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a b s t r a c t

Multi-Terminal high voltage Direct Current (MTDC) transmission lines enable radial or meshed DC grid
configurations to be used in electrical power networks, and in turn allow for significant flexibility in the
development of future DC power networks. In this paper distributed MPC is proposed for providing
Automatic Generation Control (AGC) in Alternating Current (AC) areas connected to MTDC grids. Ad-
ditionally, a novel modal analysis technique is derived for the distributed MPC algorithm, which in turn
can be used to determine the convergence and stability properties of the closed-loop system.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

High Voltage Direct Current (HVDC) links provide significant
advantages over Alternating Current (AC) links for transferring
electrical energy over large distances (Kundur, 1994). Traditionally
HVDC systems have consisted of point to point links that connect
two individual AC areas. HVDC links based on Line Commutated
Converter (LCC) technology enabled the construction of HVDC
grids where a number of individual HVDC lines are connected to
an individual HVDC terminal, thus enabling the construction of
Multi-Terminal HVDC (MTDC) grids. However, with HVDC LCC
power flows in the lines are unidirectional, which limits the flex-
ibility of LCC based MTDC grids. Voltage Source Converter (VSC)
technology, on the other hand, allows for the construction of
MTDC grids that support bidirectional power flows (Chaudhuri,
ara).
icity Research Centre, School
ring, University College
Chaudhuri, Majumder, and Yazdani, 2014). In turn VSC HVDC
based MTDC grids enable the construction of large meshed or
radial DC grids such as the planned European “Supergrid”, which
will be capable of integrating large quantities of renewable en-
ergies over vast geographical distances (Van Hertem and Ghand-
hari, 2010). These grids will be capable of providing a range of
ancillary services to AC networks.

As DC connections to AC grids increase there is a consequential
loss in inertial response in the AC systems. To counter this, it is
therefore of interest to employ frequency control to make DC
connections react to frequency imbalances in a similar fashion to
AC systems (Chaudhuri et al., 2014). Furthermore, allowing the DC
system to react to frequency imbalances in this way decreases the
necessity for additional primary and secondary frequency control
reserves in AC areas connected to DC grids, as it is possible to share
reserves over large distances via the DC grid (Dai, 2011). The
provision of frequency control to AC areas is therefore of particular
interest.

Thus far in the literature a number of different primary fre-
quency control algorithms, which act on the milliseconds scale to
counteract disturbances, have been developed (Chaudhuri,
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Majumder, and Chaudhuri, 2013; Dai, Phulpin, Sarlette, and Ernst,
2012; Egea-Alvarez, Bianchi, Junyent-Ferre, Gross, and Gomis-
Bellmunt, 2013; Silva, Moreira, Seca, Phulpin, and Peas Lopes,
2012). By necessity these algorithms act using local information
only, in a decentralised fashion, so as to be less susceptible to the
effects of communication delays, as communication delays can
result in instability in the primary control loop (Andreasson et al.,
2013; Dai, Phulpin, Sarlette, and Ernst, 2010). Typically, these
methods act by manipulating the DC voltage or current in re-
sponse to the local frequency error signal.

While these primary control techniques counteract the initial
effects of disturbances, it is necessary to employ some form of
integral action in order to provide long term frequency regulation.
Traditionally, in AC networks this has been conducted using Au-
tomatic Generation Control (AGC), which acts on the seconds to
minutes scale in order to regulate frequencies. Decentralised PI
based methods have been proposed recently for this purpose
(Chaudhuri et al., 2014; Dai, 2011; Egea-Alvarez et al., 2015) and an
optimised PID method was proposed in de Courreges d’Ustou
(2012).

Transmission System Operators (TSOs) are responsible for the
balancing of the electricity supply to match demand across power
grids. Different sections of large power systems, such as the Eur-
opean grid, are controlled by separate TSOs. These TSOs conduct
AGC across the interconnected grid in a decentralised fashion
without using inter-TSO communication (ENTSO-E, 2004; Kundur,
1994). Two issues arise from the perspective of control design
here. First of all, the poor performance of traditional decentralised
PI based methods for AGC in modern power systems has been
noted. The Nordic grid provides an illustrative example, where
with increased penetration of renewable sources, and under tra-
ditional PI frequency control, there has been a noticeable increase
in frequency violations in recent years (Ersdal, Imsland, and Uhlen,
2015). Secondly, it is well known that in highly interconnected
networks decentralised control can result in highly sub-optimal
performance and can potentially be a source of instability (Venkat,
2006). This decrease in performance arises as a result of ignoring
the effects of interactions between interconnected areas when
formulating control actions. Thus, when designing AGC for MTDC
grids, optimal controllers are of interest, as well as those capable
of considering the interactions between different subsystems
when formulating control inputs, as a means of improving control
performance.

Model Predictive Control (MPC) (Maciejowski et al., 2002) al-
gorithms enable the optimal control of a system based on the use
of state-space predictions. In recent years, there has been ex-
tensive research in the field of distributed MPC (Maestre and Ne-
genborn, 2014). Here a number of controllers, called control
agents, are responsible for the control of separate interconnected
subsystems in a system, and through inter-agent communication,
it is possible for them to collectively achieve a performance that
approximates that of a centralised MPC controller. Additionally, in
certain cases distributed MPC controllers can be shown to provide
stable control in situations where equivalent communication free
decentralised control causes system instability due to the presence
of large interconnection coefficients between interconnected
subsystems (Venkat, 2006). Distributed MPC methods have been
shown to improve controller performance for AGC performance in
AC networks (Kennel, Gorges, and Liu, 2013), and also in many
other power systems applications (Arnold, Negenborn, Andersson,
and De Schutter, 2009; Hermans et al., 2012; Ma, Chen, Liu, and
Allgöwer, 2014; Moradzadeh, Boel, and Vandevelde, 2013). Pre-
viously a framework for the use of MPC for the control of MTDC
grids was proposed in Mc Namara, Meere, O'Donnell, and McLoone
(2015), where Centralised MPC (CMPC) and communication free
decentralised Selfish MPC (SMPC) were proposed for the control of
MTDC grids. Given distributed control algorithms can outperform
decentralised communication free approaches, it is of interest to
investigate distributed MPC for AGC in MTDC grids.

Many different schemes have been proposed for implementing
distributed MPC (Maestre and Negenborn, 2014). Non-iterative
schemes, where agents exchange information only once per
sample step, were presented in Camponogara, Jia, Krogh, and Ta-
lukdar (2002), Liu, Chen, Muñoz de la Peña, and Christofides
(2010), and Hermans, Lazar, and Jokic (2010). There are also many
iterative distributed MPC methods that have been developed
based on game-theoretic approaches that search for optimal
equilibria (Sanchez, Giovanini, Murillo, and Limache, 2011, chap. 4;
Li, Zhang, and Zhu, 2005; Zhang and Li, 2007). Other decomposi-
tion-coordination based iterative methods decompose the original
control problem into several smaller optimisation problems and
use communication between agents to coordinate their solutions.
Examples of decomposition methods include Jacobian decom-
position (Venkat, 2006), Bender's decomposition (Andan, Bour-
dais, Dumur, and Buisson, 2010), and the Alternating Direction
Method of Multipliers (ADMOM) (Farokhi, Shames, and Johansson,
2014; Negenborn, De Schutter, and Hellendoorn, 2008).

A number of distributed MPC algorithms are based on the de-
composition of a centralised augmented Lagrangian MPC for-
mulation into subproblems which are coordinated via the updat-
ing of the dual variables (Farokhi et al., 2014; Giselsson et al., 2013;
Negenborn et al., 2008). The Auxiliary Problem Principle (APP) can
be used to decompose a centralised augmented Lagrangian pro-
blem such that it can be solved in parallel via a number of sub-
problems in an iterative fashion (Royo, 2001). In Negenborn et al.
(2008) a parallel distributed MPC method was proposed based on
the APP.

Typically in power systems, for applications such as AGC, state
and input constraints are not explicitly considered in control cal-
culations. Usually an unconstrained control law is used for control,
and approaches such as input saturation are used to maintain
constraints (Kundur, 1994). The use of fixed feedback gains in turn
allows the eigenvalues of the system to be determined, which can
be used to find the system's modes of oscillation and their re-
lationship with the various system states (assuming inputs and
states are not subject to inequality constraints). It is therefore
important that eigenvalue analysis techniques are developed for
distributed MPC, in order to encourage their adoption in the
power systems industry.

