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1 Introduction

Phase transition is a phenomena that is ubiquitous in nature and indus-
try. Think for example of ice passing to water or steel that is cooling from
the austenite phase to the ferrite phase. The dynamics of such a transition
are often formulated as a moving boundary problem (also known as a Stefan
Problem). The problem can be considered in 1D, 2D and 3D. In this project
we will limit ourself to the two dimensional case. It follows from the physics
of this problem that the boundary between two phases can be modelled as
a closed two-dimensional smooth curve which we will name Γ.
An important characteristic of Γ is it’s curvature k. This quantity is of
interest to us because the propagating speed of the boundary is dependent
on it’s curvature, see for example [1]. If we have a general parametric rep-
resentation of the curve then the curvature is given by

k =
x′y′′ − y′x′′

((x′)2 + (y′)2)
3
2

. (1)

Where x := x(t) and y := y(t) are the parameterized x, y-coordinates of
the curve Γ on some interval [a, b]. From Equation (1) we see that we need
to have at least that x(t), y(t) ∈ C2[a, b] such that k(t) can be calculated
and is continuous. In many modelling applications the curve Γ is described
implicitly and explicit expressions such as x and y are unknown to us.
One widely used numerical modelling technique for the moving boundary
problem is to use the level-set method mentioned in [2] and [3]. This
method describes the boundary Γ(t) between the phases with the aid of
a signed distance formula φ(x, y, t), where x and y are special coordinates
and t represents time. The curve is at time t then implicitly described
as Γ(t) = {(x, y) : φ(x, y, t) = 0}, hence the name levelset method. The
movement of the boundary is then captured by evolving the signed-distance
function φ(x, y, t) using a convection equation as described by Den Ouden
in [4]. Now to actually calculate the motion a finite difference technique is
used. We will omit the technicalities of this method, but in this numerical
process we need to know the value of the curvature at each time point to
be able to calculate the propagating speed of the boundary and move to the
next time point.
The method will return to us an ordered set of discrete points {(xi, yi)}ni=0

in the plane which represent the discretized boundary curve Γ between two
phases for some time instance. Our main goal in this project is to find, apply
and analyze a method to recover the curvature from data sets generated by
the level set method. The main technique we will use for curvature recovery
will be spline interpolation. This is a well known method to interpolate
smoothly between data points by making use of piece-wise defined polyno-
mials. We will start in Chapter 2 with cubic splines adapted in such a way
that it can be used for closed curve interpolation. We will then test and
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analyze our method on multiple data sets, to come to the conclusion that
we need to improve our methodology. This will be investigated in Chapter 3
and 4. We will close this project with Chapter 5 that contains a discussion
on the results and suggestions for further research on the subject.

Derivation of the parametric expression of the curvature

Since the curvature plays a central role in this project we will give a deriva-
tion of Equation (1) in this section.

First let Γ : [a, b] → R2 be a parameterization for a smooth regular

curve C given by Γ(t) =

(
x(t)
y(t)

)
(By regular we mean that Γ′(t) 6= 0 for all

t ∈ [a, b]). Then we can define the arc length parameter as

s(t) =

∫ t

a
‖Γ′(u)‖du, (2)

where || · || denotes the Euclidean norm.

We will first show that the reparameterization of the curve C with respect
to arc length given by Γ̂(s) satisfies ||Γ̂′(s)|| = 1. We will need this result
later in our derivation.

Proof. Since we assumed that the curve is regular and ‖Γ′(u)‖ > 0 we know
that s is strictly monotonically increasing so s(t) has an inverse t(s) and

dt

ds
=

1
ds
dt

=
1

‖Γ′(t)‖
. (3)

Where we used the inverse function theorem on the composition (t ◦
s)(x) = x where x ∈ [0, s(b)], and the fundamental theorem of calculus on
Equation (2). Now let Γ̂(s) := Γ(t(s)) be the special reparameterization of
the same cuve C in terms of it’s arclength. Now it follows from the chain
rule that

Γ̂′(s) = Γ′(t(s))
dt

ds
. (4)

If we now take the norm on both sides of Equation (4) and substitute Equa-
tion (3) we arrive at the desired conclusion that,

‖Γ̂′(s)‖ = ‖Γ′(t(s))‖ 1

‖Γ′(t(s))‖
= 1.
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If we define T(s) := Γ̂′(s) to be the constant unit tangent vector to the
curve or intuitively the ‘unit speed’, then the curvature is defined in the
following way

k(s) :=
∥∥∥dT(s)

ds

∥∥∥ = ‖T′(s)‖. (5)

Since T(s) has unit length for all s we have T · T = ‖T‖2 = 1. If we
differentiate both sides of the equation with the help of the product rule for
scalar products we get

2T · dT
ds

= 0 =⇒ T · dT
ds

= 0.

This means that T and dT
ds are orthogonal for all s. Because T is tangent

to the curve we have the following relationship for the curvature

T′(s) = k(s)N(s). (6)

Where N(s) is the unit normal obtained by rotating T(s) π/2 radians.
Figure 1 gives a nice visualisation of this.

Figure 1: Visualisation of T and N, where N is represented by the blue
arrow and T is represented by the orange arrow.

Now we want to eliminate the parameter s and find the curvature in
terms of t. We start by differentiating Γ(t(s)) by the chain rule we have

dΓ

dt
=
ds

dt

dΓ̂

ds
=
ds

dt
T. (7)

If we differentiate again we find by the product and the chain rule that
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d2Γ

dt2
=
d2s

dt2
dΓ̂

ds
+
(ds
dt

)2d2Γ̂
ds2

=
d2s

dt2
T +

(ds
dt

)2
kN. (8)

Where we substituted d2Γ
ds2

by Equation (7). We take the scalar product of
both sides of Equation (8) with respect to N. Since T and N are orthogonal
and N ·N = 1 this will yield

d2Γ

dt2
·N = k

(ds
dt

)2
. (9)

By differentiating Equation (2) and the fundamental theorem of calculus

we find ds
dt = [(x′)2 + (y′)2]

1
2 where x′ = dx

dt and y′ = dy
dt . So

(
ds
dt

)2
=

(x′)2 + (y′)2. Since t(s) ∈ [a, b] we will use the slight abuse of notation
t := t(s). From Equation (9) we find the result,

k =
1

(x′)2 + (y′)2

(
(x′′, y′′) · (−y′, x′)

[(x′)2 + (y′)2]
1
2

)
(10)

=
1

(x′)2 + (y′)2

( x′y′′ − x′′y′

[(x′)2 + (y′)2]
1
2

)
(11)

=
x′y′′ − x′′y′

[(x′)2 + (y′)2]
3
2

. (12)

Where we used that N is the π/2 radians rotation of T in Equation (10).
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2 Curvature recovery with cubic splines

This chapter presents a way to smoothly interpolate between data points
through the method of cubic splines. The analysis in [5] on pages 20-23 is
followed with a few adaptations to meet the desired periodicity conditions.
This will be followed by two sections on the application of this method for
curvature recovery on test data-sets. The chapter is concluded with a short
discussion on the results.

2.1 Definition of a spline

Let f ∈ C[a, b], and let a = t0 < t1 < ... < tn = b be the n + 1 nodes
where the function values f(tk) are known. (In our specific case f will
either be x(t) or y(t)). A spline, s : [a, b] → R, is a piece-wise polynomial
that is connected smoothly in the function values f(tk). So the spline has
in general the following form

s(t) =


s0(t), t ∈ [t0, t1],

s1(t), t ∈ [t1, t2],
...

sn−1(t), t ∈ [tn−1, tn].

