

MEASUREMENTS OF THE VELOCITY DISTRIBUTION IN THE BOUNDARY LAYER ALONG A PLANE SURFACE

mededeling 40.6 Jaboratorium voor Airo-en Hydrodynamica.

MEASUREMENTS OF THE VELOCITY DISTRIBUTION IN THE BOUNDARY LAYER ALONG A PLANE SURFACE

PROEFSCHRIFT TER VERKRIJGING VAN DEN GRAAD VAN DOCTOR IN DE TECHNISCHE WETENSCHAP AAN DE TECHNISCHE HOOGESCHOOL TE DELFT, OP GEZAG VAN DEN RECTOR-MAGNIFICUS C. FELDMANN, HOOGLEERAAR IN DE AFDEELING DER ELECTROTECHNIEK, VOOR EEN COMMISSIE UIT DEN SENAAT TE VERDEDIGEN OP DONDERDAG 9 OCTOBER 1924, DES NAMIDDAGS TE 3 UUR, DOOR

BERNARD GERARD VAN DER HEGGE ZIJNEN, WERKTUIGKUNDIG INGENIEUR, GEBOREN TE

NIJMEGEN

GEDRUKT BIJ TECHNISCHE BOEKHANDEL EN DRUKKERIJ J. WALTMAN JR. DELFT — 1924.

Aan mijn Ouders.

Bij de voltooiing van dit proefschrift is het mij een behoefte om U, Hoogleeraren in de Afdeeling der Werktuigbouwkunde, dank te zeggen voor datgene wat ik in mijn studietijd van U mocht leeren; vooral U Hooggeleerde HOLST, bij wien ik het voorrecht had mijn studie te voltooien, breng ik gaarne een afzonderlijk woord van dank.

Hooggeleerde BURGERS, Hooggeachte Promotor, van het oogenblik waarop ik, nu twee jaren geleden, de wensch te kennen gaf om bij U mijn proefschrift te bewerken, heb ik nooit te vergeefs om hulp bij U aangeklopt; door Uw onverflauwde belangstelling in de vorderingen van mijn experimenten, door de waardevolle raadgevingen waarmede Gij mij tot verder onderzoek opwektet en door de welwillendheid waarmede Gij Uwe groote kennis ter beschikking steldet ter bereiking van het doel, hebt Gij mijn arbeid aanzienlijk verlicht en mij aldus tot grooten dank verplicht. Met dankbaarheid zal ik steeds terugdenken aan den tijd, waarin ik het voorrecht had als Uw assistent werkzaam te mogen zijn.

CONTENTS.

6	-	Tetraduction
9	1.	a Object of the experiments
		A. Object of the experiments
		o. Review of the principal theoretical data about the motion
~		in the boundary layer
9 :	2.	Method of measurement.
		a. Experimental arrangement 5
		b. Accuracy of the experiments
S.	3.	Results of the measurements.
		a. Experiments performed
		b. Summary of the results
6.	4.	Discussion of the results.
		a. Determination of a
		b. Determination of δ
		c. Laminar part of the boundary layer
		d Region of transition
		e Turbulent part of the boundary laver 26
		f Determination of the constant <i>x</i> in the formula for the
		J. Determination of the constant x_0 in the formula for the
		thickness ∂_k of the turbulent boundary layer
		g. Comparison of the value of a to that given by von
		KaRMaN's formula for the resistance of a turbulent flow
		along a smooth wall
9 1	5.	Further particulars on the value of a and calculation of the
		frictional resistance experienced by the glass plate.
		a. Frictional resistance calculated from a
		b. Application of the theorem of momenta
50	6.	Approximate formula for the distribution of the velocity
		over the turbulent boundary layer
		Summary
5 (6.	0. Application of the theorem of momenta

Page

LIST OF PRINCIPAL ABBREVATIONS USED IN THE TEXT.

- ρ = density of the air (gr/cm³).
- μ = viscosity of the air (gr/cm sec).

 ν = kinematical coefficient of viscosity = $\frac{\mu}{\rho}$ (cm²/sec).

- g =acceleration of gravity.
- x = distance of a point from the leading edge of the glass plate (cm).
- y = distance of a point from the surface of the glass plate (cm).
- X = distance of the leading edge of the glass plate from the honey comb of the tunnel (cm).
- l =length of the glass plate (167,5 cm, or 150 cm, as taken into account in the evaluation of the experiments).
- b = width of glass plate = 40 cm.
- V = velocity of the air outside of the boundary layer, parallel to the glass plate (cm/sec).
- *u* = component of the velocity of the air in the boundary layer parallel to the glass plate (cm/sec).
- δ = thickness of the boundary layer (cm).

$$a = \text{velocity gradient at the surface} = \left(\frac{\partial u}{\partial y}\right)_{y=0} \text{ (cm/sec/cm).}$$

$$\tau_0 = \text{shearing stress at the surface} = \mu \left(\frac{\partial u}{\partial y}\right)_{y=0} \text{ (gr/cm sec}^2\text{).}$$

$$R = \text{number of ReyNOLDS} = \frac{Vx}{\nu} \text{ or } \frac{Vl}{\nu}.$$

$$P^* = \frac{V\partial}{\partial y}$$

§ 1. INTRODUCTION.

a. Object of the experiments.

In all cases where the motion of a fluid may become turbulent, the motion is confined by the presence of solid boundaries or walls. In the cases most thoroughly studied the walls constitute a cylindrical tube or a channel, and in that part of the tube or channel where the motion has acquired a definite mean state, every part of the fluid experiences the influence of the whole wall around it or (as in the case of the channel) of the walls on both sides. There may be some interest in studying the effect of a single wall, which presents itself in the motion of a fluid in the boundary layer that develops along the surface of a rigid body immersed in a moving liquid. This case, moreover, has some practical interest as it in immediately related to the phenomena of "surface friction".

With this object in view the first problem that presents itself is to obtain data on the distribution of the velocity in such a boundary layer. As far as known to the author measurements of this kind have been executed only by CALVERT¹) and by RIABOUCHINSKY²). These researches, however, do not supply sufficient data for a detailed study of the motion, and it seemed desirable to repeat them by a different method in a more complete form.

It was thought that this could be done by means of hot wire anemometers, as they easily allow to execute the measurements at very small distances from a solid wall. After a number of preliminary experiments, which were started in June 1922, on hot wire anemometers, on the velocity distribution in the boundary layer along a smaller glass plate, on the influence of the leading edge on the velocity distribution in the first part of the boundary layer along the smaller glass plate and along that one that is described in the present work, the definitive measurements were entered upon May 1923.

A provisional account of some of the measurements on this subject that were executed between July and October 1923 has already been given in a paper entitled:

"Preliminary Measurements of the Distribution of the Velocity of a Fluid in the immediate Neighbourhood of a plane smooth Surface" by J. M. BURGERS and B. G. VAN DER HEGGE ZIJNEN, published in the "Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam" (Mededeeling N⁰. 5 uit het Laboratorium voor Aerodynamica en Hydrodynamica der Technische Hoogeschool te Delft). This paper will be called furtheron "Mededeeling 5".

¹) G. A. CALVERT, On the measurement of wake currents, Trans. Inst. Nav. Arch. 1893.

²⁾ D. RIABOUCHINSKY, Étude expérimentale sur le frottement de l'air, Bull. Inst. Aérod. de Koutchino, fasc. V, p. 51, 1914.

b. Review of the principal theoretical data about the motion in the boundary layer.

Before entering upon a description of the measurements and their results, a short survey will be given of the theoretical aspects of the problem 3).

The theory of the motion of a fluid along a single wall has been originated by PRANDTL, and has been developed by BLASIUS⁴), BOLTZE⁵), HIEMENZ⁶), VON KÁRMÁN⁷), POHLHAUSEN⁸). VON KÁRMÁN's researches are of great importance: he has given a very general equation by means of which the motion may be discussed, while at the same time special attention has been paid to the pecularities of the turbulent motion.

PRANDTL⁹) remarked that when a fluid moves tangentially along a wall the retarding influence exerted by this wall practically will extend only over a layer of finite thickness δ , the so called boundary layer. The thickness of this layer is least at the point where the current meets the surface; in the case of an infinitely thin, flat surface, mounted parallel to the original direction of the current, δ may be taken to be zero at the leading edge.

The motion of the fluid in this layer (which motion in most cases may be regarded as being limited to two dimensions, one tangential and one normal to the wall) may be either a laminar or a turbulent one, i.e. the velocity at a given point may be independent of time, and will be nearly parallel to the boundary; or the value and the direction of the velocity may change continually in some irregular manner. In the latter case a certain mean or principal motion exists, with an irregular relative motion superposed on it. The change from the laminar into the turbulent state occurs when the number of REYNOLDS = $R^* = \frac{V\delta}{v}$ surpasses a certain critical value. Direct researches on this change have not been published, but it may be inferred from the experiments on the motion of fluids in pipes, that the critical value of R^* will depend on the magnitude of the disturbances occurring in the laminar motion: the critical value decreases as the disturbances increase. However, a lower limit exists; hence with values of R^* smaller than this lower limit, every disturbance will be damped out. It may be expected that this lower limit will be of the same order of magnitude as that found in the case of the motion through a tube or between concentric cylinders, say in round numbers, 2000.

³⁾ Some parts of this paragraph have also been published in "Mededeeling 5", p. 4.

⁴⁾ H. BLASIUS, Thesis Göttingen, 1907 (Zs. f. Math. u. Phys. 56, p. 1, 1908).

⁵) E. BOLTZE, Thesis Göttingen, 1908.

⁶⁾ K. HIEMENZ, Thesis Göttingen, 1911 (Dingler's polyt. Journ. 326, p. 321, 1911).

⁷⁾ TH. VON KÁRMÁN, Zs. f. angew. Math. u. Mech. I 1921.

⁸⁾ K. POHLHAUSEN, Zs. f. angew. Math. u. Mech. I 1921.

⁹⁾ L. PRANDTL, Verh. d. III^{ten} Intern. Math. Kongresses, Heidelberg, 1904, p. 484.

PRANDTL⁹) has given a method to calculate the laminar motion in the boundary layer, if the thickness of this layer is small as compared to the dimensions and the radius of curvature of the surface. This method has been developed by BLASIUS and HIEMENZ for the case of the two dimensional motion, and by BOLTZE for the three dimensional motion. An approximate theory has been given by VON KáRMáN.

According to BLASIUS's formulae, the gradient of the velocity u in the immediate neighbourhood of a plane surface has the value:

$$\left(\frac{\partial u}{\partial y}\right)_{y=0} = a = 0,332 \ V \overline{\frac{V}{\nu x}} \quad . \quad . \quad . \quad (I)$$

From this formula the resistance experienced by one side of a wall of a length l and a breadth b (measured perpendicularly to the wall) is found to be:

$$W = b \int_{0}^{l} \mu \left(\frac{\partial u}{\partial y} \right)_{y=0} dx = \frac{0.664}{\sqrt{R}} \rho b l V^{2} \dots (2)$$

Some values of the velocity u as calculated by BLASIUS are given here:

$$y = 1,46 \sqrt{\frac{\sqrt{x}}{V}} 2,18 \sqrt{\frac{\sqrt{x}}{V}} 3,64 \sqrt{\frac{\sqrt{x}}{V}}$$
$$u = 0,47 V 0,68 V 0,92 V$$

According to BLASIUS no definite value can be assigned to the thickness of the boundary layer, as u increases asymptotically to its limiting value V. An approximate value, however is:

which gives:

If the motion is turbulent, it will be understood that u denotes the mean value of the component of the velocity parallel to the wall. The dependence of this mean value on y is derived by VON KáRMáN, by means of the theory of dimensions; VON KáRMáN discovered a formula which connects the velocity u, the distance in normal direction to the surface y and the resistance per unit of area of the wall (tangential stress). By making use of empirical data for the resistance, he deduced:

where τ_0 is the tangential stress per unit area of the wall. The solution of this equation gives for the value of τ_0 :

In the immediate vicinity of the wall formula (5) cannot be applied, as it gives an infinite value to the gradient at the surface, $\left(\frac{\partial u}{\partial y}\right)_{y=0}$; it is supposed that in this region the turbulent state of motion disappears, and hence (5) has to be replaced by:

$$u = \frac{\tau_0}{\mu} y \quad \dots \quad \dots \quad \dots \quad \dots \quad (7)$$

By introducing the thickness δ of the boundary layer, in stead of (5) we may write:

The value of δ has been calculated by VON KáRMáN from the equation :

$$\frac{d}{dx}\int_{\circ}^{\circ}\rho u^{2}dy - V\frac{d}{dx}\int_{\circ}^{\circ}\rho u\,dy = -\tau_{0} \quad . \quad . \quad . \quad (9)$$

which equation expresses the theorem of momentum as applied to an infinitely thin section of the boundary layer, perpendicular to the axis of x, in the absence of any pressure gradient, as is the case here.