While a non-centralised control structure may be preferable for
real-time control of power systems, in practice it is still typical for
there to be a coordinating control layer that analyses the oscilla-
tory modes in the system and that caters for issues such as sta-
bility and tuning. For instance, the European Network of Trans-
mission System Operators for Electricity (ENTSO-E) is the body
responsible for coordinating the actions of the various inter-
connected TSOs on the European electricity grid. Additionally,
while control is usually conducted over short times scales, i.e.
seconds to minutes, the tuning of controllers can be carried out
over significantly longer periods such as hours or days. Therefore,
it is reasonable to expect that modal analysis of the closed-loop
system could be carried out at a central hub.

Unconstrained methods for modal analysis of distributed MPC
have been developed previously (Li et al., 2005; Vaccarini et al.,
2009; Zhang and Li, 2007; Zheng et al., 2013). Typically, while
these techniques invoke the use of constant feedback gains cou-
pled with centralised eigenvalue analysis, the derivation of the
controllers relies on game theory or other non-Lagrangian opti-
misation formulations. There are several advantages to using de-
composed Lagrangian techniques for distributed control. Many
control practitioners are already familiar with Lagrangian optimi-
sation theory and so would already be familiar with the theory



Fig. 1. A multi-terminal DC grid connecting N¼5 AC areas via converters (Sarlette
et al., 2012).
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behind the formulation of these distributed MPC approaches,
which in turn would encourage the adoption of these techniques
in industry. There is a large body of knowledge related to solving
decentralised augmented Lagrangian problems for a range of
communication topologies, thus giving practitioners much flex-
ibility in how the control can be distributed. Additionally, sig-
nificant research has been carried out to ensure efficient updating
of the Lagrange multipliers, which in turn encourages an efficient
implementation of the decentralised optimisation routines (Bert-
sekas and Tsitsikilis, 1989; Boyd and Vandenberghe, 2009; Castillo,
Minguez, Conejo, and Garcia-Bertrand, 2006; Censor, 1997).

To summarise, the novel contributions of this paper are as
follows:

� The application of distributed MPC for coordinating AGC in AC
areas connected to MTDC grids.

� The development of a centralised eigenvalue based analysis for
a closed-loop parallel Non-Cooperative distributed MPC
(NCdMPC) approach, which allows for modal analysis of the
MTDC system.

With regard to the modal analysis technique, the particular ap-
plication here is a parallel distributed MPC technique based on the
APP, but the proposed methodology can be used with any dis-
tributed MPC technique based on a decomposed augmented La-
grangian approach for eigenvalue analysis. By extension this ei-
genvalue analysis can be used to provide conditions for con-
vergence and stability. The accuracy of the eigenvalue analysis is
demonstrated using a 5 area Multi-Terminal HVDC (MTDC) test-
bed, in which AGC is implemented to share power between AC
areas over the DC grid.

The remainder of the paper is organised as follows. The mod-
elling of the AC areas and MTDC grid are given in Section 2. In
Section 3 MPC is first introduced and then in Section 4 the deri-
vation of the APP-based NCdMPC method is explained. In Section 5
the eigenvalue-based convergence and stability conditions of the
algorithm are presented. The formulation of MPC for AGC in MTDC
connected AC areas is described in Section 6. The technique is then
tested in simulations studies on the 5 area MTDC testbed in Sec-
tion 7. Conclusions and future work are presented in Section 8.
2. Modelling for multi-terminal HVDC grids

An MTDC grid is composed of a Direct Current (DC) grid and N
Alternating Current (AC) areas, each with a converter that serves
as an interface for transferring power to and from the DC grid, as
in Fig. 1 (Sarlette, Dai, Phulpin, and Ernst, 2012). Each AC area i, for
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where Ji is the moment of inertia of aggregated area i (kg m2), fi(t)
is the frequency (Hz), ( )P tim is the mechanical power (W), ( )P til is
the load disturbance considering frequency effects (W), ( )P ti

dc is
the DC power AC area i is injecting into the DC grid (W), D ig is the
damping factor (W s2), τ im is the time constant for power adjust-
ment (s), ( )P tim

0 is the reference mechanical power that is
manipulated using AGC (W), si is the generator droop (di-
mensionless), ( )P til

0 is the nominal load disturbance at bus i (W),
and D il is the sensitivity of ( )P til to deviations of the frequency
from the nominal operating frequency f̄i (Hz�1 or s) (Kundur,
1994). In this paper, for a general variable b, b̄ denotes the oper-
ating point of this variable at equilibrium, e.g., f̄i denotes the
nominal value of fi. It should be noted that while this paper con-
siders only one HVDC point of connection in each AC area, it is
possible to extend the approach to the case in which there are
multiple points of connection to the DC grid. This can be done by
replacing the − ( )P ti

dc term in (1) with − ∑ ( )= P tj
n

ij1
dcidc , where Pij

dc

denotes the power injected at the jth point of connection to the DC
grid in the ith AC area, where there are n idc points of connection to
the DC grid in the ith AC area.

A positive ( )P ti
dc indicates that area i is injecting Pi

dc W into the
HVDC grid, and a negative ( )P ti

dc indicates area i is receiving Pi
dc W

from the HVDC grid. Denoting ( )V ti
dc as the voltage at the node in

the DC grid connected to AC area i, it follows that

∑( ) =
( )( ( ) − ( ))

( )=

P t
V t V t V t

R
,

4
i

j

N
i i j

ij

dc

1

dc dc dc

where =R Rij ji is the resistance in the HVDC line connecting areas i
and j, and = ∞Rij if areas i and j are not connected by a DC line.

The voltage at the node in the DC grid connected to AC area i is
manipulated as follows:

γ( ) = ( ) + ( ) ( )v t x t V t , 5i i i if dc
os

where vi(t) is the DC input voltage deviation at the node in the DC
grid connected to AC area i ( ( ) = ( ) − ¯v t V t Vi i i

dc dc), γi is the DC vol-
tage Primary Frequency Control (PFC) gain of the i-th agent, the
state ( )x tif is the frequency deviation of area i ( ( ) = ( ) − ¯x t f t fi i if ),
and ( )V tidc

os is a time varying voltage offset signal. The first term on
the right-hand side of the equation is a PFC term that acts to al-
leviate the worst effects of disturbances at a milliseconds level,
using a proportional gain (Sarlette et al., 2012). As this propor-
tional controller will result in an error offset, it is necessary to
employ secondary control over longer time scales in order to
eliminate these system errors over longer time periods. Thus the
secondary level AGC is employed to eliminate these long term
disturbances.
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Here, the DC voltage (and thus the DC power) is manipulated to
regulate the frequency in each AC area about a nominal DC power
level. In this paper it is assumed that the dynamics of the con-
verter and DC lines occur at time scales significantly faster than
those that affect the primary and secondary frequency control of
the AC system, as in Sarlette et al. (2012). Thus these faster dy-
namics are neglected and it is assumed that V idc can be treated as
an instantaneous input to the system. In reality the V idc input
would be sent as a setpoint to an inner loop voltage controller in
the HVDC converter (Chaudhuri et al., 2014; Cole et al., 2010).

The controller in (5) operates about a nominal voltage V̄i
dc.

Changing the DC line power to operate about a new operating point
requires the calculation of updated V̄i

dc values using a load flow
calculation based on the desired DC line powers. This would be ne-
cessary, for example, in cases where power markets determine the
power flows on DC grids. However, in this paper V̄i

dc is taken as
constant for the duration of each simulation. It should be noted that
there is a range of other well established primary DC voltage con-
trollers, including those that explicitly consider a DC power or cur-
rent setpoint; see for example Beerten, Cole, and Belmans (2014),
Chaudhuri et al. (2014), and Zhang, Harnefors, and Nee (2011).

