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We present the thermal Stoner-Wohlfarth (tSW) model and apply it in the context of molecular dynamics
simulations. The model is validated against an ensemble of immobilized, randomly oriented uniaxial particles
(solid superparamagnet) and a classical dilute ferrofluid for different combinations of anisotropy strength and
magnetic field/moment coupling, at a fixed temperature. We compare analytical and simulation results to
quantify the viability of the tSW model in reproducing the equilibrium properties (with and without dipole-dipole
interactions) and dynamic properties (without dipole-dipole interactions) of magnetic soft matter systems.
We show that if the anisotropy of a particle is more than five times higher than the thermal fluctuations,
the tSW model is applicable and efficient. This approach allows one to consider the interplay between Néel
and Brownian relaxation, often neglected in the fixed point-dipole representation-based magnetic soft matter

theoretical investigations.
DOLI: 10.1103/PhysRevB.111.014438

I. INTRODUCTION

The idea to control materials using magnetic fields, in-
spired in the early 20th century by the works of Langevin
[1,2], and developed further through pioneering studies on
magnetic fluids by Elmore [3] and later by Resler and
Rosenzweig [4], has since given rise to a branch of science
studying magnetic soft matter. The fundamental insight from
these pioneering studies is that small ferromagnetic particles
suspended in a magnetopassive liquid represented a param-
agnetic system, whose magnetization can be described with
a Langevin function. This showed that it is possible to en-
gineer and appropriate the magnetic response of complex
systems from the collective magnetic response of constituent
nanoparticles that themselves have well-defined and finely
controllable magnetic properties. Under the umbrella term
of magnetic soft matter, various magnetoresponsive systems
have been explored, including ferrofluids [5-7], ferrogels
[8,9], elastomers [10—14], magnetic gels [8,15,16], and mag-
netic filaments (MFs) [17,18], with a research effort focused
on generating a macroscopic response by coupling the mag-
netic response of magnetic nanoparticles, which can be
affected via magnetic fields in a contained and precise man-
ner, mechanically or chemically to its environment, such as a
polymeric matrix or a viscous environment in general. This
class of problems lends itself particularly well for classical
simulation studies such as molecular dynamics (MD). The
key that unlocked such simulation studies of composite, com-
plex magnetoresponsive systems, along with their magnetic
properties and response to magnetic fields, is the fixed point
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dipole representation [19]. In this picture, the dipole moment
is depicted as a vector that is always coaligned with the
anisotropy axis of the nanoparticle, with a fixed magnitude
and orientation in the particle reference frame. The fixed point
dipole representation of magnetic colloids is, in general, at
the heart of the overwhelming majority of theoretical and
classical simulation studies of magnetic fluids and magnetic
soft matter [20-24]. It is a powerful and flexible representation
that, albeit undoubtedly practical, incurs important assump-
tions and approximations. There are no degrees of freedom for
the dipole moment to exploit with respect to the anisotropy
axis. In other words, magnetic relaxation can only manifest
through physical rotation of the nanoparticle body, commonly
referred to as Brownian relaxation. Strictly speaking, the fixed
point dipole representation is appropriate for single-domain
nanoparticles with infinitely high uniaxial anisotropy [25].
If one is only interested in applied field coupling and far
field interactions, more complex magnetic colloids can also
be represented as fixed point dipoles, as long as they can
be considered as ideally ferro-/ferrimagnetic [26]. Clearly,
the fixed point dipole representation fundamentally limits the
scope of the studies based on it. In general, depending on
the colloids size and/or material, it can neither be taken as
given that the dipole moment is coaligned with the anisotropy
axis, nor that it has a fixed orientation with respect to it.
In fact, the dipole moment has degrees of freedom within
the nanoparticle body, which manifest as additional mag-
netic relaxation mechanisms, the most prominent of which
is commonly referred to as Néel relaxation. Generally, the
dipole moment states within a nanoparticle correspond to
local free energy minima. With Néel relaxation one implies
that thermal fluctuations can cause jumps between the avail-
able states. In other words, the dipole moment can, driven

©2025 American Physical Society
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by thermal fluctuations, flip its orientation with respect to
the easy axis. In this context, the anisotropy energy can be
interpreted as an energy barrier that needs to be surmounted
in order for such a flip to occur. The Brownian and Néel
relaxation are two major mechanisms in the description of the
magnetic properties of single-domain nanoparticles, and are
well captured with a combination of the ideas presented in
the seminal studies of Stoner and Wohlfarth [27], Néel [28],
and Brown [29]. When modeling the dynamics of magnetic
soft matter, capturing Brownian and Néel relaxation is funda-
mentally important [30-35]. Beyond the academic interest in
accurately describing the dynamics of magnetic nanoparticles,
understanding magnetic relaxation opens numerous avenues
for technological applications [36—42]. Among other factors,
the interplay between different relaxation mechanisms is key
for optimizing magnetic hyperthermia [43—-46].

In this paper, we present the thermal Stoner-Wohlfarth
(tSW) model as a low computational cost method that al-
lows one to include explicit and accurate magnetodynamics
into simulation studies of magnetic soft matter with single
domain, uniaxial nanoparticles. In this context, magnetody-
namics entails: (i) Brownian relaxation; (ii) Néel relaxation
mechanisms, and (iii) the ability of a dipole moment not
to be coaligned with the nanoparticle anisotropy axis in the
presence of magnetic and/or dipole fields. Talking about
low computational cost methods to include explicit mag-
netodynamics, one must mention the highly efficient and
accurate approaches to numerical solve of the Fokker-Planck
equation [47,48], for the so-called “egg model” of su-
perparamagnetic particle dynamics initially developed by
Shliomis and Stepanov [49]. While solving the Fokker-Planck
equation is a very powerful and fast approach to solve magne-
todynamics, it is restricted to relatively simple noninteracting
systems, and in general, is less flexible than stochastic simu-
lations. It is also worth highlighting the diffusion jump model
[50,51], as an example of a similar, low computational cost
method to simulate magnetodynamics. This model, however,
does not capture the (iii) aspect of magnetodynamics present
in the tSW model, because in it, the magnetic moment is nec-
essarily aligned with the crystallographic axis of the colloid.

The paper is structured as follows: We first introduce a for-
mal problem description in Sec. I, with a detailed discussion
on the relevant energy (Sec. [ A) and timescales (Sec. IB).
In Sec. II, the model is validated against (a) an ensemble
of immobilized, randomly oriented uniaxial particles (solid
superparamagnet) and (b) a classical dilute ferrofluid. This is
equivalent to making the distinction on the basis of whether
the nanoparticles exhibit only Néel relaxation mechanisms
or both Brownian and Néel relaxation mechanisms, respec-
tively. In both cases, we compare analytical and simulation
results to quantify the viability of the thermal SW model in
reproducing equilibrium (magnetization for a noninteracting
and interacting system; Sec. Il A) and dynamic (susceptibility
for a noninteracting system; Sec. Il B) properties of magnetic
soft matter systems. Note that throughout the paper, unless
explicitly stated otherwise, we are referring to noninteracting
systems. A detailed account of the tSW model implemen-
tation, simulation details and units is presented in Sec. IC.
The theoretical framework behind the tSW model has been
introduced in Chuev and Hesse [52], where it is called the
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FIG. 1. Geometric details including angles used in the formula-
tion of the total magnetic energy in the Stoner-Wohlfarth model.

generalized SW model. The generalized SW model has been
implemented and used in several studies under the name of
kinetic Monte Carlo (kMC) approach [53-57]. However, the
kMC terminology has been used inconsistently in the litera-
ture. It is important to clarify that, broadly speaking, the kMC
approach implies that the magnetic degrees of freedom are
governed by sampling the magnetic energy in the SW model
via a MC algorithm. The transition probabilities are calculated
in accordance with the generalized SW model. The kMC ap-
proach is, however, not limited to a two-state approximation.
In other words, in the kKMC approach, the dipole moment
does not need to point in accordance with the minima of the
magnetic energy. Therefore, it should be considered as distinct
from both the generalized SW and the tSW model. The tSW
approach can be seen as a subset of kMC, in the sense that it
strictly adheres to the two-state approximation. However, the
tSW model can also be seen as a generalization of the kMC
approach, in the sense that couples it with Langevin dynamics.
Regardless, in this contribution, we present the first systematic
study of the applicability of the tSW model with respect to
anisotropy energy/temperature and magnetic field strength,
where the viability and applicability of the model in the con-
text of MD simulations of magnetic soft matter is qualified.

A. Formal problem description

A magnetic nanoparticle is subjected to a uniform mag-
netic field H at a fixed temperature 7'. The classical, athermal
formulation of the total magnetic energy of a nanoparticle was
introduced in Stoner and Wohlfarth [27]

U=—pou@ H)—KV(@- i), (1

where

(i) o is the vacuum magnetic permeability;

(i) é=1/u = (cos¢gsinf, sing sinf, cos) is the unit
vector of the magnetic moment ji, where pu = |ii| = MV, 0
is the angle between the magnetic moment and the field and ¢
is the corresponding polar angle (for notations see Fig. 1);

(i) M, is the saturation magnetization of the particle
material;

(iv) V = (r/6)d? is the particle volume, d is the particle
diameter;

(v) K is the particle anisotropy constant; and
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(vi) A = (cos¢ sinr, sin¢ sin i, cos v) is the unit vector
of the anisotropy axis, where y is the angle between the ap-
plied field and the anisotropy axis and ¢ is the corresponding
polar angle, see Fig. 1.

