call or replace it entirely [15].

One of the key challenges in automated test case generation is the size of the search
space [16]. Although EAs could, in theory, generate any possible input data given enough
time, this would, however, be inefficient for complex data [17, 18]. The size and complex-
ity of the search space depend on the System Under Test (SUT) and the chosen fitness
functions. With the ever-increasing complexity of modern applications, generating test
cases, which consist of input data, test structures, and assertions [19], that satisfy difficult
constraints is challenging.

Although automated test case generation is becoming more common in large software
companies, the widespread adoption of these techniques is lagging behind [20]. An ad-
ditional factor for the lack of adoption of automated test case generation techniques in
industry is the shortage of easy-to-use production-level tooling [21].

The overall goal of this thesis is to improve automated test case generation to eventu-
ally increase the adoption of these techniques by developers.

Hypothesis: By combining multiple tribes of artificial intelligence to narrow down
the search space, we can improve the effectiveness and efficiency of automated test case
generation.

If we look at the computer science field as a whole, there are techniques developed in
different fields that could be used to help guide EAs.

First, we focus on narrowing down the search space by incorporating domain-
specific knowledge into the search process. Often programs require input data that is
highly structured, requires specific formats, or has underlying assumptions. We intro-
duce two novel approaches where (i) uses grammars to augment EAs by limiting potential
solutions thereby generating more structured input data and (ii) uses interprocedural con-
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trol dependency analysis to uncover implicit assumptions (pre- and post-conditions) in
the program under test.

Secondly, we focus on preserving promising structures within test cases. By
evolving test cases over time, we risk breaking promising patterns (i.e., sequences of
method calls) that were present in previous test cases. We introduce a novel approach
that uses hierarchical clustering to detect these sequences and preserve them during the
search process.

Thirdly, we focus on improving the diversity of the individuals in the population
by combining two different levels of crossover operators. Diversity within the population
is important as it allows an EA to explore different areas of the search space and prevent
premature convergence. We introduce a novel hybrid multi-level crossover operator that
combines a crossover operator at the test structure and test data level.

Fourthly, we focus on enabling automated test case generation for dynamically-
typed languages. Dynamically-typed languages are becoming more popular, but auto-
mated test case generation techniques for these type of languages are still in their infancy.
These techniques focussed primarily on statically-typed languages as type information is
needed to sample appropriate values for the parameters of a method call. We introduce a
novel approach that uses model inference to infer the types of variables in dynamically-
typed languages.

Lastly, we present an extensible testing framework capable of automatically gener-
ating test cases for two programming languages for which no such existing tooling existed.

1.1 Background

This section provides an introduction to search-based techniques, how they have been
applied to software engineering and testing problems, and the different aspects of search-
based automated test case generation.

1.1.1 Search-Based Software Engineering
Search-Based Software Engineering (SBSE) is the application of search-based optimiza-
tion techniques to software engineering problems [22, 23]. Many of the problems and
challenges we face as software engineers can be stated as optimization problems [24]:

« What is the smallest set of test cases that cover all branches in this program?

« What is the best way to structure the architecture of a particular system?

« What is the set of requirements that balances software development cost and cus-
tomer satisfaction?

« What is the best allocation of resources to this software development project?

« How do we modify a program to make it more efficient in terms of speed and re-
sources?

« What is the best sequence of refactoring steps to apply to this system?
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Over the years, SBSE has been applied to a wide range of software engineering problems,
including requirements engineering [25], design [26], testing [4, 27], and maintenance [28,
29]. In addition, several surveys have been conducted to summarize the field [23, 30, 31].

SBSE techniques are commonly used for software engineering problems as they im-
pose few assumptions on the problem structure and can find near-optimal solutions. Only
two key ingredients are needed to apply search-based techniques to a software engineer-
ing problem [22, 30]:

Representation The representation determines how a software engineering problem is
encoded as a search problem. This encoding determines the size of the search space
and the potential solutions that can be generated. Potential solutions must be en-
coded in a way that they can be manipulated by the search algorithm.

Fitness Function The fitness function is used to evaluate the quality of a potential so-
lution and is used to guide the search to promising areas of the search space. It is
tailored to a specific problem and must be redefined for each new problem. Luckily
many problems in software engineering already have domain-specific metrics that
can serve as a good initial candidate [32].

1.1.2 Search-based Software Testing

Search-Based Software Testing (SBST) is a subfield of SBSE that focuses on the application
of search-based optimization techniques to software testing problems [4, 14, 27, 33]. It has
been applied to a wide range of software testing problems, including unit testing [34], inte-
gration testing [35, 36], system-level testing [37], regression testing [38—-40], and mutation
testing [41].

Search-based techniques can be used throughout the whole software testing process.
We can use fuzzing or fuzz testing to generate input data to test the SUT. The purpose
of this technique is to find inputs that cause the SUT to crash or behave unexpectedly.
Fuzzing requires a pre-defined main entry point, such as a function or method, to start the
search process. Test case generation, on the other hand, generates test inputs, test struc-
tures (i.e., entry points), and assertions, with the goal of testing the functional behavior
of software applications. It generates test cases that maximize specific adequacy criteria,
such as structural code coverage, fault detection, or some other pre-established quality
metric. When a crash happens in a software application, we can use crash reproduction
and fault localization to create a test case replicating the crash and finding the location of
the fault. Finally, we can use patch synthesis to remedy the fault. In this thesis, we will
mostly be focussing on automated unit-level test case generation.

SBST techniques can be categorized into three main categories: black-box, white-box,
and grey-box [42]. Black-box techniques do not use any information about the internal
structure of the program under test. White-box techniques, on the other hand, use the
internal structure of the program under test to guide the search process. Finally, grey-box
techniques use a combination of both black-box and white-box techniques.

Search-Based Optimization Algorithms
Random Search (RS) is an unguided heuristic optimization technique. It is quite common
in the literature, as it is the simplest optimization algorithm, both conceptually and from
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an implementation perspective, and can be used as a baseline against which to compare
more sophisticated approaches. The algorithm randomly selects points or candidates from
within the search space until the goal is fulfilled or a stopping condition is met. Because
of this simplistic approach, RS is not good at finding solutions when they occupy a small
part of the overall search space or the search space is flat (flag problem).

Potential solutions can be found faster, by introducing guidance to the search process.
These so-called fitness-guided search algorithms use a fitness function to evaluate the
quality of a potential solution and guide the search to promising areas of the search space.

Algorithm 1: High-level overview of a hill climbing algorithm (maximizing)

input :Solution space S = {sq,...,s,}
output:Final solution s

1 begin

2 s€S

3 repeat

4 3s’ € Neighborhood(s) : Fitness(s’) > Fitness(s)

5 s«s’

6 until Fitness(s) = Fitness(s’) or Vs’ € Neighborhood(s)

The simplest fitness-guided optimization algorithm is Hill Climbing. Alg. 1 shows a
high-level overview of how a hill climbing algorithm works. Similar to RS, Hill Climbing
starts with an initial random candidate solution (line 2). Potential solutions in the direct
neighborhood are evaluated using the fitness function in an attempt to find a better so-
lution. If a better candidate solution is found, the current solution is replaced with the
better solution (lines 4 - 5). The algorithm then re-evaluates the direct neighborhood until
no better solution can be found (line 6). This solution is a local optimum, as it is not guar-
anteed to be the best solution in the entire search space. Local search algorithms, like Hill
Climbing, only consider one solution at a time and can only search in close proximity to
the current candidate solution, and are therefore not able to escape local optima.

Algorithm 2: High-level overview of a genetic algorithm

output:Final population P
1 begin
P «— RandomPopulation()
repeat
Vs € P : EvaluateFitness(s)
parents «— Selection(P)
offspring «<— Crossover(parents)
P’ «— Mutation(offspring)
P «— Reinsertion(P’)
until Stopping Condition Reached

O 0 N e W N

A Genetic Algorithm (GA), on the other hand, is a global search algorithm inspired
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by the process of natural evolution. As a global search algorithm, GAs sample many po-
tential solutions in the search space at once and, therefore, does not suffer from the local
optima problem. EAs are one of the most commonly used classes of meta-heuristics in
SBST. EAs have been used to generate both test data [4] and test cases [19]. Alg. 2 shows
a high-level overview of how a GA works. The algorithm starts by creating an initial popu-
lation of random candidate solutions (line 2). The fitness of each candidate solution is then
evaluated using a pre-defined fitness function (line 4). A selection operator is applied to
select the best candidate solutions from the population to be used as parents for the next
generation (line 5). These parents are then recombined using a crossover (also called re-
combination) operator, swapping elements between the parents, to create new candidate
solutions, called offspring (line 6). Then, the algorithm mutates the offspring to introduce
new genetic material (line 7). Finally, the next generation of the population is chosen
through the reinsertion operator (line 8). This process is repeated until all objectives have
been achieved or a stopping condition is met (line 9).

Search Heuristics

Fitness-guided algorithms rely on test adequacy criteria, like structural code coverage and
mutation score, to define search heuristics to optimize. The approach level and branch
distance are well-known heuristics for line and branch coverage [3, 4]. The approach level
is the number of control-dependent nodes, within the Control Flow Graph (CFG), between
the nodes covered by the solution and the target node [43]. The CFG represents the flow-
dependent relationships between the statements in the program. The nodes in the graph
represent basic blocks, which are sequences of statements that are executed as a whole.
In more technical terms, it is a sequence of program instructions with a single entry and
exit point. The edges in the graph represent the flow of control between the basic blocks.
A more intuitive understanding of the approach level is the number of if-statements that
still need to be satisfied to reach the target node. The branch distance is much simpler and
specifies how far away a solution (i.e., test case) is removed from satisfying the condition,
measured at the node where the flow of control had split. When these two heuristics are
plotted within the search space, they form a fitness landscape. This landscape can be used
to visualize the search process and to identify promising areas.

Flag Problem

The flag problem is a common issue in SBST that occurs when the condition within a
control-dependent node is not explicit [44, 45]. Examples of such conditions are inline
methods calls (e.g., if (isNull(y))) or when conditions read boolean variables (e.g., i f(x
&& y)). To address this problem, researchers have proposed testability transformations [45].
These transformations modify the program under test in a way that preserves its semantics
but replaces conditions with predicates that involve non-boolean variables. Prior studies
have shown that testability transformations dramatically improve code coverage without
the need for adapting the underlying search algorithms [44, 46, 47].

Test Oracles

When automatically generating test cases, we need to be able to determine whether the
test case is correct or not. Most existing literature makes the conscious decision to assume
that the output of the automatically generated test is correct and leaves the verification
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to the end-user. However, determining whether a test case is correct or not is a difficult
problem, as it requires a human to understand the program under test and the test case.
This is often seen as one of the drawbacks of automated test case generation techniques.

1.1.3 Large Language Models (LLMs)

Recent developments and advances in Large Language Models (LLMs) have been used
in various approaches within the context of automated test case generation [48-51]. Al-
though LLMs have promise in the field of automated test case generation as they generally
excel at test case readability, they are not without their limitations.

Schafer et al. [48] evaluated the effectiveness of OpenAI’s GPT3.5-Turbo without addi-
tional training. They found that the model can generate state-of-the-art statement cover-
age on all 25 NPM packages included in their benchmark. They have observed, however,
that the size and training set of the LLM have a significant impact on the effectiveness of
the generated test cases. Siddiq et al. [49] evaluated three popular LLMs (Codex, GPT3.5-
Turbo, and StarCoder) on two different datasets (HumanEval and the SF110 benchmark
from EvoSuite) to investigate the compilation rates, test correctness, coverage, and test
smells. They found that for HumanEval between 37.5% and 70 % of the generated tests
were compilable depending on the model they used. For SF110 (arguably the more inter-
esting benchmark as it is commonly used in literature), however, only 2.7 % of the gener-
ated tests were compilable. Of these compilable tests, only 52 % were correct (i.e., all test
methods passed). Even though these models generated tests with between 67 % and 92.8 %
of structural overage for HumanEval, all models produced less than 2 % coverage for SF110.
These numbers are 11-19 times lower than the coverage achieved by EvoSuite for SF110.
Finally, the generated tests also suffered from test smells, such as duplicated assertions
and empty test cases. Dakhel et al. [50] performed a similar study but with a focus on
fault detection capability. Their findings show that although LLMs can serve as a useful
tool to generate test cases, they require specific post-processing steps to enhance the effec-
tiveness of the generated test cases, which may suffer from syntactic or functional errors
and may be ineffective at detecting faults. Finally, Ouyang et al. [51] found that LLMs can
be highly unstable because of their non-deterministic behavior, where very different re-
sponses are returned for the same prompt. In comparison SBST techniques have actually
shown to generate fewer code smells than their manually written counterparts [52].

1.2 Challenges

This section discusses key challenges that we seek to address in this thesis.

1.2.1 Size of the Search Space

One of the key challenges in search-based automated test case generation is the size of the
search space [16]. Even when we limit the search space to a single method, the number
of possible inputs can be very large. Moreover, with modern applications becoming more
complex, the search space is growing exponentially. Programs that require complex in-
put data are usually highly structured, require specific formats, and/or domain-dependent.
Previous studies have shown that automatically generated input is often unstructured and
can be difficult to read and interpret [17, 18]. Furthermore, domain-dependent input data
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can be difficult to generate without more information about the underlying implicit re-
quirements of the input data.

These implicit requirements cause a lack of guidance for the search process and can
be difficult to infer. Even though solutions are limited to a specific region of the search
space, the search-based techniques waste valuable time trying potential solutions that will
not work. For example, a program that requires a date as input can accept any date, but
the program might only accept dates in a specific format (e.g., ISO 8601). Additionally, if a
generic data type (e.g., string) is used to represent the date, the chance of generating a valid
date is very low. Programs that require highly structured input data are similarly difficult
to generate as structural constraints need to be satisfied. Highly structured data is quite
common in applications today with common data formats like JavaScript Object Notation
(JSON) and Extensible Markup Language (XML) that are used to send information between
applications.

1.2.2 Preserving Promising Structures
Another challenge in search-based automated test case generation is the preservation of
promising structures within test cases. Test cases consist of input data, test structures (i.e.,
sequences of method calls that are executed in a specific order), and assertions [19]. The
building block hypothesis states that recombining multiple fit building blocks (i.e., partial
solutions) into even fitter larger building blocks is the primary source behind the success
of EAs, where these smaller building blocks are reused across multiple test cases [53].
However, while crossover/recombination operators are effective at combining promising
building blocks, they they do not directly recognize and preserve them [54]. As a result,
the search process can break promising structures that were present in previous test cases.
In particular, these crossover operators can cause the quality, in terms of achieved
coverage and comprehensibility, of the test cases to deteriorate as they do not understand
what makes a test case effective. For example, in a collection (i.e., list of items) class where
the remove method is called before the add method, the remove method will always fail.
Another example is a SUT where a login method needs to be called before any other
method. Without identifying these sequences of method calls, the search process will
waste valuable time trying potential solutions that will not work.

1.2.3 Population Diversity
A common issue with genetic algorithms is premature convergence, which is strongly
tied to the loss of diversity within the population [55, 56]. Premature convergence oc-
curs when the population narrows down to a solution, before the search space has been
explored properly. Genetic algorithms strive to maintain a balance between exploration
(i.e., exploring new areas in the search space) and exploitation (i.e., refining existing so-
lutions) [55, 57]. This balance is adjusted by making changes to the selection, crossover,
and mutation operators. The selection operator determines the selection pressure, and the
higher the selection pressure, the more likely it is that the best individuals are selected for
crossover (ie., exploitation). Conversely, the crossover and mutation operator determine
how an encoding is changed, with a higher probability of crossover and mutation making
it more likely that the offspring will be different from the parents (i.e., exploration).
Having high diversity in the population gives three main benefits [56]. Firstly, diver-
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sity allows genetic algorithms to explore different regions of the search space simulta-
neously, increasing the chance of finding the global optimum. Secondly, multi-objective
optimization involves optimizing multiple conflicting objectives simultaneously. Diver-
sity ensures that the genetic algorithm can captures a wide range of trade-offs between
different objectives. Lastly, in certain optimization problems, the landscape changes over
time due to factors such as evolving objectives. When this happens, individuals with di-
verse characteristics may become more suitable for the new situation. If the population
lacks diversity, it might struggle to adapt to such changes effectively. An example of this
can be seen with automated test case generation, where objectives change over time to
cover different parts of the SUT [58].

1.2.4 Dynamically-Typed Language Support

Most search-based automated test case generation research is focused on statically-typed
programming languages like Java (e.g., EvoSuite [34]) and C (e.g., AUSTIN [59]). They
make use of the static type information to (i) generate suitable input data, and (ii) search
guidance calculations. Without this type information, these approaches have to randomly
guess which types are compatible with the parameter specification of the constructor or
function call, greatly increasing the search space. As reported by Lukasczyk et al. [60],
state-of-the-art approaches used for statically-typed languages do not perform well on
Python programs when type information is not available.

Dynamically-typed programming languages introduce new challenges for unit-level
automated test case generation. The lack of type information makes it difficult to generate
suitable input data. According to the survey from Stack Overflow!, however, Python and
JavaScript are the two most commonly-used programming languages. As both of these
languages are dynamically-typed, there is a need for better automated test case generation
techniques for these types of languages.

1.2.5 Lack of Adoption in Industry

The last challenge that we will highlight is the lack of (general) adoption in industry of
search-based testing approaches. Although automated test case generation is becoming
more common in large software companies, the widespread adoption of these techniques
is lagging behind [20]. One of the factors for this lack of adoption in industry is the short-
age of easy-to-use production-level tooling [21]. Most of the research in this field focuses
on the effectiveness of the automated test case generation and not on the usability of the
tooling. As state-of-the-art genetic algorithms are often complex and hard to understand,
it is difficult for developers to use these tools in practice. Additionally, these types of algo-
rithms have many optimization parameters that need to be tuned to the specific problem at
hand. Given this complexity, it is not trivial to build tooling for each language and/or test-
ing framework. Another factor is that the tooling is often not integrated into the existing
development environment, making it more cumbersome to use.

‘https://survey.stackoverflow.co/2022/#most-popular-technologies-language
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1.3 Research Goals & Questions

The goal of this thesis is to tackle the existing challenges of search-based automated test
case generation to eventually increase the adoption of these techniques by developers. Al-
though Evolutionary Algorithms (EAs) could, in theory, generate any possible input data
given enough time, this would, however, be inefficient for programs requiring complex
data as the search space grows exponentially [17, 18]. We hypothesize that by combin-
ing multiple tribes of Artificial Intelligence (AI) to narrow down the search space, we can
improve the effectiveness and efficiency of automated test case generation. To make the
goal more concrete and limit the scope of this work, we focus on the following research
questions:

The problem with programs that require complex input data is that the data is usually
highly structured, requires specific formats, and/or is domain-dependent. Without more
information about the input data, EAs struggle to generate such data. Therefore, the first
research question focuses on how we can leverage domain-specific knowledge to steer the
search process toward better solutions.

RQ;: How can we reduce the search space for automated test case generation by
using domain-specific knowledge?

Generating input data is only the first step in the automated test case generation pro-
cess. After we manage to create a suitable input for the program under test, we need
to make sure that the algorithm does not break promising patterns of method sequences
within the test cases. Therefore, the second research question focuses on detecting and
preserving these patterns within the test cases.

RQ,: How can we preserve promising structures within test cases throughout the
search process?

Without enough diversity within the population, the search process can prematurely
converge to a solution before the search space has been properly explored. Therefore, the
third research question focuses on how we can increase the diversity of the individuals in
the population.

RQ3: How can we increase the diversity of individuals in the population?

Current state-of-the-art approaches for automated test case generation focus on statically-

typed languages. However, dynamically-typed languages are gaining popularity. There-
fore, the fourth research question focusses on integrating dynamic type information into
the search process.
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RQy4: How do we increase the effectiveness and efficiency of automated test case
generation for dynamically-typed languages?

Finally, with the shortage of easy-to-use production-level tooling [21], the last research
question focusses on how we can construct a platform that allows multiple different pro-
gramming languages to be tested within one ecosystem.

RQs: How can we make a platform for automated test case generation that supports
multiple programming languages?

1.4 Research Methodology

This thesis answers the aforementioned research questions by following the Design Sci-
ence Research Methodology (DSRM) [61-63]. DSRM is a widely employed approach in
empirical computer science and other engineering disciplines. This methodology uses
a structured approach to address real-world problems by combining scientific research
with practical engineering to produce both scientifically sound and practically valuable
solutions.

We chose this methodology because it is well-suited for exploratively solving practical
problems in software engineering. Our goal consists of using applied research to develop
new techniques and tools to improve automated test case generation and then evaluate
these techniques and tools in an empirical and/or industrial setting.

DSRM consists of four steps:

1. Problem Identification: The first step in DSRM is to identify the problem that
needs to be addressed. This step involves surveying what has been done in related
literature and identifying the gap that needs to be addressed.

2. Design and Creation of Artifacts: When the problem has been identified, the
next step is to design and create artifacts to address the unsolved problem. This is
the core concept of the design science methodology. Artifacts can take many forms,
including software prototypes, algorithms, or conceptual models.

3. Evaluation: After the artifact has been created, it needs to be evaluated. The eval-
uation assesses the artifact’s effectiveness, quality, and efficiency for the identified
problem. The evaluation can be done in an artificial environment or through the use
of a case study. The method used to evaluate the artifact depends on the artifact’s
nature and the problem domain.

4. Reflection: Based on the results gathered from the evaluation, researchers reflect
on the artifact’s performance and identify trends and insight that could provide
value for future research.

This process is inherently iterative, involving the generation of multiple artifact versions or
prototypes. Each version is refined and improved based on information gathered from the
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evaluation and may cycle through the different stages several times to refine the artifact
and improve its quality.

In this thesis, we focus on the challenges of search-based automated test case genera-
tion as laid out in Section 1.2. We make use of a quantitative research approach to answer
the research questions. When designing our study, we make use of the guidelines for
empirical studies in software engineering [64]. For each study, we identify if an existing
code base and/or benchmark suite is available or if we need to create our own. We then
identify the research questions that we want to answer and the metrics that we will use
to answer these questions. To evaluate the effectiveness of our approaches, we use the
well-established evaluation metrics of structural code coverage and mutation score. In ad-
dition, we use coverage over time to measure the efficiency of an algorithm. To establish a
baseline, we compare our approaches to the state-of-the-art in the field of automated test
case generation. To mitigate the risk of bias, we make use of the guidelines for assessing
randomized algorithms in software engineering [65, 66]. We perform multiple repetitions
of the experiment and make use of statistical analysis to assess the results. In particular,
we make use of the unpaired Wilcoxon rank-sum test [67] for the statistical significance
and the Vargha-Delaney statistic [68] for the effect size.

1.5 Research Outline

This section gives an overview of the chapters included in this thesis. Table 1.1 outlines
the connections between the different research questions and chapters in the thesis.

Chapter 2: Certain types of applications require highly structured input data, parsers
are an example of this. Automated test case generation has limitations in creating such
data. Previous studies have shown that automatically generated input is mostly unstruc-
tured [17, 18]. Grammar-based fuzzing, on the other hand, is very effective in generating
highly structured input data based on a user-specified grammar [69, 70]. For this reason,
fuzzing has been widely used for security and system testing [71, 72]. However, since
grammar-based fuzzing only generates input data, developers need to manually create the
structure of the test case, and come up with their own assertions. To address these limita-

Table 1.1: Connection of chapters with research questions

Research Question Chapters
RQ;: How can we reduce the search space for automated test case gen- 2,3
eration by using domain-specific knowledge?

RQ,: How can we preserve promising structures within test cases 4
throughout the search process?

RQj3: How can we increase the diversity of individuals in the population? 5
RQ,4: How do we increase the effectiveness and efficiency of automated 6
test case generation for dynamically-typed languages?

RQs: How can we make a platform for automated test case generation 7

that supports multiple programming languages?
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tions, we propose a novel approach that combines the strength of grammar-based fuzzing
and EAs to narrow than the search space within the context of the JSON data format. Here,
the aim is not to focus on how much of the grammar is covered but to use the grammar
as guidance for the EAs to limit the number of possible actions that can be performed
on a SUT and improve the quality of the test data. We evaluated our approach on three
popular Java JSON parsers and showed that it can improve the effectiveness of automated
test case generation without negatively impacting the performance of non-JSON-related
classes. On average, the proposed approach achieves +15 % of branch coverage compared
to the baseline. The largest improvement that was observed in the study was +50 % of
branch coverage for one of the classes in the benchmark.

Chapter 3: Most software makes use of conditional checks to make sure that the input
to a method is valid or preconditions have been met (e.g., @otNull in Java). Transaction-
reverting statements are key constructs within Solidity that are extensively used for such
checks. These statements protect smart contracts against invalid requests by reverting
the transaction when the conditions are not met [73]. These statements, however, are not
part of the control flow of the method they are applied to, making it difficult for the EA to
satisfy the condition within them. This creates partially flat fitness landscapes, forcing the
search algorithm to resort back to random testing. To address this problem, we propose a
novel approach that restores the fitness gradient in the landscape by using interprocedural
control dependency analysis to determine how these constructs influence the execution of
the method under test at runtime and provide this information to the search algorithm. We
evaluated our approach on 100 real-world smart contracts and showed that it can improve
the effectiveness of automated test case generation. On average, we improve transaction-
reverting statement coverage by 14 % (up to 35 %), line coverage by 8 % (up to 32 %), and
vulnerability-detection capability by 17 % (up to 50 %).

Chapter 4: EvoMaster is a state-of-the-art automated test case generation tool for Java
REpresentational State Transfer (REST) Application Programming Interface (API) test-
ing [37]. While the state-of-the-art algorithms can successfully create promising sequences
of Hypertext Transfer Protocol (HTTP) requests, they do not directly recognize and pre-
serve them when creating new test cases [54]. As REST APIs are stateful, each individual
request changes the state of the API, and therefore, its execution result depends on the
state of the application (i.e., the previously executed requests). This creates patterns of
HTTP requests that depend on each other. In Chapter 4, we argue that detecting and pre-
serving these patterns, referred to as linkage structures, improves the effectiveness of the
automated test case generation process and maintains the quality of the test cases. We
propose a novel approach, called LT-MOSA, that uses Agglomerative Hierarchical Cluster-
ing (AHC) to infer these linkage structures from automatically generated test cases. These
linkage structures are then used by the genetic operators to determine which sequences of
HTTP requests should not be broken up and should be replicated in new tests. To evaluate
the feasibility and effectiveness of this approach, we implemented this approach within
EvoMaster and performed an empirical study with 7 real-world benchmark web/enterprise
applications from the EvoMaster Benchmark (EMB) dataset. The results show that infer-
ring and preserving linkage structures in REST APIs achieves significantly higher code
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coverage and fault-detection capability compared to the state-of-the-art approaches (i.e.,
MIO and MOSA). In particular, LT-MOSA achieves significantly higher structural cover-
age in 4 and 5 out of the 7 applications compared to MIO and MOSA, respectively, and can
detect, on average, more unique real-faults that were not detected by the baselines.

Chapter 5: The encoding used to represent a test case within an EA consists of both
test data and method sequences [19]. Current state-of-the-art EAs for automated test
case generation use a crossover operator (i.e., single-point) that swaps a group of method
sequences between two test cases [58, 74]. These operators only change the test structure
and simply copy over the corresponding test data Consequently, the input data of the
offspring is often very similar to the input data of the parents. In Chapter 5, we argue that
a hybrid crossover operator that alters both the structure of the test cases as well as the test
data can improve the test case diversity. To validate this hypothesis, we propose a new
operator, called Hybrid Multi-level Crossover (HMX), that combines different crossover
operators on multiple levels (i.e., data and method level). We implemented this hybrid
operator within EvoSuite [34] and performed an empirical study with 116 classes from
the Apache Commons and Lucene Stemmer projects, which include classes for numerical
operations and string manipulation. The results show that HMX significantly improves
the structural coverage and fault detection capability of the generated test cases compared
to the standard crossover operator used in EvoSuite (i.e., single-point). On average, HMX
achieves 6.4 % and 7.2 % more branches and lines covered than the baseline, respectively
(with a max improvement of 19.1 % and 19.4 %) and 3.9 % (max. 14 %) and 2.1 % (max. 12.1 %)
for weak and strong mutation, respectively.

Chapter 6: Search-based automated test case generation approaches make use of type
information to determine what input data to generate for a given method. The lack of
type information in dynamically-typed languages makes it difficult to generate suitable
input data. As a result, the search space grows exponentially, making the overall search
process less effective. We propose a novel unsupervised probabilistic type inference ap-
proach that infers the data types of the parameters of a method. More specifically, we
statically analyze the source code of the method under test to extract the relationships be-
tween the parameters and the variables used within the method and deduct the most likely
data type for each parameter. The inferred types are then used to guide the search process
towards better solutions. We evaluate our inference model on a benchmark of 98 units
under test (i.e., exported classes and functions) and compare the results to a random type
sampling baseline w.r.t. branch coverage. Our results show that our type inference ap-
proach achieves a statistically significant increase in 56 % of the test files with up to 71 %
of branch coverage compared to random type sampling.

Chapter 7: One of the reasons for the lack of adoption of automated test case generation
techniques in industry is the absence of easy-to-use production-level tooling [21]. There
are several state-of-the-art tools for automated test case generation, but they are often
primarily focused on research and not on usability. Examples of these are AUSTIN [59],
EvoSuite [34], and Pynguin [60]. Within the context of white-box testing, tools are tightly
coupled to the underlying programming language, making it challenging to build tooling
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for each language and/or testing framework. In Chapter 7, we present SynTest-Framework,
a modular and extensible framework for automated test case generation. The main goal
of the framework is to provide an ecosystem of testing tools that are easy to use and come
with a collection of pre-defined presets for different search algorithms. SynTest-Framework
is designed to be language agnostic and can be extended to support new languages and test-
ing frameworks. Currently, the framework supports JavaScript and Solidity. To improve
the usability of the framework, we provide an online web service for users to generate test
cases without the need to install any software.

Chapter 8: In the last chapter, we revisit the research questions posed in this chapter,
summarize our findings, and make conclusions based on the results of the studies. Addi-
tionally, we discuss the limitations of this work and provide recommendations for future
directions.

1.6 Origins of the Chapters

This thesis is based on a collection of papers written during the Ph.D. that act as the foun-
dation of this work. The included papers have previously been published in peer-reviewed
conferences. Each paper in this portfolio-style thesis can therefore be read independently
and contains a dedicated background, related work, and conclusion section.

To better fit the style of this thesis, the layout and formatting of the papers have been
adapted. Additionally, figures and tables were enlarged to make them easier to read. Even
though the papers have been adapted and in some cases merged the main content of the
papers has not been changed.

For all chapters, except Chapters 4 and 6, the author of this thesis was the first author.
For papers in collaboration with B.Sc. and M.Sc. students (i.e., Chapters 4 and 6) the
authors are ordered by seniority. The author of this thesis was the main responsible for
the design of the algorithms and experiments, the analysis of the results, and the writing
of the paper.

« Chapter 2 was published in the paper “Generating Highly-structured Input Data
by Combining Search-based Testing and Grammar-based Fuzzing” by Mitchell Ol-
sthoorn, Arie van Deursen, and Annibale Panichella at the 35th IEEE/ACM Interna-
tional Conference on Automated Software Engineering 2020 (ASE’20) [75].

« Chapter 3 was published in the paper “Guiding Automated Test Case Generation
for Transaction-Reverting Statements in Smart Contracts” by Mitchell Olsthoorn,
Arie van Deursen, and Annibale Panichella at the 38th IEEE International Confer-
ence on Software Maintenance and Evolution 2022 (ICSME’22) [76].

« Chapter 4 was published in the paper “Improving Test Case Generation for REST
APIs Through Hierarchical Clustering” by Dimitri Stallenberg, Mitchell Olsthoorn,
and Annibale Panichella at the 36th IEEE/ACM International Conference on Auto-
mated Software Engineering 2021 (ASE’21) [77].

« Chapter 5 was published in the paper “Hybrid Multi-level Crossover for Unit Test
Case Generation” by Mitchell Olsthoorn, Pouria Derakhshanfar, and Annibale Panichella
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Table 1.2: Connection of chapters with replication packages.

Chapter  Host DOI Replication Package
2 Zenodo 10.5281/ZENODO.4001744 [84]
3 Zenodo 10.5281/ZENODO.6787666 [85]
4 Zenodo  10.5281/ZENODO.5106027 (86]
5 Zenodo 10.5281/ZENODO.5102597 [87]
6 Zenodo 10.5281/ZENODO.7088684 [88]
7

at the 13th International Symposium on Search-Based Software Engineering 2021
(SSBSE’21) [78].

Chapter 6 was published in the paper “Guess What: Test Case Generation for
Javascript with Unsupervised Probabilistic Type Inference” by Dimitri Stallenberg,
Mitchell Olsthoorn, and Annibale Panichella at the 13th International Symposium
on Search-Based Software Engineering 2022 (SSBSE’22) [79].