Note that the spline must go smoothly through the points (tk, f(tk)) so we
will for sure have that sk(tk+1) = sk+1(tk+1) = f(tk). So the function s is
well defined on [a, b].

2.2 Splines of degree 3 (periodic)

A cubic spline s has the following properties:

a On each subinterval [tk, tk+1], s is a third degree polynomial sk, for
k = 0, . . . , n− 1.

b The values at the nodes satisfy s(tk) = f(tk), for k = 0, . . . , n.
Note: since we are interpolating a periodic function we automatically
have s(t0) = f(t0) = f(tn) = s(tn).

c The smoothness conditions

sk(tk+1) = sk+1(tk+1), k = 0, . . . , n− 2,

s′k(tk+1) = s′k+1(tk+1), k = 0, . . . , n− 2,

s′′k(tk+1) = s′′k+1(tk+1), k = 0, . . . , n− 2.

(This ensures that s ∈ C2[a, b] which we are going to need if we want
to calculate the curvature given by Equation (1)).
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d The periodic boundary conditions

s0(t0) = sn−1(tn),

s′0(t0) = s′n−1(tn),

s′′0(t0) = s′′n−1(tn).

We also introduce the standard form for each of the n piece-wise poly-
nomials of order 3 on the intervals [tk, tk+1],

sk(t) = ak(t− tk)3 + bk(t− tk)2 + ck(t− tk) + dk for k = 0, . . . , n− 1. (13)

With the conditions given in b, c and d we can uniquely determine the
coefficients ak, bk, ck and dk which will define the spline s.

2.2.1 Determining the coefficients

We start by defining:

• hk := tk+1 − tk for k = 0, . . . , n− 1,

• fk := f(tk) for k = 0, . . . , n.

From the condition s(tk) = fk we find,

dk = fk for k = 0, . . . , n− 1. (14)

We find an expression for our ak coefficients by looking at the condition
s′′k(tk+1) = s′′k+1(tk). From (30) we find s′′k(t) = 6ak(t− tk) + 2bk so we have

6ak(tk+1 − tk) + 2bk = s′′k(tk+1) = s′′k+1(tk) = 2bk+1 for k = 0, . . . , n− 2.

If we solve for the ak’s we find immediately that,

ak =
1

3hk
(bk+1 − bk) for k = 0, . . . , n− 2. (15)

Now for finding the last coefficient, an−1, we deviate from [5] and find
by the condition s′′0(t0) = s′′n−1(tn) that we have 6an−1hn−1 + 2bn−1 = 2b0.
Solving for an−1 yields

an−1 =
1

3hn−1
(b0 − bn−1). (16)

From the second condition sk(tk+1) = sk+1(tk+1) it follows that
akh

3
k + bkh

2
k + ckhk + dk = fk+1. If we now substitute our result from (14)

and (15). We find for ck
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ck =
fk+1 − fk

hk
− hk

2bk + bk+1

3
, for k = 0, . . . , n− 2. (17)

To find an expression for cn−1 we make use of the periodicity condition
s0(t0) = sn−1(tn)

cn−1 =
f0 − fn−1
hn−1

− hn−1
2bn−1 + b0

3
. (18)

Finally we want to find the bk, for this we use that for the first derivative
s′k(tk+1) = s′k+1(tk+1) holds. This will give us 3akh

2
k + 2bkhk + ck = ck+1.

substituting (14), (15), (17) and simplifying yields.

hkbk + 2(hk + hk+1)bk+1 + hk+1bk+2 = 3
(fk+2 − fk+1

hk+1
− fk+1 − fk

hk

)
(19)

for k = 0, . . . , n− 3.

Now we need 2 more equations to be able to determine the bk’s uniquely.
The first one we get from s′n−2(xn−1) = s′n−1(xn−1). This implies

hn−1b0 + hn−2bn−2 + 2(hn−2 + hn−1)bn−1 = 3
(f0 − fn−1

hn−1
− fn−1 − fn−2

hn−2

)
.

(20)
We find the last equation by the periodicity condition s′0(t0) = s′n−1(tn)

this yields

c0 = s′0(t0) = s′n−1(tn) = 3an−1h
2
n−1 + 2bn−1hn−1 + cn−1.

Now we substitute (16), (17), (18) which gives,

hn−1(b0−bn−1)+2bn−1hn−1−hn−1
2bn−1 + b0

3
+h0

2b0 + b1
3

=
f1 − f0
h0

−f0 − fn−1
hn−1

,

and with further simplification we find

2b0(hn−1 + h0) + h0b1 + bn−1hn−1 = 3
(f1 − f0

h0
− f0 − fn−1

hn−1

)
. (21)

The results (19), (20) and (21) can be compactly summarized in matrix
notation:

A =



2(hn−1 + h0) h0 0 0 0 . . . 0 0 hn−1
h0 2(h0 + h1) h1 0 0 . . . 0 0 0
0 h1 2(h1 + h2) h2 0 . . . 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 . . . hn−3 2(hn−3 + hn−2) hn−2
hn−1 0 0 0 0 . . . 0 hn−2 2(hn−2 + hn−1)


,
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b =


b0
b1
...

bn−2
bn−1

 , f =



3
(f1−f0

h0
− f0−fn−1

hn−1

)
3
(f2−f1

h1
− f1−f0

h0
)

...

3
(fn−1−fn−2

hn−2
− fn−2−fn−3

hn−3

)
3
(f0−fn−1

hn−1
− fn−1−fn−2

hn−2

)


.

If we analyze the matrix we note that

|a11| = |2(hn−1 + h0)| = 2(hn−1 + h0) > h0 + hn−1 = |a12|+ |a1n|,
|aii| = |2(hi−1 + hi)| = 2(hi−1 + hi) > hi−1 + hi = |aii−1|+ |aii+1| for i 6∈ {1, n},
|ann| = |2(hn−2 + 2hn−1)| = 2(hn−2 + hn−1) > hn−1 + hn−2 = |an1|+ |ann−1|.

Thus the n× n matrix A satisfies the property of diagonal dominance:

|aii| >
∑
j 6=i

|aij | ∀i ∈ {1, . . . , n}.

This means we can apply Levy-Desplanques theorem [6] which states that
matrices of this type have det(A) 6= 0, so the system is non-singular.
If we solve Ab = f we retrieve the bk coefficients which can be used to de-
termine the ak and ck coefficients with Equations (15), (16), (17) and (18).

With the change from natural boundary conditions to periodic boundary
conditions we lose the tridiagonal structure of the matrix A (the bottom
left and upper right elements are non-zero). But for this specific almost
tridiagonal structure are still fast solvers available that can solve A in O(n)
operations. For example the parallel solvers mentioned in [7] by T. Chen.

2.3 Performance analysis: cubic spline curvature recovery
on uniformly generated test data

This section presents test results obtained by the cubic spline interpolation
with the method that was discussed in the previous paragraph on data that
was uniformly generated from certain closed curves. The notation that will
be used in this paragraph is listed below.

• Γ(t) =

(
x(t)
y(t)

)
with t ∈ [a, b] denotes the unknown parametric expres-

sion for the curve that generated the data.

