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a b s t r a c t 

A critical challenge in graph signal processing is the sampling of bandlimited graph signals; signals that 

are sparse in a well-defined graph Fourier domain. Current works focused on sampling time-invariant 

graph signals and ignored their temporal evolution. However, time can bring new insights on sampling 

since sensor, biological, and financial network signals are correlated in both domains. Hence, in this work, 

we develop a sampling theory for time varying graph signals, named graph processes , to observe and 

track a process described by a linear state-space model. We provide a mathematical analysis to highlight 

the role of the graph, process bandwidth, and sample locations. We also propose sampling strategies 

that exploit the coupling between the topology and the corresponding process. Numerical experiments 

corroborate our theory and show the proposed methods trade well the number of samples with accuracy. 

© 2020 The Authors. Published by Elsevier B.V. 
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. Introduction 

Graph signal processing (GSP) provides new tools to analyze

ignals on networks such as measurements in sensor networks,

MRI recordings in brain networks, and preferences in opinion net-

orks [1] . By introducing the notion of graph frequency, GSP al-

ows for a harmonic decomposition of these signals [1,2] . Recent

ontributions have therefore developed concepts like graph signal

ltering [2–6] and sampling [7–11] to support this analysis. Sam-

ling theory for graph signals assumes the latter are often sparse

or bandlimited) in the graph frequency domain. This assumption

s satisfied in temperature measurements in sensor networks [8] ,

MRI data in brain networks [12] , and user ratings in recommenda-

ion networks [13] , to name a few. The works in [8,10,11,14,15] ex-

loit signal bandlimitedness to propose sampling and reconstruc-

ion strategies for graph signals. 
� This work was supported in part by the KAUST-MIT-TUD-Caltech consortium 

rant OSR-2015-Sensors-2700 Ext. 2018. The work of P. Di Lorenzo was in part done 
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While seminal, the above works ignore the signal temporal evo-

ution and focus on a single snapshot. In our opinion, this is lim-

ted because time varying graph signals, referred to as graph pro-

esses , are often encountered in practice, e.g., in consecutive sensor

easurements, biological signal evolution prone to stimuli, and in-

ormation diffusion over networks. We wish, therefore, to propose

 graph and time sampling framework to observe and track a ban-

limited graph process–a time varying graph signal that has contri-

ution only on a fixed subset of graph frequencies. Before detailing

ur contributions, we highlight the differences with earlier works

hat dealt with graph processes. 

.1. Related works 

The importance to approach graph processes with GSP was con-

idered in [16] , which formalized a graph-time harmonic analysis.

he works in [17,18] discuss the two dimensional graph-time fil-

ers, while [19,20] used these filters to predict the process evo-

ution. The work in [21] considered sampling strategies for adap-

ive reconstruction of a bandlimited graph signal from a stream of

oisy samples. We build on the latter and propose a more involved

ampling theory to observe and track a graph process that follows

 linear model. 

Observability of network processes was considered in

22,23] for sensor placement and in [24] for designing observable
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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topologies. However, these works do not discuss sampling. We

here do so, where by exploiting the bandlimited prior, we derive

theoretical guarantees for when a graph process is observable

from a few samples. We also propose sampling schemes to collect

the measurements over the graph and the temporal dimension. 

Other works that exploited the bandlimited prior for graph pro-

cesses are [21,25–27] . These works propose adaptive algorithms

to track slowly time varying graph signals from a few nodes. But

since their main goal is the adaptive signal reconstruction, track-

ing yields as a byproduct without theoretical guarantees. We in-

stead leverage Kalman filtering and propose sampling strategies

to optimally track the process. Our motivation to use the Kalman

filter comes from its proven success in applications like network

dynamics data fusion, and target tracking –see e.g., [28] and ref-

erences therein. Kalman filtering for tracking graph processes has

also been used in [29] . This work formulated tracking from a few

measurements as a regularized interpolation problem on a larger

graph; the Kalman filer is used here to alleviate the computational

burden. We identify three main differences with [29] : ( i ) we de-

rive conditions on the minimum number of samples required to

track the process; ( ii ) we propose sampling schemes optimized to

improve tracking and not uniformly at random sampling; ( iii ) we

use the Kalman filter to match the process model and avoid cross-

validating the regularizer. 

Kalman filtering has been used to track network dynamics in

[30,31] . The graph topology embeds the communication links be-

tween sensors and is disconnected from the process over it. To the

best of our knowledge, this work represents the first attempt to

conciliate tracking with graph sampling theory. 

1.2. Contribution 

We group the paper contributions into two parts. 

( i) Observability of graph processes ( Section 4 ): We develop a

sampling theory to observe graph processes. We derive necessary

and sufficient conditions to observe the process from a few sam-

ples. We propose two approaches for observability: (i-a) observ-

ability with deterministic sampling, i.e., when the nodes are sam-

pled deterministically ( Section 4.1 ); (i-b) observability with random

sampling, i.e., when the nodes are sampled with a given probability

( Section 4.2 ). We also perform a mean-square error (MSE) analysis

of the estimated state to connect the graph topology with the pro-

cess bandwidth and sampling set. Finally, we develop sparse sens-

ing techniques to pick the minimum number of samples that guar-

antee a target MSE performance. 

( ii) Tracking of graph processes (Section V): We propose Kalman

filtering to track bandlimited graph processes that follow a lin-

ear dynamic model. First, we consider time varying models

( Section 5.1 ) and then we specialize our derivations to time-

invariant ones ( Section 5.2 ). We derive necessary conditions on the

minimum number of nodes required to track the process and con-

ciliate these conditions with those for observability. The MSE track-

ing performance, given by the posterior (or steady-state) error co-

variance matrix, highlights the role played by the graph topology,

process bandwidth, and sampling set. A sparse sensing approach is

developed to collect samples with guaranteed tracking MSE. 

These theoretical findings put focus for the first time on the

sampling of time varying graph signals and are corroborated with

synthetic experiments as well as employed in the ETEX data set

[32] . 

Notation. We denote scalars, column vectors, and matrices with

plain letters a ( A ), bold lowercase letters a and bold uppercase let-

ters A , respectively. A ij is the ( i, j )th element of A , I N is the N × N

identity matrix, and 1 N ( 0 N ) is the N × 1 vector of all ones (zeros).

diag( · ) denotes the diagonal operator, i.e., A = diag (a ) is a diag-

onal matrix with a on the main diagonal and a = diag (A ) stores
he diagonal of A in a . Similarly, A = blkdiag (A 1 , . . . , A N ) is a block

iagonal matrix containing A i as the i th diagonal block. The pseu-

oinverse of A is denoted as A † , its trace as Tr( A ), and the matrix

pectral norm as ‖ A ‖ . For two sets R and S, |R| denotes the car-

inality of R , R ⊂ S the subset operation, R ∪ S the union of the

ets, and S c = R\S the complementary set of S w.r.t. R . Vector 1 R 

s the set indicator vector, whose r th entry is equal to one if r ∈ R
nd zero otherwise. � · � indicates the ceiling operator. 

The remaining parts of this paper are organized as follows.

ection 2 covers the background information, while Section 3 the

roblem formulation. Section 6 contains the numerical experi-

ents and Section 7 concludes the paper. The proofs are collected

n the appendix. 

. Background 

Basics of GSP. Consider an undirected graph G = (V, E ) with

ode set V = { 1 , . . . , N} and edge set E . The nodes’ connectivity is

epresented by the weighted adjacency matrix W , where W nm 

> 0

s the edge weight connecting nodes n and m and W nm 

= 0 means

he nodes are disconnected. The graph Laplacian matrix is L =
iag (W 1 N ) − W . Each node n ∈ V is associated with a graph sig-

al x n ∈ R , which are collected in vector x = [ x 1 , . . . , x N ] 
T 

. 

Both W and L are candidates for the graph shift operator matrix

 , an N × N matrix that allows for a frequency analysis of graph

ignals [1,2,33] . Due to its symmetry, S can be eigendecomposed

s S = U �U 

T 
with eigenvector matrix U and diagonal eigenvalue

atrix �. This eigendecomposition carries the notion of frequency

n the graph setting. The projection of x onto the eigenspace of

 , i.e., ˆ x = U 

T 
x , is named the graph Fourier transform (GFT) and

ts inverse is x = U ̂

 x . The main diagonal of � contains the spectral

upport of x , named the graph frequencies. 