If u and τ_0 are written as functions of δ (by the aid of (8) and (6)), equation (9) transforms into a differential equation of the first order for δ , the general integral of which is:

 x_0 being the constant of integration.

Now the value of τ_0 becomes — from (6), (8) and (10) — :

$$\tau_0 = 0.029 \ \rho \ V^{9/5} \left(\frac{\nu}{x - x_0} \right)^{1/5} \ . \ . \ . \ . \ (11)$$

If the motion in the boundary layer is turbulent from the beginning, it is natural to suppose that $x_0 = 0$ (as is done by VON KáRMáN).

Along a plane smooth wall, the leading edge of which has been sharpened in order to give rise to as less disturbances as possible, it is to be expected, however, that in the first part of the boundary layer the motion will be laminar, and a transition to the turbulent state cannot occur before δ has increased so much that $R^* = \frac{V\delta}{\nu}$ surpasses its critical value of about 2000. Once this limit having been surpassed, turbulence will set in sooner or later, according to the irregularities occurring in the current at the outside of the boundary layer being greater or less. In this case the value of x_0 will be different from zero, and the smaller the disturbances in the outer current, the greater x_0 will be.

The results of the first group of measurements executed with a velocity of the air passing over the surface of 800 cm/sec, which have been published, have confirmed this supposition: in the first part of the boundary layer the distribution of the velocity corresponds more or less to that calculated by BLASIUS, while in the second part it obeys the relation deduced by VON KáRMáN: $u \sim y^{1_7}$. Besides giving data on the influence of the disturbances in the outer current on the position of the region of transition, these measurements had shown that both in the laminar part and in the turbulent part in the immediate neighbourhood of the wall the velocity curve approximates to a straight line:

$$u = a y$$
$$\left(a = \lim_{y = 0} \frac{\partial u}{\partial y}\right)$$

and it was possible to determine the value of the velocity gradient at the surface (a) with not too great an error. In this latter respect they confirm STANTON's ¹⁰) results for the case of the motion of a fluid (air) through a tube, obtained by a different method of measurement.

In the present work further researches in this direction will be described.

§ 2. METHOD OF MEASUREMENT.¹¹)

a. Experimental arrangement.

The measurements were executed in a current of air, by making use of the windchannel of the laboratory for Aerodynamics and Hydrodynamics of the Technical Highschool at Delft. The cross section of this channel measures 80 cm square; the portion available for the experiments has a length of 400 cm. A four bladed propeller or fan draws the air through the tunnel. The maximum air velocity that can be reached is about 3300 cm/sec and the lowest velocity that can be kept constant is about 120 cm/sec. Every value of V between these limits can be used. The velocity of the air in the working space is determined by a Pitottube connected to an alcohol pressure gauge (both constructed by FUESS). The propeller is driven by a direct current electromotor, the number of revolutions of which is regulated by the experimenter.

At the entrance of the tunnel a honeycomb is placed, consisting of brass blades, framing square cells of 8 cm diameter and having a length of 25 cm.

As smooth, plane, surface, a glass plate was chosen, 167,5 cm long, 40 cm wide and having a thickness of 1,2 cm. This plate was placed in the vertical plane of symmetry of the channel and parallel to the flow.

At the leading edge the plate was sharpened at both sides over a length of about 15 cm, with a radius of curvature of 75 cm (see fig. a, p. 6). This part is not absolutely smooth, as small irregularities caused

¹⁰) T. E. STANTON, D. MARSHALL and C. N. BRYANT, Proc. Roy. Soc. London, A 97, p. 413, 1920.

¹¹⁾ Some parts of this chapter were also published in "Mededeeling 5", p. 10.

by the grinding could not be ameliorated; also the polishing could not be affected in such a way that this part became as smooth as the rest. The appearance of this part was somewhat like paraffine wax.¹²) The experimental arrangement is given by figure I.

Fig. 1. Diagrammatic view of the position of the glass plate in the tunnel.

The velocity of the air in the boundary layer was determined by means of "hot wire anemometers", i. e. thin electrically heated wires of platinum or platinum-iridium. The principle of this method was brought to general knowledge by a detailed research by L. V. KING¹³); it is based on the cooling effect of the current of air: the electric current i is determined, which is necessary to keep the wire at a given and constant electrical resistance for any value of the velocity of the air. The relation between this electric current and the velocity is given by:

$$i^2 = c V \overline{V} + b$$

where c and b are practically constants.

Before the measurements of the air velocity the anemometer was calibrated experimentally, which calibration was periodically repeated.

The new measurements to be described in the following paragraphs

Fig. a. Fig. b.

A new glass plate, supplied afterwards by the same firm, was ground and polished in their works and had the form of leading edge shown in figure b. Experiments carried out with this new plate, 210 cm long, 50 cm wide and 1,5 cm thick, showed that in this case the boundary layer, with V = 800 cm/sec, was almost turbulent from the beginning.

¹³) L. V. KING, On the convection of heat from small cylinders in a stream of fluid, Phil. Trans. **215**, p. 373, 1914.

¹²) This grinding and polishing was done by the staff of the Aerodynamical Laboratory, as the firm that supplied the glass plate to us, could not do it so as was desired. The original and finished form of the glass plate are shown in figure a.

have been executed in November and December 1923, using wire No. 25,9 the dimensions of which were:

Material of wire		•					Pt-Ir.
Diameter of wire							0,005 cm.
Length of wire.		•					2,1 cm.
Temperature of w	ire	in	us	е			667° C.
Resistance at 17°	C.						3,19 Ω
Resistance at T° (C.	•					5,25 D

In the period mentioned the wire was calibrated four times, as it appeared that the values of the current corresponding to a given value of the velocity of the air changed with the time the wire had been in use.

The results of the calibrations are given in the table on p. 8 and 9. If the values of i^2 are plotted against \sqrt{V} , nearly straight lines are obtained, in agreement with the results found by KING.

In working out the determinations of the velocity in the boundary layer along the glass plate, the preceding calibration was always used (the dates of the measurements have been mentioned in tables I, III—VII).

In order to be able to regulate the distance y of the wire from the surface of the plate, the anemometer was mounted on a screw micrometer. The zero of the scale reading had to be determined in an indirect way, as it was impossible to measure the distance from the wire to the surface of the glass plate by means of a measuring microscope. The more primitive method, which was used in the earlier experiments, was to regulate the distance of the wire so that the wire and its image in the glass appeared to be just one diameter apart, as estimated with the eye; the known value of the distance was called zero when the wire touched the glass plate.

When the zero reading had been determined in this way, the current i_0 was measured which was necessary to keep the wire at the temperature T at different distances from the wall (with V = 0); these values were put down in a diagram as a function of y ("cooling curve"). It was found that i_0 increased very rapidly with decreasing values of y, and so it appeared possible to use this "cooling curve" to determine the zero reading, without making use of the image of the wire.

In the later experiments the zero reading was sometimes determined by diminishing the distance y until i_0 increased no longer, which occurs if the wire is in contact with the surface. This method gives somewhat greater risks as regards the wire, but it gave better results. Whenever necessary, the cooling curve was always used as a method of control.

The experiments were made in such a manner, that after the determination of the zero point, the hot wire anemometer was screwed as far as possible to the outside (about 5 cm from the plate). Then the electromotor was turned on and according to the anemometer indications, the velocity was brought up to the value of V as had been fixed for

Wire No. 25,9.

V cm/sec. 0 128 155 179 200 219 253 283 310 346 400 448 490 530 566	1		i	2	
V cm/sec.	\sqrt{V}	6 Nov. '23.	20 Nov.'23.	6 Dec. '23.	18 Dec.'23
0	0	0,203	0,203	0,203	0,202
128	11,3	0,429	0,433	0,423	0,424
155	12,5	0,450	0,461	0,449	0,452
179	13,4	0,477	0,475	0,469	0,475
200	14,1	0,491	0,487	0,479	0,490
219	14,8		0,503	0,493	0,504
253	15,9	0,530	0,521	0,520	0,520
283	16,8	0,549	0,546	0,545	0,546
310	17,6	0,564	0,561	0,560	0,561
346	18,6			0,578	0,579
400	20,0	0,616	0,605	0,607	0,608
448	21,2		0,627	0,629	0,637
490	22,1	0,656	0,648	0,654	0,653
530	23,0		0,654	0,664	0,669
566	23,8	0,691	0,672	0,674	0,684
639	25,3	0,723	0,702	0,706	0,707
693	26,3	0,741	0,726	0,726	0,736
748	27,3	0,760	0,743	0,753	0,753
800	28,3	0,776	0,773	0,759	0,773
890	29,9	0,812	0,792	0,792	0,792
980	31,3	0,843	0,814		0,828
1056	32,6	0,863	0,843	_	0,848
1136	33,7	0,884	0,861	_	0,869
1200	34,6	0,903	0,882	_	0,887
1260	35,5	0,912	0,901	—	0,903

** 1	/ ***		i	2	
V cm/sec.		6 Nov. '23.	20 Nov.'23.	6 Dec. '23.	18 Dec.'23
1335	36,5	0,925			0,922
1390	37,3	0,945	0,922		0,941
1440	38,0	0,958	0,939	· · · · ·	0,951
1500	38,7	0,978	0,951		0,962
1550	39,4	0,982	0,962	<u> </u>	0,978
1600	40,0	0,998	0,980		0,990
1700	41,2	1,020	1,000		
1790	42,3	1,040	1,020		1,036
1875	43,3		1,040	_	1,055
1960	44,3	1,078	1,051		1,067
2040	45,2	1,094	1,065		1,075
2115	46,0		1,082	-	1,098
2190	46,8	1,122	1,100	_	1,113
2266	47,6	·	1,109	_	1,119
2390	48,3	_	1,119		1,132
2400	49,0	1,165	1,128		1,145
2530	50,3		1,162		1,166
2590	50,8				1,175
2650	51,5				1,188
2780	52,7			—	1,210
2895	53,8	_			· 1,225
2990	54,7	<u> </u>			1,234
3100	55,7	· · ·			1,254
3200	56,6				1,269
3295	57,4				1,296
	Bar.	752	746	758	761 mm.
	Temp.	13,2	18,7	16,3	19,1° C.

the respective series. Thus the value of V was the same for every value of x. The velocity was then kept constant by aid of a Pitot tube fitted up elsewhere in the tunnel. This method is followed contrarily to that described in "Mededeeling 5", in which the velocity outside the boundary layer sometimes deviated from 800 cm/sec, in which case the measured values of u were converted by means of a definite factor, in order to represent as precisely as possible the distribution of the velocity occurring with a constant value of V independent of x.

Once the velocity having been determined, the experiments were carried out in such a manner that the hot wire anemometer was transferred to the inside by small steps. Between two transfers i was noted. Thereupon the hot wire anemometer was moved away from the plate with the same intervals, until i certainly did no more increase with y. In proportion with the mutual differences of the results, the measurements were repeated more times, the minimum being three to four times.

The square of the average of the *i* values was then taken; \sqrt{u} was calculated by means of the almost lineair experimental calibration curve and from this u was determined.

The distribution of the velocity was determined at a given value of x first with V = 400 cm/sec. Then V was brought up to 1200 cm/sec and the distribution of the velocity in the boundary layer determined again. Then experiments with V = 1600 and 2400 cm/sec were made and finally the hot wire anemometer was transferred to the next value of x.

b. Accuracy of the experiments.

1. The accuracy of the experiments made was influenced by the slightly irregular working of the propeller which supplied the current of air.

As stated, the velocity is not kept automatically constant, but is regulated by the experimenter; with some care the slow fluctuations in the velocity of the air could be kept below $I^{0}/_{0}$ (as indicated by the alcohol micromanometer and the Pitot tube connected with the same).

2. The results of the previous experiments had shown that the region of unsteady motion behind the entrance of the tunnel exerted much influence on the place where the laminar boundary layer transferred into the turbulent one. This region of unsteady motion gets longer as the velocity V increases. For a comparison of the results, it is therefore necessary to know the position of the glass plate in the tunnel. The distance from the leading edge of the glass plate to the honeycomb of the windchannel, X cm, (see Fig. 1) has been determined in all series.

3. From the method of measuring with hot wire anemometers follows that the sensitiveness decreases as the value of V increases.

As the velocity is determined from the formula given by KING:

$$i^2 = c V u + b$$

(where c and b are nearly constant for each hot wire anemometer) the sensitiveness will be:

$$\frac{di}{dV} = \frac{c}{4 \ i \ V \ \overline{V}}.$$

(In the case of wire N⁰. 25.9 c is about 0.019).

From this it appears that the accuracy obtainable is less at higher velocities. The fluctuations of the velocity of the air of high frequency will in general not influence the indications of the anemometer very much.