In order to control the DC voltages using MPC, ( )V tidc
os is given

the following user defined dynamic response:

( )τ
( ) = ( ) − ( )

( )t
V t V t V t

d
d

1
,

6i
i

i idc
os

dc
dc
0

dc
os

where ( )V tidc
0 is the reference signal for the secondary DC voltage

offset control, and τ idc is a time constant in s that is specified by the
user in order to determine the speed of the response of ( )V tidc

os (Mc
Namara et al., 2015). This method of applying voltage offsets en-
sures that the voltages are applied to the system in a smooth
manner, which is desirable both in terms of improving prediction
accuracy, and avoiding sudden step jumps in the DC power de-
livery. The reference signals ( )P tim

0 and ( )V tidc
0 are then manipulated

using MPC for the purposes of AGC.
3. Model predictive control

In this section, the centralised implementation of an MPC con-
troller is first outlined, and then in the following section the dis-
tributed APP-based MPC controller is discussed. Consider a system
consisting of n non-overlapping subsystems. A discrete-time, linear,
time-invariant state-space model for this system is given by

( + ) = ( ) + ( ) ( )x Ax Buk k k1 7

( ) = ( ) ( )y Cxk k , 8

where ( ) = [ ( )… ( )]x x xk k kn1
T T T, ( ) = [ ( )… ( )]u u uk k km1

T T T, ( ) =y k
[ ( )… ( )]y yk kp1

T T T , and ( )x ka , ( )u ka , and ( )y ka are the states, inputs, and
outputs of subsystem a at sample step k, respectively. Matrices A, B,
and C are the relevant state-space matrices. An incremental state-
space model is used for control in order to ensure integral action:

( + ) = ^ ( ) + ^Δ ( ) ( )x A x B uk k k1 , 9aug aug

( + ) = ^ ( + ) ( )y C xk k1 1 , 10aug

where Δ ( ) = ( ) − ( − )p p pk k k 1 for a general vector p,

( ) = [Δ ( ) ( )]x x xk k kaug T T T is the augmented state vector, and Â, B̂, and

Ĉ are the incremental state-space matrices.
To simplify notation, the prediction vector, over a horizon H is
first introduced. For a general vector p, its prediction vector is
˜ ( ) = [ ( )… ( + − )]p p pk k k H 1T T T. State and output predictions over
the prediction horizon are then determined as follows:

˜ ( + ) = ^ ( ) + ^ Δ ˜( ) ( )x A x B uk k k1 11aug
f

aug
f

˜ ( + ) = ^ ˜ ( + ) ( )y C xk k1 1 , 12aug
f

aug

where Â
f
, B̂

f
, and Ĉ

f
are the state-space prediction matrices. The

derivation of these matrices is well established in the literature
(Maciejowski et al., 2002).

MPC problems are constructed to fulfill control objectives for a
system based on knowledge of ( )x k . A cost function, ( ( ) Δ ˜( ))x uJ k k,
(where J(k) will be used henceforth for compactness), is designed
so as to embody the system's objectives. Typically this cost func-
tion is chosen to be a quadratic function in terms of Δũ and in this
paper the cost function takes the following form:

( ) = ˜ ˜ + Δ ˜ Δ ˜ ( )e Q e u Q uJ k , 13T
e

T
u

where the ( + )k 1 dependency is dropped from ˜( + )e k 1 , and the
( )k dependency is dropped from Δ ˜( )u k in (13) for compactness, the
error vector, ( ) = [ ( )… ( )]e e ek k kn1

T T T, where ( ) = ( ) − ( )e y rk k ka a a , and
( )r ka are the reference signals of subsystem a at sample step k. The

weighting matrices Q e and Q u determine the relative importance
of minimising errors, the incremental changes in states, and the
incremental changes in inputs, respectively.

The centralised MPC problem that is solved at each sample step
is then given by

Δ ˜( ) = ( )
( )Δ ˜( )∈

u k J kmin ,
14u k

where defines the set of constraints for Δ ˜( )u k . Here only Δ ( )u k
is applied to the system, and the optimisation process is conducted
at each sample step.

As discussed in the Introduction, centralised implementations
of AGC may not be feasible given the traditionally decentralised
structure of frequency control. To circumvent these issues, MPC
can be performed in a distributed fashion, allowing individual
areas the autonomy to perform AGC locally, while coordinating
their responses with other interconnected subsystems. The dis-
tributed MPC approach used in this paper is described in the next
section.
4. Distributed MPC

The distributed MPC method will now be described and the
links between this approach and the centralised MPC approach
will be discussed. The centralised state-space model, given by
(7) and (8), is expressed in its equivalent distributed form by

( + ) = ( ) + ( ) + ( ) ( )x A x B u V vk k k k1 15a a a a a a a

( ) = ( ) ( )y C xk k , 16a a a

where ( )x ka are the states of subsystem a, ( )u ka are subsystem
inputs, ( )y ka are subsystem outputs, and ( )v ka are external inputs
from other subsystems that influence subsystem a at sample step
k, for a¼1,…,n. The matrices Aa, Ba, Va, and Ca are the relevant
state-space matrices.

It should be noted here that the external input variables va are a
modelling necessity from a distributed modelling point of view.
From a centralised MPC modelling perspective the variables va are
simply a subset of the centralised state vector x, originating from
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some subsystems ≠j a, that influence the states xa. Thus these
variables serve as means of representing the interconnection be-
tween the states of subsystem a and the states of other
subsystems.

An incremental state-space model is used for control in order
to ensure integral action:

( + ) = ^ ( ) + ^ Δ ( ) + ^ Δ ( ) ( )x A x B u V vk k k k1 17a a a a a a a
aug aug

( + ) = ^ ( + ) ( )y C xk k1 1 , 18a a a
aug

where ( ) = [Δ ( ) ( )]x x xk k ka a a
aug T T T is the augmented state vector of

the ath subsystem, and Âa, B̂a, V̂a, and Ĉa are the incremental state-
space matrices for subsystem a.

State and output predictions for subsystem a over the predic-
tion horizon are then determined using (17) and (18) as follows:

˜ ( + ) = ^ ( ) + ^ Δ ˜ ( ) + ^ Δ ˜ ( ) ( )x A x B u V vk k k k1 19a a a a a a a
aug

f
aug

f f

˜ ( ) = ^ ˜ ( ) ( )y C xk k , 20a a a
aug

f
aug

where Âa

f
, B̂a

f
, V̂a

f
, and Ĉa

f
are the incremental state-space pre-

diction matrices, derived using the same techniques for state-
space prediction as in the centralised case.

Non-cooperative distributed MPC based on the APP, which
was originally devised in Negenborn et al. (2008), is now de-
scribed. This is formed first by deriving a centralised aug-
mented Lagrangian formulation of the MPC problem in terms
of the distributed state-space representation of the system
given by (17) and (18). Having shown how this centralised
augmented Lagrangian problem would be solved, it is then il-
lustrated how this problem is decomposed into subproblems
using the APP, which in turn can be solved in parallel in a
distributed fashion.

Let agent ∈j a be connected to agent a, where a is the set of
agents connected to agent a by a common variable, and ∉a a. The
interconnecting input vector, w ja

in, is defined as the vector of inputs

to control problem a from agent ∈j a
in, where ⊆a a

in is the
ordered set of agents connected to agent a by an interconnecting
input. Likewise, the interconnecting output vector w ja

out is defined
as the vector of outputs to control problem ∈j a

out from agent a,
where ⊆a a

out is the ordered set of agents connected to agent a
by an interconnecting output. As an illustration, interconnecting
inputs and outputs for a 3 agent system are shown in Fig. 2.

The vector of all interconnecting inputs ( )w ka
in , and all inter-

connecting outputs ( )w ka
out of the control problem of agent a are
Fig. 2. Interconnecting inputs and outputs for 3 connected subsystems.
typically defined as follows:

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

( ) = ( )… ( ) = ( )

( ) = ( )… ( ) = ( ) ( )

{ } { }

{ } { }

w w w v

w w w K x

k k k k

k k k k

,

, 21

a a m a a

a a q a a a

in
1

inT inT T

out
1

outT outT T out

a a a

a a a

in in

out out

where { }ia
in denotes the ith element of a

in, and { }ia
out denotes

the ith element of a
out. There are ma agents connected to agent a

by an interconnecting input, qa agents are connected to agent a by
an interconnecting output, and Ka

out is a matrix of zeros and ones,
used to select the states in ( )x ka that connect agent a to other
subnetworks.