Signal reconstruction. Reconstructing a graph signal x from its

ampled version relates to the joint localization properties of x

n the vertex and graph frequency domain [11] . Consider a sub-

et of vertices S ⊆ V and the respective set projection matrix

 S = diag (1 S ) . The graph signal x is localized over the set S if

 S x = x . Similarly, consider a subset of graph frequency indices

 ⊆ { 1 , . . . , N} and define U F ∈ R 

N×|F| as the matrix containing the

olumns of U relative to set F . The matrix C F = U F U 

T 

F is a ban-

limiting operator and the graph signal x is localized over F , or

−bandlimited, if C F x = x . The latter coupled with the localization

ver S implies C S C F x = x , which, in turn, means x is an eigen-

ector of C S C F (or equivalently of C S U F ) associated with the unit

igenvalue. The unit eigenvalue is by construction the largest ad-

issible eigenvalue of C S C F and x is the respective eigenvector if

 C S U F ‖ = 1 . Then, an F−bandlimited graph signal can be recov-

red from the samples in S iff

 C S c U F ‖ < 1 (1)

here C S c = I N − C S is the projection matrix onto the complemen-

ary vertex set S c = V\S [11] . I.e., an F−bandlimited graph signal

an be recovered from samples in S if it is not localized over the

omplementary vertex set. Indeed, if ‖ C S c U F ‖ = 1 were true, then

here exists a nontrivial F−bandlimited graph signal localized onto

he complementary set S c . This signal cannot be recovered from

he samples in S which are null due to the perfect localization

ver the complementary sampling set; therefore, making condition

1) necessary and sufficient for perfect recovery– refer to [11] for

urther detail. 

. Problem formulation 

A graph process x t is a time varying graph signal in which entry

 tn is a time series evolving on node n . In the sequel, we first for-

ulate the graph process as a linear system on a graph. Then, we
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efine a bandlimited graph process and analyze systems on graphs

n the graph Fourier domain. 

.1. Systems on graphs 

Consider the N−state discrete linear time varying system 

 t = A t−1 x t−1 + B t−1 u t−1 (2a)

 t = C S t (x t + v t ) (2b)

here x t is the N × 1 state representing the graph signal at time

 , u t is the N × 1 input signal, and A t and B t are the N × N time

arying state-transition and input matrices, respectively. The mea-

urement is y t ∈ R 

N and C S t = diag (c t1 , . . . , c tN ) denotes the sam-

ling matrix with entry c tn = 1 if node n is sampled at time t . The

et of nodes sampled at time t is S t = { (n, t) | n ∈ { 1 , . . . , N} , c tn =
 } . Vector v t denotes a zero-mean Gaussian noise with covari-

nce matrix �v = σ 2 
v I N . Throughout this work, we shall consider

iven the graph and the system matrices A t and B t . Readers inter-

sted in how to estimate the graph and the system matrices in (2)

rom data are directed to [34–36] and references therein. Model

2) comprises the following processes. 1 

Signal diffusion. For x 0 being the initial graph signal state, its

nstantaneous diffused state at time t is given by the exponential

atrix product 

 t = e −w Lt x 0 = e −w L e −w L(t−1) x 0 � Ax t−1 (3)

here w > 0 is the diffusion rate and A = e −w L is the time-

nvariant state-transition matrix [37] . This recursion is also known

s the heat diffusion model. If the graph is the mesh of a surface,

he initial state x 0 may be a heat source starting at some node and

 t the heat state at time t . We can also incorporate an input signal

 t−1 in (3) to represent additional heat sources available only at

ime t − 1 > 0 . Besides modeling heat diffusion on meshes, model

3) is also used to analyze chemical substance dispersion, opinion

nd influence propagation [38,39] , brain signal connections [40] ,

nd protein interactions [41] . 

Wave propagation. For an initial state z 0 and speed c , the dis-

retised wave equation on graphs follows the two-step recursion

 t = (2 I N − c 2 L) z t−1 − z t−2 . (4)

his recursion can be formulated in form (2a) by defining the state

ector x t = [ z t−1 , z t ] 
T , the state transition matrix A = [[ I N , (2 I N −

 

2 L)] T , [ 0 N 0 N 
T , I N ] 

T ] , and z −1 = 0 N [42] . The latter is of interest in

eismic data [16] . 

ARMA graph processes. We denote an ARMA graph process as

 t = f (S) x t−1 + g(S) u t−1 (5)

here f ( S ) and g ( S ) are matrix functions that share the eigenvec-

ors with the shift operator such as polynomials in S [19,20,43] . A

articular form of (5) is the first-order recursion 

 t = −w Sx t−1 + u 0 with x 0 = 0 N (6)

hich has the steady-state 

 = lim 

t→∞ 

x t = (I N + w S) −1 u 0 (7)

f the parameter w satisfies 0 < w < 1/ λmax ( S ). Expression

7) solves the aggregate diffusion model used in image smoothing

44] , Tikhonov denoising [1] , and rating prediction [45] . 
1 We can also consider an additive Gaussian noise w t−1 to the state evolution in 

2a) to capture uncertainties in the graph process model. However, the latter leads 

o upper bounds in the observability MSE analysis rather than closed-form expres- 

ions, see Proposition 3 . Since this is not the case for tracking using the Kalman 

lter, we shall consider model noise in Section 5 . Remark that also in the current 

orm the system in (2) matches models (3) - (7) . 

t  

i

f  

s  

s  

p

.2. Bandlimited systems on graphs 

To proceed with the graph Fourier analysis of (2) , we define the

ollowing. 

efinition 1. A graph process x t with GFT ˆ x t =u 

T 
x t is

−bandlimited if ˆ x t has non-zero frequency content only on

he subset of graph frequency indices F . 

The set F = { n ∈ { 1 , . . . , N}|∃ t for which ˆ x tn 
 = 0 } is common for

ll x t and t ≥ 0. In other words, F is the union of all instantaneous

ets F t = { n ∈ { 1 , . . . , N}| ̂ x tn 
 = 0 } . We can then write the graph sig-

al at time t as x t = U F ̃  x t where the vector ˜ x t ∈ R 

|F| contains the

ntries of ˆ x t indexed by F . 

We pose two assumptions to obtain an F−bandlimited graph

rocess. 

ssumption 1. The system evolution matrices A t and B t are diag-

nalizable by the eigenvectors of the graph shift operator S . 

ssumption 2. The input u t is an F−bandlimited graph process. 

Assumption 1 considers linear time varying systems on time-

nvariant graphs This assumption focuses to graph processes

hose system evolution matrices share the eigenvectors with the

hift operator S , which is the case for the processes in (3) - (7) .

ssumption 2 requires the input signal to have a sparse GFT over

ime. That is, u t should be a smooth graph signal, or have proper-

ies similar to the signals studied in [8,10–12,14,15,19–21,25–27,46–

9] . While in practice it is difficult to find a perfect bandlimited

raph process, this assumption is made in GSP to derive theoreti-

al results. But it is possible to find in practice approximately ban-

limited graph processes; thus, if we treat them as bandlimited,

he theoretical findings are close to the empirical ones. In our nu-

erical results, we will never impose exact bandlimitedness. 

With the above assumptions, we want to link the graph pro-

ess, its GFT, and the sampling strategy. If one of the two assump-

ions is violated, similar sampling strategies can be derived by ig-

oring the limited frequency support and consider the process as

−bandlimited. Since the latter is a particular case of our frame-

ork and since it has a looser connection with the graph spec-

rum, we shall not discuss it further. We will nevertheless evaluate

he full bandwidth case in Section 6 . 

We can now claim the following. 

roposition 1. Let x t be a graph process following model (2a) and

et Assumptions 1 and 2 hold. The graph process x t is an

−bandlimited graph process if and only if x 0 is an F − band limited 

raph signal. 

Proposition 1 implies that we can consider the in-band process

volution 

˜ x t to have an equivalent representation for x t . By denot-

ng the GFT coefficients of u t−1 indexed by F with 

˜ u t−1 ∈ R 

|F| , we

an write the evolution of ˜ x t as 

˜ 
 t = 

˜ A t−1 ̃  x t−1 + 

˜ B t−1 ̃  u t−1 (8a) 

 t = C S t (U F ̃  x t + v t ) (8b)

here ˜ A t = U 

T 

F A t U F and 

˜ B t = U 

T 

F B t U F are diagonal matrices that

ontain the in-band spectrum of A t and B t , respectively. The

−bandlimited graph processes considered in this work follow

volutions (2a) and (8a) in the vertex and spectral domain, respec-

ively. We shall refer to systems in the form (2) that can be written

n the form (8) as F−bandlimited systems on graphs. 

Problem statement. Given an F−bandlimited graph process x t 
ollowing model (2) in the vertex domain and model (8) in the

pectral domain; the goal is to find conditions on and design the

ampling matrices C S t for t ≥ 0 to observe and track the graph

rocess. 
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4. Observing graph processes 

In this section, we devise a sampling theory for observing the

graph process. We generalize condition (1) from reconstructing an

F−bandlimited graph signal to observing an F−bandlimited graph

process. We start by adapting the definition of observability [50] to

our setting. 

