

(Re)presentation of architectural analyses
Two prototype applications

Bige Tunçer, Rudi Stouffs, and Sevil Sariyildiz
Delft University of Technology

Key words: Representations, Architectural analyses, Information structures

Abstract: We present a methodology for decomposing documents by content and
integrating these into a rich information structure. This implies both expanding
the document structure, replacing document entities by detailed substructures,
and augmenting the structure’s relatedness with content information. This
paper focuses on some of the representational issues involved in the process of
interpreting, breaking up, and relating documents. We describe a prototype
application as a tool for building up, storing, and presenting architectural
analyses in an educational setting implemented using XML, discuss a similar
prototype application to be implemented using sorts, and compare these two
different methodologies.

1. INTRODUCTION

In education, as in architectural history, theory, and design, complete and
thorough analyses of architectural bodies or objects are indispensable.
While practitioners commonly draw from a body of design experience of
their own to support their current design, students must necessarily rely on
the examples of success and failure from other architects. In the past, such
precedent-based learning was implicit in the master-apprentice relationship
customary in the educational system. Nowadays academics no longer have
the possibility to maintain an extensive design practice and students, instead,
draw upon a diverse set of precedents from various prominent architects.
Thus, the study of important historical precedents or designs plays an
important role in design instruction and in the students’ design processes
(Akin, Cumming, et al., 1997). In this study, students may benefit from a
collaboration with peers, by selecting each a different aspect of a same

496 CAAD Futures 2001

building, or a different building with respect to the same aspect. By
integrating the respective results into a common, extensible, library, students
can gain from other results in comparisons and relationships between
different aspects or buildings. The complexity of such integration is best
supported through a computer medium.

The Web offers many examples of architectural analyses on a wide
variety of subjects, with varying degrees of sophistication (Tunçer and
Stouffs, 1999). Commonly, such an architectural analysis consists of a
collection of abstractions, each reflecting on a different aspect such as
function, acoustics, structure, and organizational relationships (Schmitt,
1993). The abstractions may be described in different formats such as
drawings, diagrams, models, pictures, and textual information, and
individually contained in different documents. These documents can then be
categorized and hyperlinked within an organizational structure in order to
support navigation through the information space. More sophisticated
examples rely on a database for storage and management of the information
entities, and offer a more complex categorization of the documents and their
relationships. While these studies present effective ways of accessing and
browsing information, it is precluded within these analyses to distinguish
and relate different components within the abstractions or documents. The
result is an information structure, as defined by the abstractions and the
relationships between them, that is rather sparse. If enabled, instead, the
decomposition of abstractions would offer a richer information structure
presenting new ways of accessing, viewing, and interpreting this
information.

We propose a methodology for decomposing documents by content and
integrating these into a tight structure. This implies both expanding the
document structure, replacing document entities by detailed substructures,
and augmenting the structure’s relatedness with content information. The
relationships between the resulting components make the abstractions
inherently related by content. This paper focuses on some of the
representational issues involved in the process of interpreting, breaking up,
and relating abstractions. We describe a prototype application as a tool for
building up, storing, and presenting architectural analyses in an educational
setting implemented using XML, discuss a similar prototype application to
be implemented using sorts, and compare these two different methodologies.

We illustrate the potentials of the representational framework with the
representation of a number of abstractions belonging to a body of built
architecture, specifically, Ottoman mosques. We have selected three
mosques by the same architect, Sinan (1490-1588), that present three
different typologies of classical Ottoman architecture in their spatial and
structural characteristics (figure 1). These are Şehzade (İstanbul),
Süleymaniye (İstanbul), and Selimiye (Edirne).

(Re)presentation of architectural analyses 497

Figure 1. Sets of images from the mosques Şehzade, Süleymaniye, and Selimiye.
Interior space, dome structure as seen from the outside, silhouette, and central dome(s).

Images from Egli (1997), Stierlin (1998, 1985), and Erzen (1996).

2. DECOMPOSITION BY CONTENT

When using a common syntax to re-represent various abstractions, these
can be interpreted and be broken up into components, components within
and between abstractions can be related, and these relationships added to the
representation. The result is an integrated structure of components and
relationships, represented in a uniform way. Such a tightly related structure
offers new possibilities for accessing, viewing, and interpreting this
information. First, it allows one to access specific information directly
instead of requiring a traversal of the abstraction hierarchy. Individual
components can be reached and retrieved more quickly when provided with
more relationships. Second, components can be considered from a different
point of view. The location of a component in the structure is no longer only
defined by its place in the abstraction hierarchy. Instead, components
provide direct access to other related components, forming a part of the first
component’s view. Third and most importantly, one can access the
information structure from alternative views to those that are expressed by
the individual abstractions. New compositions of components and
relationships offer new interpretations of the structure and generate views
not inherent in the structure as created by the original abstractions. Such
interpretations can lead to new abstractions.