The problem has three characteristic energy scales: the
Zeeman energy pouH, the anisotropy energy KV, and ther-
mal energy kgT. The interplay between the characteristic
energy scales is described in terms of two dimensionless pa-
rameters, namely, the Langevin parameter,

popH
§= , @
kgT
and the anisotropy parameter,
KV
=—. 3
o= oT 3

Additionally, the interplay between anisotropy and external
field is traditionally described with the dimensionless field,

§ _poMH _ H

h=——= ,
20 2K Hani

“

where Hy, = 2K/ oM; is the anisotropy field. For the geom-
etry sketched in Fig. 1, Eq. (1) can be rewritten as

= —(cos(¢ — ) sin @ sin Y + cosb cos ¥)> — 2hcosH,

Q)
where, according to Stoner and Wohlfarth [27], global minima
of the potential always lie in the plane spanned by A and 7
(¢ = ¢). Equation (5) has two minima below the critical field
strength,

KV

hcr(w) = (sin2/3 w —+ C052/3 w)*3/2. (6)

Above the critical field, only one global minimum remains.
The particle dipole moment follows the position of the local
energy minimum and instantaneously changes its direction
depending on the strength of 4 in relation to A,,. Transitions
between the energy minima are not possible below 4. (at
T = 0). A visualization of the energy landscape defined with
Eq. (5) (¢ = ¢), along with its dependence on 6, ¥, and A,
is provided in Fig. 2. The simplest thermal formulation of
the total magnetic energy would include the Néel relaxation
mechanism, understood as the internal relaxation achieved
through thermal fluctuation induced transitions of the dipole
moment between the local energy minima in the total mag-
netic energy of a particle. This intuitive notion of the Néel
mechanism involves several important approximations, dis-
cussed at length below. Brownian relaxation instead refers to
the rotational diffusion of the particle body.

B. Relevant time scales

Here, we discuss the timescales of the relaxation mecha-
nisms characteristic for ensembles of magnetic nanoparticles,
starting with the ones associated with internal degrees of free-
dom. In the absence of thermal fluctuations and an applied
field, the main timescale that characterizes the magnetization
relaxation in immobilized ensembles is the damping time of
the Larmor precession. From the standard Landau-Lifshitz-

0

FIG. 2. Visualization of the energy (density) landscape in the
Stoner-Wohlfarth model, as a function of 6. Lines with a different
color saturation correspond to energy densities for a different y. The
more saturated a color appears, the more aligned the anisotropy axis
is with the applied field (smaller ). Different colors correspond to
different applied field strengths, where green energy density profiles
correspond to a higher applied field strength then blue energy density
profiles.

Gilbert (LLG) equation, it can be estimated as [58]

2
7/_OZL:O%-O[)MX’ 7
oy, 20y K

where w; = v oHui /(1 + ?) is the precession frequency (in

the absence of an applied field), « is the phenomenological

damping parameter with typical values in the range between

0.01 and 0.1, y ~ 1.76 x 10" s~ T~! is the gyromagnetic

ratio.

At any nonzero temperature, the magnetic moment is sub-
jected to thermal fluctuations. The characteristic time scale
of its rotational diffusion in the limit of weak field and weak
anisotropy (i.e., at§ < 1 and 0 < 1) is given by

(1+a”)p
Ip=—"-7-"—=
20y kT
The time scale tp (sometimes referred to as the Debye time)
arises naturally, as thermal noise is introduced into the LLG
equation and it is required to reproduce the Gibbs-Boltzmann
distribution in thermodynamic equilibrium [59].

However, for nanoparticles with o > 1, it is common
to distinguish two mechanisms: (1) jumps between energy
minima and (2) fast fluctuations in the vicinity of a given
minimum [25,60]. In Raikher and Stepanov [60] terminol-
ogy, these are called “interwell” and “intrawell” relaxation
processes, respectively. For sufficiently large anisotropies,
o > 1, one might neglect the intrawell processes entirely.
In this approximation, magnetic moments are always in one
of the local minima and are only allowed to jump between
them. L. Néel in 1949 was the first to use this approximation
and suggest that the magnetization relaxation time owing to
overbarrier thermal jumps follows an Arrhenius-like law [28].
In 1963, the Néel result was improved by W. F. Brown Jr. [29].
With the help of the Kramers escape rate theory, Brown gave
the following high-barrier approximation for the magnetiza-
tion relaxation time (the so-called Néel time):

o |7
w(o>1)= ﬁ\/;expa. ©)]

oTp. (8)
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Formally, the Néel time 1y is the inverse of the small-
est nonvanishing eigenvalue of the Fokker-Planck equation,
that Brown formulated on the basis of the stochastic LLG
equation. Equation (9) is only valid for uniaxial particles in
zero field. However, in the literature one can find multiple
approximations for ty in static fields of different orientations,
as well as for other anisotropy types [25,61]. Brown, in his
study, also demonstrated that the zero-field rate of overbarrier
jumps is not affected by the Larmor precession and that the
corresponding term in the Fokker-Planck equation can be
safely omitted when one is looking for 7y. The same is true
if the field is applied parallel to the easy axis (¥ = 0). This
is a general property of the Fokker-Plank-Brown equation for
problems that possess axial symmetry. However, for all other
cases (¢ # 0 or different anisotropy types), precession will
affect magnetic relaxation and should in principle be explicitly
taken into consideration [62,63]. Omitting precession in the
general case limits the results to the field frequencies below
the ferromagnetic resonance range.

Finally, we introduce the timescales of relaxation mech-
anisms associated with external degrees of freedom in
nanoparticles. If the particle is suspended in a viscous
medium, two more relaxation times, connected to its me-
chanical rotation, must be introduced [64]. If a particle is
coated with a nonmagnetic shell of width /, its hydrodynamic
diameter can be calculated as dy = d + 2/. The inertial decay
time is

J od’®

== 10
Tr  60nd3 (1%

T
where J = 0.1pV d? is the moment of inertia, p is the particle
material density (here we assume that all the mass is con-
centrated in the magnetic core), 'y = nndz is the rotational
friction coefficient, and 7 is the fluid viscosity.

The rotational Brownian time is

N 'z N T[Udgl
T 2kgT  2kgT

(11)

TB

C. Implementation details

Here, we outline our tSW algorithm, specifically, how we
simulate the internal dynamics and the Néel relaxation mecha-
nism in magnetic colloids. For more details on the simulation
approach, we refer the reader to Sec. IV. The algorithm re-
quires W, h, and o as input parameters. The algorithm can be
logically separated into three steps:

(1) Finding the extrema in Eq. (5), for the current state of
the particle.

(2) Calculation of the energy barrier to estimate the tran-
sition probability.

(3) Updating the dipole moment orientation based on a
trial move against the transition probability.

Firstly, h.. [Eq. (6)] is calculated taking the current an-
gle between the vector 4 and the particle anisotropy axis at
its position, ¢. For a given ¢, the algorithm finds 6 which
minimizes the total magnetic energy [Eq. (5)] 6,,,, which is
closest to the previous dipole moment state. This is ensured by
initializing the state of the energy minimizer with the previous
particle state. If the field acting on the particle is less than A,
the algorithm proceeds to find a 6 that maximizes the total

o
5 10 15 20
—_— Ty
1024 T8
—_ Tp
..... T
-4
10 2m/w;

T [s]

10-10 4

10-12 4

5.0 7.5 10.0 12,5 150 175 20.0 225 250
d [nm]

FIG. 3. Characteristic timescales involved in relaxation pro-
cesses associated with ensembles of magnetic nanoparticles.
Timescales are calculated for magnetite (M, = 480 kA/m; K =
10 kJ/m®), as a function of particle size and temperature, where we
choose o = 0.08. The top x axis is showing what o to qualify particle
size (bottom x axis) with respect to temperature (not shown).

magnetic energy from both sides of 6, , denoted with 6, .
and 0 . With this information, the algorithm calculates the
energy barriers found on both sides of 6/ . ,

1
AE = ——|U($, 0) — U, O
KV'U(¢’ max) — U@, O]

/) 1 " /
AE" = K_V|U(¢’ Omax) — U (@, Opin)|- (12)

and selects the smaller energy barrier AE = min(AE’, AE")
to estimate a characteristic timescale of the Néel relaxation
process, using a modified form of Eq. (9),

Tp |TT
_ 2 _eAE(T
20V o

™ , (13)
and from it, the transition probability (neglecting back-
switching) p = 1 — €%/™, where 8t is the integration step time
[53,65]. It is suggested in the literature, for example, in [52],
that the transition probability should be estimated as the sum
of the relaxation rates due to both AE’ and AE”. However,
since only one saddle point is possible in our case, the smallest
barrier approach is sufficient and compatible with the analyt-
ical formulation of tSW. We make a trial move by casting a
random number and comparing it against the transition proba-
bility, akin to a Metropolis step. If the trial move is successful,
the algorithm finds a new 6 that minimizes Eq. (5), denoted by
6., and sets the dipole moment to point in accordance with
the new minimum. Alternatively, the dipole moment is set to
point in accordance with 6 . .