4. In the immediate vicinity of the wall, heat will be absorbed not only by the air, but also by the surface itself. So it may be expected that the hot wire anemometer will give too high a value of the velocity in the boundary layer. Taking this into account, a correction has to be applied to the read values of *i*. As it appears from the experiments, the absorbtion of heat by the wall has no more appreciable effect when $y \ge 0.2$ cm. Provisionally this correction for the cooling effect by the wall was applied in the following way: calling $i_{V(y)}$ the value of the electric current observed at the distance *y*, when the velocity of the air had the value V, $i_0(y)$ the current observed when the air was at rest, and $i_0(\sim)$ the same at a very great distance of the wall, the corrected value of *i* was calculated by means of the formula:

$$(i_{corr.})^2 = [i_{V(y)}]^2 - [i_{0(y)}]^2 + [i_{0(\sim)}]^2 \dots \dots \dots \dots \dots \dots \dots$$

From $i_{corr.}$ the value of u was deduced by means of the experimental calibration curve.

However, it is possible that this correction depends on V; then it is to be expected that it decreases when V increases. Therefore the correction certainly will be zero for $y \ge 0.2$ cm, as it appeared that $i_0(0,2) = i_0(-) = b$. On the other hand for $y \to 0$ (where $u \to 0$) the cooling by the air current will be measured by $[i_u(0)]^2 - [i_0(0)]^2$, so that for small values of y we were led to put:

which corresponds to formula (13) as:

$$[i_{corr.}]^2 = c \sqrt{u} + b = c \sqrt{u} + [i_0(\sim)]^2.$$

Hence it may be expected that the given formula will apply in the limiting regions; inaccuracies, however, may rise in the middle region.

The values of $i_{0}^{2}(y)$ have been given in the table on p. 12 and 13.

By means of this table and the calibration data of the wire, given on p. 8 and 9 it is possible to reconstruct the original values of i for all measurements.

This correction — which has been applied to all measurements in the same way — principally influences the value of the velocity gradient a at the surface. For this reason the results found have been discussed in § 5 by comparing the value of the friction deduced from them to the value found by various other methods. The general result is not disap-

							x cm =
y cm	V cm/sec.	2,5	5	- 10	15	20	25
					y		i02
0,005	400 8002 1200 1600 2400	0,338 0,401 	0,350 0,371 	0,445 0,468 0,458 0,458	0,413 0,362 0,375 0,389 0,389 0,389	0,381 0,368 0,392 0,388 0,388 0,388	0,391 0,386 0,396 0,396 0,396 0,332
0,010	800 ₂ 1200 1600 2400	0,306 0,331 —	0,312 0,323 	0,350 0,354 0,354 0,354	0,319 0,321 0,332 0,332	0,321 0,331 0,332 0,332	0,325 0,333 0,333 0,333
0,015	400 8002 1200 1600 2400	0,284 0,298 	0,292 0,295 —	0,314 0,314 0,310 0,310	0,309 0,295 0,297 0,304 0,304	0,301 0,297 0,303 0,301 0,302	0,303 0,297 0,304 0,304 0,304
0,020	400 8002 1200 1600 2400	0,270 0,279	0,276 0,278 	0,292 0,289 0,287 0,287	0,288 0,279 0,281 0,282 0,282	0,284 0,281 0,284 0,281 0,281	0,281 0,278 0,283 0,283 0,283

		x cr	$V = 800 \text{ cm/sec }^{**}$		
	2,5*)-5	10-15-20 25-50-62,5	37,5-75 87,5	100-125 150*)	$V = 300_2 \text{ cm/sec.}$ Y All series.
		i	2		$i_0{}^2$
0,025 0,030 0,040 0,050	$\begin{array}{c} 0,262 \pm 2 \\ 0,255 \pm 2 \\ 0,243 \pm 2 \\ 0,233 \pm 2 \end{array}$	$\begin{array}{c} 0,272 \pm 3 \\ 0,263 \pm 2 \\ 0,249 \pm 2 \\ 0,237 \pm 2 \end{array}$	$0,269 \pm 2$ $0,258 \pm 2$ $0,244 \pm 1$ $0,234 \pm 1$	$0,281 \pm 2$ $0,268 \pm 1$ $0,251 \pm 1$ $0,239 \pm 2$	$0,267 \pm 3$ $0,257 \pm 3$ $0,242 \pm 2$ $0,233 \pm 2$

*) incl. $V = 800_2$ cm/sec.

**) excl. $V = 800_2$ cm/sec. at x = 2,5 and 150 cm.

12

37,5	50	62,5	75	87,5	100	125	150
0,375	0,366 0,372	0,378	0,360	0,348	0,423 0,387	0,423	0,490
0,387 0,387 0,387	0,366 0,366 0,408	0,378 0,378 0,378	0,360 0,397 0,397	0,355 0,355 0,355	0,423 0,423 0,423	0,490 0,449 0,423	0,490 0,490 0,490
0,325 0,327 0,327 0,327	0,325 0,325 0,325 0,325 0,339	0,332 0,332 0,332 0,332	0,316 0,316 0,348 0,348	0,319 0,319 0,319 0,319 0,319	0,342 0,335 0,342 0,342 0,342	0,342 0,366 0,366 0,342	0,366 0,359 0,366 0,366 0,366
0,297 0,304 0,304 0,304	0,303 0,297 0,303 0,303 0,306	0,301 0,301 0,301 0,301	0,294 0,294 0,303 0,303	0,297 	0,318 0,304 0,318 0,318 0,318	0,318 0,325 0,325 0,318	0,325 0,317 0,325 0,325 0,325
0,279 0,283 0,283 0,283	0,285 0,280 0,285 0,285 0,285	0,284 0,285 0,285 0,285	0,278 0,278 0,284 0,284	0,281 0,281 0,281 0,281 0,281	0,297 0,283 0,297 0,297 0,297	0,297 0,297 0,297 0,297	0,297 0,296 0,297 0,297 0,297

					and the second se	and the second se	
		V = 80	All series.				
y cm	30	40	бо	70	80	y cm	$i_0{}^2$
			i ₀ ²			0,060	0,229 ± 2
),005),010),015),020	0,381 0,326 0,297 0,280	0,377 0,328 0,293 0,279	0,376 0,323 0,297 0,277	0,378 0,325 0,298 0,277	0,360 0,318 0,293 0,276	0,075 0,080 0,100 0,125 0,150 0,175	$\begin{array}{c} 0,221 \pm 1 \\ 0,219 \pm 2 \\ 0,213 \pm 2 \\ 0,208 \pm 2 \\ 0,205 \pm 2 \\ 0,205 \pm 2 \\ 0,203 \pm 1 \end{array}$
						0,200	$0,203 \pm 1$ $0,202 \pm 1$

pointing. ¹⁴) In this respect, however, it has to be remarked that at a low value of the velocity, say V = 400 cm/sec, the corrected u(y) curve is clearly S shaped, as appears from Fig. 2 and Fig. 5. This must be due to the correction, and points evidently to a too high value of it. At a higher value of the outer current, say V = 2400 cm/sec, this phenomenon is not so clearly shown.

5. The distance γ — this is the distance from the centre of the wire minus the radius of the section of the wire to the wall - has been established by the aid of the screw micrometer, wherein the hot wire anemometer was mounted. An investigation of this screw micrometer showed that the maximum error occurring in the screw thread surpassed not more than 0,001 cm per revolution, above or under the mean value. When the micrometer had been in use for some time, however, clearance in the moving parts made itself perceptible by relative differences of the measured values of the distance γ when the anemometer was screwed in or out. The maximal error in the distance γ caused by this clearance was 0,01 cm. By readjusting, this wear and tear was reduced as well as possible and by a repeated determination of the zero reading of the micrometer the effect of the clearance was eliminated. At the determination of a by drawing a straight line through the first points of the $u(\gamma)$ curve, it appeared that this straight line in general did not pass through the zero of the diagram; this may be caused by a remaining constant error in the indication of the micrometer or by an erroneous determination of the zero of the micrometer readings.

This amount "f" has been mentioned at the foot of the tables where the results are collected.

In those cases where the first part of the u(y) curve was distinctly S shaped (the series with V = 400 cm/sec), the position of this straight line is not certain and here the abnormal high value of the distance correction f has to be attributed to the uncertainty which follows from the correction applied to i.

6. It may be supposed that the glass plate would bend under influence of the forces exerted by the stream of air passing over it, and hence that the distance of the hot wire to the glass plate would be altered by the difference in pressure within and outside of the wind channel during the experiments. The possibility of bending has been taken into account and minimized by fixing the glass plate as tightly as possible: the glass plate was fixed by means of two wheels, at a relative distance of about 100 cm, to a rail screwed on the under surface of the tunnel, parallel to the axis of the wind channel. Two other wheels pressed on a rail at the top, and gave there also the required support. Moreover the glass plate was held in position by two or four horizontal bars (5/8'') diam.)

¹⁴) It may be remembered that also STANTON had to apply an important correction to his measurements (mentioned above, p. 5) in order to deduce the value of a from them.

perpendicular to the axis of the channel and fixed to the same iron frame work that supported the micrometer screw and the anemometer. It was inevitable that these bars passed the stream of air on the same side as that on which the anemometer was mounted. The vertical distance of these bars was equal to the height of the glass plate, this is 40 cm; so they were mounted 20 cm above and under the anemometer; the distance in horizontal direction depended on the distance from the anemometer to the leading edge of the glass plate and on the distance from this leading edge to the honevcomb.

A separate experiment on the influence of these bars taught that the upstream pair of bars caused in the downstream region of the channel a rise in V of about 1,25 $^{0}/_{0}$ (see p. 42); the second pair of bars was placed downstream relative to the anemometer and had by consequence no influence on the results of the experiments.

It has been mentioned already that the hot wire anemometer was not removed when the value of V was changed, and so it might be expected that an error in the zero reading of the micrometer, occurring once, would still remain the same at different values of V (say 400, 1200, 1600 and 2400 cm/sec) at a constant value of x (in general the removing of the hot wire anemometer along the glass plate will cause a change in the zero reading). Evidently this is not the case, and it will have to be attributed to the not entirely correct way wherein the i correction has been applied. However some doubts arise in the case of the series with V = 3200 cm/sec at x = 150 cm; here again the distance correction is abnormally great. It would be expected that f would not alter in the series with V = 600, 2000, 2800 and 3200 cm/sec, as they were not interrupted for a recalibration of the anemometer or to change x. These experiments were performed in two days. It should be noted that the series with $V = 800_{2}$ cm/sec, the series with artificially caused turbulence in the outer current, is executed apart and the values of fin this case may not be compared to those of the other series.

§ 3. RESULTS OF THE MEASUREMENTS.

a. Experiments performed.

In the paper "Mededeeling 5" only such experiments that were carried out with a velocity of 800 cm/sec outside of the boundary layer are described. From these measurements the influence of the position of the glass plate in the tunnel was deduced; the distribution of the velocity in the boundary layer at various values of x was compared to the theory of BLASIUS and to that of VON KáRMáN. From the measured velocity gradient at the surface the resistance experienced by the glass plate was calculated and compared to various formulae.

As a more complete review required more data on the flow in the boundary layer, the velocity distribution in the neighbourhood of the same surface was determined now at other values of V. Moreover the measurement, mentioned in "Mededeeling 5", with artificially strengthened turbulence of the stream of air (obtained by putting a screen with square meshes of 0,4 cm, diameter of the wire = 0,08 cm, immediately in front of the leading edge of the glass plate and covering the whole section of the wind channel) was completed by similar measurements at other values of x, so that at V = 800 cm/sec a complete series with purposely caused turbulence in the air current is obtained.

The series with artificially caused turbulence of the stream of air are denoted by $V = 800_2$ cm/sec, in contrary to the series where this was not the case: these are denoted by $V = 800_1$ cm/sec and have been published already.

An experiment was also carried out with purposely caused turbulence of the stream of air with V = 1600 cm/sec (at x = 150 cm); this is denoted by $V = 1600_2$ cm/sec.

In the following table the various values of x and of V, at which the experiments were carried out, are given, the series with $V = 800_1$ cm/sec being also mentioned.

Vcm/sec								x cm							
400	_			_	15	20	25	37,5	50	62,5	75	87,5	100	125	150
600		-	-	_								-	_	-	150
800,	2,5	5	7,5	10-12,5	15-17,5	20	25	30	40-50	62,5	75	80-85-90	100	125	150
8002	2,5	5		IO	15	20	25	30	40	50	60	70-80	100	-	150
1200	2,5	5	7,5	IO	15	20	25	37,5	50	62,5	75	87,5	100	125	150
1600		_	-	IO	15	20	25	37,5	50	62,5	75	87,5	100	125	150
16002			-							_	_	_	-	-	150
2000	-	-	-	·				-	_				-	-	150
2400	_	-	-	IO	15	20	25	37,5	50	62,5	75	87,5	100	125	150
2800	-	-	-	_				-			-	i	-	-	150
3200	-	-	-		· · · ·		-	-	-	—	-	-	-	-	150

b. Summary of the results.

