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Abstract. We introduce a distributionally robust maximum likelihood estimation model
with a Wasserstein ambiguity set to infer the inverse covariance matrix of a p-dimensional
Gaussian random vector from n independent samples. The proposed model minimizes the
worst case (maximum) of Stein’s loss across all normal reference distributions within a
prescribed Wasserstein distance from the normal distribution characterized by the sample
mean and the sample covariance matrix. We prove that this estimation problem is
equivalent to a semidefinite program that is tractable in theory but beyond the reach of
general-purpose solvers for practically relevant problem dimensions p. In the absence of
any prior structural information, the estimation problem has an analytical solution that
is naturally interpreted as a nonlinear shrinkage estimator. Besides being invertible and
well conditioned even for p> n, the new shrinkage estimator is rotation equivariant and
preserves the order of the eigenvalues of the sample covariance matrix. These desirable
properties are not imposed ad hoc but emerge naturally from the underlying distributionally
robust optimization model. Finally, we develop a sequential quadratic approximation
algorithm for efficiently solving the general estimation problem subject to conditional
independence constraints typically encountered in Gaussian graphical models.

Funding: The authors gratefully acknowledge financial support from the Swiss National Science
Foundation [Grants BSCGI0_157733 and P2EZP2_165264] and the ERC [Grant TRUST-949796].

Keywords: distributionally robust optimization • data-driven optimization • Wasserstein distance • shrinkage estimator •
maximum likelihood estimation

1. Introduction
The covariancematrixΣ :�EP[(ξ − EP[ξ])(ξ − EP[ξ])�]
of a random vector ξ ∈ Rp governed by a distribu-
tion P collects basic information about the spreads
of all individual components and the linear depen-
dencies among all pairs of components of ξ. The in-
verse Σ−1 of the covariance matrix is called the pre-
cision matrix. This terminology captures the intuition
that a large spread reflects a low precision, and vice
versa. Although the covariance matrix appears in
the formulations of many problems in engineering,
science, and economics, it is often the precision ma-
trix that emerges in their solutions. For example, the
optimal classification rule in linear discriminant analy-
sis (Fisher 1936), the optimal investment portfolio
in Markowitz’s celebrated mean-variance model
(Markowitz 1952), and the optimal array vector of the
beamforming problem in signal processing (Du et al.
2010) all depend on the precision matrix. Moreover,
the optimal fingerprint method used to detect a multi-
variate climate change signal blurred by weather noise
requires knowledge of the climate vector’s precision
matrix (Ribes et al. 2009).

1.1. Background on Precision Matrix Estimation
If the distribution P of ξ is known, then the covariance
matrix Σ and the precision matrix Σ−1 can at least
principally be calculated in closed form. In practice,
however, P is never known and only indirectly ob-
servable through n independent training samples
ξ̂1, . . . , ξ̂n from P. In this setting, Σ and Σ−1 need to be
estimated from the training data. Arguably the sim-
plest estimator for Σ is the sample covariance matrix

Σ̂ :� 1
n
∑n

i�1(̂ξi − μ̂)(̂ξi − μ̂)�, where μ̂ :� 1
n
∑n

i�1 ξ̂i stands
for the sample mean. Note that μ̂ and Σ̂ simply rep-
resent the actual mean and covariance matrix of the
uniform distribution on the training samples. For
later convenience, Σ̂ is defined here without Bessel’s
correction and thus constitutes a biased estimator.1

Moreover, as a sum of n rank 1 matrices, Σ̂ is rank
deficient in the big data regime (p > n). In this case, Σ̂
cannot be inverted to obtain a precision matrix esti-
mator, which is often the actual quantity of interest.
If ξ follows a normal distribution with unknown

mean μ and precision matrix X � 0, which we will
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assume throughout the rest of the paper, then the
log-likelihood function of the training data can be
expressed as

L̂ μ,X
( )

:� − np
2
log 2π( ) + n

2
log detX

− 1
2

∑n
i�1

ξ̂i − μ
( )�

X ξ̂i − μ
( )

� − np
2
log 2π( ) + n

2
log detX − n

2
Tr Σ̂X

[ ]
− n
2

μ̂ − μ
( )�X μ̂ − μ

( )
. (1)

Note that L̂(μ,X) is strictly concave in μ and X (Boyd
and Vandenberghe 2004, chap. 7) and depends on the
training samples only through the sample mean and
the sample covariance matrix. It is clear from the last
expression that L̂(μ,X) is maximized by µ*� μ̂ for any
fixed X. The maximum likelihood estimator X∗ for
the precision matrix is thus obtained by maximizing
L̂(μ̂,X) over all X � 0, which is tantamount to solving
the convex program

inf
X�0− log detX + Tr Σ̂X

[ ]
. (2)

If Σ̂ is rank deficient, which necessarily happens
for p > n, then Problem (2) is unbounded. Indeed,
expressing the sample covariancematrix as Σ̂ � RΛR�
with R orthogonal and Λ � 0 diagonal, we may set
Xk � RΛkR� for any k ∈ N, where Λk � 0 is the diag-
onal matrix with (Λk)ii � 1 if λi > 0 and (Λk)ii � k if
λi � 0. By construction, the objective value of Xk in (2)
tends to −∞ as k grows. If Σ̂ is invertible, on the other
hand, then the first-order optimality conditions can
be solved analytically, showing that the minimum of
Problem (2) is attained at X∗ � Σ̂−1. This implies that
maximum likelihood estimation under normality simply
recovers the sample covariancematrix but fails to yield a
precision matrix estimator for p > n.

Adding an �1-regularization term to its objective
function guarantees that Problem (2) has a unique
minimizer X∗ � 0, which constitutes a proper (invert-
ible) precision matrix estimator (Hsieh et al. 2014).
Moreover, as the �1-norm represents the convex en-
velope of the cardinality function on the unit hy-
percube, the �1-norm regularized maximum likeli-
hood estimation problem promotes sparse precision
matrices that encode interpretable Gaussian graphi-
cal models (Banerjee et al. 2008, Friedman et al. 2008).
Indeed, under the given normality assumption, one
can show that Xij � 0 if and only if the random var-
iables ξi and ξj are conditionally independent given
{ξk}k/∈{i,j} (Lauritzen 1996). The sparsity pattern of the
precision matrix X thus captures the conditional in-
dependence structure of ξ.

In theory, the �1-norm regularized maximum like-
lihood estimation problem can be solved in polynomial

time via modern interior point algorithms. In prac-
tice, however, scalability to high dimensions remains
challenging because of the problem’s semidefinite
nature, and larger problem instances must be addressed
with special-purpose methods such as the Newton-type
QUIC algorithm (Hsieh et al. 2014).
Instead of penalizing the �1-norm of the precision

matrix, one may alternatively penalize its inverseX−1
with the goal of promoting sparsity in the covari-
ance matrix and thus controlling the marginal inde-
pendence structure of ξ (Bien and Tibshirani 2011).
Despite its attractive statistical properties, this al-
ternative model leads to a hard nonconvex and non-
smooth optimization problem, which can only be
solved approximately.
By the Fisher–Neyman factorization theorem, Σ̂ is a

sufficient statistic for the true covariance matrix Σ of a
normally distributed random vector; that is, Σ̂ con-
tains the same information about Σ as the entire
training data set. Without any loss of generality, we
may thus focus on estimators that depend on the data
only through Σ̂. If neither the covariance matrix Σ nor
the precision matrix Σ−1 is known to be sparse, and
if there is no prior information about the orientation
of their eigenvectors, it is reasonable to restrict at-
tention to rotation-equivariant estimators. A precision
matrix estimator X̂(Σ̂) is called rotation equivariant if
X̂(RΣ̂R�) � RX̂(Σ̂)R� for any rotation matrix R. This
definition requires that the estimator for the rotated
data coincides with the rotated estimator for the
original data. One can show that rotation-equivariant
estimators have the same eigenvectors as the sample
covariance matrix (see, e.g., Perlman (2007), lemma
5.3, for a simple proof) and are thus uniquely de-
termined by their eigenvalues. Hence, imposing ro-
tation equivariance reduces the degrees of freedom
from p(p + 1)/2 to p. Using an entropy loss function
introduced in James and Stein (1961), Stein was the
first to demonstrate that superior covariance esti-
mators in the sense of statistical decision theory can
be constructed by shrinking the eigenvalues of the
sample covariance matrix (Stein 1975, 1986). Unfor-
tunately, his proposed shrinkage transformationmay
alter the order of the eigenvalues and even undermine
the positive semidefiniteness of the resulting esti-
mator when p > n, which necessitates an ad hoc
correction step involving an isotonic regression. Var-
ious refinements of this approach are reported in Dey
and Srinivasan (1985), Haff (1991), Yang and Berger
(1994), and the references therein, but most of these
works focus on the low-dimensional case when n ≥ p.
Jensen’s inequality suggests that the largest (re-

spectively, smallest) eigenvalue of the sample covari-
ance matrix Σ̂ is biased upward (respectively, down-
ward), which implies that Σ̂ tends to be ill-conditioned
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(van der Vaart 1961). This effect is most pronounced
for Σ ≈ I. A promising shrinkage estimator for the
covariance matrix is thus obtained by forming a convex
combination of the sample covariance matrix and the
identity matrix scaled by the average of the sample ei-
genvalues (Ledoit 2004a). If its convex weights are
chosen optimally in view of the Frobenius risk, the
resulting shrinkage estimator can be shown to be both
well conditioned and more accurate than Σ̂. Alter-
native shrinkage targets include the constant corre-
lation model, which preserves the sample variances
but equalizes all pairwise correlations (Ledoit 2004b);
the single-index model, which assumes that each
random variable is explained by one systematic and
one idiosyncratic risk factor (Ledoit and Wolf 2003);
and the diagonal matrix of the sample eigenvalues
(Touloumis 2015), for example.

The linear shrinkage estimators just described are
computationally attractive because evaluating convex
combinations is cheap. Computing the corresponding
precision matrix estimators requires a matrix inversion
and is therefore more expensive. We emphasize that
linear shrinkage estimators for the precision matrix
itself, obtained by forming a cheap convex combina-
tion of the inverse sample covariance matrix and a
shrinkage target, are not available in the big data re-
gime when p > n and Σ̂ fails to be invertible.

More recently, insights from randommatrix theory
have motivated a new rotation-equivariant shrinkage
estimator that applies an individualized shrinkage
intensity to every sample eigenvalue (Ledoit 2012).
Although this nonlinear shrinkage estimator offers
significant improvements over linear shrinkage, its
evaluation necessitates the solution of a hard non-
convex optimization problem, which becomes cum-
bersome for large values of p. Alternative nonlinear
shrinkage estimators can be obtained by imposing an
upper bound on the condition number of the co-
variance matrix in the underlying maximum likeli-
hood estimation problem (Won et al. 2013).

Alternatively, multifactor models familiar from the
arbitrage pricing theory can be used to approximate
the covariance matrix by a sum of a low-rank and a
diagonal component, both of which have only a few
free parameters and are thus easier to estimate. Such a
dimensionality reduction leads to stable estimators
(Fan et al. 2008, Chun et al. 2018).

1.2. Problem Statement and Contributions
This paper endeavors to develop a principled ap-
proach to precision matrix estimation, which is in-
spired by recent advances in distributionally robust
optimization (Delage and Ye 2010, Goh and Sim 2010,
Wiesemann et al. 2014). For the sake of argument,
assume that the true distribution of ξ is given by
P � N (μ0,Σ0), whereΣ0 � 0. If μ0 andΣ0 were known,

the quality of some estimators μ and X for μ0 and Σ−10 ,
respectively, could conveniently be measured by Stein’s
loss (James and Stein 1961):

L X, μ
( )

:� − log det Σ0X( ) + Tr Σ0X[ ]
+ μ0 − μ

( )�X μ0 − μ
( ) − p

� − log detX + EP ξ − μ
( )�X ξ − μ

( )[ ]
− log detΣ0 − p, (3)

which is reminiscent of the log-likelihood function
(1). It is easy to verify that Stein’s loss is nonnegative
for all μ ∈ Rp and X ∈ Sp+ and vanishes only at the true
mean μ � μ0 and the true precisionmatrixX � Σ−10 . Of
course, we cannot minimize Stein’s loss directly be-
cause P is unknown. As a naı̈ve remedy, one could
instead minimize an approximation of Stein’s loss
obtained by removing the (unknown but irrelevant)
normalization constant − log detΣ0 − p and replacing
P in (3) with the empirical distribution P̂n � N (μ̂, Σ̂).
However, in doing so,we simply recover the standard
maximum likelihood estimation problem, which is
unbounded for p > n and outputs the sample mean
and the inverse sample covariance matrix for p ≤ n.
This motivates us to robustify the empirical loss mini-
mization problem by exploiting that P̂n is close to P in
Wasserstein distance.

Definition 1.1 (Wasserstein Distance). The type-2
Wasserstein distance between two arbitrary distri-
butions P1 and P2 on Rp with finite second moments is
defined as

W P1,P2( )

:� inf
Π

∫
Rp×Rp ξ1 − ξ2‖ ‖2 Π dξ1,dξ2( )

( )1
2
:

Π is a joint distribution of ξ1 and ξ2

withmarginalsP1 and P2, respectively

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭.

The squared Wasserstein distance between P1 and P2
can be interpreted as the cost of moving the distri-
bution P1 to the distribution P2, where ‖ξ1 − ξ2‖2
quantifies the cost of moving unit mass from ξ1 to ξ2.

A central limit type theorem for the Wasserstein
distance between empirical normal distributions im-
plies that n ·W(P̂n,P)2 converges weakly to a quadratic
functional of independent normal random variables as
the number n of training samples tends to infinity
(Rippl et al. 2016, theorem 2.3).Wemay thus conclude
that for every η ∈ (0, 1) there exists q(η) > 0 such that
Pn[W(P̂n,P) ≤ q(η)n−12] ≥ 1 − η for all n large enough.
In the following we denote by N p the family of all
normal distributions on Rp and by

Pρ � Q ∈ N p : W Q, P̂n

( )
≤ ρ

{ }
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the ambiguity set of all normal distributions whose
Wasserstein distance to P̂n is at most ρ ≥ 0. Note
that Pρ depends on the unknown true distribution P

only through the training data and, for ρ ≥ q(η)n−12,
contains P with confidence 1 − η asymptotically as n
tends to infinity. It is thus natural to formulate a
distributionally robust estimation problem for the pre-
cision matrix that minimizes Stein’s loss—modulo an
irrelevant normalization constant—in the worst case
across all reference distributions Q ∈ Pρ:

J μ̂, Σ̂
( )

:� inf
μ∈Rp,X∈X − log detX

{
+ sup

Q∈Pρ

EQ ξ − μ
( )�X ξ − μ

( )[ ]}
. (4)

Here, X ⊆ S
p
++ denotes the set of admissible precision

matrices. In the absence of any prior structural in-
formation, the only requirement is that X be positive
semidefinite and invertible, in which case X � S

p
++.

