COASTAL ENGINEERING

Santa Barbara Specialty Conference October, 1965

COASTAL ENGINEERING

Santa Barbara Specialty Conference October, 1965

AMERICAN SOCIETY OF CIVIL ENGINEERS 345 E. 47TH STREET NEW YORK, N.Y. 10017

Price \$10

COPYRIGHT 1966 By The American Society of Civil Engineers

NOTE- The society is not responsible for any statement made or opinion expressed in this publication.

ACKNOWLEDGMENTS

This conference was sponsored by the Waterways and Harbors Division of the American Society of Civil Engineers through its Committee on Coastal Engineering. Appreciation is expressed to the Los Angeles Section, ASCE, and in particular to William J. Herron, Jr., M. ASCE, for their assistance, particularly in providing programs and funding arrangements; to the Santa Barbara -Ventura Counties Branch of the Los Angeles Section, ASCE, and, in particular to Wallace C. Penfield, M. ASCE, Chairman of the Local Arrangements Committee, for dealing with the meeting arrangements; and to the U. S. Army Engineer District, Los Angeles, for photographs supplied to illustrate the cover and the section title pages of this publication.

All of the material from this conference was compiled by Thorndike Saville, Jr., M. ASCE. Without his outstanding organizational effort and diligence this publication would not have been possible.

CONTENTS

PART 1. WAVES, WAVE CHARACTERISTICS, AND WAVE FORCES

chapter 1	
ORTHOGONAL COORDINATES FOR THE ANALYSIS OF LONG	
GRAVITY WAVES NEAR ISLANDS R. O. Reid and A. C. Vastano	1
R. O. Reid and A. C. Vastano	1
chapter 2	
HILO HARBOR TSUNAMI MODEL - REFLECTED WAVES	
<u>SUPERIMPOSED</u>	
Robert Q. Palmer, Michael E. Mulvihill and Gerald T. Funasaki	21
chapter 3	
COAST AND GEODETIC SURVEY TSUNAMI PROPAGATION	
PROGRAM (<u>abstract only</u>)	
Gaylord Miller	33
chapter 4	
STRUCTURAL DAMAGE BY TSUNAMIS	
Orville T. Magoon	35
chapter 5	
WATER WAVES GENERATED BY UNDERWATER EXPLOSIONS	60
Jan M. Jordaan, Jr.	69
chapter 6	
PRACTICAL USE OF ELECTRIC NETWORKS TO SIMULATE	
OR PREDICT SEICHE CONDITIONS IN HARBORS	
Joseph W. Joy	87
chapter 7	
LONG PERIOD OSCILLATIONS IN BASINS OF ARBITRARY	
SHAPES	
Frederic Raichlen	115
chapter 8	
THE SPECTRAL DENSITY FOR OCEAN WAVE FORCES	
Leon E. Borgman	147

chapter 9

ON THE PROBABILITY DISTRIBUTION OF WAVE FORCE AND ON	
INTRODUCTION TO THE CORRELATION DRAG COEFFICIENT	
AND THE CORRELATION INERTIAL COEFFICIENT	
Charles L. Bretschneider	183
chapter 10	
FIFTH AND FIRST ORDER WAVE FORCE COEFFICIENTS FOR	
CYLINDRICAL PILES	
Hans A. Agershou and J. J. Edens	219
chapter 11	
FORCES ON A FLEXIBLE PILE	
A. D. K. Laird	249
chapter 12	
STREAM FUNCTION WAVE THEORY; VALIDITY AND	
APPLICATION	
Robert G. Dean	269
chapter 13	
A HIGHER ORDER THEORY FOR DEEP WATER WAVES	
Peter L. Monkmeyer and John E. Kutzbach	301
chapter 14	
ON FROUDE-CAUCHY SIMILITUDE	
B. Le Mehaute	327
chapter 15	
DEFORMATION OF SOLITARY WAVES ON A 45-DEGREE SLOPE	
Norman Wallace	347
chapter 16	
WIND EFFECT ON PRE-EXISTING WAVES	
Groshon Kulin	369
chapter 17	
THE INFLUENCE OF WIND ON OPEN CHANNEL FLOW	
Erich J. Plate and Carl R. Goodwin	391
chapter 18	
WAVE ATTENUATION IN A CHANNEL WITH ROUGHENED SIDES	
J. S. Battjes	425