The results of these measurements are given in the tables I to VI; for the sake of completeness table II from "Mededeeling 5" (this is the series with $V = 800_1$ cm/sec where X had a not exactly known value, ranging from about 100 to 200 cm) also is given here as table II. ¹⁵)

As to table III (the results of the experiments with purposely caused turbulence of the stream of air), it has to be observed that in the first series, say to about x = 10 cm, the immediate vicinity of the wires composing the screen has influenced the results. As is shown in table III, at x = 2,5 cm the velocity of the air increases to 848 cm/sec and then

15) The measurements at x = 1 - 1, 5 - 60 and 70 cm have been omited here.

decreases at increasing values of y again to 800 cm/sec. This has to be ascribed to the circumstance that the meshes of the screen give rise to regions of increased velocity, which regions extend for some distance (probable over about 7 or 8 cm) behind the screen.

In order to obtain a more complete oversight of the distribution of the velocity of the air in the turbulent boundary layer, further experiments were carried out at x = 150 cm with V = 600, 2000, 2800 and 3200 cm/sec; the results of which are, together with those of the series mentioned in the tables I to VI at x = 150 cm, given in table VII.

At the foot of the tables the dates of the experiments are given, and further the value of ν , calculated from the temperature of the air and from the barometric pressure occurring during the measurements by the aid of the diagram given by PRANDTL in "Ergebnisse der Aerodynamischen Versuchsanstalt zu Göttingen" I 1921, p. 136.

§ 4. DISCUSSION OF THE RESULTS.

a. Determination of a.

In order to obtain a general oversight of the results of the measurements, the velocity gradient at the surface, a, was determined first. This was done in the following way: the values of u were put down in a diagram (u as a function of y) and then the lowest observed values of u were

Fig. 2. Determination of a at x = 150 cm.

 -	A		-
			ы
 ь.	Γ	Δ.	

					V cm	n/sec.
x cm	40	00	80	01	80	02
	a sec-1	δcm	a sec ⁻¹	δcm	a sec ⁻¹	δcm
	1 1					
2,5			13520	0,15	14400	0,14
5			10400	0,18	12600	0,17
7,5			8000	0,20	-	—
IO			7340	0,23	10400	0,30
15	2190	0,33	5780	0,28	8700	0,43
20	1950	0,40	5600	0,30	9300	0,50
25	1900	0,45	5560	0,35	10200	0,55
30			4740	0,40	10300	0,65
37,5	1720	0,58		_	_	
40			4840	0,45	9700	0,90
50	1670	0,68	4960	0,60	9000	1,20
60					8600	1,40
62,5	1550	0,90	4920	0,75		
70					8200	1,60
75	1480	1,05	6310	0,95	_	
80	_	- 2	8890	1,10	7900	1,75
85			7060	1,20		_
87,5	1690	1,15				_
100	1480	1,25	8600	1,70	7600	2,00
125	1440	1,35	8350	1,95	_	_
150	1740	1.45	8480	2.30	7000	2.70

				1	
120	00	160	0	240	0
a sec ⁻¹	δcm	a sec ⁻¹	δcm	a sec ⁻¹	δcm
26000	0.12			-	
18800	0.15				
15800	0,17				
14400	0,19	24500	0,16	38200	0,17
11200	0,21	18000	0,19	33600	0,20
10300	0,23	17250	0,21	32500	0,21
10100	0,24	16750	0,26	31900	0,22
-	-				
9600	0,36	16250	0,45	41000	0,45
-	- 1			-	
11600	0,70	22500	0,85	56000	0,80
-	-	<u> </u>			
14400	0,95	26500	1,05	60000	0,90
-	-				_
16300	1,15	25800	1,25	59000	1,20
-	-			-	
-	-	_			
16000	1,40	24250	1,45	53000	1,35
14800	1,60	23000	1,55	48500	1,45
14100	1,95	21250	1,85	44000	1,65
13600	1,95	20500	1,90	41000	1,80

I.

connected by a straight line, the inclination of which gave the required value of a. At the same time this line gives the distance correction f, mentioned in § 2 b 5.

As an example the lower parts of the curves for the series at x = 150 cm have been shown in figure 2.

In most of the measured u(y) curves this line could be marked well, not, however, in the series with V = 400 cm/sec, which is undoubtedly caused by the S shaped u(y) curve in the immediate vicinity of the wall. This gives rise to the supposition that the determined values of a of these series may possibly be too high, as follows from a more detailed research (see p. 43).

The experimental values of a are collected in table VIII.

In figure 3 the values of a are represented diagrammatically as a function of x.

In all measurements, except those with V = 400 cm/sec, it appears that a decreases first with increasing value of x, then increases over a longer or shorter period and then decreases again. This points to the fact that in the region where $\frac{\partial a}{\partial x}$ is positive, the stream of air changes

character and passes from the laminar into the turbulent state of motion. This is confirmed by a consideration of the u(y) curves: they cross one another in the region and transition, for the curves at a higher value of x are steeper at lower values of y and flatter at higher values of y. Outside the region of transition, however, the curves grow more flat as x increases.

In "Mededeeling 5" the researches have been discussed that were performed to prove that the laminar and the turbulent state of motion actually exist at the same time beside each other: the first at the lower values of x, the second at the higher. Furthermore, it is shown there that the presence of strong fluctuations in the flow of air in the tunnel gave rise to an early transition (that is to a transition at lower values of x). For this purpose experiments were carried out at various values of the distance X from the leading edge of the glass plate to the honeycomb of the tunnel; the smaller X was, the greater the fluctuations in the stream of air in the channel. ¹⁶)

This phenomenon has not been considered in the continued experiments; here the measurements were performed at a value of X that as much as possible was kept constant.

However, the mentioned research has been completed by the series with $V = 800_2$ cm/sec, with purposely caused turbulence. As it was expected, these series gave the most advanced region of transition.

In the series with V = 400 cm/sec only the curves at x = 125 cm and x = 150 cm show the crossing mentioned; so the transition from the laminar into the turbulent state of motion begins here at the end of the glass plate.

b. Determination of δ .

In order to determine the thickness of the boundary layer δ the values of u found at every value of x were put down in a diagram as a function of y. The series of points that was obtained in this way was connected by a smooth curve and the distance y where this curve passes into the line u = V is called δ . It appears, however, that in the turbulent part of the boundary layer this curve intersects the line u = V (see below, at θ).

The diagrams show that in the neighbourhood of $y = \delta$ the values of u rather lie above this smooth curve, so that in the last part of the boundary layer the velocity has evidently been found too high. It is not impossible that this is due to experimental errors, for, on account of the obtainable accuracy of the method of measuring and the always more or less unsteady position of the measuring apparatus, it was difficult

¹⁶) See Fig. 4, "Mededeeling 5", curves A, B and C.

to ascertain whether the value u had acquired its limiting value V or not. The values of δ , graphically determined in this way, are also collected in table VIII, and have been represented in figure 4.

For a comparison of the results with VON KáRMáN's formula (8):

$$u = V\left(\frac{y}{\delta}\right)^{1/7}$$

and for calculations based upon this formula, it is desirable to make use of a value of δ determined from a logarithmic diagram (log. *u* as a function of log. *y*).

In those cases where it may be expected that the boundary layer is actually turbulent, such diagrams are given in figure 7 and 8. Connecting in these diagrams the observed values of u by a straight line with a gradient I:7, the intersection of this line with the line u = V will give the value of δ according to VON KáRMáN (= δ_k). By means of Fig. 7 and 8 the following values of δ_k were found:

TA	DI	F	TV	
IN	D	L	IA.	

				δ_k cn	n.											
		𝒴 cm/sec.														
x cm.	8001	8002	I 200	1600	16002	2000	2400	2800	3200							
75	0,88	1,72 mean	0,985	1,045			0,99		_							
80	I,II	_						_								
87,5			1,15	1,30		1	1,15		-							
100	Ι,52	2,33	1,65	I,4I	-		1,31		_							
125	1,845		2,00	1,82			1,78		-							
150	2,16	3,24	2,06	1,91	2,58	2,05	1,865	1,81	1,56							

At the series with $V = 800_2$ cm/sec, no u(y) curve is determined at x = 75 cm, but as this was done at x = 70 and x = 80 cm, the mean values of the velocity from both these series are put down in a diagram and by means of this diagram the value of ∂_x at x = 75 cm was determined.

A comparison of the values of δ_k at x = 150 cm and those at x = 125and at x = 100 cm gives the impression that $\delta_{k,150}$ at $V = 800_2$, 1200, 1600 and 2400 cm/sec is somewhat too small. Other results affirm this supposition, as the calculation of x_0 (see p. 29) and that of the loss of momentum (see p. 36). The values of $\delta_{k,150}$ might possibly be 10 to $16^{0}/_{0}$ too small. The origin of this could, however, not be detected.

The high value of δ_k in the case of purposely caused turbulence of the stream of air ($V = 800_2$ and 1600_2 cm/sec) manifests itself strikingly and corresponds to all anticipations.

c. Laminar part of the boundary layer.

The series of the experiments with $V = 800_1$ cm/sec had shown that before the region of transition the measured values of the velocity uwere fairly well in accordance with the theory of BLASIUS. As it was expected that this would be the case with V = 400 cm/sec as well, the measured values of u, taken from table I, are put down in a diagram as a function of y/Vx (represented in Fig. 5). When there is agreement with the theory of BLASIUS, all measured values of u should be on the full drawn curve.

Its appears that this is not the case, but one may say that the agreement is better when x is smaller ¹⁷). In order to make the figure not too dense, some values of u below 25 cm/sec have been omitted. A similar figure (not given here) was constructed with V = 1200 cm/sec and with values of x = 2,5 5, 10, 15, 20 and 25 cm. Although in this

¹⁷) The same results are obtained by comparing the experimental values found for a with those calculated from form. (1).

diagram the values of u are lying above the line according to BLASIUS (except those with x = 2,5 cm and y = 0,060 to y = 0,200 cm) the correspondence has to be considered fair to the same extent as in the series with $V = 800_1$ cm/sec. (see "Mededeeling 5" figure 3).

Fig. 5. Graphical representation of the velocity distribution in the boundary layer, with V = 400 cm/sec. The curve drawn is in accordance with the theory of BLASIUS.

Other means for a comparison of the experimental results with the theory of BLASIUS are found by putting down in a diagram the measured values of δ as function of $\sqrt{\frac{\nu x}{V}}$; according to BLASIUS a straight line with a gradient I : 5,5 (see p. 3 form. (3)) has to be found. This is represented in Fig. 6.

Fig. 6. Graphical representation of δ as a function of $\sqrt[]{\frac{\sqrt{x}}{V}}$, the full drawn curve is that given by the theory of BLASIUS.

For each point the appropriate value of ν (as given in tables I to VII) has been used.

It follows from Fig. 6 that with values of $\sqrt{\frac{\nu x}{V}}$ not exceeding 0,04, δ is fairly well in accordance with BLASIUS's theory and that with higher values of $\sqrt{\frac{\nu x}{V}}$, the $\delta\left(\sqrt{\frac{\nu x}{V}}\right)$ lines, mutually almost parallel, show a much larger inclination (they are slightly curved).

d. Region of transition.

It follows from the numerous researches on the appearance of the turbulent state of motion that the laminar state will pass into the turbulent one when R^* surpasses about 2000.

The critical value of R^* is calculated from the experimental results in question by taking the minimum value of a of Fig. 3 as a criterion for the transition and then determining R_c by the aid of the appropriate value of x.

Also R^*_c has been calculated from the results of Fig. 6, for the value of δ at which the transition seems to appear, follows rather clearly from this figure.

This gives the following results (table X):

V cm/sec	400	800 ₁	8002	I 200	1600	2400
Xirans. cm	125	бо	I 5	33,75	30	22
$R_{trans.} = \frac{V x_t}{v}$	332000	320000	83500	268000	318000	350000
Strans, CM	І,2	0,55	0,30	0,38	0,30	0,22
$R^*_t = \frac{V\delta_t}{v}$	3120	2950	1650	3000	3180	3480
5,5 $V\overline{R_t}$	3170	2 980	1 590	2840	3100	3255

TABLE X.

Both values of R^*_c are fairly well in agreement, as might be expected from what is mentioned under c.

The mean value of R^* (about 3150) seems to be somewhat higher than one would expect from the experiments of COUETTE ¹⁸) and SCHILLER ¹⁹) which, though not for the same type of flow, gave values of R^*_c from 1900 to 2300²⁰).

The series with $V = 800_2$ cm/sec are exceptional; as was expected they gave a much lower value of R_c^* .

¹⁸⁾ COUETTE, Ann. de Chim. et de Phys. (6), 21, p. 457, 1890.

¹⁹⁾ L. SCHILLER, Zs. f. angew. Math. u. Mech. I, p. 436, 1921.

²⁰⁾ A. MALLOCK, Phil. Trans. A. 1896 p. 41, gives a higher value.