Known conditional independence relationships im-
pose a sparsity pattern on X, which is easily enforced
through linear equality constraints in X . By adopting
aworst-case perspective,we hope that theminimizers
of (4) will have low Stein’s loss with respect to all
distributions in Pρ including the unknown true dis-
tribution P. As Stein’s loss with respect to the em-
pirical distribution is proportional to the log-likelihood
function (1), Problem (4) can also be interpreted as a
robust maximum likelihood estimation problem that
hedges against perturbations in the training samples.
As we will show in what follows, this robustification
is tractable and has a regularizing effect.

Recently, it has been discovered that distribution-
ally robust optimization models with Wasserstein
ambiguity sets centered at discrete distributions on Rp

(and without any normality restrictions) are often
equivalent to tractable convex programs (Mohajerin
Esfahani and Kuhn 2017, Zhao and Guan 2018). Ex-
tensions of these results to general Polish spaces are
reported in Blanchet and Murthy (2016) and Gao and
Kleywegt (2016). The explicit convex reformulations
of Wasserstein distributionally robust models have
not only facilitated efficient solution procedures but
also revealed insightful connections between distri-
butional robustness and regularization in machine
learning. Indeed, many classical regularization schemes
of supervised learning such as the Lasso method can be
explained by a Wasserstein distributionally robust
model. This link was first discovered in the context
of logistic regression (Shafieezadeh-Abadeh et al.
2015) and later extended to other popular regres-
sion and classification models (Blanchet and Murthy
2016, Shafieezadeh-Abadeh et al. 2017), and even to
generative adversarial networks in deep learning
(Gao et al. 2016).

Model (4) differs fundamentally from all existing
distributionally robust optimization models in that
the ambiguity set contains only normal distributions.
As the family of normal distributions fails to be closed
under mixtures, the ambiguity set is thus nonconvex.
In the remainder of the paper, we devise efficient
solution methods for Problem (4), and we investigate
the properties of the resulting precisionmatrix estimator.
The main contributions of this paper can be sum-

marized as follows.
• Leveraging an analytical formula for the Was-

serstein distance between two normal distributions
derived in Givens and Shortt (1984), we prove that
the distributionally robust estimation problem (4) is
equivalent to a tractable semidefinite program—despite
the nonconvex nature of the underlying ambigu-
ity set.
• We prove that Problem (4) and its unique min-

imizer depend on the training data only through Σ̂
(but not through μ̂), which is reassuring because Σ̂
is a sufficient statistic for the precision matrix.
• In the absence of any structural information, we

demonstrate that Problem (4) has an analytical so-
lution that is naturally interpreted as a nonlinear
shrinkage estimator. Indeed, the optimal precision
matrix estimator shares the eigenvectors of the sample
covariance matrix, and as the radius ρ of the Wasser-
stein ambiguity set grows, its eigenvalues are shrunk
toward 0 while preserving their order. At the same
time, the condition number of the optimal estimator
steadily improves and eventually converges to 1 even
for p > n. These desirable properties are not enforced
ex ante but emerge naturally from the underlying
distributionally robust optimization model.
• In the presence of conditional independence con-

straints, the semidefinite program equivalent to (4) is
beyond the reach of general-purpose solvers for practi-
cally relevant problem dimensions p. We thus devise an
efficient sequential quadratic approximation method
reminiscent of the QUIC algorithm (Hsieh et al. 2014),
which can solve instances of Problem (4) with p∼< 104

on a standard PC.
• We derive an analytical formula for the extremal

distribution that attains the supremum in (4).
An important aspect of the distributionally robust
estimation problem (4) is the choice of the radius ρ ≥ 0
of the ambiguity set Pρ. Ideally, this hyperparameter
should be tuned so as to minimize the distance be-
tween the precision matrix estimatorX∗(ρ) that solves
(4) and the unknown true precision matrix Σ−1. While
this paper was under review, Blanchet and Si (2019)
managed to prove that if distances in S

p
+ are measured

via Stein’s loss function, and there are no conditional
independence constraints, then the Wasserstein radius
that minimizes the expected distance between the es-
timator X∗(ρ) and the true precision matrix Σ−1 scales
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linearly with the sample size as n−1, where the pro-
portionality constant is a function of the true co-
variance matrix that is known in closed form
(Blanchet and Si 2019, theorem 1). This result is
surprising vis-à-vis the central limit type theorem
(Rippl et al. 2016, theorem 2.3), which suggests a
canonical square root scaling of the form n−12. In
practice, ρ should be calibrated in view of the train-
ing samples ξ̂1, . . . , ξ̂n—for example, via cross-validation
using application-specific performance measures. Con-
crete examples of different cross-validation schemes are
described in Section 6.

The rest of this paper is structured as follows.
Section 2 demonstrates that the distributionally ro-
bust estimation problem (4) admits an exact refor-
mulation as a tractable semidefinite program. Section 3
derives an analytical solution of this semidefinite
program in the absence of any structural information,
and Section 4 develops an efficient sequential qua-
dratic approximation algorithm for the problem with
conditional independence constraints. The extremal
distribution that attains the worst-case expectation
in (4) is characterized in Section 5, and numerical
experiments based on synthetic and real data are
reported in Section 6.

1.2.1. Notation. For any A ∈ Rp×p, we use Tr A[ ] to
denote the trace and ‖A‖ � ̅̅̅̅̅̅̅̅̅̅̅̅

Tr A�A[ ]√
to denote the

Frobenius norm of A. By slight abuse of notation, the
Euclidean norm of v ∈ Rp is also denoted by ‖v‖.
Moreover, I stands for the identity matrix. Its di-
mension is usually evident from the context. For any
A,B ∈ Rp×p, we use A,B〈 〉 � Tr A�B[ ] to denote the
inner product and A ⊗ B ∈ Rp2×p2 to denote the Kro-
necker product of A and B. The space of all symmetric
matrices in Rp×p is denoted by Sp. We use S

p
+ (Sp++) to

represent the cone of symmetric positive semidefinite
(positive definite) matrices in Sp. For any A,B ∈ Sp,
the relation A � B (A � B) means that A − B ∈ Sp+
(A − B ∈ Sp++).

2. Tractable Reformulation
Throughout this paper we assume that the random
vector ξ ∈ Rp is normally distributed. This is in line
with the common practice in statistics and in the
natural and social sciences, whereby normal distri-
butions are routinely used to model random vectors
whose distributions are unknown. The normality
assumption is often justified by the central limit
theorem, which suggests that random vectors influ-
enced by many small and unrelated disturbances
are approximately normally distributed. Moreover,
the normal distribution maximizes entropy across all
distributions with given first- and second-order mo-
ments, and as such, it constitutes the least prejudiced

distribution compatible with a given mean vector and
covariance matrix.

2.1. Preliminaries
In order to facilitate rigorous statements, we first
provide a formal definition of normal distributions.

Definition 2.1 (Normal Distributions). We say that P is a
normal distribution on Rp with mean μ ∈ Rp and co-
variance matrix Σ ∈ Sp+; that is, P � N (μ,Σ) if P is
supported on supp(P) � {μ + Ev : v ∈ Rk} and if the
density function of P with respect to the Lebesgue
measure on supp(P) is given by

�P ξ( ) :� 1̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2π( )kdet D( )

√ e− ξ−μ( )�ED−1E� ξ−μ( ),

where k � rank(Σ), D ∈ Sp++ is the diagonal matrix of
the positive eigenvalues of Σ, and E ∈ Rp×k is the
matrix whose columns correspond to the orthonor-
mal eigenvectors of the positive eigenvalues of Σ.
The family of all normal distributions onRp is denoted
by N p, and the subfamily of all distributions in N p

with zero means and arbitrary covariance matrices is
denoted by N

p
0.

Definition 2.1 explicitly allows for degenerate normal
distributions with rank-deficient covariance matrices.
The normality assumption also has distinct com-

putational advantages. In fact, whereas the Wasser-
stein distance between two generic distributions is
only given implicitly as the solution of a mass trans-
portation problem, the Wasserstein distance between
two normal distributions is known in closed form. It can
be expressed explicitly as a function of the mean vectors
and covariance matrices of the two distributions.

Proposition 2.2 (Givens and Shortt (1984, proposition 7)).
The type 2 Wasserstein distance between two normal distri-
butions P1 � N (μ1,Σ1) and P2 � N (μ2,Σ2), with μ1, μ2 ∈
Rp and Σ1,Σ2 ∈ Sp+, amounts to

W P1,P2( ) �
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
μ1 − μ2

⃦⃦ ⃦⃦2 + Tr Σ1[ ] + Tr Σ2[ ]
− 2Tr ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Σ2
√

Σ1
̅̅̅̅
Σ2
√√[ ]

.

√√√√
If P1 and P2 share the same mean vector (e.g., if
μ1 � μ2 � 0), then the Wasserstein distance W(P1,P2)
reduces to a function of the covariancematricesΣ1 and
Σ2 only, thereby inducing a metric on the cone S

p
+.

Definition 2.3 (InducedMetric on Sp+). LetWS : S
p
+× Sp+ →

R+ be the metric on S
p
+ induced by the type 2 Was-

serstein metric on the family of normal distributions
with equal means. Thus, for all Σ1,Σ2 ∈ Sp+, we set

WS Σ1,Σ2( ) :�
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Tr Σ1[ ] + Tr Σ2[ ] − 2Tr

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Σ2
√

Σ1
̅̅̅̅
Σ2
√√[ ]√

.
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The definition of WS implies via Proposition 2.2 that
W(P1,P2) �WS(Σ1,Σ2) for all P1 � N (μ1,Σ1) and P2 �
N (μ2,Σ2)with μ1 � μ2. Thanks to its interpretation as
the restriction of W to the space of normal distribu-
tions with a fixed mean, it is easy to verify that WS is
symmetric and positive definite and satisfies the
triangle inequality. In other words, WS inherits the
property of being a metric from W.

Corollary 2.4 (Commuting Covariance Matrices). If
Σ1,Σ2 ∈ Sp+ commute (Σ1Σ2 � Σ2Σ1), then the induced
Wasserstein distance WS simplifies to the trace norm be-
tween the square roots of Σ1 and Σ2; that is,

WS Σ1,Σ2( ) � ̅̅̅̅
Σ1
√ − ̅̅̅̅

Σ2
√⃦⃦⃦ ⃦⃦⃦

.

Proof. The commutativity of Σ1 and Σ2 implies that̅̅̅̅
Σ2
√

Σ1
̅̅̅̅
Σ2
√ � Σ1Σ2, whereby

WS Σ1,Σ2( ) �
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Tr Σ1[ ] + Tr Σ2[ ] − 2Tr

̅̅̅̅̅̅̅
Σ1Σ2
√[ ]√

�
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Tr

̅̅̅̅
Σ1
√ − ̅̅̅̅

Σ2
√( )2[ ]√

� ̅̅̅̅
Σ1
√ − ̅̅̅̅

Σ2
√⃦⃦⃦ ⃦⃦⃦

.

Thus, the claim follows.Proposition 2.2 reveals that
the Wasserstein distance between any two (possibly
degenerate) normal distributions is finite. By contrast,
the Kullback–Leibler divergence between degenerate
and nondegenerate normal distributions is infinite.

Remark 2.5 (Kullback–Leibler Divergence Between Nor-
mal Distributions). A simple calculation shows that the
Kullback–Leibler divergence from P2 � N (μ2,Σ2) to
P1 � N (μ1,Σ1) amounts to

DKL P1‖P2( ) � 1
2

μ2 − μ1
( )�Σ−12 μ2 − μ1

( )[
+ Tr Σ1Σ

−1
2

[ ] − p − log detΣ1 + log detΣ2]

whenever μ1, μ2 ∈ Rp and Σ1,Σ2 ∈ Sp++. If either P1
or P2 is degenerate (i.e., if Σ1 is singular and Σ2 in-
vertible, or vice versa), then P1 fails to be absolutely
continuous with respect to P2, which implies that
DKL(P1‖P2) � ∞. Moreover, from the above-mentioned
formula, it is easy to verify that DKL(P1‖P2) diverges if
either Σ1 or Σ2 tends to a singular matrix.

In the big data regime (p > n), the sample covari-
ance matrix Σ̂ is singular even if the samples are
drawn from a nondegenerate normal distribution P �
N (μ,Σ) with Σ ∈ Sp++. In this case, the Kullback–
Leibler distance between the empirical distribu-
tion P̂ � N (μ̂, Σ̂) and P is infinite, and thus P̂ and P

are perceived as maximally dissimilar despite their
intimate relation. By contrast, their Wasserstein dis-
tance is finite.

2.2. Precision Matrix Estimation When the Mean
Vector Is Known

Before investigating the general problem (4), we first
address a simpler problem variant where the true
meanμ0 of ξ is known to vanish. Thus,we temporarily
assume that ξ follows N (0,Σ0). In this setting, it
makes sense to focus on the modified ambiguity set
P0

ρ :� {Q ∈ N p
0 : W(Q, P̂) ≤ ρ}, which contains all nor-

mal distributions with zero mean that have a Wasser-
stein distance of at most ρ ≥ 0 from the empirical
distribution P̂ � N (0, Σ̂). Under these assumptions,
the estimation problem (4) thus simplifies to

J Σ̂
( )

:� inf
X∈X − log detX+ sup

Q∈P 0
ρ

EQ ξξ�,X
〈 〉[ ]⎧⎪⎪⎨⎪⎪⎩ ⎫⎪⎪⎬⎪⎪⎭ . (5)

We are now ready to state the first main result of
this section.

Theorem 2.6 (Convex Reformulation). For any fixed ρ > 0
and Σ̂ � 0, the simplified distributionally robust estimation
problem (5) is equivalent to

J Σ̂
( )
�

inf
X,γ

− log detX + γ ρ2 − Tr Σ̂
[ ]( )

+ γ2 γI − X
( )−1, Σ̂〈 〉

s.t. γI � X � 0, X ∈ X .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ (6)

Moreover, the optimal value function J (Σ̂) is continuous
in Σ̂ ∈ Sp+.
The proof of Theorem 2.6 relies on several auxil-

iary results. A main ingredient to derive the convex
program (6) is a reformulation of the worst-case ex-
pectation function g : S

p
+ × S

p
+→R defined through

g Σ̂,X
( )

:� sup
Q∈Pρ

0

EQ ξξ�,X
〈 〉[ ]

. (7)

In Proposition 2.8 we will demonstrate that g(Σ̂,X) is
continuous and coincideswith the optimal value of an
explicit semidefinite program, a result that depends
on the following preparatory lemma.