chapter 19	
WAVE STATISTICS FROM HURRICANE DORA AT PANAMA	
CITY, FLORIDA	
J . Ian Collins	461
chapter 20	
GROWTH OF LONGSHORE CURRENTS DOWNSTREAM OF A	
SURF-ZONE BARRIER	487
Peter S. Eagleson	487
PART 2. SHORE PROCESSES AND SEDIMENT MOVEMENT	
chapter 21	
PREDICTOR EQUATIONS FOR BEACH PROCESSES AND	
RESPONSES (abstract only)	
Wyman Harrison	509
CHAPTER 22	
LITTORAL PROCESSES AND THE DEVELOPMENT OF	
<u>SHORELINES</u>	
Douglas L. Inman and Jeffery D. Frautschy	511
	011
chapter 23	
NEARSHORE SEDIMENT MOVEMENT - CENTRAL CALIFORNIA	
COAST	
J. W. Johnson	537
chapter 24	
BY-PASSING AND BACKPASSING WITH SPECIAL REFERENCE	
TO CONDITIONS IN FLORIDA	
P. M. Bruun	561
chapter 25	
SHELL DREDGING AS A FACTOR IN ESTUARINE	
SEDIMENTATION	
Frank D. Masch	627
	027
chapter 26	
EROSION AND ACCRETION ALONG CLATSOP SPIT	
Harold A. Kidby and John G. Oliver	647
chapter 27	
STUDY OF EROSION ALONG HOMER SPIT AND VICINITY	
Gail J. Gronewald and Walter W. Duncan	673

chapter 28	
MEASUREMENT EQUIPMENT AND TECHNIQUES USED IN	
STUDY- 1NG RADIONUCLIDE MOVEMENT IN THE COLUMBIA	
RIVER ESTUARY	
Edmund A. Prych, D. W. Hubbell, and J. L. Glenn	683
chapter 29	
SCOUR OF FLAT SAND BEACHES DUE TO WAVE ACTION IN	
FRONT OF SEA WALLS	
John B. Herbich, H. D. Murphy,' and B. Van Weele	705
PART 3. COASTAL ENGINEERING PROJECTS, DESIGN AND OPERATION	
chapter 30	
DREDGING - PAST, PRESENT, AND FUTURE	
Arthur L. McKnight	727
chapter 31	
GROINS AND EFFECTS - MINIMIZING LIABILITIES	
Omar J. Lillivang	749
chapter 32	
USE OF LONG GROINS AS ARTIFICIAL HEADLANDS	
James W. Dunham	755
chapter 33	
VARIATIONS IN GROIN DESIGN (abstract only)	
D. W. Berg and G. M. Watts	763
chapter 34	
TRENDS IN SAND BY-PASSING SYSTEMS	
George M. Watts	799
chapter 35	
SAND BY-PASSING AT SANTA BARBARA HARBOR	
William J. Herron, Jr.	805
chapter 36	
PLANNING AND DESIGN OF A LOW-WEIR SECTION JETTY	
AT MASONBORO INLET, NORTH CAROLINA	00-
Nels C. Magnuson	807

chapter 37

MODEL TESTS OF ENLARGED NAVIGATION CHANNEL AT	
MILLER SANDS BAR, COLUMBIA RIVER ESTUARY	
Frank A. Herrmann, Jr.	821
chapter 38	
<u>UMPQUA JETTY SURVEILLANCE PROGRAM</u>	
Harold A. Kidby and Charles D. Price	845
chapter 39	
RESTORING A SMALL BOAT BASIN DAMAGED BY THE 1964	
<u>ALASKA EARTHQUAKE</u>	
Norman L. Arno	861
chapter 40	
DEVELOPMENT OF HURRICANE FLOOD PROTECTION FOR	
<u>TEXAS CITY, TEXAS</u>	
Wayne M. Murphy and Charles W. Geelan	889
chapter 41	
ON THE OPTIMAL DESIGN OF RUBBLE MOUND HURRICANE	
BARRIERS (abstract only)	
R. T. McLaughlin	921
chapter 42	
OPERATION OF HURRICANE BARRIERS IN NEW ENGLAND	
Elliot F. Childs	923
chapter 43	
OCEAN TEMPERATURE MEASUREMENTS FOR POWER PLANT	
DESIGN	
W. O. Cheney and Gordon V. Richards	955
chapter 44	
MARINE STUDIES FOR THE DESIGN AND CONSTRUCTION OF	
OFFSHORE PIPELINES	
David R. Miller	