II. RESULTS AND DISCUSSION

Looking at Fig. 3, one can get a sense of the consider-
ations and constraints encountered in the simulation studies
of magnetic soft matter, where the objective is often to scru-
tinize collective properties at long timescales. We plot the
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(a) Solid superparamagnet (b)

Noninteracting ferrofluid

14 A

12 1

10 1

Am [%]

10

15

20

0 5 10 15 20

0 5 10 15 20

3

FIG. 4. The absolute magnetization error Am (in percent), as a function of &, for a noninteracting (a) solid superparamagnet, where the
analytical tSW results [solid lines, given by Eq. (15)] and simulations (symbols) are compared to the continuum-level description [given by
Eq. (A8)]; (b) ferrofluid, where the analytical tSW results [solid lines, given by Eq. (17)] and simulations (symbols) are compared to the
continuum-level description [given by Eq. (18)]. The color bar indicates the anisotropy parameter o values explored.

dependence of Neél (ty), Brownian (tp), internal diffusion
(tp), period of the precession (2w /wy), precession damping
(7o), and inertial decay (z;) times as functions of magnetite
particle diameter d. The range of the anisotropy constant o
between 5-20 covers the most commonly studied nanoparticle
sizes and materials. If one were to simulate the magnetody-
namics of the nanoparticles explicitly, accounting for all their
characteristic magnetic relaxation timescales by, for example,
using the aforementioned LLG equation [66—68], it becomes
apparent that t; is not small enough to be safely ignored. This
means that one must resolve timescales less than picoseconds
to be able to include full magnetodynamics in simulation.
This is prohibitively low for any simulation study concerned
with bulk properties. So, from practical considerations, one
would like to simulate timescales where high-frequency pro-
cesses (<107®) can be safely ignored. However, a competition
remains between ty and tp on the internal relaxation, and
7 on the external relaxation side. Specifically, within the
5 < o < 20 range, there are regions where ty and 7p are
comparable within simulation time, to Ty becoming pro-
hibitively large, if one was to consider relaxation associated
with tp. Understanding the optimal approach to be able to
include relevant magnetodynamic processes in this range, is
precisely the question we address below.

A. Static properties

At a finite temperature, an ensemble of magnetic colloids
in a static homogeneous magnetic field reaches thermo-
dynamic equilibrium at times larger than the system’s
characteristic relaxation time. For any particular configuration
of anisotropy axes in a nanoparticle ensemble, the equilibrium
state is uniquely defined by (o, £). In Fig. 4, we scrutinize the
tSW model in its ability to correctly reproduce equilibrium
magnetization m of an ensemble of magnetic nanoparticles.
The equilibrium magnetization of the system is the total sum
of the magnetic moments p, projected onto the axis of the

applied magnetic field, and normalized to unity throughout the
manuscript. As previously mentioned, we distinguish cases
where the particles exhibit either only Néel (solid superpara-
magnet) or both Brownian and Néel (ferrofluid) relaxation
mechanisms.

Within the tSW model, the discrete states in which the
magnetic moment can be for a solid superparamagnet, cor-
respond to the energy minima in the total magnetic energy
[Eq. (1)]. The equilibrium magnetization can be obtained if
one performs a summation over a set of allowed discrete
orientations,

SV _ i €08 Omin i €Xp[—U (Omin,i)/kpT] (14)
" > expl—U Gmin)/ksT]
where 6,,;,; are orientations minimizing the energy at given
values of £, o, and ¥, i = 1, 2 is the number of a correspond-
ing minimum. To get the magnetization of an ensemble with
randomly distributed anisotropy axes, one needs to average
m'SW over all possible orientations of 7,

/2
m'SW =/ msV (€, o, ¥) sin Y. (15)
0

The integral in Eq. (15) can be calculated if we consider
components parallel and perpendicular to the applied field
direction separately (h < 1), m{® and m'?", respectively,

where
m" =tanhg, m{" =&/20. (16)

The problem of describing the equilibrium magnetization
of an ensemble of immobilized, noninteracting, randomly
oriented uniaxial particles, has been solved based on a gen-
eralization of the Langevin function for the case of solid
dispersions with random orientation texture [69-71]. The full
expression together with an outline of the derivation are pro-
vided in the Appendix.

In the case of a noninteracting ferrofluid, i and € are no
longer independent variables - in the tSW model, there exists
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a unique set of allowed magnetic moment orientations, for
any given orientation of the anisotropy axis. The equilibrium

J

/2
sV — / S (&, o fY & o, ) sinpdy, PV (e,
0

For & = 0, the distribution is random and f*" = 1. In gen-

eral, however, the magnetization of a noninteracting ferrofluid
is given by the Langevin function [33]

mt =mL(), L(§)= coth(§) — é (18)

In this case, the magnetization does not depend on the
anisotropy parameter o.

In Fig. 4, we are showing the absolute magnetization error,
Am =100 x |m"S" — m"|/m, as a function of £. Note that
m"SV represents either the simulated data (symbols) or the
analytical results based on the tSW model (lines). Specifically,
m"™SW corresponds to Eq. (15) for a solid superparamagnet
and Eq. (17) for a ferrofluid. Similarly, m®™, representing
the continuum-level description, is given by Eq. (A8) for a
solid superparamagnet and Eq. (18) for a ferrofluid. Figure 4
demonstrates that the tSW model can reproduce the equi-
librium magnetization within a few percent of the ground
truth, in all cases except for particle sizes and/or temperatures
where o < 5, where one can expect a purely superpara-
magnetic response. Below this o range, we encounter the
limitations of the model. Let us address these limitations. In
a solid superparamagnet, the only relaxation mechanism that
the particles can leverage to reach equilibrium is Néel.

In the tSW model, there is only a single state in which
the dipole moment can be above k... In other words, the
tSW model is equivalent to the classical SW model above
her. In general, however, the magnetic moment orientation
can fluctuate relative to the states allowed in the classical SW
model [69-71]. The frequency of these intrawell fluctuations
is inversely proportional to o. With this in mind, one can
understand why the tSW model overestimates the equilibrium
magnetization of low o particles in the large £ region. More-
over, the intrawell modes matter for high & regardless of o, as
Néel relaxation (1/p;) is no longer sufficient for an accurate
description of magnetic relaxation [35,72]. Hence, we observe
regions with a slight increase in Am with growing &. Finally,
the importance of intrawell states relative to interwell states
increases with decreasing &, since the applied field is not
strong enough to constrain the dipole moment fluctuations
perpendicular to the anisotropy axis.

Moving on to the noninteracting ferrofluid system, where
both Néel and Brownian relaxation are at play, the same
conclusions largely hold as for a solid superparamagnet. How-
ever, one can note a marginally worse agreement between the
tSW model and the continuum-level description. Consider the
high £ region, where one can assume Néel relaxation plays a
minimal role. For high o, we have seen that for a fixed random
distribution of the anisotropy axis, the SW reproduces the
equilibrium state very well. In the same circumstances, given
a nonrandom distribution of anisotropy axes, the relative error

o.V)=—p

magnetization can be obtained in a similar form to Eq. (15),
where

> expl—U Omin,i (V) /ksT]
ST (3 expl—U Buin, i((¥)) /ksT1) sin ydyr

7)

(

is almost quadrupled. The difference in relative error between
the left and right subplots in Fig. 4 is related to the fact that, for
a solid superparamagnet, the anisotropy axis orientations are
randomly distributed and fixed, whereas for a ferrofluid, this
is not the case. The classical SW model estimates the equilib-
rium magnetization incorrectly, but not equally incorrectly for
all anisotropy axis distributions. In fact, it can be inferred by
comparing the left and right subplots in Fig. 4, that the more
the anisotropy axes are aligned with the magnetic field, the
worse is the equilibrium state estimation in the classical SW
model.

Finally, it is worth highlighting a particularity of the tSW
model, related to the initial susceptibility for low o. Initial
magnetic susceptibility is an important characteristic of the
material’s linear response to a weak applied field (or “probing
field”),

om

= — . 19
oH H—0 ( )

X
It can be shown that in the tSW model, the total static suscep-
tibility is given by

x7(0) = x (14 1/0), (20)

where y is the static susceptibility of an isotropic superpara-
magnet (Langevin susceptibility)

_ jop®N
3WVkgT

In the limit of no particle anisotropy, the static susceptibility
should correspond to the Langevin susceptibility [33]. How-
ever, this is not the case in the tSW model, where the values
diverge. Although the tSW model reproduces the characteris-
tic internal relaxation time related with Néel relaxation well,
it is inadequate for simulations of small enough nanoparticles,
or at high enough temperatures where o < 5.