Chapter 7 is based on

“SynTest-Solidity: Automated Test Case Generation and Fuzzing for Smart Con-
tracts” by Mitchell Olsthoorn, Dimitri Stallenberg, Arie van Deursen, and Annibale
Panichella at the 44th ACM/IEEE International Conference on Software Engineering
2022 (ICSE’22): Companion Proceeding [80] and

“SynTest-JavaScript: Automated Unit-Level Test Case Generation for JavaScript”
by Mitchell Olsthoorn, Dimitri Stallenberg, and Annibale Panichella at the 17th
IEEE/ACM International Workshop on Search-Based and Fuzz Testing 2024 (SBFT’24)
[81].

1.7 Open Science

Open Science is the “movement that aims at more open and collaborative research prac-
tices in which publications, data, software and other types of academic output are shared
at the earliest possible stage and made available for reuse” [82]. It is a broad term that
encompasses many different aspects of the scientific process. Three principles of Open
Science are (i) Open Source, (ii) Open Data, and (iii) Open Access [83]. Open Source re-
lates to making use of open-source technology whenever possible and making your own
code available as open source. Open Data refers to making datasets used for research pub-
licly available so others can replicate the results based on the data. Open Access ensures
that scientific publications and research findings are freely accessible to the public. By
making use of Open Science, we can ensure that our research is transparent, reproducible,
and accessible to everyone.

1.7.1 Open Datasets
As part of Open Data, we make the replication packages used for the experiments pub-
licly available. By doing this, we hope to increase the reproducibility of our results and



1.7 Open Science 17

Table 1.3: Overview of created experimental benchmarks.

Benchmark Chapter  Host

Solidity contracts testing benchmark 3,7 GitHub
JavaScript libraries testing benchmark 6,7 GitHub

Table 1.4: Overview of software where the various approaches have been integrated with.

Chapter Tool

EvoSuite
SynTest-Solidity
EvoMaster
EvoSuite
SynTest-JavaScript

N NG W

allow others to build upon our work. Table 1.2 shows the connection between the chapters
and their corresponding replication packages. All replication packages have been made
available on Zenodo?® Chapter 7 is a tool demonstration and therefore does not have a
replication package. The software package for this chapter can be found in the next sub-
section (See Section 1.7.2). To increase the replicability of the experiments, we make use
of open-source software and Docker® containers for the experiment runner infrastructure.

Additionally, in this thesis, we created two new benchmarks for running experiments.
These benchmarks have been used in multiple chapters of this thesis as can be seen in
Table 1.3. The first benchmark contains a diverse set of Solidity smart contracts that can
be used for testing smart contract systems on Ethereum. Even though existing bench-
marks for Solidity smart contracts exist, previous related literature has criticized these
benchmarks as they do not contain a diverse selection of contracts with different com-
plexities, versions, and language features [89]. The second benchmark contains a diverse
set of JavaScript libraries that can be used for evaluating unit-level automated test case
generation for JavaScript. To the best of our knowledge, no such benchmark existed for
JavaScript previously. Both benchmarks are hosted on GitHub under the SynTest Frame-
work organization®.

By complying with Open Science, authors have the responsibility to make sure their
research data is consumable by others. One set of guiding principles for scientific data
management and stewardship are the FAIR principles [90, 91]. FAIR stands for Findable,
Accessible, Interoperable, and Reusable. We have used these principles throughout this
thesis to make sure that our data complies with the Open Science guidelines.
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Table 1.5: Overview of main code contributions.

Project Chapters Host License #Commits SLOC Language (Main)
EvoSuite Experiment Runner 2,5 GitHub GNU GPLv3 16 324 Bash
SynTest-Framework 3,6,7 GitHub  Apache 2.0 797 19400 TypeScript
SynTest-Solidity 3,7 GitHub  Apache 2.0 488 6062 TypeScript & JavaScript
SynTest-JavaScript 6,7 GitHub  Apache 2.0 219 18088 TypeScript

z 1520 43874

1.7.2 Open Software
In addition to the data, we have also made the software implementations of the various
approaches in this thesis publicly available. Table 1.4 shows the connection between the
chapters and the tool that the approach has been implemented on and integrated with. By
implementing the approaches in existing tools, we hope to increase the adoption of our
research by the community. The tools chosen for the different approaches are all state-
of-the-art tools in their respective domains. EvoSuite [34] is a state-of-the-art unit-level
automated test case generation tool for Java. It has been used extensively in previous
research and is one of the most popular tools in the field. EvoMaster [37] is a state-of-
the-art system-level automated test case generation tool for REST APIs. It contains both
black-box and white-box approaches for testing REST APIs.

For some of the challenges that this thesis addresses, no existing tools were available.
In these cases, we have created new tools and frameworks to implement the approaches.
By doing this, we hope it will be easier for others to build upon our work. Table 1.5 shows
an overview of the main code contributions made by the author of this thesis.

EvoSuite Experiment Runner EvoSuite is a command-line tool that can be used to gen-
erate test cases for Java programs. However, it does not contain any infrastructure
for running experiments. Therefore, we have created a new experiment runner for
EvoSuite and published it under the GNU GPLv3 license. This runner allows us to
run experiments in a reproducible way and collect the results in a structured format.
Additionally, it allows us to run experiments in parallel across many cores. It ac-
cepts a configuration file that specifies the parameters of the experiment and what
benchmark classes to run.

SynTest-Framework SynTest-Framework is an open-source ecosystem for automated
test case generation and fuzzing based on TypeScript, published under the Apache
License 2.0. It contains a collection of language-independent search algorithms that
are optimized for automated test case generation. The framework uses a modular
extensible architecture to allow testing tools for different programming languages
to be built on top of it. Our main goal with the framework is to make it easier
for researchers to implement new approaches for automated test case generation.
Additionally, we hope that the framework will make it easier for practitioners to
adopt automated test case generation in their projects.

*https://zenodo.org/
*https://www.docker.com/
*https://github.com/syntest-framework
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SynTest-Solidity SynTest-Solidity is an open-source unit-level testing tool built on top
of the SynTest-Framework for automated test case generation and fuzzing for Solid-
ity smart contracts, published under the Apache License 2.0. This project contains
the different interfacing components (e.g., static analysis, instrumentation, guid-
ance, and coverage collection) to test a language-specific application.

SynTest-JavaScript Similarly to SynTest-Solidity, SynTest-JavaScript is an open-source
unit-level testing tool built on top of the SynTest-Framework but focusses on auto-
mated test case generation and fuzzing for server-side JavaScript libraries, published
under the Apache License 2.0. It contains a state-of-the-art type inference model to
infer the types of variables in the application.

1.8 Other Contributions

In addition to the publications included as part of this thesis, I co-authored a number of
papers that I shortly describe in the following:

« In the FSE’24 industry paper “Evolutionary Generative Fuzzing for Differential Test-
ing of the Kotlin Compiler”, we propose a novel approach for differential testing of
compilers. Our approach uses evolutionary generative fuzzing to generate Kotlin
programs that are syntactically and semantically valid, and exploit a diverse set of
language features. We perform an empirical evaluation with two different versions
of the Kotlin compiler front-end and discover multiple critical bugs.

« In the ICSE’24 tool demo paper “TestSpark: Intelli] IDEA’s Ultimate Test Gener-
ation Companion”, we propose an Intelli] IDEA plugin that incorporates multiple
automated test case generation techniques into the Integrated Development Envi-
ronment (IDE). Our tool allows developers to make use of state-of-the-art testing
techniques in a user-friendly way without leaving their IDE. TestSpark is available
on the JetBrains Marketplace”’.

« In the SBFT’23 paper “Grammar-Based Evolutionary Fuzzing for JSON-RPC APIs”
[92], we propose the first (black-box) approach for automated fuzzing of JSON-
Remote Procedure Call (RPC) APIs. In particular, we empirically evaluate the ef-
fectiveness of grammar-based evolutionary fuzzing against random grammar-based
fuzzing on the XRP ledger, a large-scale industrial blockchain system that uses JSON-
RPC APIs. Our approach uses hierarchical clustering [77, 93] to group similar API
responses to determine what type of input is most likely to uncover new path traces
in the underlying application.

« In the SSBSE’20 challenge paper “An Application of Model Seeding to Search-Based
Unit Test Generation for Gson” [94], we investigate if model seeding can improve
the effectiveness of search-based test generation for the popular Java JSON pars-
ing library, called GSON. Seeding consists of injecting additional information (e.g.,
manually-written test suites) for use in the search process [95]. A previous study

*https://plugins. jetbrains.com/plugin/21024-testspark
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1 proposed a method to infer a behavioral model from the usage patterns of applica-
tions in the context of crash reproduction [96]. This paper adapts this approach to

the context of unit-level test generation and performs and empirical study.
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2

Generating Highly-structured
Input Data by Combining
Search-based Testing and

Grammar-based Fuzzing

Software testing is an important and time-consuming task that is often done manually. In the
last decades, researchers have come up with techniques to generate input data (e.g., fuzzing)
and automate the process of generating test cases (e.g., search-based testing). However, these
techniques are known to have their own limitations: search-based testing does not generate
highly-structured data; grammar-based fuzzing does not generate test case structures. To
address these limitations, we combine these two techniques. By applying grammar-based
mutations to the input data gathered by the search-based testing algorithm, it allows us to co-
evolve both aspects of test case generation. We evaluate our approach, called G-EvoSuite, by
performing an empirical study on 20 Java classes from the three most popular JSON parsers
across multiple search budgets. Our results show that the proposed approach on average
improves branch coverage for JSON related classes by 15% (with a maximum increase of
50 %) without negatively impacting other classes.

This chapter has been published as B Mitchell Olsthoorn, Arie van Deursen, and Annibale Panichella. Generating
Highly-structured Input Data by Combining Search-based Testing and Grammar-based Fuzzing. 35th IEEE/ACM
International Conference on Automated Software Engineering 2020 (ASE’20) [75].
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2.1 Introduction

Software testing is a critical activity for quality assurance and can take up to 50 % of devel-
opers’ time [97]. Manually writing test cases that are meaningful and small in size is an
expensive and error-prone task. With the ever-increasing complexity of modern applica-
tions, designing meaningful test cases with high coverage becomes harder each day. As a
consequence, researchers have developed various techniques to automate the generation
of test cases over the last decades [4]. Recent advances show that search-based approaches
can achieve higher code coverage compared to manually written test cases [6, 7]. They
can also detect unknown bugs [8-10] and have been successfully used in industry (e.g.,
[11-13]). Moreover, automatic test case generation significantly reduces the time needed
for testing and debugging [5].

Search-based test case generation relies on evolutionary algorithms (EAs) to evolve
an initial pool of randomly generated test cases, which include both the test structure
and input data. While recent studies improved the effectiveness of EAs, automatic test
case generation has limitations on creating highly-structured input data. Previous work
shows that automatically generated inputs are usually unstructured and can be difficult to
read and interpret [17, 18]. These limitations are critical when testing applications with
highly-structured input data. Parsers are a typical example of such applications. With
the move towards Application Programming Interfaces (APIs) and microservices, many
systems nowadays heavily rely on parsers [37]. Common data formats for these APIs are
JavaScript Object Notation (JSON) and Extensible Markup Language (XML) and are used
to exchange data among different parts of applications. For this reason, properly testing
these parsers is critical for application testing [98].

Grammar-based fuzzing is very effective in generating highly-structured input data
based on a user-specified grammar [69, 70]. For this reason, fuzzing has been widely
used for security and system testing [71, 72]. When applied to data formats, fuzzers can
generate and manipulate well-formed input data. However, developers need to specify
the entry points (for system testing) and manually create a test structure for each method
under test.

In this paper, we address these limitations by combining the strength of grammar-
based fuzzing and search-based test case generation with a focus on the JSON data format.
More precisely, evolutionary algorithms create and evolve the test case structure (state-
ment sequence) while grammar-based fuzzing is used to evolve parts of the input data.
The fuzzer injects structured JSON inputs in the initial population of the EA with some
probability and manipulates this data to maintain a well-formed JSON structure.

To assess the efficacy and feasibility of our idea, we implemented the grammar-based
fuzzing approach in EvoSuite [34], a state-of-the-art test case generator for Java. We con-
ducted an empirical study with 20 classes from the three most popular JSON parser li-
braries, namely GSON, fastjson, and org. json. In particular, we selected 16 classes that
expect JSON input and 4 non-JSON related classes. We use the former group to assess
whether our approach improves code coverage and use the latter to assess whether our
approach is negatively impacting coverage for non-JSON related classes. We evaluate the
performance (code coverage) for different search budgets (60 s, 120 s, and 180 s) to measure
the effectiveness and efficiency over time.

Our preliminary results show that combining search-based testing with grammar-based
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fuzzing leads to higher code coverage for classes that parse and manipulate JSON without
decreasing code coverage for non-JSON related classes (i.e., it has no side effect). On aver-
age, our approach achieves +15 % of branch coverage compared to standard EvoSuite (with-
out fuzzing). In our experiment, the improvement on the branch coverage is up to 50 % for
the class JSONReader from the fastjson project with a search budget of 180 seconds. This
confirms the feasibility of our approach and the benefits of combining the strengths of
different techniques that are often considered as alternatives rather than complementary
solutions. While our approach is applied to the JSON data format, it can be extended and
generalized to other data formats. We foresee further work in this line of research.

In summary, we make the following contributions: (i) a novel approach that combines
grammar-based fuzzing and search-based software testing to maximize the code coverage
in JSON parsers in a shorter amount of time; (ii) an empirical evaluation involving 3 major
Java JSON projects that shows the effectiveness and efficiency of the proposed approach;
(iii) We provide a full replication package including our code and results [84].

2.2 Background and Related Work

In this section, we briefly describe the related work in the fields of test case generation and
grammar-based fuzzing. We also describe the pros and cons of the two testing strategies.

2.2.1 Search-based Test Case Generation

Various search-based test case generation approaches have been proposed in the litera-
ture (e.g., [4, 34, 99]). These approaches rely on test adequacy criteria (e.g., branch cov-
erage [4, 100]) and evolutionary algorithms (e.g., genetic algorithms [4, 74, 101]). Ade-
quacy criteria are used to define search heuristics (or objectives) to optimize. For example,
approach level and branch distance are well-known heuristics (or objectives) for line and
branch coverage [4]. Evolutionary algorithms evolve test data or test cases and use the
heuristics as guidance toward generating tests with high coverage and fault detection.

EvoSuite is a state-of-the-art test case/suite generation tool for Java. EvoSuite imple-
ments several evolutionary algorithms (AEs), such as monotonic genetic algorithms, local
solvers, and many-objective algorithms [74]. EvoSuite can optimize multiple adequacy cri-
teria simultaneously [100, 102]. We use EvoSuite as the starting point to implement our
approach and also as the baseline in our empirical evaluation. Among the evolutionary
algorithms available in EvoSuite, we choose the Dynamic Many-Objective Sorting Algo-
rithm (DynaMOSA) [58]. DynaMOSA evolves test cases and optimizes multiple coverage
targets (e.g., branches) simultaneously. We opted for DynaMOSA since recent studies
showed its better effectiveness and efficiency compared to other EAs for testing [74, 101].
DynaMOSA uses a many-objective genetic algorithm that encodes test cases as chromo-
somes. Each chromosome is a sequence of statements (constructor, method invocation,
primitive statements, and assignments) with variable length. Hence, the structure of the
test cases evolves across the generations. The single-point crossover generates new test
cases by recombining statements (genes) from the parent tests. The uniform mutation
further modifies the offspring by adding, removing, or replacing statements. Lastly, Dy-
naMOSA selects the fittest chromosomes using the preference criterion, the non-dominance
relation, and the crowding distance [58].
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2.2.2 Grammar-Based Fuzzing

Whitebox fuzzing is another method to automate software testing. Differently from test
case generation, fuzzing focuses on generating test data (rather than test case structures),
and it is very popular in security testing to find security vulnerabilities in software [103].
To fuzz, developers need to specify the entry points of the application under test. White-
box fuzzing aims to generate test inputs that, when applied to specified entry points, allow
satisfying/covers different program conditions [104]. Fuzzing can use different engines
for the test data generation [104], such as symbolic execution [71], meta-heuristics [105],
grammars [69], and hybrid approaches [106].

Grammar-based fuzzing generates well-formed inputs by relying on a user-specified
grammar [69, 107]. It creates random variants of well-specified inputs using the grammar
derivative rules (hereafter called grammar-based mutations). This guarantees that the vari-
ants are still well-formed but diverse [104]. Typically, the grammars encode application-
specific knowledge of the program under test [69]. As shown by previous work, grammar-
based fuzzers are very effective in creating highly-structured inputs for applications like
compilers and interpreters [69, 70].

2.2.3 Reasons for Combining

On the one hand, search-based testing allows synthesizing the test case structure with-
out requiring to specify the program entry points. It can evolve complex input data like
Objects in Java, primitive data types, and strings. However, it is not effective in gener-
ating highly-structured input strings, such as the JSON data format. On the other hand,
grammar-based fuzzing can effectively generate highly-structured input strings. How-
ever, it requires the user to specify both the entry points of the program under tests and
the grammar. Besides, programs can have multiple entry points, not all requiring the
same type of grammar. In our case, JSON parsers have some entry points (methods) that
require data in JSON formats but also other entry points with different input types, such
as complex Objects, or primitives.

2.3 Approach

Our approach, called G-EvoSuite, aims to combine the strengths of search-based test case
generation and grammar-based fuzzing. We use EvoSuite as the test case generator tool,
and we implemented a JSON fuzzer, i.e., fuzzer based on JSON grammar. The fuzzer is built
on top of SNODGE ', a mutation engine for JSON strings. Our approach uses EvoSuite to cre-
ate and evolve the test case structures and the JSON fuzzer to generate highly-structured
input strings when needed. To implement our approach, we modified DynaMOSA in Evo-
Suite (see Section 2.2). In the following paragraphs, we explain the changes we introduced
in DynaMOSA to incorporate the grammar-fuzzer.

2.3.1 Initialization

To start the evolutional process, DynaMOSA creates an initial genetic pool of test cases.
The initialization routine is designed to generate a well-distributed set of tests that call
different methods of the target class. Each test is created in DynaMOSA randomly by

'https://github.com/npryce/snodge
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adding method calls to the class under test. Before inserting each method call m, EvoSuite
also instantiates an object of the class containing m and generates proper input parameters,
such as other objects or primitives. The number of method calls to insert in an initial test
case is randomly chosen. Therefore, EvoSuite creates different initial tests with different
structures (method sequence). The input data is either generated at random or selected
from the literals (constants) that statically appear in the class under test (constant pool).

Our approach modifies the initialization phase by using well-formed JSON strings gen-
erated with the fuzzer as test data. Injecting JSON strings in every method call with string
inputs is not effective because not all methods under tests (or not all input parameters of
the same method) require JSON inputs. Therefore, we inject JSON strings only into a por-
tion of the initial population. Given a population P = {Tj,..., Ty} of size N, we randomly
select test cases from P and inject them with JSON data. Given an initial test T to modify,
its string inputs have a probability of mutating equal to p = 1/k, where k is the number of
input strings in T.

2.3.2 Selection

In each generation, the fittest test cases (structure + data) are selected using tournament
selection. These test cases are ranked on different code coverage criteria (Line, Branch,
Exception, Weak Mutation) using the preference sorting algorithm [58]. If test cases with
JSON data are ranked first, they will be selected for reproduction (i.e., to create new tests)
and will survive in the next generations. If not, the genetic characteristics of the tests with
the JSON files will not be transmitted to the next generations. In this way, the portion of
test cases that are created using the fuzzer changes across the generations depending on
whether they are useful to improve coverage or not.

2.3.3 Grammar-Based Mutation
To introduce variation in the genetic pool, DynaMOSA makes use of mutations. The use
of mutations makes it less likely for the algorithm to reach a local optimum. In our ap-
proach, we extend the uniform mutation in DynaMOSA, which adds, removes, or inserts
new statements in each newly generated test T. At the end of the uniform mutation, we
inspect all input data in T, identify string inputs, and use JSON parsers to check whether
they are well-formed JSON strings. If valid JSON strings are found, we mutate them using
the grammar-based fuzzer.

A well-formed JSON string is a sequence of (key, value) pairs. Keys must be strings,
and values must be one of the following JSON data types: string, number, object, array,
boolean, or null. Based on this structure, we define five different mutation operators:

« Adding new (key, value) pairs: it adds a (key, value) pair at the root level of the
JSON structure. The key is generated using the constant pool in EvoSuite. The value
is randomly generated and can be any of the JSON data types.

« Adding JSON objects: it adds a new JSON object as a value to an existing (key, value)
pair in a random position.

« Removing (key, value) pairs: it randomly removes a (key, value) pair in the JSON
structure. Which element is removed is randomly selected.
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« Modifying (key, value) pairs: This mutation randomly selects a (key, value) pair
from the JSON structure, and mutates either the key or the value. The replacing ele-
ment is proportionately divided across all JSON primitives. The array and dictionary
primitives are replaced as is. The other primitives are sourced from the constant pool

of EvoSuite.

« Reordering (key, value) pairs: it randomly shuffles the (key, value) pairs inside the
JSON structure. The pair to be reordered is selected randomly. The new location is
also selected randomly.

The five operators can be applied to a test T with equal probability. If the test case T
contains multiple JSON strings, each string has a probability of being replaced equal to
p = 1/k, where k is the number of well-formed JSON strings in T.

2.4 Empirical Study

This section details the empirical study we conducted to assess the performance of our
approach (hereafter G-EvoSuite) compared to standard test case generation (EvoSuite). Our
empirical evaluation is steered by the following research questions:

RQ1 To what extend does grammar-based fuzzing improve the effectiveness of test case gen-
eration in EvoSuite?

RQ2 What is the effectiveness of combining grammar-based fuzzing and search-based test-
ing over different search budgets?

For our empirical study, we selected a total of 20 classes from the three most popular
Java JSON parsers. These parsers are the GSON library from Google, FasTjsoN from Al-
ibaba, and the orG.Json standard library. 16 classes are related to JSON data. This was
determined based on class name and by manually inspecting the individual classes. The
remaining four classes (indicated with an asterisk in Table 2.1) are used to assess whether
our approach negatively impacts classes not related to parsing JSON.

Search budget. To assess the effectiveness of our approach over different search bud-
gets, we selected three commonly-used values: 60 seconds, 120 seconds, and 180 seconds
(6,9, 108].

Parameter setting.  For this study, we have chosen to adopt the default search
algorithm parameter values set by EvoSuite. Previous studies have shown that although
parameter tuning has an impact on the performance of the search algorithm, the default
parameters provide a reasonable and acceptable result [109]. The parameters used for
both the EvoSuite and G-EvoSuite approaches are: population size of 50 test cases; single-
point crossover with a probability of 0.75; mutation with a probability of 1/n, where n is
the number of statements in the test case; and tournament selection, the default selection
operator in EvoSuite.

Statistical analysis. Since both approaches used in the study are randomized, we can
expect a fair amount of variation in the results. To mitigate this, ever experiment has been
repeated 20 times so an average can be taken. To determine if the results are statistically
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significant, we use the unpaired Wilcoxon test with a threshold of 0.05. This is a non-
parametric statistical test that determines if two data distributions (coverage values by
the two approaches) are significantly different. We combine this with the Vargha-Delaney
statistic to measure the effect size, which determines how large the difference between the
two approaches is.

2.4.1 Results

Table 2.1 summarizes the results of the comparison between EvoSuite and G-EvoSuite. The
table is divided into the three different search budgets used for the empirical evaluation.
For each search budget, we show the median branch coverage for the baseline, EvoSuite,
and G-EvoSuite, the statistical significance produced by the Wilcoxon test, and the effect
size with the Vargha-Delaney statistic. In the table, we denote the classes with a negligible
effect size with “—”, and highlight results that are statistically significant with a gray color.
Next, we discuss the results for each search budget separately.

For 60 seconds, our approach achieves significantly higher coverage than EvoSuite in
seven out of 20 classes. The effect size is large in four cases and medium in the other
three cases. The average improvement in branch coverage with the G-EvoSuite approach
is 9.02 %. The class with the least improvement is gson. Gson with an average improvement
of 1.77 %. The class with the most improvement is JSONValidator (ID=6) with an average
improvement of 23.35 % which corresponds to 46 additionally covered branches.

For 120 seconds, seven out of 20 classes show a significant improvement with our
approach. The effect size is large in six cases and medium in only one case. The aver-
age improvement in branch coverage is 17.1 %. The class with the least improvement is
JSONArray (ID=16) with an average increase of 3.20 %. The most improved class is JSON-
Reader (ID=5) with an average increase of 47.83 % resulting in 49 branches being covered
additionally.

Lastly, for 180 seconds, our approach significantly outperforms EvoSuite in nine out of
20 classes. The effect size is large in seven cases and medium in two cases. The average
improvement in branch coverage is 13.6 %, with a minimum of +1 % for JSONReaderScanner
and a maximum of 50.87 % (+52 branches) for the class JSONReader (ID=5). In terms of the
number of covered branches, the biggest improvement (+166 branches) can be observed
for DefaultJSONParser.

It is worth to notice that in none of the classes, we observed a decrease in branch
coverage when using G-EvoSuite. This shows that our approach improves the overall ef-
fectiveness of test case generation in EvoSuite without negatively impacting coverage of
non-JSON related classes (RQ1).

When looking at how the two approaches perform over time, we can see that the delta
between EvoSuite and G-EvoSuite does not substantially decrease, and in most cases even
increases. For example, the JSONReader (ID=5) class shows that the delta of the branch
coverage goes from 0 % at 60 s to 50 % at 180 s. This shows that just injecting JSON strings
in the initial population is not sufficient to reach a higher coverage. Otherwise, we would
have observed a large difference already at the 60s search budget. Therefore, for our
benchmark, the benefit of combining search-based testing and grammar-based fuzzing
increases with time (RQ2).
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Table 2.1: Median branch coverage achieved by our approach (G-EvoSuite) and the baseline (EvoSuite) over 20 in-

tics (Ay). For the effect size, we use the labels S, M, and L to denote small, medium, and large effect size. A, >0.50

dependent runs. We report the p-values produced by the Wilcoxon test together with the Vargha-Delaney statis-
indicates a positive effect size.

ID  Class Under Test 60s 120s 180s
EvoSuite  G-EvoSuite  p-value >>E _ EvoSuite  G-EvoSuite  p-value m.!m _ EvoSuite  G-EvoSuite  p-value m.!m

1 fastjson.JSON 0.76 0.74 0.12 S (0.35) 0.81 0.81 051  —(0.56) 082 [0S o001 M(0.73)
2 fastjsonJSONArray 0.77 0.76 0.35 S (0.41) 0.83 0.82 053  —(0.44) 0.82 0.84 017  S(0.62)
3 fastjsonJSONObject 0.49 0.49 094  —(0.51) 0.51 0.52 026  S(0.53) 0.52 0.53 0.14  S(0.62)
4 fastjsonJSONPath 0.36 0.36 092  —(0.48) 0.41 0.41 0.06  M(0.30) 0.42 0.44 0.09 M (0.67)
5  fastjsonJSONReader 0.22 0.22 0.07  M(0.67) 0.23 <001 L (0.89) 0.23 <001 L (0.83)
6  fastjsonJSONValidator 0.52 <0.01 L (1.00) 0.58 <0.01 L (1.00) 0.59 <001 L (1.00)
7 fastjson.DefaultJ]SONParser 0.28 <0.01 L (1.00) 0.33 <0.01 L (1.00) 0.36 <0.01 L (1.00)
8 fastjson JSONReaderScanner 0.72 0.82 —(0.48) 0.75 0.76 0.72 —(0.53) 0.77 0.02 M (0.70)
9 fastjson.JSONScanner 0.31 <0.01 L (0.90) 034 [OZEN <001 L(0.95) 0.35 <0.01  L(0.98)
10*  gson.Gson 0.77 0.02  M(0.72) 0.81 0.81 055  —(0.44) 0.81 0.82 030  S(0.59)
11 gsonJsonTreeReader 0.88 0.76  —(0.53) 0.90 0.90 054  —(0.44) 0.90 0.91 037  S(0.43)
12 gsonJsonTreeWriter 0.91 1.00 — (0.50) 0.91 0.91 0.60 —(0.52) 0.91 0.91 0.77 —(0.49)
13*  gson.LinkedHashTreeMap 0.43 0.43 071  —(0.47) 0.50 0.47 020  S(0.38) 0.50 0.51 0.60  —(0.54)
14  gsonJsonReader 068 [OZEN <001 L(09) | o072 [0 <001  L@oo) | 073 |[JINOBOMN <001  L(0.97)
15  gsonJsonWriter 0.90 0.95  —(0.49) 0.91 0.91 077  —(0.47) 0.91 0.91 070  —(0.47)
16 jsonJSONArray 0.74 0.03 M (0.70) 0.78 0.01  M(0.73) 0.80 0.81 015  S(0.62)
17 jsonJSONObject 0.66 0.02  M(0.72) 0.74 <001 L (0.86) 0.75 <001 L (0.89)
18 jsonJSONTokener 0.78 0.82 0.17  S(0.63) 0.83 0.88 025  S(0.60) 0.89 <001  L(0.75)
19 json.XML 0.75 0.76 082  —(0.52) 0.77 0.77 077  —(0.47) 0.77 0.78 012  S(0.63)
20*  json.XMLTokener 0.99 0.99 070 —(0.54) 0.99 0.99 087  —(0.52) 0.99 0.99 0.15  S(0.61)
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2.5 Conclusions and Future Work

In this paper, we have combined search-based testing with grammar based-fuzzing to
achieve higher code coverage for programs with highly-structured inputs. We imple-
mented our approach in EvoSuite and evaluated it on a benchmark with 20 Java classes.
Our results show that G-EvoSuite significantly improves code coverage independently of
the search budget.

In future work, we plan to improve our grammar-based fuzzer and extend it to more
data formats. Our current approach makes use of grammar-based mutation operators that
are specific to the data format of the target application, in this case JSON. These operators
only work on valid input and therefore limit the output to also be valid. Investigating
mutation operators for invalid input is part of our future agenda. Next to JSON, the XML
data format is commonly used for APIs and it is similarly hard to test. We plan to extend
our approach to include mutators for other data formats.

A further next step is to look into using machine learning to infer the data format
accepted by an application. Data format specific mutators can then be created based on
this model without requiring pre-defined mutators for all possible data formats.
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Guiding Automated Test Case
Generation for
Transaction-Reverting Statements
in Smart Contracts

Transaction-reverting statements are key constructs within Solidity that are extensively used
for authority and validity checks. Current state-of-the-art search-based testing and fuzzing
approaches do not explicitly handle these statements and therefore can not effectively detect
security vulnerabilities. In this paper, we argue that it is critical to directly handle and test
these statements to assess that they correctly protect the contracts against invalid requests. To
this aim, we propose a new approach that improves the search guidance for these transaction-
reverting statements based on interprocedural control dependency analysis, in addition to
the traditional coverage criteria. We assess the benefits of our approach by performing an
empirical study on 100 smart contracts w.r.t. transaction-reverting statement coverage and
vulnerability detection capability. Our results show that the proposed approach can improve
the performance of DynaMOSA, the state-of-the-art algorithm for test case generation. On
average, we improve transaction-reverting statement coverage by 14 % (up to 35 %), line cov-
erage by 8 % (up to 32 %), and vulnerability-detection capability by 17 % (up to 50 %).

This chapter has been published as B Mitchell Olsthoorn, Arie van Deursen, and Annibale Panichella. Guiding
Automated Test Case Generation for Transaction-Reverting Statements in Smart Contracts. 38th IEEE International
Conference on Software Maintenance and Evolution 2022 (ICSME’22) [76].
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3.1 Introduction

Ever since its launch in 2015, Ethereum has been the largest and most prominent smart
contract platform [110]. One key property of these smart contracts is that once a contract
has been deployed, it cannot be updated [111]. This property makes sure that contracts
that are in use on the platform cannot be altered by the creators of the contract for their
benefit. However, this creates certain challenges, e.g., what happens if a bug is discovered.
This greatly increases the importance of quality assurance in the smart contract develop-
ment lifecycle. In the last few years, various search-based methods have been developed to
assist developers with this problem, like fuzzing [112-117] and test case generation [118].

Smart contracts on the Ethereum platform are written in Solidity, a high-level smart
contract language. Solidity is a transactional language, meaning transactions either suc-
ceed or fail. Hence, it is impossible for the contract to be in a broken state. To accomplish
this, the language makes use of transaction-reverting statements, which allow developers
to check the validity of requests. When the conditions of such statements are not met, an
exception is raised and all modifications made by a given request to the current state are
reverted [119]. For the purpose of checking the (external) inputs or the validity of the state
to receive such inputs, Solidity provides the require routine - this transaction-reverting
statement makes the contract robust against improper usage. Typical examples of require
statements are: (i) checking that certain requests can only be done by the owner of the
contract —i.e., require(msg. sender==owner)— or (ii) that a transaction amount is positive
—i.e.,, require(amount>0).

A recent study by Liu et al. [73] shows that transaction-reverting statements are exten-
sively used within Solidity smart contracts for authority and validity checks. They found
that removing or modifying these statements may compromise the security of the smart
contract. Additionally, the study showed that existing Solidity testing tools cannot effec-
tively detect security vulnerabilities caused by these statements. Internally, the require
statements are just normal function calls that are handled in a special way by the inter-
preter. Existing search-based approaches [112, 118], however, treat these statements as
any other function call without taking this critical construct of Solidity into account. In
particular, there is no gradient in the fitness landscape that the search algorithm could use
as guidance to satisfy the condition of these statements, the search algorithm has to resort
back to random testing.