How the change from the laminar into the turbulent state takes place in the region of transition, can not yet be deduced with certainty. It is possible that within the boundary layer large vortices or waves are formed that originate the transition and that cleave the boundary layer: one part of the original laminar layer is forced out so that a greater part of the outer current is absorbed in the region of retarded motion, while another part is forced to the wall and will remain there as a laminar layer. This point of view is confirmed by the observation that the wire in the first part of the region of transition (with $V = 800_1$ cm/sec at x about 60 cm to 75 cm and y = 0,040 to about 0,100 cm) glitters visibly. Although after the region of transition having been passed the flow doubtless was turbulent, the visible glittering of the wire could no more be observed; evidently the fluctuations have so high a frequency there that their effect on the hot wire anemometer is no longer perceptible with the eye.

For a more detailed research of these phenomena it will be necessary to record the fluctuations of the velocity automatically; researches in this direction are in progress.

e. Turbulent part of the boundary layer.

The most important question is whether the distribution of the velocity in the turbulent boundary layer will satisfy the formula of VON KáRMÁN:

$$u \sim y^{1/7}$$
.

To decide this the values of log. u are plotted in the already mentioned figure 7 against the values of log y, at those values of x and V where it may be expected that the boundary layer is actually turbulent: this is the case with $V = 800_1$, 800_2 , 1200, 1600, and 2400 cm/sec and xhigher than 75 cm. As stated, in the series with $V = 800_2$ cm/sec in the diagram at x = 75 cm the mean value of u at x = 70 and 80 cm has been represented.

Moreover figure 8 gives a similar diagram at x = 150 cm, here all values of u from table VII are given.

It follows from these figures that indeed the relation $u \sim y^{1/\tau}$ is satisfied, provided that y is not too small (in § 6 an approximate calculation is given for the minimum value of y that satisfies VON KáRMáN's equation) with the series without artificial turbulence the errors are not greater than $2^{0}/_{0}$, hence it may be accepted that our result is a sufficient confirmation of the theory of VON KáRMáN.

It must be mentioned, however, that the relation $u \sim p^{1/7}$ is less distinct in such cases where the flow of air was purposely made turbulent. As a mean value, apparently u may be taken proportional to $p^{1/7}$, but deviations from this mean value are great at $V = 800_2$ cm/sec. In general the deviations do not surpass $6^{0}/_{0}$, except at x = 75 cm (mean) where

Fig. 7. Logarithmic diagrams of the velocity in the boundary layer as a function of y at the sections x = 75, 87,5, roo and r25 cm.

27

differences to $16^{0}/_{0}$ occur, against 5,5 $^{0}/_{0}$ at x = 100 cm and 4,1 $^{0}/_{0}$ at x = 150 cm.

The question might arise whether in these cases the relation $u \sim y^{\lambda_{16}' \text{to } \lambda_{15}'}$ would not suit as well. In this respect the measurements described here do not supply sufficient data.

It may be deduced from figure 8 that the boundary layer is not yet turbulent with V = 400 cm/sec at x = 150 cm, at least there u proves not to satisfy the relation $u \sim y^{1/\gamma}$.

Besides by the more wavy shape of the log. u (log. y) curves in the case of the series with artificial turbulence, the difference between these and other curves is marked by a parallel shift of the log. u (log. y) line in respect to the line that represents the conditions without purposely caused turbulence in the outer current. In the former case the transition will take place at a smaller value of x and consequently δ will be greater in the first case than in the second.

A remarkable peculiarity is that these diagrams do not give any certain indication of $\frac{\partial u}{\partial y}$ becoming zero at $y = \delta$; the curves seem to be rather discontinuous.

The small sensitiveness of the hot wire anemometer at higher velocities and the difficulties caused by the unsteadiness of the air current in the channel did not allow a more thorough research concerning this question.

An accurate determination of the form of the curve in the neighbourhood of $y = \delta$ would be of great theoretical importance as it would give data on the shape and the distribution of the vortices in the outer part of the boundary layer.

f. Determination of the constant x_0 in the formula for the thickness δ_k of the turbulent boundary layer.

Making use of the values of δ_k , mentioned at p. 23 (table IX), the parameter x_0 occurring in the formula

$$\delta = 0,371 (x - x_0)^{4/5} \left(\frac{\nu}{V}\right)^{1/5}$$

(compare p. 4 form. (10)) has been calculated. For each calculation the appropriate value of ν was inserted. The results are given in table XI.

Notwithstanding rather large discrepancies shown by some numbers of this table, the following conclusions may be drawn from it:

I. The values of x_0 which ought to be independent of x, show an increase for values of x ranging from 75 cm to 125 cm; probably this may be ascribed to the circumstance that the turbulent state is not yet fully developed. This is followed by a larger and unexplained increase at x = 150 cm. The latter increase is connected with the circumstance (already stated at p. 23) that at x = 150 cm the value of δ seems to

TA	DT	F	VI
IU	DL	1 Li	A1.

V	80	001	800	2	12	00	16001	cm/sec
x	δ_k	x_0	δ_k	x_0	δ_k	x_0	δ_k	$x_0 \mathrm{cm}$
75	0,88	50,1	I,72 mean	16,2	0,985	42,9	1,045	37,7
80	1,11	46,4	_		-	-	-	-
87,5			-		1,15	48,6	1,30	39,0
100	1,52	50,0	2,33	13,8	1,65	39,2	I,4I	45,9
125	1,845	61,5	-		2,00	47,6	1,82	50,5
150	2,16	72,6	3,24	21,0	2,06	68,3	1,91	70,3

V	16	002	20	00	24	00	28	00	3200 0	m/sec
x	8k	x_0	Sk	x_0	δ_k	x_0	δ_k	x_0	δ_k	$x_0 \mathrm{cm}$
75			_		0,99	36,8	-	_	_	-
80		_	_		_		-		-	
87,5			-		1,148	41,3			-	_
100	-		-	_	1,31	45,3		_	-	
125		_	-		1,78	44,9	-	-	-	
150	2,58	33,6	2,05	58,5	1,865	64,1	1,81	65,0	1,56	74,7
										1

be too small. As will be seen from the dates mentioned in table VII, part of the measurements at x = 150 cm have been executed in November (8/9), another part in December (17/20). The differences between the values of x_0 given by both groups are not significant ²¹).

2. There seems to be a very slight decrease of x_0 with increasing values of V, this effect being so small, however, that it can better be neglected, and that it may be stated that x_0 is independent of V (the value of X being the same for all values of V). The mean value of x_0 is for x = 75 to 125 cm about 45 cm and for x = 150 cm about 68 cm.

3. In accordance with what was to be expected x_0 decreases largely when the current is made turbulent on purpose: at $V = 800_2$ cm/sec it is about 17 cm, at $V = 1600_2$ cm/sec (calculated from δ_k at x = 150 cm) 34 cm.

The fact that even here x_0 is not zero, shows that in this case too the "surface friction" experienced by the plate will be smaller than what is calculated on the supposition of an everywhere turbulent boundary layer.

²¹) These values of x are situated in the region of transition; so the definite turbulent state has not yet been reached here.

g. Comparison of the value of *a* to that given by von Kármán's formula for the resistance of a turbulent flow along a smooth wall.

The results of the determinations of a can be compared to those which are deduced from formula (6), p. 3:

$$a = \frac{\tau_0}{\mu} = 0,0225 \frac{V^2}{\nu} \left(\frac{V \,\delta_k}{\nu}\right)^{-1/4}$$

This formula forms the base of VON KáRMáN's calculations on the turbulent boundary layer; it has been deduced from the empirical data on the resistance of the motion of a fluid through a smooth walled tube, and is independent of x and x_0 .

In calculating a_k , the values of δ_k mentioned in table IX have been used; the values of ν are those given at the foot of the tables I to VII. Variations of ν have a far greater influence than inaccuracies of δ_k .

In the following table XII the experimental values of $a (= a_e)$ and those calculated according to the formula above $(= a_k)$ are put together.

	V cm/sec														
x cm	80	001	80	02	12	200	16	000	24	too					
	$a_k \sec^{-1}$	$a_e \sec^{-1}$	𝔐 k sec⁻¹	a _e sec ⁻¹	$\alpha_k \sec^{-1}$	$a_e \sec^{-1}$	<i>a</i> _k sec -1	$a_e \sec^{-1}$	ak sec -1	a _e sec -1					
70	_	_		8200	_					_					
75	11220	6310	10000		22850	16300	38050	25800	77100	59000					
80	10950	8890		7900					_	-					
87,5		-			22200	16000	35050	24250	74000	53000					
100	10160	8600	9400	7600	19800	14800	35100	23000	72500	48500					
125	9660	8350			18850	14100	33250	21250	67500	44000					
150	9310	8480	8510	7000	19800	13600	33200	20500	69200	41000					
								1							

TABLE XII.

The table shows that VON KáRMáN's formula gives a much higher value than is deduced from the experiments. The ratio a_k / a_e is approximately constant for the series:

at	V =	8001	cm/sec		mean	value	of	$a_k \mid a_e$	=	1,15
at	V =	8002	cm/sec	•	33	"	"	$a_k \mid a_e$		1,23

at V = 1200 cm/sec . . . , , , , $a_k / a_e = 1,38$ For the series with V = 1600 cm/sec it shows a slight increase with x (from 1,47 at x = 75 cm to 1,62 at x = 150 cm), and for the series with V = 2400 cm/sec a very marked increase (from 1,3 at x = 75 cm

that the ratio increases with V. The deviation from unity is very great. If instead of a, V is calculated by the inverse formula:

to 1,7 at x = 150 cm). Comparison of the series with each other shows

$$V = 8,7 \ (\nu \ a)^{4/7} \left(\frac{\delta}{\nu}\right)^{1/7}$$

(p. 3, form. (5)), the deviation of course is less; it remains considerable, however.

It is not possible to ascribe this result at once to errors in the method of measurement with hot wire anemometers, or to the application of the correction for the cooling effect by the wall, as with all these series in the laminar part the experimental values of a are higher than those calculated from BLASIUS's formula (comp. f. i. the table given at p. 33 below). In the two parts of the boundary layer the deviations are in different directions, though the state of motion will be nearly the same in both cases, as in the immediate neighbourhood of the wall where $\frac{\partial u}{\partial x}$ has to be determined, the turbulence disappears.

Moreover the comparisons between the integral of the resistance, as calculated from the values of a, and the loss of momentum in the boundary layer, as calculated from the velocity curves, u(y), gives a very satisfactory result (see § 5 below), and by no means does allow the supposition that the values of a_e are 30 $^0/_0$ to 70 $^0/_0$ in error. In order to try if a connection could be found between the values of a_e and δ_k , the values of $\frac{\nu a_e}{V^2}$ and $\frac{V \delta_k}{\nu}$ (both being abstract numbers) have been calculated and have been plotted on a logarithmic paper. The points obtained do not lie on one curve, and show a rather great dispersion. For the series V = 2400 cm/sec approximately the following formula was found:

$$\frac{a V^2}{\nu} = 0,00185 \left(\frac{V \delta}{10^4 \nu}\right)^{-1/2}$$

for the series with V = 1600 cm/sec:

$$\frac{a V^2}{v} = 0,00158 \left(\frac{V\delta}{10^4 v}\right)^{-2/5}$$

for the series with V = 1200 cm/sec:

$$\frac{a V^2}{v} = 0,00163 \left(\frac{V\delta}{10^4 v}\right)^{-1/4}$$

The last formula is proportional to VON KáRMáN's; the ratio of the coefficients being 0.0225/0.0163 = 1.38 as mentioned above.

§ 5. FURTHER PARTICULARS ON THE VALUE OF *a* AND CALCULATION OF THE FRICTIONAL RESISTANCE EXPERIENCED BY THE GLASS PLATE.

a. Frictional resistance calculated from a.

From the experimental values of the velocity gradient at the surface the resistance experienced by the glass plate can be found by integrating the values of a over the length of the plate. TABLE I.

V = 400 cm/sec.