Lemma 2.7 (Continuity Properties of Partial Infima).
Consider a function ϕ : E × Γ→R on two normed spaces
E and Γ, and define the partial infimum with respect to γ as
Φ(ε) :� infγ∈Γ ϕ(ε, γ) for every ε ∈ E.
i. If ϕ(ε, γ) is continuous in ε at ε0 ∈ E for every γ ∈ Γ,

then Φ(ε) is upper semicontinuous at ε0.
ii. If ϕ(ε, γ) is calm from below at ε0 ∈ E uniformly in

γ ∈ Γ—that is, if there exists a constant L ≥ 0 such that
ϕ(ε, γ) − ϕ(ε0, γ) ≥ −L‖ε0 − ε‖ for all γ ∈ Γ—thenΦ(ε) is
lower semicontinuous at ε0.
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Proof. As for assertion (i), we have

lim sup
ε→ε0

Φ ε( ) � inf
δ>0

sup
‖ε−ε0‖≤δ

Φ ε( ) � inf
δ>0

sup
‖ε−ε0‖≤δ

inf
γ∈Γ ϕ ε, γ

( )
≤ inf

γ∈Γ inf
δ>0

sup
‖ε−ε0‖≤δ

ϕ ε, γ
( )

� inf
γ∈Γ lim sup

ε→ε0

ϕ ε, γ
( ) � inf

γ∈Γϕ ε0, γ
( ) � Φ ε0( ),

where the inequality follows from interchanging the
infimum and supremum operators, whereas the pen-
ultimate equality in the last line relies on the continuity
assumption. As for assertion (ii), note that

lim inf
ε→ε0

Φ ε( ) � sup
δ>0

inf
‖ε−ε0‖≤δ

Φ ε( ) � sup
δ>0

inf
‖ε−ε0‖≤δ

inf
γ∈Γ ϕ ε, γ

( )
� sup

δ>0
inf
γ∈Γ inf

‖ε−ε0‖≤δ
ϕ ε, γ
( )

≥ sup
δ>0

inf
γ∈Γ inf

‖ε−ε0‖≤δ
ϕ ε0, γ
( ) − L‖ε0 − ε‖( )

.

� sup
δ>0

inf
γ∈Γ ϕ ε0, γ

( ) − Lδ
( )

� inf
γ∈Γ ϕ ε0, γ

( ) � Φ ε0( ),

where the inequality in the second line holds as a
result of the calmness assumption.

Proposition 2.8 (Worst-Case Expectation Function). For any
fixed ρ > 0, Σ̂ � 0, and X � 0, the worst-case expectation
g(Σ̂,X) defined in (7) coincides with the optimal value of the
tractable semidefinite program

inf
γ

γ ρ2 − Tr Σ̂
[ ]( )

+ γ2 γI − X
( )−1, Σ̂〈 〉

s.t. γI � X. (8)
Moreover, the optimal value function g(Σ̂,X) is continuous
in (Σ̂,X) ∈ Sp+ × S

p
++.

Proof. Using the definitions of the worst-case expec-
tation g(Σ̂,X) and the ambiguity set Pρ

0, we find

g Σ̂,X
( )

� sup
Q∈Pρ

0

EQ ξξ�
[ ]

,X
〈 〉

� sup
S∈Sp+

S,X〈 〉 : WS S, Σ̂
( )

≤ ρ
{ }

,

where the second equality holds because the metric
WS on S

p
+ is induced by the type 2 Wasserstein metric

W on N
p
0, meaning that there is a one-to-one correspon-

dence between distributions Q ∈ N p
0 with W(Q, P̂) ≤ ρ

and covariancematrices S ∈ Sp+withWS(S, Σ̂) ≤ ρ. The
continuity of g(Σ̂,X) thus follows from Berge’s (1963)
maximum theorem (pp. 115–116), which applies be-
cause S,X〈 〉 and WS(S, Σ̂) are continuous2 in
(S,Σ̂,X)∈Sp+×Sp+×Sp++, whereas {S∈Sp+ :WS(S,Σ̂)≤ρ} is
nonempty and compact for every Σ̂ ∈ Sp+ and ρ > 0.

By the definition of the induced metric WS, we
then obtain

g Σ̂,X
( )

�

sup
S∈Sp+

S,X〈 〉 : Tr Σ̂
[ ]
+ Tr S[ ] − 2Tr

̅̅̅̅̅̅̅̅
Σ̂

1
2SΣ̂

1
2

√[ ]
≤ ρ2

{ }
.

(9)
To establish the equivalence between (8) and (9), we
first assume that Σ̂ � 0. The generalization to rank-
deficient sample covariance matrices will be addressed
later. By dualizing the explicit constraint in (9) and in-
troducing the constant matrix M � Σ̂

1
2, which inherits

invertibility from Σ̂, we find

g Σ̂,X
( )

� sup
S∈Sp+

inf
γ≥0 S,X − γI

〈 〉
+ 2γ

̅̅̅̅̅̅̅̅
MSM
√

, I
〈 〉

+ γ ρ2 − Tr Σ̂
[ ]( )

� inf
γ≥0 supS∈Sp+

S,X − γI
〈 〉

+ 2γ
̅̅̅̅̅̅̅̅
MSM
√

, I
〈 〉

+ γ ρ2 − Tr Σ̂
[ ]( )

� inf
γ≥0 γ ρ2 − Tr Σ̂

[ ]( ){
+ sup

B∈Sp+
B2,M−1 X − γI

( )
M−1

〈 〉{
+ 2γ B, I〈 〉}}. (10)

Here, the first equality exploits the identity Tr A[ ] �
〈A, I〉 for any A ∈ Rp×p; the second equality follows
fromstrongduality,whichholdsbecause Σ̂ constitutes a
Slater point for Problem (9) when ρ > 0; and the third
equality relies on the substitution B← ̅̅̅̅̅̅̅̅

MSM
√

, which
implies that S �M−1B2M−1. Introducing the short-
hand Δ �M−1(X − γI)M−1 allows us to simplify the
inner maximization problem over B in (10) to

sup
B∈Sp+

B2,Δ
〈 〉 + 2γ B, I〈 〉{ }

. (11)

IfΔ �≺ 0, then (11) is unbounded. To see this, denote by
λ(Δ) the largest eigenvalue of Δ and by v a corre-
sponding eigenvector. If λ(Δ) > 0, then the objective
value of Bk � k · v v� � 0 in (11) grows quadratically
with k. If λ(Δ) � 0, then γ > 0, for otherwise, X � 0
contrary to our assumption, and thus the objective
value of Bk in (11) grows linearly with k. In both cases,
(11) is indeed unbounded.
If Δ ≺ 0, then (11) becomes a convex optimization

problem that can be solved analytically. Indeed, the
objective function of (11) is minimized by B∗ � −γΔ−1,
which satisfies the first-order optimality condition

BΔ + ΔB + 2γI � 0 (12)
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and is strictly feasible in (11) because Δ ≺ 0. More-
over, as (12) is naturally interpreted as a continuous
Lyapunov equation, its solution B∗ can be shown to be
unique; see, for example, Hespanha (2009, theorem
12.5). We may thus conclude that B∗ is the unique
maximizer of (11) and that the maximum of (11)
amounts to −γ2Tr Δ−1

[ ]
.

Adding the constraint γI � X to the outer minimi-
zation problem in (10), thus excluding all values of γ
for which Δ �≺ 0 and the inner supremum is infinite,
and replacing the optimal value of the inner maxi-
mization problemwith −γ2Tr Δ−1

[ ] � γ2〈(γI − X)−1, Σ̂〉
yields (8). This establishes the claim for Σ̂ � 0.

In the second part of the proof, we show that the
claim remains valid for rank-deficient sample co-
variance matrices. To this end, we denote the optimal
value of Problem (8) by g′(Σ̂,X). From the first part
of the proof we know that g′(Σ̂,X) � g(Σ̂,X) for all
Σ̂,X ∈ Sp++. We also know that g(Σ̂,X) is continuous
in (Σ̂,X) ∈ Sp+ × S

p
++. It remains to be shown that

g′(Σ̂,X) � g(Σ̂,X) for all Σ̂ ∈ Sp+ and X ∈ Sp++.
Fix any Σ̂ ∈ Sp+ and X ∈ Sp++, and note that Σ̂+εI � 0

for every ε > 0. Defining the intervals E � R+ and Γ �
{γ ∈ R : γI � X} as well as the auxiliary functions

Φ ε( ) � g′ Σ̂ + εI,X
( )

and

ϕ ε, γ
( ) � γ ρ2 − Tr Σ̂ + εI

[ ]( )
+ γ2 γI − X

( )−1, Σ̂ + εI
〈 〉

,

it follows from (8) that

Φ ε( ) � inf
γ∈Γϕ ε, γ

( ) ∀ε ∈ E.

One can show via Lemma 2.7 that Φ(ε) is continuous
at ε � 0. Indeed, ϕ(ε, γ) is linear and thus continuous
in ε for every γ ∈ Γ, which implies via part (a) of
Lemma 2.7 thatΦ(ε) is upper semicontinuous at ε � 0.
Moreover,ϕ(ε, γ) is calm frombelow at ε � 0with L � 0
uniformly in γ ∈ Γ because

ϕ ε, γ
( ) − ϕ 0, γ

( ) � γTr I − γ−1X
( )−1 − I[ ]

ε ≥ 0 ∀γ ∈ Γ.

Here, the inequality holds for all γ ∈ Γ because of the
conditions I � γ−1X � 0, which are equivalent to 0 ≺
I − γ−1X ≺ I and imply (I − γ−1X)−1 � I. Lemma 2.7,
part (b) thus ensures thatΦ(ε) is lower semicontinuous
at ε � 0. In summary, we conclude that Φ(ε) is indeed
continuous at ε � 0.

Combining these results, we find

g Σ̂,X
( )

� lim
ε→0+

g Σ̂ + εI,X
( )

� lim
ε→0+

g′ Σ̂ + εI,X
( )

� lim
ε→0+

Φ ε( ) � Φ 0( ) � g′ Σ̂,X
( )

,

where the first inequality holds because of the con-
tinuity of g(Σ̂,X) in Σ̂, the second from the fact that
g(Σ̂,X) � g′(Σ̂,X) for all Σ̂ � 0, the third from the
definition ofΦ(ε), the fourth because of the continuity
of Φ(ε) at ε � 0, and the fifth, once again, from the
definition of Φ(ε). The claim now follows because Σ̂ ∈
S
p
+ and X ∈ Sp++ were chosen arbitrarily.
We have now collected all necessary ingredients for

the proof of Theorem 2.6.

Proof of Theorem 2.6. By Proposition 2.8, the worst-
case expectation in (5) coincides with the optimal value
of the semidefinite program (8). Substituting this sem-
idefinite program into (5) yields (6). Note that the
condition X � 0, which ensures that log detX is well
defined, is actually redundant because it is implied by
the constraint X ∈ X . Nevertheless, we make it explicit
in (6) for the sake of clarity.

It remains to show that J (Σ̂) is continuous. To this
end, we first construct bounds on the minimizers
of (6) that vary continuously with Σ̂. Such bounds can
be constructed from any feasible decision (X0, γ0).
Assume without loss of generality that γ0 > p/ρ2, and
denote by f0(Σ̂) the objective value of (X0, γ0) in (6),
which constitutes a linear function of Σ̂. Moreover,
define two continuous auxiliary functions

x Σ̂
( )

:�
f0 Σ̂
( )
− p 1 − logγ0

( )
ρ2 − pγ−10

and

x Σ̂
( )

:� e−f0 Σ̂
( )

x Σ̂
( )p−1 , (13)

which are strictly positive because γ0 > p/ρ2. Clearly,
the infimum of Problem (6) is determined only by
feasible decisions (X, γ) with an objective value of at
most f0(Σ̂). All such decisions satisfy

f0 Σ̂
( )
≥ − log detX + γρ2 + γ I − γ−1X

( )−1 − I, Σ̂〈 〉
≥ − log detX + γρ2

≥ −p logγ + γρ2 ≥ ρ2 − γ−10 p
( )

γ + p 1 − logγ0

( )
,

(14)

where the second and third inequalites exploit the
estimates (I−γ−1X)−1 � I and detX ≤ det(γI) � γp, re-
spectively, which are both implied by the constraint
γI � X � 0, and the last inequality holds because
logγ ≤ logγ0 + γ−10 (γ − γ0) for all γ > 0. By rearrang-
ing the above-mentioned inequality and recalling the
definition of x(Σ̂), we thus find γ ≤ x(Σ̂), which, in
turn, implies that X ≺ γI � x(Σ̂)I.
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Denoting by {xi}i≤p the eigenvalues of the matrix X
and setting xmin � mini≤p xi, we further find

f0 Σ̂
( )
≥ − log detX � − log ∏p

i�1
xi

( )

≥ − log xmin x Σ̂
( )p−1( )

� − log xmin − p − 1
( )

log x Σ̂
( )

,

where the first inequality follows from (14), whereas
the second inequality is based on overestimating all
but the smallest eigenvalue of X by x(Σ̂). By rear-
ranging the above-mentioned inequality and recall-
ing the definition of x(Σ̂), we thus find xmin ≥ x(Σ̂),
which, in turn, implies that X � x(Σ̂)I.

This reasoning shows that the extra constraint
x(Σ̂)I � X � x(Σ̂)I has no impact on (6); that is,

J Σ̂
( )
�

inf
X
− log detX + inf

γ
γ ρ2 − Tr Σ̂

[ ]( ){
+γ2 γI − X

( )−1, Σ̂〈 〉
: γI � X

}
s.t. X ∈ X , x Σ̂

( )
I � X � x Σ̂

( )
I

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
�

inf
X
− log detX + g Σ̂,X

( )
s.t. X ∈ X , x Σ̂

( )
I � X � x Σ̂

( )
I,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
where the second equality follows fromProposition 2.8.
The continuity of J (Σ̂) now follows directly from
Berge’s (1963) maximum theorem (pp. 115–116), which
applies as a result of the continuity of g(Σ̂,X) estab-
lished in Proposition 2.8, the compactness of the fea-
sible set, and the continuity of x(Σ̂) and x(Σ̂).

An immediate consequence of Theorem 2.6 is that
the simplified estimation problem (5) is equivalent to
an explicit semidefinite program and is therefore, in
principle, computationally tractable.