In this paper, we argue that these transaction-reverting statements should be treated
as first class citizens during testing, since any error in them likely corresponds to a se-
curity vulnerability. To this aim, we propose a new approach to improve the search
guidance for transaction-reverting statements, without changing the semantics of the
contract under test. First, we statically analyze the contract under test and identify the
transaction-reverting statements and modifiers. Modifiers are interprocedural constructs
that group transaction-reverting statements that are executed by the Ethereum Virtual
Machine (EVM) as a dependency for certain methods. Then, we perform interprocedural
dependency analysis to link the Control Flow Graph (CFG) of the method under test with
the associated modifiers. Lastly, we calculate an interprocedural-level fitness value (i.e.,
to guide the search process) based on the runtime data collected by a context-sensitive
instrumentation of the transaction-reverting statements. The new fitness function allows
to measure how far a test case is from satisfying the condition within these statements.
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To evaluate the effectiveness of our approach, we implemented it within Syntest-Solidity [80]

— a test case generation framework for Solidity that implements DynaMOSA. DynaMOSA
is the state-of-the-art algorithm for unit test case generation originally designed for Java
programs [58, 120] and recently applied to Solidity [118]. It is guided by state-of-the-art
unit-level fitness functions that consider structural coverage [121]. We performed an em-
pirical study on 100 real-world smart contracts gathered from etherscan.io. We compare
the results achieved by DynaMOSA with and without the improved guidance with regard
to vulnerability detection capability and structural coverage.

Our results show that DynaMOSA covers significantly more transaction-reverting state-
ments with the improved guidance in 37 % of the smart contracts, with an average increase
in transaction-reverting statement coverage of 12 %. This also leads to an average increase
in line coverage by 8 %. Finally, our approach helps DynaMOSA detect more vulnerabili-
ties, with 17 % (on average) more captured vulnerabilities for those contracts on which we
observe an increase in transaction-reverting statement coverage.

In summary, this work makes the following contributions:

1. A lightweight approach based on interprocedural analysis to improve the search
guidance for transaction-reverting statements (Section 3.3).

2. Animplementation of our approach® within a state-of-the-art Solidity smart contract
testing tool, named Syntest-Solidity [80].

3. A Solidity smart contract benchmark consisting of a diverse set of 100 real-world
smart contracts (Section 3.4.2).

4. An empirical study demonstrating the benefit of the proposed approach (Section 3.5).

5. A full replication package including the code, results, and the scripts to analyze the
results [85].

While in this paper we focus on Solidity smart contracts, this approach can be benefi-
cial for any programming language with explicit contracts or declarative input validation
rules.

3.2 Background and Related Work

This section provides an overview of basic concepts and related work on smart contracts,
fuzzing, and test case generation.

3.2.1 Smart Contracts and Ethereum

In the last decades, there has been an increased focus on creating decentralized services to
cut out intermediaries from the interaction between people. One example of this trend is
smart contracts —digital agreements between multiple parties on how certain tasks need to
be executed— and in particular Ethereum, the most popular smart contract platform [110].
The main benefits that smart contracts can provide are trustless interactions, automated
task handling, and hosting of decentralized applications (dApps). Smart contracts are built

‘https://github.com/syntest-framework/syntest-solidity
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on top of a blockchain, a tamper-proof ordered ledger. When a smart contract gets de-
ployed, it creates a transaction containing code (a collection of functions) and data (state)
that resides at a specific address on this ledger. Users can make requests to this address,
using the functions to modify the state of the contract. Each state modification creates
a new transaction on the blockchain. This chain of blocks will grow over time with the
addition of new contracts and requests. Since the logic that can be applied to the state is
fixed and the state is publicly available, users in the network can verify if a transaction
was properly executed.

Ethereum runs on a decentralized network of nodes. These nodes process the requests
made to the contracts and create the blocks needed to modify state and deploy new con-
tracts. To secure the platform against attacks, there should be consensus between the
nodes. To get consensus within the network, Ethereum makes use of the mechanism called
Proof of Work (PoW). PoW relies on a computationally-expensive mathematical problem
that is difficult to calculate, but easy to verify. The random node that solves the problem
first gets to decide which transactions are accepted.

3.2.2 Transaction-Reverting Statements

Since smart contracts cannot be modified once deployed, it is crucial that they are thor-
oughly tested to detect and remove potential vulnerabilities. In addition, transaction-
reverting statements are used by developers to further assess the validity of requests and
verify that the contract remains in a valid state. Hence, it is critical that these statements
are correctly added to assess the important properties of the contract under analysis.

To better show how these reverting statements work, let us consider the simplified
example of a Solidity smart contract shown in Example 3.1 that represents a bank account.
On lines 6-8, the owner of the account is set to the creator of the contract. Lines 10-13
define a modifier, consisting of a transaction-reverting statement that is executed by the
Ethereum Virtual Machine (EVM) as a dependency for the withdraw method. Lastly, the
method on lines 15-22 allows users to withdraw money from the account. The withdraw
method makes use of the isOwner modifier to guarantee that only the owner of the account
can withdraw money. In addition, the method uses a local reverting statement (line 16)
to check if the amount to withdraw is positive. When the require check on line 16 fails,
state-of-the-art coverage heuristics (like used by existing search-based approaches [112])
would assume that line 17 and 21 are also covered. In reality, however, only line 16 is
covered and the execution is halted.

3.2.3 Testing Solidity Smart Contracts
Various techniques have been used in literature to test Solidity smart contracts. An overview
of the different techniques is available in the recent survey by Ren et al. [89].

Static Analysis [122-124]: Static analysis tools analyze a contract for vulnerabilities
without running it. This can be done at both a source code and a byte-code level. The
benefit of analyzing a contract statically is that the entire contract can be scanned at once.
However, static analysis tools often have a high false-positive rate requiring manual veri-
fication [89].

Symbolic Execution [125, 126]: Symbolic execution tools also statically analyze a
contract. What differentiates symbolic execution tools is that they keep track of all con-
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straints they encounter on every path through the code. This allows these tools to perform
constraint solving to determine which range of input values will lead to certain branches.
Symbolic Execution, however, unavoidably suffers from problems like path explosion [5].

Formal Verification [127]: Formal verification methods transpose the source code of
the contract to a mathematical proof language. Within this proof language, this method
mathematically checks the source code against a manually constructed model of the code’s
behaviour. This method provides the most security, however, it requires developers to
construct a complex model in a different language than the contract.

Fuzzing [112-117]: Fuzzing automatically generates test data. This data is fed to the
contract under test to see how the contract responds to it. This technique is very effective
at finding inputs that make the contract crash. However, it cannot be used for verifying the
behavior of the contract. Besides, it only focuses on test data without generating complete
test cases (e.g., without assertions).

Test Case Generation [118]: Test case generation generates test data, method se-
quences, and assertions. One study used this technique. However, this study [118] uses
existing algorithms without adapting them to Solidity.

3.2.4 Search-based Testing and Fuzzing

Search-based software testing (SBST) is a well studied research area that focuses on au-
tomating the generation of test data and test cases. Automatic test case generation signifi-
cantly reduces the time needed for testing applications [5] and has been successfully used
in industry [11, 128]. Various studies have been performed that use meta-heuristics to test
programs at different levels e.g., unit [34], integration [36], and system-level [37]. These
studies have shown that these techniques are effective at achieving high coverage [74]
and detecting faults [8, 129, 130].

One of the most commonly used classes of meta-heuristics is Evolutionary Algorithms
(EAs) [19, 74, 101]. EAs are inspired by the process of natural selection. They evolve
an initial population of randomly generated individuals (test data or test cases). These
individuals are then evaluated based on a predefined fitness function. After the evaluation,
the individuals with the best fitness values are selected for reproduction. Reproduction
creates new offspring by applying mutation (small delta changes to an individual) and
crossover (exchanging information between two individuals). Lastly, the new population
is created by selecting the best individuals across the parents (current population) and the
offspring (newly created test data or test cases). These three steps evaluation, reproduction,
and selection happen in a loop until a stopping condition has been met. After the search
process ends, an archive is created with the best individuals from the population [58, 120].

EAs are often used in fuzzing for generating input data. For example, Nguyen et
al. [112] used an efficient genetic algorithm for fuzzing Solidity smart contracts. The main
difference between fuzzing and test case generation is that the former focuses on gen-
erating test inputs while the latter aims to generate full test cases, including input data,
method sequence, and assertions.

3.2.5 Unit-level Fitness function
The purpose of a fitness function is to measure and indicate how far off the individual (test)
is from satisfying a test objective, e.g., branches. In SBST, the de facto fitness function is
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made up of two heuristics: approach-level and branch distance [4, 34, 58, 112]. The approach-
level relies heavily on the Control Flow Graph (CFG). A CFG represents the flow of the logic
within a function of a program — all paths that might be traversed during the execution of
the program. CFGs are created from the Abstract Syntax Tree (AST) provided by the parser
of the language, in our case the Solidity compiler. A node in the CFG is called a basic block
and corresponds to a sequence of statements that are always executed altogether [131],
i.e., with no branches inside the block. The approach-level uses the CFG and the data
that is gathered from the instrumentation during runtime to measure how far, in terms
of graph distance, the execution flow is removed from the targeted branch point. More
precisely, the instrumentation data is used to determine which branches of the CFG have
been covered by the test case. Afterwards, the fitness function calculates the shortest
difference along the CFG between the targeted branch node and the closets covered node.
Once the execution path reaches the targeted branch node, the fitness function uses the
branch distance to calculate how far the input variable is from satisfying the condition of
the target true or false branch.

3.2.6 Testability Transformations

The flag problem is a common issue in SBST [44, 45] that manifests when the conditions
in the if-statements are not explicit (e.g., an inline method call like if (isNull(y))) or
it reads boolean variables (e.g., if (y==true)). To address this problem, researchers have
proposed testability transformations [45], which transform the program under test into
an equivalent one (i.e., by preserving the semantics) where the conditions are replaced
with predicates reading non-boolean variables. Prior studies have shown that testability
transformations dramatically improve code coverage without the need for adapting the
underline search algorithms [44, 46, 47].

Compared to these prior studies, we do not apply testability transformation for two
reasons. First, creating testability transformations that fully preserve the semantics of
program is challenging, limiting its practical applicability [45]. Second, state-reverting
conditions are internal subroutines executed by the EVM at run-time and not part of the
branch conditions of the source program under test and, therefore, they cannot be trans-
formed.
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1| pragma solidity *0.5.0;

2| contract Account {

3 address public owner;

4 mapping (address => uint) private balances;
5

6 constructor () public {

7 owner = msg.sender;

8 2

9

10 modifier isOwner() {

11 require(msg.sender == owner, ”You are not the owner”);
12 -8

13 3

14

15 function withdraw(int amount) public isOwner {
16 require(amount > @, ”Amount too low”);
17 if (amount <= balances[msg.sender]) {

18 balances[msg.sender] -= amount;

19 msg.sender.transfer (amount);

20 3

21 return balances[msg.sender];

22 3

23

24| 3}

Example 3.1: Example Solidity smart contract
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3.3 Approach

This section outlines our approach to improve the search guidance (i.e., restoring the gra-
dient) for transaction-reverting statements using the contract shown in Example 3.1 as a
running example.

3.3.1 Problem Definition

A primary challenge in SBST is defining an effective fitness function that guides the search
algorithm toward covering an uncovered branch. As an example of test objectives, let us
consider the false branch of the if condition in line 17 for the method withdraw in Ex-
ample 3.1 and its CFG depicted in Figure 3.2a. If we apply the state-of-the-art unit-level
fitness function, we obtain the fitness landscape depicted in Figure 3.1. This fitness land-
scape shows the fitness values for the false branch with varying inputs for the amount pa-
rameter. The inputs where the fitness function is zero lead to covering the target branch.
Ideally, the fitness function should have a gradient to effectively guide the search algo-
rithms. However, in Figure 3.1, we can observe that the landscape is flat for all negative
values of amount. This is due to the program execution ending when the condition within
the require in line 16 of Example 3.1 is not met, without providing any information on
how close the execution is to satisfying that condition.

The problem of the flat landscape does not apply only to our example but it generalizes
to all contracts that have transaction-reverting statements. As shown by Liu et al. [73],
these statements are extensively used in smart contracts for authority and validity checks.
Therefore, explicitly considering these constructs when computing the fitness function is
critical to restore the gradient and make the search more effective. Otherwise, the search
algorithm has to resort to random testing when encountering such transaction-reverting
statements. This approach is not ideal as random testing (i.e., without guidance) is slow and
might not lead to a solution within the allocated search budget. In practice, this means the
search algorithm either randomly guesses the input values needed to satisfy the condition
or gets stuck.

Additionally, in Example 3.1, we can see that the withdraw method defines a depen-
dency on the isOwner modifier. In this example contract, the require statement within
the isOwner modifier (line 11) has to be satisfied before the main branch of the withdraw
function can be executed. As a consequence, the search algorithm has to overcome two
independent obstacles without guidance through random testing before it can reach the
branch in line 17.

3.3.2 Overview

The goal of our approach is to restore the gradient for Solidity smart contracts containing
transaction-reverting statements, by providing a quantitative measurement on how far
a test case is from satisfying these statements. To this aim, we first statically analyze
the Abstract Syntax Tree (AST) of the contract under test and identify the transaction-
reverting statements and modifiers (Step 1). Then, we perform interprocedural control
dependency analysis to determine the control flow across the different methods and sub-
routines (Step 2). Lastly, we define a new interprocedural fitness function based on the
runtime data collected by the context-sensitive instrumentation of transaction-reverting
statements (Step 3). The last two steps will be further explained in the next subsections.
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Figure 3.1: Fitness landscape for the false branch of the if in line 17 of the method withdraw in Example 3.1
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Figure 3.2: Control Flow Graphs (CFGs) of the withdraw function in Example 3.1

3.3.3 Interprocedural Dependency Analysis

The idea behind the interprocedural dependency analysis is to determine how the transaction-
reverting statements and modifiers impact the execution of the method under test at run-
time. To explain how this analysis works, we will use the example in Figure 3.2. Figure 3.2a
depicts the traditional CFG for the withdraw method in Example 3.1 while Figure 3.2b
shows the results of enriching it with our interprocedural dependency analysis. In these
two figures, the gray nodes represent the flow entry and exit blocks of the CFG. The num-
bers within the nodes indicate the line number of the statement that the block represents.
Lastly, the solid edges indicate how the execution flows through the nodes.
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Linking Transaction-Reverting Statements

Transaction-reverting statements are special sub-routines within the EVM and, therefore,
they do not have a corresponding CFG nor branching nodes. We apply context-sensitive
instrumentation around the transaction-reverting statements to capture their impact on
the dependent methods. The instrumentation allows to capture these interprocedural de-
pendencies and build an artificial control flow representation of the sub-routines. In the
example of Figure 3.2b, we build the control flow of the statement in line 16 (i.e., the box
with the header require(amount > @), which is linked (dashed edges) to the CFG of the
withdraw method. The red nodes in the sub-routine represent the Solidity revert mecha-
nism.

The context-sensitive instrumentation injects two additional instrumentation state-
ments, namely pre-trs and post-trs (where trs stands for transaction-reverting statements).
The pre-trs and post-trs are injected before and after each of these statements, respectively.
The pre-trs indicates if the execution of the contract reached the statement, meaning the
search process is at the revert point. If the post-trs is reached, it indicates that the condi-
tion of the transaction-reverting statement has been met. If the pre-trs has been reached
and the post-trs has not, the condition has not been met and the execution is halted and
reverted.

However, the pre- and post-trs do not provide information on how to satisfy the par-
ticular condition but only if the condition has been met or not. To collect information on
how far a test case is from satisfying the conditions, we add additional instrumentation
statements (the context) to record the type of operator and the values of the operands from
the memory stack at runtime. For example, for the statement require(amount > 0), our
instrumentation records the operator > and the runtime value of the amount operand and
the constant value 0. This data can be integrated into the fitness function as discussed in
Section 3.3.4 to restore its gradient.

Linking Modifiers

In step 1 of the approach, we analyze the Abstract Syntax Tree (AST) of the contract to
compile a list of all modifiers that each method is dependent on. As an example, the
method withdraw in Figure 3.2b depends on a single modifier, called isOwner. Note that a
modifier cannot be directly invoked but can be tested only through the methods that define
it as a dependency. In general, a modifier acts like a template (or around advice in terms
of aspect-oriented programming), wrapping its logic around the method that depends on
it. Modifiers use a special identifier (_;), as can be seen on line 12 of Example 3.1, to
indicate where the function’s logic should be executed. In the example, all statements
within the method withdraw are post-dominated by the conditions of the isOwner modifier.
Hence, the statements in withdraw are not covered by simply invoking the function if the
conditions of isOwner are not met.

To capture the interprocedural dependencies we build the control flow graph of the
modifier and link it to the entry or exit point within the method depending on where the
template identifier is located. If a method depends on multiple modifiers, the CFG of each
modifier is linked to the dependent method Z in the order they appear in signature of Z
in a layered approach.

As an example, consider Figure 3.3, which defines two modifiers, named X and Y, to-
gether with their extracted parts (A, B) and (C, D), respectively. Method Z uses both mod-
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modifier X() { function Z() public X Y {
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Figure 3.3: Modifier structure and execution order

ifiers in the order they are listed: X, Y. The overall dependency graph links part A, part C
to the entry point of the body of the method Z while its exit point is linked to part D, and
lastly part B.

If the modifier contains transaction-reverting statements, we apply the same proce-
dure described in the previous subsection to the CFG of the modifier. An example of such
a case is depicted in Figure 3.2b where the isOwner modifier contains a require statement
with the condition msg.sender == owner. This condition checks that the request is only
made by the owner of the contract. Finally, if a modifier is declared by multiple methods
of a contract, the linking procedure (from the modifier CFG to the method CFG) is applied
separately for each of these as the context differs among the different methods.

3.3.4 Interprocedural Fitness Function

For each branch in the code, we do not simply apply the unit-level fitness function dis-
cussed in Section 3.2.5 but enrich it with context data collected by the interprocedural
dependency analysis.

We define the interprocedural approach level as an extension to its unit-level variant.
Let t be a test case and b; be a branch to cover. The interprocedural approach level
TAL(b;, t) is the number of interprocedural control dependencies between the closest exe-
cuted branch and b;. The interprocedural control dependencies includes the classic unit-
level control nodes (in the CFG) and the interprocedural dependencies related to modifiers
and transaction reverting statements. For example in Figure 3.2b, the branch 17—21 of the
withdraw method is control dependent on nodes 15-16 (unit-level dependencies) but also
on nodes 10-13 of the isOwner modifier and the conditions of the two require statements
(nodes 11 and 16).

When the execution of a test ¢ is halted because of a transaction-reverting statement
TRS;, we introduce the trs-distance. This distance measures how far ¢ is from satisfying the
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condition in TRS; by using Korel’s rules [121] for conditions. For example, the trs-distance
for the statement require(x == 0) is computed as |x — 0| [121], which is equal to zero only
when the condition x == 0 is satisfied.

Therefore, the interprocedural fitness function (f) for a test t w.rt. an uncovered
branch b; is computed as follows:

d(TRS;,t)
ITAL(b;,t)+ —————— if halted at TRS;
B d(TRS, 1)+ 1 51)
- IAL(b;, t) d(bi. ) 1) otherwi '
b+ NI + otherwise

where I AL denotes the interprocedural approach level, d(TRS;, t) is the trs-distance for the
transaction-reverting statement TRS; and d(b;, t) is the traditional branch distance.

3.4 Empirical Study

We carried out an empirical study to assess the effectiveness of the proposed interproce-
dural fitness function compared to its state-of-the-art unit-level variant. To this aim, we
use these functions to guide the state-of-the-art testing algorithm, DynaMOSA. We evalu-
ate the impact of the proposed fitness function w.r.t. to the following testing criteria: (i)
structural (branch, transaction-reverting statement, and line) coverage and (ii) vulnerabil-
ity detection capability.

3.4.1 Research Questions

Our empirical evaluation aims to answer the following two research questions:

RQ1 To what extent does the proposed approach improve the structural coverage achieved
by DynaMOSA?

RQ2 To what extent does the proposed approach improve the vulnerability detection of Dy-
naMOSA?

These two research questions aim to evaluate if the proposed approach improves the ef-
fectiveness of the state-of-the-art test case generation algorithm DynaMOSA. RQ2 reflects
the main goal, which is to determine if the proposed approach allows the two algorithms
to detect more vulnerabilities in the Solidity smart contract under test. We additionally
report the structural coverage as test data and test cases cannot detect or capture vulner-
abilities in code regions that are uncovered.

3.4.2 Benchmark
To evaluate the proposed approach, we created a benchmark consisting of 100 Solidity
smart contracts. We collected all contracts submitted between January and April of 2021
with Solidity versions 5 and 6 from etherscan.io. We then selected smart contracts with
a cyclomatic complexity of cc >= 2, i.e., contracts with at least one conditional statement,
i.e., branch, loop.

A recent study by Ren et al. [89] empirically and theoretically criticizes the bench-
marks used in prior studies, even those that include the entirety of etherscan.io. Moreover,
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Table 3.1: Statistics (min, max, median and quartiles) of the 100 smart contracts in our benchmark

Code Elements Min. Q; Median Q3 Max
# Functions 2 10 21.5 39 111
# Branches 0 6 12 22 62
# Reverting statements 0 12 27 405 102
# Lines 6 53 109.5 154 431

previous studies did not explicitly report the source of the contracts [118] or did not check
the cyclomatic complexity [112] as suggested in the literature [132, 133]. This study pro-
poses a benchmark that is more transparent by removing trivial smart contracts (cc < 2)
and specifying the date and time on which the contracts were submitted to etherscan.io.

We ensured that the benchmark contains (i) contracts from different application do-
mains (e.g., wallets, auctions, tokens, financial staking, DAO, voting, insurances); (ii) con-
tracts with and without transaction-reverting statements (70 % use modifiers, 18 % use a
single require statement, 62 % use multiple require statements, 5 % use no reverting state-
ments) to validate that the proposed approach does not negatively impact contracts with-
out these constructs; (iii) contracts with a diverse size and complexity. Table 3.1 reports
the statistics of the 100 Solidity smart contracts in our benchmark. In particular, the table
reports the minimum, maximum, median, and quartiles (Q;) of the functions, branches,
lines, and transaction-reverting statements in the contracts. The benchmark is available
within the replication package.

3.4.3 Benchmark Tool & Baseline

To answer the research questions, we implemented our approach within Syntest-Solidity [80].

We have used this tool because it generates complete test cases with assertions, which are
necessary for capturing vulnerabilities automatically. Instead, other Solidity testing tools
were either solely built to work as a fuzzer [112] or were not sufficiently extensible to
integrate the proposed approach [118]. We briefly describe the state-of-the-art unit-level
test case generation algorithm used in Syntest-Solidity.

DynaMOSA

Dynamic Many-Objective Sorting Algorithm (DynaMOSA) is the state-of-the-art evolu-
tionary search algorithm for test case generation [58]. It models test case generation as
a many-objective problem by targeting each test target (e.g., branch, line) simultaneously
using a many-objective genetic algorithm. As any evolutionary algorithm, DynaMOSA
evolves a set of randomly generated test cases (see Section 3.2.4). The fitness of each test
case (or individual) is determined based on the approach level, and the branch distance
for the remaining uncovered targets. DynaMOSA makes use of a dynamic selection of the
targets, where test targets are dynamically added based on the control dependency hier-
archy when the current target is covered. This dynamic selection improves the efficiency
of the search process for smaller search budgets [58]. After evaluating and creating new
test cases (offspring), environmental selection is used to select the fittest individuals in
the population to survive using the preference criterion, non-dominated sorting, and crowd-
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ing distance. The preference criterion first selects the best test case (the one with the best
fitness) for each just-missed branch (front zero). Then, the non-dominated sorting selects
the remaining test cases based on the concept of Pareto optimality, which is the standard
criterion in SBST. Finally, crowding distance is in place to promote the diversity among
the test cases that are equally good according to the Pareto optimality.

3.4.4 Parameter Setting

Previous studies empirically showed [109] that although parameter tuning has an impact
on the effectiveness of a search algorithm, the default values, which are commonly used in
literature, provide reasonable and acceptable results. For this study, we have chosen to use
the following default parameter settings recommended in the literature [34, 58, 109, 134~
136].

Population size

We use a population size of 10 individuals (test cases); We performed a preliminary ex-
periment to determine the size of the population. A population that is too small will not
allow for enough exploration and will quickly converge. A population size that is too big
will consume more of the search budget per iteration of the search process. Since Solidity
smart contract tests are performed through an API (in comparison to testing frameworks
at unit-level), running tests is drastically slower. In addition, before each test case can
be run, the contract has to be deployed to the smart contract network. Therefore, we es-
tablished that a population of 10 individuals provides sweet spot in the trade off between
efficiency and coverage. Our choice of using a relatively small population size is also in
line with the recommended population for expensive fitness functions [134, 137].

Mutation Operator

We use the uniform mutation, which changes each test case by adding, deleting, or re-
placing method calls. We use a mutation probability p,,=1/n, where n is the number of
statements in the test case as recommended in the literature [34, 58, 109]. For primitive
statements (e.g., int), the values are mutated using the polynomial mutation [135] that is
applied with a probability of 80%. For the remaining 20%, the operator applies random
sampling.

Crossover Operator
We use the single-point tree crossover with a crossover probability of p.=0.8, which is
within the recommended range 0.50 < p, < 0.90 [136, 138].

Selection
We use the binary tournament selection to sample individuals from the population for
reproduction [139].

Search Budget

As a stopping criterion for the search process, we use a search budget based on time instead
of the number of executed tests. This was done as a time-based stopping criterion provides
the fairest comparison of the different approaches, given that the proposed heuristics add a
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small computational overhead to the search process. Additionally, practitioners will often
only allocate a specific amount of time for the algorithm to run as the time it takes to run a
certain number of iteration differs across contracts and across tests for the same contract.

The search budget for the algorithm was set to 30 minutes as this provides a balance
between giving the algorithm enough time to explore the search space (considering the
slower execution time of a single test case) and making the study infeasible to execute.
The algorithm will end prematurely if all its test objectives have been covered. Note that
time-based search budgets are considered a less biased stopping criterion than a budget
based on the number of executed tests (or fitness evaluation) as not all tests have the same
running time [7, 34, 130, 140].

3.4.5 Vulnerability Detection

To evaluate how the proposed approach influences the effectiveness of DynaMOSA at de-
tecting/capturing vulnerabilities, we considered multiple vulnerable versions of the con-
tracts in our benchmark. We synthesize vulnerable versions that differ from the secure
ones by either (i) missing transaction-reverting statements or (ii) transaction-reverting
statements with incorrect conditions. As an example, for the contract in Example 3.1, one
vulnerable version could be obtained by removing the require function in line 11. In that
case, anyone can withdraw the money from the bank account, not only the owner. An-
other example of a vulnerable contract version would be if we inverted the condition of
the require function in line 16. This would allow an attacker to increase the balance of
an account by withdrawing a negative amount. Studies have shown that the transaction-
reverting statements play a crucial role in the behavior of the contract when testing for
faults that cause vulnerabilities [73, 141, 142]. Therefore, we analyze the ability to detect
the vulnerability associated with these missing or incorrect statements.

For each contract (with transaction-reverting statements) in the benchmark, we gen-
erated 10 vulnerable versions. To assess the vulnerability detection capability, we run
the test cases that were generated for the non-vulnerable version of the contract on these
vulnerable versions to determine if the test cases fail, and thereby, capturing the vulnera-
bility. Finally, We assess the performance of the testing algorithm with and without our
approach measuring the number of vulnerabilities detected by the generated test cases.

3.4.6 Experimental Protocol

For each contract in the benchmark, we run DynaMOSA with and without the improved
guidance. The resulting coverage information for the different evaluation metrics (i.e.,
branch, reverting statements, line) is collected and stored along with the generated test
cases.

Since DynaMOSA is a randomized algorithm, we can expect a fair amount of variation
in the results of the empirical study. To prevent potential biases in the results, we repeated
every experiment 20 times, with a different random seed, and computed the average (me-
dian) results. In total, we performed 4000 executions: two configurations of DynaMOSA
on 100 Solidity smart contracts with 20 repetitions each. With each execution taking 30
minutes, the total execution time is 83.5 days of consecutive running time. We ran the
experiment on a system with two AMD EPYC™ 7452 using 120 cores running at 2.35 GHz.

To answer RQ1, we compare the structural coverage results of the two configuration
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with each other. To evaluate the vulnerability detection capability of the different ap-
proaches (RQ2), we compare the same configurations as for RQ1 but now using the proce-
dure described in Section 3.4.5.

We use the unpaired Wilcoxon rank-sum test [67] with a threshold of 0.05 to deter-
mine if the results of the proposed approach are statistically significant. The Wilcoxon
rank-sum is a non-parametric statistical test that determines if two data distributions are
significantly different. This is the standard test for evaluating randomized algorithms such
as DynaMOSA [65]. In addition, we use the Vargha-Delaney statistic [68] to measure the
effect size of the result, which indicates how large the difference between the two config-
urations is.

3.5 Results

This section discusses the results of our empirical study with the aim of answering the
research questions formulated in Section 3.4.1.

3.5.1 Result for RQ1: Structural coverage

Table 3.2 shows the statistical results for the structural coverage achieved by DynaMOSA
with the proposed approach, compared to DynaMOSA without it, on the Solidity smart con-
tracts in the benchmark. #Win indicates the number of contracts for which the search algo-
rithms with the improved guidance have a statistically significant improvement (p-value <
0.05) over the algorithms without this guidance. #Lose indicates the number of contracts
for which the proposed approach did not provide a statistically improvement (p-value >
0.05), and lastly, #No diff. indicates the number of contracts for which there is no statisti-
cal difference in the results between the search algorithms with and without the improved
guidance. In addition, the #Win and #Lose columns also include the magnitude of the dif-
ference through the AIZ effect size, classified in Negligible (N), Small (S), Medium (M), and
Large (L).

From Table 3.2, we can see that the proposed approach only provides a statistically
significant improvement for branch coverage in very few cases (4). This result is as ex-
pected as without the additional information that the guidance provides, the search pro-
cess falsely assumes that the branches containing the transaction-reverting statements are
fully covered. Consequently, with the improved guidance, we can observe a statistically
significant improvement in 37 and 35 contracts for transaction-reverting statement and
line coverage, respectively. This indicates that without this guidance DynaMOSA cannot
reach the code regions after these statements. For the transaction-reverting statement
coverage, DynaMOSA improves with a large magnitude for 35 contracts and medium for 2
contracts. For line coverage, DynaMOSA improves with a large magnitude for 29 contracts,
medium for 4 contracts, and small for 2 contracts.

Figures 3.4 and 3.5 show the absolute difference in the average (mean) line and transaction-

reverting statement coverage achieved by DynaMOSA with the improved guidance, com-
pared to DynaMOSA without this guidance, for the significant cases. The proposed ap-
proach on average improves the line coverage by +8.66 %, with a maximum improvement
of +27.97 % for GreenMarkTrust (id = C31), and the transaction-reverting statement cover-
age by +12.29 %, with a maximum improvement of +31.07 % for MARVELCOIN (id = C25).
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Table 3.2: Statistical results for DynaMOSA with and without the improved guidance. We report the number of
times the proposed approach statistically improve (#Win) or decrease (#Lose) the effectiveness of DynaMOSA.
Negligible (N), Small (S), Medium (M), and Large (L) denote the A, effect size.

Metric #Win #Lose #No diff.
N S M L N §S M L

Branch - -2 - - - - 96

Rev. statement - - 2 35 - - - - 63

Line - 2 4 29 - - - - 65
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Figure 3.4: Absolute difference in line coverage for DynaMOSA with and without the improved guidance

3.5.2 Result for RQ2: Vulnerability Detection

Figure 3.6 shows the percentage of vulnerabilities that were detected by DynaMOSA when
comparing the unit-level fitness function to the proposed interprocedural one. As we can
observe, there is no or small differences in the minimum and first quartile in the box-
plots. That means that for 25 % of the contract there is no difference in the vulnerability
detection capability. This is also in line with the results we observe in RQ1, considering
that covering the line and transaction-reverting statement is a prerequisite to reach the
vulnerability. However, we observe larger differences in the second and third quartiles, as
well as in the maximum value.

In particular, we observe that the percentage of captured vulnerabilities achieved by
DynaMOSA increases by 2 % in the and quartile and 8 % in the 3" d quartile, as depicted
in Figure 3.6. For the contracts with a difference in the number of captured vulnerabili-
ties, our approach improves on average by 17 %. The largest improvement is obtained for
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Figure 3.5: Absolute difference in reverting statement coverage for DynaMOSA with and without the improved
guidance

HTDD_contract with an increase in the number of vulnerabilities captured of 38 %. We also
report a moderate positive Pearson’s r correlation between the increases in the vulnera-
bility detection capability and the increases in line coverage (r=0.48, p-value=<0.01) and
transaction-reverting statement coverage (r=0.40, p-value=<0.01) achieved when using
the improved guidance with DynaMOSA. We applied the Pearson’s r correlation coeffi-
cient since the difference in these metrics are normally distributed.