• The retrieved cubic spline parameterization of the curve is denoted as
Sc.

• ks(t) will be the curvature of Sc(t): the recovered curvature.
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• K0 the vector that stores the theoretical curvature ki at the given data
points.

• Ks the vector that stores the recovered curvature ks(ti) at the given
data points.

• N denotes the amount of interpolation nodes, so N = n+ 1.

We will also define 3 metrics to measure the error in the recovered curvature
with respect to the theoretical curvature. Based on the 1-norm, the 2-norm
and the ∞−norm.

||K0 −Ks||1 :=
1

N

N−1∑
i=0

|ki − ks(ti)|, (22)

||K0 −Ks||2 :=
( 1

N

N−1∑
i=0

(ki − ks(ti))2
) 1

2
, (23)

||K0 −Ks||∞ := max
0≤i≤N−1

|ki − ks(ti)|. (24)

We have 4 different test data-sets1 called:

• Function I (Circle) - curvature known

• Function II (Starfish) - curvature known

• Function III (Cat) - curvature unknown

• Function IV (Camel) - curvature unknown

Function I and II are generated from closed curves that have a simple
parametric form. So at each tk we know the curvature given by Equation
(1). Function III, IV are generated from closed curves that don’t have a
simple parametric form describing them so the curvature will here be un-
known. It is given that the function values in our data set are generated at
uniform spaced nodes a = t0, t0 + h, t0 + 2h, . . . , t0 + hN = b in [a, b]. It is
also given that the generating curve Γ(t) is smooth.

The parameterization nodes tk for x(t) and y(t) haven been chosen uni-
formly in [0, 1]. Note that it isn’t necessary to know the original parameter
interval [a, b] since the intrinsic geometry of the spline s won’t change if
we scale or translate the parameter interval which is proved in [8]. Since
we know that the data is uniformly generated from the original curves, we
choose the nodes for x(tk) and y(tk) as tk = k/n for k = 0, . . . , n. This
implies that h0 = h1 = · · · = hn−1 = h, so this will simplify the matrix

1The data can be obtained by request.
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A and the vector f . We will label the splines for x(t), y(t) respectively as
sx(t), sy(t). (The superscript is used to avoid confusion with the piece-wise
defined polynomials sk). For the interpolated parametric representation of
the curve we have the following expression:

Sc(t) =

(
sx(t)
sy(t)

)
with t ∈ [0, 1], (25)

and the recovered curvature will then be given by,

ks =
(sx)′(sy)′′ − (sy)′(sx)′′

[((sx)′)2 + ((sy)′)2]
3
2

. (26)

The parameter variable t is omitted here for readability but of course Equa-
tion (26) is defined for all t ∈ [0, 1].

Function I: The Circle

A Python script based on the method presented in Section 2.2.1 was written
to perform the analysis. Figure 2 displays the recovered circle with cubic
spline interpolation. (For plots of the interpolated geometric figures of test
data the x-axis is always implicitly labeled by sx(t) and the y-axis by sy(t).)
For the lowest amount of data points N = 25 we already see a nice circle
appearing going smoothly through the data points. In Figure 3 and 4 we

Figure 2: Plot of the cubic-spline interpolation of Function I with N = 25
data points. The red stars represent the data points {(xi, yi)}n=24

i=0 , and the
black curve represents Sc(t) with t ∈ [0, 1].

see plots of the recovered ks curvature on different scales of the parameter
domain. The recovered curvature oscillates around the theoretical value
of the curvature represented by the straight red dotted line. However the
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oscillations are very small in amplitude, at points where the deviations are
maximal the relative deviation error is only about 0.00385

0.66667 × 100 ≈ 0.58% of
the theoretical value and this will only decrease as we increase N which can
be seen in Figure 3. The oscillatory behaviour is probably caused by small
errors building up in the numerical simulations and rounding errors in the
used data.

In Figure 3b we can clearly see sharp peaks in the recovered curvature,

(a) Plot of the recovered curvature ks for
the circle in black, and the

theoretical/real curvature in dotted red.

(b) Zoom on a subset of the parameter
domain [0, 0.1].

Figure 3: Plots of the recovered curvature on different parameter domains
with N = 25 interpolation nodes.

this is undesirable behaviour since we know that the circle is an infinitely
smooth geometric object so its curvature should be smooth as well. If we
take a look at the recovered curvature for higher values of N as can been
seen in Figure 4b. The oscillatory behaviour still exists only with a much
smaller amplitude and higher frequency.

(a) The recovered curvature for the circle
for N = 400 nodes on the parameter

subset [0, 0.02]

(b) The recovered curvature for the
circle for N = 800 nodes on the

parameter subset [0, 0.02].

Figure 4: Plots of the recovered curvature on [0, 0.2].
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The decrease in the error for the recovered curvature is further confirmed
by Table 1 and Figure 5.

N 25 50 100 200 400 800

||K0 −Ks||1 0.00385 0.000916 0.000224 5.54 ×10−5 1.38 ×10−5 3.44× 10−6

||K0 −Ks||2 7.41×10−6 4.2× 10−7 2.5× 10−8 1.53 ×10−9 9.49 ×10−11 5.90× 10−12

||K0 −Ks||∞ 0.00385 0.000916 0.000224 5.54 ×10−5 1.38 ×10−5 3.44× 10−6

Table 1: Error in the recovered curvature with cubic splines for the circle.
N denotes the amount of interpolation nodes in the data.

For a doubling in the amount of interpolation nodes the 1- and infinity
norm error decrease with a factor of about 4. For example 0.000916

0.00385 = 0.24 ≈
1
4 . This gives some empirical evidence for

||K0 −Ks||1 = O(N−2),

||K0 −Ks||∞ = O(N−2).

For the mean square norm we find that for a doubling of interpolation
nodes the error reduces by about a factor of 16. which implies

||K0 −Ks||∞ = O(N−4).

Figure 5 displays the log-log plot of Table 1 including reference order
lines O(N−2), and O(N−4). Figure 5 confirms our findings for the order of
convergence of ks to the theoretical curvature k with cubic spline interpola-
tion for the circle.
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Figure 5: Log-log plot of the errors in the recovered curvature measured
with different metrics. It also includes order lines O(N−2) and O(N−4) for

reference. The 1-norm coincides with the ∞-norm.
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Function II: The Starfish

Figure 6 displays plots of Sc for different values of N . For N = 20 the
recovered curve already seems to assume it’s desired shape. If we then
double the amount of data points visually we don’t see the shape change
anymore. So we expect the error in the recovered curvature for N = 10 to
be high and after that to see quick convergence to the theoretical curvature.

(a) N = 10 (b) N = 20 (c) N = 40

Figure 6: Plots of the cubic interpolated Function II (starfish). With
interpolation nodes N = 10, N = 20, N = 40.

The errors in the recovered curvature ks in Table 2 and Figure 7 seem
to confirm our conjecture based on the plots of the recovered curves.

N 10 20 40 80 160 320

||K0 −Ks||1 7.803 0.723 0.150 0.036 0.0089 0.0022

||K0 −Ks||2 75.2343 0.388 0.0228 0.0015 9.47 ×10−5 5.875× 10−6

||K0 −Ks||∞ 24.53 1.751 0.683 0.196 0.050 0.0127

Table 2: Errors in the recovered curvature with cubic splines for the
starfish. N denotes the amount of interpolation nodes in the data.