Definition 2. An F−bandlimited system on a graph is observ-

able over the set S 0: T = cup T 
t=0 

S t = { (n, t) | n ∈ { 1 , . . . , N}; t ∈
{ 0 , . . . , T } , c tn = 1 } if for any F−bandlimited initial state x 0 and

some final time T , the initial state x 0 can be uniquely determined

in the absence of noise by the knowledge of the input u t and mea-

surement y t collected over the sets S t for all t ∈ { 0 , . . . , T } . 
Definition 2 follows the same baseline idea of conventional ob-

servability, i.e., describe when the initial state of a system x 0 is

uniquely determined in the absence of noise. Since we now deal

with F-bandlimited systems on graphs and samples collected only

on the set S 0: T , it specialises the conventional definition in [46] to

also account for these quantities. The set S 0: T specifies all graph-

time locations where and when to collect samples in the interval

{ 0 , . . . , T } . With the above formulation in place, we want to answer

the questions: ( Q 1) Under which conditions is an F−bandlimited

graph process observable from a few samples? ( Q 2) How should we

collect samples to estimate x 0 with a controlled accuracy? 

We start by writing the measurement y t as a function of the

initial F−bandlimited signal ˜ x 0 as 

y t = C S t U F ˜ A t:0 ̃  x 0 + C S t U F 

t−1 ∑ 

τ=0 

˜ A t: τ+1 ̃
 B τ ˜ u τ + C S t v t (9)

with 

˜ A t: τ = 

{ 

˜ A t−1 ̃
 A t−2 . . . ˜ A τ t > τ

I |F| t = τ
0 |F| 0 

T 
|F| t < τ

. (10)

By collecting the measurements taken in the interval { 0 , . . . , T }
into vector y 0: T = [ y 

T 

0 , y 
T 

1 , . . . , y 
T 

t ] 
T 
, we can write (9) as 

y 0: T = O 0: T ˜ x 0 + J 0: T ˜ u 0: T −1 + C S 0: T 
v 0: t (11)

where we defined the observability matrix 

O 0: T = [(C S 0 U F ˜ A 0:0 ) 
T 
, (C S 1 U F ˜ A 1:0 ) 

T 
, . . . , (C S T U F ˜ A T :0 ) 

T 
] 
T 

= C S 0: T 
(I T +1 � U F ) ̃  A 0: T (12)

the block matrices C S 0: T 
= blkdiag (C S 0 , . . . , C S T ) , 

˜ A 0: T =[ 
I |F| , ˜ A 

T 

1:0 
, . . . , ˜ A 

T 

T :0 

] T 
and vectors ˜ u 0: T −1 = [ ̃  u 

T 

0 
, ˜ u 

T 

1 
, . . . , ˜ u 

T 

T −1 
] 
T 
,

v 0: T = [ v T 
0 
, v T 

1 
, . . . , v T 

T 
] 
T 

. The matrix J 0: T captures the input evo-

lution in the interval { 0 , . . . , T } whose expression is not required

for our derivations, but can be obtained from (9) . Next, we an-

swer questions ( Q 1) and ( Q 2) for C S t being deterministic (called

deterministic sampling), while in Section 4.2 we consider the case

where the entries of C S t follow a Bernoulli distribution (called

random sampling). 

4.1. Observability with deterministic sampling 

Recall that C S 0: T 
is the set projection matrix for the set S 0: T .

System (8) is observable over the set S 0: T if and only if the observ-

ability matrix O 0: T in (12) is full rank, i.e., rank (O 0: T ) = |F| . From

the structure of O 0: T , we deduce that a sufficient condition for ob-

servability is that at least one block matrix C S t U F ̃  A t, 0 has rank |F| ,
which in turn requires to sample at least |F| nodes for a specific t ,

i.e., |S t | ≥ |F| . This condition is similar to that obtained in adaptive

graph signal reconstruction [21,27] . Differently, we link the cardi-

nality of the sampling set with the process evolution by bringing
˜ 
 t:0 into the analysis. This link allows us to collect samples in a

raph-time fashion, resulting in so-called graph-time samples. We

laim the following. 

roposition 2. An F−bandlimited system on a graph [cf. (8)] is ob-

ervable over the set S 0: T only if the cardinality of the sampling set is

reater than or equal to the process bandwidth, i.e., 

S 0: T | ≥ |F| . (13)

hat is, only if at least |F| graph-time samples are taken in the time

nterval { 0 , . . . , T } . These samples can be taken by |F| nodes at a sin-

le time instant, one node in |F| time instants, or a combination of

he two. 

Note that Proposition 2 provides only a necessary condition: the

bservability matrix O 0: T [cf. (12) ] may be ill-conditioned depend-

ng on the location of the samples and process spectral support. It

s then paramount to pick the graph-time samples such that O 0: T 

as full rank |F| , i.e., rank (O 0: T ) = |F| . By exploiting then rank

dentity rank (O 

� 
0: T 

O 0: T ) = rank (O 0: T ) = |F| and expression (12) of

he observability matrix, the sampling set S 0: T should satisfy 

ank 

( 

T ∑ 

t=0 

˜ A 

T 

t, 0 U 

T 

F C S t U F ˜ A t, 0 

) 

= |F| . (14)

or T = 0 , Eq. (14) particularizes to the one-shot graph signal re-

onstruction condition derived in [11] . The following theorem gen-

ralizes result (1) to a necessary and sufficient condition for the

bservability of an F-bandlimited graph process over a sampling

et. 

heorem 1. An F−bandlimited system on a graph [cf. (8)] is observ-

ble over the set S 0: T if and only if 

 C S c 
0: T 

(I T +1 �U F ) ‖ < 

s 2 
min 

( ̃  A 0: T ) 

s 2 max ( ̃  A 0: T ) 
(15)

here C S c 
0: T 

= I N(T +1) − C S 0: T 
is the set projection matrix onto the

omplementary set S c 
0: T 

= { (n, t) | n ∈ { 1 , . . . , N} , t ∈ { 0 , . . . , T } , c tn =
 } and s min ( ̃  A 0: T ) and s max ( ̃  A 0: T ) indicate the minimum and maxi-

um singular values of ˜ A 0: T , respectively. 

Theorem 1 and Proposition 2 are our answer to question ( Q 1)

or samples collected deterministically. Theorem 1 involves the

ocalization properties of graph signals by accounting also for

he process evolution through the matrix ˜ A 0: T . In other words,

heorem 1 implies there are no F-bandlimited graph processes lo-

alized on the complementary set S c 
0: T 

throughout their evolution.

or T = 0 , the result in (15) for observing a graph process special-

zes to the one-shot graph signal reconstruction condition in (1) . 

MSE analysis. When the measurements y t are corrupted by

oise v t 
 = 0, we estimate the initial state ˜ x 0 through least squares

s 

˜ 
 

o 
0 = O 

† 
0: T ( y 0: T − J 0: T u 0: T −1 ) . (16)

his implies that, besides ensuring full rank, the sampling set S 0: T 

hould also contain those nodes that lead to the minimum recon-

truction error from noisy measurements.The mean squared error

s a standard metric to characterize the impact on noisy data and

s formalized by the following proposition. 

roposition 3. Consider an F−bandlimited graph process following

odel (8) and let the sampling set S 0: T satisfy condition (15) . Then,

he MSE of the least squares estimated signal ˜ x o is 

0 
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SE = E 

{‖ ̃

 x o 0 − ˜ x 0 ‖ 

2 
}

= E 

{ 

Tr 

[ 
( ̃  x o 0 − ˜ x 0 )( ̃  x o 0 − ˜ x 0 ) 

T 
] } 

= σ 2 
v Tr 

{[ 
˜ A 

T 

0: T (I T +1 �U F ) 
T C S 0: T 

(I T +1 �U F ) ̃  A 0: T 

] −1 
}
. (17) 

The proof follows from the covariance matrix of the least

quares estimator [51 , Chapter 8]. 

Besides characterizing the impact of the graph-time samples on

he MSE, the result in (17) shows that their location is as impor-

ant as the number of samples. This is due to the presence of the

ampling matrix C S 0: T 
into the inverse covariance matrix in (17) .

hus, we focus next on how to select these samples to guarantee

 target MSE performance. 

Sampling strategy. We follow sparse sensing to design the

ampling set S 0: T [52] . This consists of finding the minimum num-

er of samples that ensure the MSE in (17) is smaller than a

arget value γ > 0. Defining the sampling vector in the interval

 0 , . . . , T } as c 0: T = [ c 0 
T , . . . , c T 

T ] T with c t = [ c t1 , . . . , c tN ] 
T , we find

he graph-time samples by solving the relaxed convex problem 

inimize 
c 0: T 

1 

T 

N×(T +1) 
c 0: T 

ubject to Tr 

[ (
�H 

0: T c S 0: T 
�0: T 

)−1 
] 

≤ γ
σ 2 

v 

�0: T = (I T +1 �U F ) ̃  A 0: T 

c S 0: T 
= diag (c 0: T ) , c 0: T ∈ [0 , 1] N(T +1) 

(18) 

here the objective function is the l 1 -norm surrogate of the l 0 -

orm and imposes sparsity in S 0: T , the first three constraints im-

ose an upper bound γ to the MSE, and the last constraint relaxes

he Boolean constraint c 0: T,i ∈ {0, 1} to the box one. 2 As an alter-

ative, we can adopt a greedy approach to build the set S 0: T [53] .

oth approaches can be used to answer our question ( Q 2). We can

lso consider the opposite problem of (18) , where we minimize the

SE but impose a fixed number of samples; this translates as well

nto a convex problem. 