To provide a practical example, let us consider the vulnerability reported in line 7 of Ex-
ample 3.2 for the contract INS. This vulnerability is caused by changing the condition (from
<= to >) in the second require statement. The vulnerability is captured by DynaMOSA
when using the improved guidance but remains undetected when our approach is not ap-
plied. The test case that captures the vulnerability is reported in Example 3.3. This test
case covers both require statements in the function (line 3 and 7) and asserts the reverting
operation of the EVM in line 7, i.e., if the transaction-reverting statement is not satisfied, all
performed transactions are reverted. The test correctly captures the transaction-reverting
statement and fails (via the expected to.be.rejectedWith(Error) code) when such a con-
dition is modified. Instead, DynaMOSA without the improved guidance could not even
reach the require in line 7 as it did not manage to satistfy the condition of the require
statement in line 3.
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Figure 3.6: Vulnerability detection results for DynaMOSA
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function burnFrom(address _from, uint256 _value) public ... {
// Check if the targeted balance is enough
require(balance0Of[_from] >= _value);

//require(_value<=allowance[_from][msg.sender])); <- SECURE

1

2

3

4

5 // Check allowance
6

7 require(_value>allowance[_from][msg.sender]); // <- VULNER.
8

9

// Subtract from the targeted balance

10 balanceOf[_from] -= _value;

11

12 // Subtract from the sender’s allowance
13 allowance[_from][msg.sender] -= _value;
14 totalSupply -= _value;

15

16 // Update totalSupply

17 emit Burn(_from, _value);

18 return true;

19}

Example 3.2: Vulnerable variant for the contract INS. sol

1[it(’ test for INS’, async () => {

2 const INS@ = await INS.new(BigInt(”139”), ”fKQs..”,
3 71ihM...”, {from: accounts[21});

4

5 const bool@ = await INSO.burn.call(BigInt(”1361”),
6 {from: accounts[2]});

7

8 assert.equal (boolo, true)

9

10 await expect(

11 INSO.burnFrom.call(accounts[1], BigInt(”1212”),
12 {from: accounts[2]})

13 ).to.be.rejectedWith(Error);

14| 1);

Example 3.3: Generated test case that detects the vulnerability (Example 3.2) for the contract INS.sol

3.6 Discussion

Our experiment empirically shows that applying state-of-the-art test case generation ap-
proaches cannot effectively detect vulnerabilities (or produce structural coverage) with-
out treating all constructs of the language to be tested as first class citizins. The success of
search-based software testing is, in practice, dependent on many components, including
the ability of the search algorithm to get insight on all aspects of the program execution
through the fitness function. Our empirical study shows the importance of modelling
these language-level constructs in the fitness function.

The benefits of this approach are not only applicable for test case generation, but also
to fuzzing approaches and have the potential to improve the testing landscape for Solidity
smart contracts. Based on a preliminary study, our approach can improve line coverage
for sFuzz [112], a state-of-the-art fuzzer, by on average +8.42 %, with a maximum improve-
ment of +31.76 %, and the transaction-reverting statement coverage by +13.08 %, with a
maximum improvement of +33.09
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Additionally, this approach does not only apply to Solidity but can be generalized to
any programming language with explicit contracts or declarative input validation rules.
For example, Java makes use of annotations (e.g., @NotNull) that help control contracts
throughout method hierarchies. In general, interprocedural analysis can benefit testing
programs that use design by contract constructs.

This paper focusses on Solidity as contracts can not be updated once they are deployed,
increasing the importance of detecting vulnerabilities related to the transaction-reverting
statements as early as possible [73].

3.7 Threats to Validity
3.7.1 Construct Validity

The study makes use of well-established metrics in software testing to compare the differ-
ent approaches: structural coverage (i.e., branch, line) and vulnerability detection capabil-
ity (how well do the generated tests detect vulnerabilities). A time budget is used as the
stopping condition for the search algorithm instead of the number of evaluations. Given
that the approaches compared in the study use different genetic operators, with a different
execution overhead, search time is a fairer metric for budget allocation [74].

3.7.2 External Validity

To make sure that the study’s results can be generalized, the benchmark used to evaluate
it has to contain a diverse set of smart contracts of a wide range of complexities. We
created a benchmark with 100 real-world smart contracts gathered from etherscan.io. This
benchmark contains contracts with different sizes and cyclomatic complexities.

3.7.3 Conclusion Validity

Evolutionary algorithms make use of randomness to search the problem space. To mini-
mize the risk that the results were caused by favourable randomness, we have performed
the experiment 20 times with different random seeds. We have followed the best prac-
tices for running experiments with randomized algorithms as laid out in well-established
guidelines [66] and analyzed the possible impact of different random seeds on our results.
We used two non-parametric tests: the unpaired Wilcoxon rank-sum test and the Vargha-
Delaney A, effect size to assess the significance and magnitude of our results.

3.8 Conclusions and Future Work

Previous studies focused on coverage-oriented heuristics to test and fuzz Solidity smart
contract. However, they do not directly handle transaction-reverting statements, a vital
mechanism within Solidity to protect the contract against invalid requests. To overcome
this limitation, we proposed a novel fitness function based on interprocedural dependency
analysis and context-sensitive instrumentation to exercise and test directly these state-
ments.

We implemented the novel fitness function in the Syntest-Solidity [80] testing frame-
work. The framework implements the state-of-the-art testing algorithm, called DynaMOSA [58],
guided by well-established unit-level fitness functions. Our results show that our inter-
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procedural fitness function improves the number of the vulnerabilities detected as well
as structural coverage compared to the state-of-the-art unit-level alternative. Our results
suggest that our approach has a wide range of applications being able to improve both test
case generation and fuzzing algorithms.

Given our promising results, there are multiple potential directions for future work,
including (i) a topology study on common transaction-reverting statement vulnerabilities
and their prevalence, and (ii) constructing a build pipeline for smart contracts to prevent
vulnerable contracts to go live.
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Improving Test Case Generation
for REST APIs Through
Hierarchical Clustering

With the ever-increasing use of web APIs in modern-day applications, it is becoming more
important to test the system as a whole. In the last decade, tools and approaches have been
proposed to automate the creation of system-level test cases for these APIs using evolutionary
algorithms (EAs). One of the limiting factors of EAs is that the genetic operators (crossover
and mutation) are fully randomized, potentially breaking promising patterns in the sequences
of API requests discovered during the search. Breaking these patterns has a negative impact
on the effectiveness of the test case generation process. To address this limitation, this paper
proposes a new approach that uses Agglomerative Hierarchical Clustering (AHC) to infer a
linkage tree model, which captures, replicates, and preserves these patterns in new test cases.
We evaluate our approach, called LT-MOSA, by performing an empirical study on 7 real-world
benchmark applications w.r.t. branch coverage and real-fault detection capability. We also
compare LT-MOSA with the two existing state-of-the-art white-box techniques (MIO, MOSA)
for REST API testing. Our results show that LT-MOSA achieves a statistically significant
increase in test target coverage (i.e., lines and branches) compared to MIO and MOSA in 4
and 5 out of 7 applications, respectively. Furthermore, LT-MOSA discovers 27 and 18 unique
real-faults that are left undetected by MIO and MOSA, respectively.

This chapter has been published as B Dimitri Stallenberg, Mitchell Olsthoorn, and Annibale Panichella. Improving
Test Case Generation for REST APIs Through Hierarchical Clustering. 36th IEEE/ACM International Conference on
Automated Software Engineering 2021 (ASE’21) [77].
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4.1 Introduction

Over the last decade, the software landscape has been characterized by the shift from large
monolithic applications to component-based systems, such as microservices. These sys-
tems, together with their many diverse client applications, make heavy use of web APIs for
communication. Web APIs are almost ubiquitous today and rely on well-established com-
munication standards such as SOAP [143] and REST [144]. The shift towards component-
based systems makes it ever-increasingly more important to test the system as a whole
since many different components have to work together. Manually writing system-level
test cases is, however, time-consuming and error-prone [145, 146].

For these reasons, researchers have come up with different techniques to automate
the generation of test cases. One class of such techniques is search-based software testing.
Recent advances have shown that search-based approaches can achieve a high code cover-
age [74], also compared to manually-written test cases [7], and are able to detect unknown
bugs [8, 129, 130]. Search-based test case generation uses Evolutionary Algorithms (EAs)
to evolve a pool of test cases through randomized genetic operators, namely mutations and
crossover/recombination. More precisely, test cases are encoded as chromosomes, while
statements (i.e., method calls) and test data are encoded as the genes [19]. In the context
of REST API testing, a test case is a sequence of API requests (i.e., HTTP requests and SQL
commands) on specific resources [37, 130].

REpresentational State Transfer (REST) APIs deal with states. Each individual request
changes the state of the API, and therefore, its execution result depends on the state of
the application (i.e., the previously executed requests). Example 4.1 shows an example
of HTTP requests made to a REST API that manages products. In the example, the first
request authenticates the client to the API with the given username and password. In
return, the client receives a token that can be used to make subsequent requests. The
second request creates a new product by specifying the id, price, and the token. The
price is then updated in the third request and the changes are retrieved in the last request.

The example above contains patterns of HTTP requests that strongly depend on the
previous ones. The GET request can not retrieve a product that does not exist, and therefore,
can not be successfully executed without request 2. Similarly, the UPDATE request can not
be executed before the product is created. Lastly, request 2, 3, and 4, all depend on request
1 for the authentication token. Hence, HTTP requests should not be executed in any
random order [147].

Test generation tools rely on EAs to build up sequences of HTTP requests iteratively
through genetic operators, i.e., crossover and mutation [37, 130, 140]. While these opera-
tors can successfully create promising sequences of HT TP requests, they do not directly
recognize and preserve them when creating new test cases [54]. For example, the genetic
operators may remove request 2 from the test case in Example 4.1, breaking requests 3
and 4 unintentionally.

In this paper, we argue that detecting and preserving patterns of HT TP requests, here-
after referred to as linkage structures, improves the effectiveness of the test case generation
process. We propose a new approach that uses Agglomerative Hierarchical Clustering
(AHC) to infer these linkage structures from automatically generated test cases in the con-
text of REST APIs testing. In particular, AHC generates a Linkage Tree (LT) model from the
test cases that are the closest to reach uncovered test targets (i.e, lines and branches). This
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POST authenticate?user=admin&password=pwd
POST product?id=1&price=10.99&token={key}
UPDATE product/1?price=8.99&token={key}

GET product/1?token={key}

Example 4.1: Motivating example of patterns in API requests.

model is used by the genetic operators to determine which sequences of HTTP requests
should not be broken up and should be replicated in new tests.

To evaluate the feasibility and effectiveness of our approach, we implemented a pro-
totype based on EvoMaster, the state-of-the-art test case generation tool for Java-based
REST APIs. We performed an empirical study with 7 benchmark web/enterprise applica-
tions from the EvoMaster Benchmark (EMB) dataset. We compared our approach against
the two state-of-the-art algorithms for system-level test generations implemented in Evo-
Master, namely Many Independent Objective (MIO) and Many Objective Search Algorithm
(MOSA).

Our results show that LT-MOSA covers significantly more test targets in 4 and 5 out
of the 7 applications compared to MIO and MOSA, respectively. On average, LT-MOSA,
covered 11.7 % more test targets than MIO (with a max improvement of 66.5 %) and 8.5 %
more than MOSA (with a max improvement of 37.5 %). Furthermore, LT-MOSA could de-
tect, on average, 27 and 18 unique real-faults that were not detected by MIO and MOSA,
respectively.

In summary, we make the following contributions:

1. A novel approach that uses Agglomerative Hierarchical Clustering to learn and pre-
serve linkage structures embedded in REST APL

2. An empirical evaluation of the proposed approach with the two state-of-the-art al-
gorithms (MIO and MOSA) on a benchmark of 7 web/enterprise applications.

3. A full replication package including code and results [86].

The remainder of this paper is organized as follows. Section 4.2 summarizes the related
work and background concepts. Section 4.3 introduces our approach called, LT-MOSA, and
gives a detailed breakdown of how it works. Section 4.4 describes the setup of our empiri-
cal study. Section 4.5 discusses the obtained results and presents our findings. Section 4.6
discusses the threats to validity and Section 4.7 draws conclusions and identifies possible
directions for future work.

4.2 Background and Related Work

This section provides an overview of basic concepts and related work in search-based
software testing, REST API testing, test case generation, and linkage learning.

4.2.1 Search-based software testing

Search-based software testing has become a widely used and effective method of automat-
ing the generation of test cases and test data [4, 14]. Automatic test case generation signif-
icantly reduces the time needed for testing and debugging applications (e.g., [5]) and it has
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been successfully used in industry (e.g., [11, 128]). Popular tools for automatically gener-
ating test cases include EvoSuite [34], for unit testing, and Sapienz [11, 148], for Android
testing.

Evolutionary Algorithms (EAs) are one of the most commonly used class of meta-
heuristics in search-based testing. EAs have been used to generate both test data [4] and
test cases [19]. The latter includes test data, method sequences and assertions. EAs are
inspired by the biological process of evolution. It initializes and evolves a population of
randomly generated individuals (test cases). These individuals are then evaluated based
on a predefined fitness function. The individuals with the best fitness value are selected
for reproduction through crossovers (swapping elements between two individuals) and ran-
dom mutations (small changes to individuals). The offspring test cases resulting from the
reproduction are then evaluated. Finally, the population for the next generation is created
by selecting the best individuals across the previous population and the newly generated
tests (elitism). This loop (reproduction, evaluation, and selection) continues until a stop-
ping condition has been reached. The final test suite is created based on the population’s
best individuals.

4.2.2 REST API Testing

A REpresentational State Transfer (REST) API is oriented around resources. This differs
from a command-oriented API like for example the Remote Procedure Call (RPC) standard.
A REST API request performs an action on a specific resource. These actions are encoded
by the different methods defined in the HT TP protocol. Common HTTP methods include
GET, HEAD, POST, PUT, PATCH, and DELETE. These actions are performed on an endpoint, which
is the location of the resource. An example of this would be performing a GET action on

the endpoint to retrieve the information of a user with a user id of 3. Another

example would be performing a POST action on the endpoint to create a new user.

With the recent rise in popularity of REST APIs in the last decade, it is becoming
more important to test this critical communication layer. There are two different ways
system-level API testing can be approached: black-box and white-box testing. Black-box
testing frameworks (e.g., RESTTESTGEN [149], EvoMaster black-box [37]) examine the
functionality of the system without looking at the internals of the system.

In contrast, white-box testing approaches rely on the internal structure of the system
and measure the adequacy of the tests based on coverage criteria (e.g., branch coverage).
This allows the algorithm to easily identify which paths have been covered and which have
not. Prior studies show white-box techniques achieve better results than their black-box
counterparts [37]. Additionally, white-box techniques allow to integrate SQL databases in
the test case generation process [130].

4.2.3 Test Case Generation for REST APIs

EvoMaster is a tool that aims to generate system-level test cases for REST APIs. It internally
uses evolutionary algorithms to evolve the test cases iteratively. At the time of writing,
EvoMaster provides two EAs. The first algorithm is the Many Independent Objective (MIO)
algorithm proposed by Arcuri et al. [140]. The second algorithm is a variant of the Many-
Objective Sorting Algorithm (MOSA) proposed by Panichella et al. [120]. Both of these
algorithms are specifically designed for test case generation and consider the peculiarities
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of these systems. The pseudo-code of these algorithms can be found in the respective
papers.

MIO

The Many Independent Objective (MIO) algorithm is an evolutionary algorithm that aims
to improve the scalability of many-objective search algorithms for programs with a very
large number of testing targets (in the order of millions) [140]. It works under the as-
sumption that: (i) each target can be independently optimized; (ii) targets can be strongly
related, for example when nested, or completely independent; (iii) not all targets can be
covered. Based on these assumptions, MIO maintains a separate population for each target
of the System Under Test (SUT). The fitness function for each population consists solely
of the objective of that population. So, each population compares and ranks the individ-
uals based on a single testing target. At the start of the algorithm, all populations are
empty. Each iteration, the algorithm either samples a random new test case with a certain
probability or it samples a test case from one of the populations with an uncovered tar-
get. This test case is then added to all populations with an uncovered target and evaluated
independently. The population that is chosen when a test case is sampled from one of
the populations, is based on the number of times a test case has been sampled from that
population before. Each time a population is sampled, a counter is incremented. If a test
case with a better fitness value is added to the population, the counter is reset to zero. The
sampling mechanism chooses the population with the lowest counter. This makes sure
that the algorithm won’t get stuck on an unreachable target. When a population reaches
a certain predefined size, it removes the test case with the worst fitness value. At the end
of the algorithm, a test suite is built with the best test case from each population.

MOSA

The Many Objective Sorting Algorithm (MOSA) is an evolutionary algorithm that focuses
on optimizing multiple objectives (e.g., branches) at the same time [120]. It adapts the
NSGA-II algorithm, which is one of the most popular multi-objective search algorithms [150].
In MOSA, a test case is represented as a chromosome. Each testing target (e.g., branch, line)
in the code corresponds to a separate objective measuring the distance (of a given test) to-
ward reaching that target. The fitness of the test cases is measured according to a vector
of scalar values that represent these different objectives. Since MOSA has many different
objectives, it uses two preference criteria to determine which test cases should be selected
and evolved first: (i) minimal distance to the uncovered target; (ii) test case length. More
precisely, it first looks for the subset of the Pareto front that contains test cases with a
minimum distance for each uncovered objective. When multiple test cases are equally
close to cover the same target, the smallest test case will be selected. In each generation,
an archive collects the test cases that cover previously uncovered targets. The archive
is updated every time a newly generated test case covers new targets or covers already
covered targets but with fewer statements.

Comparison

Both MIO and MOSA produce good results in both unit and system-level tests. In the con-
text of system-level testing, Arcuri [140] showed that MIO achieves the best average re-
sults, but there are web/enterprise applications in which MOSA achieves higher coverage.
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In unit testing, Campos et al. [74] showed that MOSA (and its variants) achieves overall
better coverage than MIO. Therefore, in this paper, we consider both MIO and MOSA as
they excel in different scenarios and are the state-of-the-art in test case generation for
REST APIs.

Notice that an extension of MOSA, called DynaMOSA [58], has been proposed in the
related literature for unit testing. Compared to MOSA, DynaMOSA organizes the coverage
targets (e.g., branches) of a given code unit into a global hierarchy based on their structural
dependencies. Then, the list of search objectives is updated dynamically based on their
structural dependencies and the previously covered targets. While previous studies in unit-
testing showed that DynaMOSA outperforms its predecessor MOSA [58, 74], it cannot be
applied for REST APIs as no global hierarchy exists across the coverage targets of different
microservices or functions/classes within the same microservice®.

Chromosome Representation
Test cases in both search algorithms included in EvoMaster are represented by two genes:
action gene and input gene. The action gene represents the structure and order of the
HTTP requests in the test case. EvoMaster extracts these actions from the Swagger/Ope-
nAPI documentation that has to be provided for each system under test. An action gene
consists of the HTTP method and the REST endpoint. An example of an action gene would
be| POST /authentication |

The input gene represents the input data for the HTTP request. An example of this in-

put data would be the username and password that are required by the | /authentication |
endpoint. This input data is sampled from the source code of the SUT.

4.2.4 Linkage Learning in EAs

Linkage-learning refers to a large body of work in the evolutionary computation commu-
nity that aims to infer linkage structures present in promising individuals [151]. Linkage
structures are groups of “good” genes that contribute to the fitness of a given population.
Accurate inference of linkage structures has been used to design “competent” genetic oper-
ators [152] for numerical problems. These operators are designed to replicate rather than
break groups of genes (patterns) into the offspring.

To learn linkage structures from numerical chromosomes, researchers have used differ-
ent unsupervised machine learning algorithms. BOA [153] constructs a Bayesian Network
and creates new numerical chromosomes using the joint distribution encoded by the net-
work. DSMGA [154] uses Dependency Structure Matrix (DSM) clustering and applies the
crossover by exchanging gene clusters between parent chromosomes. 3LO [155] employs
local optimization as an alternative method for linkage learning.

Two state-of-the-art EAs for numerical problems are LT-GA [156] and GOMEA [93].
Both algorithms use clustering to infer linkage-trees, representing the linkage structures
between genes (problem variables) using tree-like structures. GOMEA uses agglomera-
tive hierarchical clustering as a faster and more efficient way to learn linkage-trees [93].
GOMEA uses the gene-pool optimal mixing to create new solutions by applying a local
search within the recombination procedure. More precisely, it creates offspring solutions
from one single parent by iteratively replicating (copying) gene clusters from different

'Micro-services are loosely coupled and deployable independently.
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donors. In each iteration, the new solution is evaluated; if its fitness improves, the repli-
cated genes are kept; otherwise, the change is reverted.

Linkage models have been successfully applied to evolutionary algorithms for numeri-
cal [157], permutation [158], and binary optimization problems [156, 159] with fixed length
chromosomes. However, test cases for REST APIs are characterized by a more complex
structure [37]: each test is a sequence of HTTP requests towards a RESTful service, each
with input data, such as HT'TP headers, URL parameters, and payloads for POST/PUT/PATCH
methods. Besides, a test case might include SQL data and commands for microservices
that use databases [130]. Finally, test cases have a variable size, and their lengths can also
vary throughout the generations. Therefore, we need to tailor existing linkage learning
methods according to the test case characteristics discussed above.

4.3 Approach

This section presents our approach, called LT-MOSA, for system-level test cases generation
and that incorporates and tailors linkage learning into MOSA [120]. We selected MOSA
as the base algorithm to apply linkage learning because it evolves a single population of
test cases, which is a requirement for the learning process. Additionally, MOSA has been
proved to be very competitive in the context of RESTful API testing [140], unit testing [74,
101], and DNN testing [160].

Alg. 3 outlines the pseudo-code of LT-MOSA. The parts where LT-MOSA deviates from
MOSA are highlighted with a blue color. LT-MOSA starts with initializing the popula-
tion P and computing the corresponding objective scores (line 2). Each test case is com-
posed of HTTP calls (actions) and SQL commands (database actions) [130]. The RANDOM-
POPULATION function also executes the generated tests and computes their objective
scores using the branch distance [121]. The branch distance is a well-known heuristic in
search-based testing to measure how far each test case is from reaching a given coverage
target (e.g., branch). Then, the test cases are sorted in sub-dominance fronts using the
preference sorting algorithm [120], in line 4. The test cases within the first front (Front[0])
are the closest ones in P to reach the coverage targets and, therefore, the fittest individuals
to consider for model learning.

Afterwards, the population P is evolved through subsequent generations within the
loop in lines 5-20. Each generation starts by training a linkage tree model on the first
non-dominated front (line 6) with the goal of learning patterns of HTTP and SQL actions
that strongly contribute to the “optimality” of the population. We discuss the learning
procedure in detail in Section 4.3.1. Once the linkage tree model is obtained, LT-MOSA
selects the fittest test cases using the tournament selection (line 9 and 11) and creates an
offspring population P’ by using a linkage-based recombination [93] (line 12) and muta-
tion [130] (line 13 and 15). The linkage-based recombination is a specialized crossover that
relies on the linkage tree model to decide which patterns of genes (HTTP requests) can be
copied into the offspring test cases. We describe the linkage-based recombination operator
in Section 4.3.2.

LT-MOSA adds the newly generated tests into the offspring population (line 16), ex-
ecutes them, and updates the archive (line 17) in case new coverage targets have been
reached. The generation ends by selecting the best M test cases across the existing pop-
ulation P and the offspring population P’. This selection is made by combining the two
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Algorithm 3: LT-MOSA

Input:
Coverage targets Q = {wy, ..., w,}
Population size M
Frequency K for updating the linkage tree model
Result: A test suite T
1 begin

2 | P<— RANDOM-POPULATION(M)
3 | archive «— UPDATE-ARCHIVE(9, P)
4 Fronts «— PREFERENCE-SORTING(R)
5 while not (stop_condition) do
6 L «— LEARN-LINKAGE-MODEL(Fronts[0], K)
7 Pr—0
8 for index = 1..M do
9 parent «— TOURNAMENT-SELECTION(P)
10 if apply_recombination then
11 donor «— TOURNAMENT-SELECTION(P)
12 offspring «— LINKAGE-RECOMB(parent, donor, L)
13 offspring «— MUTATION(offspring)
14 else
15 I_ offspring «— MUTATION(parent)
16 P’ «— P’ {offspring}
17 archive «— UPDATE-ARCHIVE(archive, offspring)
18 R«—PUP
19 Fronts «— PREFERENCE-SORTING(R)
20 P «— ENVIRONMENTAL-SELECTION(Fronts, M)
21 T <— archive

population into one single pool R of size 2 x M (line 18), applying the preference sorting
(line 19), and selecting M solutions from the non-dominated fronts starting from Front[0]
until reaching the population size M (line 20).

The search stops when the termination criteria are met (condition in line 5), the final
test suite will then be composed of all test cases that have been stored in the archive
throughout the search. Note that LT-MOSA updates the archive in each generation by
storing the shortest test case covering each target w;. Finally, the list of objectives is
updated such that the search focuses only on the targets (branches) that are left uncovered.

In the following sub-sections, we detail the key novel ingredients in LT-MOSA, namely
the linkage model learning (LT) (Section 4.3.1), the linkage-based recombination operator
(Section 4.3.2), and the mutation operator (Section 4.3.3).
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4.3.1 Linkage tree learning
In this section, we describe the main changes we applied to the traditional linkage learning
and adapt it to our context, i.e., test case generation for RESTful APIs.

Linkage Encoding
The first problem we had to solve is encoding the test cases into discrete vectors of equal
length, which can be interpreted and analyzed via hierarchical clustering. To this aim, we
opted for encoding test cases as binary vectors whose entries denote the presence (or not)
of the possible HTTP requests. Given an SUT (software under tests), there are N possible
HTTP requests to the available APIs. This information can be extracted from the Swag-
ger/OpenAPI definition [37], which is a widely-used tool for REST API documentation. A
Swagger definition contains the HTTP operations available for each API endpoint. Each
operation contains both fixed and variable parts. The fixed part includes the type of op-
eration (POST, GET, PUT, PATCH, and DELETE ), the IP address or the URL of the target API,
and the HTTP headers. For the variable part, the Swagger definition includes information
about the input data (e.g., string, double, date, etc.) that can vary. Therefore, for each API
endpoint, we identify the available HTTP operations, hereafter referred to as actions, by
parsing the Swagger definition.

Let & ={S;,..., Sy} be the set of N HTTP actions available for the target SUT. We encode
each test case T as a binary string of size N as follows:

) 0 ifS;éT
E(T) ={ey,...,eN) with e ={ . i; SI-E T (4.1)

In other words, each element e; in the encoded vector E(T) is set to 1 if the test case
T contains the action S;; 0 otherwise. The linkage model is trained on the binary-coded
vectors rather than on the original test cases. This encoding is used to determine, via
statistical analysis, which group of HTTP actions often appear together within the fittest
test cases, and which ones never occur together. This information is used to create more
efficient recombination operators.

Linkage Model Training

In this paper, we use agglomerative hierarchical clustering (AHC) over other techniques (e
Bayesian Networks) for linkage tree learning. This is because prior studies show AHC is
more efficient [93]. In particular, we apply the UPGMA (unweighted pair group method
with arithmetic mean) algorithm [161]. In each iteration, UPGMA merges two clusters
that are most similar based on the average distance across the data points (genes in our
case) in the two clusters. The similarity between two HTTP actions genes S; and S; is
computed using the mutual information as suggested by Thierens and Bosman [93]:

where H(.) denotes the information entropy [162].

Note that LT-MOSA infers the linkage tree for the most promising part of the popula-
tion, i.e., the first non-dominated front (line 6 in Alg. 3). Furthermore, the training process
is applied to the encoded test cases according to the schema described in Section 4.3.1
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distance

Figure 4.1: Example of linkage tree model and the Family Of Subset (FOS)

rather than on the actual test cases. Hence, the linkage tree obtained with UPGMA cap-
tures the hierarchical relationship between HTTP actions in our case.

For example, let us consider the linkage tree depicted in Figure 4.1. In the example, the
set of actions & =1{S;,5,,853,5;,...} (the root of the tree) are partitioned into two clusters:
S1,Sy and S3, Sy, ...; each sub-cluster can be further divided in sub-cluster until reaching
the leaf node. In general, the linkage tree has N leaves and N -1 internal nodes. The root
node contains all HTTP actions of the SUT. Each internal node divides the set of HTTP
actions into two mutually exclusive clusters (the child nodes). Finally, the leaves contain
the individual HTTP actions, which are the starting point of the UPGMA algorithm.

The linkage tree nodes are often referred to as Family of Subsets (¥) in the related
literature [93, 156]. Each node (or subset) ¥’ € ¥ with |# > 2| has two mutually exclusive
subsets (or child nodes) %, and %, such that #, N Fy=0and Fy U Fy=F'. Each subset
F' € F represents a cluster of HTTP actions that often appear together and characterized
the best test cases in the population. Therefore, the recombination operator should be
applied by preserving these subsets (patterns) when creating new offspring tests. The next
subsection describes the subsets-preserving recombination operator we implemented in
LT-MOSA.

The computation complexity of UPGMA is O(N x M?), where N is the number of genes
and M is the population size. To reduce its overhead, the linkage tree learning procedure
is not applied in each generation. Instead, the linkage tree model is re-trained every K
generations (line 6 of Alg. 3).

4.3.2 Linkage-based Recombination
MOSA creates offspring tests using the single-point crossover [120]. This crossover operator
is the classic recombination operator used in genetic algorithms [163], and test case gener-
ation [19, 34]. This operator generates two offsprings by randomly swapping statements
between two parent tests T; and T,. As argued in Section 4.1, exchanging statements
between test cases in a randomized manner can lead to breaking gene patterns (HTTP
actions) that characterized the fittest individuals. Randomized recombination is also dis-
ruptive toward building good partial solutions (building blocks), negatively affecting the
overall convergence [93].

Therefore, LT-MOSA uses a linkage-based recombination operator rather than the classi-



4.4 Empirical Study 63

cal single-point crossover to preserve the patterns of HTTP actions identified by the linkage
tree model. The recombination operator generates only one offspring starting from two ex-
isting test cases, called parent and donor. Both test cases are selected from the current
population P as indicated in lines 9 and 11. The offspring is created by copying all genes
(HTTP actions with input data) from the parent and further injecting only some genes
from the donor. These genes are selected by exploiting the linkage tree model trained ac-
cording to Section 4.3.1.

More precisely, we first identify the gene patterns (i.e., the subsets F’ € &) that the
donor contains. This is done by iterating across all subsets in the linkage tree model F
and identifying the subsets ¥’ c & that appear in the encoded vector (see Section 4.3.1)
of the donor. LT-MOSA randomly selects one of the identified subsets in ¥’ and inserts it
into the offspring. The injection point is randomly chosen, and the selected genes (HTTP
actions with test data) are inserted into the offspring in the exact order as they appear in
the donor.

If the donor does not contain any subset according to the linkage tree (i.e., #’ = @), then
the offspring is generated by applying the traditional single-point crossover. This operator
can be applied to the latter case since the linkage tree model could not identify any useful
gene pattern within the donor.

4.3.3 Mutation

In MOSA, each test case is mutated with a probability p,, = 1/L, where L is the test case
length [120]. This also reflects the existing guidelines in evolutionary computation [164,
165], which suggest using a mutation probability p,, proportional to the size of the chro-
mosome.

In recent years, Arcuri [140] improved the mutation operator in the context of system-
level test case generation by using a variable mutation rate. Indeed, the mutation operator
in MIO [140] increases the number of mutations applied to each test case from 1 (start of
the search) up to 10 (end of the search) with linear incremental steps. The importance of
having a large mutation rate for RESTful API testing has also been confirmed by a recent
study results [130].

Based on these observations, LT-MOSA uses the same mutation rate of MIO (i.e., in-
creasing mutation rate from 1 up to 10 mutations) rather than the fixed mutation rate of
MOSA.

4.4 Empirical Study

This section details the empirical study that we carried out to evaluate the effectiveness
of the proposed solution, called LT-MOSA, and compare it with the state-of-the-art algo-
rithms (MIO, MOSA) w.r.t. to the following testing criteria: (i) code (line and branch)
coverage and (ii) fault detection capability.

4.4.1 Benchmark
This study uses the EvoMaster Benchmark (EMB)? version 1.0.1. This benchmark was
specifically created as a set of web/enterprise applications for evaluating the test case

*https://github.com/EMResearch/EMB/releases/tag/v1.0.1
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Table 4.1: Web applications from the EvoMaster Benchmark (EMB) used in the empirical study. Reports the
number of Java classes, test coverage targets (i.e, lines and branches), and the number of endpoints.

Application Classes Coverage Targets Endpoints
CatWatch 69 2182 23
Features-Service 23 513 18
NCS 10 652 7
OCVN 548 8010 258
ProxyPrint 68 3758 74
Scout-API 75 3449 49
SCS 13 865 11
Total 1655 19429 440

generation algorithms implemented in EvoMaster. We selected this benchmark since it
has been widely used in the literature to assess test case generation approaches for REST
APIs [37, 140].