After N = 40 we note that if N doubles the error decreases by a factor of
4, take for example 0.036

0.150 = 0.24 ≈ 1
4 . This suggests that the 1- and∞-norm

converge to the theoretical value with order 2. With similar calculations we
see that the 2-norm shows evidence for order 4 convergence. Also the slope
of the order lines in Figure 7 are in agreement with this. So there is strong
empirical evidence for

||K0 −Ks||1 = O(N−2),

||K0 −Ks||∞ = O(N−2),

||K0 −Ks||∞ = O(N−4).
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This means there is no significant difference in the performance of the
method for the starfish in comparison with the circle, in the sense that their
order of convergence seem to be the same.

Figure 7: Log-log plot of the error in the recovered curvature measured
with different metrics for the starfish.

A plot of the recovered curvature together with the theoretical curvature
for the starfish is displayed in Figure 8. The function ks(t) is periodic which
corresponds nicely with our obtained interpolated curves in Figure 6.
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Figure 8: Recovered curvature for the starfish N = 160.

Function III & IV: The Cat & The Camel

Finally we consider Function III and Function IV. As stated before we don’t
have the theoretical curvature for these functions so we can only judge the
performance of the cubic spline curvature recovery by visual inspection.
In Figure 9 and 10 we see the cat and the camel emerge. In both cases
the recovered curve starts to resemble the animal in such a way that it is
recognizable at N = 40 interpolation nodes. In Figure 9b, 9c we see some
sharp edges occur but these get smoothed for N = 80 in Figure 9d. For
the camel in Figure 10 there remain some sharp edges in the figure even for
N = 80.
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(a) N = 10 (b) N = 20

(c) N = 40 (d) N = 80

Figure 9: Plots of the recovered curve for the cat.
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(a) N = 10

(b) N = 20

(c) N = 40 (d) N = 80

Figure 10: Plots of the recovered curve for the camel.

The interpolated curves in comparison with their recovered curvature
can be found in Figure 11. For the cat we see 6 peaks in the positive
direction corresponding to it’s tail, legs and left ear. We also note that the
scale of interpolated curves (ranging from -400 to 400) is much larger than
for the circle and the starfish (ranging from -2 to 2) so we expect a much
lower value in the curvature. This is indeed confirmed in Figure 11. The
curvature only varies by about 0.3 from zero while for the starfish we saw the
curvature assume values of -10. This also explains the sharp edges we see in
the recovered curves. If we would zoom in on the sharp edges we would see
a smooth turn but relative to the large scale they look non-smooth.
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(a) Cubic interpolation Function III. (b) Recovered curvature for the cat.

(c) Cubic interpolation Function IV.

(d) Recovered curvature for the camel.

Figure 11: Interpolation and curvature recovery for the camel and the cat.
N = 80

2.4 Performance analysis: curvature recovery with cubic splines
on randomly sampled test data

Thus far we only considered data that was uniformly generated from the
parameter domain of the Functions I, II, III and IV. But in practice the
data generated by the level set method is not uniformly generated. That’s
why we will now study the behaviour of the cubic spline curve interpolation
with data sets from which the parameter values are randomly sampled from
the parameter domain of the original functions. Note that the order of the
data points is still preserved only the distance between the nodes in the
original sample domain of the curve is now randomized and this distance is
unknown to us. Throughout this paper we will use the term ‘random data’
as a short hand for the randomly generated data set from the test curves.
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2.4.1 The circle with data generated from randomized parameter
domain

In Figure 12 we see that the interpolation goes wrong which is not that
surprising since we lost a nice property of our data set.

(a) The red stars represent the randomly
generated data points and the black line

the interpolated curve.

(b) Zoom on two obvious irregularities of
the curve Sc.

Figure 12: Interpolation on the random data set for the circle, with
N = 25.

To get a better understanding on why exactly we get such a poor fit as
displayed in Figure 12, we look at the individual x and y components for
the circle given by sx, sy and compare this to the uniform fit for which we
have strong evidence that everything works properly. This simulation can
be seen in Figure 13.

If we label the sampled nodes from the original curve t∗k. Then it is clear
that points t∗k, t∗k+1 that were sampled close to each other get stretched too
far out by the uniform nodes tk, and conversely points that were originally
sampled far away get squeezed to close to each other. This causes the dis-
tortions that become visible in Figure 12. If we now look for example at
the x-component as we increase the value of N we expect that these distor-
tions become smaller since on average the distance between t∗k, t∗k+1 becomes
smaller. If we simulate this situation we obtain Figure 14 which displays
that the plots of the random interpolations come closer to the uniform in-
terpolation, so we do seem to have that the component sx converges to the
x-component of the theoretical curve. For sy we find a similar result which
implies Sc → Γ. However we still see a lot of jaggedness in the curve.

So it might also be interesting to take a look at the behaviour of ||S′c||,
the ‘speed’. The plot of the speed is displayed in Figure 15. In Figure 15b
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(a) sx(t) for t ∈ [0, 1] random and
uniform data.

(b) sy(t) for t ∈ [0, 1] random and
uniform data.

Figure 13: sx, sy are both plotted twice once for the uniform and once for
the random data N = 25. The blue stars and green squares indicate
respectively the pairs (tk, x(tk)) for the random and uniform data.

(a) N = 50 (b) N = 100

(c) N = 200 (d) N = 400

Figure 14: Plots of the x-component for uniform data (red) and random
data (black).

with N = 800 data points ||S′c|| still shows very wild behaviour. This is
caused by the squeeze and stretch process discussed, big distances between
the data points gets squeezed into a too short parameter interval which
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result in huge spikes in ||S′c||, so there won’t be any convergence for the
speedvector S as we increase N .

(a) Plot of ||S′
c|| for N = 25

(b) Plot of ||S′
c|| for N = 800 on the

parameter domain [0.4, 0.6]

Figure 15: Interpolation on the random data set for the circle, with
N = 25.

2.5 Conclusions

For the uniform data

The curvature recovery with cubic splines applied to Function I and Func-
tion II both show empirical evidence for second order convergence in the 1-
and ∞-norm, and fourth order convergence in the 2-norm. Of course this is
only an inductive argument for a finite amount of test cases, for a definitive
proof for the method’s convergence and it’s order one would need to provide
a rigorous mathematical proof. For the Functions III and IV we didn’t have
theoretical data available as a reference frame, but the interpolated curves
look good and correspond nicely with their recovered curvature.
The only undesirable result that we obtained in our analysis for the uniform
case is that the recovered curvature ks showed some sharp peaks were differ-
entiability is lost, as we could for example see in Figure 3b. In theory this
should not occur since we are dealing with smooth curves and that implies
that it’s curvature should also be smooth. But these results don’t come as
a surprise since the cubic spline only guarantees that sx, sy ∈ C2[0, 1] so
(sx)′′ and (sy)′′ can be non smooth functions. So it might be a good idea
to smoothen the recovered curvature by using a higher order interpolation
method.

For the random data

For the random data we only limited our analysis to the case of the cir-
cle. Since the interpolation already doesn’t work properly for this simple
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geometric object it will for sure not work for even more complicated closed
curves. Choosing the interpolation nodes tk uniform for the random data
causes huge swings in the recovered magnitude of the derivative ||S′c|| com-
pared to the uniform data, and this behaviour won’t fade for higher values
of N . So it is clear that we need to adapt our method so we can use it for
randomly generated data sets, this will be topic of the the next chapter.