.2. Observability with random sampling 

One major limitation of deterministic observability is the de-

ign of the sampling set S 0: T by solving the suboptimal relaxed

roblem in (18) . We tackle this limitation by considering the en-

ries of C S t = diag ( c t ) in (2b) to be i.i.d. in time Bernoulli ran-

om variables with expected value C̄ = diag ( ̄c ) . Hence, the set S 0: T 

ver which we want to observe the system becomes random. Our

oal is to relate the sampling probabilities c with the observabil-

ty of an F−bandlimited system on a graph over a realization of

 0: T . Depending on these probabilities, the set S 0: T may contain all

amples ( ̄c n = 1 for all n ∈ { 1 , . . . , N} ) or be empty ( ̄c n = 0 for all

 ∈ { 1 , . . . , N} ). Denote then by S̄ = { n ∈ { 1 , . . . , N}| ̄c n > 0 } the set

f nodes sampled with a probability greater than zero or the ex-

ected sampling set. Our task translates now into answering ques-

ions ( Q 1) and ( Q 2) w.r.t. the expected set S̄ . 
Given the measurements y 0: T and a realization of C S 0: T 

, we de-

ne the measurement vector to which we subtracted the input sig-

al as 3 

 0: T = y 0: T − J 0: T ˜ u 0: T = O 0: T ˜ x 0 + C S 0: T 
v 0: T . (19)

rom Proposition 2 , it follows that a necessary condition for the

bservability matrix O 0: T [cf. (12) ] to be full rank is that the re-

lization of the sampling set S 0: T has a cardinality greater than,

r equal to, the signal bandwidth |F| . From the structure of O 0: T 
2 Given the solution of (18) , we can use randomized rounding or thresholding to 

roject it onto the set { 0 , 1 } N(T+1) [52] . 
3 This is analogous to observability in linear system theory where the input signal 

hould be known. This is not a problem since the realization of C S 0: T 
is also known. 

C  

t

v

 C S 0: T 
), it follows that the rank of O 0: T ( C S 0: T 

) depends on the rank

f C̄ . That is, the rank of the observability matrix depends on the

ardinality of the expected sampling set S̄ . We formalize this ob-

ervation in the following proposition. 

roposition 4. Given an F−bandlimited graph process following

odel (8) and given the diagonal sampling matrix C S t in (2) has i.i.d.

n time Bernoulli entries with expected value C̄ . A necessary condi-

ion for the observability of the process from a realization of S 0: T 

cf. Def. 2] is that at least �|F| / (T + 1) � nodes are sampled with a

robability greater than zero. 

Proposition 4 provides a necessary condition on the expected

ampling set S̄ , which is equivalent to 

 ̄S | ≥ �|F| / (T + 1) � . (20)

t implies that for T ≥ |F| , we could observe an F−bandlimited

raph process by taking random measurements only at one node.

his result is not entirely surprising: the authors in [10] have

hown that a graph signal can be reconstructed also by sampling

uccessive aggregations of a single node. Hence, we can observe

he process form a node that has linearly independent measure-

ents in time; but since the sampling is random in the finite in-

erval { 0 , . . . , T } , there is a possibility that a realization of the set

 0: T has a cardinality smaller than |F| . We quantify the latter in

he following proposition. 

roposition 5. Given an F−bandlimited graph process following

odel (8) and given the diagonal sampling matrix C S t in (2) has i.i.d.

n time Bernoulli entries with expected value C̄ . The cardinality of a

ealization of S 0: T is an integer ε ≥ 0 smaller than the process band-

idth |F| with probability 

r (|S 0: T | < |F| − ε) = 

|F|−1 −ε ∑ 

k =0 

αk e −α

k ! 
(21)

here α = (T + 1) 1 T 
N ̄

c is the mean of a Poisson binomial distribution.

Propositions 4 and 5 are our answer to question ( Q 1) for sam-

les collected randomly. The interesting part of (21) is for ε = 0 ,

hich quantifies the probability of the sampling set being smaller

han the process bandwidth. The latter drops in fact to zero even

or moderate sampling probabilities c̄ if N ~ 100 and T � 0. In

ection 6.1 , we test the observability with random sampling for

he ETEX data set and show the probability in (21) drops below

achine precision. Next, we perform a mean squared error analy-

is on the least squares estimated state to quantify the impact of

he sampling probabilities C̄ = diag ( ̄c ) on the process observability.

MSE analysis. The least squares estimate of the initial state

˜ 
 0 is ˜ x o 

0 
= O 

† 
0: T 

z 0: T . To render the MSE analysis tractable, we fol-

ow the procedure used for the Cramér-Rao lower bound 

4 (CRLB)

51] and propose a lower bound on the achievable MSE. The fol-

owing proposition quantifies this finding. 

roposition 6. Given an F−bandlimited graph process following

odel (8) and given the diagonal sampling matrix C S t in (2) has i.i.d.

n time Bernoulli entries with expected value C̄ . The MSE of the least

quares estimate observed signal ˜ x o 
0 

= O 

† 
0: T 

z 0: T is lower-bounded by 

SE ≥ σ 2 
v Tr 

{[ 
˜ A 

T 

0: T 

(
I T +1 � U 

T 

F C̄ U F 

)
˜ A 0: T 

] −1 
}

. (22) 

Besides expressing the lowest achievable MSE as a function of
¯
 , the bound in (22) is useful to design these sampling probabili-

ies. 
4 Since the measurements are the product of a Bernoulli and a Gaussian random 

ariable, the joint pdf does not satisfy the CRLB regularity condition. 
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Sampling strategy. We design the expected sampling set S̄ by

following the sparse sensing principle; but instead of using the

CRLB as a design criterion, we use the lower bound in (22) . This

consists of finding the minimum sampling rate such that the MSE

lower bound is smaller than a target value γ > 0. In other words,

we find c̄ , therefore S̄ , by solving the convex problem 

minimize 
c̄ 

1 

T 

N ̄c 

subject to Tr 

{ [
˜ A 

T 

0: T 

(
I T +1 � U 

H 
F C̄ U F 

)
˜ A 0: T 

]−1 
} 

≤ γ
σ 2 

v 

C̄ = diag ( ̄c ) , c̄ ∈ [ c min , c max ] 
N , 0 ≤ c min ≤ c max ≤ 1 

. 

(23)

Although conceptually similar to the deterministic sampling de-

sign in (18) , problem (23) differs in two main aspects that pre-

serve the optimality of the solution. First, the objective is the true

function (i.e., the overall sampling rate) we want to minimize. Sec-

ond, the convex box constraint c̄ ∈ [ c min , c max ] 
N is not a relaxation,

since we optimize over the sampling probabilities for some rate

bounds c min and c max . Problem (23) preserves optimality because

we changed the problem setting: the samples are collected ran-

domly. The price to pay is that condition (20) is necessary but not

sufficient for observability and holds in probability as quantified

by (21) . While by solving (23) we can answer question ( Q 2) for

random sampling, we can also add a constraint on the probability

criterion in (21) to control outliers. But the latter should be re-

laxed by an upper bound since it leads to a non-convex problem.

As we show in Section 6 , this constraint is unnecessary since a

small enough γ on the MSE trades well the sampling probabilities

with performance. 

5. Tracking graph processes 

We now consider tracking an F−bandlimited graph process

from deterministic samples. Given the process (8) , we use the

Kalman filter to optimally track it [50] . First, we discuss the time

varying scenario and then we move to time-invariant models [cf.

(3) –(7) ]. For both cases, we provide conditions on the sampling set

and design strategies to track the process. 

5.1. Kalman filtering for time varying models 

The Kalman filter on graphs for (8) evolves as described in

Algorithm 1 . Here, we also consider uncertainty into the process

Algorithm 1: Kalman filtering on graphs. 

Initialize the a posteriori estimate ˜ x + 
0 

and the a posteriori error

covariance matrix P + 
0 

= εI N for a small ε > 0 . For t > 0 repeat: 

( i ) Update the a priori state estimate ˜ x −t = 

˜ A t−1 ̃  x + 
t−1 

+ 

˜ B t−1 ̃  u t−1 ; 

( ii ) Update the a priori error covariance matrix P −t =
˜ A t−1 P 

+ 
t−1 

˜ A 

T 
t−1 

+ 

˜ �w 

; 

( iii ) Compute the Kalman gain matrix 

K t = P −t U 

T 
F C S t 

(
C S t U F P 

−
t U 

T 
F C S t + C S t �v C S t 

)† ;
( i v ) Update the a posteriori state estimate ˜ x + t = 

˜ x −t +
K t 

(
y t − C S t U F ̃  x −t 

)
;v ) Update the a posteriori error covariance

matrix 

P + t = P −t − P −t U 

T 
F C S t K 

T 
t − K t C S t U F P 

−
t 

+ K t C S t �v K 

T 
t + K t C S t U F P 

−
t U 

T 
F C S t K 

T 
t . 

evolution [cf. (8a) ] through an additive zero-mean Gaussian noise

˜ w t−1 with covariance matrix ˜ �w 

independent from v t . The Kalman

filtering initializes the a posteriori state estimate ˜ x + 
0 

and the a pos-

teriori error covariance matrix P + 
0 

. The a priori error covariance
atrix P −t is updated in step ( ii ), while the Kalman gain matrix

 t in step ( iii ). The a posteriori estimate ˜ x + t is updated in step ( iv )

nd the corresponding error covariance matrix P + t in step ( v ). The

alman gain matrix K t depends on the sampling matrix C S t and

eads to the minimum a posteriori MSE, Tr (P + t ) ; hence, C S t should

e carefully designed to improve tracking. 