In this study, we used five real-world open-source Java web applications and two ar-
tificial Java web applications. CatWatch is a metrics dashboard for GitHub organizations.
Features-Service is a REST Microservice for managing feature models of products. OCVN
(Open Contracting Vietnam) is a visual data analytics platform for the Vietnam public
procurement data. ProxyPrint is a platform for comparing and making requests to print-
shops. Scout-API is a RESTful web service for the hosted monitoring service “Scout”. NCS
(Numerical Case Study) is an artificial application containing numerical examples. SCS
(String Case Study) is an artificial application containing string manipulation code exam-
ples. We use NCS and SCS since they have been designed for assessing test generation tools.
These artificial web applications allow to cover many different scenarios (e.g., deceptive
branches [140]). Compared to previous studies [37, 140], we added the OCVN applica-
tion as it is the largest real-world system in the benchmark. We additionally removed the
rest-news application as it contains artifical examples that are used for classroom teaching.

Table 4.1 summarizes the main characteristics of the applications in the benchmark,
such as the number of classes, the number of test coverage targets, and the number of
endpoints included in the service. This benchmark contains a total of 1655 classes with
around 20000 test coverage targets and 440 endpoints, not including tests or third-party
libraries.

EvoMaster requires a test driver for the application under test. This test driver contains
a controller that is responsible for starting, resetting, and stopping the SUT. We used the
test drivers available in the EMB benchmark for the web applications used in this study.

4.4.2 Research Questions
Our empirical evaluation aims to answer the following research questions:

RQ1 How does LT-MOSA perform compared to the state-of-the-art approaches with regard
to code coverage?
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RQ2 How effective is LT-MOSA compared to the state-of-the-art approaches in detecting
real-faults?

RQ3 How effective is LT-MOSA at covering test targets over time compared to the state-of-
the-art approaches?

The first two research questions aim to evaluate if preserving patterns in HTTP re-
quests through linkage learning can improve the effectiveness of test case generation for
REST APIs by reaching a higher coverage and detecting more faults.

The last research question aims to answer if our approach, LT-MOSA, is more efficient
in covering these test targets by measuring how many test targets are covered at different
times within the search budget.

4.4.3 Baseline
To answer our research questions, we compare LT-MOSA with the two state-of-the-art
search-based test case generation algorithm for REST APIs as a baseline:

« Many Independent Objective (MIO) is the state-of-the-art for REST API testing, and it
is the default search algorithm in EvoMaster. MIO aims to improve the scalability of
many-objective search algorithms for programs with a very large number of testing
targets (see Section 4.2.3).

« Many-Objective Sorting Algorithm (MOSA) is the base algorithm we use to build and
design LT-MOSA. Therefore, we want to assess that our approach outperforms its
predecessor. Furthermore, MOSA has been proven to be very competitive in the
context of REST APIs testing (see Section 4.2.3).

4.4.4 Prototype Tool

We have implemented LT-MOSA in a prototype tool that extends EvoMaster, an automated
system-level test case generation framework. In particular, we implemented the approach
as described in Section 4.3 within EvoMaster.

The variant of MOSA implemented in EvoMaster differs from the original algorithm
proposed by Panichella et al. [120]. The EvoMaster variant does not use the crossover
operator but merely relies on the mutation operator to create new test cases. Therefore,
we implemented the single-point crossover as described in [120] and adapted it to the
encoding schema used for representing REST API requests in EvoMaster. See Section 4.2.3
for more details.

We chose EvoMaster because it already implements the state-of-the-art test case gen-
eration algorithms, and it is publicly available on GitHub. Besides, EvoMaster implements
testability transformations to improve the guidance for search-based algorithms [166] and
can handle SQL databases [130].

4.4.5 Parameter Setting

For this study, we have chosen to adopt the default search algorithm parameter values set
by EvoMaster. It has been empirically shown [109] that although parameter tuning has an
impact on the effectiveness of a search algorithm, the default values, which are commonly
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used in literature, provide reasonable and acceptable results. Thus, this section only lists
a few of the most important search parameters and their values:

Search Budget

We chose a search budget (stopping condition) based on time instead of the number of
executed tests. This choice was made as search time provides the fairest comparison given
that we consider different kinds of algorithms with diverse internal routines (also in terms
of computational complexity). Additionally, practitioners will often only allocate a certain
amount of time for the algorithm to run. The search budget for all algorithms was set to
30 minutes as this strikes a balance between giving the algorithms enough time to explore
the search space and making the study infeasible to execute. If the algorithm has covered
all its test objectives, it will stop prematurely. Note that running time is considered a less
biased stopping condition than counting the number of executed tests since not all tests
have the same running time [7, 34, 130, 140]. We further discuss this aspect in the threats
to validity.

MIO parameters
For MIO, we used the default settings as provided in the original paper by Arcuri et al. [140,
167].

« Population size: We use the default population size of 10 individuals per testing
target. Notice that MIO uses separate populations for the different targets.

« Mutation: We use the default number of applied mutations on sampled individuals,
which linearly increases from 1 to 10 by the end of the search.

« F: We use the default percentage of time after which a focused search should start
of 0.5.

« P,: We use the default probability of sampling at random, instead of sampling from
one of the populations, of 0.5. This value will linearly increase/decrease based on
the consumed search budget and the value of F.

MOSA parameters
For MOSA, we used the default settings described in the original paper et al. [58].

« Population size: 50 individuals (test cases).

« Mutation: We use the uniform mutation, which either changes the test case struc-
tures (adding, deleting, or replacing API requests) or the input data. Test structure
and test data mutation are equally probable, i.e, each has 50% probability of being ap-
plied. The mutation probability for each statement/data gene is equal to 1/n, where
n is the number of statements in the test case.

+ Recombination Operator: We use the single-point crossover with a crossover proba-
bility of 0.75.

« Selection: We use the tournament selection with the default tournament size of 10.
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LT-MOSA parameters

For LT-MOSA, we used the same parameters as for the MOSA algorithm except for the
mutation operator, for which we use the mutation described in Section 4.3.3. Additionally,
we use the following parameter values for the linkage learning model:

« Frequency: We use a frequency of 10 generations for generating a new Linkage-
Tree model. From a preliminary experiment that we have performed, this provides
a balance between having too much overhead (< 10) and having an outdated model
(> 10).

« Recombination Operator: We use the linkage-based recombination with a probability
of 0.75.

4.4.6 Real-fault Detection

To find out the number of unique faults that the search algorithms can detect, EvoMaster
checks the returned status codes from the HTTP requests for 5xx server errors, as an
indicator for a fault. Since web applications handle many different clients, when an error
occurs it is not desirable for the application to crash or exit as this would also impact
the other clients. Thus, web applications return a status code in the 5xx range, indicating
an error has occurred on the server’s side. EvoMaster keeps track of the last executed
statement in the SUT (excluding third-party libraries) when a 5xx status code is returned,
to distinguish between different errors that happen on the same endpoint.

4.4.7 Experimental Protocol
For each web application, all three search algorithms (MOSA, MIO, LT-MOSA) are sepa-
rately executed, and the resulting number of test targets that are covered is recorded.

Since all three search algorithm used in the study are randomized, we can expect a
fair amount of variation in the results. To mitigate this, we repeated every experiment
20 times, with a different random seed, and computed the average (median) results. In
total, we performed 420 executions, three search algorithms for seven web applications
with 20 repetitions each. With each execution taking 30 minutes, the total execution time
is 8.75 days of consecutive running time.

To determine if the results (i.e., code coverage and fault detection capability) of the
three different algorithms are statistically significant, we use the unpaired Wilcoxon rank-
sum test [67] with a threshold of 0.05. This is a non-parametric statistical test that deter-
mines if two data distributions are significantly different. Since we have three different
data distributions, one for each search algorithm, we perform the Wilcoxon test pairwise
between each configuration pair: (i) LT-MOSA and MOSA; (ii) LT-MOSA and MIO. We
combine this with the Vargha-Delaney statistic [68] to measure the effect size of the re-
sult, which determines how large the difference between the two configuration pairs is.

To determine how the two configuration pairs compare in terms of efficiency, we an-
alyze the code coverage at different points in time. While the effectiveness measures the
code coverage only at the end of the allocated time, we also want to analyze how algo-
rithms perform during the search. One way to quantify the efficiency of an algorithm is
by plotting the number of test targets at predefined intervals during the search process.
This is called a convergence graph. We collected the number of targets that have been
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covered for every generation of each independent run. To express the efficiency of the ex-
perimented algorithms using a single scalar value, we computed the overall convergence
rate as the Area Under the Curve (AUC) delimited by the convergence graph. This met-
ric is normalized by dividing the AUC in each run by the maximum possible AUC per
application®.

4.5 Results

This section details the results of the empirical study with the aim of answering our re-
search questions.

4.5.1 RQ1: Code Coverage
Table 4.2 reports the median and inter-quartile range (IQR) of the number of test targets
covered by MIO, MOSA, and LT-MOSA for each of the seven applications.

From Table 4.2, we observe that LT-MOSA achieved the highest median value (avg.
+334.75 targets) for four out of the seven applications, and MOSA and MIO both achieved
the highest median value (+10.00 and +0.5 targets, respectively) for 1 out of the 7 applica-
tions. The largest increase in code coverage is observable for OCVN, for which LT-MOSA
covered +1100.00 more targets. For SCS, both LT-MOSA and MIO covered the same num-
ber of targets (853.00). For both artificial applications, namely NCS and SCS, the difference
between the search algorithms is minimal (< 1).

In terms of variability (IQR), there is no clear trend with regard to the applications
under test and/or the search approaches. For example, in some cases, the winning config-
uration (LT-MOSA on CatWatch) has the highest IQR with a significant margin (161.75 vs.
132.00 or 12.75). On Scout-API, LT-MOSA vyields the lowest IQR by a significant margin
(33.25 vs. 8.00 or 5.50). Within and across each search algorithm, the IQR varies.

Table 4.3 reports the statistical significance (p-value), calculated by the Wilcoxon test,
of the difference between the number of targets covered by LT-MOSA and the two base-
lines, MIO and MOSA. It also reports the magnitude of the differences according to the
Vargha-Delaney A, statistic.

From Table 4.3, we can observe that for the non-artificial web applications, LT-MOSA
achieves a significantly higher code coverage than MIO in four out of five applications
with a large effect size (A, statistics). LT-MOSA significantly outperforms MOSA in all
five applications. The effect size is large in four applications and small for CatWatch. For
the two artificial applications, NCS and SCS, there is no statistical difference between the
results of LT-MOSA and the two baselines (MIO and MOSA). This confirms our preliminary
results reported in Table 4.2. Moreover, the difference between LT-MOSA and MIO is not
significant for Features-Service. Finally, in none of the applications in our benchmark,
neither of the baselines achieved a significantly larger coverage than LT-MOSA.

In summary, LT-MOSA achieves significantly higher (most of the cases) or equal
code coverage when applied to REST APIs as compared to both MIO and MOSA.

*Which corresponds to the area of the box with a height of the maximum code coverage and a width equal to
the search budget.
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Table 4.2: Median number of covered test targets.

. MIO MOSA LT-MOSA
Application
Median IOR | Median IOR | Median ~ IQR
CatWatch 1173.00 12.75 | 1177.00 132.00 | 1215.50 161.75

Features-Service 488.00 72.25 455.50 33.25 478.00 5.00
NCS 622.50 1.25 623.00 4.00 622.00 3.25

OCVN 2421.50 374.75 | 2931.50 271.00 | 4031.50 338.75
ProxyPrint 1485.50 16.25 | 1501.00 78.25 | 1602.50 59.00
Scout-API 1727.50 54.75 | 1707.00 69.00 | 1826.50 33.25
SCS 853.00 5.50 852.00 8.00 853.00 3.00

Table 4.3: Statistical results (p-value and Alz) for the covered test targets (RQI). Significant p-values (ie.,
p-value < 0.05) are marked gray.

L LT-MOSA vs MIO LT-MOSA vs MOSA

Application

p-value Ay | p-value Ay
CatWatch 0.87 (Large) 0.66 (Small)
Features-Service 0.34 054 0.83 (Large)
NCS 0.86  0.49 0.38 (Small)
OCVN 1.00 (Large) 1.00 (Large)
ProxyPrint 1.00 (Large) 0.86 (Large)
Scout-API 0.96 (Large) 0.96 (Large)
SCS 0.86  0.40 (Small) 0.50

4.5.2 RQ2: Fault Detection Capability
Table 4.4 reports the median number of real-faults (and the corresponding IQR) detected
by MIO, MOSA, and LT-MOSA for each of the seven applications.

We observe that for both the artificial applications, NCS and SCS, the number of faults
that have been detected by any search algorithm is zero. This is because these artificial
applications are not designed to fail softly by returning 5xx faults. For the open-source
applications, LT-MOSA detects the largest number of faults (avg. +3.40 faults) in all five
cases. The largest increase in fault-detection rate is observable for the OCVN application,
with +10.5 more faults detected by LT-MOSA than the baselines. It is noteworthy that
the largest difference between LT-MOSA and the baselines is on the OCVN application,
which is the application with by far the most classes (i.e., 548) and endpoints (i.e., 258) in
our benchmark. This could be explained by the fact that LT-MOSA also achieved a much
higher code coverage for this application. However, the difference in detected faults for
OCVN is larger than for the other applications in the benchmark, which could indicate
that LT-MOSA is especially effective for testing large REST APIs. The faults detected by
LT-MOSA are a superset of the faults detected by MIO and MOSA. These newly discovered
faults originate from the additional coverage that LT-MOSA achieves.

Table 4.5 reports the results of the statistical test, namely the Wilcoxon test, applied
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Table 4.4: Median number of detected real-faults.

_ MIO MOSA LT-MOSA
Application
Median IQR | Median IQR | Median IQR
CatWatch 13.00 0.25 12.00 2.00 13.50 2.25
Features-Service 17.00  0.00 17.00  0.00 18.00 0.50
NCS 0 0.0 0 0.0 0 0.00
OCVN 34.00 5.25 37.50 5.25 48.00 3.50
ProxyPrint 32.50 100 33.00 1.00 34.00 0.25
Scout-API 54.50 3.75 60.00 1.50 64.00 3.00
SCS 0 0.00 0 0.0 0 0.00

Table 4.5: Statistical results (p-value and AlZ) for the detected real-faults (RQ2). Significant p-values (ie.,

p-value < 0.05) are marked gray.

L LT-MOSA vs MIO LT-MOSA vs MOSA
Application
p-value Ay | p-value Ay

CatWatch 0.7 (Large) 0.84 (Large)
Features-Service - 0.92 (Large) 0.98 (Large)
NCs - - -

OCVN 0.99 (Large) 0.92 (Large)
ProxyPrint 0.89 (Large) 0.66 (Small)
Scout-API 1.00 (Large) 0.91 (Large)
SCS - - - -

to the number of faults detected by LT-MOSA and the two baselines, MIO and MOSA. It
also reports the magnitude of the differences (if any) obtained with the Vargha-Delaney
A, statistic. Significant p-values (i.e., p-value < 0.05) are highlighted with gray color.
From Table 4.5, we can observe that LT-MOSA detects a significantly higher number of
faults than MIO and MOSA in all non-artificial applications. The effect size (App) is large
in all comparisons, except for ProxyPrint, where the effect size is small when comparing
LT-MOSA and MOSA. Since none of the algorithms detected any faults in the artificial
applications, Table 4.5 does not report any p-value or Ay, statistics for these applications.

In summary, we can conclude that LT-MOSA detects more faults than the state-of-
the-art approaches, namely MIO and MOSA, for all applications in our benchmark.

4.5.3 RQ3: Code Coverage over Time

Table 4.6 reports the median Area Under the Curve (AUC) related to the number of targets
covered over time by MIO, MOSA, and LT-MOSA for each of the seven applications. The
AUC indicates how efficient the search algorithms are at reaching a certain code coverage.
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Table 4.6: Median normalized AUC for the number of covered test targets. The highest values are marked in
gray.

Application MIO | MOSA | LT-MOSA
CatWatch 0.77 0.78 0.78
Features-Service 0.78 0.75

NCS 0.99 0.99 0.99
OCVN 0.50 0.50

ProxyPrint 0.87 0.82

Scout-API 0.84 0.81

SCS 0.95 0.96

For more information on how the AUC is calculated and normalized see Section 4.4.7.
Table 4.6 highlights the search algorithm (in gray color) that achieved the highest AUC
value.

We observe that for the open-source applications, LT-MOSA has the highest AUC (avg.
+0.06) in four out of five applications, with the largest difference (+0.16) in the OCVN
application. For CatWatch, both MOSA and LT-MOSA have the same AUC (i.e., 0.78). From
Tables 4.2 and 4.3 however, we can see that LT-MOSA covers significantly more targets
(+38.5) after 30 minutes of search budget. This means that MOSA reaches a higher coverage
in the beginning but loses to LT-MOSA over time.

Figure 4.2 shows the (median) number of targets covered over time by the different
search algorithms for OCVN, which is the largest application in our benchmark. In the
beginning of the experiment (0-500 seconds), MIO and LT-MOSA perform roughly equal.
After the first 500 seconds, LT-MOSA outperforms MIO. This results in a much larger AUC
value (+ 0.16) for LT-MOSA compared to MIO as indicated in Table 4.6. We conclude that
LT-MOSA significantly outperforms both MOSA and MIO in term of effectiveness and effi-
ciency on this application. To reaffirm this, we can observe that in Figure 4.2, MIO never
reaches 2700 covered targets, MOSA takes 1311 seconds to reach that many targets, and
LT-MOSA performs this in just 713 seconds, almost half the time of MOSA.

For the two artificial applications, NCS and SCS, the difference in AUC between the
three search algorithms is very minimal (< 0.01). From Table 4.2, we can also see that LT-
MOSA covers one target more than MOSA on SCS and one target less on NCS. However,
they both yield the same AUC, i.e., 0.96 (SCS) and 0.99 (NCS). These results are in line with
the results from RQ1.

In summary, we can conclude that LT-MOSA achieves higher AUC values than the
baselines, i.e., it covers more targets and in less time.
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Figure 4.2: Average number of targets covered by our approach (LT-MOSA) and the baselines (MOSA, MIO) for
OCVN.

4.6 Threats to Validity

This section discusses the potential threats to the validity of the study performed in this
paper.

4.6.1 Construct Validity

We rely on well-established metrics in software testing to compare the different test case
generation approaches, namely code coverage, fault detection capability, and running
time. As a stopping condition for the search, we measured the search budget in terms
of running time (i.e., 30 minutes) rather than considering the number of executed tests,
or HTTP requests. Given that the different algorithms in the comparison use different
genetic operators, with different overhead, execution time provides a fairer measure of
time allocation.

4.6.2 External Validity

An important threat regards the number of web services in our benchmark. We selected
seven web/enterprise applications from the EMB benchmark. The benchmark has been
widely used in the related literature on testing for REST APIs. The applications are diverse
in terms of size, application domain, and purpose. Further experiments on a larger set of
web/enterprise applications would increase the confidence in the generalizability of our
study. A larger empirical evaluation is part of our future agenda.
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4.6.3 Conclusion Validity

Threats to conclusion validity are related to the randomized nature of EAs. To minimize
this risk, we have performed each experiment 20 times with different random seeds. We
have followed the best practices for running experiments with randomized algorithms
as laid out in well-established guidelines [66] and analyzed the possible impact of differ-
ent random seeds on our results. We used the unpaired Wilcoxon rank-sum test and the
Vargha-Delaney Ay, effect size to assess the significance and magnitude of our results.

4.7 Conclusions and Future Work

In this paper, we have used agglomerative hierarchical clustering to learn a linkage tree
model that captures promising patterns of HTTP requests in automatically generated
system-level test cases. We proposed a novel algorithm, called LT-MOSA, that extends
state-of-the-art approaches by tailoring and incorporating linkage learning within its ge-
netic operators. Linkage learning helps to preserve and replicate patterns of API requests
that depend on each other.

We implemented LT-MOSA, in EvoMaster and evaluated it on seven web applications
from the EMB benchmark. Our results show that LT-MOSA significantly improves code
coverage and can detect more faults than two state-of-the-art approaches in REST API
testing, namely MIO [140] and MOSA [120]. This suggests that using unsupervised ma-
chine learning (and agglomerative hierarchical clustering in our case) is a very promising
research direction.

Based on our promising results, there are multiple potential directions for future works.
In this paper, we used the UPGMA algorithm for hierarchical clustering. Therefore, we
intend to investigate more learning algorithms within the hierarchical clustering category.
We also plan to investigate other categories of machine learning methods alternative to
hierarchical clustering, such as Bayesian Network [153]. Finally, LT-MOSA uses a fixed
parameter K for the linkage learning frequency. We plan to investigate alternative, more
adaptive mechanisms to decide whether the linkage tree model needs to be retrained or not.
Finally, we intend to implement and apply linkage learning to unit-test case generation as
well.
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Hybrid Multi-level Crossover for
Unit Test Case Generation

State-of-the-art search-based approaches for test case generation work at test case level, where
tests are represented as sequences of statements. These approaches make use of genetic opera-
tors (i.e., mutation and crossover) that create test variants by adding, altering, and removing
statements from existing tests. While this encoding schema has been shown to be very effective
for many-objective test case generation, the standard crossover operator (single-point) only al-
ters the structure of the test cases but not the input data. In this paper, we argue that changing
both the test case structure and the input data is necessary to increase the genetic variation
and improve the search process. Hence, we propose a hybrid multi-level crossover (HMX) op-
erator that combines the traditional test-level crossover with data-level recombination. The
former evolves and alters the test case structures, while the latter evolves the input data using
numeric and string-based recombinational operators. We evaluate our new crossover oper-
ator by performing an empirical study on more than 100 classes selected from open-source
Java libraries for numerical operations and string manipulation. We compare HMX with the
single-point crossover that is used in EvoSuite w.r.t. structural coverage and fault detection
capability. Our results show that HMX achieves a statistically significant increase in 30 % of
the classes up to 19 % in structural coverage compared to the single-point crossover. Moreover,
the fault detection capability improved up to 12 % measured using strong mutation score.

This chapter has been published as B Mitchell Olsthoorn, Pouria Derakhshanfar, and Annibale Panichella. Hy-
brid Multi-level Crossover for Unit Test Case Generation. 13th International Symposium on Search-Based Software
Engineering 2021 (SSBSE21) [78].
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5.1 Introduction

Genetic operators are a fundamental component of evolutionary search-based test case
generation algorithms. These operators create variation in the test cases to help the search
process explore new possible paths. The main genetic operators are mutation, which
makes changes to a single test case, and crossover, which exchanges information between
two test cases.

Over the years, related work has used three types of encoding schemata to represent
test cases for search algorithms, namely data-level, test case-level, and test suite-level.
These schemata typically implement genetic operators at the same level as the encoding.
For example, the crossover operator at the data-level exchanges data between two input
vectors [4]. The test case-level crossover exchanges statements between two parent test
cases [19]. Lastly, the test suite-level crossover swaps test cases within two test suites [34].
Recent studies have shown that the test case-level schema combined with many-objective
(MO) search is the most effective at generating test cases with high coverage [58, 74].

The current many-objective approaches use the single-point crossover to recombine
groups of statements within test cases. Test cases consist of both test structures (method
sequences) and test data [19]. Hence, the crossover operator only changes the test struc-
ture and simply copies over the corresponding input data. Therefore, input data has to be
altered by the mutation operator, usually with a small probability.

In this paper, we argue that better genetic variation can be obtained by designing
a crossover operator that alters the structure of the test cases and also the input data
by creating new data that is in the neighborhood of the parents’ data. To validate this
hypothesis, we propose a new operator, called Hybrid Multi-level Crossover (HMX), that
combines different crossover operators on multiple levels. We implement HMX within
EvoSuite [34], the state-of-the-art unit-test generation tool for Java.

To evaluate the effectiveness of our operator, we performed an empirical study where
we compare HMX with the single-point crossover used in EvoSuite, a state-of-the-art test
case generation tool for Java, wr.t. structural coverage and fault detection capability. To
this aim, we build a benchmark with 116 classes from the Apache Commons and Lucene
Stemmer projects, which include classes for numerical operations and string manipulation.

Our results show that HMX achieves higher structural coverage for ~30 % of the classes
in the benchmark. On average, HMX, covered 6.4 % and 7.2 % more branches and lines than
our baseline, respectively (with a max improvement of 19.1 % and 19.4 %). Additionally, the
proposed operator improved the fault detection capability in ~25 % of the classes with an
average improvement of 3.9% (max. 14 %) and 2.1% (max. 12.1%) for weak and strong
mutation, respectively.

In summary, we make the following contributions:

1. A novel crossover that works at both test case and input data-level to increase ge-
netic variation in the search process. The data-level recombination combines multi-
ple different techniques depending on the data type.

2. An open-source implementation of our operator in EvoSuite.

3. A full replication package containing the results and the analysis scripts [87].
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The outline for the remainder of this paper is as follows. Section 5.2 explains the fun-
damental concepts used in the paper. Section 5.3 introduces our new crossover operator,
called HMX, and breaks down how it works. Section 5.4 sets out our research questions
and describes the setup of our empirical study. Section 5.5 details our results and high-
lights our findings. Section 5.6 discusses the threats to validity and Section 5.7 draws
conclusions and identifies possible directions for future work.

5.2 Background and Related Work

5.2.1 Search-Based Unit Test Generation

Prior studies introduced search-based software test generation (SBST) approaches utilizing
meta-heuristics (e.g., genetic algorithm) to automate test generation for different testing
levels [4], such as unit [34], integration [36], and system-level testing [37]. Search-based
unit-test generation is one of the widely studied topics in this field, where a search process
generates tests fulfilling various criteria (e.g., structural coverage, mutation score) for a
given class under test (CUT). Studies have shown that these techniques are effective at
achieving high code coverage [74, 101] and fault detection [9].

5.2.2 Single-Objective Unit Test Generation

Single-objective techniques specify one or more fitness functions to guide the search pro-
cess towards covering the search targets according to the desired criteria. Rojas et al. [100]
proposed an approach that aggregates all of the fitness functions for each criterion using
a weighted sum scalarization and performs a single-objective optimization to generate
tests. Additionally, Gay [168] empirically showed that combining different criteria in a
single-objective leads to detect more faults compared to using each criterion separately.

5.2.3 Dynamic Many-Objective Sorting Algorithm (DynaMOSA)

In contrast with single-objective unit test generation, Panichella et al. have proposed a
many-objective evolutionary-based approach, called DynaMOSA [58]. This approach con-
siders each coverage targets from multiple criteria as an independent search objective. Dy-
naMOSA utilizes the hierarchy of dependencies between different coverage targets (e.g.,
line, branch, mutants) to select the search objectives during the search dynamically. More-
over, recent work [102] introduced a multi-criteria variant of DynaMOSA that extends the
idea of dynamic selection of the targets, based on an enhanced hierarchical dependency
analysis. This recent study showed that this multi-criteria variant outperforms single-
objective search-based unit test generation w.r.t. structural and mutation coverage and,
therefore, can achieve a higher fault detection rate. These results have also been con-
firmed independently by Campos et al. [74]. Consequently, DynaMOSA is currently used
as the default algorithm in EvoSuite.

5.2.4 Crossover Operator

Like any other evolutionary-based algorithms, all variations of DynaMOSA need crossover
and mutation operators for evolving the individuals in the current population to generate
the next population. Since DynaMOSA encodes tests at a test case-level, the mutation op-
erator alters statements in a selected test case according to a given mutation probability.
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This search algorithm uses the single-point crossover to recombine two selected individ-
uals (parents) into new tests (offspring) for the next generation. This crossover operator
randomly selects two positions in the selected parents and split them into two parts. Then,
it remerges each part with the opposing part from the other parent. A more detailed ex-
planation of this operator is available in Section 5.3.

While the single-point crossover brings diversity to the structure of the generated test
cases, it does not work at the data-level (i.e.,crossover between the test inputs). Hence,
this study introduces a hybrid multi-level crossover, called HMX, for the state-of-the-art
in search-based unit test generation.

5.3 Approach

This section details our new crossover operator, called Hybrid Multi-level Crossover (HMX).
This operator combines the traditional single-point test case-level crossover with multiple
data-level crossovers.

Alg. 4 outlines the pseudo-code of our crossover operator. HMX first performs the
traditional single-point crossover at line 2. The single-point crossover is chosen for the
test case-level operator as previous studies have shown that it is effective in producing a
variation in the population over time [19]. It is also the default crossover operator used
in the state-of-the-art test case generation tool EvoSuite [19]. This operator takes two
parent test cases as input and selects a random point among the statements within the
parents test cases. The parents are then split at this point, and their resulting parts are
then recombined with its opposing part of the other parent to produce two new offspring
test cases. Since these offspring test cases use a random crossover point, they might con-
tain incomplete sequences of statements (e.g., missing variable definition) and, therefore,
will not compile. To make the crossover more effective, these broken references are fixed
by introducing new random variable definitions that match the type of the broken refer-
ence [34]. Lines 3-22 contain the selection logic of the data-level crossover. Unlike the test
case-level crossover, the data-level crossover can not be applied to every combination of
input data. Performing the crossover on input data with different types (e.g., strings and
numbers) would not produce any meaningful output as there is no logical way to combine
these dissimilar types. Furthermore, we should not perform a crossover on two identical
data types from different methods. If the data-level crossover would be applied to param-
eters of the same type that belong to different methods, it could produce offspring that
are farther from the desired objective than the original. Hence, the algorithm has to select
which combinations of input data are compatible. HMX achieves this by selecting compat-
ible functions (i.e., constructors and methods calls) and applying the crossover pairwise to
the function’s parameters.

In lines 3-6, two pairs of maps are created that store the compatible functions for each
parent for both constructors and methods. Each map stores a list of functions that share
the same signature; The signature is the key of the map, and the functions are the val-
ues. The signature of the function is a string derived from the class name, function name,
parameters types, and return type using the following format:

CLASS_NAME | FUNCTION_NAME (PARAM1_TYPE, PARAM2_TYPE, ..)RETURN_TYPE
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Algorithm 4: HMX: hybrid multi-level crossover

Input: Two parent test cases P, and P,

Output: Two offspring test cases O; and O,
1 begin
2 0y, O, < SINGLE-POINT-CROSSOVER(P;, P,)
// Constructor data store
3 C, «<— Map<signature, constructor[ ]> // For P;
4 C, < Maps<signature, constructor[ ]> // For P,
// Method data store
5 M, «<— Map<signature, method[ ]> // For P;
6 M, «— Map-<signature, method[ ]> // For P,
7 forall (S, S,),in S; €O, and S, € O, do
8 if SIGNATURE(S;) == SIGNATURE(S,) then
9 if S, is constructor then

10 C; [SIGNATURE(S; )].add(S;)
11 C,[SIGNATURE(S;)].add(S,)
12 else if S; is method then

13 M, [SIGNATURE(S;)].add(S;)
14 M, [SIGNATURE(S,)].add(S,)

15 foreach SIG € C,.keysu C,.keys do
// choose random constructor with same signature

16 S, « random.choice(C1[SIG])
17 S, «— random.choice(C2[SIG])
1 | 0,0, < DATA-CROSSOVER(O;, O,, PARAMS(S,), PARAMS(S,))

19 foreach SIG € M;.keysu M,.keys do
// choose random method with same signature

20 S, « random.choice(M1[SIG])

21 S, «— random.choice(M2[SIG])

2 | 0,0, < DATA-CROSSOVER(O;, O,, PARAMS(S,), PARAMS(S,))
23 | return Oy, O,

In lines 7-14, HMX loops over all combinations of statements S; and S, in the offspring
produced by the single-point crossover. For each combination, it checks if the signatures
of the two functions match (line 8). If both statements are either constructors or methods,
they are stored in their corresponding map with the signature as a key in lines 10-11 and
13-14, respectively. Note that if the test case contains constructor or method calls for other
classes than the CUT, these are also considered by the selection of compatible functions.
For example, additional objects (e.g., strings, lists) might be needed as an input argument
to one of the CUT’s functions.

When all possible matching functions have been found, the operator loops through the
signatures of the two function types separately in lines 15-18 and 19-22. For each signature,
HMX selects a random function instance matching the signature from each parent. The
operator then performs the data-level crossover on the parameters of these two randomly
selected functions in lines 18 and 22. For each signature in the map, HMX only selects one
function instance per parent to proceed with the genetic recombination.

The data-level recombination pairwise traverses the parameters of the two compatible
functions selected in lines 16-17 (for constructors) and 20-21 (for methods). For each pair
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of parameters, Alg. 4 checks their types and determines if they are numbers or strings,
the two supported types of HMX. If the two parameters are numbers (i.e., byte, short, int,
long, float, double, boolean, and char), the operator applies the Simulated Binary Crossover
(SBX), which is described in Section 5.3.1. If the parameters are strings, it applies the
string crossover described in Section 5.3.2. Lastly, in line 23, HMX returns the produced
offspring.