Corollary 2.9 (Tractability). For any fixed ρ > 0 and Σ̂ � 0,
the simplified distributionally robust estimation prob-
lem (5) is equivalent to the tractable semidefinite program

J Σ̂
( )
�

inf
X,Y,γ

− logdetX+γ ρ2 −Tr Σ̂
[ ]( )

+Tr Y[ ]

s.t.
Y γΣ̂

1
2

γΣ̂
1
2 γI−X

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 0,

γI �X � 0, Y � 0, X ∈X .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(15)

Proof. We know from Theorem 2.6 that the estimation
problem (5) is equivalent to the convex program (6). AsX
represents a decision variable instead of a parameter,
however, Problem (6) fails to be a semidefinite program
per se. Indeed, its objective function involves the nonlinear
term h(X,γ) :�γ2〈(γI−X)−1,Σ̂〉, which is interpreted as∞
outside of its domain {(X,γ) ∈ Sp+ ×R : γI �X}. However,

h(X, γ) constitutes a matrix fractional function as de-
scribed in Boyd and Vandenberghe (2004, example
3.4) and thus admits the semidefinite reformulation:

h X,γ
( )� inf

t
t : γI �X, γ2 γI−X( )−1,Σ̂〈 〉

≤ t
{ }

� inf
Y,t

t : γI �X, Y�γ2Σ̂
1
2 γI−X( )−1Σ̂1

2, Tr Y[ ] ≤ t
{ }

� inf
Y

Tr Y[ ] : γI �X, Y γΣ̂
1
2

γΣ̂
1
2 γI−X

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦� 0⎧⎪⎪⎪⎨⎪⎪⎪⎩ ⎫⎪⎪⎪⎬⎪⎪⎪⎭,

where the second equality holds because A � B im-
plies Tr A[ ] ≥ Tr B[ ], whereas the third equality follows
from a standard Schur complement argument; see, for
example, Boyd and Vandenberghe (2004, appendix
A.5.5). Thus, h(X, γ) is representable as the optimal
value of a parametric semidefinite program whose
objective and constraint functions are jointly convex
in the auxiliary decision variable Y and the parame-
tersX and γ. The postulated reformulation (15) is then
obtained by substituting the last expression into (6).

2.3. Joint Estimation of the Mean Vector and the
Precision Matrix

Now that we have derived a tractable semidefinite
reformulation for the simplified estimation problem
(5), we are ready to address the generic estimation
problem (4), which does not assume knowledge of the
mean and is robustified against all distributions in the
ambiguity set Pρ without mean constraints.

Theorem 2.10 (Sufficiency of Σ̂). For any fixed ρ > 0,
μ̂ ∈ Rp, and Σ̂ ∈ Sp+, the general distributionally robust
estimation problem (4) is equivalent to the optimization
problem (6) and the tractable semidefinite program (15).
Moreover, the optimal value function J (μ̂, Σ̂) is constant in
μ̂ and continuous in Σ̂.

Proof. By Proposition 2.2, the optimal value of the
estimation problem (4) can be expressed as

J μ̂, Σ̂
( )

� inf
μ,X∈X− logdetX

+

sup
μ′,S�0

μ′ −μ( )�X μ′ −μ( )+ S,X〈 〉

s.t. Tr S[ ]+Tr Σ̂
[ ]
−2Tr

̅̅̅̅̅̅̅̅
Σ̂

1
2SΣ̂

1
2

√[ ]
≤ρ2− μ′ − μ⃦⃦̂ ⃦⃦2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
� inf

μ,X∈X− logdetX+ sup
μ′:‖μ′−̂μ‖≤ρ

μ′ −μ( )�X μ′ −μ( )
+ inf

γ:γI�X γ ρ2− μ′ − μ⃦⃦̂ ⃦⃦2(
−Tr Σ̂

[ ]){
+γ2 γI−X( )−1,Σ̂〈 〉}

.
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Here, the second equality holds because the Was-
serstein constraint is infeasible unless ‖μ′ − μ̂‖ ≤ ρ
and because the maximization problem over S, which
constitutes an instance of (9) with ρ2 − ‖μ′ − μ̂‖2 in-
stead of ρ2, can be reformulated as a minimization
problem over γ thanks to Proposition 2.8. By the
minimax theorem (Bertsekas 2009, proposition 5.5.4),
which applies because μ′ ranges over a compact ball
and because X − γI ≺ 0, we may then interchange the
maximization over μ′ with the minimization over γ
to obtain

J μ̂, Σ̂
( )

� inf
μ,X∈X ,
γ:γI�X

− log detX

+ sup
μ′:‖μ′−̂μ‖≤ρ

μ′ − μ
( )�X μ′ − μ

( )
+ γ ρ2 − μ′ − μ̂

⃦⃦ ⃦⃦2 − Tr Σ̂
[ ]( )

+ γ2 γI − X
( )−1, Σ̂〈 〉

.

Using the minimax theorem (Bertsekas 2009, propo-
sition 5.5.4) once again to interchange the minimi-
zation over μ with the maximization over μ′ yields

J μ̂, Σ̂
( )

� inf
X∈X ,
γ:γI�X

− log detX

+ sup
μ′:‖μ′−̂μ‖≤ρ

inf
μ

μ′ − μ
( )�X μ′ − μ

( )
+ γ ρ2 − μ′ − μ̂

⃦⃦ ⃦⃦2 − Tr Σ̂
[ ]( )

+ γ2 γI − X
( )−1, Σ̂〈 〉

� inf
X∈X ,
γ:γI�X

− log detX

+ γ ρ2 − Tr Σ̂
[ ]( )

+ γ2 γI − X
( )−1, Σ̂〈 〉

,

where the second equality holds because μ′ is the
unique optimal solution of the innermost minimiza-
tion problem over μ, whereas μ̂ is the unique optimal
solution of the maximization problem over μ′. Thus,
the general estimation problem (4) is equivalent to (6),
and J (μ̂, Σ̂) is manifestly constant in μ̂. Theorem 2.6
further implies thatJ (μ̂, Σ̂) is continuous in Σ̂, whereas
Corollary 2.9 implies that (4) is equivalent to the
tractable semidefinite program (15). These observa-
tions complete the proof.

Theorem 2.10 asserts that the general estimation
problem (4) is equivalent to the simplified estimation
problem (5), which is based on the hypothesis that the
mean of ξ is known to vanish. Theorem 2.10 further
reveals that the general estimation problem (4) aswell
as its (unique) optimal solution depends on the training
data only through the sample covariance matrix Σ̂. This
is reassuring because Σ̂ is known to be a sufficient
statistic for the precision matrix. As solving (4) is
tantamount to solving (5), it suffices to devise solution

procedures for the simplified estimation problem (5)
or its equivalent reformulations (6) and (15).
Weemphasize that the strictly convex log-determinant

term in the objective of (15) is supported by state-of-
the-art interior point solvers for semidefinite pro-
grams such as SDPT3 (Tütüncü et al. 2003). In prin-
ciple, Problem (15) can therefore be implemented
directly in MATLAB using the YALMIP interface
(Löfberg 2004), for instance. In spite of its theoretical
tractability, however, the semidefinite program (15)
quickly becomes excruciatingly large, and direct so-
lution with a general-purpose solver becomes im-
practicable already for moderate values of p. This
motivates us to investigate practically relevant special
cases in which the estimation problem (5) can be solved
either analytically (Section 3) or numerically using a
dedicated fast Newton-type algorithm (Section 4).

3. Analytical Solution Without
Sparsity Information

If we have no prior information about the precision
matrix, it is natural to set X � S

p
++. In this case, the

distributionally robust estimation Problem (5) can be
solved in quasi-closed form.

Theorem 3.1. (Analytical Solution Without Sparsity
Information). If ρ > 0, X � S

p
++, and Σ̂ ∈ Sp+ admits

the spectral decomposition Σ̂ � ∑p
i�1 λiviv�i with eigen-

values λi and corresponding orthonormal eigenvectors vi,
i ≤ p, then the unique minimizer of (5) is given by X∗ � ∑p

i�1
x∗i viv�i , where

x∗i � γ∗ 1 − 1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λ2
i γ∗
( )2 + 4λiγ∗

√
− λiγ

∗
( )[ ]

∀i ≤ p,

(16a)
and γ∗ > 0 is the unique positive solution of the alge-
braic equation

ρ2 − 1
2

∑p
i�1

λi

( )
γ − p + 1

2

∑p
i�1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λ2
i γ

2 + 4λiγ
√

� 0. (16b)

Proof. We first demonstrate that the algebraic equation
(16b) admits a unique solution in R+. For ease of ex-
position, we define ϕ(γ) as the left-hand side of (16b).
It is easy to see that ϕ(0) � −p < 0 and limγ→∞ ϕ(γ)/γ �
ρ2, which implies that ϕ(γ) grows asymptotically lin-
early with γ at slope ρ2 > 0. By the intermediate value
theorem, we may thus conclude that Equation (16b)
has a solution γ∗ > 0.

As λiγ + 2 >
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λ2
i γ

2 + 4λiγ
√

, the derivative of ϕ(γ)
satisfies

d
dγ

ϕ γ
( ) � ρ2 + 1

2

∑p
i�1

λi
λiγ + 2̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ2
i γ

2 + 4λiγ
√ − 1

( )
> 0,
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wherebyϕ(γ) is strictly increasing in γ ∈ R+. Thus, the
solution γ∗ is unique. The positive slope of ϕ(γ) fur-
ther implies via the implicit function theorem that γ∗
changes continuously with λi ∈ R+, i ≤ p.

In analogy to Proposition 2.8, we prove the claim
first under the assumption that Σ̂ � 0 and postpone
the generalization to rank-deficient sample covari-
ance matrices. Focusing on Σ̂ � 0, we will show that
(X∗, γ∗) is feasible and optimal in (6). By Theorem 2.6,
this will imply that X∗ is feasible and optimal in (5).

As γ∗ > 0 and Σ̂ � 0, which means that λi > 0 for all
i ≤ p, an elementary calculation shows that

2 >
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λ2
i γ∗
( )2 + 4λiγ∗

√
− λiγ

∗ > 0 ⇐⇒
1 > 1 − 1

2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λ2
i γ∗
( )2 + 4λiγ∗

√
− λiγ

∗
( )

> 0.

Multiplying the last inequality by γ∗ proves that γ∗ >
x∗i > 0 for all i ≤ p, which, in turn, implies that γ∗I �
X∗ � 0. Thus, (X∗, γ∗) is feasible in (6), andX∗ is feasible
in (5).

To prove optimality, we denote by f (X, γ) the ob-
jective function of Problem (6) and note that its gra-
dient with respect to X vanishes at (X∗, γ∗). Indeed,
we have

∇X f X∗, γ∗
( ) � − X∗( )−1 + γ∗

( )2 γ∗I − X∗
( )−1Σ̂ γ∗I − X∗

( )−1
�∑p

i�1
γ∗
( )2 γ∗ − x∗i

( )−2λi − x∗i( )−1
( )

viv�i

�∑p
i�1

γ∗
( )2x∗i λi − γ∗ − x∗i

( )2
γ∗ − x∗i
( )2xi viv�i � 0,

where the first equality exploits the basic rules of
matrix calculus (see, e.g., Bernstein 2009, p. 631), the
second equality holds because Σ̂ andX share the same
eigenvectors vi, i ≤ p, and the last equation follows
from the identity

γ∗
( )2x∗i λi � γ∗ − x∗i

( )2 ∀i ≤ p, (17)
which is a direct consequence of the definitions of γ∗
and x∗i , i ≤ p, in (16). Similarly, the partial derivative of
f (X, γ) with respect to γ vanishes at (X∗, γ∗), too. In
fact, we have

∂

∂γ
f X∗, γ∗
( ) � ρ2 − Tr Σ̂

[ ]
+ 2γ∗Tr γ∗I − X∗

( )−1Σ̂[ ]
− γ∗

( )2Tr γ∗I − X∗
( )−1Σ̂ γ∗I − X∗

( )−1[ ]
� ρ2 −∑p

i�1
λi 1 − 2γ∗

γ∗ − x∗i
+ γ∗

( )2
γ∗ − x∗i
( )2

( )

� ρ2 −∑p
i�1

x∗i( )2
γ∗ − x∗i
( )2 λi

� 1

γ∗
( )2 ρ2 γ∗

( )2−∑p
i�1

x∗i

( )
� 0,

where the second equality expresses Σ̂ and X in terms
of their respective spectral decompositions, the fourth
equality holds because of (17), and the last equality
follows from the observation that ρ2(γ∗)2 � ∑p

i�1 x∗i . In
summary, we have shown that (X∗, γ∗) satisfies the
first-order optimality conditions of the convex opti-
mization problem (6), which ensures that X∗ is opti-
mal in (5).
Consider now any (possibly singular) sample co-

variance matrix Σ̂ ∈ Sp+. As γ∗ > 0, similar arguments
as in the first part of the proof show that γ∗ ≥ x∗i > 0 for
all i ≤ p, which, in turn, implies that γ∗I � X∗ � 0.
Moreover, if Σ̂ has at least one zero eigenvalue, it is
easy to see that γ∗I �� X∗, in which case (X∗, γ∗) fails to
be feasible in (6). However, X∗ remains feasible and
optimal in (5). To see this, consider the invertible
sample covariance matrix Σ̂ + εI � 0 for some ε > 0,
and denote by (X∗(ε), γ∗(ε)) the corresponding mini-
mizer of Problem (6) as constructed in (16). As the
solution of the algebraic equation (16b) depends
continuously on the eigenvalues of the sample co-
variance matrix, we conclude that the auxiliary var-
iable γ∗(ε) and—by virtue of (16a)—the estimator
X∗(ε) are both continuous in ε ∈ R+. Thus, we find

J Σ̂
( )
� lim

ε→0+
J Σ̂ + εI

( )
� lim

ε→0+
− log detX∗ ε( ) + g Σ̂ + εI,X∗ ε( )

( )
� − log detX∗ + g Σ̂,X∗

( )
,

where the first equality follows from the continuity of
J (Σ̂) established in Theorem 2.6, the second equality
holds because X∗(ε) is the optimal estimator corre-
sponding to the sample covariance matrix Σ̂ + εI � 0
in Problem (5), and the third equality follows from the
continuity of g(Σ̂,X) established in Proposition 2.8
and the fact that limε→0+ X∗(ε) � X∗ � 0. Thus, X∗ is
indeed optimal in (5). The strict convexity of − log
detX further implies that X∗ is unique. This obser-
vation completes the proof.

Remark 3.2. (Properties of X∗). The optimal dis-
tributionally robust estimator X∗ identified in Theo-
rem 3.1 commutes with the sample covariance matrix Σ̂
because both matrices share the same eigenbasis.
Moreover, the eigenvalues of X∗ are obtained from
those of Σ̂ via a nonlinear transformation that depends
on the size ρ of the ambiguity set. We emphasize that
all eigenvalues of X∗ are positive for every ρ > 0,
which implies that X∗ is invertible. These insights
suggest that X∗ constitutes a nonlinear shrinkage esti-
mator, which enjoys the rotation equivariance property
(when all data points are rotated by R ∈ Rp×p, then X∗
changes to RX∗R�).
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Theorem 3.1 characterizes the optimal solution of
Problem (5) in quasi-closed form up to the spectral
decomposition of Σ̂ and the numerical solution of
Equation (16b). By Pan and Chen (1999, theorem 1.1),
the eigenvalues of Σ̂ can be computed to within an
absolute error ε in O(p3) arithmetic operations. More-
over, as its left-hand side is increasing in γ∗, Equa-
tion (16b) can be solved reliably via bisection or by the
Newton–Raphson method. The following lemma pro-
vides a priori bounds onγ∗ that can be used to initialize
the bisection interval.