25



3 Different spacing for the interpolation nodes

With the discussion of the previous chapter in mind, one could imagine that
choosing the parameter nodes tk to be uniformly in [0, 1] is not the optimal
configuration because it disregards the spacing of the data points Di =
(xi, yi). There has been research conducted for picking the parameterization
nodes tk which will be briefly discussed below. We will first list the relevant
equation and definitions as compactly summarized by Shene in [11].

We define the ‘length’ of the polygon, that is the linearly interpolated
data set, as

L :=

n∑
i=1

||Di −Di−1||a.

Where || · || is the Euclidean norm and a a parameter that can assume the
values 0 ≤ a ≤ 1.

The spacing of the nodes are given by the following equations.

t0 := 0, (27)

tk :=
1

L

( k∑
i=0

||Di −Di−1||a
)

for k = 1, . . . , n− 1, (28)

tn := 1. (29)

If a = 0 then the tk are just uniformly distributed in [0, 1]. The most
common way to choose the nodes tk is to use so called chordal parameteriza-
tion which corresponds to the case a = 1. The motivation for this choice is
that the distance between two points on a curve is a reasonable approxima-
tion to the length of the associated curve segment. We might then expect
that the ‘speed’, ||S′c(t)||, is close to a constant speed for t ∈ [0, 1] as stated
in [8]. In this way the chordal parameterization kind of tries to approximate
the arclength parameterization only the speed doesn’t necessarily have to be
unit. Finally if a = 1

2 we speak of centripetal parameterization. Lee claims
in [10] that the centripetal method for choosing the parameter nodes will
in almost all cases yield better results then the previous two options. The
method is called centripetal because Lee introduces the method by analogy
of a car driving on a road with a sharp turn ahead (where the road rep-
resents the curve). The driver would not keep driving at a uniform speed
but in anticipation slow down before making the turn, in order to reduce
centripetal force such that the driver can maintain a comfortable posture
or prevent the car from slipping. Lee suggests that the centripetal force
should be proportional to the change in angle. The centripetal method is
an approximation to this model. In fact all values 0 ≤ a ≤ 1 can be chosen
so a can be seen as a kind of blending parameter.
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3.1 Results and Analysis

Function I: the circle

In Figure 16 it is clear that the chordal parameterization outperforms the
uniform and the centripetal parameterization for the circle on N = 25 data
points. Figure 16a is the same as Figure 12b and we already analyzed this
case extensively in Section 2.4.1. In Figure 16b we see that the circle looks a
bit more smooth than the uniformly spaced one, for example the sharp peak
at the top of the circle from Section 2.4.1 is now gone. Figure 16c looks to
be a perfect circle that goes smoothly true the data points.

(a) a = 0 (b) a = 1
2 (c) a = 1

Figure 16: Plots of the cubic interpolated circle with randomly generated
data. With uniform (a), chordal (b) and centripetal parameterization (c).

N = 25

We can also inspect the plots of ||S′c|| for the different values of a dis-
played in Figure 17. We see indeed that the chordal parameterization pro-
duces a steady constant speed displayed by the blue line. The other two
parameterizations meander around this speed. Thus the Chordal parame-
terization nicely emulates the same constant speed as we saw for the uniform
data with uniform parameterization.
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Figure 17: ||S′c|| for the different types of parameterization: Uniform,
Chordal and Centripetal. The green dotted line represents the uniform

parameterization on uniform data.

Also if we inspect the errors measured according to the supnorm for the
recovered curvature for the circle for the values a = 0, a = 1

2 , a = 1. We get
the result displayed in Figure 18.

Figure 18: Log-log plot of the error with respect to the supnorm for the
recovered curvature for different values for a.
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We see that the errors in the recovered curvature for the uniform and
centripetal parameterization don’t show any evidence for convergence. We
can conclude from Figure 18 and our previous discussions that only a = 1
shows some promising results and we will investigate this case further. Table
3 displays the errors in the recovered curvature with respect to the different
metrics.

N 10 20 40 80 160 320

||K0 −Ks||1 0.021 0.00542 0.0017 0.00045 9.96× 10−5 2.626× 10−5

||K0 −Ks||2 0.000637 5.3×10−5 3.61× 10−6 3.8× 10−7 1.4 ×10−8 1.237× 10−9

||K0 −Ks||∞ 0.109 0.041 0.011 0.00544 0.00081 0.000492

Table 3: Errors in the recovered curvature with cubic splines for the circle
with randomly generated data. (a = 1)

The results of Table 3 are plotted in Figure 19. Where we see again
order 2 and order 4 convergence in the recovered curvature.

Figure 19: Log-log plot of the error in the recovered curvature for random
sampled data with chordal parameterization (a = 1) for the circle.

Function II: The Starfish

For the starfish we will also start with a plot of the error in the recovered
curvature for the uniform, centripetal and chordal parameterization methods
measured with respect to the supnorm. This is shown in Figure 20. We see
again the same pattern as in Figure 18. For a = 0, a = 1

2 we see divergence
in the recovered curvature, for a = 1 the error in the recovered curvature
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looks significantly better, so we will investigate this paramterization further.

Figure 20: Log-log plot of the error with respect to the ∞-norm for the
recovered curvature for different different values for a.

In Figure 21 we see the cubic interpolation attempts for the starfish with
chordal spacing for the interpolation nodes tk. For N = 80 the recovered
curve seems to assume it’s desired shape as displayed in Figure 22.

(a) N = 10 (b) N = 20 (c) N = 40

Figure 21: Plots of the cubic interpolated starfish with randomly generated
data. With chordal spacing for the interpolation nodes (a = 1).
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Figure 22: Cubic interpolated curve for N = 80 with chordal
parameterization.

In Figure 23 and 24 we can see what happens with ||S′c|| for different
parameterizations. We also see that the speed for the uniform data oscillates
as opposed to the constant speed which we saw earlier for the circle. Note
that the the uniform and centripetal speeds change completely as we move
from N = 80 to N = 160 but the uniform and chordal method remain the
same. This gives more evidence for our conjecture that the problem with
the the centripetal and chordal method is the non-converging speed vector.
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Figure 23: ||S′c|| on the paramter domain [0.5, 0.7] for the different types of
parameterization: Uniform, Chordal and Centripetal. The green dotted
line represents the uniform parameterization on uniform data. N = 80

Figure 24: ||S′c|| on the paramter domain [0.5, 0.7] for the different types of
parameterization: Uniform, Chordal and Centripetal. The green dotted
line represents the uniform parameterization on uniform data. N = 160

Figure 25 displays the error in the recovered curvature with the chordal
method. This is followed by Figure 26 where we can clearly see that the
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method starts to converge with order 2 and 4 with respect to their metrics.

Figure 25: Error in the recovered curvature with cubic interpolation on
random data for the starfish.

Figure 26: Close up on N = 160 and N = 320.
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Function III & IV: The Cat & The Camel

If we assume that the recovered curvature obtained for the uniform data
is close to the real curvature of Function III and IV. Then we can use
the uniformly recovered curvature as a reference for the random curvature
recovery. From Figure 27 we can clearly see resembles between the two
curves but still large errors are made. The fact that the uniform recovered
curvature seems to be shifted compared to the random recovered curvature
is caused by the change of the location of the parameterization nodes tk.

(a) Error in the recovered curvature for
the sea star.