1 @Test

2 public void test1() {

3 Fraction f@ = new Fraction(2, 3);
4 Fraction f1 = new Fraction(2, -1);
5 fo.divideBy (f1);

6 fo.add(Fraction.ZERO);

7

Example 5.1: Parent 1

1 @Test

2 public void test2() {

3 Fraction f@ = new Fraction(3, 1);
4 Fraction f1 = new Fraction(1, 3);
5 fo.add(f1);

6 fo.pow(2.0);

7 %

Example 5.2: Parent 2

To provide a practical example, let us consider the two parent test cases in Examples 5.1
and 5.2. Both parent 1 and parent 2 contain two invocations of the Fraction constructor.
Since these constructors share the same signature: Fraction|<init>(int, int)Fraction; they
are compatible. Similarly, the method add of the Fraction class is present in both parents,
with the same signature: Fraction|add(Fraction)v; and are compatible, as well. In contrast,
for example, method divideBy, in parent 1, and method add, in parent 2, are not compatible
since their signatures are different.

5.3.1 Simulated Binary Crossover

The Simulated Binary Crossover (SBX) is a recombination operator commonly used in nu-
merical problems with numerical decision variables and fixed-length chromosomes. It has
been shown that Evolutionary Algorithms (EAs) that use this crossover operator produce
better results compared to traditional numerical crossover operators [169]. The equation



5.4 Empirical Study 81

below outlines the algorithm of SBX:

u=rand, (5.1)
2.0V ify <05

_J1 ifu=0.5 5.2

4 05 (n.+1) G2
N O'_u ifu=0.5

b= rand, (5.3)

(v =v)-05)=(B-0.5-|vy —w|) if b=true s 4
(v =v5)-05)+(B-0.5-|v; —vo|) if b= false (54)
where v (Equation (5.4)) is the new value of parameter v;, v; is the original value of the
parameter, and v, is the value of the opposing parameter (the corresponding parameter
from the matched function). 7. is the distribution index and it measures how close the
new values should be to original values (proximity). For HMX, this variable is set to 2.5
as this is within the recommended range [2;5] [169]. SBX first creates a random uniform
variable u (Equation (5.1)), which is used to select one of three strategies for . This scaling
variable f (Equation (5.2)), is used to scale an offset. This offset is either subtracted or
added depending on the random boolean variable b. In general, SBX generates new values
centered around the original parents, either in between the parents’ values (contracting)
or outside this range (expending) depending on the value of u. The algorithm is performed
on both matching parameters, and the resulting new values are used as a replacement of
the original values.

As an example, consider the two compatible constructors Fraction(2,3) (line 3 in
Example 5.1) and Fraction(1, 3) (line 4 in Example 5.2). The SBX recombination operator
is applied for the following pairwise combinations: (2, 1) and (3, 3). To calculate the new
value of the first element of the first pair, v; = 2 and v, = 1. Similarly, the second element
can be calculated by switching the values of v; and v,. The same procedure can be applied
to calculate the new values of the second pair.

5.3.2 String Crossover
The single-point string crossover is used to exchange information between two string
parameters of matching functions [4]. By recombining parts of each string, it makes it
possible for promising substrings to collect together. The operator achieves this by picking
two random numbers, 0 < x; < length(x) and 0 < y; < length(y) for both strings, respectively.
It then recombines the two strings by concatenating the substrings in the following way:
x=x[: x| ylyi :Jand y = y[: yi] || *[x; :].

For example, given the following string x = ”lorem” and y = "ipsum” and the random
variables x; = 1 and y; = 3, the new values will be: x =”lom” and y = "ipsurem”.

5.4 Empirical Study

To assess the impact of HMX on search-based unit test generation, we perform an empir-
ical evaluation to answer the following research questions:
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Table 5.1: Projects in our empirical study. # indicates the number of CUTs. cc indicates the cyclomatic complexity
of CUTs. o indicates the standard deviation. min and max indicate the minimum and maximum value of the
metric, respectively. Also, str-par and nr-par are the average number of string and number input parameters for
the selected CUTs.

Project # CCN String parameter Number parameter

¢ o min max | str-par ¢ min max | nr-par ¢ min max
CLI 4117 09 30 11 145 142 340 4.0 85 13.7 290 1.0
Geometry 13 | 1.8 04 25 1.2 34 55 210 1.0 10.2 6.7 210 1.0
Lang 34 | 3.0 1.6 74 1.1 17.4 36.7 209.0 1.0 26.6 483 249.0 1.0
Logging 1/30 - 30 30 60 - 60 6.0 30 - 30 3.0
Math 27 129 16 7.7 11 25 183 90 1.0 10.0 105 45.0 1.0
Numbers 5128 11 45 1.6 14 09 30 10 31.6 335 89.0 4.0
RNG 413314 50 1.7 22 25 60 1.0 20 14 40 1.0
Stemmer 16 | 1.0 0.0 1.0 1.0 00 00 00 0.0 00 00 0.0 0.0

RQ1 To what extent does HMX improve structural coverage compared to the single-point
crossover?

RQ2 How does HMX impact the fault-detection capability of the generated tests?

5.4.1 Benchmark

For this study, we selected the CUTs from the ApAcHE COMMONSs and SNOWBALL STEMMER
libraries. The former is a commonly-used project containing reusable Java components for
several applications *. The latter is a well-known library for stemming strings, which is
part of the ApacHE LUCENE . As described in Section 5.3, HMX brings more advantages
for search-based test generation in projects that utilize strings and numbers. Hence, to
show the effect of this new crossover operator, we selected 100 classes from 9 compo-
nents in APACHE CoMmMONs that have numeric and string input data: (i) MATH a library of
lightweight, self-contained mathematics and statistics components; (ii) NUMBERS includes
utilities for working with complex numbers; (iii) GEOMETRY provides utilities for geomet-
ric processing; (iv) RNG a library of Java implementations of pseudo-random generators;
(v) STATISTICS a project containing tools for statistics; (vi) CLI an API processing and val-
idating a command line interface; (vii) TExT a library focused on algorithms working on
strings; (viii) LANG contains extra functionality for classes in java.lang; and (ix) LOGGING
an adapter allowing configurable bridging to other logging systems.

In addition, we added the main 16 classes in SNOWBALL STEMMER to the benchmark,
as these focus on string manipulation and were previously used in former search-based
unit test generation studies [120].

Due to the large number of classes in the selected ApAcHE COMMONS components, we
used CK [170], a tool that calculates the method-level and class-level code metrics in Java
projects using static analysis. We collect the Cyclomatic Complexity (CC) and type of
input parameters for each method in the selected 9 components. Using the collected infor-
mation, we filter out the classes that do not have methods accepting strings or numbers

*https://commons.apache.org
*https://github.com/weavejester/snowball-stemmer
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(integer, double, long, or float) as input parameters. Then, we sort the remaining classes
according to their average CC and pick the top 100 cases for our benchmark. Table 5.1 re-
ports CC, number of string, and number arguments for each project used in this study. By
doing a preliminary run of EvoSuite on the 116 selected classes, we noticed that this tool
fails to start the search process in 9 of the CUTs. These failures stem from an issue in the
underlying test generation tool EvoSuite. The tool fails to gather a critical statistic (i.e., TO-
TAL_GOALS) for these runs in both the baseline and HMX. We also encountered 4 classes
that did not produce any coverage for both the baseline and our approach. Consequently,
we filtered out these classes from the experiment and performed the final evaluation on
103 remaining classes.

5.4.2 Implementation

We implemented HMX in EvoSuite [34], which is the state-of-the-art tool for search-based
unit test generation in Java. By default, this tool uses the single-point crossover for test
generation. We have defined a new parameter multi_level_crossover to enable HMX. Our
Implementation is openly available as an artifact [87].

5.4.3 Preliminary Study

We performed a preliminary study to see how the probability of applying our data-level
crossover influences the result. The single-point test case-level crossover is applied with a
predefined probability. We experimented with how often the data-level crossover should
be applied whenever the test case-level crossover was applied. From the probabilities we
tried (i.e., 0.25, 0.50, 0.75, 1.00), we found out that always applying the data-level crossover
when the test case-level crossover produced the best results according to statistical analy-
sis.

5.4.4 Parameter Settings

We run each search process with EvoSuite’s default parameter values. As confirmed by
prior studies [109], despite the impact of parameter tuning on the search performance,
the default parameters provide acceptable results. Hence, we run each search process
with a two-minute search budget and set the population size to 50 individuals. Moreover,
we use mutation with a probability of 1/n (n = length of the generated test). For both
crossover operators that we used in this study (single-point crossover for the baseline and
our novel HMX), the crossover probability is 0.75. For the Simulated Binary Crossover
(SBX), we used the distribution index n. = 2.5 [169]. The search algorithm is the multi-
criteria DynaMOSA [102], which is the default one in EvoSuite v1.1.0.

5.4.5 Experimental Protocol

We apply both default EvoSuite with single-point crossover and EvoSuite + HMX to each
of the selected CUTs in the benchmark. To address the random nature of search-based
test generation tools, we repeat each execution 100 times, with a different random seed,
for a total number of 23200 independent executions. We run our evaluation on a system
with an AMD EPYC™ 7H12 using 240 cores running at 2.6 GHz. With each execution
taking 5 minutes on average (i.e., search, minimalization, and assertion generation), the
total running time is 80.6 days of sequential execution.
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For our analysis, we report the average (median) results across the 100 repeated runs.
To determine if the results (i.e., structural code coverage and fault detection capability)
of the two crossover operator are statistically significant, we use the unpaired Wilcoxon
rank-sum test [67] with a threshold of 0.05. The Wilcoxon test is a non-parametric statis-
tical test that determines if two data distributions are significantly different. Additionally,
we use the Vargha-Delaney statistic [68] to measure the magnitude of the result, which
determines how large the difference between the two operators is.

5.5 Results

This section discusses the results of our study with the aim of answering the research
questions formulated in Section 5.4. All differences in results in this section are presented
in absolute differences (percentage points).

5.5.1 Result for RQ1: Structural Coverage

Figure 5.1 shows the structural coverage achieved by our approach, HMX, compared to
the baseline, SPX, on the benchmark. In particular, Figure 5.1a shows branch coverage
and Figure 5.1b shows line coverage. The boxplots show the median, quartiles, variability
in the results, and the outliers for all classes together. The diamond point indicates the
mean of the results.

Figure 5.1a and Figure 5.1b show that, on average, HMX has higher 1% quartile, median,
mean, and 3rd quartile values than the baseline, SPX, for both test metrics. On average,
HMX improves the branch coverage by +2.0 % and the line coverage by +1.9 %. The largest
differences are visible for the lower whisker and for the first quartile (25th percentile). In
particular, the differences for the lower whisker are around +20% branch and line coverage
when using HMX; the improvements in the first quartile are around +10% and +8% for
branch and line coverage, respectively. These results indicate that HMX improves both
line and branch coverage for some of the CUTs in our benchmark. Finally, as we can see
in both of the plots in Figure 5.1, the variation in the results for HMX, measured by the
Interquartile Range (IQR), is smaller than for SPX. This observation shows that HVIX helps
EvoSuite to generate tests with a more stable structural coverage.

Table 5.2 shows the results of the statistical comparison between HMX and the baseline,
SPX, based on a p-value < 0.05. #Win indicates the number of times that HMX has a
statistically significant improvement over SPX. #Equal indicates the number of times that
there is no statistical difference in the results between the two operators; #Lose indicates
the number of times that HMX has statistically worse results than SPX. The #Win and
#Lose columns also include the magnitude of the difference through the Ay, effect size,
classified in Small, Medium, Large, and Negligible.

From Table 5.2, we can see that HMX has a statistically significant non-negligible im-
provement in 30 and 23 classes for branch and line coverage, respectively. For the branch
coverage metric, HMX improves with a large magnitude for 22 classes, medium for 3
classes, and small for 5 classes. For line coverage, HMX improves with a large magni-
tude for 19 classes, medium for 3 classes, and small for 1 class. HMX only loses in one
case in comparison to the baseline for both branch and line coverage: StrSubstitutor
from the Lang project. However, in this case, the effect size is small (magnitude).
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Figure 5.1: Boxplot of structural coverage comparing HMX to the baseline SPX. The diamond point indicates the
mean coverage of the benchmark.

Table 5.2: Statistical results of HMX vs. SPX on structural coverage. #Win indicates the number of times that
HMX is statistically better than SPX. #Lose indicates the opposite. #No diff. indicates that there is no statistical
difference. Negl., Small, Medium, and Large denote the A, effect size.

Metric #Win #Lose #No diff.
Negl. Small Medium Large Negl. Small Medium Large

Branch 2 5 3 22 0 1 0 0 70

Line 3 1 3 19 0 1 0 0 76

For branch coverage, we observe a maximum increase in coverage of +19.1 % for the
finnishStemmer class from the Stemmer project. For line coverage, the class with the max-
imum increase in coverage is hungarianStemmer (also from Stemmer) with an average im-
provement of +19.4 %. Compared to the baseline, all classes in the SNOWBALL STEMMER
string manipulation library improve based on branch and line coverage with an average
improvement of +11.4 % and +11.0 %, respectively. For the ApacHE ComMONs library, HMX
significantly improves the branch and line coverage in 16 (9 string-related and 7 number-
related) and 10 (6 string-related and 4 number-related) classes, respectively.

In summary, the proposed HMX crossover operator achieves significantly higher
(~30 % of the cases) or equal structural code coverage for unit test case generation
compared to the baseline SPX.
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Figure 5.2: Boxplot of structural coverage comparing HMX to the baseline SPX.

Table 5.3: Statistical results of HMX vs. SPX for fault-detection capability.

#Win #Lose

Metric #No diff.
Negl. Small Medium Large Negl. Small Medium Large

Weak mutation 3 3 3 21 0 1 0 0 72

Strong mutation 0 8 0 15 0 3 0 0 77

5.5.2 Result for RQ2: Fault Detection Capability
Figure 5.2 shows the fault detection capability of HMX compared to SPX measured through
the mutation score. Figure 5.2a shows the weak mutation score and Figure 5.2b shows the
strong mutation score. The boxplots show the median, quartiles, variability in the results,
and the outliers for all classes in the benchmark together. The diamond point indicates
the mean of the results. From Figure 5.2a, we can see that, on average, HMX improves the
weak mutation score by +1.2 % compared to SPX. However, from Figure 5.2b we can see
that overall, the strong mutation scores only show marginal improvements (+0.5 %).
Table 5.3 shows the statistical comparison between HMX and SPX, based on a p-value <
0.05. Similarly to Table 5.2, #Win indicates the number of times that HMX has a statisti-
cally significant improvement over SPX, #Equal indicates the number of times that there is
no statistical difference in the results of the two operators, and #Lose indicates the number
of times that HMX has statistically worse results than SPX. The #Win and #Lose columns
additionally also indicate the magnitude of the difference through the A12 effect size. From
Table 5.3, we can see that HMX has a statistically significant non-negligible improvement
in 27 and 23 cases for weak and strong mutation, respectively. For weak mutation, HMX
improves with a large magnitude for 21 classes, medium for 3 classes, and small for 3
classes. For strong mutation, HMX improves with a large magnitude for 15 classes and a
small magnitude for 8 classes. HMX performed worse in one case (Fraction from the Lang
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project) for weak mutation and three cases (AdaptiveStepsizeFieldIntegrator and Mul-
tistepIntegrator from the Math project, and SphericalCoordinates from the Geometry
project) for strong mutation, all with a small effect size.

We observe a maximum increase in weak mutation score of +14.0 % for the hungar-
ianStemmer class (Stemmer) and +12.2 % for the ExtendedMessageFormat class (Text) on
strong mutation score. Among the classes that improve on weak and strong mutation
score, 27 and 20, respectively, also improve wr.t. branch coverage. Interestingly, four
classes among both mutation scores improve w.r.t. mutation score without improving the
structural coverage.

In summary, HMX achieves significantly higher (~25 % of the cases) or equal fault
detection capability compared to SPX and is outperformed in one and three classes
for weak and strong mutation, respectively.

5.6 Threats to Validity

This section discusses the potential threats to the validity of our study.

5.6.1 Construct Validity

Threats to construct validity stem from how well the chosen evaluation metrics measure
the intended purpose of the study. Our study relies on well-established evaluation metrics
in software testing to compare the proposed hybrid multi-level crossover with the current
state-of-the-art, namely structural coverage (i.e., branch and line) and fault detection ca-
pability (i.e., weak and strong mutation). As the stopping condition of the search process,
we used a time-based budget rather than a budget based on the number of test evaluations
or generations. A time-based budget provides a fairer measure since the two crossover
operators have a different overhead and execution time and might otherwise provide an
unfair advantage to our operator.

5.6.2 Internal Validity

Threats to internal validity stem from the influence of other factors onto our results. The
only difference between the two approaches in our study is the crossover operator. There-
fore, any improvement or diminishment in the results must be attributed to the difference
in the two crossover operators.

5.6.3 External Validity

Threats to external validity stem from the generalizability of our study. We selected 116 classes
from popular open-source projects based on their cyclomatic complexity and type of in-
put parameters to create a representative benchmark. These classes have previously been
used in the related literature on test case generation [58, 120].

5.6.4 Conclusion Validity
Threats to conclusion validity stem from the deduction of the conclusion from the results.
To minimize the risk of the randomized nature of EAs, we performed 100 iterations of the
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experiment in our study with different random seeds. We have followed the recommended
guidelines for running empirical experiments with randomized algorithms using sound
statistical analysis as recommend in the literature [66]. We used the unpaired Wilcoxon
rank-sum test and the Vargha-Delaney A12 effect size to determine the significance and
magnitude of our results.

5.7 Conclusions and Future Work

In this paper, we have proposed a novel crossover operator, called HMX, that combines
different crossover operators on both a test case-level and a data-level for generating unit-
level test cases. By implementing such a hybrid multi-level crossover operator, we can
create genetic variation in not only the test statements but also the test data. We im-
plemented HMX in EvoSuite, a state-of-the-art Java unit test case generation tool. Our
approach was evaluated on a benchmark of 116 classes from two popular open-source
projects. The results show that HMX significantly improves the structural coverage and
fault detection capability of the generated test cases compared to the standard crossover
operator used in EvoSuite (i.e., single-point). Based on these promising results, there are
multiple potential directions for future work to explore. In this paper, we detailed the
crossover operator for two types of primitive test data inputs (i.e., numbers and strings).
In future work, we are planning to extend this with additional operators for arrays, lists,
and maps. Additionally, we want to experiment with alternative crossover operators for
numbers (e.g., parent-centric crossover, arithmetic crossover) and strings (e.g., multi-point
Crossover).
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Guess What: Test Case Generation
for Javascript with Unsupervised
Probabilistic Type Inference

Search-based test case generation approaches make use of static type information to deter-
mine which data types should be used for the creation of new test cases. Dynamically typed
languages like JavaScript, however, do not have this type information. In this paper, we pro-
pose an unsupervised probabilistic type inference approach to infer data types within the test
case generation process. We evaluated the proposed approach on a benchmark of 98 units un-
der test (i.e., exported classes and functions) compared to random type sampling w.r.t. branch
coverage. Our results show that our type inference approach achieves a statistically signif-
icant increase in 56 % of the test files with up to 71 % of branch coverage compared to the
baseline.

This chapter has been published as B Dimitri Stallenberg, Mitchell Olsthoorn, and Annibale Panichella. Guess What:
Test Case Generation for Javascript with Unsupervised Probabilistic Type Inference. 13th International Symposium
on Search-Based Software Engineering 2022 (SSBSE’22) [79].
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6.1 Introduction

Over the last few decades, researchers have developed various techniques for automating
test case generation [4]. In particular, search-based approaches have been shown to (1)
achieve higher code coverage [108] and (2) have fewer smells [52] compared to manually-
written test cases, and (3) detect unknown bugs [8-10]. Furthermore, generated tests
significantly reduce the time needed for testing and debugging [5], and have been success-
fully used in industry (e.g., [11-13]).

These approaches make use of static type information to (1) generate primitives and
objects to pass to constructors and function calls, and (2) determine which branch dis-
tance function to use. Without this type information, the test case generation process has
to randomly guess which types are compatible with the parameter specification of the
constructor or function call and would not have guidance to solve the binary flag prob-
lem. This greatly increases the search space and, therefore, makes the overall process
less effective and efficient. Consequently, most of the work in this research area has fo-
cused on statically-typed programming languages like Java (e.g., EvoSuite [34]) and C (e.g.,
AUSTIN [59]).

Dynamically-typed programming languages introduce new challenges for unit-level
test case generation. As reported by Lukasczyk et al. [60], state-of-the-art approaches
used for statically-typed languages do not perform well on Python programs when type
information is not available. According to the survey from Stack Overflow?, Python and
JavaScript are the two most commonly-used programming languages. Both languages
are dynamically-typed, strengthening the importance of addressing these open challenges
with the goal of increasing the adoption of test case generation tools in general.

In this paper, we focus on test case generation for JavaScript as, to the best of our
knowledge, this is a research gap in the literature. In building our research, we build on top
of the reported experience by Lukasczyk et al. [171] for Python programs. They addressed
the input type challenge by incorporating Type4Py [172] —a deep neural network (DNN)—
into the search process.

We propose a novel approach that incorporates unsupervised probabilistic type in-
ference into the search-based test case generation process to infer the type information
needed. An unsupervised type inference approach has two benefits compared to a DNN:
(1) it does not require a labeled dataset with extensive training time, and (2) the model is
explainable (i.e., the decision can be traced back to a rule set). We build a prototype tool
which implements the state-of-the-art many-objective search algorithm, DynaMOSA, and
the probabilistic type inference model for JavaScript. We investigate two different strate-
gies for incorporating the probabilistic model into the main loop of DynaMOSA, namely
proportional sampling and ranking.

To evaluate the performance of the proposed approach, we performed an empirical
study that investigates the baseline performance of our prototype (i.e., using random type
sampling) and the impact of the unsupervised probabilistic type inference w.r.t. branch
coverage. To this aim, we constructed a benchmark consisting of 98 Units under Test (i.e.,
exported classes and functions) of five popular open-source javaScript projects, namely
Commander . js, Express, Moment. js, Javascript Algorithms, and Lodash.

'https://survey.stackoverflow.co/2022/#most-popular-technologies-language
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Our results show that integrating unsupervised probabilistic type inference improves
branch coverage compared to random type sampling. Both the ranking and proportional
sampling strategies significantly increase the number of branches covered by our approach
(+9.3 % and +12.6 %, respectively). Out of the two strategies, proportional sampling outper-
forms ranking in 20 cases and loses in 4. In summary, we make the following contributions:

1. An unsupervised probabilistic type inference approach for search-based unit-level
test case generation of JavaScript programs.

2. A prototype tool for automatically generating JavaScript unit-level test cases that
incorporates this approach.’

3. ABenchmark consisting of 98 units under test from five popular open-source javaScript
projects.

4. A full replication package containing the results and the analysis scripts [88].

6.2 Background and Related Work

This section explains the background concepts and discusses the related work.

6.2.1 Test Case Generation

Writing test cases is an expensive, tedious, yet necessary activity for software quality assur-
ance. Hence, researchers have proposed various techniques to semi-automate this process
since the 1970s [173]. These techniques include symbolic execution [174], random test-
ing [175], and meta-heuristics [4] (e.g., genetic algorithms). The latter category is often re-
ferred to as search-based software testing (SBST). SBST techniques have been successfully
used in the literature to automate the creation of test cases for different testing levels [4],
such as unit [34], integration [36], and system-level testing [37]. At unit-level, SBST tech-
niques aim to generate test cases that optimize various test adequacy criteria, such as e.g.,
structural coverage and mutation score. Many different meta-heuristic search algorithms
have been proposed over the years (e.g., whole suite [176], MIO [140], MOSA [120], or
DynaMOSA [58]). Recent studies have shown that DynaMOSA is more effective and effi-
cient than other genetic algorithms for unit test generation of Java [74] and Python [60]
programs.

6.2.2 Type Inference

A recent study by Gao et al. [177] showed that the lack of static types within JavaScript
leads to bugs that could have been easily identified with a static type system. To combat
this problem, various approaches have been proposed to infer/predict types for generat-
ing type annotations or assertions. Anderson et al. [178] proposed a formal approach
for inferring types using constraint solvers based on a custom javaScript-like language.
Chandra et al. [179] proposed a formal type inference approach for static compilation of
JavaScript programs. These approaches, however, only support a subset of the JavaScript
syntax and, therefore, will not work on all programs. JSNice [180] and DeepTyper [181]

*https://github.com/syntest-framework/syntest-javascript
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are two other approaches that train a model based on training data and use it to predict
future type information. These approaches have the shortcoming that they can only pre-
dict basic JavaScript types. Meaning that they are unable to predict/assert user-defined
types. Additionally, these approaches cannot consider the context of the literals and ob-
jects within a program or function. Type4Py [172] is a similar approach that uses a Deep
Neural Network (DNN) to infer types for Python projects and suffers from similar limita-
tions.

6.2.3 Testing for JavaScript

JavaScript started out as a client-side programming language for the browser. Most work
related to testing for JavaScript is, therefore, also focused on web applications within the
browser (e.g., [182-185]). Existing client-side testing approaches either focus on specific
subsystems such as the browser’s event handling system [183, 184] or the interaction of
JavaScript with the Document Object Model of the browser [182]. Nowadays, JavaScript
is also a very commonly-used language for back-end development on Node.js. Tanida et
al. [185] proposed a symbolic execution approach that uses a constraint solver for input
data generation. Other approaches focused on mutation testing [186] or contract-based
testing [187]. However, to the best of our knowledge, there exists no approach for auto-
matic unit-level test case generation for JavaScript.

6.3 Approach

This section details our test case generation approach for JavaScript programs that relies
on Unsupervised Type Inference. Our approach consists of three phases, which are de-
tailed in the next subsections.

6.3.1 Phase 1: Static Analysis

The first phase inspects the Subject Under Test (SUT) and its dependencies. First, this
phase builds the Abstract Syntax Trees (ASTs) and extracts all identifiers and literals from
the code; these will be referred to as elements. Afterward, the static analyzer extracts the
relations between those elements and all user-defined objects, i.e., classes, interfaces, or
prototyped objects.

Elements

As mentioned before, the elements consist of identifiers and literals. The former are the
named references to variables, functions, and properties. The latter are constant values
assigned to variables; examples are strings, numbers, and booleans. The types of the literal
are straightforward and do not require inference. However, the identifiers do not have
explicit types in dynamically typed languages like JavaScript. Hence, their types need to
be inferred based on the contextual information (or relations) of the extracted elements.

Relations

Relations correspond to operations performed on code elements and describe how these
elements are used and relate to other elements, providing hints on their types. For example,
let us consider the assignment relation L = R, where R (right-hand element) is a boolean
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1. [Lg,example,al
function example (a) { 2. [L<R,a,6]
if (a < 6) {
;et“m 0 3. [L — R,example,0]
return a
} 4. [L — R,example, a]
5. [L(R),example,5]

(a) Example Code

(b) Extracted Relations

Figure 6.1: Extracting relations from code

1. [L=R,x,y+]

2. y»+=[C?L : R,z+,6,10]
const x = (a == b ? 6 10)

3. zx=[L==R,a,b]
(a) Nested Relation (b) Extracted Relations

Figure 6.2: Extracting relations from nested code

literal; we can logically derive (or infer) that L (left-hand element) must also be a boolean
variable.

These relations are extracted from the AST and are converted to a consistent format
that allows for easy identification of the relation type. Let us assume that there is a lower
than relation between variable a and literal 6, as shown in Figure 6.1a on line 2. This
relation is converted and recorded as [L < R, a,6], as shown in Figure 6.1b. In general, a
relation is stored as a tuple containing (1) the type of operation (L < R in our example) and
(2) the list of operands (i.e., a and 6 in our example). The full list of extracted relations for
the code snippet in Figure 6.1a is reported in Figure 6.1b.

In total, we designed 75 possible relations based on the MDN web documentation by
Mozilla *. These operations/relations are classified into 15 categories, namely (1) primary,
(2) left-hand side, (3) increment/decrement, (4) unary, (5) arithmetic, (6) relational, (7) equal-
ity, (8) bitwise shift, (9) binary bitwise, (10) binary logical, (11) ternary, (12) optional chaining,
(13) assignment, (14) comma, and (15) function expressions. The complete list of relations
is available in our replication package.

Nested relations are special types of relations whose composing elements are relations
themselves. As an example, let us consider the code snippet in Figure 6.2a. The correspond-
ing relation for the assignment is [L = R, x, y+], where y” is an artificial element that points
to the whole right-hand side of the assignment. This element corresponds to a ternary re-
lation [C?L : R, z+,6,10], which also includes an artificial element, called z* that points
to the equality relation in the conditional part of the ternary statement. So z* points to
the final relation [L == R, a,b]. Although the code in Figure 6.2a seems rather simple, it

*https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators
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const x = 5

function example(a) {
const x = ”"Hello ”
return x + a

Figure 6.3: Scopes

corresponds to three relations, two of which are nested, as shown in Figure 6.2b.

Scopes

A critical aspect of the elements we have not yet discussed is scoping. The scope of an
identifier determines its accessibility. To better understand the importance of the scope,
let us consider the example in Figure 6.3. First, the constant x is assigned the value 5. The
constant x is defined in the so-called global scope. Next, a function is defined, creating a
new scope. This scope has access to references of the global scope. Still, it can also have its
own references, which are only available within its sub-scopes. In our example, another
constant x is defined within the function scope. Note that from line 4, every reference
to x in the scope of the function refers to the newly defined constant, not the x constant
of the global scope. This type of operation is called variable shadowing. In a nutshell,
variable shadowing is when the code contains an identifier for which there are multiple
declarations in separate scopes. In these situations, the narrower scope shadows the other
identifier declarations.

This shadowing principle is fundamental during the first phase of our approach be-
cause variables in the global scope are not the same variables as those in the function
scope (e.g., x in Figure 6.3). In fact, variables with the same identifier names but within
different scopes can also have different types. In the example of Figure 6.3, x from the
global scope is numerical, while the x from the function scope is a string. In conclusion,
the relations include the involved elements together with their scope.

Complex Objects

In JavaScript, objects are the building blocks of the language and are stored as key-value
pairs. Apart from primitive types like booleans and numbers, almost everything is repre-
sented as an object. An array, for example, is a special object where the keys are num-
bers. In recent JavaScript versions, developers can define classes and interfaces through
a prototype-based object model, inducing a more object-oriented approach to JavaScript.
Since these objects play such a prominent role in JavaScript, it is important that object
types can be inferred as well. Hence, our approach extracts all object descriptions avail-
able in the program under test, including class, interface definitions, and standard objects
(e.g., functions).

6.3.2 Phase 2: Unsupervised Static Type Inference
The second phase builds a probabilistic type model for the elements extracted from the first
phase. For literal elements, the type inference is straightforward as the type can be directly




6.3 Approach 95

inferred from the literal type. However, for non-literal elements, our probabilistic model
considers all type hints that can be inferred from the relations extracted in the previous
phase.

For example, the assignment x = 5 corresponds to the relation [L = R, x,5]. From such
a relation, we can derive that, at this particular point in the code, x must be numerical
since it is assigned the literal value 5. However, for statements like x = y + z, there are
various possibilities for the type of x depending the on types of y and z. To illustrate, the
+ operator can be applied to both numbers (arithmetic sum) and strings (string concatena-
tion). Besides, in JavaScript, it is also possible to concatenate numbers with strings. For
example, 1 + “1” returns the number 11. Therefore, multiple types can be assigned to
elements that have relations/operations compatible with multiple data types.

To account for this, our model assigns scores to each type depending on the number
of hints that can be derived for that type by its relations in the code. In general, given
the element e and the set of relations R = {ry,...r,} associated to e as extracted from a
program P, our model assigns each type t a score equal to the number of relations that
can be applied to ¢ (i.e,, the number of hints):

score(e,t) = |hints(e,t)] where hints(e,t) ={r; € R : r; applies to t} (6.1)

Finally, the element e has a probability of being assigned the type t proportional to the
number of hints received for t:

score(e,t)

Z score(e, t;) (62)
£

plet) =

The higher the score of a particular type, the larger the probability that the element is of
that type. The probabilities are later used to sample argument types in the search phase.
For example, let us consider the statement x = y + z, which can be applied to both
strings and numbers. In this case, our probabilistic model would assign +1 hint for num-
bers and +1 hint for strings. Hence, both types will have an equal probability of 50 %.

Nested Types

The probability model takes into account both simple and nested relations. For example,
let us consider the JavaScript statement: ¢ = a > b. Such a statement corresponds to
two relations (one of which is nested): [L = R,c,d+] and d+ = [L > R, a,b]. The outcome
for d« = [L > R, a,b] is boolean no matter the types of a and b. Therefore, we can infer
the variable (or element) ¢ should be as well. Hence, the hints and scores are obtained by
considering all relations, including the nested ones.

Resolving Complex Objects

Complex objects are characterized by property accessor relations, i.e., operations that aim
to access properties of certain objects (e.g., using the dot notation object.property). If an
element is involved in one or more property accessor relations, the accessed properties are
compared to the available object descriptions. If there is an overlap between the element’s
properties and the properties of an object description, the object description receives +1
hint. In addition to matching object descriptions, an anonymous object type is created and
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assigned as a possible type. This anonymous object type exactly matches the properties
of the element. This object is used when no other object matches are found.