For a system of n subsystems, the overall MPC problem can be
stated as follows:

∑θ*( ) = ( )
( )θ ( ) =

k J karg min ,
22k

a

n

a
1

local

subject to the following equality constraints over the prediction
horizon:

˜ ( + ) = ˜ ( + ) ∀ ∈ ∀ ∈ { … } ( )w wk k j a n1 1 , , 1, , , 23ja aj a
in out

where θ ( ) = [Δ ˜ ( ) Δ ˜ ( + )]u wk k k, 1T in T T, with Δ ˜( ) = [Δ ˜ ( ) … Δ ˜ ( )]u u uk k k, , n1
T T T,

Δ ˜ ( ) = [Δ ˜ ( ) … Δ ˜ ( )]w w wk k k, , n
in

1
in T in T T, and ( )J ka

local represents the
local control goals for subsystem a. The vector ˜ ( + )w k 1aj

out is de-

pendent on Δ ˜ ( )u kj and ˜ ( )w kj
in as follows:

˜ ( + ) = ( ^ ( ) + ^ Δ ˜ ( ) + ^ Δ ˜ ( )) ( )w K A x B u V wk k k k1 24aj aj j j j j j j
out

f
aug

f f
in

where Kaj is a matrix of zeros, with entries of 1 such that the
equality (24) holds.

It should be noted here that variables Δ ˜ ( + )w k 1in are added to
the optimisation problem as duplicate variables of the interconnect-
ing flows between subproblems. These allow a subsystem to optimise
the value of the interconnecting flows that it would like to receive
from connected subsystems over the prediction horizon. Equality
constraint (23) ensures that the interconnecting flows between areas
over the prediction horizon are equal, which has the effect of im-
proving the overall control performance of the system. Furthermore,
it is the addition of these local variables to the optimisation problem
that allows the optimisation problem to be distributed amongst the
individual subproblems once the APP is applied.

An augmented Lagrangian formulation can be derived from
(22) to incorporate the equality constraints (23) into the cost
function. Augmented Lagrangian formulations iteratively solve,
first, a primal problem and then update the dual variables related
to the active constraints. The primal centralised problem solved at
each augmented Lagrangian iteration l, for sample step k, is given
as follows:

⎟⎞⎠
⎞
⎠
⎟⎟

( ( )
( (∑

∑

θ

λ

*( )

= )

+ ˜ ( + ) ˜ ( + ) − ˜ ( + ) +

‖ ˜ ( + ) − ˜ ( + )‖
( )

θ ( ) =

∈
w w

w w

k l

J k l

k l k l k l

c
k l k l

,

arg min ,

1, 1, 1,

2
1, 1, ,

25

k a

n

a

j
ja ja aj

ja aj

1

local

inT in out

in out
2
2

a

where λ̃ ( + )k l1,ja
in is the vector of Lagrange multipliers associated

with the equality constraints placed on the variables connecting
agents a and j over the prediction horizon, at augmented La-
grangian iteration l and sample step k.

In this paper, ( )J k l,a
local is given by
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( ) = ˜ ( + ) ˜ ( + ) + Δ ˜ ( ) Δ ˜ ( ) ( )e Q e u R uJ k l k l k l k l k l, 1, 1, , , , 26a a a a a a a
local T T

where Q a and Ra are agent a's local MPC weights, and
( + ) = ( + ) − ( + )e y rk l k l k1, 1, 1a a a is the vector of predicted

tracking errors in the MPC problem at iteration l of the distributed
MPC cycle for sample step kþ1, where ( + )y k l1,a are subsystem
a's outputs and ( + )r k 1a is a vector of subsystem a's reference
signals.

After solving (25), the Lagrange multipliers are updated as
follows for iteration +l 1:

( )( ) ( )λ λ˜ + = ˜ + ˜ ( ) − ˜ ( ) ( )w wl l c l l1 , 27ja ja ja aj
in in in out

where the (kþ1) dependency is dropped from all variables above
for compactness. The following is then conducted in an iterative
fashion; (25) is first solved, followed by the updating of the La-
grange multipliers, as in (27). This process is repeated until the
following termination condition is met:

λ λ∥ ˜ ( + + ) − ˜ ( + )∥ ≤ ϵ

∀ ∈ ∀ ∈ { … } ( )

∞k l k l

j a n

1, 1 1, ,

, 1, , , 28

ja ja

a

in in

where ϵ is a small tolerance and · ∞ denotes the infinity norm.
The infinity norm is used here so that the Lagrange multipliers of
all interconnecting inputs agree within a specified tolerance. It
should be noted that the centralised formulation presented here is
formed in the same way as in Negenborn et al. (2008), but in the
current paper the only constraints that are explicitly considered
are the equality constraints placed on the interconnecting
variables.

Problem (25) is distributed across the agents using the Aux-
iliary Problem Principle (Royo, 2001). The APP works by allowing
agents to solve an approximation of the centralised augmented
Lagrangian problem in a parallel fashion. As the APP is closely
related to the ADMOM, it is shown first how the ADMOM dis-
tributes the solving of augmented Lagrangians exactly. Then it can
be seen that the APP is very similar to the ADMOM in formulation,
with the main difference being the addition of an extra quadratic
term which encourages convergence between iterations and al-
lows the problem to be solved in parallel. Further details on the
relationship between the ADMOM and APP can be found in Royo
(2001).

Take the optimisation problem:

( )= [ ] = ( ) + ( )

= ( )

x x x x x

x x

f f, arg min

such that . 29

x x
1
T

2
T T

,
1 1 2 2

1 2

1 2

The unconstrained augmented Lagrangian form of this equation at
iteration l of the augmented Lagrangian optimisation is given as

λ( ) = ( ( )) + ( ( )) + ( )( ( ) − ( ))

+ ‖ ( ) − ( )‖ ( )

x x x x x

x x

l f l f l l l l

c
l l

arg min

2
, 30

x x,
1 1 2 2 1 2

1 2 2
2

1 2

where ( ) = [ ( ) ( )]x x xl l l,1
T

2
T T, λ ( )l are the Lagrange multipliers at

iteration l of the augmented Lagrangian optimisation. Using the
ADMOM (30) is solved in a serial fashion for iteration l of the
augmented Lagrangian optimisation as follows:

λ

λ

( ) = ( ( )) + ( ) ( ) + ‖ ( ) − ( − )‖

( ) = ( ( )) − ( ) ( ) + ‖ ( ) − ( )‖
( )

( )

( )

x x x x x

x x x x x

l f l l l
c

l l

l f l l l
c

l l

arg min
2

1

arg min
2

.
31

x

x

l

l

1 1 1 1 1 2 2
2

2 2 2 2 1 2 2
2

1

2

In the above each subproblem solves for its local variables keeping
the most recent updates of variables from the connected sub-
problem constant. Afterwards each subproblem then commu-
nicates its optimised variable value to the connected subproblem.
The second quadratic term in the objective function seeks to
achieve consensus on the value of the variables connecting the
two subproblems.

The APP has a similar structure in its final form to the ADMOM,
where it solves the primal augmented Lagrangian problem in a
parallel distributed fashion as follows:

λ

λ

( ) = ( ( )) + ( ) ( ) + ‖ ( ) − ( − )‖

+ − ‖ ( ) − ( − )‖ ( )

= ( ( )) − ( ) ( ) + ‖ ( ) − ( − )‖

+ − ‖ ( ) − ( − )‖ ( )

( )

( )

x x x x x

x x x

x x x x

x x

l f l l l
c

l l

b c
l l l

f l l l
c

l l

b c
l l

arg min
2

1

2
1 ,

arg min
2

1

2
1 , 32

x

x

l

l

1 1 1 1 1 2 2
2

1 1 2
2

2

2 2 2 2 1 2
2

2 2 2
2

1

2

where ≥b c2 . It can be seen that the APP now adds a third
quadratic cost to the objective function which encourages sub-
problems at iteration l to converge on the value for their local
interconnecting variables based on the value from iteration l�1.

Thus applying the APP to solve the primal augmented La-
grangian MPC problem (30), the optimisation problem of agent a,
for iteration l of the distributed MPC cycle, at sample step k is

( )θ*( ) = ( ) + ( )
( )θ ( )

k l J k l J k l, arg min , , ,
33a

k l a a,

local inter

a

where θ ( ) = [Δ ˜ ( ) Δ ˜ ( + )]u wk l k l k l, , , 1,a a a
T in T T.