						$x \operatorname{cm}$					
y cm	15	20	25	37,5	50	62,5	75	87,5	100	125	150
0,003	0	3	I,	I	23	I	27	5	4	4	2
0,005	8	4	2	2	16	3	19	3	?	7	9
0,007	5	4	3	3	12	2	16	6	4	12	18
0,010	6	5	5	4	7	4	12	7	7	12	II
0,012	6	7	7	7	7	5	IO	9	6	9	IO
0,015	IO	IO	9	7	9	7	IO	13	8	IO	II
0,017	12	12	13	10	II	8	II	15	9	IO	12
0,020	16	15	17	14	15	II	13	18	13	12	16
0,025	25	23	25	22	21	16	18	27	18	18	22
0.030	35	32	34	20	26	24	24	36	24	23	32
0.040	55	51	53	48	46	30	35	55	40	30	49
0.050	78	73	74	65	64	56	51	71	58	56	66
0.060	100	04	03	81	81	71	73	88	72	71	87
0.070	TIO	110	108			/1	75		12		
0.080	144	120	120	112	108	102	02	112	06	06	TTO
0,000	166	130	130	112	100	102	95	112	30		
0,090	186	149	149	TAT	T 27	124	106	120	122	TTO	т 18
0,100	210	109	109	141	13/	134	120	139	122	119	140
0,110	210	190	190	180		760		760		150	160
0,125	230	212	213	160	177	102	154	109	148	152	109
0,140	204	240	240				-06			-60	
0,150	270	250	240	205	198	184	180	196	173	108	200
0,100	290	205	205								
0,175	315	285	273	240	220	218	210	215	192	202	210
0,200	338	317	303	263	256	240	225	231	219	210	237
0,225	346	335	320	289							
0,250	370	346	339	303	293	283	266	256	244	231	260
0,275	394	370	350	320							
0,300	400	394	372	330	323	310	291	283	270	260	269
0,325		398									
0,350		400	394	350	345	324	310	313	295	286	283
0,400	_	_	400	375	358	340	320	339	310	296	296
0,450				385	375	350	330	346	328	310	310
0,500	400	400	400	394	385	358	342	360	339	325	325
0,550				398	394	370	350	361	360	337	336
0,600				400	398	375	358	365	365	349	340
0,650	· · · ·				400	380	370	370	370	359	344
0,700					400	385	375	372	377	364	354
0.750					400	380	37.5	376	382	370	361
0.800					400	304	380	380	386	376	365
0.850					400	208	208	382	300	380	370
0.000					400	400	100	386	300	387	380
0.050					400	400	400	300	390	300	384
1,000	400	100	100	100	400	400	400	390	393	390	380
1,000	400	400	400	400	400	400	400	393	395	393	302
T 200						400	400	395	400	393	392
1,200						400	400	400	400	400	393
1,300	1 A 1 T						400	400	400	400	395
1,400							400	400	400	400	395
1,500						400	400	400	400	400	390
1,000							-	400	400	. 400	400
1,800								400	400	400	400
2,000						-	-	400	400	400	
$f \operatorname{cm}$	0,014	0,013	0,011	-0,012	0,012	0,014	-0,013	-0,008	-0,012	0,011	0,011
X cm	225	225	225	225	175	175	175	175	225	225	225
ν cm ² /sec.	0,143	0,147	0,148	0,151	0,147	0,148	0,146	0,148	0,151	0,151	0,144
	. D			0.75	0.77						
	3 Dec.	30 Nov.	29 Nov.	28 Nov.	28 Nov.	22 Nov.	2I Nov.	I7 Nov.	I5 Nov.	I3 NOV.	9 NOV. 23

 $V = 800_1 \text{ cm/sec.}$

										x	cm									
y cm	2,5	5	7,5	IO	12,5	15	17,5	20	25	30	40	50	62,5	75	80	85	90	100	125	150
y cm 0,005 0,010 0,015 0,020 0,025 0,030 0,040 0,050 0,070 0,060 0,125 0,150 0,175 0,200 0,175 0,200 0,225 0,250 0,275 0,300 0,350 0,400 0,450 0,500 0,550 0,600 0,550 0,600 0,550 0,600 0,550 0,600 0,550 0,500 0,550 0,600 0,550 0,500 0,5	2,5 70 133 199 263 324 391 508 601 664 705 741 774 789 796 800 800 800 800 800 800 800 80	5 53 104 151 203 247 297 391 483 552 626 662 730 768 788 797 800 800 9<	7.5 48 85 119 158 200 240 322 409 489 548 610 670 740 770 796 800 800 800 800 800 800 800 800 800 10 11 12 13 14 15 14 15 16 170 796 800 800 800 110 111 111 111 111 111 111 111 111 111 111 111 111 1111 1111	I0 4I 74 I08 I48 I82 222 286 355 425 490 550 625 701 735 790 795 800 800 800 800 800 800 90 10 11 12 13 14 15 16 175 790 795 800 800 800 800 800 800 10 11 11 12 13 14 14 15 16 16 17 18 19 110 <t< td=""><td>12,5 34 58 85 120 148 176 238 305 379 435 495 578 660 733 763 780 790 798 800 800 800 800 800 800 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 13 14 14 15 16 17 18 19 110 111 111 112 113</td><td>15 33 56 84 114 143 171 226 287 350 410 452 520 617 696 745 772 782 797 800 800 800 800 800 10 11 112 114 114 114 114 115 116 117 118 119 110 1110 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 11111 11111</td><td>17,5 33 58 85 117 146 172 224 283 356 408 455 526 605 645 731 750 788 800 800 800 800 800 800 800 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 13 14 14 15 16 16 17 18 19 110 111</td><td>20 33 55 81 108 142 169 220 270 342 388 440 514 599 680 732 752 755 795 797 800 800 800 800 800 800 800 80</td><td>25 33 60 83 109 137 164 217 267 322 360 406 484 577 643 694 778 790 795 800 800 800 800 800 90 795 800 800 90 795 800 800 90 91 92 93 94 768 790 795 800 800 90 94 95 800 90 91 92 93 94 95 800 90</td><td>30 32 54 82 101 124 148 195 242 298 338 387 462 547 607 660 700 795 800</td><td>40 30 49 71 96 121 144 194 230 289 330 365 438 510 562 605 660 688 720 792 800 800 800 800 800 800 800 800 800 800 800 800 800 90 91 92 800 800 800 800 800 800 800 800 91 92 930 930 94 95 96 97 97 96 <td>50 29 49 75 99 123 142 182 227 267 318 347 409 483 532 581 632 654 680 701 729 743 754 764 786 795 800</td></td></t<> <td>62,5 26 45 71 95 119 143 193 235 280 314 345 402 468 519 570 600 636 655 683 691 714 739 755 765 775 781 788 798 800<</td> <td>75 37 63 90 127 160 182 233 278 328 339 385 461 490 562 629 615 640 662 680 701 715 739 743 743 748 757 759 778 797 800 </td> <td>80 43 79 117 159 194 225 278 329 374 421 455 488 - 617 658 - 662 - 685 - 685 713 741 755 762 - 787 800 - 800</td> <td>85 49 76 116 151 191 222 288 338 383 408 450 490 502 571 590 620 658 667 690 716 72 760 772 90 800 800</td> <td>90 49 91 132 180 201 244 296 350 395 500 598 645 670 694 720 740 759 780 800 800</td> <td>$\begin{array}{c} 100\\ 48\\ 85\\ 128\\ 172\\ 206\\ 246\\ 303\\ 349\\ 407\\ 413\\ 449\\ 498\\ 531\\ 555\\ 572\\ 594\\ 604\\ 610\\ 621\\ 630\\ 644\\ 657\\ 669\\ 681\\ 699\\ 713\\ 715\\ 727\\ 732\\ 740\\ 747\\ 753\\ 758\\ 763\\ 773\\ 758\\ 763\\ 773\\ 788\\ 763\\ 773\\ 788\\ 763\\ 779\\ 792\\ \end{array}$</td> <td>$\begin{array}{c} 125\\ 45\\ 81\\ 119\\ 160\\ 197\\ 233\\ 295\\ 337\\ 377\\ 408\\ 435\\ 481\\ 508\\ 541\\ 556\\ 584\\ 594\\ 604\\ 611\\ 622\\ 632\\ 640\\ 653\\ 662\\ 670\\ 680\\ 694\\ 705\\ 713\\ 719\\ 726\\ 730\\ 736\\ 743\\ 752\\ 760\\ 769\\ 778\\ 786\\ 786\\ \end{array}$</td> <td>$\begin{array}{c} 150\\ 48\\ 80\\ 124\\ 164\\ 196\\ 232\\ 297\\ 342\\ 385\\ 415\\ 447\\ 490\\ 525\\ 550\\ 568\\ 577\\ 585\\ 595\\ 600\\ 606\\ 613\\ 622\\ 630\\ 641\\ 647\\ 657\\ 670\\ 677\\ 680\\ 692\\ 700\\ 708\\ 713\\ 717\\ 726\\ 732\\ 741\\ 748\\ 760\\ 768\\ \end{array}$</td>	12,5 34 58 85 120 148 176 238 305 379 435 495 578 660 733 763 780 790 798 800 800 800 800 800 800 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 13 14 14 15 16 17 18 19 110 111 111 112 113	15 33 56 84 114 143 171 226 287 350 410 452 520 617 696 745 772 782 797 800 800 800 800 800 10 11 112 114 114 114 114 115 116 117 118 119 110 1110 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 11111 11111	17,5 33 58 85 117 146 172 224 283 356 408 455 526 605 645 731 750 788 800 800 800 800 800 800 800 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 13 14 14 15 16 16 17 18 19 110 111	20 33 55 81 108 142 169 220 270 342 388 440 514 599 680 732 752 755 795 797 800 800 800 800 800 800 800 80	25 33 60 83 109 137 164 217 267 322 360 406 484 577 643 694 778 790 795 800 800 800 800 800 90 795 800 800 90 795 800 800 90 91 92 93 94 768 790 795 800 800 90 94 95 800 90 91 92 93 94 95 800 90	30 32 54 82 101 124 148 195 242 298 338 387 462 547 607 660 700 795 800	40 30 49 71 96 121 144 194 230 289 330 365 438 510 562 605 660 688 720 792 800 800 800 800 800 800 800 800 800 800 800 800 800 90 91 92 800 800 800 800 800 800 800 800 91 92 930 930 94 95 96 97 97 96 <td>50 29 49 75 99 123 142 182 227 267 318 347 409 483 532 581 632 654 680 701 729 743 754 764 786 795 800</td>	50 29 49 75 99 123 142 182 227 267 318 347 409 483 532 581 632 654 680 701 729 743 754 764 786 795 800	62,5 26 45 71 95 119 143 193 235 280 314 345 402 468 519 570 600 636 655 683 691 714 739 755 765 775 781 788 798 800<	75 37 63 90 127 160 182 233 278 328 339 385 461 490 562 629 615 640 662 680 701 715 739 743 743 748 757 759 778 797 800	80 43 79 117 159 194 225 278 329 374 421 455 488 - 617 658 - 662 - 685 - 685 713 741 755 762 - 787 800 - 800	85 49 76 116 151 191 222 288 338 383 408 450 490 502 571 590 620 658 667 690 716 72 760 772 90 800 800	90 49 91 132 180 201 244 296 350 395 500 598 645 670 694 720 740 759 780 800 800	$\begin{array}{c} 100\\ 48\\ 85\\ 128\\ 172\\ 206\\ 246\\ 303\\ 349\\ 407\\ 413\\ 449\\ 498\\ 531\\ 555\\ 572\\ 594\\ 604\\ 610\\ 621\\ 630\\ 644\\ 657\\ 669\\ 681\\ 699\\ 713\\ 715\\ 727\\ 732\\ 740\\ 747\\ 753\\ 758\\ 763\\ 773\\ 758\\ 763\\ 773\\ 788\\ 763\\ 773\\ 788\\ 763\\ 779\\ 792\\ \end{array}$	$\begin{array}{c} 125\\ 45\\ 81\\ 119\\ 160\\ 197\\ 233\\ 295\\ 337\\ 377\\ 408\\ 435\\ 481\\ 508\\ 541\\ 556\\ 584\\ 594\\ 604\\ 611\\ 622\\ 632\\ 640\\ 653\\ 662\\ 670\\ 680\\ 694\\ 705\\ 713\\ 719\\ 726\\ 730\\ 736\\ 743\\ 752\\ 760\\ 769\\ 778\\ 786\\ 786\\ \end{array}$	$\begin{array}{c} 150\\ 48\\ 80\\ 124\\ 164\\ 196\\ 232\\ 297\\ 342\\ 385\\ 415\\ 447\\ 490\\ 525\\ 550\\ 568\\ 577\\ 585\\ 595\\ 600\\ 606\\ 613\\ 622\\ 630\\ 641\\ 647\\ 657\\ 670\\ 677\\ 680\\ 692\\ 700\\ 708\\ 713\\ 717\\ 726\\ 732\\ 741\\ 748\\ 760\\ 768\\ \end{array}$
1,700 1,800 1,900 2,000 2,200 2,500																		794 798 800 800 800 800	791 796 799 800 800 800	771 778 784 789 800 800
$f \operatorname{cm}_{\nu \operatorname{cm}^2/\operatorname{sec}}$.	0 0,151	0 0,151	0 0,153	0 0,151	0 0,152	0 0,149	0 0,152	0 0,149	0 0,148	+ 0,001 0,148	0 0,147	+ 0,001 0,153	— 0,001 0,150	0 0,155	0 0,150	0 0,154	+ 0,002 0,151	+ 0,001 0,149	+ 0,001 0,150	+ 0,001 0,149

TABLE II.

May to Sept. 1923. X = 100 to 200 cm.

 $V = 800_2 \text{ cm/sec.}$ (With screen).