6.3.3 Phase 3: Test Case Generation

The third phase generates test cases using meta-heuristics with the goal of maximizing
branch coverage. As explained in Section 6.2, we use the Dynamic Many-Objective Sort-
ing Algorithm (DynaMOSA) [58] as suggested in the literature [74, 101, 171]. Previous
studies have shown that DynaMOSA outperforms other meta-heuristics in unit test case
generation for Java [74, 101], python [171], and solidity [80] programs. Assessing other
meta-heuristics in the context of unit test generations for JavaScript programs is part of
our future agenda.

Our implementation applies the probabilistic model described in Section 6.3.2 to de-
termine what is the potential type of each input parameter. We have implemented two
different strategies to incorporate the type inference model into the main DynaMOSA loop,
namely proportional type sampling and ranking.

Proportional Sampling

This strategy can assign various types to each input parameter. As explained in Sec-
tion 6.3.2, our model assigns scores to multiple types (see Equation (6.1)) based on the
number of positive hints received by analyzing the associated relations. When creating a
new test case (either in the initial population or during mutation), each input parameter
is assigned one of the types. Each candidate type has a probability of being selected equal
to the value obtained by applying Equation (6.2). Notice that each data type is sampled
for each newly generated test case. Therefore, the same input parameter (for the same
function) may be assigned different types every time a new test case is created.

Ranking

This strategy assigns only one type to the input parameter. In particular, this strategy sorts
all types with positive hints in descending order of their score values. Then, this method
selects the type with the largest probability (or the largest number of hints).

Test Execution

Once generated, each generated test case will contain a sequence of function calls with
their input data. These tests are then executed against the program under test, and the
coverage information is stored. The “fitness” of a test is measured according to its distance
to cover all unreached branches in the code, as typically done in DynaMOSA. The distance
to each uncovered branch is computed using two well-known coverage heuristics [4]: (1)
the approach level and (2) the normalized branch distance.

6.4 Empirical Study

To assess the impact of the unsupervised probabilistic type inference on the performance
of search-based unit test generation for JavaScript, we perform an empirical evaluation to
answer the following research questions:

RQ1 How does unsupervised static type inference impact structural coverage of DynaMOSA
for JavaScript?
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Benchmark #Units CC SLOC Avg. n. branches
Commander.js 4 23 208 29
Express 15 20 222 25
Moment.js 54 7 33 8
Javascript Algorithms 30 5 68 8
Lodash 10 11 63 16

Table 6.1: Benchmark statistics

RQ2 What is the best strategy to incorporate type inference in DynaMOSA?

6.4.1 Benchmark

To the best of our knowledge, there is no existing JavaScript benchmark for unit-level
test case generation. Hence, for our empirical study, we build a benchmark comprising of
five JavaScript projects: Express*, Commander.js’, Moment.js®, JavaScript Algorithms’, Lo-
dash®. These projects were selected based on their popularity in the JavaScript community
(measured through the number of stars on GitHub) and represent a diverse collection of
JavaScript syntax and code styles. From these projects, we selected a subset of units (i.e.,
classes or functions) based on two criteria: (1) the unit has to be testable (i.e., the unit has
to be exported), and (2) the unit needs to be non-trivial (i.e., have a Cyclomatic Complexity
of CC = 2 as calculated by Plato’). The latter criterion is in line with existing guidelines
for assessing test case generation tools [101]. Table 6.1 provides the main characteristics
of our benchmark at the project-level, including the average Cyclomatic Complexity per
project (CC column), the average Source Lines Of Code (SLOC column), and the average
number of branches. It is worth noting that some of the files in the selected projects had
to be excluded or modified. For example, in the Commander. js project there are two files
that contain statements that terminate the running process. This has the effect of also
terminating the test case generation process. Therefore, we have excluded this file from
the benchmark and modified it, so that any other files depending on it will not be affected.

6.4.2 Prototype

To evaluate the proposed approach, we have developed a prototype for unit-level test
case generation that implements our unsupervised dynamic type inference, written in
Typescript. The prototype also implements the state-of-the-art search algorithm for test
case generation, namely DynaMOSA [58], as well as the guiding heuristics [4], i.e., the
approach level and branch distance.

*https://expressjs.com/
*https://tj.github.io/commander.js/
‘https://momentjs.com/
"https://github.com/trekhleb/javascript-algorithms
*https://lodash.com/
*https://github.com/es-analysis/plato
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6.4.3 Parameter Settings

For this study, we have chosen to mainly adopt the default search algorithm parameter val-
ues as described in literature [58]. Previous studies have shown that although parameter
tuning impacts the search algorithm’s performance, the default parameter values provide
reasonable and acceptable results [109]. Hence, the search algorithm uses a single point
crossover with a crossover probability of 0.75, mutation with a probability of 1/n (n =
number of statements in the test case), and tournament selection. For the population size,
however, we decided to deviate from the default (50). We went for a size of 30 as our
preliminary experiment showed this worked best for a benchmark this size. The search
budget per unit under test is 60 s. This is a common value used in related work [75].

6.4.4 Experimental Protocol
To answer RQ1, we compare the two variants of our approach with DynaMOSA without
type inference. In particular, for this baseline, the type for the input data is randomly sam-
pled among all types that can be extracted using the relations described in Section 6.3.1.
To answer RQ2, we compare the two variants of our approach: (1) proportional type sam-
pling, and (2) ranking.

To account for the stochastic nature of the approach, each unit under test was run
20 times. We performed 20 repetitions of 3 configurations (i.e., random type sampling,
ranking, and proportional sampling) on 98 units under test, for a total of 5880 runs. This
required (5880 runs x 60s)/(60s x 60min x 24h) ~ 4.1d computation time. At the end of
each run, we stored the maximum branch coverage achieved by the approach for the ac-
tive configuration (RQ1 and RQ2). The experiment was performed on a system with an
AMD Ryzen 9 3900X (12 cores 3.8 GHz) with 32 GB of RAM. Each experiment was given a
maximum of 8 GB of RAM. To determine if one approach performs better than the others,
we applied the unpaired Wilcoxon signed-rank test [67] with a threshold of 0.05. This
non-parametric statistical test determines if two data distributions are significantly differ-
ent. In addition, we apply the Vargha-Delaney A, statistic [68] to determine the effect
size of the result, which determines the magnitude of the difference between the two data
distributions.

6.5 Results

This section discusses the results of our empirical study with the aim of answering the
research questions formulated in Section 6.4. All differences in results are presented in
absolute differences (percentage points).

6.5.1 Result for RQ1: Structural Coverage
Table 6.2 summarizes the results achieved by our approach on the benchmark with the
winning configuration highlighted in gray color. It shows the median branch coverage
and the Inter-Quartile-Range (IQR) for the two possible strategies to incorporate the type
inference model (Ranking, Proportional) and a baseline that uses random type sampling
(Random). The Units column indicates the number of units (i.e., exported classes and func-
tions) that are tested in the file of the benchmark project.

On average for all 57 files in the benchmark, random achieves 33.4 % branch coverage,
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Benchmark File Name “Units Random Ranking Proportional
Median  IQR | Median IQR | Median  IQR

Commander.js help.js 1 0.20 0.019 | 0.41 0.076 0.023
option.js 2 0.33 0.056 | 0.33 0.056 0.000

suggestSimilar.js 1 0.69 0.062 | 0.56 0.156 0.062

Express application.js 1 0.63 0.019 | 0.63 0.019 0.019
query.js 1 [JOBZ 0.000 0.000 0.000

request.js 1 0.25 0.000 0.023 | 0.25 0.023

response.js 1 [OEE 0.007 | 013 0.013 0.013

utils.js 7 0.56 0.007 0.000 | 0.59 0.029

viewjs 1 OGN 0.000 0.000 0.000

JS Algorithms Graph articulationPoints.js 1 0.00 0.000 0.000 0.000
bellmanFord.js 1 0.00 0.000 0.000 0.000

bfTravellingSalesman.js 1 0.00 0.000 0.000 0.000

breadthFirstSearch.js 1 0.12 0.125 0.031 | 0.31 0.125

depthFirstSearch.js 1 oGO o.167 0.167 0.167

detectDirectedCycle.js 1 0.00 0.000 0.000 0.000

dijkstra.js 1 0.00 0.000 0.000 0.100

eulerianPath.js 1 0.00 0.000 0.000 0.000

floydWarshall.js 1 0.00 0.000 0.000 0.000

hamiltonianCycle.js 1 [JOGORN 0.000 0.000 0.050

kruskal.js 1 0.10 0.100 0.000 0.000

prim.js 1 0.08 0.000 0.083 0.000
stronglyConnectedComponents.js 1 0.00 0.000 0.000 0.000

JS Algorithms Knapsack ~ Knapsack.js 1 0.000 0.000 0.000
Knapsackltem.js 1 0.000 0.000 0.000

JS Algorithms Matrix Matrix.js 12 079 0.053 0.026 OO 0.158
JS Algorithms Sort CountingSort.js 1 _ 0.083 0.021 - 0.000
JS Algorithms Tree RedBlackTree.js 1021 0.000 0.000 [JOZSIN 0.037
Lodash equalArrays.js 1 0.08 0.000 0.042 0.052
hasPath.js 1 0.75 0.156 0.000 0.250

random.js 1 0.000 0.000 0.000

result.js 1 0.100 0.000 0.100

slice.js 1 0.000 0.000 0.000

split.js 1 0.000 0.000 0.000

toNumber.js 1 0.60 0.000 0.000 0.050

transform.js 1 [JOBS 0.000 0.000 0.083

truncate.js 1 0.38 0.000 0.029 0.000

unzip.js 1 [JGON 0.000 0.000 0.000

Moment.js add-subtract.js 1 0.00 0.000 0.018 0.000
calendar.js 2 0.05 0.000 0.091 0.091

check-overflow.js 1 0.05 0.000 0.000 0.000

compare.js 6  [JOFEN 0.000 0.000 0.000

constructor.js 3 0.38 0.000 0.008 0.156

date-from-array.js 2 0.000 0.000 0.000

format.js 4 0.000 0.000 0.000

from-anything js 2 0.68 0.059 0.000 0.037

from-array.js 1 0.02 0.000 0.000 0.000

from-object.js 1 [JOBOR 0.000 0.000 0.000

from-string-and-array.js 1 0.00 0.000 0.000 0.000
from-string-and-format.js 1 0.000 0.039 0.133

from-string.js 3 0.000 0.000 0.000

get-set.js 5 0.000 | 0.23 0.045 0.068

locale.js 2 0.167 0.000 0.000

min-max.js 2 0.000 0.000 0.000

now.js 1 0.000 0.000 0.000

parsing-flags.js 1 0.000 0.125 0.000

start-end-of.js 2 0.000 0.000 0.000

valid.js 2 0.000 0.000 0.000

Table 6.2: Median Branch Coverage and the Inter-Quartile-Range. The largest values are highlighted in gray

color.
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Table 6.3: Statistical results w.r.t. branch coverage

. #Win #No diff. #Lose
Comparison
Negl. Small Medium Large | Negl. | Negl. Small Medium Large
Ranking vs. Random - 3 1 23 26 - 1 - 3
Prop. sampling vs. Random - 1 4 27 25 - - - -
Prop. sampling vs. Ranking - 4 - 16 33 - 3 1 -

ranking 42.7 %, and proportional type sampling 46.0 %. The baseline still performs quite
well, as random type sampling can be effective in triggering assertion branches and can
over time guess the correct types for primitives. For the ranking strategy, the average
improvement in branch coverage is 9.3 %. The file with the least improvement is suggest-
Similar. js from the Commander. js project with an average decrease of 13 %. The file with
the most improvement is add-subtract.js from the Moment. js project with an average
increase of 71 %, which corresponds to 10 additionally covered branches. For the propor-
tional strategy, the average improvement in branch coverage is 12.6 %. There are 24 files
for which the proportional strategy performs equally to the baseline. The file with the
most improvement is again add-subtract. js from the Moment. js project with an average
increase of 71 %.

Table 6.3 shows the results of the statistical comparison between the two strategies
and the baseline, based on a p-value < 0.05. #Win indicates the number of times that the
left configuration has a statistically significant improvement over the right one. #No diff.
indicates the number of times that there is no evidence that the two competing configu-
rations are different; #Lose indicates the number of times that the left configuration has
statistically worse results than the right one. The #Win and #Lose columns also include
the A, effect size, classified into Small, Medium, Large, and Negligible.

We can see that the ranking and the proportional strategy have a statistically signifi-
cant non-negligible improvement over the baseline in 27 and 32 files for branch coverage,
respectively. Ranking improves with a large magnitude for 23 classes, medium for 1 class,
and small for 3 classes and proportional with 27 (large), 4 (medium), and 1 (small). The
Ranking strategy loses in four cases when compared to the baseline: response.js, re-
sponse. js, Knapsack. js, Matrix. js, and results. js.

6.5.2 Result for RQ2: Strategy

When we compare the two different strategies with each other, we can observe that the
proportional type inference on average improves by 3.3 % over the ranked strategy based
on branch coverage. The file with the least improvement is constructor. js from the
Moment. js project with an average decrease of 12%. While the file with the most im-
provement is detectDirectedCycle. js from the JS Algorithms project with an average
increase of 36 %. From Table 6.3, we can see that the proportional strategy has a statis-
tically significant non-negligible improvement over ranking in 20 cases (16 large and 4
small). While ranking improves over proportional in only 4 cases (1 medium and 3 small):
slice.js, constructor. js, from-string-and-format. js, and parsing-flags. js.
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6.6 Threats to Validity

This section discusses the potential threats to the validity of our study.

6.6.1 External Validity

An important threat regards the generalizability of our study. We selected five open-source
projects based on their popularity in the JavaScript community. The projects are diverse
in terms of size, application domain, purpose, syntax, and code style. Further experiments
on a larger set of projects would increase the confidence in the generalizability of our
study and, therefore, is part of our future work.

6.6.2 Conclusion Validity

Threats to conclusion validity are related to the randomized nature of DynaMOSA. To
minimize this risk, we have executed each configuration 20 times with different random
seeds. We have followed the best practices for running experiments with randomized algo-
rithms as laid out in well-established guidelines [66]. Additionally, we used the unpaired
Wilcoxon signed-rank test and the Vargha-Delaney A;, effect size to assess the signifi-
cance and magnitude of our results. To ensure a controlled environment that provides a
fair evaluation, all experiments have been conducted on the same system and interfering
processes were kept to a minimum.

6.7 Conclusion and Future Work

In this paper, we presented an automated unit test generation approach for JavaScript,
the most popular dynamically-typed language. It generates unit-level test cases by using
the state-of-the-art meta-heuristic search algorithm DynaMOSA and a novel unsupervised
probabilistic type inference model. Our results show that (1) the proposed approach can
successfully generate test cases for well-established libraries in JavaScript, and (2) the
type inference model plays a significant role in achieving larger code coverage (through
proportional sampling). As part of our future work, we plan (1) to extend our benchmark,
(2) to investigate more meta-heuristics, (3) assess different strategies to incorporate the
type inference model within the search process, and (4) compare our type inference model
to state-of-the-art deep learning approaches.
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SynTest Ecosystem

Software testing is an important but time-consuming part of the software development pro-
cess. To automate this process, various tools for automated unit-level test case generation (e.g.,
EvoSuite and Pynguin) have been created over the years. Despite this, there is still a shortage
of user-friendly production-level tooling. To this aim, we introduce SynTest-Framework, an
open-source framework for automated test case generation and quality assurance. The frame-
work aims to provide a comprehensive ecosystem of testing tools targeted at multiple pro-
gramming languages. Its modular and extensible architecture allows users to customize the
framework for their use cases. In addition, we introduced two language-specific tools, namely
Syntest-Solidity and Syntest-JavaScript, built as an extension of SynTest-Framework. These
tools extend the automated test case generation capabilities of the SynTest ecosystem to Solid-
ity smart contracts and JavaScript programs, respectively. In order to assess the performance
of these tools, we performed an empirical study. The results show that both Syntest-Solidity
and Syntest-JavaScript are effective at generating test cases for their respective programming
languages.

This chapter is based on:

B Mitchell Olsthoorn, Dimitri Stallenberg, Arie van Deursen, and Annibale Panichella. SynTest-Solidity: Automated
Test Case Generation and Fuzzing for Smart Contracts. 44th ACM/IEEE International Conference on Software Engi-
neering 2022 (ICSE’22): Companion Proceeding [80] and

B Mitchell Olsthoorn, Dimitri Stallenberg, and Annibale Panichella. SynTest-JavaScript: Automated Unit-Level Test
Case Generation for JavaScript. 17th IEEE/ACM International Workshop on Search-Based and Fuzz Testing 2024
(SBFT’24).
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7.1 SynTest-Framework

Software testing is an important part of the software development process. This task is
often performed manually, which can be both time-consuming and prone to errors [2, 3].
Automated unit-level test case generation can help alleviate these issues but is a complex
process that requires domain-specific knowledge and expertise. Additionally, given the
tight coupling between white-box automated test case generation tools and the language
of the program under test, it is challenging to build tooling for multiple languages and/or
testing frameworks. This led to a tooling landscape that is fragmented, with many tools fo-
cusing on specific languages (e.g., Java) and testing frameworks [74]. To make automated
test case generation techniques more accessible to practitioners, we need to provide user-
friendly tools that are language agnostic. Therefore, we set out to create a framework,
called SynTest-Framework, that provides an ecosystem of automated test case generation
and quality assurance tools for multiple programming languages.

7.1.1 Architecture

SynTest-Framework is built with a modular architecture that can accommodate diverse soft-
ware analysis and testing requirements. At its core, it features language-agnostic libraries
that provide common functionality (e.g., configuration, process management, search al-
gorithms, metric collection) applicable across various programming languages. These li-
braries form the foundation of the framework. On top of these libraries, we have built a
Command-Line Interface (CLI) that provides a unified interface. One of the key features
of the framework is its extensibility, which allows the dynamic loading of modules. Mod-
ules provide a mechanism for users to build upon and extend SynTest. They contain a
set of related extensions that are loaded together. This modular and extensible structure
allows users to tailor SynTest-Framework to their specific use case. Modules can be de-
veloped by external third parties completely separate from the framework. At the time
of writing, we have created two language-specific modules, namely Syntest-Solidity and
Syntest-JavaScript, which are discussed in Sections 7.2 and 7.3.

7.1.2 Extensions

This sections describes the different extension types supported within the SynTest ecosys-
tem. Figure 7.1 gives a visualization of how the different extension types fit within the
overall architecture of the SynTest-Framework.

Tools

The tool extension type is the most important extension type within the framework. It
adds behavior to our CLI by providing a new set of commands and functionalities. A tool
extension is considered a first-class citizen, as it is the only extension type that can be
executed directly from the CLIL They are the main entry point for users to interact with
the framework. Without them, the framework would be nothing more than a collection
of libraries. To run a tool, users have to execute the following command: syntest <tool>
<command> [options], where <tool> is the name of the tool and <command> is the name of
the command within the tool. The capabilities of a tool extension are only limited by the
developer’s creativity. By providing core commands and functionalities, tool extensions
create a solid base upon which additional functionality can be added. This expansion
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Figure 7.1: SynTest-Framework architecture.

opens up a world of possibilities, enabling users to perform a wide range of tasks within
the framework’s ecosystem.

Plugins

Plugins are a powerful extension type that allow users to customize the behavior and
functionality of the framework to suit their specific needs. Tools can provide points of
extension where plugins can hook into the execution flow of the overall framework. This
allows plugins to respond to specific events or modify the behavior of a tool. This level of
customization is crucial for making the framework flexible and allowing it to accommodate
a wide range of use cases.

The CLI itself also provides two points of extension, namely event listener plugins and
metric middleware plugins. Event listener plugins allow you to listen to all events within
the framework and act upon them. These events can range from user actions to internal
program states. As an example, the state storage plugin stores certain program states to file
as they change throughout the lifecycle of the framework. This plugin is useful for logging,
debugging, or triggering specific actions based on program events. The metric middleware
plugins allow users to modify the behavior of our metric collection system. Two examples
of this type of plugin are the statistics plugin which calculates additional statistical metrics
based on other metrics, and the file writer plugin which writes all metrics to several ()

files.

Presets

Lastly, presets are an extension type that interact with the configuration system of SynTest-
Framework. They provide a mechanism to override specific settings for both the tool’s
default configuration and the configuration provided by the user. Presets simplify the
configuration process for users by offering predefined, ready-to-use options. Users are
spared needing to look up the meaning of a configuration parameter or memorize an ar-
ray of command-line values. Instead, they can simply select a preset that aligns with their
use case. For test case generation this is especially useful as search algorithms often have
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many parameters that can be tweaked. Moreover, presets can play a crucial role in sim-
plifying the sharing of empirical setups for scientific research. Rather than sharing an
elaborate specification, users can conveniently share a single preset containing all the es-
sential information required to replicate research results, promoting reproducibility and
collaboration.
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7.2 SynTest-Solidity

Smart contracts are agreements between multiple parties on how certain tasks (e.g., releas-
ing or transferring funds) need to be executed. More specifically, they are short programs
deployed to a distributed ledger (blockchain) that run when predetermined conditions
have been met. This allows automating the execution of an agreement with a deterministic
outcome without a trusted intermediary. Smart contracts have been gaining popularity in
recent years. The largest and most prominent smart contract platform is Ethereum, which
uses the Solidity programming language [110].

One key property of smart contracts is that they can not be updated anymore after
their deployment. This property prevents the creator of a smart contract modifying the
contract for their own benefit (e.g., only allowing themselves to retrieve funds). However,
this introduces certain challenges, such as when a contract contains a bug. Therefore, it
is critical to thoroughly test the behavior and constraints of the smart contract as early
as possible in the development lifecycle. Since smart contracts have complex interactions,
manual testing becomes very difficult and error-prone [73].

Over the last few years, various techniques have been used to assist developers with
testing Solidity smart contracts, like fuzzing, formal verification, and test case generation.
Tools like sFuzz [112] have successfully used fuzzing techniques to produce test input data
that causes errors or unwanted effects within the contract. However, since fuzzers only
generate input data but no actual (runnable) test cases, they cannot create compositional
tests (i.e., a test case with multiple requests) nor test for the desired behavior of the con-
tract. On the other hand, formal verification approaches aim to mathematically verify the
behavior of a contract by transposing the contract into a formal proof language. In general,
this approach does not scale and requires developers to provide a complex model of the
desired behavior [188]. To the best of our knowledge, we have not found any study that
indicates this is different for smart contracts. Lastly, test case generation allows develop-
ers to test smart contracts for both bugs and behavior in a more efficient and scalable way.
In addition, this allows generated tests to be added to the existing test suite for regression
testing purposes. To the best of our knowledge, there exists only one related work that
focusses on test case generation for Solidity [118]. However, the research prototype used
in the study is not specifically adapted for the Solidity language. For example, it does take
into account Solidity-specific types, such as different sizes for integers, nor distinguishes
between signed and unsigned types. Besides, the tool does not generate assertions.

We have developed a tool extension for SynTest-Framework, called Syntest-Solidity*, to
allow developers to more effectively and efficiently test their smart contracts. It is publicly
available on NPM? and GitHub®. Instructions on how to set up and run the tool can be
found on both platforms. Syntest-Solidity makes use of a genetic algorithm to evolve a set
of initial randomly generated test cases to satisfy predefined test criteria (i.e., function, line,
and branch coverage). It does this by extracting objectives from the contract, feeding these
into the search algorithm, and evaluating the produced test cases using Truffle (de-facto
testing library for Solidity) and Ganache (local development blockchain).

'https://www.syntest.org/
*https://www.npmjs.com/package/@syntest/solidity
*https://github.com/syntest-framework/syntest-solidity
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Figure 7.2: Online web service for generating test cases with Syntest-Solidity.

7.2.1 Usage Scenarios
In addition to the CLI of SynTest-Framework, we provide an online web service* which
allows users to interact with Syntest-Solidity without having to install the tool locally.
Figure 7.2 depicts the main interface of the web service. A developer can submit their
contract to the web service and request it to be analyzed by clicking on the analyze button.
This will start the test case generation process, at the end of which the generated test cases
can be downloaded directly from the webpage. The webpage will also display relevant
statistics, such as the number of lines and branches that are covered by the test cases.
Figure 7.3 shows the architecture of the backend of the web service. This architecture
consists of a webpage written in Vue that communicates with the service backend through
websockets. The service backend is built with Node.js. Its role is to validate the user input
and manage the sessions. Whenever a new contract is submitted, the service backend
enqueues the job in the RabbitMQ message broker. The purpose of the message broker
is to keep track of all the current submitted jobs and make sure that the workers process
them. The workers are Node.js programs which retrieve jobs from the broker and perform
the actual test case generation. The worker will create the files and folders required for
Syntest-Solidity to run, after which it runs the tool and returns the resulting statistics and
test files. The architecture is made such that the number of workers can be scaled based
on the demand.

*https://tool.syntest.org/
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Figure 7.4: Internal architecture of Syntest-Solidity.

7.2.2 Tool Workflow

Analysis

To generate a test-suite, Syntest-Solidity uses white-box heuristics. Hence, the tool needs
access to the source code for instrumentation which allows the tool to collect coverage
information at runtime. The different steps of our tool are depicted in Figure 7.4. The tool
takes as input a smart contract, parses the source code to build the Control Flow Graph
(CFG), and extracts the search objectives.

Search

The search process starts after extracting the objectives and instrumenting the code, as
shown in Figure 7.4. The tool boasts a number of different search algorithms, including
random search, NSGA-II, MOSA, and DynaMOSA. For the purposes of this tool demo, we
focus on the Dynamic Many-Objective Search Algorithm (DynaMOSA), which is the state-
of-the-art meta-heuristic for white-box unit testing [58].

DynaMOSA evolves a set of randomly generated test cases. These test cases are gener-
ated using a sampler that provides the list of callable methods (i.e., public and external
methods) and constructors for the contract under test (CUT). A test case is encoded as
a sequence of method calls. The root of the sequence is the contract deployment/instan-
tiation made by invoking one of the public constructors. The remaining method calls in
the sequence are obtained by randomly invoking some public and external methods in
the CUT. Notice that the length of the test case is variable and can change through the
generations.
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The initial tests are iteratively evolved using crossover and mutation. The former oper-
ator creates new tests by swapping statements between pairs of tests (called parents). The
latter operator applies small changes to the newly generated test cases, called offspring.

The population for the next generation is obtained by selecting the best test cases
among parents and offspring using the preference criterion and the non-dominated sort-
ing [58]. The goal of these two heuristics is to promote test cases that are closer to reaching
the uncovered branches and lines in the code. The process is repeated until the predefined
budget is depleted.

Note that DynaMOSA only optimizes the yet uncovered branches and lines. Every
time an uncovered branch (or line) is reached, the corresponding test case is saved into
the archive. The final test suite is composed of all test cases stored in the archive.

Text Execution

Our tool needs to execute each test case to determine how close that test is to covering
the objectives. This is performed by the objective functions, which measure the distance
to reaching an uncovered branch or line in the code using state-of-the-art heuristics, i.e.,
the approach level and the normalized branch distance [58]. The flow of steps performed
during test execution is also shown in Figure 7.4.

A test case is first converted into a JavaScript test. This test is then executed on a
fresh Ganache blockchain instance. This local blockchain instance hosts the CUT deployed
using the Truffle framework. The test execution results are then collected and used to
compute the approach level and the branch distance for the yet uncovered branches and
lines.

7.2.3 Solidity-specific Features

Syntest-Solidity provides support for all data types and other features that are unique and
specific to Solidity. In the following, we briefly elaborate on these features and how they
are handled.

Data Types

The Solidity programming language includes multiple data types, including boolean, num-
ber, bytes, strings, and arrays. Compared to other languages (e.g., Java), Solidity includes
multiple subtypes for both integers and doubles. There are two main subtypes of integers:
signed integers (int) and unsigned integers (uint). These subtypes also have different
sizes, ranging from uint8 up to uint256, which correspond to 8 and 256 bits, respectively.
Similarly, double numbers can be both signed (fixed) or unsigned (ufixed) and have dif-
ferent sizes in the number of bits (e.g., ufixed128x18, etc.).

Syntest-Solidity handles all these subtypes as it encodes integers (and float numbers)
with an extra bit for the sign and different upper and lower bounds depending on the num-
ber of required bits. Note that Syntest-Solidity generates tests in JavaScript, which uses 52
bits for numbers. To allow representing larger numbers (up to 256 bits) required for Solid-
ity, Syntest-Solidity uses the BigNumber library that allows arbitrary-precision arithmetic.

Solidity Addresses
Address is a special data type in Solidity and represent the intended recipient of a transac-
tion. An address has 160 bits or 40 hex characters. An address always has a 0x prefix in
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its hexadecimal format (base 16 notation). Syntest-Solidity uses two strategies to handle
and instantiate addresses. The first strategy extracts address literals from the source code
of the CUT. These constants are used as seeds when generating test cases with 50 % prob-
ability. This means that constant addresses in the code are (with some probability) used
in the generated test cases. The address 0x0 (or zero-address) is a special constant used to
indicate that a new contract is being deployed.

The second strategy uses pre-allocated addresses that are allocated by the Truffle frame-
work when the contract is deployed at the beginning of each test case. These pre-allocated
addresses are accessible with the statement account[index], where index points to the
pre-allocated address to consider.

Transactions

Interactions with smart contracts are made via transactions. Transactions correspond (1)
to either sending Ether to another account, (2) executing a contract method/function, or
(3) adding a new contract to the network. Hence, a method call in the test case is required
to have a recipient address in addition to the actual input parameters for the method being
invoked. Therefore, a method call is encoded in Syntest-Solidity as an array of (1) input
parameters, (2) return values, and (3) the address of the recipient.

Assertions

Syntest-Solidity generates assertions at the end of the search process as a post-process
step. It does this by collecting the runtime values (e.g., contract states and return values
of invoked methods) from the final execution of the test cases. A specific type of asser-
tion regards the runtime exceptions that can be thrown when the state-reverting security
conditions (i.e,, revert and require) are not satisfied. If a test case triggers these run-
time exceptions, the assertion generated by our tool asserts that the expected exception is
triggered.

7.2.4 Evaluation

To evaluate Syntest-Solidity, we tested 20 Solidity smart contracts submitted to etherscan.io.
In particular, the selected contracts are written in Solidity versions 5 and 6, which are
currently supported by our tool. We randomly selected these contracts among those that
have been submitted to etherscan.io multiple times for security checking between January
and June 2021. For the selection, we excluded duplicates and analyzed their cyclomatic
complexity (CC) to exclude trivial contracts with no branching statements. As suggested by
existing guidelines in the literature [58, 133], test case generation tools should be assessed
on code units (e.g., classes in Java) with a cyclomatic complexity above two (CC>2). In
our context, the 20 selected contracts have functions with cyclomatic complexity above
three. The contracts and their characteristics are summarized in Table 7.1. The size of the
contracts ranges from 23 LOC for MetaCoin to 307 for Revive.

While the benchmark might not be large enough for a complete empirical assessment,
our goal is to show the ability of our tool in generating test cases with high code coverage
and assertions for non-trivial, real-world smart contracts. Assessing the tools on a larger
and more extensive benchmark is part of our future agenda.
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Table 7.1: Average (median) coverage achieved by Syntest-Solidity over 20 independents runs

Coverage
Contract Loc Function Branch Line
AavePoolReward 108 0.92 0.50 0.60
Baz 33 1.00 0.95 0.95
BirdOracle 134 0.89 0.59 0.66
Core_Fi V3 62 0.88 0.56 0.59
CryptoGhost 165 1.00 0.84 0.79
CryptoSecureBankToken 254 0.93 0.50 0.73
DJCoin 195 0.88 0.67 0.77
EdenCoin 67 1.00 1.00 1.00
FreakCoin 139 1.00 0.60 0.69
GAZ _ERC20 71 0.55 0.55 0.54
INS 109 1.00 0.50 0.50
MetaCoin 23 1.00 0.88 0.89
Revive 307 0.84 0.41 0.64
Rootkit_finance 61 0.88 0.59 0.61
SLTDETHIpReward 291 0.78 0.49 0.63
Straight_Fire_Finance 62 0.88 0.59 0.61
TetherToken 98 1.00 0.50 0.58
ThriftToken 96 0.91 0.50 0.63
TimeMiner 174 1.00 0.67 0.81
WOLF 80 1.00 0.40 0.68
Mean 0.91 0.64 0.70

Experimental Setup

In this evaluation, we use the parameter values suggested in the related literature [58].
More specifically, we run DynaMOSA, which is the state-of-the-art search algorithm for
unit-level test case generation [58]. In addition, we use a population size of 10 test cases.
New test cases are generated using the single-point crossover with probability p, = 0.80.
Test cases are further changed using the uniform mutation with the probability p,, = 1/n,
where n is the length of the test case. This operator either adds, deletes, or changes state-
ments within each test case. These three mutation operators are equally probable.

We set an overall search budget of 30 minutes per smart contract. This search budget is
larger than the one usually used in unit-test generation in other languages (e.g., Java [58]).
This is because Syntest-Solidity has to deploy the contract under test to the smart contract
network before each test case.