The interconnecting cost for agent a, ( )J k l,a
inter , is given by

∑( ) = ( )
( )∈

J k l J k l, , ,
34

a
j

ja
inter inter

a

and ( )J k l,ja
inter is the cost associated with the inter-agent co-

ordination with agent j given by
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out
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2
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As mentioned previously, it is useful, in power systems, to be
able to determine the oscillatory modes of the closed-loop system
under NCdMPC. In the next section it will be shown how these
modes can be found.
5. Modal analysis of non-cooperative distributed MPC includ-
ing convergence and stability conditions

As the APP results in a decomposition of the centralised MPC
problem given in (25), the closed-loop modes that would be given
by using (25), will be equal to the modes of operation of the sys-
tem under NCdMPC using the APP (or any other Lagrangian de-
composition technique). Thus a closed-loop expression is derived
for (25), in order to analyse the behaviour of the system under
NCdMPC.

Firstly, it is desired to derive the optimal value of θ ( )k l, at
iteration l and sample step k of the centralised augmented La-
grangian problem (25). Thus in the following paragraphs (25) is
expressed in matrix form and manipulated so as to express (25) as
a quadratic optimisation problem. The interconnecting inputs and
outputs and the Lagrange multipliers are grouped into the terms
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˜ ( )w k l,in , ˜ ( )w k l,out , and λ̃( + )k l1, , respectively, where
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where agent a has ma interconnecting inputs and qa inter-
connecting outputs.

The term ( )J k l,local is used to represent the sum of the local
cost functions in (25), i.e.,

∑( ) = ( )
( )=

J k l J k l, , .
39a

n

a
local

1

local

Using the incremental prediction models (19) and (20), ( )J k l,local is
represented using the various system variables as follows:

( ) = ˜ ( + ) ˜( + ) + Δ ˜ ( ) Δ ˜( ) ( )e Qe u R uJ k l k l k l k l k l, 1, 1, , , , 40local T T

where ˜( + ) = ˜ ( + ) − ˜( + )e y rk l k l k1, 1, 1 , with outputs
( ) = [ ( ) ( ) … ( )]y y y yk k k k, , , n1

T
2
T T T, setpoints ˜( ) = [ ˜ ( ) … ˜ ( )]r r rk k k, , n1

T T T,
= ( … )Q Q Qdiag , , n1 , = ( … )R R Rdiag , , n1 , and ˜ ( + ) = ˜y K xk l1, c

aug

( + ) = ( ^ ( ) + ^ Δ ˜( ) + ^ [Δ ( ) Δ ˜ ( + )]K A x B u V v wk l k k l k k l1, , , 1,c
f

aug
f f

T inT T .
The state of the entire system is ( ) = [ ( ) … ( )]x x xk k k, , n

aug
1
aug T aug T T,

the system's predicted incremental inputs Δ ˜( )=u k l,
[Δ ˜ ( ) … Δ ˜ ( )]u uk l k l, , , ,n1
T T T , the vector Δ ( ) = [Δ ( ) … Δ ( )]v v vk k k, , n1

T T T

is a column vector of the incremental changes in the different
subsystems' interconnecting inputs at sample step k, and
Δ ˜ ( + ) = [Δ ˜ ( + ) … Δ ˜ ( + )]w w wk l k l k l1, 1, , , 1,n

in
1
inT inT T is a column

vector of the incremental changes in the predicted interconnecting
inputs of each subsystem over the prediction horizon, and their

associated prediction matrices are given by ^ = ( ^ … ^ )A A Adiag , , n

f
1

f f
,

^ = ( ^ … ^ )B B Bdiag , , n
f

1

f f
, and ^ = ( ^ … ^ )V V Vdiag , , n

f
1

f f
. Here, Kc is a matrix

of zeros and ones, with entries of 1 in the positions that select the
outputs ˜ ( + )y k l1, from the augmented state prediction vector
˜ ( + )x k l1,aug .

Let θ˜ ( + ) = ( ) + ( )y K Ds K Zk l k k l1, ,c c , with = [ ^ ^ ]D A V,
f

v

f
and

vector ( ) = [ ( ) Δ ( )]s x vk k k,augT T T. Given the matrix ^ = [ ^ ]V V V,
f

v
f

w

f
in ,

the matrix V̂v

f
determines the effect of Δ ( )v k on ˜ ( + )x k l1,aug . The

matrix V̂w

f
in similarly determines the effect of Δ ˜ ( + )w k l1,in on

˜ ( + )x k l1,aug . Note that ( )K Ds kc is fixed during the MPC iterations
at each sample step. The latter group of terms θ ( )K Z k l,c varies, via

the manipulation of θ ( )k l, , where = [ ^ ^ ]Z B V,
f

w

f
in .

The interconnecting inputs are given by
θ˜ ( ) = ( ) + ( )w K s Kk l k k l, ,in

v w where Kv is used to select the relevant
interconnecting variables from ( )s k , and Kw selects the relevant in-
cremental interconnecting inputs from θ ( )k l, . The interconnecting
outputs are given by θ˜ ( ) = ( ( ) + ( ))w K Ds Zk l k k l, ,out

I , where KI is
used to pick out the relevant outputs. The term ˜ ( ) − ˜ ( )w wk l k l, ,in out

which is used when seeking equality on all pairs of interconnecting
inputs and outputs is now given by

θ θ
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θ
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v w I
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where = −K K K Ds v I and = −θK K K Zw I .
Problem (25) can now be stated as
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where θ= ( ( ) + ( ) − ˜( + ))E Ps G rk k l k, 1 , =P K Dc , =G K Zc , and
= ( )θ ( − ) ×( − )R R 0diag , N n N n1 1v v with nv being the size of v.
With some matrix manipulation, it is possible to represent (41)

in the following quadratic form:
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where ϑ( )k is a scalar that does not depend on θ ( )k l, .
The value of θ*( )k l, at sample step k and iteration l of the

centralised augmented Lagrangian problem is found by setting
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( ) =θ
∂

∂ ( ) J k l, 0
k l,

quad , which yields

θ*( ) = − ( ) ( )−H fk l k l, , , 46
1
2

1

where H is a positive definite.
After θ*( )k l, is found, the Lagrange multipliers are calculated as

follows:
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where λn is the length of vector λ̃( + )k l1, , and

( ) = ( ) − ( ( ( ) − ˜( + )) + ( ))λ θ θ
−C K s K H G Q Ps r K K sk c k c k k c k2 1 ss

1
2

1 T T is
a constant over the course of the optimisation at sample step k.

The vector of eigenvalues related to the convergence of the
NCdMPC algorithm is then given by

⎜ ⎟⎛
⎝

⎞
⎠ρ = −

( )θ θ×
−

λ λ K H K
c

eig I
2

,
48n nc

1 T

where θ θ
−K H K1 T is non-singular. The convergence condition for the

NCdMPC algorithm is then

ρ‖ ‖ < ( )∞ 1. 49c

Upon convergence of the augmented Lagrangian iterations
λ λ λ˜( + + ) → ˜( + ) = ˜*( + )k l k l k1, 1 1, 1 , where λ̃*( + )k 1 is the
optimal Lagrange multiplier vector at sample step k. Eq. (47) then
yields
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k

1 I
2

1

1
2

. 50

n n
1 T

1 T 1

Substituting λ̃*( + )k 1 back into (46) and rearranging the matrices
gives

θ*( ) = − ( ) = ˜( + ) − ( ) ( )−H f Fr Wsk k l k k, 1 , 51
1
2

1

where

= − ( ( ) − ) ( )θ θ θ θ
− − − −F H K K H K K H G Q G Q , 521 T 1 T 1 1 T T

(= − ( ) − −

− ( ) + ( ) ) ( )

θ θ θ θ θ

θ θ θ θ θ θ θ θ

− − − −
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W H K K H K K H G QP G QP K K

K K H K K K K H K K H K K

c

c
2

2
. 53

s

s s

1 T 1 T 1 1 T T T

T 1 T 1 T 1 T 1 1 T

At this stage it is noted that the interconnecting input variables
Δ ( )v k are simply a subset of ( )x kaug . Thus the following is used to
express ( )s k in terms of ( )x kaug for the purpose of deriving closed-
loop equations in terms of ( )x kaug :

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥ ϒ( ) =

( )
Δ ( )

= ( ) = ( )
( )

×s
x

v L
x xk

k

k
k k

I
,

54
n n

aug
aug augx x

where the matrix L selects Δ ( )v k from ( )x kaug .
The optimal input applied to the system is

θΔ *( ) = *( ) ( )u Sk k , 55

where S selects the optimal system inputs at sample step k from
θ*( )k .