The sampling set C S t in the Kalman gain requires a minimum

umber of samples to be fully exploited. Consider R < |F| samples

t time t and rank (P −t ) = |F| . Then rank (C S t ) < |F| and the rank

f the pseudo-inverse part in the Kalman gain matrix K t is 

ank (C S t U F P 
−
t U 

H 
F C S t + C S t �v C S t ) = R. 

his implies the |F| × N matrix K t is rank deficient (rank (K t ) ≤ R <

F| ). Thus, a necessary condition for K t to be full rank is that 

S t | ≥ |F| (24)

amples are collected at time t . In other words, the Kalman fil-

er on graphs fully exploits the Kalman gain only if the number of

ampled nodes is greater than, or equal to, the signal bandwidth

or each t . Condition (24) generalizes the observability condition in

13) to tracking. Moreover, the sampled nodes impact also the a

osteriori error covariance matrix P + t . We will exploit this connec-

ion to design set S t at time t that guarantees a target a posteriori

SE. 

Sampling strategy. Condition (24) and the a posteriori error co-

ariance matrix P + t highlight the role played by the location of

he samples for tracking. To optimally select these samples, we

onsider a sparse sensing approach with the posterior Cramér-Rao

ound (PCRB) as design criterion [54,55] . 

Given the log-likelihood of the measurements satisfies the reg-

larity condition E[ ln p(y t ; ˜ x t ) / ̃  x t ] = 0 N ∀ t , the PCRB satisfies 

 

+ 
t = E 

[ (
˜ x + t − ˜ x t 

)(
˜ x + t − ˜ x t 

)T 
] 

� F −1 
t ( ̃  x t ) (25)

here F t ( ̃  x t ) is the posterior Fisher information matrix (FIM) and �
tands in for the matrix inequality in a positive semidefinite sense.

or linear systems in additive Gaussian noise, P + t is independent of

˜ 
 t and expression (25) holds with equality, i.e., the Kalman filter

s optimal. Thus, by designing the sampling set S t w.r.t. the FIM

 t ( ̃  x t ) , we achieve the same result as working with the a posteriori

rror covariance matrix P + t . The posterior FIM for the Kalman filter

n Algorithm 1 is 

 t ( ̃  x t ) = 

(
˜ A t F 

−1 
t−1 ( ̃  x t ) ̃  A 

T 

t + � ˜ w 

)−1 

+ 

N ∑ 

n =1 

c tn F 
o 

tn ( ̃  x t ) (26)

here c tn is the n th diagonal entry of sampling matrix C S t and

 

o 
tn ( ̃  x t ) = σ−2 

v c tn u Fn u 

T 

Fn is the FIM related to the n th node mea-

urement at time t . The first term on the right-hand side of (26) is

he FIM of tracking up to t − 1 , while the second term accounts

or the innovation at time t . By substituting F o tn ( ̃  x t ) and rearrang-

ng the sum, we obtain the a posteriori FIM 

 t ( ̃  x t ) = 

(
˜ A t F 

−1 
t−1 ( ̃  x t ) ̃  A 

T 

t + � ˜ w 

)−1 

+ U 

H 
F C S t �

−1 
v U F . (27)

Following then the sparse sensing idea as in (18) and (23) , we

esign the instantaneous sampling set S t by solving the relaxed

onvex problem 

minimize 
c t 

1 

T 
c t 

subject to F t ( ̃  x t ) � γ I |F| 
c S t = diag (c t ) , c t ∈ [0 , 1] N 

. (28)

Problem (28) is the counterpart of the relaxed problem (18) to

racking and carries on all the remarks about solution optimality. 
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Algorithm 2: Greedy node sampling algorithm for problem (34) . 

Start with an empty sampling set S = ∅ , a cardinality |S| , and a 

counter c = 0 : 

i ) while c ≤ |S| 
ii ) Compute Tr (P ∞ 

(S ∪ { n } )) as in (31) for all n ∈ S c 
iii ) Select n as argmin n Tr (P ∞ 

(S ∪ { n } )) ; 
i v ) Update the sampling set S = S ∪ { n } ; 
v ) Update the counter c = c + 1 . 

n  

d  

fi  

g  

S

F

C  

i  

t  

S  

t
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t
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5 https://donneespubliques.meteofrance.fr/donnees _ libres/Hackathon/RADOMEH. 

tar.gz . 
6 https://rem.jrc.ec.europa.eu/RemWeb/etex/ . 
.2. Steady-state Kalman filtering on graphs 

We specialize the above derivations to time-invariant

−bandlimited systems on graphs as those for models (3) –

7) . These systems converge often to a steady-state that can be

xploited to design a fixed sampling set S = S t ∀ t . 

Differently from the time varying models, the sampling set S
ffects now the entire system evolution. The a priori error covari-

nce matrix P −t converges to the unique limit point P ∞ 

if: ( i ) the

air ( ̃  A , ˜ B ) is stabilizable; and ( ii ) the pair ( ̃  A , C S U F ) is detectable.

he first condition is a characteristic of the graph process and is

pplication specific. For stable time-invariant processes as the ones

e discuss, this condition is satisfied. The second condition im-

oses the sampling set to guarantee steady-state convergence. As

t follows from system theory, an observable system is also de-

ectable; thus, the Kalman filter on graphs converges if the limiting

bservability matrix 

 ∞ 

= lim 

T →∞ 

O 0: T = lim 

T →∞ 

(I T +1 � C S U F ) ̃  A 0 ,T (29)

s full rank. Defining the complementary sampling set S c = V/ S
nd following similar arguments as in Theorem 1 , the Kalman fil-

ering on graphs converges if 

lim 

 →∞ 

‖ I T +1 � U 

T 

F C S c U F ‖ ≤ lim 

T →∞ 

s 2 
min 

( ̃  A 0: T ) 

s 2 max ( ̃  A 0: T ) 
. (30)

ondition (30) accounts for the localization properties of the sam-

ling set throughout the entire temporal evolution (in practice for

 � 0). For a set S satisfying (30) , the steady-state error covari-

nce matrix P ∞ 

leads to the discrete algebraic Riccatti equation

DARE) 

 ∞ 

= 

˜ A P ∞ ̃

 A 

T + 

˜ �w 

− ˜ A P ∞ 

U 

T 

F C S 

×
(
C S U F P ∞ 

U 

T 

F C S +C S �v C S 

)† 

C S U F P ∞ ̃

 A 

T 
. (31) 

hich can be solved numerically [50] . The steady-state Kalman

ain matrix is 

 ∞ 

= P ∞ 

U 

T 

F C S 

(
C S U F P ∞ 

U 

T 

F C S + C S �v C S 

)† 

(32)

ith posterior state estimate 

˜ 
 

+ 
t = 

(
I |F| − K ∞ 

C S U F 
)

˜ A ̃

 x + t−1 + K ∞ 

y t . (33)

The steady-state Kalman filter is only asymptotically optimal. As

t follows from (32) , a necessary condition to exploit the Kalman

ain is that the cardinality of the sampling set satisfies |S| > |F| .
hat is, we need to fix at least |F| nodes. We discuss next how

hese nodes are sampled. 

Sampling strategy. By following the sparse sensing idea, we de-

ign S as the set that minimizes the steady-state performance. This

ranslates into solving the non-convex problem 

minimize 
c 

Tr (P ∞ 

) 

subject to C S = diag (c) 
‖ c‖ 0 = |S| , c ∈ { 0 , 1 } N 

. (34) 

Problem (34) finds the sampling set S that leads to the best

teady-state tracking accuracy. This problem is intractable since a

losed-form solution for the DARE (31) misses. We tackle this issue

y adapting the greedy selection strategy from [56] as illustrated

n Algorithm 2 . The sampling strategy starts with an empty set;

olves the DARE in ii ) numerically for all nodes; and adds greedily

he node with the smallest steady-state error increment in step iii ).

he algorithm stops when |S| nodes are selected. 