TA	RI	F	TIT	
TTT	DL		TTT.	

	x cm													
y cm	2,5	5	IO	15	20	25	30	40	50	бо	70	80	100	150
0,005 0,010 0,012	162 243 286	68 128 156	19 51 65	40 68 84	34 78 98	42 81 82	39 64 85	33 58 79	33 61 79	29 55 70	28 52 66	29 58 74	20 40 57	25 39
0,015 0,017 0,020 0,025	320 346 395 455	218 256 320	97 121 155 205	132 155 198	142 173 220	127 131 178 227	132 166 209	126 155 196	108 124 151 191	114 140 172	110 140 174	116 140 170	96 119 156	73 90 130
0,030 0,040 0,050 0,060	515 597 712	367 470 561 620	255 331 406 475	238 312 369 430	255 331 390 450	273 342 406 456	247 320 375 427	239 306 355 415	230 293 349 385	214 272 326 359	212 272 323 355	207 270 317 349	188 251 310	169 222 280
0,075 0,100 0,125 0,150	747 788 812 840		555 668 718 742	483 581 641 600	514 578 	518 581 625 660	441 565 	464 530 —	436 489 	416 480 	400 460 518	396 458 518	390 445 	361 435 490
0,175 0,200 0,250	840 848 848 848	809 823	761 780 800	726 745 780		689 705 741	680 700	620 650 680	606 630	565 588	555 571 588	535 555	540 555 568	517 535
0,350 0,400 0,450	848 848 842		800 800 800	800 800	790 800 800	787 795 800	752 768 785	691 709 730	670 680 699	621 640 652	500 606 621 632	580 580 600 610	580 586 591	555 569 571
0,550 0,600 0,650	839 832 832	820 — 809 —	800 	800 	800 — —	800 800 800	790 800 800	740 752 768 780	711 730 740 752	670 680 699 710	045 652 670 680	632 645 652	611 621 630	595 605 610
0,700 0,750 0,800 0,850	809 800 	802 — —						785 790 800 800	768 777 781 785	721 730 740 752	691 701 715 724	662 679 691 701	640 650 659 668	617 625 636
0,900 0,950 1,000 1,100					800		800	800 800	790 800	760 777 785 790	735 745 758 777	715 730 740 751	680 691 701 715	650 — 666 679
1,200 1,300 1,400 1,500										800 800 800 800	785 790 800 800	777 785 790 800	730 748 768 780	688 699 710 715
1,600 1,700 1,800 2,000							Ē					800 — 800	785 790 800 800	727 735 740 760
2,100 2,200 2,300 2,400				-										773 779 780 785
2,500 2,600 2,800												-	-	790 800 800
$f \operatorname{cm} X \operatorname{cm} \nu \operatorname{cm}^2/\operatorname{sec}.$	+ 0,007 225 0,145 10 Dec.	0 225 0,144 10 Dec.	0,005 225 0,148 10 Dec.	0,002 225 0,144 10 Dec. 11 Dec.	— 0,002 225 0,148 8 Dec.	— 0,003 200 0,146 12 Oct. 7 Dec.	— 0,004 200 0,146 7 Dec.	0,004 200 0,146 7 Dec.	0,003 200 0,147 6, 12, 13 Dec.	— 0,004 200 0,146 11 Dec.	— 0,003 200 0,146 11 Dec.	— 0,003 175 0,146 11 Dec.	— 0,005 175 0,144 12 Dec.	— 0,006 200 0,147 15, 17 Dec. '23.

V = 1200 cm/sec.

TABLE IV.

								$x \mathrm{cm}$							
y cm	2,5	5	7,5	IO	15	20	25	37,5	50	62,5	75	87,5	IOO	125	150
0.002	бт		21	12	TO	TO	ΤT	TO	22	46	67	8 T	57	6	12
0,003	70	55	26	0	22	25	22	24	55	40	8T	120	J/	21	20
0,005	19	03	30 55	28	52	25	25	40	52 71	55	100	150	44 60	21 E 4	=8
0,007	202	95	55	67	52 87	60	35 61	66	08	100	100	215	114	54 78	50 85
0,010	262	192	128	05	TTO	80	85	87	125	109	144	213	127	103	106
0,012	203	246	182	95 144	144	126	118	112	125	101	225	202	T88	142	152
0,017	330	270	216	174	164	144	130	125	172	216	265	227	212	180	100
0,020	170	330	260	220	100	178	174	162	225	266	314	365	257	224	230
0.025	578	414	335	287	242	225	222	208	283	320	372	430	330	205	300
0.030	688	509	417	358	205	283	272	250	332	372	441	400	398	359	372
0.040	860	668	547	485	395	385	361	339	430	485	542	576	503	465	484
0.050	975	804	692	595	512	470	459	434	509	588	639	650	580	560	561
0,060	1040	928	809	738	611	576	555	519	590	658	678	680	635	ĞII	636
0,070	1082	1015	900	830	720	669	631	_		_					_
0,080	IIIO	1078	1000	910	783	730	718	647	690	740	770	760	722	692	705
0,090	1158	1118	1060	960	870	810	735	_	-						-
0,100	1170	1160	IIOO	1040	939	870	796	770	798	815	810	800	770	740	750
0,110	1178	1178	1138	1098	988	950	882								
0,125	1192	1192	1180	II22	1058	1010	980	890	880	882	872	838	825	785	790
0,150	1197	1197	1197	1190	1122	1122	1072	958	950	921	890	881	845	815	825
0,160	1197	1197	1197	1197	II42	II42	1102								
0,175	1197	1197	1197	1197	1162	1152	1125	1020	1010	950	912	900	865	839	860
0,200	1200	1200	1200	1200	1200	1195	1168	1070	1042	970	945	940	895	850	888
0,225					_	1200	1195	1102							
0,250				_	1200		1200	II42	1080	1025	980	961	915	880	900
0,300								1175	IIIO	1055	1015	1000	935	888	920
0,350								1195	1130	1080	1040	1020	955	910	939
0,400								1200	1142	1100	1000	1038	975	930	950
0,450				_	_			1200	1160	1115	1070	1045	995	950	961
0,500								1200	1170	1130	1082	1070	1010	961	980
0,550			-					1200	1180	1142	IIOO	1080	1020	980	992
0,600				_				1200	1185	1100	IIIO	1090	1035	1000	1005
0,050									1195	1170	1125	1105	1045	1010	1020
0,700	-								1200	1100	1140	1122	1000	1020	1035
0,750									1200	1105	1152	1130	10/0	1020	1045
0,800									1200	1195	1102	1140	1005	1035	1005
0,850									1200	1200	1100	1145	1090	1045	1080
0,900									1200	1200	1200	1150	IIIO	10/0	
1,950								1200	1200	1200	1200	1150	1120	1080	1000
1,000											1200	1185	1150	1000	1125
1,200											1200	1105	1165	1120	1140
1,200											1200	1200	1170	1140	1145
1.400							_	_			1200	1200	1175	1150	1160
1,500											1200	1200	1185	1162	1180
1,600												1200	1200	1185	1195
1.800												1200	1200	1200	1200
2,000	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200
f cm			- 0,003	0,005		- 0,003	0,004	- 0,003	- 0,001	- 0,002	0,001	+ 0,003		0,004	- 0,003
$X \operatorname{cm}$	225	225	225	225	225	225	225	225	175	175	175	175	225	225	225
$\nu \text{ cm}^2/\text{sec.}$	0,148	0,150	0,152	0,149	0,148	0,144	0,148	0,151	0,147	0,146	0,151	0,149	0,153	0,154	0,142
	6 Dec.	5 Dec.	5 Dec.	4 Dec.	I Dec.	30 Nov.	29 Nov.	28 Nov.	26 Nov.	23 Nov.	21 Nov.	16 Nov.	14 Nov.	9 Nov.	8 Nov. '23.

V = 1600 cm/sec.

TABLE V.

						X	em					
y cm	IO	15	20	25	37,5	50	62,5	75	87,5	100	125	150
0.003	23	25	25	20	32	100	70	65	121	94	30	20
0,005	24	-5	40	14	54	126	124	07	102	78	66	63
0.007	64	87	83	76	80	166	173	130	252	116	95	103
0,007	114	144	132	126	140	247	266	106	324	106	142	120
0,010	176	144	152	160	140	280	224	266	360	245	178	178
0,012	250	221	210	214	205	240	324	250	309	224	250	256
0,015	250	251	219	214	205	100	160	354	445	275	205	206
0,017	203	205	250	240	250	468	520	390	400 F 4 2	3/3	305	380
0,020	340	322	300	292	310	400	520	400	543	435	300	309
0,025	400	390	305	301	304	501	010	5/2	025	494	445	520
0,030	558	485	449	450	430	050	710	000	701	012	571	570
0,040	750	625	000	582	592	770	810	798	810	753	702	709
0,050	911	790	736	730	730	850	895	870	881	838	785	800
0,060	1050	931	872	850	811	950	960	930	928	918	858	870
0,070	1200	1050	992	958								
0,080	1300	II4I	1078	1058	1015	1072	1072	1020	1020	981	950	942
0,090	1398	1250	1160	II40								
0,100	1440	1320	1245	1218	II42	1142	1130	1083	1075	1050	1005	1025
0,110	1449	1400	1325	1270								
0,125	1550	1460	1435	1365	1280	1225	1192	1135	II22	IIIO	1055	1032
0,140	1595	1505	1470	1445								
0,150	1597	1541	1515	1485	1380	1282	1245	1170	1158	1140	IIOO	1090
0,160	1597	1592	1530	1500								
0,175	1597	1597	1570	1525	1450	1320	1262	I200	1205	1160	1130	1138
0.100		1600	1595	-								_
0.200	1600	1600	1600	1570	1505	1375	1200	1232	1220	1220	1145	1160
0.225				1505	1535		_					
0,250		1600	1600	1600	1570	1438	1322	T 300	1255	1250	1179	1179
0,290					1500	1455	1375	1340	1200	1200	1205	1210
0,300					1590	1408	1400	1340	1315	1310	1220	1225
0,350					1595	1490	1450	1300	1315	1310	1250	1270
0,400					1000	1505	1450	1400	1330	1325	1270	1200
0,450					1000	1545	1400	1440	1300	1350	12/0	1290
0,500					1000	1545	1505	1400	14.10	1305	1295	1300
0,550					1000	1500	1525	1460	1425	1390	1310	1325
0,600					1000	15/0	1545	1490	1445	1420	1335	1350
0,650						1580	1570	1500	1400	1430	1355	1305
0,700						1590	1590	1520	1475	1445	1300	1380
0,750						1595	1595	1525	1495	1460	1420	1410
0,800						1600	1600	1540	1505	1480	1430	1420
0,850						1600	1600	1555	1515	1492	1445	1440
0,900						1600	1600	1565	1525	1507	1452	1445
0,950						1600	1600	1575	1535	1525	1460	1460
1,000						1600	1600	1590	1545	1545	1485	1475
1,100								1600	1560	1560	1500	1505
I,200								1600	1580	1580	1515	1515
1,300				An-ready				1600	1595	1590	1535	1525
1.400								1600	1600	1600	1550	1545
1.500								1600	1600	1600	1580	1570
1.600									1600	1600	1600	1595
1.800								_	1600	1600	1600	1600
2,000									1600	1600	1600	1600
						1						1
$f \operatorname{cm}$	0,005	0,002	0,002	- 0,002	0,002	0	0	0,002	+ 0,003	0,001	0,003	0,002
$X \mathrm{cm}$	225	225	225	225	225	175	175	175	175	225	225	225
ν cm ² /sec.	0,152	0,150	0,150	0,151	0,152	0,147	0,147	0,148	0,152	0,148	0,146	0,144
	4 Dec.	I Dec.	30 Nov.	29 Nov.	28 Nov.	24 Nov.	23 Nov.	22 Nov.	16 Nov.	15 Nov.	12 Nov.	8 Nov. '23.
		• • • • • • • • • • • • • • • • • • •				a state of the second se	1 N N N N N N N N N N N N N N N N N N N	I Star Star Star	the second s			1.000

V = 2400 cm/sec.