The discrete-time state-space equation for the whole system is
then
ϒ ϒ

( + ) = ( ) + Δ *( )

= ( − ) ( ) + ˜( + ) ( )

x Ds B u

D ZSW x BSFr

k k k

k k

1

1 . 56

aug

aug

The vector of the closed-loop eigenvalues of the system under
NCdMPC, ρs, is given by

ρ ϒ ϒ= ( − ) ( )D ZSWeig , 57s

and the conditions for the closed-loop stability of the system are
then given by

ρ‖ ‖ < ( )∞ 1. 58s

Using (50) and (58) it is possible to tune the distributed MPC
controller in order to ensure that the agents converge on a final
decision each sample step, and that the control itself is stable.
Additionally, analysis of the closed-loop eigenvalues of the system
using (57) can allow practitioners to determine what the closed-
loop modes of oscillation will be in the system under closed-loop
distributed MPC.
6. MPC formulation for AGC in MTDC connected AC systems

A methodology similar to that given in Mc Namara et al. (2015)
for the application of MPC to AGC in MTDC connected AC systems
is used in this paper. To avoid the significant increase in commu-
nication overhead that would arise from having to share DC power
measurement information between AC areas, here, instead the DC
powers are estimated from the frequencies and voltage offsets.
This is described in the following. The objective function for area i
at sample step k, Ψ ( )ki , is given by

Ψ ( ) = ( + ) + Δ ( ) + Δ ( ) ( )k Q x k R u k R u k1 , 59i i i i i i if f
2

P P
2

v v
2

where ( ) = ( ) − ¯u k P k Pi i iP m
0

m
0 and ( ) = ( ) − ¯u k V k Vi i iv dc

0
dc
0 . The para-

meters Q if , R iP , and R iv are weights that determine the relative
importance of minimising ( + )x k 1if

2 , Δ ( )u kiP
2 , and Δ ( )u kiv

2 , respec-
tively. The first 3 terms in (59) are concerned with fulfilling the
power system objectives of minimising the weighted sum of the
frequency deviations about f̄i , the mechanical power offset control
effort, and the DC voltage offset control effort, respectively.

In order to develop a linear model for use in state-space pre-
diction, it is necessary to linearise equations (1) and (4), in order to
generate state predictions. These linearisations are given as fol-
lows, as in Dai (2011):

π
( ) = ( ) − ( ) − ( )

¯ − ( ( ) − ¯ )
( )t

f t
P t P t P t

f J

D
J

f t f
d
d 4

,
60
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2
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j

N i i i i j j j

ij

1

dc

1

dc
dc
os

f dc
os

f

where ( ) = ( ) − ¯z t P t Pi i i
dc dc.

The state-space equations (2), (6), and (60) are then used to de-
scribe the dynamics of the system about an operating point where the
state of agent i is given by = [ ]x x x x, ,i i i if P v

T. Here, = ( ) − ¯x P t Pi i iP m m

and = ( ) − ¯x V t Vi i iv dc
os

dc
os are the mechanical power and DC voltage

deviations about the operating point, respectively. Agents are assumed
to be capable of communicating with other agents if the AC areas they
control are connected via a HVDC line. The interconnecting inputs to
agent i are given by = [ ]w x x,ji j j

in
f v

T, for ∈j i.
The input to agent i is given by = [ ]u u u,i i iP v

T, and its output by



Fig. 3. Plot of the frequencies in each area when SMPC, CMPC, and NCdMPC con-
trollers are used.
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= C xyi i i, where = [ ]C 1, 0, 0i . The matrices Ai, Bi, and Vi can then
be constructed as in (15), using (2), (6), and (60). In turn the state-
space can be framed in terms of incremental inputs
Δ = [Δ Δ ]u u u,i i iP v

T, as in (17) and (18), and the state-space predic-
tions can then be made using (19) and (20). Each subsystem is
then allocated its own control agent. Using state-space predictions
each agent generates a local cost function:

∑ Ψ( ) = ( )
( )=

+ −

J k p .
62

i
p k

k H

i
local

1

This cost function can be described in matrix form as in (26),
where = ( … )Q Q Qdiag , ,i ii ii , = ( … )R R Rdiag , ,i ii ii , =Q ii

( )Qdiag 0, 0, 0, , 0, 0if , and = ( )R R Rdiag ,ii i iP v . To form the inter-
connection cost (34), first variables ˜ ( + − )w k l1, 1ij

in and
˜ ( + − )w k l1, 1ij

out must be received from each agent i connected to
agent j and the other variables in (34) are then formed as de-
scribed in Section 4.

As this paper does not consider inequality constraints when
solving the MPC algorithms it is possible to solve for the dis-
tributed MPC problem through the use of fixed feedback gains.
This is achieved by solving

θ ( )
( ) + ( ) =

( )k l
J k l J k l

d
d ,

, , 0
63i

i i
local inter

which gives θ*( )k l,i once solved.
Fig. 4. Plot of the mechanical power deviations from their starting values when
NCdMPC is used.
7. Experiment on a multi-terminal HVDC system

In this section NCdMPC is used to distribute AGC between AC
areas connected to an MTDC grid. The modal analysis derived in
the paper is also employed to analyse the system.

7.1. Simulation setup

Simulations were carried out on a testbed, previously devel-
oped in Dai (2011), to evaluate the accuracy of the modal analysis
algorithm. The testbed for simulations was the 5 agent testbed
given in Fig. 1. The frequencies in the AC areas in this testbed are
very sensitive to load deviations, which makes it a useful bench-
mark problem for evaluating frequency control algorithms. It is
Table 1
AC and DC grid parameters (Dai, 2011).

AC grid parameters

Area 1 2 3 4 5

fnom (Hz) 50 50 50 50 50

Pm
0 (MW) 50 80 50 30 80

Pnom (MW) 50 80 50 30 80
J (kg m2) 2026 6485 6078 2432 4863
Dg (W s2) 48.4 146.3 140 54.9 95.1
Tsm (s) 1.5 2.0 2.5 2 1.8

Pl
0 (MW) 100.42 59.58 40.31 49.70 39.59

Dl (Hz�1) 0.01 0.01 0.01 0.01 0.01

V̄ dc (kV) 99.17 99.6 99.73 99.59 100

P̄dc (MW) -50.4 20 10 -20 40.4

s (no units) 0.02 0.04 0.06 0.04 0.03
γ (kV Hz�1) 1 1 1 1 1
τm (s) 1.5 2 2.5 2 1.8

DC grid resistances (Ω)

R12
1.39 4.17 2.78 6.95 2.78 2.78

Fig. 5. Plot of the DC powers deviations about their starting values in each area
when NCdMPC is used.
also an interesting testbed from the perspective of parameter
tuning as the system becomes unstable for certain combinations of
MPC weights; hence it serves as an illustrative example of the
utility of the eigenvalue analysis for predicting instability in the
system, as will be presented in the results. The simulations were
carried using a per unit conversion with base power

=S 100 MWbase , base voltage =V 100 kVbase , and base frequency
=f 50 Hzbase , using the parameter values for the AC and DC grids

given in Table 1. All simulations were conducted using Matlab and
Simulink.

A number of simulations were carried out for various values of



Fig. 6. Plot of the DC voltage deviations about their starting values in each area
when NCdMPC is used.
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R iP , as this parameter has a significant impact on the position of
the closed-loop poles of the system. For these simulations =Q 1if ,

=R 5iv , c¼1, b¼2, and ϵ = −10 6. A sample step of 0.1 s and a
prediction horizon of H¼10 was used for the controller. The sets
that define the agents that communicate to coordinate their re-
sponses are given as follows: = { }2, 51 , = { }1, 3, 52 ,

= { }2, 43 , = { }3, 54 , and = { }1, 2, 45 . In each of the simula-
tions the system was excited by a 5% increase in Pl2

0 which is
sufficient to determine whether the dominant modes in the sys-
tem are accurately determined by the method developed in this
paper. In the first simulation the NCdMPC controller is compared
Fig. 8. Plot of discrete-time poles and correspo

Fig. 7. Plot of discrete-time poles and correspo
to a CMPC and an SMPC controller. The equivalent state-space
modelling and tuning used for the NCdMPC controller are used for
the CMPC and SMPC controllers. The CMPC and SMPC controllers
are similar to those derived previously in Mc Namara et al. (2015)
for the control of the 5 area MTDC grid testbed, and use the same
state-space structure as presented in Section 6.