The greedy Algorithm 2 is optimal with respect to problem

34) if: i ) the measurement noise v t is uncorrelated; ii ) the set of
ode information matrices F 1 , . . . , F N with F n = σ−2 
v u Fn u 

T 

Fn is or-

ered w.r.t. the order relation of positive semidefiniteness [56] . The

rst condition is easily met in practice. The second connects the

raph topology and process bandwidth to the optimal sampling set

. Consider then the information matrix for all nodes in S

 (S) = 

|S| ∑ 

n =1 

σ−2 
v u Fn u 

T 

Fn = U 

T 

F C S �
−1 
v U F . 

ondition ii ) implies that for two sets S ′ and S ′′ , the cost function

n (34) satisfies Tr (P ∞ 

(S ′ )) ≤ Tr (P ∞ 

(S ′′ )) if F (S ′ ) � F (S ′′ ) . That is,

he node sampled in S ′ is a better choice than the node sampled in

 

′′ [56] . This guarantees Algorithm 2 builds the sampling set with

he best steady-state tracking accuracy. 

. Numerical evaluation 

We corroborate the above theory with numerical results on

oth synthetic and real scenarios. First, we test observability and

hen tracking. We used the GSP box [57] and CVX [58] . 

.1. Observing graph processes 

We test the observability with deterministic sampling on the

olene weather data set 5 and the observability with random sam-

ling on the European tracer experiment (ETEX) data set 6 [32] . 

Deterministic sampling. The Molene weather data set contains

 = 744 hourly temperature recordings collected in January 2014

ver N = 32 cities in Brest (France). We used these recordings to

uild a synthetic diffusion scenario for model (3) . Our rationale is

o corroborate the sampling approaches when the bandlimited as-

umption on the state signal is violated. The graph is a k -nearest

eighbor ( k NN) with k = 3 . Each temperature recording is treated

s a separate instance; it represents the initial state x 0 for model

3) and it is diffused with a weight w = 1 . 5 for T = 10 time in-

tances. 

First, we analyzed the effect of the sampling set S 0: T when

he process has contribution on the entire bandwidth |F| = N =
2 . We corrupted the measurements y t in (2b) with a zero-

ean Gaussian noise with variance σ 2 
v = 10 −1 . For r τ being the

th recording, this corresponds to an average signal-to-noise ratio

SNR) of 19.3dB computed as 

NR = 10 log 10 

[∑ R 
τ=1 ‖ r τ‖ 

2 
2 

NRσ 2 
v 

]
. (35) 

he |S 0: T | samples are the ones that minimize the MSE in (17) in

 sparse sense manner. The performance is evaluated through the

ormalized MSE (NMSE) between the estimated recording r o τ and

he true one r τ defined as 

MSE = 

∑ R 
τ=1 ‖ r o τ − r τ‖ 

2 ∑ R 
τ=1 ‖ r τ‖ 

2 
. (36) 

https://donneespubliques.meteofrance.fr/donnees_libres/Hackathon/RADOMEH.tar.gz
https://rem.jrc.ec.europa.eu/RemWeb/etex/
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Fig. 1. NMSE versus the number of samples for the sampling strategy in (18) and 

uniformly random sampling whose NMSE is averaged over additional 100 iterations. 

The graph process has a localized spectrum on the entire bandwidth |F| = N = 32 . 

Fig. 2. NMSE versus the number of samples for the sampling strategy in (18) and 

uniformly random sampling. The state spectral evolution is localized on the first 

|F| = 8 frequencies. 

Table 1 

Theoretical and empirical NMSE and cardinality of the sampling set 

S 0: T for different MSE requirements γ in (18) . 

γ = 2 . 05 γ = 2 . 5 γ = 3 γ = 3 . 5 

Theo. (18) −21 . 26 dB −20 . 42 dB −19 . 64 dB −19 . 32 dB 

Emp. −21 . 22 dB −20 . 37 dB −19 . 57 dB −19 . 28 dB 

|S 0: T | 277 61 37 32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Average SNR as a function of the graph frequency index n for two different 

noise powers. The graph process has a negative SNR in most of the graph frequen- 

cies. 

Fig. 4. NMSE versus the signal bandwidth |F| for different noise powers. The sam- 

pling set has cardinality |S 0: T | = 100 and it is chosen by minimizing the MSE in 

(18) . A larger bandwidth is unfavourable in high noise regimes. 

d  

a  

t  

 

t  

d

 

r  

t  

r  

|  

n  

f  

f  

o  

r

 

m  

n  

s  

l  

t  

f  

t  

e

c  

c  

a  

m  

s  

s  

r  

s  

t

(  

a

Fig. 1 shows the NMSE as a function of the number of samples

|S 0: T | . We observe that with 60 out of 320 samples the proposed

approach achieves an NMSE of −20 dB, while the uniformly ran-

dom sampling requires far more measurements. This finding sug-

gests that sparse observability is possible also for graph processes that

have a contribution on the entire bandwidth. This is because of the

sampling extrapolation to the temporal dimension. 

To provide further insight, we show in Table 1 the theoretical

and empirical NMSE as a function of the target value γ in (18) .

We also show the cardinality of the sampling set S 0: T . These re-

sults suggest that a stricter NMSE requirement (smaller γ ) leads

to a larger number of nodes in S 0: T and, vice-versa, a looser NMSE

requirement (larger γ ) leads to a smaller number of nodes in S 0: T .

Second, we analyzed the effect of the sampling set S 0: T when

the process bandwidth is restricted to the first |F| = 8 graph fre-

quencies. This will inevitably cause a loss of information about

x 0 . We tested two different noise variances σ 2 
v = { 10 −1 , 5 } ( SNR =

{ 19 . 3 dB , 2 . 3 dB } ). The |S 0: T | samples are collected as in the previ-

ous scenario. 

Fig. 2 shows the proposed sampling approach yields a lower

NMSE than uniformly random sampling. The NMSE has a higher

floor when compared with the full bandwidth ( Fig. 1 ) and its value

does not reduce even by increasing the sampling set cardinality

|S 0: T | . We attribute this limitation to the restricted bandwidth:

the out-of-band process contribution plays a role to improve the

performance. We corroborate this observation in Fig. 3 where we

show the average SNR as a function of the graph frequency index.

We observe that in a low noise regime it is beneficial to consider a

larger bandwidth since the average SNR per frequency is high. We
o not observe this behavior in a high noise regime since the aver-

ge SNR becomes negative at the higher graph frequencies. Hence,

he SNR–not the signal energy alone–defines the signal bandwidth.

Third, we analyzed the effect of the signal bandwidth. We fixed

he number of samples to |S 0: T | = 100 and computed the NMSE for

ifferent bandwidths |F| and noise powers σ 2 
v . 

Fig. 4 shows an increasing trend of the NMSE in the high noise

egime ( σ 2 
v = 5 ), implying the meaningful information is concen-

rated in the first few frequencies and, therefore, the Molene

ecordings are naturally bandlimited. By increasing the bandwidth

F| , the average SNR degrades and we end up bringing in more

oise; hence, the performance degrades. This observation is rein-

orced in the low noise regime, where a larger bandwidth is pre-

erred to exploit the SNR at the higher frequencies and improve

bservability. This result further corroborates that the signal-to-noise

atio determines the process bandwidth. 

Random sampling. The ETEX experiment contains measure-

ents of an identifiable perfluorocarbon concentration released

ear Rennes (France) and diffused over Europe [32] . Thirty mea-

urements were collected over a period of 72 h at N = 168 ground-

evel stations. These stations are the nodes of a k NN graph and

he T = 30 temporal measurements are the graph process. For dif-

erent reasons, the measurements are often unavailable and, in

hese cases, the tracer concentration is set to zero. We consid-

red model (3) to capture the tracer evolution over time. Set F
ontains the frequency indices where 30% of the process energy

oncentrates with cardinality |F| = 6 . Since diffused graph signals

re often bandlimited, our intuition is that also in this experiment

ost of the frequencies will not have useful information. With this

etup, we found heuristically that k = 3 and w = 3 . 5 lead to the

mallest estimation error by using all the 168 × 72 recordings. This

esult will serve as a baseline to test observability with random

ampling. To account for the measurement noise, we corrupted

he signal with a zero-mean Gaussian noise of variance σ 2 
v = 10 −4 

 SNR = 29 . 2 dB). The obtained results are averaged over 20 0 0 iter-

tions. 
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Fig. 5. PMCH tracer concentration at 168 stations. The three nodes with the highest concentration are circled in red. The graph is the 3NN. (Left) Ground truth concentration 

at t = 0 . (Center) Observed tracer concentration with all samples by the diffusion model in (3) with diffusion weight w = 3 . 5 . (Right) Mean observed tracer concentration 

following observability with random sampling with an overall sampling rate of 1 T N ̄c = 60 (out of 168). The NMSE between the observed state with random sampling (right) 

and the observed ground truth (center) is −16 . 2 dB and has a variance of −48 . 1 dB. (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. 6. Optimal sampling probabilities over the nodes obtained from solving the op- 

posite of problem (23) . We observe that several nodes are sampled with probability 

one and that the overall solution is highly sparse. 

Table 2 

Theoretical and empirical NMSE, overall sampling rate, and parameter α in (21) for 

different values of MSE requirements γ ( ×10 −4 ) in (18) . 