The input to the proposed system consists of a number of abstractions.
Although the approach we propose is completely flexible because it does not
impose any fixed frame of reference, only a common syntax for the
representation, we do offer a semantic guideline in the form of a hierarchy
of types. A type can be defined as a conceptual object that represents the
characteristics from a group of similar objects (Tunçer and Stouffs, 2000). A
type can also be considered as an aspect of a building, such as its location in
the urban fabric, or its importance in the social context of the time it was

498 CAAD Futures 2001

built. The selected type hierarchy (figure 2) provides the information
structure with the semantics of how the components within and between the
abstractions are related. Each abstraction component is assigned at least one
type and components relate through shared types and the relationships in the
type hierarchy.

Figure 2. The type hierarchy defined for the case study. It splits into three branches at the top
level: physical, non-physical, and format.

The output of the system should be an integrated structure of
components and relationships. In between, a number of steps need to be
traversed: abstractions are to be broken up into their components, these
components within and between abstractions related.

3. XML PROTOTYPE

XML (eXtensible Markup Language) is particularly suited for the
purpose of decomposing abstractions in the form of text or images and
integrating them into a single structure. The strength of XML for our
purpose is its ability to represent information structures: how various pieces
of information relate to one another, in much the same way as a database

(Re)presentation of architectural analyses 499

might. Once a structure is agreed upon, existing documents can easily be
converted to XML. Using tools for scanning texts and images and
recognizing keywords, concepts or patterns, such conversions can be
automated.

3.1 Structure

The input to the application is a number of image and text abstractions.
We are particularly concerned with texts and images in this application as
these lack any strong inherent structure. Both composed of symbols from a
relatively small vocabulary, i.e., characters and pixels, in simple and basic
one- and two-dimensional patterns, they are represented in a similar
structure and can be operated on in a similar way: divided into smaller parts
and the parts organized in a hierarchical structure.

The system is composed of two main hierarchies: types and components.
The grammar of XML, i.e., the DTD (Document Type Definition), specifies
the structure of both hierarchies in the system: their elements, their nesting
and additional properties, and their attributes (figure 3). Both hierarchies are
recursively defined.

Figure 3. The grammar of the XML structures, the types and components hierarchies.

By distinguishing the components, some relationships within the
abstractions have already been created. However, these relationships are
purely syntactical. Semantic relationships are added through the hierarchy of
types and the assignment of these types to the components. This type

500 CAAD Futures 2001

hierarchy may be incorporated from an external framework or specifically
defined corresponding to the subject of the analysis. This may require the
hierarchy to be constructed across the viewpoints of different groups or
users. The structure is defined in XML by using the type name as the tag,
and by nesting the elements according to the hierarchy. Each type is
additionally identified by an ID, which is used for linking to components.

The different abstractions are decomposed into their constituent entities
defining the hierarchy of components. The abstractions in the form of
images are broken up into sub-images by determining the important
components, in correspondence to the types, and by cutting them up using
an image processing application. The abstractions in the form of text are
immediately structured in XML. Each component is identified by an ID, and
the component hierarchy is defined by using the ID as the index, and by
nesting the elements. Types are assigned to components by their ID’s.

In this organization, relationships defined by the abstraction hierarchy
initially relate the components. Additionally, components that share the
same type are implicitly related. The type hierarchy further relates
components, these relationships are derived from the nesting in the types
hierarchy. Finally, explicit relationships between components can be
specified as references to the component ID’s. These are transferred to the
XML structure as IDREFS tags.

The resulting XML structure forms a flexible source for further
manipulation and traversal. Components can be flexibly categorized and
grouped according to their relationships and attributes, offering various
views of the information structure. Views can be traversed and linked using
both explicit and implicit relationships. The XML documents are visualized
through related developments such as XSL and XSLT, also using XPointer
and XLink.

3.2 Interface

The system is Web-based and allows the abstractions to be broken up
into components through an intuitive interface. The images are decomposed
by selecting rectangular areas from the image, selecting a set of keywords
from the type hierarchy, and attaching these to the image component. The
texts are decomposed by selecting a piece of text and attaching keywords to
it. Image recognition mechanisms for images, and keyword or concept
recognition mechanisms for texts could be used to present the user with
suggestions about the relevant components.