The nonlinear system was simulated in discrete time with a
sample step of ts¼0.01 s using dynamics equations (1), (2), (3), (4),
(5), and (6). Agents did not have access to disturbance measure-
ments and so the controllers had to compensate for the unknown
step disturbance and nonlinearities. It was assumed that mea-
surements were noise free, that the system states were fully ob-
servable, and that a high speed communication network is in place
to allow communication between the control agents that are
connected via a DC line, and between the control agents and their
local actuators.

7.2. Results

Plots of the frequencies, mechanical powers, DC powers, and
DC voltages from each AC area, taken from the nonlinear simula-
tion, are given in Figs. 3–6, respectively, for =R 0.1iP . Fig. 3 shows a
comparison of the frequency responses of the NCdMPC controller
and the equivalent SMPC and CMPC controllers. It can be seen that
the NCdMPC controller here supplies the fastest frequency set-
point tracking after the initial disturbance in comparison to the
CMPC and SMPC controller. The SMPC controller gives the worst
frequency setpoint tracking performance of the 3 controllers,
taking the longest time to return the frequency to its original
nding frequency response for = −R 10iP
7.

nding frequency response for = −R 10iP
6.



Fig. 9. Plot of discrete-time poles and corresponding frequency response for =R 0.1iP .
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setpoint.
Figs. 4 and 5 show the mechanical and DC power reactions

when the system is under NCdMPC. It can be seen that area 2 uses
the power generated in other areas, particularly that generated in
areas 1 and 5, in order to regulate its frequency, demonstrating the
cooperative nature of frequency regulation across the DC grid. It is
typically desirable that DC voltages do not experience large de-
viations from their nominal positions. It can be seen in Fig. 6 that
the DC voltages remain near their nominal positions, and so the
frequency regulation here does not appear to adversely affect the
DC voltage regulation.

Then two more simulations were run for = −R 10iP
6 and

= −R 10iP
7, in order to demonstrate the accuracy with which the

NCdMPC modal analysis predicts the modes of oscillation of the
system. Plots of the frequencies against time from the nonlinear
system simulation, and the corresponding positions of the dis-
crete-time eigenvalues, found from the linearised model, are given
in Figs. 7–9, for = − −R 10 , 10iP

6 7 and 0.1, respectively, where Fig. 9
provides a closer look at the first 10 s of the simulation for

=R 0.1iP . Figs. 7 and 8 are illustrative in terms of showing the ac-
curacy with which the eigenvalues can be used here to predict
instability in the system. In Fig. 7 it can be seen that as the largest
eigenvalues approach the unit circle, the resultant response is
highly oscillatory but stable. With a very small adjustment to

= −R 10iP
7, the system is seen to go unstable and this is predicted

by the corresponding eigenvalues, which lie outside of the unit
circle, as can be seen in Fig. 8.

It is now shown how the eigenvalue analysis can be used to
predict the frequencies at which the systemwill oscillate. Often it can
be undesirable for systems to oscillate at certain frequencies, as vi-
brations at certain frequencies can have undesirable effects on system
components, such as creating excessive wear and tear. For =R 0.1iP

the discrete-time eigenvalues are found. These are then converted to
the continuous domain where the dominant mode is found at
− ±0.3006 2.2495i. From the analysis, based on a linearisation of the
nonlinear system, this predicts that the system should oscillate with a
period of about 2.79 s. When the period of oscillation is measured
from the nonlinear system simulation, it is shown to oscillate with a
period of roughly 2.7 s, which is in good agreement with the pre-
dicted value. The contribution of the other non-dominant poles and
the effects of system nonlinearities could account for the small dis-
crepancy between the predicted and measured period of oscillation.
8. Conclusions and future work

In this paper the use of a distributed Model Predictive Control
(MPC) technique, based on the Auxiliary Problem Principle (APP),
is proposed for the implementation of Automatic Generation
Control (AGC) in AC areas connected to a Multi Terminal high
voltage Direct Current (MTDC) grid. Additionally a modal analysis
technique is proposed for the distributed MPC, which was also
used for a convergence and stability analysis of the closed-loop
system. Results illustrate that stabilising integral control is pro-
vided by the distributed MPC, and that the modal analysis tech-
nique accurately predicts the modal behaviour of the system.

In future work the technique proposed in this paper could be
used in tuning algorithms, such as the distributed MPC tuning
algorithm given in Mc Namara, Negenborn, De Schutter, and
Lightbody (2013), to achieve desirable closed-loop behaviour. It is
also of interest to investigate the utility of distributed MPC for
MTDC grids in which there are several points of connection in
parallel to individual AC grids, as this more general configuration
is anticipated in many MTDC grid deployments.
Acknowledgement

This work was funded by Science Foundation Ireland (Grant 09/
SRC/E1780) as part of the Sustainable Electrical Energy Systems (SEES)
research cluster, the Irish Research Council for Science, Engineering
and Technology (IRCSET), and supported by the VENI project “In-
telligent multi-agent control for flexible coordination of transport
hubs” (project 11210) of the Dutch Technology Foundation STW.
References

Andreasson, M., Nazari, M., Dimarogonas, D. V., Sandberg, H., Johansson, K .H., &
Ghandhari, M. (2013). Distributed voltage and current control of multi-terminal
high-voltage direct current transmission systems. In Proceedings of the 19th IFAC
World Congress, Cape Town, South Africa, August.

Arnold, M., Negenborn, R. R., Andersson, G., & De Schutter, B. (2009). Multi-area
predictive control for combined electricity and natural gas systems. In Pro-
ceedings of the European control conference, Budapest, Hungary, August.

Beerten, J., Cole, S., & Belmans, R. (2014). Modeling of multi-terminal VSC HVDC
systems with distributed DC voltage control. IEEE Transactions on Power Sys-
tems, 29(1), 34–42.

Bertsekas, D. P., & Tsitsikilis, J. N. (1989). Parallel and distributed computation: Nu-
merical methods (1st edition). New Jersey, USA: Prentice Hall.

Boyd, S., & Vandenberghe, L. (2009). Convex optimization. Cambridge, UK: Cam-
bridge University Press.

Camponogara, E., Jia, D., Krogh, B. H., & Talukdar, S. (2002). Distributed model
predictive control. IEEE Control Systems Magazine, 22(February (1)), 44–52.

Castillo, E., Minguez, R., Conejo, A. J., & Garcia-Bertrand, R. (2006). Decomposition
techniques in mathematical programming. New York, USA: Springer.

Censor, Y. (1997). Parallel optimization: Theory, algorithms, and applications. New
York, USA: Oxford University Press.

Chaudhuri, N., Chaudhuri, B., Majumder, R., & Yazdani, A. (2014). Multi-terminal
direct-current grids: Modeling, analysis, and control. New York, USA: John Wiley
& Sons.

http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref3
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref3
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref3
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref3
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref4
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref4
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref5
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref5
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref6
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref6
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref6
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref7
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref7
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref8
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref8
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref9
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref9
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref9


P. Mc Namara et al. / Control Engineering Practice 46 (2016) 176–187 187
Chaudhuri, N. R., Majumder, R., & Chaudhuri, B. (2013). System frequency support
through multi-terminal DC (MTDC) grids. IEEE Transactions on Power System, 28
(1), 347–356.

Cole, S., Beerten, J., & Belmans, R. (2010). Generalized dynamic VSC MTDC model for
power system stability studies. IEEE Transactions on Power Systems, 25(3),
1655–1662.

Dai, J. (2011). Frequency control coordination among non-synchronous AC areas
connected by a multi-terminal HVDC grid (Ph.D. thesis). France: Supélec.

Dai, J., Phulpin, Y., Sarlette, A., & Ernst, D. (2010). Impact of delays on a consensus-
based primary frequency control scheme for AC systems connected by a multi-
terminal HVDC grid. In Proceedings of the iREP symposium on bulk power system
dynamics and control (pp. 1–9).

Dai, J., Phulpin, Y., Sarlette, A., & Ernst, D. (2012). Coordinated primary frequency
control among non-synchronous systems connected by a multi-terminal high-
voltage direct current grid. IET Generation, Transmission, Distribution, 6(2),
99–108.

de Courreges d'Ustou, B. (2012). Optimal control design for multiterminal HVDC (Ph.
D. thesis). University of Pittsburgh.