Having addressed the limitation of the tSW at length, it is
important to note that the absolute error for o > 5 remains
less than 10%, which qualifies the tSW approach as surpris-
ingly accurate within a wide (o, £) range of applicability.
It is apparent that the dominant internal relaxation mechanism
is the Néel one, even for relatively small ¢ . Furthermore, our
implementation of the tSW is in agreement with the analytical
prediction for the model across the board. The key insight here
is that the validity of the tSW model is most constrained by the
limitations of the classical SW model, which are well under-
stood and documented. The discrepancies stemming from the
lack of intrawell modes are less important, and we do not see
this as a substantial additional limitation to the model. More-
over, as long as one is considering noninteracting systems,
one can compensate for the overestimation stemming from the
classical SW model by tuning the saturation magnetization

xe 21
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FIG. 5. The magnetization m as a function of &, for a solid
superparamagnet (orange for x;, = 2.4, red for for y, = 4.8) and
a ferrofiuid (violet). Interacting systems are represented by square
symbols (simulation data) and dashed lines (theory), while noninter-
acting systems use circles (simulation data) and dotted lines (theory).
Dotted lines correspond to Eqs. (17) and (15) (ferrofluid and solid
superparamagnet, respectively). Dashed lines represent MMTF ex-
tensions of these equations, with an additional scaling factor «(§) =
a + bt for the solid superparamagnet (details in text) where (a, b)
are fitted parameters (for x, = 2.4, a = 0.8151 and b = 0.0213;
xL =4.8, a=0.4989 and b = 0.0778). Interacting systems were
simulated at A = 3. The effects of demagnetization fields in have
been removed from the simulation data.

of the colloids to fit the correct equilibrium magnetization
curves.

The tSW model can also be used to study interacting
systems. From the point of view of the model, there is no
difference between interacting and noninteracting systems.
The model requires a magnetic field as an input parameter.
If one is studying interacting systems, it is necessary to pass
an effective field (a vectorial sum of the total dipole field
the nanoparticle feels and the applied magnetic field) to the
solver, instead of the applied magnetic field. All other as-
pects of dipole-dipole interactions are exogenous to the model
and must be handled separately. In Fig. 5, we consider how
dipole-dipole interactions affect the equilibrium magnetiza-
tion for o = 5 solid superparamagnet and ferrofluid systems,
respectively. For the parameters we used, a ¢ = 5 nanopar-
ticle corresponds to the dipolar coupling parameter A = 3.
The A parameter quantifies the strength of the dipole-dipole
interaction with respect to thermal fluctuations, when two
dipoles are collinear and at a touching distance, and is given
by

op*

A= —. 22
47Td3ka ( )

While the magnetization of noninteracting ferrofluids is
known to follow Eq. (18), the magnetization of interacting
ferrofluids is well described with the modified mean-field
theory (MMFT) instead, originally presented in Ivanov and
Kuznetsova [73], as long as dipolar forces do not lead to
significant cluster formation [74]. The first-order MMFT ex-

pansion of the Langevin parameter &, = £ + y;m"(£), leads
to the following magnetization: m = m*(&,). We applied an
MMEFT correction to Eq. (17), to obtain an analytical expres-
sion of an interacting ferrofluid within the scope of the tSW
model (purple-dashed line). This simple treatment is in good
agreement with our simulated data for an interacting ferrofluid
(purple-square symbols). We reproduce the expected behav-
ior, which is that dipole-dipole interactions tend to increase
the magnetic response in a ferrofluid. However, it must be said
that it is a nontrivial claim that the MMFT approach should
work for a two-state model such as the tSW model, and a
more rigorous derivation would be necessary. Comparing the
simulated data for noninteracting and interacting solid super-
paramagnet systems at y; = 2.4 (orange circles and square
symbols, respectively), we see that interactions lead to only a
slight increase in the magnetic response, that differs qualita-
tively from what one might expect from Elfimova er al. [33].
For x; = 4.8 (red-square symbols), we can note pronounced
decrease in magnetization in the low to moderately high &
range. One can get an intuitive sense of what could be the
mechanism behind these results by looking at Fig. 6. Com-
paring Figs. 6(a) and 6(b), it should be visually accessible
that the dipoles in a noninteracting system are more aligned
with the applied field than for an interacting system. In an
interacting system, the dipoles are coupling to a local field,
which is a complex function of the dipolar fields and the
applied field. In the case of an interacting solid superparamag-
net, our conjecture is that dipole-dipole interaction correlated
vortices are formed, which impedes the magnetic response
of the system. The mechanism is reminiscent of the one of
ring formation in strongly interacting magnetic fluids [75]
and vortex formation in magnetic multicore particles [76,77].
In analogy to these studies, we consider these vortices as
“magnetic holes” that can be effectively subtracted from the
system’s magnetic response. The functional dependence of
the fraction of magnetic holes on the applied magnetic field
strength is unknown and a subject for a separate, in-depth
study. For the purposes of this paper, we assumed that the
fraction of magnetic holes decreases linearly with an applied
magnetic field strength. With this assumption, we can incor-
porate dipole interactions using an MMFT based extension to
Eq. (15) to obtain an analytical form for the magnetization for
an interacting solid superparamagnet, shown in Fig. 5, in the
following form: m"SV = «(&)m"V (£,), where &, = £ + x -
a(£) - m"SY (&), and « is a linear function of £. We see a rather
good agreement between the analytical expression (orange
and red dashed line, for x; = 2.4 and x; = 4.8, respectively)
and the simulated data (orange and red square symbols, for
XL = 2.4 and x; = 4.8, respectively). The results shown in
Fig. 5 demonstrate the applicability of the tSW approach for
studying interacting systems and underscore the potential of
highly scalable methods to advance research in magnetic soft
matter.

In summary, the tSW model is a reasonably accurate ap-
proach to introduce internal magnetization dynamics for o >
5 nanoparticles via Néel relaxation that can reproduce the
correct equilibrium in this o range. Having established that,
the discussion can proceed to the study of dynamics, which is
the type of study where the tSW model can benefit researchers
interested in long timescales and bulk-sized systems.
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FIG. 6. Visualization of the dipole moment orientations in (a) noninteracting and (b) interacting solid superparamagnet (x, = 4.8) at
& = 5. The magnetic field is applied along the z axis. The color bar indicates the z component of the dipole moment, with values normalized
between 1 and —1, corresponding to a dipole moment parallel or antiparallel, respectively, to the direction of the applied magnetic field. The
arrow sizes of the dipole moments are exaggerated for visualization purposes and have no physical significance.

B. Dynamic properties

One of the key collective properties of any magnetic soft
matter system is its characteristic magnetic relaxation time.
This is especially relevant for systems designed for heating
applications. The magnetic relaxation time can be assessed by
calculating the dynamic susceptibility spectra and locating the
maximum/maxima of the susceptibility’s imaginary part.

Let us consider an ensemble of immobilized, noninter-
acting, randomly oriented particles with uniaxial magnetic
anisotropy. In a harmonically oscillating field H = Hy cos wt,
where ¢ is the time and w is the oscillation frequency, the
magnetization can generally be represented as a series,

m(t) = Z(m,’c(a)) cos kot + m(w) sin kowt), (23)
k=1

where m’ and m” are the Fourier coefficients. In the linear
response regime, Hy — 0, only the first harmonic, k = 1,
remains. Here, the dynamic complex susceptibility can be
introduced as

x (@)= x'(®)+ix" (o), (24)
where
x'(w) = m)(w)/Hy, x"(w)=m](w)/H. (25)

For each particle, the susceptibility can be split into compo-
nents parallel and perpendicular to its anisotropy axis, x| and
X1, respectively. Assuming that a probing field |H| = H is
in a xz plane and forms an angle ¢ with an easy axis, the
magnetization in the linear regime is given by

m= (x Hsiny,0, x H cos ), (26)

where the total particle susceptibility obeys the superposition
rule [60]

x = (Gx+3x0). (27)

where within the continuous approach and without gyromag-
netic effects [60],

0
1O ) = 01 +25),

X (w) ~ l—ith’
0
(@)~ 1“—() O = (-5, @8
— T

the order parameter § is given by

31 /o 1
S = ZE[DWE) - 1} 2 @

where D is the Dawson function

D(x)=e™ / o dr (30)
0

This relation must be true for both the static and dynamic case.
For immobilized particles

-1
e —1 1 G+2—a—l
=1p——| — /— ,
=% |1+1/0V

20yl 31
T, =21p——,

1 Dy TS

In the case where particles are not immobilized, it is sufficient
to replace relaxation times with effective values [49],

t=(t ) =) 62
It is important to note that field-dependent relaxation should
also be scrutinized to fully appreciate the implications from
the coupling of the magnetic relaxation parallel and perpen-
dicular to the easy axis. As is, this remains an open question
for study. In the tSW model, the relaxation time 7 is an input
parameter, which means that the dynamics of tSW parallel to
the easy axis must be the same as in the continuous case.
The orthogonal relaxation time 7, is instantaneous. There-
fore, the dynamic susceptibility of an ensemble of frozen,
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FIG. 7. Dynamic susceptibilities as a function of wtp, where tp /75 = 0.02, for a noninteracting (i) solid superparamagnet [(a) real part and
(c) imaginary part], where the analytical tSW results (dashed lines) and simulations (symbols) are compared to the continuum-level description
(solid lines); and (ii) ferrofluid [(b) real part and (d) imaginary part], where the analytical tSW results (dashed lines) and simulations (symbols)
are compared to the continuum-level description (solid lines). The analytical tSW corresponds to Eq. (33), where the input relaxation time is
either the Néel time, or the effective time (7y' + ;') (solid superparamagnet and ferrofluid, respectively). The continuum-level description
corresponds to Eq. (27) where the relaxation times 7 and 7, are given either by Eq. (31) or (32) (solid superparamagnet and ferrofluid,
respectively). The color bar indicates the anisotropy parameter o values explored.

uniaxial magnetic nanoparticles with a random distribution of
anisotropy axis is given by

XL
1-— l.a)‘L'H

XL

o

XM (@) = (33)

Once again, for a liquid, it is sufficient to introduce ef-
fective relaxation times, 7y — 7. Note that the orthogonal
magnetic response (which is instantaneous and does not
have any fluctuations associated with it) will not make any
contribution to the zero-field magnetization autocorrelation
function. Therefore, the calculated susceptibilities from the
autocorrelation function when using the tSW method will be
incorrect. The simulated susceptibilities have been calculated
by applying a weak oscillating magnetic field (maximum am-
plitude corresponding to £ = 0.1) for a span of frequencies,
in order to be able to determine the complex susceptibilities
from the time evolution of the total magnetization vector
[see Eq. (24)]. Similarly, the static susceptibilities should be
estimated from the initial slope in the magnetization profiles.