(b) Recovered curvature for uniform
data and random data for the camel.

Figure 27

We can see the shift in the x- and y-component in Figure 28.

(a) Plot of the x-component sx. (b) Plot of the y-component sy.

Figure 28: Small shift in the x and y-component for N = 160.
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3.2 Conclusions

From the simulations it is clear that the the chordal parameterization out-
performs the uniform and centripetal parameterization on the random data
sets for curvature recovery. Intuitively the chordal parameterization is a
nice fix to the problems we encountered in Section 2.4.1 since it simply
states: if two successive data points Dk and Dk+1 are far away from each
other measured by the chord connecting the two, place the corresponding
parameterization nodes tk and tk+1 farther away from each other and vice
versa reducing the distortions in the recovered curvature. The reason that
the other two methods don’t work is probably caused by the not converg-
ing ||S′(t)|| we saw that even for high values N we still have large erratic
oscillations. The only downside to the chordal parameterization is that the
linear approximation of arclength gets progressively worse at points where
the curvature gets larger, this explains that the curvature recovery works
better for the circle than for for the starfish, since the circle’s curvature is
constantly 2/3 and the curvature for the starfish can peak even to -10. In
Figure 26 we saw some relatively large reduction in the error of the cur-
vature, this can be explained with the same reasoning. Now the distance
between the data points has become on average sufficiently small such that
the chordal method approximates the actual underlying curve better.
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4 Curvature recovery with quintic splines

4.1 Picking a spline of higher order

As discussed in Chapter 2 we want to have that ks(t) ∈ C2[0, 1]. If we look
at the curvature given by Equation (1) we see that if x, y are in C4[0, 1] then
by the fact that compositions of continuous functions are again continuous
and compositions of differentiable functions are again differentiable we have
that k(t) ∈ C2[0, 1]. Which implies that sx, sy should be in C4[0, 1]. The
lowest order spline that guarantees this is of degree 5 (quintic).

4.2 Splines of degree 5 (periodic)

The conditions we impose on a spline of order 5 are similar as the ones used
for the cubic splines. We only add 2(n − 1) + 2 = 2n conditions to obtain
the required smoothness property such that s ∈ C4[0, 1]. And of course the
piece-wise polynomials are now of order 5 instead of order 3.

a On each sub interval [tk, tk+1], s is a 5th degree polynomial sk, k =
0, . . . n− 1.

b The values at the nodes satisfy s(tk) = f(tk), for k = 0, . . . , n
Note: Since we are interpolating a periodic function we automatically
have s(0) = f(t0) = f(tn) = s(1).

c The smoothness and continuity conditions

sk(tk+1) = sk+1(tk+1), for k = 0, . . . , n− 2,

s′k(tk+1) = s′k+1(tk+1), for k = 0, . . . , n− 2,

s′′k(tk+1) = s′′k+1(tk+1), for k = 0, . . . , n− 2,

s
(3)
k (tk+1) = s

(3)
k+1(tk+1), for k = 0, . . . , n− 2,

s
(4)
k (tk+1) = s

(4)
k+1(tk+1), for k = 0, . . . , n− 2.

d The periodic boundary conditions

s0(t0) = sn−1(tn),

s′0(t0) = s′n−1(tn),

s′′0(t0) = s′′n−1(tn),

s
(3)
0 (t0) = s

(3)
n−1(tn),

s
(4)
0 (t0) = s

(4)
n−1(tn).

The standard form for each polynomial on an interval [tk, tk+1] with k =
0, . . . , n is,
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sk(t) = αk(t− tk)5 + βk(t− tk)4 + γk(t− tk)3 + δk(t− tk)2 + εk(t− tk) + ζk (30)

As with the cubic spline the constant terms ζk can directly be obtained
from condition b, we find

ζk = f(tk) for k = 0, . . . , n− 1

To find a nice algorithm as for the cubic spline in Chapter 3 will be quite
an algebraically demanding task. Since our main goal is curvature recovery
and not algorithm optimisation we will directly substitute Equation (30)
into the conditions mentioned in point c and d to retrieve the coefficients
for the sk.
We define again hk = tk+1 − tk and f(tk) = fk for more clarity in the
notation. We will get the following set of equations from condition c,

αkh
5
k + βkh

4
k + γkh

3
k + δkh

2
k + εkhk = fk+1 − fk for k = 0, . . . , n− 2,

5αkh
4
k + 4βkh

3
k + 3γkh

2
k + 2δkhk + εk − εk+1 = 0 for k = 0, . . . , n− 2,

20αkh
3
k + 12βkh

2
k + 6γkhk + 2(δk − δk+1) = 0 for k = 0, . . . , n− 2,

60αkh
2
k + 24βkhk + 6(γk − γk+1) = 0 for k = 0, . . . , n− 2,

120αkhk + 24(βk − βk+1) = 0 for k = 0, . . . , n− 2.

And the final 5 equations are obtained from point d,

αn−1h
5
n−1 + βn−1h

4
n−1 + γn−1h

3
n−1 + δn−1h

2
n−1 + εn−1hn−1 = f0 − fn−1,

5αn−1h
4
n−1 + 4βn−1h

3
n−1 + 3γn−1h

2
n−1 + 2δn−1hk + εn−1 − ε0 = 0,

20αn−1h
3
n−1 + 12βn−1h

2
n−1 + 6γn−1hn−1 + 2(δn−1 − δ0) = 0,

60αn−1h
2
n−1 + 24βn−1hn−1 + 6(γn−1 − γ0) = 0,

120αn−1hn−1 + 24(βn−1 − β0) = 0.

So to summarize we have to solve a non-singular 5n by 5n linear system
to retrieve all the coefficients for the n polynomials.
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4.3 Performance analysis: quintic spline curvature recovery
on uniformly generated test data

This section presents some results obtained by the quintic spline interpo-
lation method. There will first be a section on curvature recovery with
uniform nodes (to test if everything behaves nicely). Followed by a section
on the randomly generated data, where we also compare the performance
of the quintic spline to the cubic spline. All the simulations were executed
with Python.

Function I, the circle

In Figure 29 we see that the quintic spline interpolation gives the expected
result, a smooth circle trough the data points.

Figure 29: Plot of the quintic-spline interpolation of Function I with
N = 25 data points. The red stars represent the data points {(xi, yi)}n=24

i=0 ,
and the black curve represents Sq(t) with t ∈ [0, 1].

For higher values of N we get exactly the same picture (only with more
data points of course).
Figure 30 displays a plot of the recovered curvature ks(t), on the interval
[0, 0.1]. Just like in the recovered curvature with cubic spline we see oscil-
latory behaviour in the curvature, only now the oscillation is much smaller
(note the scale on the y-axis). Also, we note that the oscillations are smooth
as opposed to Figure 3b.

The plots of the error in the recovered curvature is displayed in Figure
31. The 1-and infinity norm decrease with the same order O(N−4). The
2-norm seems to converge even faster with order O(N−8). So the order
of convergence has doubled compared to the cubic curvature recovery on
uniform data.
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Figure 30: Recovered curvature with the method of quintic splines on the
subset [0, 0.1] of the parameter domain.

Figure 31: Log-log plot of the error of the recovered curvature for Function
I, the circle. The black line represents the infinity norm, the blue line the

2-norm and the green line the 1-norm. The 1-norm and infinity norm
coincide for the first 5 values of N .