Egea-Alvarez, A., Bianchi, F., Junyent-Ferre, A., Gross, G., & Gomis-Bellmunt, O.
(2013). Voltage control of multiterminal VSC-HVDC transmission systems for
offshore wind power plants: Design and implementation in a scaled platform.
IEEE Transactions on Industrial Electronics, 60(6), 2381–2391.

Egea-Alvarez, A., Beerten, J., Van Hertem, D., & Gomis-Bellmunt, O. (2015). Hier-
archical power control of multiterminal HVDC grids. Electric Power Systems
Research, 121, 207–215.

ENTSO-E (2004). Continental Europe operation handbook—appendix 1: Load fre-
quency control and performance.

Ersdal, A. M., Imsland, L., & Uhlen, K. (2015). Model predictive load-frequency
control. IEEE Transactions on Power Systems, http://dx.doi.org/10.1109/TPWRS.
2015.2412614.

Farokhi, F., Shames, I., & Johansson, K. H. (2014). Distributed MPC via dual de-
composition and alternative direction method of multipliers. In Distributed
model predictive control made easy (pp. 115–131).

Giselsson, P., Doan, M. D., Keviczky, T., De Schutter, B., & Rantzer, A. (2013). Ac-
celerated gradient methods and dual decomposition in distributed model
predictive control. Automatica, 49(3), 829–833.

Hermans, R. M., Lazar, M., & Jokic, A. (2010). Almost decentralized Lyapunov-based
nonlinear model predictive control. In American control conference (pp. 3932–
3938), July.

Hermans, R. M., Jokić, A., Lazar, M., Alessio, A., Van den Bosch, P. P. J., Hiskens, I. A.,
et al. (2012). Assessment of non-centralised model predictive control techni-
ques for electrical power networks. International Journal of Control, 85(8),
1162–1177.

Kennel, F., Gorges, D., & Liu, S. (2013). Energy management for smart grids with
electric vehicles based on hierarchical MPC. IEEE Transactions on Industrial In-
formatics, 9(3), 1528–1537.

Kundur, P. (1994). Power system stability and control. New York: Mc-Graw Hill.
Li, S., Zhang, Y., & Zhu, Q. (2005). Nash-optimization enhanced distributed model

predictive control applied to the shell benchmark problem. Information Sci-
ences, 170, 329–349.

Liu, J., Chen, X., Muñoz de la Peña, D., & Christofides, P. D. (2010). Sequential and
iterative architectures for distributed model predictive control of nonlinear
process systems. AIChE Journal, 56(8), 2137–2149.
Ma, M., Chen, H., Liu, X., & Allgöwer, F. (2014). Distributed model predictive load
frequency control of multi-area interconnected power system. International
Journal of Electrical Power & Energy Systems, 62, 289–298.

Maciejowski, J. M. (2002). Predictive control with constraints. Harlow, England:
Prentice Hall.

Maestre, J. M., & Negenborn, R. R. (2014). Distributed model predictive control made
easy. Dordrecht, Netherlands: Springer.

Mc Namara, P., Negenborn, R. R., De Schutter, B., & Lightbody, G. (2013). Weight
optimisation for iterative distributed model predictive control applied to power
networks. Engineering Applications of Artificial Intelligence, 26(1), 532–543.

Mc Namara, P., Meere, R., O'Donnell, T., & McLoone, S. (2015). Control strategies for
Automatic Generation Control over multi-terminal HVDC grids. International
Journal of Electrical Power and Energy Systems, preprint available at: 〈http://
ercdocuments.ucd.ie/dms/public/MTDCLFCMPCELS.pdf〉, submitted for
publication.

Moradzadeh, M., Boel, R., & Vandevelde, L. (2013). Voltage coordination in multi-
area power systems via distributed model predictive control. IEEE Transactions
on Power Systems, 28(1), 513–521.

Moroş Andan, P.-D., Bourdais, R., Dumur, D., & Buisson, J. (2010). Distributed model
predictive control based on Benders' decomposition applied to multisource
multizone building temperature regulation. In 49th IEEE conference on decision
and control (pp. 3914–3919), December.

Negenborn, R. R., De Schutter, B., & Hellendoorn, J. (2008). Multi-agent model
predictive control for transportation networks: Serial versus parallel schemes.
Engineering Applications of Artificial Intelligence, 21(April (3)), 353–366.

Royo, C. B. (2001). Generalized unit commitment by the radar multiplier method (Ph.
D. thesis). Barcelona, Spain: Departament d'Estadística i Investigació Operativa,
Universitat Politecnica de Catalunya.

Sanchez, G., Giovanini, L., Murillo, M., & Limache, A. (2011). Advanced model pre-
dictive control. Distributed model predictive control based on dynamic games (pp.
1–26), July. InTech, Rijeka, Croatia.

Sarlette, A., Dai, J., Phulpin, Y., & Ernst, D. (2012). Cooperative frequency control
with a multi-terminal high-voltage DC network. Automatica, 48(12), 3128–3134.

Silva, B., Moreira, C. L., Seca, L., Phulpin, Y., & Peas Lopes, J. A. (2012). Provision of
inertial and primary frequency control services using offshore multiterminal
HVDC networks. IEEE Transactions on Sustainable Energy, 3(4), 800–808.

Vaccarini, M., Longhi, S., & Katebi, M. R. (2009). Unconstrained networked decen-
tralized model predictive control. Journal of Process Control, 19(2), 328–339.

Van Hertem, D., & Ghandhari, M. (2010). Multi-terminal VSC HVDC for the Eur-
opean supergrid: Obstacles. Renewable and Sustainable Energy Reviews, 14(9),
3156–3163.

Venkat, A. (2006). Distributed model predictive control: Theory and applications (Ph.
D. thesis). Wisconsin: University of Wisconsin-Madison.

Zhang, L., Harnefors, L., & Nee, H.-P. (2011). Interconnection of two very weak AC
Systems by VSC-HVDC links using power-synchronization control. IEEE Trans-
actions on Power Systems, 26(1), 344–355.

Zhang, Y., & Li, S. (2007). Networked model predictive control based on neigh-
bourhood optimization for serially connected large-scale processes. Journal of
Process Control, 17(1), 37–50.

Zheng, Y., Li, S., & Qiu, H. (2013). Networked coordination-based distributed model
predictive control for large-scale system. IEEE Transactions on Control Systems
Technology, 21(3), 991–998.

http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref10
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref10
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref10
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref10
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref11
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref11
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref11
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref11
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref14
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref14
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref14
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref14
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref14
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref16
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref16
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref16
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref16
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref16
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref17
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref17
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref17
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref17
http://dx.doi.org/10.1109/TPWRS.2015.2412614
http://dx.doi.org/10.1109/TPWRS.2015.2412614
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref21
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref21
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref21
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref21
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref23
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref23
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref23
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref23
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref23
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref23
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref23
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref24
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref24
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref24
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref24
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref25
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref26
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref26
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref26
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref26
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref27
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref27
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref27
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref27
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref28
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref28
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref28
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref28
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref28
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref29
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref29
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref30
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref30
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref31
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref31
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref31
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref31
http://ercdocuments.ucd.ie/dms/public/MTDCLFCMPCELS.pdf
http://ercdocuments.ucd.ie/dms/public/MTDCLFCMPCELS.pdf
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref33
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref33
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref33
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref33
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref35
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref35
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref35
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref35
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref38
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref38
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref38
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref39
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref39
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref39
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref39
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref40
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref40
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref40
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref41
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref41
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref41
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref41
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref43
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref43
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref43
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref43
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref44
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref44
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref44
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref44
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref45
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref45
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref45
http://refhub.elsevier.com/S0967-0661(15)30042-3/sbref45

	Distributed MPC for frequency regulation in multi-terminal HVDC grids
	Introduction
	Modelling for multi-terminal HVDC grids
	Model predictive control
	Distributed MPC
	Modal analysis of non-cooperative distributed MPC including convergence and stability conditions
	MPC formulation for AGC in MTDC connected AC systems
	Experiment on a multi-terminal HVDC system
	Simulation setup
	Results

	Conclusions and future work
	Acknowledgement
	References