Looking at Fig. 7, we can see that the tSW model
reproduces the correct dynamics in both the solid superparam-
agnet and noninteracting ferrofluid systems, as quantified by
the initial dynamic susceptibilities. Of course, in the initial
susceptibility regime, the tSW model incorporated dipole mo-
ment fluctuations only along the anisotropy axis associated
with 7, which in this case is equivalent to ty. Since this is an
input parameter for the model, the tSW can confidently repro-
duce the correct internal dynamics for the lowest-frequency
relaxation process (7). It is apparent that Néel relaxation is
very relevant even for o = 10 particles, where the dynamic
susceptibility is clearly distinct from the Debye limit shown
with dots. Recall that the maximum of the Debye limit is at
wty = 0.01, which is set by the model as /7y = 0.01. The
high-frequency peaks, resolved in the continuum description,

corresponding to 7, cannot be captured in the tSW, simply
because of the fact that the only intrawell states available
to the dipole moment in the tSW model are the minima of
the magnetic energy. In other words, there are no associated
fluctuations perpendicular to the anisotropy axis inthe H — 0
regime. Outside of the initial susceptibility regime, this is not
an issue as the dipole moment instantaneously follows the
local energy minima, as obtained in the classical SW model,
where there is always a relative angle the dipole moment takes
with respect to the anisotropy axis. However, within the range
of applicability we suggest (o > 5), these higher-frequency
processes are distinct enough that they could be averaged out
while still resolving the correct dynamics. Having said that, it
should also be clear that the in-field susceptibility contribution
perpendicular to the anisotropy axis is frequency independent.
As suggested at the beginning of this section, the posi-
tion(s) of the maxima of the imaginary part of the initial
susceptibility indicate the optimal field frequencies for heat-
ing applications. Figure 7 clearly shows that if one needs to
optimize the frequency of an applied magnetic field for hy-
perthermia depending on the particle size and material, using
a point dipole approximation can be very misleading, as even
for rather high anisotropy energies, the shape and the imag-
inary part of the susceptibility spectra drastically differ from
that of a purely Brownian, or purely Néel relaxing systems.
In summary, we can see that the tSW approach can be
used effectively to incorporate Néel relaxation and simu-
late the dynamics associated with that relaxation process for
magnetic nanoparticles with o > 5. The relative importance
of the higher-frequency mechanisms not considered in the
tSW approach has to be determined on a case-by-case basis.
The tSW approach could enable simulation studies in cases
where such mechanisms are not crucial. The price to pay in
terms of accuracy is slight, compared to the simulation scale
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compromises that would be unavoidable with an approach that
reproduces also the higher-frequency relaxation processes.
A major use case of the tSW model would be to simulate
systems where 7p is high. In this case, a Brownian dynamics
approach to thermalize each particle might be impractical. A
good example here would be multicore or composite magnetic
colloids, where the nanoparticles are embedded in a solid
matrix [76,78,79].

III. CONCLUSIONS

Driven by a long-standing need to incorporate inter-
nal magnetization dynamics into coarse-grained computer
simulations of magnetic soft matter, we proposed an ap-
proach capable of encompassing both Néel and Brownian
relaxations in a computationally affordable manner. In this
paper, we introduced the Stoner-Wohlfarth thermal model
(tSW) and validated it against an ensemble of immobilized,
noninteracting, randomly oriented uniaxial particles (solid
superparamagnet) and a classical dilute (noninteracting) fer-
rofluid for various combinations of anisotropy strength and
Zeeman energy at a fixed temperature. The choice of sys-
tems was dictated by the availability of analytical results,
which were used to establish the range of validity of our
approach. It was crucial to verify whether and when the tSW
model could reproduce both the equilibrium and dynamic
properties of magnetic soft matter systems. Our findings in-
dicate that the tSW model is applicable and efficient when
the anisotropy of a particle exceeds thermal fluctuations by
a factor of five or more. We also applied the tSW model
to interacting systems, uncovering and rationalizing a pro-
nounced magnetization decrease in solid superparamagnets
owing to the dipole-interaction-induced formation of mag-
netic vortices/holes. The linear dependence of the proportion
of these holes on £ fits most of our data, although its phys-
ical meaning and general functional form for arbitrary &
require further investigation. This paper opens possibilities
for future studies of magnetic soft matter systems, where
the interplay between Néel and Brownian relaxation is often
overlooked. We plan to address field-dependent relaxation
dynamics within the tSW model in a future study.

IV. METHODOLOGY

A. Simulation method

We perform MD simulations of a solid superparamagnet
and a noninteracting ferrofluid for different anisotropy and
Langevin parameter combinations (o, &), at a fixed tempera-
ture, using the ESPResSo simulation package [80]. Magnetic
nanoparticles are assumed to be monodisperse, spherical par-
ticles with a point dipole, and a characteristic diameter d. The
solvent was implicitly represented via the Langevin thermo-
stat [81]. The equations of motion are integrated over time ¢
numerically,

dv; - .
Mi_v =Fi_FTlai+2%_iTlv (34)
dt
da; B,
Ld—‘j = % — Ty + 281, (35)

where for the ith particle in Eq. (34), M; is, in general, a rank
two mass tensor. Since we are simulating isotropic colloids,

the mass tensor reduces to a scalar. F; is the force acting
on the particle; V; denotes the translational velocity. I'y; de-
notes the translational friction tensor that once again, because
of the isotropy arguments, reduces to a scalar friction coeffi-

>

cient. Finally, &, is a stochastic force modeling the thermal
fluctuations of the implicit solvent. Similarly, in Eq. (35), [;
denotes ith particle inertia tensor (scalar for a homogeneous
sphere), 7; is the torque acting on it, and ®; is the particle
rotational velocity. As for the translation, I'y denotes the rota-
tional friction tensor that reduces to a scalar for our colloids,

2R . . .
and &, is a stochastic torque serving for the same purpose as

=TI . . . -
&, . Both stochastic terms satisfy the conditions on their time
averages [82],

<§_TI/R>t _0. <g]Tl/R(t)§ZZ/R(t,)>
= ZFTI/RkBT(sI,kS(t — l‘/), (36)

where k, [ = x,y, z.

Forces and torques in Eqgs. (34) and (35) are calcu-
lated from interaction potentials. We used periodic boundary
conditions, to avoid finite-size effects. Integration of the
equations of motion was performed using the velocity Ver-
let algorithm [83], with a timestep of 0.01 (see Sec. IVB
for more detail on the simulation units and their relation to
experimental values). The tSW calculation, as described in
Sec. IC, is done before the force calculation in the velocity
Verlet scheme. The initial configuration on our simulations
is constructed by randomly placing 500 particles in a cu-
bic simulation box, where the anisotropy axis orientations
were uniformly distributed on a surface of a sphere. Simu-
lations length was chosen to be 1007cy,., Where 7.p,r denotes
the characteristic time of the longest relaxation process we
needed to resolve. To obtain statistically significant results,
we always present averages over eight independent simulation
runs, and over 20 statistically independent snapshots for each
simulation. We include the Zeeman energy from the external
magnetic field H,

N
Un = —po ) H - i (37)
i=0

The long-range dipole-dipole pair interactions are sim-
ulated using direct summation with two replicas. The
performance and reliability of the implementation of tSW is
dependent on a robust and highly efficient strategy to find
the extrema in Eq. (5). For this purpose, we make use of
Nlopt, a free/open-source library for nonlinear optimization
[84]. Nlopt is a versatile library written in C, with a common
interface for a multitude of different optimization strategies.
We have specifically settled on using the Method of Moving
Asymptotes (MMA) algorithm [85] to find extrema in Eq. (5).
MMA is guaranteed to converge to some local minimum and
has, throughout our testing, proven to be well suited for opti-
misation of Eq. (5), converging to the correct energy minima
very quickly.