Empirical Results

We run Syntest-Solidity 20 times for each smart contract to account for the randomness of
the search process. Table 7.1 reports the median results achieved by SynTest-Framework
with regard to function, branch, and line coverage. In all cases, Syntest-Solidity was able
to generate test suites with high function coverage, which is 91 % on average. For branch
coverage, the results vary between 40 % achieved on Wolf and 100 % achieved for EdenCoin.
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The produced branch coverage is greater than 50 % in all smart contracts except three. As
a consequence, Syntest-Solidity yielded an average branch overage of 61 %. The results for
line coverage are in-line with those achieved for branch coverage. Indeed, the mean line
coverage is 68 %, with a minimum value of 54 % obtained for GAZ_ERC20 and a maximum
value of 100 % for EdenCoin.
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7.3 SynTest-JavaScript

Various tools for unit-level test case generation (e.g., AUSTIN for C, and EvoSuite and Ran-
doop for Java) have been created over the years. These tools mostly focus on statically-
typed languages [74]. The most recent Stack Overflow developer survey’, however, shows
that JavaScript and Python, which are both dynamically-typed, are the most popular pro-
gramming languages among professional developers. Recently, Lukasczyk et al. proposed
Pynguin, an automated unit-level test case generation tool for Python [189]. However,
despite JavaScript’s eleventh year in a row as the most popular programming language,
automated tool support for test case generation for JavaScript is still lacking.

In the last decade, there has been a growing interest in developing tools for JavaScript [182-

184, 190]. These tools, however, focus on JavaScript web applications that are character-
ized by their event-driven execution model and interaction with the Document Object
Model (DOM) of the browser. JavaScript started out in 1995 as a client-side scripting
engine for the browser, but through the years, additional JavaScript runtime engines like
Node.js, Deno, and Bun have emerged, which allow developers to use JavaScript for server-
side applications. These server-side JavaScript engines are used to create web servers and
command-line tools and are heavily used by companies like Netflix®, PayPal’, and Uber?®.

A crucial problem with developing tools for dynamically-typed languages is that these
types of languages do not provide any information on the types of variables and parame-
ters. Types are instead inferred during the execution of the code. This characteristic, cou-
pled with JavaScript’s weak typing —where variables can change types during execution—
complicates the static determination of types. Without knowing the type of a function pa-
rameter, it will be challenging to generate the appropriate test inputs.

In this section, we introduce Syntest-JavaScript, an open-source automated unit-level
test case generation tool for (server-side) JavaScript, which uses a probabilistic type in-
ference approach we have introduced in our previous work [79]. It makes use of search-
based algorithms to generate test cases that maximize function, branch, and path coverage.
Syntest-JavaScript is implemented as a tool extension of the SynTest-Framework. This tool
aims to provide a platform for researchers and practitioners to develop and evaluate new
techniques for test case generation of JavaScript programs.

7.3.1 Workflow
The workflow of our tool, depicted in Figure 7.5, unfolds across five phases: (i) initializa-
tion, (ii) pre-processing, (iii) processing, (iv) post-processing, and (v) cleanup.

The initialization phase consists of setting up the environment, configuring all the re-
quired variables, and initializing the required classes. Next, the pre-processing phase uses
static analysis methods to gather information about the targeted units (i.e., exported func-
tions or classes) that can be used to improve the search process. In this phase, we build
the Control Flow Graph (CFG) starting from the Abstract Syntax Tree (AST) of the unit
under test. The CFG allows us to extract the branch/function/path objectives from each
unit. These objectives are used during the processing phase to guide the search algorithms

*https://survey.stackoverflow.co/2023/#most-popular-technologies-language-prof
*https://netflixtechblog.com/debugging-node-js-in-production-75901bb10f2d
"https://paypal.github.io/PayPal-node-SDK/
Shttps://www.uber.com/en-NL/blog/uber-tech-stack-part-two/
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Figure 7.5: Syntest-JavaScript tool workflow.

towards maximum coverage. Next, we infer the variable types using the type inference
techniques as proposed in our previous work [79]. Finally, we instrument the source code.
This instrumentation allows us to record information about the performance of our gen-
erated test cases.

During the processing phase, each targeted file is considered separately. The informa-
tion gathered in the pre-processing phase is used to sample encodings (test cases) during
the search process. These encodings are then evaluated based on the distance from the
objectives, which is calculated by executing the generated test cases (encodings) and us-
ing the coverage data generated by the instrumentation. For every objective that has been
covered, we save an encoding in our archive [120]. Next to the original objectives (e.g.,
branches), we also save error objectives that are discovered during the search process.
The search and evaluation go back and forth until one of the stopping criteria is met (e.g.,
running time).

In the post-processing phase, we optimize and prettify the encodings (test cases) in the
archive. To achieve this, we first minimize the size of the test cases by iteratively removing
spurious statements that do not contribute to the total coverage [58]. Next to the individual
test case minimization, we also reduce the entire archive (test suite) by checking whether
two test cases cover the same objectives and removing one of them. After minimization,
the tool generates assertions for each function call result, or exception thrown. Finally,
the resulting test suite is run to calculate the final coverage. An example of a generated
test case with assertions is shown in Figure 7.7. In the last phase, the tool cleans up all the
generated temporary files.

7.3.2 Components

Presets

Presets allow developers or researchers to create pre-specified configuration settings. Cur-
rently, we have four options, random search, NSGA-II [150], MOSA [120], and DynaMOSA [58].
Each preset is designed to align with the configurations detailed in their respective original
articles.

Encoding
Our encoding for test cases is structured as a directed acyclic graph. An example of such
an encoding is shown in Figure 7.6. At the top, we have the test case itself, which contains
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Figure 7.6: Syntest-JavaScript encoding structure

the root statements. In this example, the root statements consist of three method calls.
Each method call requires an instance of an object to be called upon, for this reason, each
method call has a constructor child. Next to the constructor, some method calls have
arguments. These arguments can be primitives (e.g., a boolean), objects, functions, or
results of other method calls. In Figure 7.6, we see that method call C uses the result of
method call D as an argument. Although not shown in the figure, the roots may also be
object function calls or regular function calls, the regular function call does not require an
object instance to be called.

Supported types

Our encoding supports two primitive types, namely complex and action statements. The
primitive statements are a reflection of the primitive statements in JavaScript itself. These
include: boolean, integer, null, numeric, string, and undefined. Note that in JavaScript
there is no distinction between numeric and integer. However, to improve the capabilities
of the tool we included a separate integer statement. Currently, the tool supports the
following complex statements: arrays, arrow functions, and objects. Finally, the action
statements include the constructor, function, and method calls. When the type matching
engine finds a matching class type for a certain variable, we can import the matching class
and instantiate it through a constructor call. If however no matching class can be found,
we use the object statement to construct the required type. This enables the tool to support
an infinite number of types.

Constant Pool

During the static analysis in the pre-processing phase, we gathered all constant values
from the source code and put them into a constant pool. These constants can then be used
during the sampling of primitive types such as strings and numbers.
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Type Pool

Next to the constant pool, we also create a type pool, using the analysis files, which con-
sists of all the user-defined object types (classes, interfaces, prototyped functions, etc.).
These types can then be used when certain objects need to be sampled. We try to find the
most likely match to the required object and then sample a constructor or import of that
type. As mentioned before, if no matching type can be found, the sampler constructs the
object itself through an object statement.

Statement Pool

For each test case, we maintain a statement pool that consists of each statement within
the encoding tree. During the sampling of new statements for a test case, there is a chance
of reusing already occurring statements from the encoding tree. This is done by sampling
a matching statement from the statement pool. For this reason, our encoding is a directed
acyclic graph instead of a tree. Figure 7.6 shows this by for example method calls B, C,
and D all using constructor instance 2. Note that this only works when the types of the
statements match.

Execution engine

To ensure that test case executions do not influence each other we created a test case
execution engine that runs each test case in a new process. Running a test case in a
separate process allows us to terminate the execution in case of a timeout or memory
overflow (which can happen with generated test cases). The execution engine provides a
separate process with the test to execute and the relevant environment. After execution,
the results sent back by the process include instrumentation data, meta-data, and assertion
data. To calculate the “fitness” of a test we measure its distance to cover all unreached
branches in the code, as typically done in DynaMOSA [58]. The distance to each uncovered
branch is computed using two well-known coverage heuristics [4]: (1) the approach level
and (2) the normalized branch distance. We use the instrumentation data to calculate the
approach level. To calculate the branch distance we use the meta-data which consists of
the branch conditions together with the relevant variable values. Finally, the assertion
data contains the results of function calls and is used to generate assertions.

Test splitting

As mentioned before, the post-processing phase minimizes the size of each test case by
splitting them. Take the encoding shown in Figure 7.6 as an illustrative example. In this
scenario, the original test case can be split into two separate ones: the first encompassing
method call A, along with its associated child statements; the second comprising methods
calls B and C, along with their child statements. The tool then runs these two test cases
separately and checks whether their combined coverage is equal to (or higher than) the
original test. In that case, the two new tests are stored and further considered for additional
splits recursively.

Test de-duplication

After the test splitting, we end up with a large set of test cases, some of which might be
redundant w.r.t. to the final coverage. For this reason, we have a de-duplication step in
our workflow. During this step, each test case is compared to the other test cases to check
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it (”suggestSimilar returns correct suggestion for a misspelled word with special
characters”, async () => {
// Meta information
// Selected for objective: ./suggestSimilar.js:80:13:::82:7:::2311:2384
VA
// Covers objective: ./suggestSimilar.js:81:8:::81:32:::2352:2376

// Test

const word = ”"cac@e-valiate”;

const arrayElement = ”cache-validate”;

const candidates = [arrayElement]

const suggestSimilarReturnValue = await suggestSimilar (word, candidates)

// Assertions
expect(suggestSimilarReturnValue).to.equal(”\n(Did you mean cache-validate?)”)

Figure 7.7: Example of generated test case

for duplicate objective coverage. If two test cases cover exactly the same objective, the
best one is picked based on secondary objectives such as length or readability.

Meta-commenting

To provide as much information as possible to the end user the tool provides meta-comments
in each test case. These comments provide information about which objectives the test
case covers and for which objective the test case was chosen. For error objectives, we also
provide the stack trace in the comments. Figure 7.7 shows some meta-comments in line 2
to 5.

Naming strategy

To generate test cases that not only achieve high coverage but are also very readable, the
names of the used variable names must be logical. To achieve this, the tool uses the names
of the parameters of the called functions as the variable names for the corresponding
arguments. If a variable name is already in use, we number them. For return values, we
currently simply name the variable “[function name]ReturnValue” as can be seen on line
11 in Figure 7.7. In the future, we plan to improve this by using the name of the returned
variable in the source code. We also plan to improve the test and variable names by using
Large Language Models (LLMs) as a prettifier.

Assertion Generation

A test case is incomplete without proper assertions. To generate assertions we first execute
the test cases without any assertions and record the result of each function call. In the case
of an error, we catch and record the error. Then the recorded results are asserted in the
final test suite. An example of this is shown on line 14 in Figure 7.7.

7.3.3 Evaluation

To evaluate the effectiveness of Syntest-JavaScript, we performed an experiment on the
SynTest-JavaScript-Benchmark, previously introduced in [79]. To the best of our knowl-
edge, this is the only benchmark targeted at unit-level test case generation for JavaScript.
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7.3 SynTest-JavaScript

Table 7.2: Overview of the benchmark metrics, achieved coverage, and statistical significance
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The current version of the benchmark contains 99 JavaScript source code files which con-
sist of popular JavaScript libraries that represent a diverse set of JavaScript syntax and
code styles. Table 7.2 provides the main characteristics of the benchmark projects, includ-
ing the number of files, the number of units (i.e., exported classes or top-level functions),
and the average Cyclomatic Complexity per file (CC column).

We used the state-of-the-art search algorithm DynaMOSA [58] and compared it against
random search as a baseline. We use the algorithm parameter values as suggested in the
DynaMOSA paper’. We set a search budget of 180 seconds as often used in related work [58,
120]. To account for the stochastic nature of search-based approaches, each file under test
was run 20 times. This resulted in 8.25d of consecutive running time (3960 runs x 1805s).
The experiment was performed on a system with two AMD EPYC 7H12 (64 cores, 2.6 GHz)
CPUs and 512 GB of RAM.

To determine if one approach performs better than the others, we applied the unpaired
Wilcoxon signed-rank test [67] with a threshold of 0.05. This non-parametric statistical
test determines if two data distributions are significantly different. In addition, we apply
the Vargha-Delaney AIZ statistic [68] to determine the effect size of the result, which
determines the magnitude of the difference between the two data distributions.

The results of our evaluation can also be found in Table 7.2. It shows the average branch
coverage per benchmark project achieved by random search and DynaMOSA and how they
perform compared to each other. As can be seen in the table, DynaMOSA achieves an av-
erage branch coverage above 70 % for four out of six projects, and close to 50 % for the
remaining two. As shown in related work, DynaMOSA achieves higher code coverage
than random search for most units under test. Additionally, Table 7.2 shows the statisti-
cal results of the comparison between the two search algorithms with regard to branch
coverage across the various benchmarks. This section of the table is organized into three
main categories: #Win, #No Diff, and #Lose. Analyzing the #Win category, we observe
notable results in favor of DynaMOSA in all benchmarks. The table shows that in 41 cases
DynaMOSA wins significantly, in 6 cases random search wins significantly, and in 52 cases
there is no significant difference in performance.

*https://github.com/syntest-framework/syntest-framework/blob/3f6b9612c030ffc79d5e79c5c1c126ca816a87a6/

tools/base-language/lib/presets/DynaMOSAPreset.ts
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7.4 Conclusion and Future Work

In this paper, we introduced SynTest-Framework, an open-source framework for auto-
mated test case generation and quality assurance. The framework provides an ecosystem
of testing tools for multiple programming languages. It is built with a modular and exten-
sible architecture that allows users to tailor the framework to their specific use case. We
have also introduced two language-specific modules, namely Syntest-Solidity and Syntest-
JavaScript, which are built on top of the framework. These modules provide automated
test case generation for Solidity smart contracts and JavaScript programs, respectively. To
evaluate the performance of Syntest-Solidity and Syntest-JavaScript, we performed an em-
pirical study and the results show that both tools were effective at generating test cases
for their respective programming languages.

As part of our future work, we plan to extend the framework with additional search
algorithms (e.g., SPEA2, PESA, PSO) and LLM-based approaches. To make it easier for re-
searchers to evaluate new approaches, we plan to provide infrastructure within the frame-
work needed to easily run and compare experiments. Furthermore, we plan to incorporate
a mutation-testing engine to better evaluate the quality of the test cases. Lastly, to make
the proposed tool easier to use for practitioners, we plan to integrate them into the most
popular IDEs (e.g., VSCode and WebStorm) and CI/CD platforms (e.g., GitHub, GitLab).
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Conclusion

In this last chapter, we revisit the research questions posed in Section 1.3, summarize
our findings, and make conclusions based on the results of the studies. Furthermore, we
showcase the current and possible implications that this work may bring, and provide
recommendations for future directions of search-based automated test case generation.

8.1 Research Questions Revisited

In this section, we revisit and answer our five research questions from Section 1.3.

RQ1 How can we reduce the search space for automated test case generation by using domain-
specific knowledge?

In Chapter 1, we described one of the main challenges of automated test case genera-
tion as the size of the search space that needs to be explored. This challenge is especially
prevalent for automated test case generation of complex programs, which usually require
highly structured, specific, and/or domain-dependent input data. To answer RQ1, we in-
vestigated how domain-specific knowledge can be leveraged to steer the search process
toward better solutions. In particular, we focus on highly structured input data (Chapter 2)
and input validity constraints (Chapter 3).

In Chapter 2, we introduced a novel approach that combines the strengths of grammar-
based fuzzing and automated test case generation. The approach is based on the observa-
tion that most complex input data for a program under test is highly structured and can be
described by a grammar. By using the grammar of the input language, we can generate in-
put data that is more likely to be valid and thus reduce the search space for automated test
case generation. More specifically, we use automated test case generation techniques to
evolve the test case structure while grammar-based fuzzing is used to evolve the complex
input. We have evaluated the feasibility and effectiveness of our approach by implement-
ing it in EvoSuite and applying it to the three most popular JavaScript Object Notation
(JSON) parser libraries for Java. The results show that our approach is able to generate
test cases that achieve higher structural coverage than the state-of-the-art without nega-
tively impacting the coverage of classes without highly structured complex input data.
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In Chapter 3, we highlight the importance of input validity constraints for automated
test case generation of security vulnerabilities. Input validity constraints are a construct
that exist within some languages (e.g., Solidity and Java) and are used to validate the
input data before it is processed. Declarative input validation constraints are a form of
domain-specific knowledge that can be used to reduce the search space for automated test
case generation. To this aim, we proposed an approach that provides search guidance for
these input validity constraints based on interprocedural control dependency analysis, in
addition to the well-established test adequacy criteria. We have evaluated the effective-
ness of our approach by comparing it to the state-of-the-art automated test case gener-
ation approach for Solidity smart contracts. The results show that our approach is able
to generate test cases that achieve significantly higher structural coverage and improve
the vulnerability-detection capability. This demonstrates that the effectiveness of auto-
mated test case generation for security vulnerabilities is highly dependent on the ability
to generate valid input data.

RQ2 How can we preserve promising structures within test cases throughout the search pro-
cess?

We described the second challenge of automated test case generation that we address
in this thesis as the need to identify and preserve promising patterns within the structure
of the test cases. While current crossover operators can randomly create effective test
cases by combining the structure of two parent test cases, they do not preserve promising
patterns (i.e., certain permutations of method calls) within the structures that are present
in the parent test cases. We hypothesized that if these promising patterns are broken, the
search process will waste valuable time trying potential solutions that will not work.

In Chapter 4, we aim to answer RQZ by investigating how promising patterns within
the structure of test cases can be identified and preserved for REpresentational State Trans-
fer (REST) Application Programming Interface (API) testing. We introduced an approach
with an improved crossover operator, named LT-MOSA, that uses Agglomerative Hierar-
chical Clustering (AHC) to infer patterns within the method sequences of the fittest test
cases and preserve them. To evaluate LT-MOSA, we implemented it within EvoMaster
and compared it to MIO and MOSA, the state-of-the-art automated test case generation
approaches for REST APIs. The results show that by inferring and preserving the promis-
ing patterns, our approach is able to generate test cases that achieve significantly higher
structural coverage and fault-detection capability within the same time compared to the
state-of-the-art approaches. This shows that preserving promising patterns within the
structure of test cases can significantly improve the effectiveness of automated test case
generation.

RQ3 How can we increase the diversity of individuals in the population?

The third challenge addressed by this thesis, is the need to increase the diversity of
individuals in the population to prevent premature convergence. Crossover operators
are one of the main sources of diversity for genetic algorithms. However, current state-
of-the-art crossover operators for automated test case generation (i.e., single-point) only
change the structure of the test cases and simply copy over the corresponding test data.
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Consequently, the input data of the offspring is often very similar to the input data of the
parents. To answer RQ3, we investigate how the diversity of individuals in the population
can be increased by using a hybrid crossover operator that combines different crossover
operators on multiple levels (i.e., data and structure level).

In Chapter 5, we introduced a hybrid crossover operator, named HMX, that combines
the single-point crossover operator with a data-level crossover operator. We have eval-
uated HMX by comparing it to the state-of-the-art single-point crossover operator on
116 classes from the Apache Commons and Lucene Stemmer projects. The results show
that our operator significantly improves the structural coverage and fault detection ca-
pability of the generated test cases compared to the single-point crossover operator. This
demonstrates that combining different crossover operators on multiple levels can increase
the diversity of the population.

RQ4 How do we increase the effectiveness and efficiency of automated test case generation
for dynamically-typed languages?

One of the other challenges of automated test case generation was the lack of type
information for dynamically-typed languages. Current state-of-the-art approaches for au-
tomated test case generation generally focus on statically-typed languages as type infor-
mation is needed to select suitable values for the parameters of a method call. Without
this type information, the search space grows exponentially, making the overall search
process less effective. Therefore, to answer RQ4, we focus on integrating dynamic type
information into the search process.

In Chapter 6, we propose a novel unsupervised probabilistic type inference approach
that infers the types of the parameters of a method and uses these to guide the search
process. To evaluate our approach, we performed an empirical study on 10 open-source
JavaScript projects. The results show that unsupervised probabilistic type inference ap-
proach achieves a statistically significant increase in 56 % of the test files with up to 71 %
of branch coverage compared to random type sampling. This shows that the inferred types
can be used to guide the search process and improve the effectiveness of automated test
case generation for dynamically-typed languages.

RQ5 How can we make a platform for automated test case generation that supports multiple
programming languages?

The last challenge that we address is the shortage of easy-to-use production-level tool-
ing. Automated test case generation is a complex process that requires domain-specific
knowledge and expertise. Therefore, to make automated test case generation techniques
more accessible to practitioners, we need to provide easy-to-use tools that are language
agnostic. However, given the tight coupling between the tool and the programming lan-
guage to be tested (within the context of white-box testing), it is not trivial to build tooling
for multiple languages and/or testing frameworks. Therefore, to answer our last research
questions (RQ5), we investigate how we can make a platform for automated test case gen-
eration that supports multiple programming languages.

In Chapter 7, we present SynTest-Framework, a modular and extensible framework
for automated test case generation. The main goal of the framework is to provide an
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ecosystem of testing tools that are easy to use and come with a collection of pre-defined
presets for different search algorithms. SynTest-Framework is designed to be language
agnostic and can be extended to support new languages and testing frameworks. Addi-
tionally, we present Syntest-Solidity and Syntest-JavaScript, two testing tools integrated
into the SynTest-Framework for automated test case generation of Solidity smart contracts
and JavaScript programs. We evaluated both testing tools and showed that they are able
to effectively generate test cases for Solidity smart contracts and JavaScript programs, re-
spectively. This demonstrates that the SynTest-Framework can be used to build tools for
automated test case generation of different programming languages. Both the framework
and the tools have been made publicly available to the research and industry community
using the Apache 2.0 license.

8.2 Implications
In this section, we discuss the implications of the results of this thesis for the research and
industry community.

8.2.1 Research Implications
The results of this thesis have several implications for the research community.

Datasets

We have made the datasets used in this thesis publicly available to the research community.
Traditionally, datasets were not considered as a contribution of a research paper and were
often not shared [191]. However, in recent years, the importance of datasets has increased.
With a Data Showcase track at conferences like Mining Software Repositories (MSR)* it
is now considered a contribution by itself. Public datasets are important for the research
community as they allow researchers to replicate the results of a study, compare the results
of an approach over time, and compare different approaches on the same dataset.

Replication Packages

Next to the datasets, we have made the replication packages associated with this thesis
publicly available. The replication packages contain all the necessary information to repli-
cate the results of this thesis and allow researchers to build upon our work.

8.2.2 Practical Implications
The results of this thesis also have several practical implications for the research and in-
dustry community.

SynTest Ecosystem

Considering the importance of software testing, it is unfortunate that readily accessible,
production-level tools for automated test case generation are lacking [21]. In this thesis,
we introduced SynTest-Framework, a modular, extensible, and language-agnostic frame-
work for automated test case generation. The primary goal of this framework is to create

*https://www.msrconf.org/
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Figure 8.1: Number of downloads on NPM for the SynTest ecosystem

a user-friendly ecosystem of testing tools, open to expansion by researchers and practi-
tioners who wish to incorporate additional search algorithms, language support, and/or
testing frameworks. It currently offers testing capabilities for both Solidity smart con-
tracts and JavaScript programs. Furthermore, we are currently working together with a
different university to integrate their tool into the ecosystem.

By providing a cohesive ecosystem of testing tools for automated test case generation
using a common interface, we hope to make search-based software testing techniques
more accessible to practitioners. This way we can help bridge the gap between research
and practice. In addition, we hope that the framework will encourage researchers to build
upon our work and extend the ecosystem with novel techniques. The framework was
designed with research in mind and can be easily extended without having to worry about
the underlying infrastructure. Researchers can focus on the core of their work and leave
the rest to the framework.

The SynTest ecosystem is publicly available under the Apache 2.0 license, accessible
to both the research and industry communities. It has been downloaded over 1000 times
from the NPM registry and has received 45 stars on GitHub. Figure 8.1 shows the number
of downloads on NPM for the SynTest ecosystem over the last year.

In addition, we were invited to give a tutorial on the SynTest ecosystem at the Intl.
Workshop on Search-Based and Fuzz Testing (SBFT) and the 4th International Workshop
on Artificial Intelligence in Software Testing (AIST). Based on the feedback we received,
we believe that the SynTest ecosystem has the potential to become a valuable tool for the
research and industry community. Together with the organizers of the SBFT workshop, we
are planning to start a tool competition around test generation for JavaScript and dynamic
type inference based on the SynTest ecosystem.

EvoSuite Experiment Runner

In Chapters 2 and 5, we used EvoSuite as the platform to implement our approaches on
for our empirical experiments. EvoSuite, however, does not provide an easy way to run
experiments. Therefore, we have developed the EvoSuite experiment runner, a tool that
allows researchers to easily run experiments with EvoSuite in a reproducible manner. It
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provides a simple interface to run experiments, collect results, and replicate studies. The
tool is publicly available under the GNU GPLv3 license and has been contributed back to
the original repository. We hope that by providing this tool, we can make it easier for
other researchers to run their experiments on top of EvoSuite.

8.3 Future Work

This thesis has highlighted several key challenges of automated test case generation and
proposed novel approaches to address them. However, there are still several ways to ex-
tend upon this work. In this section, we provide recommendations for future research
directions of search-based automated test case generation.

8.3.1 Size of the Search Space

In Chapter 1, we mentioned that programs that require complex input data are usually
highly structured, while generated input is often not. These implicit constraints make
it challenging to generate valid input data. In this thesis, we have shown that by using
domain-specific knowledge, we can reduce the search space for automated test case gen-
eration. However, this requires knowing the application domain beforehand. By investi-
gating how we can automatically infer these constraints, we can further reduce the search
space for automated test case generation.

8.3.2 Preserving Promising Structures

In Chapter 4, we have shown that using AHC (specifically UPGMA) to preserve promis-
ing patterns within the structure of test cases can significantly improve the effectiveness
of automated test case generation. As part of a future research direction, it would be
interesting to explore how other types of hierarchical clustering algorithms perform for
this use case. Additionally, with the rise of Large Language Models (LLMs) for practical
applications, it is worth investigating if these advanced language models can be used to
identify promising structures within test cases based on the context of the program under
test. As discussed in Chapter 1, LLMs are not yet mature enough for the purpose of auto-
mated test case generation [48—51], however, they have been successfully used to modify
test cases [192]. Another interesting direction is to investigate if existing real-world us-
age patterns of the program under test (e.g., manually-written test cases, API usage, or
documentation) can be used to identify promising structures within test cases.

8.3.3 Population Diversity

In Chapter 1, we explained that the crossover and mutation operators are two of the main
sources of diversity for genetic algorithms. Similar to the previous recommendation, it
would be interesting to investigate if LLMs can be used to replace or augment the crossover
and mutation operators. With their vast training data, LLMs might be able to understand
the structure of the test cases and generate new ones with increased diversity.

8.3.4 Dynamically-Typed Language Support
In Chapter 6, we have shown that by using unsupervised probabilistic type inference, we
can increase the effectiveness of automated test case generation for dynamically-typed lan-
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guages. This technique relies heavily on the static analysis performed before the search
process to identify the relations between different variables in the code. It would be in-
tegrating to investigate if the already dynamic nature of search-based approaches can be
used to improve the inferred model based on the execution results of the generated test.

8.3.5 Tooling

In Chapter 7, we have presented an ecosystem of testing tools for automated test case
generation that can generate test cases for both Solidity smart contracts and JavaScript
programs. However, there are still many other programming languages and testing frame-
works that could benefit from automated test case generation. Therefore, it would be in-
teresting to investigate the limitations of implementing automated test case generations
for multiple programming languages within a single language, given the tight coupling
between the tool and the programming language to be tested.
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Glossary

AHC Agglomerative Hierarchical Clustering (AHC) is a hierarchical clustering algorithm
that builds a hierarchy of clusters. It starts with each element as a separate cluster
and then repeatedly merges the closest clusters until only one cluster remains.

Al Artificial Intelligence (Al) is intelligence demonstrated by machines, unlike the natural
intelligence displayed by humans and animals, which involves consciousness and
emotionality.

API An Application Programming Interface (API) is a particular set of rules and specifica-
tions that a software program can follow to access and make use of the services and
resources provided by another particular software program that implements that
APL

CC Cyclomatic Complexity (CC) is a software metric used to indicate the complexity of
a program. It is a quantitative measure of the number of linearly independent paths
through a program’s source code.

CFG A Control Flow Graph (CFG) is a representation, using graph notation, of all paths
that might be traversed through a method during its execution.

CSV Comma Separated Values (CSV) is a delimited text file that uses a comma to separate
values. A CSV file stores tabular data (numbers and text) in plain text. Each line of
the file is a data record. Each record consists of one or more fields, separated by
commas.

DSRM Design Science Research Methodology (DSRM) is a research methodology for in-
formation systems research.

EA An Evolutionary Algorithm (EA) is a subset of evolutionary computation, a generic
population-based metaheuristic optimization algorithm. An EA uses mechanisms
inspired by biological evolution, such as reproduction, mutation, recombination,
and selection.

EMB The EvoMaster Benchmark (EMB) is a benchmark for EvoMaster, a tool for auto-
mated test case generation for REST APIs.

GA A Genetic Algorithm (GA) is a subset of evolutionary algorithms, a generic population-
based metaheuristic optimization algorithm. A GA uses mechanisms inspired by
biological evolution, such as reproduction, mutation, recombination, and selection.
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HMX Hybrid Multi-level Crossover (HMX) is a crossover operator for evolutionary algo-
rithms described in Chapter 5.

HTTP Hypertext Transfer Protocol (HTTP) is an application-layer protocol for transmit-
ting hypermedia documents, such as HTML. It was designed for communication
between web browsers and web servers, but it can also be used for other purposes.
HTTP follows a classical client-server model, with a client opening a connection to
make a request, then waiting until it receives a response. HTTP is a stateless pro-
tocol, meaning that the server does not keep any data (state) between two requests.
Though often based on a TCP/IP layer, it can be used on any reliable transport layer,
that is, a protocol that doesn’t lose messages silently, such as UDP.

IDE An Integrated Development Environment (IDE) is a software application that pro-
vides comprehensive facilities to computer programmers for software development.
An IDE normally consists of at least a source code editor, build automation tools,
and a debugger.

JSON JavaScript Object Notation (JSON) is an open standard file format and data inter-
change format that uses human-readable text to store and transmit data objects con-
sisting of attribute—value pairs and arrays (or other serializable values). It is a very
common data format, with a diverse range of applications, such as serving as a re-
placement for XML in AJAX systems.

LLM A Large Language Model (LLM) is a language model that is trained on a large corpus
of text.

REST REpresentational State Transfer (REST) is a software architectural style that de-
fines a set of constraints to be used for creating Web services. Web services that
conform to the REST architectural style, called RESTful Web services, provide in-
teroperability between computer systems on the Internet. RESTful Web services
allow the requesting systems to access and manipulate textual representations of
Web resources by using a uniform and predefined set of stateless operations.

RPC A Remote Procedure Call (RPC) is an inter-process communication that allows a
computer program to cause a subroutine or procedure to execute in another address
space (commonly on another computer on a shared network) without the program-
mer explicitly coding the details for this remote interaction. That is, the programmer
writes essentially the same code whether the subroutine is local to the executing
program, or remote. When the software in question uses object-oriented principles,
RPC is called remote invocation or remote method invocation.

RS Random Search (RS) is a search algorithm that randomly samples the search space.

SBSE Search-Based Software Engineering (SBSE) is the application of metaheuristic search
techniques to software engineering problems.
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SBST Search-Based Software Testing (SBST) is the application of metaheuristic search
techniques to software testing problems.

SUT The System Under Test (SUT) is the system that is being tested.

XML Extensible Markup Language (XML) is a markup language that defines a set of
rules for encoding documents in a format that is both human-readable and machine-
readable. The design goals of XML emphasize simplicity, generality, and usability
across the Internet.
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+ Software testing is important to make sure that code works as intended. +
Traditionally, this verification process has relied on manual testing, which is not
only time-consuming but also susceptible to human errors. Through the use
of automated test case generation techniques, we can automate this process
and reduce the time and effort needed to test software. One of the promising
techniques for automated test case generation is Search-Based Software
Testing (SBST), which uses search-based metaheuristics to automatically
generate test cases. SBST has been shown to be effective in generating test
cases for a variety of programming languages and levels of testing (e.g., unit,
integration, and system testing). However, SBST is not without its challenges.
One of the main challenges is the size of the search space that needs to be
explored.

In this thesis, we explore the potential to improve the effectiveness and
efficiency of automated test case generation by combining multiple tribes
of Artificial Intelligence (Al) to narrow down the search space. First, we
introduce two novel approaches that incorporate domain-specific knowledge
into the search process to reduce the search space for automated test case
generation. Then, we present two novel crossover operators. One uses
hierarchical clustering to identify and preserve promising patterns within test
cases. The other combines multiple crossover operators at different levels ®
(i.e., structure and data) to increase the diversity within the population. Next,
we propose a model inference approach that infers dynamic types to allow
automated test case generation of dynamically-typed languages. Finally, we
introduce a new testing framework for two languages (Solidity and JavaScript)
1= where no existing tooling existed. P
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