Lemma 3.3 (Bisection Interval). For ρ > 0, the unique
solution of (16b) satisfies γ∗ ∈ [γmin, γmax], where

γmin �
p2λmax + 2pρ2 − p

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
p2λ2

max + 4pρ2λmax
√
2ρ4 >0,

γmax � min
p
ρ2 ,

1
ρ

̅̅̅̅̅̅̅̅∑p
i�1

1
λi

√{ }
, (18)

and λmax denotes the maximum eigenvalue of Σ̂.

Proof. By the definitions of γ∗ and x∗i in (16), we have
λix∗i � (γ∗ − x∗i )2/(γ∗)2 < 1, which implies that x∗i ≤ 1

λi
.

Using (16), one can further show that (γ∗)2 � 1
ρ2

∑p
i�1

x∗i ≤ 1
ρ2

∑p
i�1 1

λi
, which is equivalent to γ∗ ≤ 1

ρ (
∑p

i�1 1
λi
)12.

Note that this upper bound on γ∗ is finite only if λi > 0
for all i ≤ p. To derive an upper bound that is uni-
versally meaningful, we denote the left-hand side of
(16b) by ϕ(γ) and note that ρ2γ − p ≤ ϕ(γ) for all γ ≥ 0.
This estimate implies that γ∗ ≤ p

ρ2. Thus, we find γ∗ ≤
min { pρ2 , 1ρ (

∑p
i�1 1

λi
)12} � γmax.

Toderivea lowerboundonγ∗, we setλmax �maxi≤pλi

and observe that

ϕ γ
( ) ≤ ρ2γ − p +∑p

i�1

̅̅̅̅̅
λiγ

√ ≤ ρ2γ − p + p
̅̅̅̅̅̅̅̅̅
λmaxγ

√
,

where the first inequality holds because
̅̅̅̅̅̅̅
a + b
√ ≤ ̅̅

a
√ +̅̅

b
√

for all a, b ≥ 0. As the unique positive zero of the
right-hand side, γmin provides a nontrivial lower
bound on γ∗. Thus, the claim follows.

Lemma 3.3 implies that γ∗ can be computed via the
standard bisection algorithm to within an absolute
error of ε in log2((γmax − γmin)/ε) � O(log2 p) itera-
tions. As evaluating the left-hand side of (16b) re-
quires only O(p) arithmetic operations, the compu-
tational effort for constructing X∗ is largely dominated
by the cost of the spectral decomposition of the
sample covariance matrix.

Remark 3.4 (Numerical Stability). If both γ∗ and λi are
large numbers, then Equation (16a) for x∗i becomes

numerically unstable. A mathematically equivalent but
numerically more robust reformulation of (16a) is

x∗i � γ∗ 1 − 2

1 +
̅̅̅̅̅̅̅̅̅
1 + 4

λiγ∗

√
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.
In the following, we investigate the impact of the
Wasserstein radius ρ on the optimal Lagrange mul-
tiplier γ∗ and the corresponding optimal estimatorX∗.

Proposition 3.5 (Sensitivity Analysis). Assume that the
eigenvalues of Σ̂ are sorted in ascending order; that is,
λ1 ≤ · · · ≤ λp. If γ∗(ρ) denotes the solution of (16b), and
x∗i (ρ), i ≤ p, represent the eigenvalues of X∗ defined in (16a),
which makes the dependence on ρ > 0 explicit, then the
following assertions hold:
i. γ∗(ρ) decreases with ρ, and limρ→∞ γ∗(ρ) � 0;
ii. x∗i (ρ) decreases with ρ, and limρ→∞ x∗i (ρ) � 0 for

all i ≤ p;
iii. the eigenvalues of X∗ are sorted in descending

order—that is, x∗1(ρ) ≥ · · · ≥ x∗p(ρ) for every ρ > 0; and
iv. the condition number x∗1(ρ)/x∗p(ρ) of X∗ decreases

with ρ, and limρ→∞ x∗1(ρ)/x∗p(ρ) � 1.

Proof. As the left-hand side of (16b) is strictly in-
creasing in ρ, it is clear that γ∗(ρ) decreases with ρ.
Moreover, the a priori bounds on γ∗(ρ) derived in
Lemma 3.3 imply that

0 ≤ lim
ρ→∞γ∗ ρ

( ) ≤ lim
ρ→∞

p
ρ2 � 0.

Thus, assertion (i) follows. Next, by the definition of
the eigenvalue x∗i in (16a), we have

∂x∗i
∂γ∗
� 1+λiγ

∗ − 1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λ2
i γ∗
( )2 + 4λiγ∗

√
+ λ2

i γ∗
( )2 + 2λiγ∗̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ2
i γ∗
( )2 + 4λiγ∗

√
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� 1+λiγ

∗ − λ2
i γ∗
( )2 + 3λiγ∗̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ2
i γ∗
( )2 + 4λiγ∗

√ .

Elementary algebra indicates that (1 + z) ̅̅̅̅̅̅̅̅̅
z2 + 4z
√ ≥ z2 +

3z for all z ≥ 0, whereby the right-hand side of the
above-mentioned expression is strictly positive for
every λi ≥ 0 and γ∗ ≥ 0. We conclude that x∗i grows
with γ∗ and, by the monotonicity of γ∗(ρ) established
in assertion (i), that x∗i (ρ) decreases with ρ. As γ∗(ρ)
drops to 0 for large ρ and as the continuous function
(16a) evaluates to 0 at γ∗ � 0, we thus find that x∗i (ρ)
converges to 0 as ρ grows. These observations es-
tablish assertion (ii). As for assertion (iii), use (16a) to
express the ith eigenvalue of X∗ as x∗i � 1 − 1

2ψ(λi),
where the auxiliary functionψ(λ)�

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λ2(γ∗)2 +4λγ∗

√
−λγ∗
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is defined for all λ ≥ 0. Note that ψ(λ) is monotoni-
cally increasing because

d
dλ

ψ λ( ) � λ γ∗
( )2 + 2γ∗̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ2 γ∗
( )2 + 4λγ∗

√ − γ∗

� γ∗
λγ∗ + 2̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ2 γ∗
( )2+ 4 λγ∗

√ − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ > 0.

As λi+1 ≥ λi for all i < p, we thus have ψ(λi+1) ≥ ψ(λi),
which, in turn, implies that x∗i+1 ≤ x∗i . Hence, assertion
(iii) follows. As for assertion (iv), note that by (16a) the
condition number of X∗ is given by

x∗1 ρ
( )

x∗p ρ
( ) � 1 − 1

2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λ2
1γ
∗ ρ
( )2 + 4λ1γ∗ ρ

( )√
− λ1γ∗ ρ

( )( )
1 − 1

2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λ2
pγ
∗ ρ
( )2 + 4λpγ∗ ρ

( )√
− λpγ∗ ρ

( )( ) .
The last expression converges to 1 as ρ tends to in-
finity because γ∗(ρ) vanishes asymptotically because
of assertion (i). A tedious but straightforward cal-
culation using (16a) shows that ∂

∂γ∗ log(x∗1/x∗p) > 0,
which implies via the monotonicity of the logarithm
that x∗1/x∗p increases with γ∗. As γ∗(ρ) decreases with ρ
by virtue of assertion (i), we may then conclude that
the condition number x∗1(ρ)/x∗p(ρ) decreases with ρ.

Figure 1 visualizes the dependence of γ∗ and X∗ on
the Wasserstein radius ρ in an example where p � 5
and the eigenvalues of Σ̂ are given by λi � 10i−3 for
i ≤ 5. Figure 1(a) displays γ∗ as well as its a priori
bounds γmin and γmax derived in Lemma 3.3. Notefirst
that γ∗ drops monotonically to 0 for large ρ, which is
in line with Proposition 3.5(i). As γ∗ represents the
Lagrange multiplier of the Wasserstein constraint,

which limits the size of the ambiguity set to ρ, this
observation indicates that the worst-case expectation
(7) displays a decreasing marginal increase in ρ.
Figure 1(b) visualizes the eigenvalues x∗i , i ≤ 5, as well
as the condition number of X∗. Note that all eigen-
values are monotonically shrunk toward 0 and that
their order is preserved as ρ grows, which provides
empirical support for Proposition 3.5(ii) and (iii),
whereas the condition number decreases monotoni-
cally to 1, which corroborates Proposition 3.5(iv).
In summary, we have shown that X∗ constitutes a

nonlinear shrinkage estimator that is rotation equivar-
iant, positive definite, and well conditioned. Moreover,
(X∗)−1 preserves the order of the eigenvalues of Σ̂.
We emphasize that neither the interpretation of X∗
as a shrinkage estimator nor any of its desirable
properties—most notably, the improvement of its
condition number with ρ—were dictated ex ante.
Instead, these properties arose naturally from an
intuitively appealing distributionally robust estima-
tion scheme. By contrast, existing estimation schemes
sometimes impose ad hoc constraints on condition
numbers; see, for example, Won et al. (2013). On the
downside, as X∗ shares the same eigenbasis as the
sample covariance matrix Σ̂, it does not prompt a new
robust principal component analysis. We henceforth
refer to X∗ as the Wasserstein shrinkage estimator.

4. Numerical Solution with
Sparsity Information

We now investigate a more general setting where X
may be a strict subset of Sp++, which captures a pre-
scribed conditional independence structure of ξ. Spe-
cifically, we assume that there exists E ⊆ {1, . . . , p}2
such that the random variables ξi and ξj are condi-
tionally independent given ξ−{i,j} for any pair (i, j) ∈ E,

Figure 1. (Color online) Dependence of the Lagrange Multiplier γ∗ (Left Panel) as Well as the Eigenvalues x∗i , i ≤ 5, and the
Condition Number x∗5/x∗1 of the Optimal Estimator X∗ (Right Panel) on ρ
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where ξ−{i,j} represents the truncation of the random
vector ξ without the components ξi and ξj. It is well
known that if ξ follows a normal distribution with
covariance matrix S � 0 and precision matrix X � S−1,
then ξi and ξj are conditionally independent given
ξ−(i,j) if and only if Xij � 0. This reasoning forms the
basis of the celebrated Gaussian graphical models
(see, e.g., Lauritzen (1996)). Any prescribed condi-
tional independence structure of ξ can thus conve-
niently be captured by the feasible set

X � X ∈ Sp++ : Xij � 0 ∀ i, j
( ) ∈ E{ }

.

We may assume without loss of generality that E
inherits symmetry fromX; that is, (i, j) ∈ E ⇒ (j, i) ∈ E.
In Section 3 we have seen that the robust maximum
likelihood estimation problem (5) admits an analyt-
ical solution when E � ∅. In the general case, ana-
lytical tractability is lost. Indeed, if E �� ∅, then even
the nominal estimation problem obtained by setting
ρ � 0 requires a numerical solution (Dahl et al. 2005).
In this section we develop a Newton-type algorithm
to solve (5) in the presence of prior conditional in-
dependence information. For the sake of consistency,
we will refer to the optimal solution of Problem (5) as
the Wasserstein shrinkage estimator even in the pres-
ence of sparsity constraints.

Remark 4.1 (Conditional Independence Information in
Pρ). We emphasize that our proposed estimation model
accounts for the prescribed conditional independence
structure only in the feasible set X but not in the am-
biguity setPρ. Otherwise, the ambiguity set would have
to be redefined as

Pρ � Q ∈ N p
0 : W Q, P̂

( )
≤ ρ,

{
EQ ξξ�

[ ]−1( )
ij
� 0 ∀ i, j

( ) ∈ E}.
Although conceptually attractive, this new ambigu-
ity set is empty even for some ρ > 0 because the in-
verse sample covariance matrix Σ̂

−1
violates the pre-

scribed conditional independence relationships with
probability 1.

Recall from Theorem 2.6 that the estimation prob-
lem (5) is equivalent to the convex program (6) and
that the optimal value of (6) depends continuously on
Σ̂ ∈ Sp+. In the remainder of this section we may thus
assume without much loss of generality that Σ̂ � 0.
Otherwise, we can replace Σ̂ with Σ̂ + εI for some
small ε > 0 without significantly changing the esti-
mation problem’s solution. Inspired by Oztoprak

et al. (2012) and Hsieh et al. (2014), we now develop
a sequential quadratic approximation algorithm for
solving Problem (6) with sparsity information. Note
that the set X of feasible precision matrices typically
fixes many entries to zero, thus reducing the effective
problem dimension and making a second-order al-
gorithm attractive even for large instances of (6).
The proposed algorithm starts atX0 � I and at some

γ0 > 1, which are trivially feasible in (6). In each it-
eration the algorithm moves from the current iterate
(Xt, γt) along a feasible descent direction, which is
constructed from a quadratic approximation of the
objective function of Problem (6). A judiciously chosen
step size guarantees that the next iterate (Xt+1, γt+1)
remains feasible and has a better (lower) objective
value; see Algorithm 1. The construction of the de-
scent direction relies on the following lemma.

Lemma 4.2 (Fact 7.4.9 in Bernstein 2009). For any A,B ∈
Rp×p and X ∈ Sp, we have

Tr AXBX[ ] � vec X( )� B ⊗ A�
( )

vec X( ).

Proposition 4.3 (Descent Direction). Fix (X, γ) ∈ Sp++ ×
R++ with γI � X, and define the orthogonal projection P :
Rp2+1 → Rp2+1 through (Pz)k � 0 if k � p(j − 1) + i for
some (i, j) ∈ E, k � 1

2 zp(j−1)+i + 1
2 zp(i−1)+j if k � p(j − 1) + i

for some i, j ≤ p with (i, j) /∈ E, and k � zk if k � p2 + 1.
Moreover, define G :� I − X

γ,

H :�
X−1⊗X−1+2

γG
−1̂ΣG−1⊗G−1 − 1

γ2
vec G−1 XG−1̂Σ+̂ΣG−1X

[ ]
G−1

( )
− 1
γ2
vec G−1 XG−1̂Σ+̂ΣG−1X

[ ]
G−1

( )�
2
γ3
Tr G−1XG−1̂ΣG−1X
[ ][ ]

∈ Sp2+1

and

g :� vec G−1Σ̂G−1 − X−1
( )

ρ2 + Tr G−1Σ̂ I − 1
γG
−1X

( )
− Σ̂

[ ]⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ Rp2+1.