γ = 3 . 12 γ = 3 . 15 γ = 3 . 18 γ = 3 . 21 

Theo. Lower Bound (22) −36 . 47 dB −36 . 42 dB −36 . 38 dB −36 . 34 dB 

Emp. −24 . 52 dB −18 . 77 dB −16 . 48 dB −16 . 13 dB 

1 
T 
N ̄c 130.4 83.9 62.7 50.2 

α 3910 2515 1881 1505 
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Fig. 7. NMSE versus the iteration index for different numbers of sampled nodes. 

The results are shown for the sampling approach in (28) , uniformly random sam- 

pling, and all nodes sampled. 
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Fig. 5 (left) shows the tracer concentration at t = 0 , wherein

he red circles are the three nodes with the highest concentration.

he middle plot shows the estimate of the observed state by us-

ng model (3) with all nodes collecting measurements. The graph

odel is able to identify the region where the tracer was released,

ut, at the same time, they yield a tracer concentration of around

.04ng/m 

3 on all nodes. We attribute this leakage to the missing

alues that are set to zero and the absence of wind information

n those days. For the scope of this work, we will use this ob-

erved state ( Fig. 5 (center)) as a baseline since it is the best re-

ult with the fitted model. The right plot shows the average ob-

erved state with a sampling rate of 60; the sampling probabilities

re obtained by solving the opposite of problem (23) and are il-

ustrated in Fig. 6 . The proposed sampling approach achieves an

verage NMSE of −16 . 2 dB with a variance of −48 . 1 dB. 

We observe the following: ( i ) the deviation of a particular realiza-

ion from the averaged observed state is in general negligible, yield-

ng a good practical result; and ( ii ) similarly to the approaches that

se the CRLB to perform sparse sampling, the lower bound ( 22 ) is

 suitable cost function to design a sparse sampler. These observa-

ions should nevertheless be considered insightful and not conclu-

ive since random sampling is validated only in a specific scenario.

Table 2 shows the impact of the MSE requirement γ in (23) on

he lower bound (22) , empirical NMSE, overall sampling rate 1 
T 

c̄ ,

N 
nd α in (21) . Despite the gap between the lower bound and the

mpirical NMSE, a looser requirement on (22) induces a lower

ampling rate; and all the reported values of α lead to a probability

n (21) below machine precision. This corroborates criterion (22) to

esign the node sampling probabilities for observability with ran-

om sampling. 

.2. Tracking graph processes 

We now corroborate the performance of the time varying and

teady-state Kalman filtering discussed in Section 5 . All results are

veraged over 500 different realizations. 

Time varying. We considered a synthetic tracking scenario

here the graph process follows the diffusion model in (3) with a

ero initial state and inputs u t for t ∈ { 1 , 101 , . . . , 401 } taken from

he recordings of the Molene data set. We considered real (non

ynthetic) measurements as input to represent approximately ban-

limited processes. The graph is a 3NN, the process bandwidth

consists of the first 16 graph frequencies, the diffusion weight

s w = 1 , and the input matrix is B t = I N . In a nutshell, the state

volution considers temperature diffusion for 100 iterations and

hen a new input is introduced. The model and measurement

oise are zero-mean with covariance matrixes �w 

= 10 −4 I N and

v = 10 −1 I N , respectively. We initialized the Kalman filter with a

osteriori estimate ˜ x + 
0 

= 1 |F| and error covariance matrix P + 
0 

= � ˜ w 

.

e compared the proposed sparse sensing approach (the oppo-

ite problem of (28) that selects |S| nodes with minimum MSE)

ith the uniformly random sampling whose performance is aver-

ged over 500 additional realizations. 

Fig. 7 shows the tracking NMSE as a function of the iteration

ndex for different values of sampling set cardinalities |S t | . When

ore nodes are sampled a smaller NMSE is achieved. This is evi-

enced in the first iterations. These results show also that 50% of
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Fig. 8. NMSE versus iteration index for Kalman filter (KF), LMS ( μ = 0 . 0875 ) 

[21] and RLS ( β = 0 . 95 ) [27] . The sampling set S t of the Kalman filter is com- 

posed of one node, while the sampling rate for the LMS and RLS on graphs is 16.08 

(greater than |F| = 16 ) and with five nodes sampled with probability one. 

Fig. 9. NMSE versus the iteration index for graph topologies when |S t | = 6 nodes 

are sampled uniformly at random. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. NMSE versus iteration index for steady-state Kalman filter for different car- 

dinalities of the sampling set. The results are shown for the sampling approach in 

Algorithm 2 , uniformly random sampling, and all nodes sampled. 

Fig. 11. NMSE versus iteration index for the steady-state Kalman filter (KF) ( |S| = 6 

chosen with Algorithm 2 ), time varying Kalman filter ( |S t | = |S| = 6 chosen ran- 

domly for each iteration), RLS ( βRLS = 0 . 99 ), and LMS ( μLMS = 0 . 041 ) with sampling 

rate |S t | = |F| = 18 . 
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7 For each graph, the bandwidth is formed by those frequencies where 99% of the 

energy is concentrated. 
the samples can be saved compared with the full bandwidth case,

yet without hindering the NMSE. Uniformly random sampling is

an option to track the process only for large t . We also remark

that problem (28) may often give a dense solution for higher t and,

since it is an SDP relaxation, it might also lead to sampling rates

that are far from the minimum MSE. Finally, remark the spikes in

the estimated NMSE represent the input signal and are common

for both sampling strategies. 

Next, we compare the Kalman filter with the LMS [21] and RLS

[27] on graphs. The sampling set S t consists of one node sampled

uniformly at random. The sampling probabilities for the RLS on

graphs are found with βRLS = 0 . 95 and γRLS = 7 × 10 −2 [27] . These

parameters result in an average sampling rate of 16.08 (greater

than |F| = 16 ) for each t and with five nodes sampled with prob-

ability one. These sampling probabilities are also used for the LMS

on graphs and its step size is set to μLMS = 0 . 0875 to meet the RLS

steady-state MSE. Both algorithms are initialized as the Kalman fil-

ter. Fig. 8 shows the Kalman filter suffers in the first iterations, but

it outperforms both LMS and RLS (hence, other state-of-the-art al-

gorithms with which LMS and RLS compare well [21,26,27] ) when

the system evolution is learned better. This result highlights the

potential of the proposed approach to track the process by collect-

ing only one sample at a time. 

In Fig. 9 , we further analyze how the graph topology affect

the Kalman filter. We changed the number of neighbors, k , in the

k NN graph, while kept fixed all other parameters. The sampling set

is composed of |S t | = 6 nodes selected uniformly at random. The

Kalman filter tracks faster in less connected graphs but when the

initialization effect vanished (after more iterations) it tracks bet-

ter in denser graphs. For k ≥ 5, we have not seen any significant

different in tracking accuracy. 

Steady-state. We test the steady-state Kalman filter to track

a heat diffusion process on a rectangular grid of N = 75 nodes

(5 × 15) with unitary edge weights. We aim to provide insights

into how GSP tools can be useful in temperature monitoring sys-

tems. The initial state x 0 is one at the five nodes of the leftmost

column of the grid and zero elsewhere. This signal is diffused fol-
owing the heat propagating model (3) with weight w = 10 for

 = 500 instances. Set F comprises the frequency indices where

9% of the energy of x 0 is concentrated and resulted into |F| = 18

ctive frequencies. We considered a model and measurement noise

ith covariance matrices �w 

= 10 −4 I N and �v = 10 −1 I N , respec-

ively. 

Fig. 10 shows the tracking NMSE as a function of the diffusion

ime for different cardinalities of the sampling set. A larger num-

er of samples improves the steady-state NMSE and convergence

ate. The sampling strategy in Algorithm 2 is also beneficial when

 few samples are collected, while uniformly random sampling can

e adopted for larger |S| . 
We then compared the steady-state Kalman filter with the

MS and RLS on graphs algorithms. We chose the parameters of

he adaptive algorithms as in Fig. 8 and found that μLMS = 0 . 041

LMS), βRLS = 0 . 99 (RLS), and a sampling rate of 18 samples per it-

ration (equalling the bandwidth). The Kalman filtering with time

arying sampling in Algorithm 1 is considered as baseline with

ampling set |S t | = |S| = 6 chosen uniformly at random. 

Fig. 11 shows that the Kalman filter outperforms the adaptive

lgorithms in both the steady-state performance and convergence

peed. Both Kalman filter approaches reach an identical steady-

tate NMSE, but with a sampling rate that is three times smaller

ompared with the adaptive algorithms. The convergence improve-

ent of the time varying Kalman filter comes at the expense of

omplexity, i.e., the updates for each t of the Kalman gain matrix,

he a priori , and a posteriori error covariance matrices. 

In Fig. 12 , we finally show how different grid connectivities

ffect the steady-state Kalman filter. In addition to the original

ectangular grid, we considered also a star grid (i.e., nodes have

lso diagonal connections) and a multihop grid (i.e., nodes are con-

ected also with the two hops away neighbors of the rectangular

rid). The tracker is quite robust to different grid connectivities. 7 
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Fig. 12. NMSE versus the iteration index for the steady-state Kalman filter over dif- 

ferent graph topologies. The sampling set is build following Algorithm 2 . 
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ifferently from the time varying scenario, we considered the

reedy sampling strategy which has a bigger impact in the per-

ormance. The proposed method adapts the sampled nodes to

chieve the optimal steady-state performance which is seen to

ave also a similar convergence rate. 