B. Reduced units and mapping to physical parameters

In this subsection, we give an overview of the SI and
reduced units used in our simulations. The units are presented
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in the order we find most instructive. We start with a com-
mon reference material choice for the magnetic nanoparticles,
namely, magnetite. We assumed that magnetite has uniax-
ial anisotropy with a magnetic anisotropy constant of K =
10 kJ/m?, saturation magnetization M, = 480 x 10> A/m and
a core density p,, = 5170 kg/m>. The uniaxial anisotropy as-
sumption is commonly used, but is not strictly correct, as
pointed out in Witt ez al. [86]. In all cases, we assumed that the
magnetite core is coated with a 2-nm-thick oleic acid coating
(density 895 kg/m?). Given a value of o we want to explore,
considering the material values given above, the unit length
is chosen to be the diameter of the nanoparticle d, and a
unit mass is chosen to be its mass. We choose the particle
volume fraction in the simulation box to be ¢ = 0.001. The
side length of the simulation box was set to ~64d, derived
based on the chosen ¢ and the particle number, N. In all
cases, we choose the unit energy to be room temperature 7 =
298.15 K. In other words, we set the reduced temperature of

J

the Langevin thermostat to kg7 = 1. These three choices also
uniquely determine the unit time. From there, we calculate tp,
where the gyromagnetic ratio is o - (1.76 x 10" s=! T~1),
the damping parameter is chosen to be « = 0.08 and p is the
vacuum permittivity. We choose tp/7p = 0.01. Based on this
choice, we can derive the density of the implicit fluid and the
respective rotational and translational friction coefficients.
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APPENDIX

Here, we derive the equilibrium magnetization for an ensemble of immobilized, noninteracting, randomly oriented uniaxial
particles. First, let us consider immobilized particles with a predefined orientation of the anisotropy axes (7i = const.). The

equilibrium projection of magnetization on the field direction is

my = (cos ),y = /cos@ W,y dé,

(AD)

where [...dé is the integral over all possible orientations of the magnetic moment and W,, is the equilibrium

(Gibbs/Boltzmann) PDF,
—U/kgT
w,, = 2CULT) (A2)
Z(&,0,0n)
Z is the partition function,
Z(E,o,0) = /exp(—U/kBT)dE = /exp[é cosf + o (& - i1))de. (A3)
Combining Egs. (A2) and (A3),
0:Z(§,0,11)
== - A4
"= G o) A

In practice, it is easier to consider integral Eq. (A3) in a spherical coordinate system, in which z axis coincides with the easy axis
and the field lies perpendicular to the xz plane, i.e., 7i = (0, 0, 1) and H=H (sinyr, 0, cos ¥). Let us denote magnetic moment
angles in this system as ¢, and 6,,, so é = (cos ¢, sin 6, sin ¢, sin 6, cos 6,). Note that in the main text, it was an external field
that was aligned along the z axis, and the easy axis was forming an angle v with it in the xz plane. Then Eq. (A3) becomes

2 T
Z(E&,0,¢)= / do f explo cos’ 0, + &(cos 8, cos ¥ + cos ¢, sin 8, sin V)] sin 6,d6,
0 0
T 2
= / exp(o cos? 6, + & cos 6, cos Iﬂ)( / exp[£ cos ¢, sin 6, sin I/f]d¢n) sin 6,d6,
0 0
1
=2r / exp(ox?) exp(& cos ¥ x)Ip (£ sin yry/1 — x2)dx
—1
1
=2 / exp(axz)[cosh(é cos ¥ x) + sinh(& cos ¥ )Io(& sin /1 — x2)dx
-1
(A5)

1
=4r / exp(ox?) cosh(& cos ¥ x)Ip (£ sin Y/ 1 — x2)dx,
0
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where I is the modified Bessel function of the first kind of order zero. Analogous expressions for the partition function of an
immobilized particle can be found in Refs. [33,87]. The derivative is given by

1

0:Z(&,0,¢) =4n / exp(oxz)[x cos ¥ sinh(& cos ¥ x)Ip(& sinry/1 — x2) (A6)
0

+ v/ 1 — xZsin y cosh(& cos ¥ x)I; (€ sin ¥/ 1 — x2)]dx, (A7)

where /; is the modified Bessel function of the first kind of order one. To get the magnetization of an ensemble with randomly
distributed easy axes, one needs to average my over all possible orientations of 7,

2 b4 /2
m= Lfmy(f;',(f, )dii = Lf dC/ my(§, 0, Y )sin ydyr =/ my(§, 0, ¥)sinydy. (A8)
4 47 0 0 0

The transition [ dyr — 2 [7/?

dyr can be made because the integrand is symmetrical with respect to cos . Also note that since

there is no special direction in the plane orthogonal to the field, the magnetization of a random ensemble must be strictly aligned
with the field and the perpendicular component of magnetization must be zero (this is why subscript H can be omitted).

[1] P. Langevin, Sur la théorie du magnétisme, J. Phys. Theor. Appl.
4, 678 (1905).

[2] P. Langevin, Magnétisme et théorie des €lectrons, Ann. chim. et
phys. 203 (1905).

[3] W. C. Elmore, The magnetization of ferromagnetic colloids,
Phys. Rev. 54, 1092 (1938).

[4] E. L. Resler, Jr. and R. E. Rosensweig, Magnetocaloric power,
ATAA J. 2, 1418 (1964).

[5] A. Cebers, E. Blum, and M. Maiorov, Magnetic Fluids (Walter
de Gruyter, Berlin, 1997).

[6] S. Odenbach, Ferrofluids: Magnetically Controllable Fluids and
Their Applications, Vol. 594 (Springer, New York, 2008).

[7] S. Odenbach (ed.), Colloidal Magnetic Fluids, Lecture Notes in
Physics, Vol. 763 (Springer-Verlag, Berlin, 2009).

[8] M. Zrmyi, D. Szab6, and H.-G. Kilian, Kinetics of the shape
change of magnetic field sensitive polymer gels, Polym. Gels
Networks 6, 441 (1998).

[9] R. Weeber, M. Hermes, A. M. Schmidt, and C. Holm, Polymer
architecture of magnetic gels: A review, J. Phys. 30, 063002
(2018).

[10] T. Volkova, V. Bohm, T. Kautfhold, J. Popp, F. Becker, D. Y.
Borin, G. Stepanov, and K. Zimmermann, Motion behaviour
of magneto-sensitive elastomers controlled by an external mag-
netic field for sensor applications, J. Magn. Magn. Mater. 431,
262 (2017).

[11] G. Filipcsei, I. Csetneki, A. Szildgyi, and M. Zrinyi, Magnetic
field-responsive smart polymer composites, in Oligomers-
Polymer Composites-Molecular Imprinting (Springer, New
York, 2007), pp. 137-189.

[12] Y. Li, J. Li, W. Li, and H. Du, A state-of-the-art review on
magnetorheological elastomer devices, Smart Mater. Struct. 23,
123001 (2014).

[13] S. Odenbach, Microstructure and rheology of magnetic hybrid
materials, Arch. Appl. Mech. 86, 269 (2016).

[14] P. A. Sanchez, E. S. Minina, S. S. Kantorovich, and E. Y.
Kramarenko, Surface relief of magnetoactive elastomeric films
in a homogeneous magnetic field: Molecular dynamics simula-
tions, Soft. Matter 15, 175 (2019).

[15] S. Frank and P. C. Lauterbur, Voltage-sensitive magnetic gels as
magnetic resonance monitoring agents, Nature (London) 363,
334 (1993).

[16] R. Weeber, S. Kantorovich, and C. Holm, Deformation mech-
anisms in 2D magnetic gels studied by computer simulations,
Soft Matter 8, 9923 (2012).

[17] R. Dreyfus, J. Baudry, M. L. Roper, M. Fermigier, H. A.
Stone, and J. Bibette, Microscopic artificial swimmers, Nature
(London) 437, 862 (2005).

[18] J.J. Benkoski, S. E. Bowles, R. L. Jones, J. F. Douglas, J. Pyun,
and A. Karim, Self-assembly of polymer-coated ferromagnetic
nanoparticles into mesoscopic polymer chains, J. Polym. Sci.
Part B: Polym. Phys. 46, 2267 (2008).

[19] S. P. Gubin, Magnetic Nanoparticles (John Wiley & Sons,
Hoboken, NJ, 2009).

[20] A. O. Ivanov and P. J. Camp, Magnetization relaxation dy-
namics in polydisperse ferrofluids, Phys. Rev. E 107, 034604
(2023).

[21] D. Mostarac and S. S. Kantorovich, Rheology of a nanopolymer
synthesized through directional assembly of DNA nanocham-
bers, for magnetic applications, Macromolecules 55, 6462
(2022).

[22] D. Mostarac, Y. Xiong, O. Gang, and S. Kantorovich,
Nanopolymers for applications: How
to choose the Nanoscale 14, 11139
(2022).

[23] I. S. Novikau, E. V. Novak, E. S. Pyanzina, and S. S.
Kantorovich, Behaviour of a magnetic nanogel in a shear flow,
J. Mol. Liq. 346, 118056 (2022).

[24] M. Rosenberg and S. Kantorovich, The influence of anisotropy
on the microstructure and magnetic properties of dipolar
nanoplatelet suspensions, Phys. Chem. Chem. Phys. 25, 2781
(2023).

[25] W. T. Coffey and Y. P. Kalmykov, Thermal fluctuations of
magnetic nanoparticles: Fifty years after brown, J. Appl. Phys.
112, 121301 (2012).

[26] Y. A. Buyevich and A. Ivanov, Equilibrium properties of ferro-
colloids, Physica A 190, 276 (1992).