Then, the unique solution (ΔX
∗ ,Δγ

∗ ) ∈ Sp × R of the lin-
ear system

PH vec ΔX
∗( )�,Δγ

∗( )�+ g( )� 0 and ΔX
∗( )ij� 0 ∀ i, j

( ) ∈ E
(19)

represents a feasible descent direction for the optimization
problem (6) at (X, γ).
Proof. We first expand the objective function of Prob-
lem (6) around (X, γ) ∈ Sp++ × R++ with γI � X. By the
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rules of matrix calculus, the second-order Taylor ex-
pansion of the negative log determinant is given by

− logdet(X+ΔX) �− logdet X( )−Tr X−1ΔX
[ ]

+1
2
Tr X−1ΔX X−1ΔX

[ ]+O ||ΔX||3( )
for ΔX ∈ Sp; see also Boyd and Vandenberghe (2004,
p. 644). Moreover, by using a geometric series ex-
pansion, we obtain

I −X+ΔX

γ+Δγ

( )−1
� I −X+ΔX

γ
1−Δγ

γ
+Δ

2
γ

γ2 +O ‖Δγ‖3( )( )( )−1
� I −X

γ
+XΔγ

γ2 −
XΔγ

2

γ3 −
ΔX

γ

(
+ΔXΔγ

γ2 +O ‖ ΔX,Δγ

( )‖3( ))−1
for |ΔX | ∈ R. Expanding the matrix inverse as a
Neumann series and setting G � I − X

γ, which is in-
vertible because γI � X, this expression can be
reformulated as

G−12
(
I + G−

1
2XG−

1
2Δγ

γ2 − G−
1
2XG−

1
2Δ2

γ

γ3 − G−
1
2ΔXG

−12
γ + G−

1
2ΔXG

−12Δγ

γ2

+O ‖ ΔX ,Δγ

( )‖3( ))−1
G−

1
2

� G−1 − G−1XG−1Δγ

γ2 + G−1XG−1Δ2
γ

γ3

+ G−1ΔXG−1

γ
− G−1ΔXG−1ΔXG−1Δγ

γ2

+ G−1XG−1XG−1Δ2
γ

γ4 + G−1ΔXG−1ΔXG−1

γ2

− G−1XG−1ΔXG−1Δγ

γ3 − G−1ΔXG−1XG−1Δγ

γ3

+O ‖ ΔX ,Δγ

( )‖3( )
.

Thus, the second-order Taylor expansion of the last
term in the objective function of (6) is given by

(γ + Δγ)2Tr
(
γ + Δγ

( )
I − (X + ΔX)

)−1
Σ̂

[ ]
� (γ + Δγ)Tr I − X + ΔX

γ + Δγ

( )−1
Σ̂

[ ]
� γTr G−1Σ̂

[ ]
+ ΔγTr G−1Σ̂ I − 1

γ
G−1X

( )[ ]
+ Δ2

γ

γ3 Tr G
−1XG−1Σ̂G−1X

[
] + Tr G−1 Σ̂G−1ΔX

[ ]
− Δγ

γ2 Tr G
−1Σ̂G−1ΔXG−1X + G−1Σ̂G−1XG−1ΔX

[ ]
+ 1
γ
Tr G−1ΔXG−1Σ̂G−1ΔX

[ ]
+ O ΔX ,Δγ

( )⃦⃦⃦ ⃦⃦⃦3( )
,

where the second equality follows from the Taylor
expansion of the matrix inverse derived above. Using
Lemma 4.2, the objective function of (6) is thus rep-
resentable as

− log det(X + ΔX) + (γ + Δγ) ρ2 − Tr Σ̂
[ ]( )

+ (γ + Δγ)2Tr γ + Δγ

( )
I − X + ΔX( )( )−1Σ̂[ ]

� c + g�(vec(ΔX)�,Δγ)�

+ 1
2
(vec ΔX( )�,Δγ)H vec ΔX( )�,Δγ

( )�+O ‖ ΔX ,Δγ

( )‖3( )
for some c ∈ R, where the gradient g ∈ Rp and the
Hessian H ∈ Sp are defined as in the proposition state-
ment. A feasible descent direction for Problem (6) is thus
obtained by solving the auxiliary quadratic program:

min
ΔX,Δγ

g�
(
vec(ΔX)�,Δγ

)� + 1
2
(
vec(ΔX)�,Δγ

)
× H

(
vec(ΔX)�,Δγ

)�
s.t. ΔX ∈ Sp, (ΔX)ij � 0 ∀ i, j

( ) ∈ E. (20)
Note that (20) has a unique minimizer because H is
positive definite. Indeed, we have

4
γ4 vec G−1XG−1Σ̂G−1

( )�
× X−1 ⊗ X−1 + 2

γ
G−1Σ̂G−1 ⊗ G−1

( )−1
× vec G−1XG−1Σ̂G−1

( )
<

4
γ4 vec G−1XG−1Σ̂G−1

( )� 2
γ
G−1Σ̂G−1 ⊗ G−1

( )−1
× vec G−1XG−1Σ̂G−1

( )
� 2
γ3 vec G−1XG−1Σ̂G−1

( )�
GΣ̂

−1
G ⊗ G

( )
× vec G−1XG−1Σ̂G−1

( )
� 2
γ3 Tr G

−1XG−1Σ̂G−1X
[ ]

,

where the inequality holds because X ⊗ X is positive
definite and G−1XG−1Σ̂G−1 �� 0, the first equality fol-
lows from Bernstein (2009, proposition 7.1.7), which
asserts that (A ⊗ B)−1 � A−1 ⊗ B−1 for any A,B ∈ Sp++,
and the second equality follows from Lemma 4.2. The
above-mentioned derivation shows that the Schur
complement of the positive definite blockX−1 ⊗ X−1 +
2
γG
−1Σ̂G−1 ⊗ G−1 in H is a positive number, which, in

turn, implies that the Hessian H is positive definite.
In the following, we denote the unique minimizer of
(20) by (ΔX

∗ ,Δγ
∗ ). AsΔX� 0 andΔγ� 0 is feasible in (20),

it is clear that the objective value of (ΔX
∗ ,Δγ

∗ ) is
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nonpositive. In fact, as H � 0, the minimum of (20) is
negative unless g � 0. Thus, (ΔX

∗ ,Δγ
∗ ) is a feasible

descent direction.

Note that P defined in the proposition statement
represents the orthogonal projection on the linear space:

Z �
{
z � (vec(ΔX)�,Δγ)� ∈ Rp2+1 :

ΔX ∈ Sp, ΔX( )ij� 0 ∀ i, j
( ) ∈ E}.

Indeed, it is easy to verify thatP2 � P � P� because the
range and the null space of P correspond to Z and its
orthogonal complement, respectively. The quadratic
program (20) is thus equivalent to

min
z∈Z g�z + 1

2
z�Hz

{ }
� min

z∈Rp2+1
g�z + 1

2
z�Hz : Pz � z

{ }
.

The minimizer z∗ of the last reformulation and the
optimal Lagrange multiplier μ∗ associated with its
equality constraint correspond to the unique solution
of the Karush-Kuhn-Tucker optimality conditions:

Hz∗ + g + I − P( )μ∗ � 0, 1 − P( )z∗ � 0 ⇐⇒
P Hz∗ + g
( ) � 0, 1 − P( )z∗ � 0,

which are mainfestly equivalent to (19). Thus, the
claim follows.

Given a descent direction (ΔX
∗ ,Δγ

∗ ) at a feasible point
(X, γ), we use a variant of Armijo’s rule (Nocedal and
Wright 2006, section 3.1) to choose a step size α > 0
that preserves feasibility of the next iterate (X + αΔX

∗ ,
γ + αΔγ

∗ ) and ensures a sufficient decrease of the ob-
jective function. Specifically, for a prescribed line
search parameter σ ∈ (0, 12), we set the step size α to the
largest number in { 12m}m∈Z+ satisfying the following
two conditions.

Condition 1 (Feasibility). Note that (γ + αΔγ
∗ )I � X+

αΔX
∗ � 0.

Condition 2 (Sufficient Decrease). Note that f (X+αΔX
∗ ,

γ+αΔγ
∗ )≤ f (X,γ)+σαδ, where δ�g�(vec(ΔX

∗ )�,Δγ
∗ )�<0,

and g is defined as in Propostion 4.3.
Notice that the sparsity constraints are automatically

satisfied at the next iterate thanks to the construction of
the descent direction (ΔX

∗ ,Δγ
∗ ) in (19). Algorithm 1 re-

peats the procedure previously outlined until ‖g‖ drops
below a given tolerance (10−3) or until the iteration
count exceeds a given threshold (102). Throughout
the numerical experiments in Section 6, we set σ �
10−4, which is the value recommended in Nocedal
and Wright (2006).

Algorithm 1 (Sequential Quadratic Approximation Algorithm)
Data: Sample covariance matrix Σ̂ � 0,
Wasserstein radius ρ > 0, line search parameter

σ ∈ (0, 12).
Initialize X0 � I and γ0 > 1, and set t← 0;
while stopping criterion is violated do

Find the descent direction (ΔX
∗ ,Δγ

∗ ) at (X, γ) �
(Xt, γt) by solving (19);

Find the largest step size αt ∈ { 12m}m∈Z+ satisfying
Conditions 1 and 2;

Set Xt+1 � Xt + αtΔX
∗ , γt+1 � γt + αtΔγ

∗ ;
Set t← t + 1;

Remark 4.4 (Steepest Descent Algorithm). The compu-
tation of the descent direction in Proposition 4.3 re-
quires second-order information. It is easy to verify that
Proposition 4.3 remains valid if the Hessian H is
replaced with the identity matrix, in which case the
sequential quadratic approximation algorithm reduces
to the classical steepest descent algorithm (Nocedal and
Wright 2006, chap. 3).

The next proposition establishes that Algorithm 1
converges to the unique minimizer of Problem (6).

Proposition 4.5 (Convergence). Assume that Σ̂ � 0, ρ > 0,
and σ ∈ (0, 12). For any initial feasible solution (X0, γ0), the
sequence {(Xt, γt)}t∈Z+ generated by Algorithm 1 converges
to the uniqueminimizer (X∗, γ∗) of Problem (6).Moreover, the
sequence converges locally quadratically.

Proof. Denote by f (X, γ) the objective function of
Problem (6), and define

C :� X, γ
( ) ∈ X × R+ : f X, γ

( ) ≤ f X0, γ0

( )
, 0 ≺ X ≺ γI

{ }
as the set of all feasible solutions that are at least as
good as the initial solution (X0, γ0). The proof of
Theorem 2.6 implies that xI � X � xI and x ≤ γ ≤ x for
all (X, γ) ∈ C, where the strictly positive constants x
and x are defined as in (13). Note that, as Σ̂ is fixed in
this proof, the dependence of x and x on Σ̂ is nota-
tionally suppressed toavoidclutter.Thus,C is bounded.
Moreover, as Σ̂ � 0, it is easy to verify f (X, γ) tends to
infinity if the smallest eigenvalue ofX approaches 0 or
if the largest eigenvalue of X approaches γ. The
continuity of f (X, γ) then implies that C is closed. In
summary, we conclude that C is compact.

Bythedefinitionof f (X,γ) in (6), any (X, γ) ∈ C satisfies

0 ≤ f X0, γ0

( ) + log det X( ) − γ ρ2 − Tr Σ̂
[ ]( )

− γ I − γ−1X
( )−1

, Σ̂
〈 〉

≤ f X0, γ0

( ) + p log x( ) + xTr Σ̂
[ ]

− xλminTr I − γ−1X
( )−1[ ]

,
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where λmin denotes the smallest eigenvalue of Σ̂,
which is positive by assumption. Thus, we have

Tr I − γ−1X
( )−1[ ]
≤ 1
xλmin

f X0, γ0

( ) + p log x( ) + xTr Σ̂
[ ]( )

,

which implies that the eigenvalues of I − X
γ are uni-

formly bounded away from 0 on C. More formally,
there exists c0 > 0 with I − X

γ � c0I for all (X, γ) ∈ C. As
the objective function f (X, γ) is smooth wherever it is
defined, its gradient and Hessian constitute contin-
uous functions on C. Moreover, as f (X, γ) is strictly
convex on the compact set C, the eigenvalues of its
Hessian matrix are uniformly bounded away from 0.
This implies that the inverse Hessian matrix and the
descent direction (ΔX

∗ ,Δγ
∗ ) constructed in Proposi-

tion 4.3 are also continuous on C. Hence, there exist
c1, c2 > 0 such that ΔX

∗ � c1I and |Δγ
∗ | ≤ c2 uniformly

on C.
We conclude that any positive step size α < x min

{c−11 , (c1 + c2)−1c0} satisfies the feasibility condition
(Condition 1) uniformly on C because X + αΔX

∗ � (x −
αc1)I � 0 and

γ + αΔγ
∗( )
I � X + c0xI + α ΔX

∗ − ΔX
∗ + Δγ

∗ I
( )

.

� X + c0xI + α ΔX
∗ − c1 + c2( )I( ) � X + αΔX

∗

for all (X, γ) ∈ C. Moreover, by Tseng and Yun (2009,
lemma 5(b)), there exists α > 0 such that any posi-
tive step size α ≤ α satisfies the descent condition
(Condition 2) for all (X, γ) ∈ C. In summary, there
exists m∗ ∈ Z+ such that

α∗ � 1
2m∗

< min α, x min c−11 , c1 + c2( )−1c0
{ }{ }

satisfies both line search conditions (Conditions 1
and 2) uniformly on C. By induction, the iterates
{(Xt, γt)}t∈N generated by Algorithm 1 have nonin-
creasing objective values and thus all belong to C,
whereas the step sizes {αt}t∈N generated by Algo-
rithm 1 are all larger or equal to α∗. Hence, the al-
gorithm’s global convergence is guaranteed by Tseng
and Yun (2009, theorem 1), whereas the local qua-
dratic convergence follows from Hsieh et al. (2014,
theorem 16).

Remark 4.6 (Refinements of Algorithm 1). For large
values of p, computing and storing the exact Hessian
matrixH from Proposition 4.3 is prohibitive. In this case,
H can be approximated by a low-rank matrix as in
the limited-memory Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method without sacrificing global convergence
(Tseng and Yun 2009). Alternatively, one can resort to a

coordinate descent method akin to the QUIC algorithm
(Hsieh et al. 2014), in which case both the global and
local convergence guarantees of Proposition 4.5 re-
main valid.