COAST & GEODETIC SURVEY TSUNAMI PROPAGATION PROGRAM

Gaylord Miller University of Hawaii Honolulu, Hawaii

SYNOPSIS

Several programs for the computer solution of wave propagation in a two-dimensional velocity field have been devised in the last few years. These programs fit an analytic surface to points in the neighborhood of the wave ray which is being advanced. The ray curvature is then computed at the point in question using this local analytic surface. Difficulties with this technique are that the computed analytic surface changes abruptly from one grid square to the next, and that the surface-fitting technique is poorly adapted to data which are not on a rectangular grid. The method of computing the ray paths for the tsunami propagation program described here is based on a spatial convolution technique. Values and derivatives are determined from a numberical point of view basically, using spatial weighted averages. The weighting function is chosen for its wave number response (of ocean bottom roughness) in a way appropriate to any given tsunami frequency. There are no special discontinuities that occur as the ray progresses from one grid square to another. The computer technique in some way incorporates the "common sense" used when similar calculations are performed by hand.

PREDICTOR EQUATIONS FOR BEACH PROCESSES & RESPONSES

Wyman Harrison U. S. Coast and Geodetic Survey, Norfolk, Virginia

SYNOPSIS

Two variations of linear multiregression analysis of environmental variables in the beach-ocean-atmosphere system at Virginia Beach, Virginia are presented. The first variation is a least squares search procedure that is used to segregate out, from a large set of data, a small number of significant beach process elements (independent variables) that explain most of the variability in a given beach response element (dependent variable). The second variation of the analytical method employs a screening procedure that seeks specifically for the best predictor equation, where a beach response is taken as the predictand and several beach process elements are taken as predictors.

Results of the first analytical procedure show that if about 5 or 6 variables are segregated out of any group of about a dozen, these few account for essentially all of the variability explained by all twelve. Predictor equations obtained by the second analytical variation are tested against a set of independent data and, with one exception, are found to make reasonable predictions.

(Full article published in Journal of Geophysical Research, Vol. 70, No. 24, December 15, 1965, pages 6103-6109)

SAND BY-PASSING AT SANTA BARBARA HARBOR

William J. Herron, Jr. U. S. Army Engineer District Los Angeles, California

SYNOPSIS

Santa Barbara has served coastal shipping since 1782. It was a well sheltered roadstead with a stable shoreline for 150 years when efforts were initiated to provide a secure harbor. One of the first known efforts was a harbor study made in 1922 by Colonel Leeds. In 1927-28 the existing breakwater was constructed and the result was severe erosion of the adjacent beaches.

The effects of the breakwater upon littoral sand movement has been the subject of intensive studies by Coastal Engineers and Oceanographers from 1930 to date. Three problems resulted from this interference with natural processes, accretion west of the harbor, erosion east of the harbor and creation of a trailing sandspit from the tip of the breakwater, that if allowed to grow would eventually close the harbor. A future erosion problem will result from reduction of sand supply due to urbanization of the area and construction of water conservation features.

Corrective measures have been periodic dredging of the sandspit and harbor area with deposition on the eroding beach from 1935 to 1952, and continuous dredging from 1956 to date by a small city owned dredge.

It is proposed to enlarge the harbor to provide complete enclosure and add an offshore breakwater to provide a sand trap, protection for a dredge, and protection of the harbor entrance.

Construction will probably start in 1967.

ON THE OPTIMAL DESIGN OF RUBBLE-MOUND HURRICANE BARRIERS

Ronald T. McLaughlin Massachusetts Institute of Technology Cambridge, Massachusetts

SYNOPSIS

The optimal design of rubble-mound hurricane barriers is considered as a problem in maximizing an objective. On the basis of the function of a hurricane barrier and the effects of failure, a benefit function is constructed and its maximization outlined. The concept of a design wave is discussed in this context. The type of statistical data on waves and surges needed for such a function is defined and a feasible method for obtaining such data is laid out.

The actual design of the barrier is presented as a problem of suboptimization or minimization of the cost for each level of protection. The decision variables and constraints are identified and the necessary data are outlined. As a by-product some significant gaps in existing research results are identified.

As many as possible of the concepts outlined above are demonstrated by means of a specific design study of a barrier for the East Passage of Narragansett Bay, Rhode Island. This study involved prediction of wave generation, estimation of refraction and design for a range of design waves. From the results it was possible to determine the general features of a minimum-cost design and recommend specific model studies for determining final design details.