[27] E. C. Stoner and E. Wohlfarth, A mechanism of magnetic hys-
teresis in heterogeneous alloys, Phil. Trans. R. Soc. A 240, 599
(1948).

[28] L. Néel, Influence des fluctuations thermiques sur I’aimantation
de grains ferromagnétiques tres fins, C. R. Hebd. Seances Acad.
Sci. 228, 664 (1949).

magnetic
architecture?

014438-12


https://doi.org/10.1051/jphystap:019050040067800
https://doi.org/10.1103/PhysRev.54.1092
https://doi.org/10.2514/3.2568
https://doi.org/10.1016/S0966-7822(98)00033-1
https://doi.org/10.1088/1361-648X/aaa344
https://doi.org/10.1016/j.jmmm.2016.10.009
https://doi.org/10.1088/0964-1726/23/12/123001
https://doi.org/10.1007/s00419-015-1092-6
https://doi.org/10.1039/C8SM01850B
https://doi.org/10.1038/363334a0
https://doi.org/10.1039/c2sm26097b
https://doi.org/10.1038/nature04090
https://doi.org/10.1002/polb.21558
https://doi.org/10.1103/PhysRevE.107.034604
https://doi.org/10.1021/acs.macromol.2c00738
https://doi.org/10.1039/D2NR01502A
https://doi.org/10.1016/j.molliq.2021.118056
https://doi.org/10.1039/D2CP03360G
https://doi.org/10.1063/1.4754272
https://doi.org/10.1016/0378-4371(92)90037-Q
https://doi.org/10.1098/rsta.1948.0007

THERMAL STONER-WOHLFARTH MODEL FOR ...

PHYSICAL REVIEW B 111, 014438 (2025)

[29] W. F. Brown, Thermal fluctuations of a single-domain particle,
Phys. Rev. 130, 1677 (1963).

[30] R. Taukulis and A. Cebers, Coupled stochastic dynamics of
magnetic moment and anisotropy axis of a magnetic nanoparti-
cle, Phys. Rev. E 86, 061405 (2012).

[31] P. Ilg, Equilibrium magnetization and magnetization relaxation
of multicore magnetic nanoparticles, Phys. Rev. B 95, 214427
(2017).

[32] P. Bender, J. Fock, C. Frandsen, M. F. Hansen, C. Balceris, F.
Ludwig, O. Posth, E. Wetterskog, L. K. Bogart, P. Southern
et al., Relating magnetic properties and high hyperthermia per-
formance of iron oxide nanoflowers, J. Phys. Chem. C 122,
3068 (2018).

[33] E. A. Elfimova, A. O. Ivanov, and P. J. Camp, Static

magnetization of immobilized, weakly interacting,
superparamagnetic nanoparticles, Nanoscale 11, 21834
(2019).

[34] P. Ilg and M. Kroger, Longest relaxation time versus maxi-
mum loss peak in the field-dependent longitudinal dynamics of
suspended magnetic nanoparticles, Phys. Rev. B 106, 134433
(2022).

[35] L. S. Poperechny, Multipeak dynamic magnetic susceptibility of
a superparamagnetic nanoparticle suspended in a fluid, Phys.
Rev. B 107, 064416 (2023).

[36] C. Ménager, O. Sandre, J. Mangili, and V. Cabuil, Preparation
and swelling of hydrophilic magnetic microgels, Polymer 45,
2475 (2004).

[37] S. Backes, M. U. Witt, E. Roeben, L. Kuhrts, S. Aleed, A. M.
Schmidt, and R. von Klitzing, Loading of PNIPAM based
microgels with CoFe,0, nanoparticles and their magnetic re-
sponse in bulk and at surfaces, J. Phys. Chem. B 119, 12129
(2015).

[38] P. Mandal, S. Maji, S. Panja, O. P. Bajpai, T. K. Maiti, and
S. Chattopadhyay, Magnetic particle ornamented dual stim-
uli responsive nanogel for controlled anticancer drug delivery,
New J. Chem. 43, 3026 (2019).

[39] B. Sung, M.-H. Kim, and L. Abelmann, Magnetic microgels
and nanogels: Physical mechanisms and biomedical applica-
tions, Bioeng. Transl. Med. 6, 10190 (2021).

[40] Y. Cao, Z. Mao, Y. He, Y. Kuang, M. Liu, Y. Zhou, Y.
Zhang, and R. Pei, Extremely small iron oxide nanoparticle-
encapsulated nanogels as a glutathione-responsive T1 contrast
agent for tumor-targeted magnetic resonance imaging, ACS
Appl. Mater. Interfaces 12, 26973 (2020).

[41] F. Gao, X. Wu, D. Wu, J. Yu, J. Yao, Q. Qi, Z. Cao, Q. Cui,
and Y. Mi, Preparation of degradable magnetic temperature- and
redox-responsive polymeric/Fe;O, nanocomposite nanogels in
inverse miniemulsions for loading and release of 5-fluorouracil,
Colloids Surf., A 587, 124363 (2020).

[42] C. Biglione, J. Bergueiro, S. Wedepohl, B. Klemke, M. C.
Strumia, and M. Calderén, Revealing the NIR-triggered

chemotherapy therapeutic window of magnetic and
thermoresponsive ~ nanogels,  Nanoscale 12, 21635
(2020).

[43] 1. Hilger and W. A. Kaiser, Iron oxide-based nanostructures
for MRI and magnetic hyperthermia, Nanomedicine 7, 1443
(2012).

[44] S. Diirr, C. Janko, S. Lyer, P. Tripal, M. Schwarz, J. Zaloga,
R. Tietze, and C. Alexiou, Magnetic nanoparticles for cancer
therapy, Nanotech. Rev. 2, 395 (2013).

[45] E. A. Périgo, G. Hemery, O. Sandre, D. Ortega, E. Garaio,
F. Plazaola, and F. J. Teran, Fundamentals and advances
in magnetic hyperthermia, Appl. Phys. Rev. 2, 041302
(2015).

[46] E. C. Abenojar, S. Wickramasinghe, J. Bas-Concepcion, and
A. C. S. Samia, Structural effects on the magnetic hyperthermia
properties of iron oxide nanoparticles, Prog. Nat. Sci.: Mater.
Intl. 26, 440 (2016).

[47] 1. Poperechny, Combined rotational diffusion of a superpara-
magnetic particle and its magnetic moment: Solution of the
kinetic equation, J. Mol. Liq. 299, 112109 (2020).

[48] M. Kroger and P. Ilg, Combined dynamics of magnetization
and particle rotation of a suspended superparamagnetic parti-
cle in the presence of an orienting field: Semi-analytical and
numerical solution, Math. Models Methods Appl. Sci. 32, 1349
(2022).

[49] M. Shliomis and V. Stepanov, Theory of the dynamic suscepti-
bility of magnetic fluids, Adv. Chem. Phys. 87, 1 (1994).

[50] P. Ilg, Diffusion-jump model for the combined brownian and
néel relaxation dynamics of ferrofluids in the presence of exter-
nal fields and flow, Phys. Rev. E 100, 022608 (2019).

[51] P. Ilg and M. Kroger, Dynamics of interacting magnetic
nanoparticles: Effective behavior from competition between
brownian and Néel relaxation, Phys. Chem. Chem. Phys. 22,
22244 (2020).

[52] M. Chuev and J. Hesse, Nanomagnetism: Extension of the
Stoner—Wohlfarth model within Néel’s ideas and useful plots,
J. Phys.: Condens. Matter 19, 506201 (2007).

[53] R. W. Chantrell, N. Walmsley, J. Gore, and M. Maylin, Cal-
culations of the susceptibility of interacting superparamagnetic
particles, Phys. Rev. B 63, 024410 (2000).

[54] R. P. Tan, J. Carrey, and M. Respaud, Magnetic hyperther-
mia properties of nanoparticles inside lysosomes using kinetic
Monte Carlo simulations: Influence of key parameters and dipo-
lar interactions, and evidence for strong spatial variation of
heating power, Phys. Rev. B 90, 214421 (2014).

[55] S. Ruta, R. Chantrell, and O. Hovorka, Unified model of
hyperthermia via hysteresis heating in systems of interacting
magnetic nanoparticles, Sci. Rep. 5, 9090 (2015).

[56] C. Jonasson, V. Schaller, L. Zeng, E. Olsson, C. Frandsen, A.
Castro, L. Nilsson, L. K. Bogart, P. Southern, Q. A. Pankhurst
et al., Modelling the effect of different core sizes and magnetic
interactions inside magnetic nanoparticles on hyperthermia per-
formance, J. Magn. Magn. Mater. 477, 198 (2019).

[57] M. Wolfschwenger, A. Jaufenthaler, F. Hanser, J. Gamper, T. S.
Hofer, and D. Baumgarten, Molecular dynamics modelling of
interacting magnetic nanoparticles for investigating equilibrium
and dynamic ensemble properties, Appl. Math. Model. 136,
115624 (2024).

[58] I. Poperechny, Y. L. Raikher, and V. Stepanov, Dynamic
hysteresis of a uniaxial superparamagnet: Semi-adiabatic ap-
proximation, Phys. B: Condens. Matter 435, 58 (2014).

[59] J. L. Garcia-Palacios and F. J. Lazaro, Langevin-dynamics study
of the dynamical properties of small magnetic particles, Phys.
Rev. B 58, 14937 (1998).