Remark 4.7 (Learning the Sparsity Pattern). If the pre-
cision matrix is known to be sparse but has an un-
known sparsity pattern, then one may set X � S

p
++ and

add a weighted �1-regularization or Lasso term to the
objective function of Problem (6) in order to generate
sparse Wasserstein shrinkage estimators. Different
sparsity patterns can be obtained by tuning the weight
of the Lasso term. The regularized nonlinear SDP (6)
can then be solved with a variant of the QUIC algo-
rithm (Hsieh et al. 2014). Indeed, the gradient and the
Hessian matrix of the smooth part of the objective
function (which coincides with the robust version
of Stein’s loss function) can again be computed effi-
ciently by leveraging Proposition 4.3. Details are omitted
for brevity.

5. Extremal Distributions
It is instructive to characterize the extremal distri-
butions that attain the supremum in (7) for a given
sample covariance matrix Σ̂ and a fixed candidate
estimator X.

Theorem 5.1 (Extremal Distributions). For any Σ̂,X ∈ Sp++
and ρ > 0, the supremum in (7) is attained by the normal
distribution Q∗ � N (0, S∗) with covariance matrix

S∗ � γ∗
( )2 γ∗I − X

( )−1Σ̂ γ∗I − X
( )−1,

where γ∗ is the unique solution with γ∗I � X of the fol-
lowing algebraic equation:

ρ2 − Tr Σ̂
[ ]
+ 2γ∗Tr γ∗I − X

( )−1Σ̂[ ]
− γ∗

( )2Tr γ∗I − X
( )−1Σ̂ γ∗I − X

( )−1[ ]
� 0. (21)

Proof. From Proposition 2.8 we know that the worst-
case expectation problem (7) is equivalent to the semi-
definite program (8). Note that the strictly convex ob-
jective function of (8) is bounded below by

γ ρ2 − Tr Σ̂
[ ]( )

+ λminγ
2Tr γI − X

( )−1[ ]
,

where λmin denotes the smallest eigenvalue of Σ̂. As
λmin is positive by assumption, the objective function
of (8) tends to infinity as γ approaches the largest
eigenvalue of X, in which case γI − X becomes sin-
gular. Thus, the unique optimal solution γ∗ of (8)
satisfies γ∗I � X and solves the first-order optimal-
ity condition (21).
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Now we are ready to prove that Q∗ is both feasible
and optimal in (7). By the formula for S∗ in terms of γ∗,
Σ̂, and S, and by using Definition 2.3 and Proposi-
tion 2.2, it is easy to verify that (21) is equivalent to

Tr S∗[ ] + Tr Σ̂
[ ]
− 2Tr

̅̅̅̅̅̅̅̅̅
Σ̂

1
2S∗Σ̂

1
2

√[ ]
� ρ2 ⇐⇒

WS S∗, Σ̂
( )

�W Q∗, P̂
( )

� ρ,

which confirms thatQ∗ is feasible in (7). Moreover, the
objective value of Q∗ in (7) amounts to

EQ∗ ξξ�,X
〈 〉[ ]

� S∗,X〈 〉 � γ∗
( )2 γ∗I − X

( )−1〈
Σ̂ γ∗I − X
( )−1,X〉

� γ∗
( )2 γ∗I − X

( )−1Σ̂ γ∗I
(〈

−X)−1, X − γ∗I
( ) + γ∗I

〉
� − γ∗

( )2Tr γ∗I − X
( )−1Σ̂[ ]

+ γ∗
( )3Tr γ∗I − X

( )−1Σ̂ γ∗I − X
( )−1[ ]

� γ∗ ρ2 − Tr Σ̂
[ ]( )

+ γ∗
( )2

× γ∗I − X
( )−1, Σ̂〈 〉

� g Σ̂,X
( )

,

where the penultimate equality exploits (21), and the
last equality follows from the optimality of γ∗ in (8)
and from Proposition 2.8. Thus, Q∗ is optimal in (7).

In the absence of sparsity information (i.e., if X �
S
p
++), the unique minimizer X∗ of Problem (5) is

available in closed form thanks to Theorem 3.1. In this
case, the extremal distribution attaining the supremum
in (7) at X � X∗ can also be computed in closed form
even if Σ̂ is rank deficient.

Corollary 5.2 (Extremal Distribution for Optimal Estimator).
Assume that ρ > 0, X � S

p
++, and Σ̂ ∈ Sp+ admits the

spectral decomposition Σ̂ � ∑p
i�1 λiviv�i with eigenvalues λi

and corresponding orthonormal eigenvectors vi, i ≤ p. If
(X∗, γ∗) represents the unique solution of (6) given in
Theorem 3.1, then the supremum in (7) at X � X∗ is
attained by the normal distribution Q∗ � N (0,S∗) with
covariance matrix

S∗ �∑p
i�1

s∗i viv
�
i ,

where s∗i �
γ∗
( )2λi γ∗ − x∗i

( )−2 if λi > 0,

γ∗
( )−1 if λi � 0.

{

Proof. If Σ̂ � 0, the claim follows immediately by
substituting the formula for X∗ from Theorem 3.1 into

the formula for S∗ from Theorem 5.1. If Σ̂ � 0 is rank
deficient, we consider the invertible sample covari-
ance matrix Σ̂ + εI � 0 for some ε > 0, we denote by
(X∗(ε), γ∗(ε)) the corresponding minimizer of Prob-
lem (6) as constructed in (16), and we let S∗(ε) be
the covariance matrix of the extremal distribution of
Problem (7) at X � X∗(ε). Using the same reasoning
as in the proof of Theorem 3.1, one can show that
(X∗(ε), γ∗(ε)) is continuous in ε ∈ R+ and converges to
(X∗, γ∗) as ε tends to 0. Similarly, S∗(ε) is continuous in
ε ∈ R+ and converges to S∗ as ε tends to 0. To see this,
note that the eigenvalues s∗i (ε), i ≤ p, of S∗(ε) satisfy
lim
ε→0+

s∗i ε( )

� lim
ε→0+

γ∗ ε( )2 λi+ε( )
γ∗ ε( )−x∗i ε( )
( )2

� lim
ε→0+

4 λi+ε( )̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λi+ε( )2γ∗ ε( )2+4 λi+ε( )γ∗ ε( )

√(
− λi+ε( )γ∗ ε( ))2

� s∗i ∀i≤ p,

where the first equality follows from the first part of
the proof, the second equality exploits (16a), and the
third equality holds as a result of the definition of s∗i .
We are now armed to prove that Q∗ is both feasible

and optimal in (7). Indeed, using the continuity of
S∗(ε) and WS(S1,S2) in their respective arguments,
we find

W Q∗, P̂
( )

�WS S∗, Σ̂
( )

� lim
ε→0+

WS S∗ ε( ), Σ̂ + εI
( )

� ρ,

where the last equality follows from the construction
of S∗(ε) in the proof of Theorem 5.1. Thus,Q∗ is feasible
in (7). Similarly, using the continuity of S∗(ε) andX∗(ε)
in ε, we have

EQ∗ ξξ�,X∗
〈 〉[ ] � S∗,X∗〈 〉 � lim

ε→0+
S∗ ε( ),X∗ ε( )〈 〉

� lim
ε→0+

g Σ̂ + εI, S∗ ε( )
( )

� g Σ̂,S∗
( )

,

where the second-to-last and last equalities follow
from the constructionofS∗(ε) in the proof of Theorem 5.1
and the continuity of g(Σ̂,X) established in Proposi-
tion 2.8, respectively. Thus, Q∗ is optimal in (7).

6. Numerical Experiments
To assess the statistical and computational properties
of the proposed Wasserstein shrinkage estimator, we
compare it against two state-of-the-art precision matrix
estimators from the literature.
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Definition 6.1 (Linear Shrinkage Estimator). Denote by
diag(Σ̂) the diagonal matrix of all sample variances.
Then, the linear shrinkage estimator with mixing pa-
rameter α ∈ [0, 1] is defined as

X∗ � 1 − α( )Σ̂ + αdiag Σ̂
( )[ ]−1

.

The linear shrinkage estimator uses the diagonal
matrix of sample variances as the shrinkage target.
Thus, the sample covariances are shrunk to zero,
whereas the sample variances are preserved. We
emphasize that the most prevalent shrinkage target
is a scaled identity matrix (Ledoit 2004a). The benefits
of using diag(Σ̂) instead are discussed in Schäfer and
Strimmer (2005, section 2.4). This particular linear
shrinkage estimator can also be interpreted as the
maximum a posteriori estimator based on an inverse
Wishart prior (Murphy 2013, section 4.2.6). Note that
although Σ̂ is never invertible for n < p, diag(Σ̂) is
almost surely invertible whenever the true covari-
ance matrix is invertible and n > 1. Thus, the linear
shrinkage estimator is almost surely well defined for
all α > 0. Moreover, it can be efficiently computed in
O(p3) arithmetic operations.

Definition 6.2. (�1-Regularized Maximum Likelihood
Estimator). The �1-regularized maximum likelihood
estimator with penalty parameter β ≥ 0 is defined as

X∗ � argmin
X�0 − log detX + Σ̂,X

〈 〉
+ β

∑p
i,j�1
|Xij|

{ }
.

Adding an �1-regularization term to the standard
maximum likelihood estimation problem gives rise to
sparse—and thus interpretable—estimators (Banerjee
et al. 2008, Friedman et al. 2008). The resulting semi-
definite program can be solved with general-purpose
interior point solvers such as SDPT3 or with structure-
exploiting methods such as the QUIC algorithm, which
enjoys a quadratic convergence rate and requires O(p3)
arithmetic operations per iteration (Hsieh et al. 2014).
In the remainder of this section we test the Wasser-
stein shrinkage, linear shrinkage, and �1-regularized
maximum likelihood estimators on synthetic and
real data sets. All experiments are implemented in
MATLAB, and the corresponding codes are included
in the Wasserstein Inverse Covariance Shrinkage Esti-
mator (WISE) package available at https://www.github
.com/nvietanh/wise.

Remark 6.3 (Bessel’s Correction). So far, we used
N (μ̂, Σ̂) as the nominal distribution, where the sample
covariance matrix Σ̂ was identified with the (biased)
maximum likelihood estimator. In practice, it is some-
times useful to use Σ̂/κ as the nominal covariance
matrix, where κ ∈ (0, 1) is a Bessel correction that

removes the bias (see, e.g., Sections 6.2.1 and 6.2.2).
Under the premise thatX is a cone, it is easy to see that
if (X∗, γ∗) is optimal in (15) for a prescribed Wasser-
stein radius ρ and a scaled sample covariance matrix
Σ̂/κ, then (κX∗, κγ∗) is optimal in (15) for a scaled
Wasserstein radius

̅̅
κ
√

ρ and the original sample co-
variance matrix Σ̂. Thus, up to scaling, using a Bessel
correction is tantamount to shrinking ρ.

6.1. Experiments with Synthetic Data
Consider a (p � 20)-variate Gaussian random vector ξ
with zero mean. The (unknown) true covariance ma-
trixΣ0 of ξ is constructed as follows. We first choose a
density parameter d ∈ {12.5%, 50%, 100%}. Using the
legacy MATLAB 5.0 uniform generator initialized
with seed 0, we then generate a matrix C ∈ Rp×p with
�d × p2� randomly selected nonzero elements, all of
which represent independent Bernoulli random vari-
ables taking the values +1 or −1 with equal probabil-
ities. Finally, we set Σ0 � (C�C + 10−3I)−1 � 0.
As usual, the quality of an estimator X∗ for the pre-

cisionmatrixΣ−10 is evaluatedusingStein’s loss function,

L X∗,Σ0( ) � − log det X∗Σ0( ) + X∗,Σ0〈 〉 − p,

which vanishes if X∗ � Σ−10 and is strictly positive
otherwise (James and Stein 1961).
All simulation experiments involve 100 indepen-

dent trials. In each trial, we first draw n ∈ {10, 20,
40, 60} independent samples from N (0,Σ0), which
are used to compute the sample covariance matrix Σ̂
and the corresponding precision matrix estimators.
Figure 2 shows Stein’s loss of theWasserstein shrinkage
estimator without structure information for ρ ∈ [10−2,
101], the linear shrinkage estimator for α ∈ [10−5, 100],
and the �1-regularized maximum likelihood (ML)
estimator for β ∈ [5 × 10−5, 100]. Lines represent av-
erages, and shaded areas capture the tubes between
the empirical 20% and 80% quantiles across all 100
trials. Note that all three estimators approach Σ̂

−1

when their respective tuning parameters tend to 0. As
Σ̂ is rank deficient for n < p � 20, Stein’s loss thus
diverges for small tuning parameters when n � 10.
The bestWasserstein shrinkage estimator in a given

trial is defined as the one that minimizes Stein’s loss
over all ρ ≥ 0. The best linear shrinkage and �1-reg-
ularized maximum likelihood estimators are defined
analogously. Figure 2 reveals that the best Wasser-
stein shrinkage estimators dominate the best linear
shrinkage and—to a lesser extent—the best �1-regu-
larized maximum likelihood estimators in terms of
Stein’s loss for all considered parameter settings. The
dominance is more pronounced for small sample
sizes. We emphasize that Stein’s loss depends ex-
plicitly on the unknown true covariance matrix Σ0.
Thus, Figure 2 is not available in practice, and the
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optimal tuning parameters ρ∗, α∗, and β∗ cannot be
computed exactly. The performance of different preci-
sion matrix estimators with estimated tuning parame-
ters will be studied in Section 6.2.

For d � 12.5% and d � 50%, the true precision ma-
trix Σ−10 has many zeros, and prior knowledge of their
positions could be used to improve estimator accu-
racy. To investigate this effect, we henceforth assume
that the feasible set X correctly reflects a randomly
selected portion of 50%, 75%, or 100% of all zeros of
Σ−10 , whereas X contains no (neither correct nor in-
correct) information about the remaining zeros. In
this setting, we construct the Wasserstein shrinkage
estimator by solving Problem (5) numerically.

Figure 3 shows Stein’s loss of the Wasserstein
shrinkage estimator with prior information for ρ ∈
[10−2, 101]. Lines represent averages, and shaded areas
capture the tubes between the empirical 20% and 80%
quantiles across 100 trials. As expected, correct prior
sparsity information improves estimator quality, and the
more zeros are known, the better.Note thatΣ−10 contains
21.5% zeros for d � 12.5% and 68% zeros for d � 50%.
In the last experiment, we investigate the Was-

serstein radius ρ∗ of the best Wasserstein shrinkage
estimator without sparsity information. Figure 4 vi-
sualizes the average of ρ∗ across 100 independent
trials as a function of the sample size n. A standard
regression analysis based on the data of Figure 4

Figure 2. (Color online) Stein’s Loss of theWasserstein Shrinkage, Linear Shrinkage, and �1-RegularizedMaximumLikelihood
Estimators as a Function of Their Respective Tuning Parameters for d � 100% (Panels 2(a)–(c)), d � 50% (Panels (d)–(f)), and
d � 12.5% (Panels (g)–(i))
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reveals that ρ∗ converges to 0 approximately as n−κ
with κ ≈ 61% for d � 12.5%, κ ≈ 66% for d � 50%, and
κ ≈ 68% for d � 100%.