The interface allows the user to view both the type and document
hierarchies and their relationships in an intuitive way. These views include
both in-world and out-world views (Papanikolaou and Tunçer, 1999). An in-

(Re)presentation of architectural analyses 501

world view presents a component (or type) together with its immediate
neighbours within the hierarchy, and displays all other components that
share a type with it (figure 4a). The in-world view allows one to browse the
structure, interpret the relationships, and as such lead to interesting out-
world views. While the types serve for the most part as the binding elements
in the structure providing the relationships between the components, when
traversing the information structure, the content as available in these
components is the most important entity. As such, while the component’s
type, and its location in the type hierarchy, may be presented as properties of
the component, the relationships are specified primarily as component-to-
component relationships. This does not only ensure that the links are
presented as shortly as possible, tightening the information structure, but
also shifts the focus onto the content, rather than the structure that surrounds
it. Types further serve a role as index to the information structure. Access to
the analysis is provided through the collection of abstractions and from the
types hierarchy.

In addition to the different in-world views, structural maps can provide
visual feedback to the users on their traversals and selected views by
presenting the location of the currently viewed node within the hierarchy.
Such maps can be developed using SVG, X3D, and Java in relation to XML.
An out-world view is presented as a clickable map that offers an overview of
the entire type hierarchy in relationship to the related documents (figure 4b).

The presented approach provides the students with a simple interface and
mechanisms for the presentation of an analysis of design precedents, and
possibly their own designs. The system is designed in a way that the project
grows as users add abstractions from different buildings, even from their
own designs. Since all the information is integrated within a single
environment, students will benefit from the different studies collected in the
analysis, and can draw new conclusions across studies and presentations,
including their peers’.

4. SORTS

From a representational point of view, the components and relationships
recognized within an abstraction can be said to form a language (Tunçer and
Stouffs, 1999), with the vocabulary of the language dependent on the
representational format of the abstraction. When abstractions are collated
into a single information structure, this structure defines a meta-language
that is a composition of the languages of the original abstractions.
Consequently, new abstractions can be considered as defined by new
languages that form part of this meta-language (figure 5). Slicing the

502 CAAD Futures 2001

structure for a new abstraction, then, relies on the specification of a
corresponding vocabulary. According to this selected vocabulary,
components and relationships will be included into the section, or excluded
from it. The resulting structure defines the new abstraction. However, any
ability to define new abstractions should not be conceived as the reduction
of a rich structure into simpler abstractions once again. Instead, these new
abstractions constitute the result of queries to the structure that are
unrestricted by the original composition into abstractions.

Figure 4. Two snapshots from the prototype implementation.
a) an in-world view, b) an out-world view.

Both collating abstractions into a single structure and slicing new
abstractions requires a comparison and mapping of the respective languages
and vocabularies and the (information) structures expressed in these. Sorts,

(Re)presentation of architectural analyses 503

an approach to representational flexibility (Stouffs and Krishnamurti, 1997),
provides support for this. Similar to XML, sorts specifies a common syntax,
allowing for different vocabularies and languages to be created, compared,
and related. Different sorts can be separately conceived for each abstraction
and, subsequently, compared for similar components. Building on these
similarities, and using an iterative process of development and comparison,
a common sort can be arrived at that allows for all abstractions to be
represented into a single integrated information structure. Once such a sort
has been achieved, the individual abstractions can be mapped onto this sort
and their results merged into a single composite structure. New abstractions
can be extracted from this structure in a similar process, by conceiving an
appropriate sort and mapping this onto the unified sort. No longer restricted
by the original abstractions, querying an architectural design or analysis
depends on an appropriate expression of the query as a sort, and interpreting
the resulting information structure.

Figure 5. The integrated structure of a collection of abstractions. a) components,
b) components grouped into meta-components, c) relationships between components,

d) relationships between components and meta-components, e) abstractions distinguished
within the network of components and relationships.

A sort is defined as a composition of other sorts under formal
compositional operations, elementary data types define primitive sorts
(Stouffs and Krishnamurti, 1997). Examples of such compositional
operations are an operation of sum, allowing for disjunctively co-ordinate
compositions of sorts, where each sort may − but does not have to − be
represented in the data form, and an attribute relationship, providing for
(recursively) subordinate compositions of sorts in both one-to-many and
one-to-one instantiations. Other compositional operations are also
considered, such as an array- or grid-like composition of sorts. The
definition of a sort also includes a specification of the operational behavior
of its members and collections thereof for common arithmetic operations.
This behavioral specification enables a uniform handling of forms of
different sorts. A primitive sort has its behavior assigned in order to achieve
a desired effect; a composite sort receives its behavior from its component
sorts, based on its compositional relationships (Stouffs and Krishnamurti,
1997).