[60] Y. L. Raikher and V. I. Stepanov, Nonlinear dynamic suscep-
tibilities and field-induced birefringence in magnetic particle
assemblies, Adv. Chem. Phys. 129, 419 (2004).

[61] A. R. Chalifour, J. C. Davidson, N. R. Anderson, T. M.
Crawford, and K. L. Livesey, Magnetic relaxation time for an

014438-13


https://doi.org/10.1103/PhysRev.130.1677
https://doi.org/10.1103/PhysRevE.86.061405
https://doi.org/10.1103/PhysRevB.95.214427
https://doi.org/10.1021/acs.jpcc.7b11255
https://doi.org/10.1039/C9NR07425B
https://doi.org/10.1103/PhysRevB.106.134433
https://doi.org/10.1103/PhysRevB.107.064416
https://doi.org/10.1016/j.polymer.2004.02.018
https://doi.org/10.1021/acs.jpcb.5b03778
https://doi.org/10.1039/C8NJ04841J
https://doi.org/10.1002/btm2.10190
https://doi.org/10.1021/acsami.0c07288
https://doi.org/10.1016/j.colsurfa.2019.124363
https://doi.org/10.1039/D0NR02953J
https://doi.org/10.2217/nnm.12.112
https://doi.org/10.1515/ntrev-2013-0011
https://doi.org/10.1063/1.4935688
https://doi.org/10.1016/j.pnsc.2016.09.004
https://doi.org/10.1016/j.molliq.2019.112109
https://doi.org/10.1142/S0218202522500300
https://doi.org/10.1002/9780470141465.ch1
https://doi.org/10.1103/PhysRevE.100.022608
https://doi.org/10.1039/D0CP04377J
https://doi.org/10.1088/0953-8984/19/50/506201
https://doi.org/10.1103/PhysRevB.63.024410
https://doi.org/10.1103/PhysRevB.90.214421
https://doi.org/10.1038/srep09090
https://doi.org/10.1016/j.jmmm.2018.09.117
https://doi.org/10.1016/j.apm.2024.07.031
https://doi.org/10.1016/j.physb.2013.08.049
https://doi.org/10.1103/PhysRevB.58.14937
https://doi.org/10.1002/047168077X.ch4

DENIZ MOSTARAC et al.

PHYSICAL REVIEW B 111, 014438 (2025)

ensemble of nanoparticles with randomly aligned easy axes: A
simple expression, Phys. Rev. B 104, 094433 (2021).

[62] Y. L. Raikher and M. Shliomis, Theory of dispersion of the
magnetic susceptibility of fine ferromagnetic particles, Sov.
Phys.-JETP 40, 526 (1975).

[63] Y. P. Kalmykov and W. T. Coffey, Transverse complex mag-
netic susceptibility of single-domain ferromagnetic particles
with uniaxial anisotropy subjected to a longitudinal uniform
magnetic field, Phys. Rev. B 56, 3325 (1997).

[64] Y. L. Raikher and M. 1. Shliomis, The effective field method in
the orientational kinetics of magnetic fluids and liquid crystals,
Adv. Chem. Phys. 87, 595 (1994).

[65] D. Suess, S. Eder, J. Lee, R. Dittrich, J. Fidler, J. W. Harrell,
T. Schrefl, G. Hrkac, M. Schabes, N. Supper, and A. Berger,
Reliability of Sharrocks equation for exchange spring bilayers,
Phys. Rev. B 75, 174430 (2007).

[66] L. Landau and E. Lifshitz, On the theory of the dispersion
of magnetic permeability in ferromagnetic bodies, in Per-
spectives in Theoretical Physics (Elsevier, Amsterdam, 1992),
pp- 51-65.

[67] T. L. Gilbert, A phenomenological theory of damping in ferro-
magnetic materials, IEEE Trans. Magn. 40, 3443 (2004).

[68] S. Helbig, C. Abert, P. A. Sdnchez, S. S. Kantorovich, and D.
Suess, Self-consistent solution of magnetic and friction energy
losses of a magnetic nanoparticle, Phys. Rev. B 107, 054416
(2023).

[69] A. A. Kuznetsov, Equilibrium magnetization of a quasispherical
cluster of single-domain particles, Phys. Rev. B 98, 144418
(2018).

[70] H. Williams, K. O’Grady, M. El Hilo, and R. Chantrell, Su-
perparamagnetism in fine particle dispersions, J. Magn. Magn.
Mater. 122, 129 (1993).

[71] P. Cregg and L. Bessais, Series expansions for the magnetisation
of a solid superparamagnetic system of non-interacting particles
with anisotropy, J. Magn. Magn. Mater. 202, 554 (1999).

[72] D. A. Garanin, Fokker-Planck and Landau-Lifshitz-Bloch equa-
tions for classical ferromagnets, Phys. Rev. B 55, 3050 (1997).

[73] A. O. Ivanov and O. B. Kuznetsova, Magnetic properties of
dense ferrofluids: An influence of interparticle correlations,
Phys. Rev. E 64, 041405 (2001).

[74] V. A. Ivanov and J. A. Martemyanova, Monte Carlo computer
simulation of a single semi-flexible macromolecule at a plane
surface, Macromol Symp. 252, 12 (2007).

[75] S. Kantorovich, A. O. Ivanov, L. Rovigatti, J. M. Tavares, and
F. Sciortino, Nonmonotonic magnetic susceptibility of dipolar
hard-spheres at low temperature and density, Phys. Rev. Lett.
110, 148306 (2013).

[76] A. A. Kuznetsov, E. V. Novak, E. S. Pyanzina, and S. S.
Kantorovich, Multicore-based ferrofluids in zero field: Initial
magnetic susceptibility and self-assembly mechanisms, Soft
Matter 19, 4549 (2023).

[77] A. Y. Solovyova, S. Sokolsky, A. Ivanov, and E. Elfimova,
Orientation texturing and static magnetic response of multi-
core particle containing limited number of superparamagnetic
nanocores, Smart Mater. Struct. 32, 115005 (2023).

[78] D. Eberbeck, C. L. Dennis, N. F. Huls, K. L. Krycka, C.
Gruttner, and F. Westphal, Multicore magnetic nanoparticles
for magnetic particle imaging, IEEE Trans. Magn. 49, 269
(2012).

[79] A. A. Kuznetsov, E. V. Novak, E. S. Pyanzina, and S. S.
Kantorovich, Structural and magnetic equilibrium properties of
a semi-dilute suspension of magnetic multicore nanoparticles,
J. Mol. Liq. 359, 119373 (2022).

[80] F. Weik, R. Weeber, K. Szuttor, K. Breitsprecher, J. de Graaf,
M. Kuron, J. Landsgesell, H. Menke, D. Sean, and C. Holm,
Espresso 4.0—An extensible software package for simulat-
ing soft matter systems, Eur. Phys. J.: Spec. Top. 227, 1789
(2019).

[81] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids
(Oxford University Press, Oxford, 2017).

[82] G. E. Uhlenbeck and L. S. Ornstein, On the theory of the
Brownian motion, Phys. Rev. 36, 823 (1930).

[83] D. C. Rapaport, The Art of Molecular Dynamics Simulation
(Cambridge University Press, Cambridge, 2004).

[84] S. G. Johnson, The NLopt nonlinear-optimization package,
https://github.com/stevengj/mlopt (2007).

[85] K. Svanberg, A class of globally convergent optimization meth-
ods based on conservative convex separable approximations,
SIAM J. Optim. 12, 555 (2002).

[86] A. Witt, K. Fabian, and U. Bleil, Three-dimensional micro-
magnetic calculations for naturally shaped magnetite: Octa-
hedra and magnetosomes, Earth Planet. Sci. Lett. 233, 311
(2005).

[87] P. Cregg and L. Bessais, A single integral expression for
the magnetisation of a textured superparamagnetic system,
J. Magn. Magn. Mater. 203, 265 (1999).

014438-14


https://doi.org/10.1103/PhysRevB.104.094433
https://doi.org/10.1103/PhysRevB.56.3325
https://doi.org/10.1002/9780470141465.ch8
https://doi.org/10.1103/PhysRevB.75.174430
https://doi.org/10.1109/TMAG.2004.836740
https://doi.org/10.1103/PhysRevB.107.054416
https://doi.org/10.1103/PhysRevB.98.144418
https://doi.org/10.1016/0304-8853(93)91056-D
https://doi.org/10.1016/S0304-8853(99)00422-9
https://doi.org/10.1103/PhysRevB.55.3050
https://doi.org/10.1103/PhysRevE.64.041405
https://doi.org/10.1002/masy.200750602
https://doi.org/10.1103/PhysRevLett.110.148306
https://doi.org/10.1039/D3SM00440F
https://doi.org/10.1088/1361-665X/acf9d1
https://doi.org/10.1109/TMAG.2012.2226438
https://doi.org/10.1016/j.molliq.2022.119373
https://doi.org/10.1140/epjst/e2019-800186-9
https://doi.org/10.1103/PhysRev.36.823
https://github.com/stevengj/nlopt
https://doi.org/10.1137/S1052623499362822
https://doi.org/10.1016/j.epsl.2005.01.043
https://doi.org/10.1016/S0304-8853(99)00269-3