Function II, the starfish

In Figure 32 we see the quintic spline interpolation for different amounts
of interpolation nodes. After N = 20 the shape doesn’t change visually
anymore and we see the starfish emerge.

If we look at the plots of the recovered curvature itself then we get the
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(a) N = 10

(b) N = 20

(c) N = 40 (d) N = 80

Figure 32: Plot of the quintic-spline interpolation of Function II with
N = 10, N = 20, N = 40, N = 80 data points in Figures 32a, 32b, 32c, 32d
respectively. The red stars represent the data points {(xi, yi)}ni=0, and the

black curve represents Sq(t) with t ∈ [0, 1].

results displayed in Figure 33 which look to converge nicely to the theoretical
curvature. If we go to the next figure, Figure 34, we see indeed that this
is confirmed by the decreasing errors in the recovered curvature. It also
indicates that the order of convergence for the sup and 1-norm is O(N−4)
and for the 2-normO(N−8). Thus far the results for the method with quintic
splines seems to be analogous to the results obtained for the recovery method
with cubic splines for the uniform data. Only the order of convergence has
doubled.
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(a) N = 50 (b) N = 100

(c) N = 200 (d) N = 400

Figure 33: Plots of the recovered curvature and theoretical curvature for
the starfish.

Figure 34: Log-log plot of the error of the recovered curvature for Function
II, the starfish.

41



The Cat & The Camel

In Figure 35 and 37 we see the recovered curves with quintic interpolation
in black together with the cubic interpolated curve on the uniform data in
dotted blue. For N = 10 and N = 20 there is still a significant visible
difference between the two but after that the methods produce visually
identical curves. This gives us strong evidence that the cubic and quintic
interpolation converge to the original generating curve Γ(t).

(a) N = 10
(b) N = 20

(c) N = 40 (d) N = 80

Figure 35: Comparison of the cubic and quintic interpolation of the cat on
random data sets.

The results of the curvature recovery can be found in Figure 36. For
N = 160 the recovered curvature nicely coincides with the cubic recovery.
Also if we zoom in on the parameter domain we still see complete overlap
of the two curves. This confirms that for the quintic and the cubic method
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on uniform data we have convergence in the recovered curvature.

(a) Recovered curvature. (b) Zoom on [0.1, 0.3] parameter domain.

Figure 36: Comparison quintic and cubic recovered curvature.

Figure 37 displays the comparison between the interpolation of the camel
with the quintic splines and cubic splines. The dotted blue line represents
the cubic curve while the black line represents the quintic curve.
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(a) N = 10 (b) N = 20

(c) N = 40 (d) N = 80

Figure 37: Comparison of the cubic and quintic interpolation on uniform
data sets.

In Figure 38 we see the recovered curvature with quintic and cubic splines
on uniform data sets with uniform parameterization. Note that the quintic
recovery seems to pick up higher values in the curvature compared to the
cubic curvature, but for the most part they are very close to each other.
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(a) Recovered curvature. (b) Zoom on [0.1, 0.3] parameter domain.

Figure 38: Comparison quintic and cubic recovered curvature for the
camel.
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4.4 Performance analysis: curvature recovery with quintic
splines on randomly sampled test data

The Circle

As usual we start with our favorite geometric object. It is clear that we
only need to consider the chordal spacing for the tk, that is a = 1, since for
the other two values of a we know that we don’t have convergence to the
theoretical curvature. In Figure 39 we can see the interpolated curve and
the recovered curvature retrieved with the quintic method for random data.
The interpolation of the circle goes smoothly through the data points. The
recovered curvature displays similar oscillations as for the uniform data only
amplified on a subset of the parameter domain, but the order of magnitude
of the amplitude is about the same. We also see that for random data we
still have the desired smoothness in the curvature as can be seen in Figure
39b.

(a) Plot of the interpolated curve

(b) Recovered curvature

Figure 39: Results for quintic method for random data on the circle with
N = 25 data points.

In Figure 40 the behaviour of the error in the recovered curvature is
displayed. We see that the 1- and ∞-norm converge with O(N−2) and
O(N−4). This is quite surprising since it shows that using quintic interpo-
lation on randomly generated test data for the cricle doesn’t seem to give a
higher order of convergence to the theoretical curvature. This can be clearly
seen in Figure 41, where we compare the cubic with the quintic curvature
recovery. However we do notice that the quintic method always has a lower
error in the recovered curvature than the cubic recovered curvature (with
respect to their norms). So the quintic spline does perform better but there
is no clear evidence that there is a higher order of convergence for the quintic
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spline in comparison with the cubic spline.

Figure 40: Log-log plot of the error in the recovered curvature for the
circle for random data points and quintic curvature recovery.

Figure 41: Comparison of the recovered curvature between the quintic
method and the cubic method for random data and chordal

parameterization.

The starfish

For the starfish we begin by looking at the convergence of the starfish visu-
ally in Figure 42. Note that only after N = 40 the starfish starts to take
it’s familiar shape. Also note that in Figure 43, after the third dot which
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corresponds to N = 40, the error seems to start to converge with a certain
order. This can be understood if we look at Figure 42a, here we still see
large distances between the data points on parts of the curve that have high
curvature which cause the chordal method to approximate the actual curve
poorly and this is why the errors remain big. If we now look at Figure 42b
we see that on all the parts of the curve with high curvature are densely
packed with data points which improve the chordal approximation by a lot.
This explains the sudden decrease in the error of the recovered curvature in
Figure 43.

(a) N = 40 (b) N = 80

Figure 42: plots of the quintic method for random data for the starfish.

In Figure 43 we also see the error in the quintic recovered curvature in
comparison with the cubic method. The quintic spline interpolation always
yields a lower error than the cubic method however their order of converge
seem to be the same.
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Figure 43: Comparison of the recovered curvature between the quintic
method and the cubic method for random data and chordal

parameterization.
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The Cat & The Camel

In this section we will compare the random quintic method with the ran-
dom cubic method for the cat and the camel. In Figure 44 we can see the
difference between the cubic interpolation on random data and the quintic
interpolation. For small N we see some big differences between the two re-
covered curves by the quintic and the cubic method. This difference becomes
smaller as N increases.

(a) N = 10

(b) N = 20

(c) N = 40 (d) N = 80

Figure 44: Comparison of the cubic and quintic interpolation of the cat on
random data sets.

Note that if the difference between two successive data points Dk, Dk+1

is big the quintic spline seems to interpolate looser than the cubic interpo-
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lation. Look for example in Subfigure 44d we see that the left leg has more
curvature for the quintic as for the cubic method. We see that in Figure 45
for N = 160 both interpolated curves nicely coincide.

Figure 45: Plots of the quintic-spline interpolation for the cat on random
data sets.

In Figure 46 the recovered curvature is displayed for random and uniform
data with different methods. We also see the shift of the recovered curvature
for the uniform parameterization on uniform data displayed by the dotted
red line. Note that in Figure 46b we see that the quintic curvature on
random data (the green line) is nicely smooth compared to the blue dotted
cubic curvature.

(a) Recovered curvature on the
parameter domain [0.5, 0.6]

(b) Recovered curvature on the
parameter domain [0.50, 0.53]

Figure 46: Comparison recovered curvature between quintic splies and
cubic splines on random data and quintic splines on uniform data for

N = 160.

For the camel we find similar results for the interpolated curves, these
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are displayed in Figure 47.