504 CAAD Futures 2001

Corresponding the representational format of an abstraction, a sort is
defined from an appropriate selection of primitive sorts and a definition of
its composition using formal operations. The formal character of these
operations enables the recognition of formal relationships between different
compositional structures that provide for the comparison and mapping of the
respective sorts. Comparing sorts also informs on potential data loss when
converting information structures between these sorts. The behavioral
specification of sorts supports the mapping of data onto and between
different sorts such that the resulting information structures are conform to
the definition of the respective representations or sorts. Thus, different
abstractions can be mapped onto a single sort and their information
structures integrated without information loss, provided a careful selection
of the sorts involved. Deriving a new abstractions corresponding a specific
vocabulary follows the same process of development of a sort and of
mapping the global information structure onto this sort.

5. CONCLUSION

Analysis plays an important role in design and education. An information
structure that integrates the different aspects of the analysis, such that the
analysis can be interpreted and used in ways other than the original aspects
or abstractions present, would be particularly useful in an educational
setting. Furthermore, as the World Wide Web gains more importance in all
fields, including collaboration in educational projects, providing software
that makes it possible for team members scattered over diverse sites to share
and manage information while maintaining a comfortable, easy-to-use
interface becomes crucial. It seems to us that enriching the information
structure both by detailing the components and by tightening the structure
through content relationships would provide a more powerful structure in
such a system. Especially in analysis, one is not just interested in one or
more specific documents to be processed or built upon, but in interpreting
the structure seeking information related to a concept of interest. In such a
context, a rich information structure where the views one can derive are not
simply defined by the original documents is particularly worthwhile.

We believe that XML as a structuring language is specifically suited to
define and develop this information structure when dealing with otherwise
unstructured information, such as texts and images. However, XML does
not provide any information on how to manipulate its data and, as such, is
ill-suited to represent complex geometrical data. Analyses commonly
include other data formats than texts and images, such as drawings, models,
and numerical analyses. Integrating these into a rich representation suggests

(Re)presentation of architectural analyses 505

a different representational language and requires a different approach for
decomposing the abstractions into conceptual entities and for recognizing
the relationships between these entities, both dependent on the format. XML
and sorts both offer a hierarchical description of a data structure in terms of
substructures, and enable the mapping of data structures by comparing their
hierarchical descriptions. The conceptual framework behind sorts offers
better support for complex entities, as it allows a behavioural specification
of entities. This prompts us to develop the comparison and mapping of data
structures using sorts, in order to take advantage of the additional
capabilities of this framework. By comparing and evaluating the two
presented approaches, resulting in two different applications, we also intend
to extract key requirements concerning the representation and presentation
of architectural analyses.

The final goal of the project is to derive at a specific implementation, yet
from general principles (Tunçer and Stouffs, 1999). It is not the intention to
develop a global system that can deal with all abstractions belonging to all
sorts of building projects, but to define the representational framework for
achieving an integrated structure of components and relationships from a
collection of abstractions. The definition of abstractions and mechanisms
can then be interpreted and implemented for different building projects or
architectural bodies.

6. REFERENCES

Akin, O., M. Cumming, M. Shealey, and B. Tunçer, 1997, “An electronic design assistance
tool for case-based representation of designs”, Automation in Construction, 6, p. 265-274.

Egli, H.G., 1997, Sinan: An interpretation, Ege Yayinlari, Istanbul.
Erzen, J.N., 1996, Mimar Sinan: Estetik bir analiz, Şevki Vanli Mimarlik Vakfi Yayinlari,

Ankara.
Papanikolaou, M. and B. Tunçer, 1999, “The Fake.Space experience - exploring new spaces”,

in: Brown, Knight and Berridge (eds.) Architectural Computing: from Turing to 2000,
eCAADe and The University of Liverpool, Liverpool, UK, p. 395-402.

Schmitt, G., 1993, Architectura et Machina: Computer Aided Architectural Design und
Virtuelle Architektur, Vieweg, Braunschweig, Germany.

Stierlin, H., 1998, Turkey: From the Selçuks to the Ottomans, Taschen, Cologne.
Stierlin, H., 1985, Soliman et l'architecture ottomane, Office du Livre, Fribourg, Switzerland.
Stouffs, R. and R. Krishnamurti, 1997, “Sorts: A concept for representational flexibility”, in:

Junge (ed.) CAAD Futures 1997, Kluwer Academic, Dordrecht, p. 553-564.
Tunçer, B. and R. Stouffs, 2000, “Modeling building project information”, in: Gudnason (ed.)

Construction Information Technology 2000, Icelandic Building Research Institute,
Reykjavik, Iceland, p. 937-947.

Tunçer, B. and R. Stouffs, 1999, “Computational richness in the representation of
architectural languages”, in: Brown, Knight, and Berridge (eds.) Architectural
Computing: from Turing to 2000, eCAADe and The University of Liverpool, Liverpool,
UK, p. 603-610.