. Conclusion 

This work generalized graph signal sampling to the temporal di-

ension for observing and tracking graph processes with contribu-

ion only on a fixed set of graph frequencies. We derived necessary

nd sufficient conditions to observe a bandlimited graph process

rom a subset of nodes. These conditions relate the graph struc-

ure with the process bandwidth and the location of the samples

n the graph; and they treat sampling theory for graph signals

nd adaptive algorithms as particular cases. We also developed a

athematical framework for observability with random sampling:

e proposed conditions to observe the graph process and sam-

ling strategies. The proposed findings extend naturally to tracking

he graph process with a Kalman filter. We derived conditions on

he minimum number of nodes such that the Kalman gain is fully

everaged and provided sampling strategies for tracking. The the-

ry is corroborated with numerical experiments, which show the

sefulness of the bandlimited prior to reduce the number samples

ollected over graph and time. 

We identify three directions that require additional research.

irst, we considered the process bandwidth time-invariant. This

s necessary for our derivations to find recovery conditions; how-

ver, it limits the applicability to a few models. It should be in-

estigated if similar or different conditions can be obtained when

his assumption is violated. Second, our derivations concern graph

opologies that are time-invariant. It is an interesting direction to

eneralize some of these findings to time varying graphs. Third,

rom a more practical perspective, future research is needed to

dapt the proposed sampling methods to nonlinear dynamics over

raphs which alter the state bandwidth over time 
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ppendix A 

1. Proof of Proposition 1 

From Definition 1 , we have that an F−bandlimited graph pro-

ess has contribution only on the set F of graph frequencies. Then,

nder Assumption 1 , we can write x t as 

 t = U 

ˆ A t−1 U 

T 
x t−1 + U 

ˆ B t−1 U 

T 
u t−1 (37)
here ˆ A t−1 and 

ˆ B t−1 are N × N diagonal matrices containing

he eigenvalues of A t−1 and B t−1 , respectively. Then, since ˆ x t−1 =
 

T 
x t−1 and ˆ u t−1 = U 

T 
u t−1 are the GFTs of x t−1 and u t−1 , respec-

ively, we have that 

ˆ 
 t = 

ˆ A t−1 ̂  x t−1 + 

ˆ B t−1 ̂  u t−1 . (38) 

Since matrices ˆ A t−1 and 

ˆ B t−1 are diagonal, we can split (38) into

 independent models with n th model representing the process

volution in the n th graph frequency. Then, ˆ x t evolves in the fre-

uency set F only if the previous state ˆ x t−1 or the input ˆ u t−1 

ave a contribution on this set. Since ˆ u t−1 is F−bandlimited [cf.

ssumption 2 ], it is zero in the complementary frequency set F 

c .

ence, state ˆ x t evolves in F 

c only if the former state ˆ x t−1 has a

ontribution on this set. The latter forms a recursion and implies

hat state ˆ x t evolves on F 

c only if the initial state ˆ x 0 in non-zero

n this set. 

For the sufficiency part, observe that if ˆ x 0 is F−bandlimited, it

s zero on the complementary set F 

c . This implies that ˆ x t has a

ontribution only in F ; hence, F −bandlimited. For the necessary

art, observe that if ˆ x 0 is not F−bandlimited, it is non-zero on the

omplementary set F 

c . This implies that ˆ x t has a contribution also

n F 

c ; hence, not F−bandlimited. �

2. Proof of Proposition 2 

By applying the rank inequality rank( AB ) ≤ min{rank( A ),

ank( B )} to O 0: T = C S 0: T 
(I T +1 � U F ) ̃  A 0: T in (12) , O 0: T is full column

ank |F| only if 

ank ( C S 0: T ) ≥ |F| (39) 

hich from the structure of C S 0: T 
is true when the claim is

atisfied. �

3. Proof of Theorem 1 

By substituting C S 0: T 
= I N(T +1) − C c S 0: T 

into the rank argument of

14) we can write the matrix form expression 

˜ 
 

T 

0: T (I T +1 � U 

T 

F ) C S 0: T 
(I T +1 � U F ) ̃  A 0: T = 

˜ A 

T 

0: T 
˜ A 0: T 

− ˜ A 

T 

0: T (I (T +1) � U 

T 

F ) C S c 0: T 
(I T +1 � U F ) ̃  A 0: T , 

(40) 

hich is invertible if 

 ̃

 A 

T 

0: T (I T+1 � U 

T 

F ) C S c 0: T 
(I T+1 � U F ) ̃  A 0: T ‖ < λmin ( ̃  A 

T 

0: T 
˜ A 0: T ) , (41)

here λmin ( A ) is the minimum eigenvalue of A . Here, we exploited

he positive semi-definiteness of both matrices on the right-hand

ide of (40) . Then, from the norm sub-multiplicativity we have 

 ̃

 A 

T 

0: T (I T+1 � U 

T 

F ) C S c 0: T 
(I T+1 � U F ) ̃  A 0: T ‖≤

‖ (I T+1 �U 

T 

F ) ‖‖ C S c 
0: T 

(I T+1 �U F ) ‖‖ ̃

 A 0: T ‖ 

2 <λmin ( ̃  A 

T 

0: T 
˜ A 0: T ) , 

hich then leads to ( ‖ (I T+1 �U 

T 

F ) ‖ = 1 ) 

 C S c 
0: T 

(I T+1 �U F ) ‖< 

λmin ( ̃  A 

T 

0: T 
˜ A 0: T ) 

‖ ̃

 A 0: T ‖ 

2 
= 

s 2 
min 

( ̃  A 0: T ) 

s 2 max ( ̃  A 0: T ) 
. (42)

he equality in (42) derives from the definition of the spectral

orm and the relation between the singular and the eigenvalues

f a matrix. 

To prove that (15) (i.e., (42) ) is a necessary and sufficient condi-

ion we follow similar arguments as in [11,21] . For the sufficiency

art, consider that an F−bandlimited system on graph is observ-

ble if and only if O 0: T is full rank and, therefore, if and only if

14) holds. Then, from (40) –(42) , we have (14) always holds true

f (15) (i.e., (42) ) is true. To prove (15) (i.e., (42) ) is necessary, we

roceed by contradiction. When (15) (i.e., (42) ) does not hold we

an write 

 C S c (I T+1 �U F ) ‖ = λmin ( ̃  A 

T 

0: T 
˜ A 0: T ) / ‖ ̃

 A 0: T ‖ 

2 + ε

0: T 
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for some scalar ε ≥ 0. Then, for T = 0 and thus ˜ A 0:0 = I N we have

‖ C S c 
0 
(I 1 �U F ) ‖ = 1 + ε, which contradicts the conventional observ-

ability (recovery) of bandlimited graph signals in (1) . This proves

that (15) is also necessary. �

A4. Proof of Proposition 4 

From the structure of C S 0: T 
, we have that 

rank (C S 0: T 
) ≤ rank (E[ C S 0: T 

]) = rank (I T +1 � C̄ ) . (43)

A necessary condition then for rank (C S 0: T 
) to be |F| is 

rank (I T +1 � C̄ ) ≥ |F| . (44)

From rank (A � B ) = rank (A ) rank (B ) , (44) writes as 

rank ( ̄C ) ≥ |F| / (T + 1) . (45)

Then, since C̄ is diagonal, it means that at least �|F| / (t + 1) � nodes

must be sampled with a probability different from zero. 

A5. Proof of Proposition 5 

Denote by c t = diag (C S t ) the random sampling vector with ex-

pectation c̄ for t ∈ { 0 , . . . , T } . Let also d = | S 0: T | = 

∑ T 
t=0 

∑ N 
n =1 c tn be

an auxiliary variable that characterises the cardinality of realization

of the set S 0: T . Then, d is a Poisson binomial random variable be-

ing it the sum of N(T + 1) independent Bernoulli random variables

[59] . The claim (21) follows by simple statistical properties. 

A6. Proof of Proposition 6 

By rewriting the MSE as 

MSE = E C 

{ 

E v 

[ 
Tr 

[ 
( ̃  x o 0 − ˜ x 0 )( ̃  x o 0 − ˜ x 0 ) 

T 
] ] } 

(46)

and from (17) we have 

MSE =σ 2 
v E C 

{
Tr 

[(
˜ A 

T 

0: T (I T +1 �U F ) 
T 
C S 0: T 

(I T +1 �U F ) ̃  A 0: T 

)−1 
]}

. (47)

Then, since function ϕ : X → Tr [ X 

−1 ] is convex for a positive semi-

definite matrix X , we apply Jensen’s inequality ϕ( E [ X]) ≤ E [ ϕ(X )]

to lower bound (47) as in (22) . 
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