(a) N = 10

(b) N = 20

(c) N = 40 (d) N = 80

Figure 47: Comparison of the cubic and quintic interpolation of the cat on
random data sets.

In Figure 48 we see the result for the highest amount of interpolation
nodes N = 160. Again the cubic and quintic interpolation almost coincide
in this case.
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Figure 48: Recovered camel with N = 160 on the random data set.

We see again the shift in the curvature if we compare the chordal random
data with the uniform paramterization on the uniform data in Figure 49.
Note that again the green line is smooth compared to the blue dotted cubic
curvature.

(a) Recovered curvature for different
data and methods for the camel on the

parameter domain [0.58, 0.59].

(b) Recovered curvature for different
data and methods for the camel on the

parameter domain [0, 1].

Figure 49: N = 160 interpolation nodes.
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5 Conclusions, discussion and recommendations

5.1 Conclusions

The curvature recovery with quintic splines works universally better than
with cubic splines for uniform data. This is due to the fact that we want
to recover smooth curves and since quintic splines incorporate higher or-
der smoothness conditions we have better modes of convergence. For the
uniform data we collected some strong evidence that the cubic curvature
recovery converges with order 2 and 4, and the quintic method with order
4 and 8 with respect to their relevant metrics. However the price that we
pay is a higher order of computation time since the matrix we found for
cubic interpolation has the almost-tridiagonal structure which can be solved
in O(n) basic operations. For the matrix for quintic-splines we didn’t find
such a special form so here the computation time will be of order O(np)
with p ≥ 2 (depending on the algorithm that is used).

For the random data sets we first had to improve our method for placing
the interpolation nodes tk because the uniform parameterization on ran-
domly generated data points didn’t show any promising results. We found
that only with the chordal parameterization our simulation gave some de-
cent to good results.

For the randomly generated data sets with the chordal paramterization
we found the following results for the the quintic and cubic curvature recov-
ery. For the circle we found evidence for order 2 and order 4 convergence
(again with respect to the proper metrics) for both the cubic and quintic
curvature recovery. This means that if we move to randomly generated data
we lose the higher order of convergence in the curvature we had for the quin-
tic method for the circle on uniform data. After inspecting the errors in the
recovered curvature we saw that the error in the recovered curvature was
smaller with quintic curvature recovery than with cubic curvature recovery
but the order of convergence is the same. In the analysis of the starfish
on randomly generated data we found that for the cubic and quintic curva-
ture recovery more or less the same result. For small N the error remained
relatively big but after a sufficiently large N the error started to decrease
fast. As for the circle the quintic method did perform better but there is no
indication that the quintic recovery has a higher order convergence than the
cubic recovery. For the cat and the camel we saw that curvature recovery
with quintic splines did indeed yield the smooth recovered curvature com-
pared to it’s cubic counterpart where the recovered curvature shows some
sharp edges. So to summarize,

the curvature recovery with splines performs good on uniform data, and
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decent to good on random data if the chordal parameterization is chosen
and the chordal approximation for the arc length of the theoretical curve is
sufficiently close to the theoretical arc length. The usage of quintic splines
yields smaller errors in the recovered curvature than cubic splines but the
improvement varies per data set.

5.2 Discussion

We tested the curvature recovery methods on two types of datasets uniformly
and randomly sampled from the original curve. These are two extreme cases
of perfect structure in the data to no structure at all. Maybe it is possible
to find something between these two types (for example uniform with noise)
to make the test data fit some more realistic scenarios.
During the simulations on some of the random data sets we also looked
at other values of a then 0, 1

2 and 1 where we started with a0 = 0 and
incremented the value of a by ak = ak−1 + 1

10 to a = 1. For all the data sets
and values that were tested a = 1 performed always better for the cubic and
for the quintic curvature recovery. Since a = 1 is most likely the optimal
value for curvature recovery we will give in Section 5.3 a potential method
to improve the chordal method itself.

5.3 Recommendations for further research

Richardson Extrapolation

For the camel and the cat we mostly used visual comparisons to see if the
methods for curvature recovery worked. In successive research one might
use Richardson’s extrapolation [5] to get some practical quantitative error
estimates for the recovered curvature for these geometric figures. This could
however become quite tricky for the randomly sampled cases because for each
increase in N the points are freshly randomly sampled. As a suggestion to
apply Richardson extrapolation to randomly sampled data sets one could
start with a large amount of data points randomly sampled from the curve
say A0 = {Di}Ni=1 such that N is a large power of 2. From this generated
set one could sample at random N

2 points and create a data subset A1 =

{Dij}
N/2
j=1 ⊂ A0, and from A1 a data set A2 ⊂ A1 ⊂ A0 can be created with

N/4 elements etc. Then Richardson extrapolation can be applied to these
data sets for the cat and the camel to get some practical error estimates for
the curvature recovery.

Proving rigorously some convergence results for the curvature re-
covery

We collected evidence for the convergence of the recovered curvature to the
theoretical curvature. As an idea for further research one could try to prove
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rigorously some of these convergence hypothesis for curvature recovery with
splines, be it for quintic or the cubic method.

Using ‘Arc length parameteriztion’

In [8] a nice improvement is given for the chordal parameterization method
to obtain higher order convergence to the theoretical curve for interpolation
methods that are of higher degree than cubic interpolation. Instead of only
using the chordal parameterization we take an extra step to improve the
order of convergence. We start by using the chordal interpolation given by
Equation (28) with a = 1 to retrieve the nodes 0 = t0 < t1 < . . . < tn = 1
and apply cubic interpolation which will give our familiar cubic interpolated
curve Sc(t) with t ∈ [0, 1]. Now we can use the arc length of Sc(t) to
determine our new parameterization nodes t̂k. Because we used the unit
domain we take t̂0 = t0 = 0 and t̂n = tn = 1 and then normalize to have all
tk correctly distributed in [0, 1] by

t̂k =
L(Sc|[0,tk])
L(Sc|[0,1])

=

∫ tk
0 ||(S

c(u))′||du∫ 1
0 ||(Sc(u))′||du

for k = 1, . . . , n− 1. (31)

Now we can apply quintic interpolation on the arc length parameteri-
zation 0 = t̂0 < t̂1 < . . . < t̂n = 1. Since this yields a higher order of
convergence to the theoretical curve, we except that it will also converge
faster to the theoretical curvature. This scheme can be continued to gain
even higher order of convergence according to Floater and Surazhky. For
further research one might use this method to see if it indeed yields better
results for the curvature recovery, especially for the random data sets.

Curvature recovery for closed surfaces in R3

A natural question to ask is if it is possible to extend our method for cur-
vature recovery from closed flat curves to closed surfaces in R3.
In this paper we essentially constructed a map S : [0, 1] → R2 that tries
to reconstruct the original curve with the help of spline interpolation, and
from this map we can calculate the curvature. If we argue by analogy then
for the case of a closed surface we need to reconstruct a map of the fol-
lowing form: X : [0, 1] × [0, 1] → R3 so X(u, v) = (x(u, v), y(u, v), z(u, v))
with (u, v) ∈ [0, 1] × [0, 1] from a set of data points {(xi, yi, zi)}Ni=0. It is
not directly clear how to apply our usage of splines in this setting. In the
literature B-splines are often mentioned for obtaining a surface from a set
of data points, for example in Shene’s online course notes [12].
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