6.2. Experiments with Real Data
We now study the properties of the Wasserstein
shrinkage estimator in the context of linear discriminant

analysis, portfolio selection, and the inference of solar
irradiation patterns.

6.2.1. Linear Discriminant Analysis. Linear discrimi-
nant analysis aims to predict the class y ∈ Y, |Y | < ∞,
of a feature vector z ∈ Rp under the assumption that
the conditional distribution of z given y is normal
with a class-dependent mean μy ∈ Rp and class-in-
dependent covariance matrix Σ0 ∈ Sp++ (Hastie et al.
2001). If all μy and Σ0 are known, the maximum
likelihood classifier C : Rp → Y assigns z to a class that
maximizes the likelihood of observing y; that is,

C z( ) ∈ argmin
y∈Y z − μy

( )�Σ−10 z − μy
( )

. (22)

In practice, however, the conditional moments are
typically unknown andmust be inferred from finitely
many training samples (̂zi, ŷi), i ≤ n. If we estimate μy
by the sample average

μ̂y �
1
|Iy|

∑
i∈Iy

x̂i,

where Iy � {i ∈ {1, . . . ,n} : ŷi � y} records all samples
in class y, then it is natural to define the residual
feature vectors as ξ̂i � ẑi − μ̂ŷi

, i ≤ n. Accounting for

Figure 3. (Color online) Stein’s Loss of theWasserstein Shrinkage Estimator with 50%, 75%, or 100% Sparsity Information as a
Function of the Wasserstein Radius ρ for d � 50% (Panels (a)–(c)) and d � 12.5% (Panels (d)–(f))

Figure 4. (Color online) Dependence of the Best
Wasserstein Radius ρ∗ on the Sample Size n
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Bessel’s correction, the conditional distribution of ξ̂i
given ŷi is normal with mean 0 and covariance matrix
(|I

ŷi
| − 1) |I

ŷi
|−1Σ0. Themarginal distribution of ξ̂i thus

constitutes a mixture of |Y | normal distributions with
mean 0, all of which share the same covariance matrix
up to a scaling factor close to unity. As such, the
residuals fail to be normally distributed. Moreover,
because of their dependence on the samplemeans, the
residuals are correlated. However, if each class ac-
commodates many training samples, then the resid-
uals can approximately be regarded as independent
samples from N (0,Σ0).

Irrespective of these complications, the sample
covariance matrix

Σ̂ � 1
n − |Y |

∑n
i�1

ξ̂iξ̂
�
i

provides an unbiased estimator for Σ0. Indeed, by the
law of total expectation, we have

EP Σ̂
[ ]
� 1
n − |Y|E

P
∑n
i�1

EP ξ̂iξ̂
�
i

⃒⃒⃒̂
yi

[ ][ ]

� 1
n − |Y|

∑
y∈Y

EP
∑
i∈Iy

|I
ŷi
| − 1

|I
ŷi
| Σ

[ ]

� 1
n − |Y|

∑
y∈Y
|Iy| − 1
( )

Σ0 � Σ0,

where P stands for the unknown true joint distribu-
tion of the residuals and class labels. In a data-driven
setting, the ideal maximum likelihood classifier (22) is
replaced with

Ĉ ξ( ) � argmin
y∈Y ξ − μ̂y

( )�
X∗ ξ − μ̂y

( )
, (23)

which depends on the raw data through the sample
averages μ̂y, y ∈ Y, and some precision matrix esti-
mator X∗. The possible choices for X∗ include the
Wasserstein shrinkage estimator without prior in-
formation, the linear shrinkage estimator, and the
�1-regularized maximum likelihood estimator, all of
which depend on the data merely through Σ̂. Note
that the naı̈ve precision matrix estimator Σ̂

−1
exists

only for n > p and is therefore disregarded. All esti-
mators depend on a scalar parameter (theWasserstein
radius ρ, the mixing parameter α, or the penalty
parameter β) that can be used to tune the performance
of the classifier (23).

We test the classifier (23) equipped with different
estimators X∗ on two preprocessed data sets from
Dettling (2004):

1. The “colon cancer” data set contains 62 gene
expression profiles, each of which involves 2,000
features and is classified either as normal tissue (NT)
or tumor-affected tissue (TT). The data are split into a

training data set of 29 observations (9 in class NT and
20 in class TT) and a test data set of 33 observations (13
in class NT and 20 in class TT).
2. The “leukemia” data set contains 72 gene ex-

pression profiles, each of which involves 3,571 fea-
tures and is classified either as acute lymphocytic
leukemia (ALL) or acute myeloid leukemia (AML).
The data are split into a training data set of 38 ob-
servations (27 in class ALL and 11 in class AML) and a
test data set of 34 observations (20 in class ALL and 14
in class AML).
Classification is based solely on the first p ∈ {20, 40,

80, 100} features of each gene expression profile. We
use leave-one-out cross-validation on the training
data to tune the precisionmatrix estimatorX∗with the
goal to maximize the correct classification rate of the
classifier (23). To keep the computational overhead
manageable, we optimize the tuning parameters over
the finite search grids

ρ ∈ 10
j
20−1 : j � 0, . . . , 60

{ }
,

α ∈ 10
j
20−3 : j � 0, . . . , 60

{ }
and

β ∈ 10
j
20−3 : j � 0, . . . , 60

{ }
.

We highlight that, in the case of the �1-regularized
maximum likelihood estimator, cross-validation be-
comes computationally prohibitive for p > 80 even if
the state-of-the-art QUIC routine is used (Hsieh et al.
2014) to solve the underlying semidefinite programs.
By contrast, the Wasserstein and linear shrinkage
estimators can be computed and tuned quickly even
for p 100. Once the optimal tuning parameters are
found, we fix them and recalculate X∗ on the basis of
the entire training data set. Finally, we substitute the
resulting precision matrix estimator into the classifier
(23) and evaluate its correct classification rate on the
test data set. The test results are reported in Table 1.
We observe that the Wasserstein shrinkage estima-
tor frequently outperforms the linear shrinkage and
�1-regularized maximum likelihood estimators, es-
pecially for higher values of p.

6.2.2. Minimum Variance Portfolio Selection. Consider
the minimum variance portfolio selection problem with-
out short sale constraints (Jagannathan and Ma 2003):

min
w∈Rp

w�Σ0w

s.t. 1�w � 1,

where the portfolio vector w ∈ Rp captures the per-
centage weights of initial capital allocated to p dif-
ferent assets with random returns, 1 ∈ Rp stands
for the vector of ones, and Σ0 ∈ Sp++ denotes the co-
variance matrix of the asset returns. The objective
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represents the variance of the portfolio return, which
is strictly convex in w thanks to the positive defi-
niteness of Σ0. The unique optimal solution of this
portfolio selection problem is given by w∗ � Σ−10 1/1�
Σ−10 1. In practice, the unknown true precision matrix
Σ−10 must be replaced with an estimator X∗, which
gives rise to the estimated minimum variance port-
folio ŵ∗ � X∗1/1�X∗1.

A vast body of literature in finance focuses on finding
accurate precision matrix estimators for portfolio con-
struction; see, for example, Stevens (1998), DeMiguel
and Nogales (2009), Ledoit (2004b), Goto and Xu
(2015), and Torri et al. (2019). In the following, we
compare the minimum variance portfolios based on
the Wasserstein shrinkage estimator without struc-
tural information, the linear shrinkage estimator, and
�1-regularized maximum likelihood estimator on two
preprocessed data sets from the Fama–French online
data library:3 the “48 industry portfolios” data set
(FF48) and the “100 portfolios formed on size and
book-to-market” data set (FF100). Recall that the
estimators depend on the data only through the
sample covariance matrix Σ̂, which is computed from
the residual returns relative to the sample means and
thus needs to account for Bessel’s correction. The data
sets both consist of monthly returns for the period
from January 1996 to December 2016. The first 120
observations from January 1996 to December 2005
serve as the training data set. The optimal tuning
parameters that minimize the portfolio variance are
estimated via leave-one-out cross-validation on the
training data set using the finite search grids

ρ ∈ 10
j

100−2 : j � 0, . . . , 200
{ }

,

α ∈ 10
j

100−2 : j � 0, . . . , 200
{ }

, and

β ∈ 10
j
50−4 : j � 0, . . . , 200

{ }
.

The out-of-sample performance of the minimum vari-
ance portfolio corresponding to a particular precision
matrix estimator is then evaluated using the rolling
horizon method over the period from January 2006 to
December 2016, where the sample covariance matrix
needed as an input for theprecisionmatrix is reestimated

every three months based on the most recent 120 ob-
servations (10 years) while the tuning parameter is kept
fixed. The resulting out-of-sample mean, standard de-
viation, and Sharpe ratio of the portfolio return are re-
ported in Table 2. Although the �1-regularized max-
imum likelihood estimator yields the portfolio with
the lowest standard deviation for both data sets, the
Wasserstein shrinkage estimator always generates
the highest mean and, maybe surprisingly, the highest
Sharpe ratio.

6.2.3. Inference of Solar Irradiation Patterns. In the last
experimentwe aim to estimate the spatial distribution
of solar irradiation in Switzerland using the “surface
incoming shortwave radiation” (SIS) data provided
by MeteoSwiss.4 The SIS data capture the horizontal
solar irradiation intensities in watts per square meter
for pixels of size 1.6 km by 2.3 km based on the ef-
fective cloud albedo, which is derived from satellite
imagery. The data set spans 13 years, from 2004 to
2016, with a total number of 4,749 daily observations.
We deseasonalize the time series of each pixel as
follows. First, we divide the original time series by a
shifted sinusoid with a yearly period, whose baseline
level, phase, and amplitude are estimated via ordi-
nary least squares regression.Next,we subtract unity.
The resulting deseasonalized time series is viewed as
the sample path of a zero mean Gaussian noise pro-
cess. This approach relies on the assumption that the
mean and the standard deviation of the original time
series share the same seasonality pattern. It remains
to estimate the joint distribution of the pixel-wise
Gaussian white noise processes, which is fully de-
termined by the precision matrix of the deseasonal-
ized data. We estimate the precision matrix using the

Table 2. Standard Deviation, Mean, and Sharpe Ratio of the
Minimum Variance Portfolio Based on Different Estimators

FF48 data set FF100 data set

Estimator SD Mean Sharpe SD Mean Sharpe

Wasserstein shrinkage 3.146 0.701 0.223 3.518 1.079 0.307
Linear shrinkage 3.152 0.688 0.218 3.484 0.965 0.277
�1-regularized ML 3.077 0.668 0.217 3.423 1.010 0.295

Note. The best result in each experiment is highlighted in bold.

Table 1. Correct Classification Rate of the Classifier (23) Instantiated with Different
Precision Matrix Estimators

Colon cancer data set Leukemia data set

Estimator p � 20 p � 40 p � 80 p � 100 p � 20 p � 40 p � 80 p � 100

Wasserstein shrinkage 72.73 75.76 78.79 75.76 73.53 67.65 91.18 91.18
Linear shrinkage 57.58 72.73 72.73 72.73 70.59 70.59 82.35 82.35
�1-regularized ML 72.73 78.79 78.79 72.73 70.59 64.71 82.35 82.35

Note. The best result in each experiment is highlighted in bold.
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Wasserstein shrinkage, linear shrinkage, and �1-reg-
ularized maximum likelihood estimators. As each
pixel represents a geographical location, and as the
solar irradiation intensities at two distant pixels are
likely to be conditionally independent given the in-
tensities at all other pixels, it is reasonable to assume
that the precision matrix is sparse; see also Das
et al. (2017) and Wiesel et al. (2010). Specifically,
we assume here that the solar irradiation intensities at
two pixels indexed by (i, j) and (i′, j′) are conditionally
independent and that the corresponding entry of the
precision matrix vanishes whenever |i − i′| + |j − j′| > 3.
This sparsity information can be used to enhance the
basic Wasserstein shrinkage estimator.

Consider now the Diablerets region of Switzerland,
which is described by a spatialmatrix of 20× 20 pixels.
Thus, the corresponding precision matrix has a di-
mension 400× 400. The average daily solar irradiation

intensities within the region of interest are visualized
in Figure 5. We note that the sunshine exposure is
highly variable because of the heterogeneous geo-
graphical terrain characterized by a high mountain
range in the south intertwinedwith deep valleys in the
north. In order to assess the quality of a specific precision
matrix estimator, we use K fold cross-validation with
K � 13. The kth fold comprises all observations of year
k and is used to construct the estimatorX∗k . The data of
the remaining 12 years, without year k, are used to
compute the empirical covariance matrix Σ̂−k. The es-
timation error of X∗k is then measured via Stein’s loss:

L X∗k , Σ̂−k
( )

� − log det X∗k Σ̂−k
( )

+ X∗k, Σ̂−k
〈 〉

− p.

We emphasize that here, in contrast to the experiment
with synthetic data, Σ̂−k is used as a proxy for the
unknown true covariance matrix Σ. Figure 6 shows
Stein’s loss of the Wasserstein shrinkage estimator
with and without structure information for ρ ∈ [10−2,
100], the linear shrinkage estimator for α ∈ [10−3,
2 × 10−2], and the �1-regularizedmaximum likelihood
estimator for β ∈ [10−5, 10−3]. Lines represent averages,
andshadedareas capture the tubesbetween thebest- and
worst-case loss realizations across all K folds.
The Wasserstein shrinkage estimator with struc-

ture information reduces the minimum average loss
by 13.5% relative to the state-of-the-art �1-regularized
maximum likelihood estimator. Moreover, the aver-
age runtimes for computing the different estimators
amount to 51.84 s for the Wasserstein shrinkage es-
timator with structural information (Algorithm 1),
0.08 s for the Wasserstein shrinkage estimator with-
out structural information (analytical formula and
bisection algorithm), 0.01 s for the linear shrinkage
estimator (analytical formula) and 1,493.61 s for the
�1-regularized maximum likelihood estimator (QUIC
algorithm; Hsieh et al. 2014).

Figure 5. (Color online) Average Solar Irradiation
Intensities (in Watts per Square Meter) for the Diablerets
Region in Switzerland

Figure 6. (Color online) Stein’s Loss of theWasserstein Shrinkage, Linear Shrinkage, and �1-RegularizedMaximumLikelihood
Estimators as a Function of Their Respective Tuning Parameters
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Endnotes
1An elementary calculation shows that EPn [Σ̂] � n−1

n Σ.
2A proof for the continuity of WS can be found in lemma A.2 of
Nguyen et al. (2021).
3 See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data
_library.html (accessed January 2018).
4 See http://www.meteoschweiz.admin.ch/data/products/2014/
raeumliche-daten-globalstrahlung.html (accessed January 2018;
in German).
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