TA	DT	F	X7T
IM	DL	4 Ca	VL.

						x	cm					
y cm	IO	15	20	25	37,5	50	62,5	75	87,5	IOO	125	150
0.003	53	06	06	81	172	158	106	137	400	160	130	64
0.005	100	166	158	134	260	256	221	225	530	184	174	123
0,007	168	230	225	108	262	285	126	221	650	282	224	200
0,007	270	250	225	217	303	505	430	334	760	466	254	200
0,010	2/0	350	320	31/	490	500	000	490	801	400	304	108
0,012	301	414	393	300	592	090	20	012	021	550	413	400
0,015	493	501	495	400	-96	025	041	29	909	062	500	554
0,017	500	5/1	542	545	760	909	912	000	970	730	070	045
0,020	000	008	051	110	809	1000	988	912	1058	830	702	750
0,025	008	802	780	785	970	1142	1102	1040	1105	900	910	912
0,030	1018	950	929	920	1138	1280	1235	1102	1278	1110	1040	1040
0,040	1310	1242	1170	1150	1305	1420	1390	1320	1362	1245	1220	1219
0,050	1640	1480	1385	1360	1470	1525	1480	1420	1450	1380	1310	1338
0,060	1840	1700	1625	1562	1600 .	1598	1570	1502	1502	1442	1398	1410
0,070	2015	1880	1795	1700		·						
0,080	2135	2015	1922	1820	1780	1725	1675	1585	1600	1535	1470	1538
0,090	2250	2150	2050	1962								
0,100	2295	2240	2145	2085	1960	1770	1740	1670	1675	1630	1570	1580
0.110	2345	2280	2195	2150								
0.125	2375	2335	2200	2250	2100	1870	1810	1750	1745	1605	1670	1640
0.140	2300	2380	2345	2330		1070		-75-	-7-5			
0,140	2305	2305	2265	2350	216=	1020	1875	т800	1705	1780	1715	1680
0,150	-393	2395	2305	2330	2105	1920	10/5	1000	1795	1/00	1/15	
0,100	2395	2395	2305	23/5		1080	1020	1828	1840	TROP	THE	T745
0,1/5	2395	2395	2395	2305	2245	1980	1920	1030	1040	1795	1/55	1/45
0,190	2400	2400	2400					- 00 -	-00-	-0	-	1800
0,200	2400	2400	2400	2400	2310	2025	2000	1885	1880	1840	1795	1800
0,250		2400	2400	2400	2345	2110	2055	1920	1905	1880	1840	1040
0,300					2375	2165	2110	2000	1965	1920	1885	1880
0,350				- ,	2390	2215	2150	2045	2005	1960	1925	1900
0,400					2400	2250	2200	2100	2055	1990	1965	1940
0,450					2400	2285	2242	2150	2100	2040	1985	1960
0,500					2400	2310	2260	2200	2140	2055	2010	1990
0,550	· · · · ·					2345	2200	2250	2155	2090	2050	2005
0.600			· · · ·			2350	2325	2280	2170	2100	2060	2040
0.650						2365	2345	2300	2200	2150	2070	2055
0.700						2300	2365	2320	2240	2165	2085	2070
0,750						2390	2300	2340	2260	2100	2110	2100
0,950						2400	2390	2340	2200	2210	2120	2110
0,800						2400	2400	2355	2290	2210	2130	2140
0,050						2400	2400	23/0	2310	2200	2140	2155
0,900						2400	2400	2360	2340	2200	21/0	2170
0,950						2400		2390	2355	2300	2160	21/0
1,000						2400	2400	2400	2370	2320	2220	2190
1,100								2400	2390	2350	2240	2210
1,200								2400	2395	2390	2280	2250
1,300								2400	2400	2395	2310	2300
1,400								2400	2400	2400	2330	2355
1,500								2400	2400	2400	2400	2390
1,600								2400	2400	2400	2400	2400
1,800								2400	2400	2400	2400	2400
2,000			-				· <u> </u>	2400	2400	2400	- 2400	2400
f cm		0	0		+ 0.002	0	0.	0.001	+ 0.005	0	- 0.002	
X cm	225	225	225	225	225	175	175	175	175	225	225	225
v cm ² /sec	0.152	0.150	0.140	OTET	0.152	0.150	OTET	0.150	OTET	0.140	0.148	0.142
	-,-,-	5,2,50	0,149	5,2,51	5,1,52	5,150		0,100	5,151	5,-49	0,140	0.17
	4 Dec.	I Dec.	30 Nov.	29 Nov.	28 Nov.	24 Nov.	23 Nov.	22 Nov.	16 Nov.	14 Nov.	13 Nov.	8 Nov. '23

x = 150 cm

TABLE VII.

X cm V cm/sec.	225 400	150	200	225	225	225	200	150	225	150	150
V cm/sec.	400	600	-			1			the second s	the second se	1
41.072		000	8001	8002	I200	16001	16002	2000	2400	2800	3200
y cm			-	÷							
0,005	9	7	48		29	63	IIO	375	123	561	760
0.010	II	23	80	25	85	120	250	400	300	841	1045
0.015	TT	-5	124	58	152	256	255	550	500	1045	1280
0,020	16	60	164	00	230	280	355	688	552	1045	1200
0,020	10	09	104	120	239	509	404	-8-	/50	1100	1420
0,025	22	93	190	150	309	520	549	105	912	1300	1540
0,030	32	121	232	109	3/2	5/0	011	870	1040	1400	1011
0,040	49	100	297	222	484	709	712	980	1219	1530	1700
0,050	66	201	342	280	501	800	820	1075	1338	1011	1908
0,060	87	244	385		636	870			1410		
0,075	/	289		361			930	1162		1761	2075
0,100	148	329	490	435	750	1025	1002	1282	1580	1879	2180
0,125	169	370	525		790	1032		1340	1640	1952	2250
0.150	200	393	550	490	825	1000	1060	1362	1680	2005	2315
0.175	216	405	568		860	1138		1308	1745	2050	2365
0,200	227	416	577	517	888	1160	1008	1390	1800	2035	2400
0,200	237	410	577	5-7		1100	1090	1410	1000	2005	2400
0,225	260	425	505	525	000	TITO	TTOF	1432	1840	2105	2440
0,250	200	430	595	222	900	11/9	1125	1400	1040	2140	2490
0,275		437	000					1470		2151	2530
0,300	269	443	000	550	920	1210	II42	1485	1880	2155	2550
0,350	283	453	613	555	939	1225	1162	1520	1900	2165	2598
0,400	296	465	622	569	950	1270	1184	1542	1940	2200	2655
0,450	310	471	630	571	961	1290	1210	1560	1960	2245	2698
0,500	325	476	641	580	980	1300	1220	1580	1990	2275	2748
0.550	336	480	647	595	992	1325	1238	1600	2005	2300	2770
0.600	340	400	657	605	1005	1350	1258	1662	2040	2315	2798
0.650	344	500	670	610	1020	1365	1265	1642	2055	2318	2825
0,00	254	FIO	677	617	1035	1280	1288	1665	2070	2200	2851
0,700	261	510	680	625	1045	1300	1200	1682	2100	2399	2870
0,750	301	520	602	625	1045	1410	1300	1002	2100	2440	2070
0,000	305	529	092	030	1005	1420	1322	1700	2110	2460	2900
0,850	370	534	700	6		1440	1340	1740	2140	2500	2920
0,900	380	541	708	050	1080	1445	1352	1762	2155	2545	2950
0,950	384	550	713			1460	1372	1790	2170	2570	2960
1,000	389	559	717	666	1090	1475	1382	1820	2190	2598	3000
1,100	392	564	726	679	1125	1505	1405	1840	2210	2655	3048
I,200	395	573	732	688	1140	1515	1440	1880	2250	2698	3055
1.300	395	581	741	699	1145	1525	1460	1000	2300	2725	3110
T.400	305	501	748	710	1160	1545	1480	1015	2355	2750	3152
1,500	308	600	760	715	1180	1570	1408	1020	2300	2784	3185
1,500	390	600	768	727	1105	IFOF	1490	1920	2390	2704	3200
1,000	400	000	700	725	1195	1595	1520	1945	2400	2790	3200
1,700		6	7/1	/35	1000	-600	1540	1900		2000	3200
1,800	400	000	/70	/40	1200	1000	1558	1995	2400	2800	3200
1,900			784				1505				
2,000		600	789	700	1200	1000	1572	2000	2400	2800	3200
2,200			800	779			1585				
2,500			800	790			1600	2000		2800	3200
2,600				800					_	_	
f cm	0,011	0,008	+ 0,001	0,006	- 0,003	0,002	0,002	+ 0,002		+ 0,005	?
ν cm ² /sec.	0,144	0,147	0,149	0,147	0,142	0,144	0,148	0,148	0,143	0,150	0,150
		D	TI		0.37	0.37	-	-	0.37		
	9 Nov.	20 Dec.	10 July 10 Sept.	15 Dec. 17 Dec.	8 Nov.	8 Nov.	20 Dec.	19 Dec.	8 Nov.	19 Dec.	19 Dec. '23

The resistance, with friction at one side is:

$$W_a = b \mu \int_{0}^{t} a \, dx = b \rho \, w_a \, \dots \, \dots \, \dots \, \dots \, (14)$$

The resistance coefficient that follows from formula (14) is:

$$c_{fa} = \frac{W_a}{\frac{1}{2} \rho \ V^2 \times surface} = \frac{\nu \int a \, dx}{\frac{1}{2} \ V^2} \quad . \quad . \quad . \quad (15)$$

In the determination of $\int_{a}^{b} a \, dx$ the difficulty was encountered that in general no value of a was determined at smaller values of x than 5 to 15 cm.

Supposing the proportionality of a with $x^{-1/2}$ (according to BLASIUS) in the region x = 0 to x = 5 or 15 cm, the resistance in this part could be found from:

Here $a_{e(x)}$ is the experimental value of a taken at that value of x that is taken as the upper limit of the integral. Now taking $a_{x(B)}$ to be the value of a according to the formula of BLASIUS at this value of x, the following numbers are found:

V	400	8001	8002	I 200	1600	2400 cm/sec
x	15	5	5	5	10	10 cm
$a_{x(e)}$	2190	10400	12600	18800	24500	38200 cm/sec/cm
$a_{x(B)}$	1780	8660	8660	16000	17350	31900 cm/sec/cm

If the average of $a_{e(x)}$ and $a_{B(x)}$ is taken as basis for the determination of the resistance between x = 0 and x = 5 to 15 cm (the formula of BLASIUS gives apparently too low a value for the integral, whereas that calculated from $a_{e(x)}$ gives too high a value), the results given in table XIII are obtained, wherein the possible allowance made by making use of this average is given at the foot of the columns. From the values x = 150of $\nu \int a dx$ it appears that the uncertainty is maximally $2,5^{0}/_{0}$.

x = 0

The value of the resistance for both sides of the glass plate together and for the resistance coefficient are (with l = 150 cm).

V	400	8001	8002	I 200	1600	2400 cm/sec
R W	405000 4,1	800000 16,4	822000 19,9	1205000 31,6	1610000 51,3	2400000 108,9 gr
Cfa	0,0033	0,0034	0,0041	0,0029	0,0027	0,0025

T	٩ ٨	T	T
1	P	$r_{\rm P}$	L

					V cm	n/sec.
<i>x</i> cm	49	00	80	001	80	02
	v s ^ø adx	$w_{i(x)}$	$\nu \int_{0}^{x} a dx$	$w_{i(x)}$	v f ^ø adx	Wi(x)
5			14,3	13,0	15,5	
7,5			17,8	14,5		
IO			20,6	15,2	28,3	16,6
15	8,8	6,6	25,6	20,5	34,4	22,7
20	10,4	7,4	29,8	21,6	41,6	26,8
25	11,8	7,9	34,0	24,8	48,1	27,8
30			37,8	28,6	55,6	35,2
37,5	15,2	II,I			-	
40	_		45,0	33,1	70,1	53,4
50	18,3	12,2	52,4	35,6	83,9	65,3
60			59,6	47,5	96,6	86,4
62,5	21,3	15,6	_			
70					109	IOI
75	24,1	18,1	71,9	55,9	_	
87,5	27,0	18,9			-	
100	29,9	19,1	IOI	91,2	143	139
125	35,3	20,8	133	115	_	
150	41,1	23,5	164	135	197	190
	$\pm 0,9$		± 1,3		± 2,9	
¥ 3 1 1 1	.1000	.1000	.1000	.1000	.1000	.1000

III.

I	200	1600	р., с	24	łoo
v fadx	$\mathcal{W}_{i(x)}$	$\nu \int_{0}^{\infty} a dx$	${oldsymbol{\mathcal W}}_{i\ (x)}$	$\nu \int_{0}^{\infty} a dx$	$\begin{array}{c} \boldsymbol{w}_{i(x)} \\ \mathrm{cm}^{3}/\mathrm{sec}^{2} \end{array}$
26,0 32,0 38,1 47,5 55,6 63,1 81,4 101 126 154 184 214 267 318	22,8 25,5 29,5 36,8 38,9 44,2 57,0 81,5 108 138 163 221 273 250		 47,5 58,8 66,0 71,1 88,8 158 198 253 336 338 433 446		 91,4 105 119 125 183 366 423 531 636 745 943 909
± 2,1 .1000	.1000	± 10,5 .1000	.1000	± 9,3 .1000	.1000

The results could not be verified by direct measurements of the resistance, but the values of c_{fa} may be compared to the values given by various experimenters in the case of the flow over straight, smooth, surfaces. These values are represented in figure 9.

It is shown in this figure that the values of c_{fa} described here are rather low at high values of the velocity; at the values of the velocity of 400 and 800 cm/sec the values determined by us range between those given by the other experimenters.

For the sake of completeness the results obtained with $V = 800_1$ cm/sec with various degrees of turbulence in the outer current are mentioned in the following table ("Mededeeling 5" p. 33):

b. Application of the theorem of momenta.

The resistance experienced by the glass plate may also be determined from the loss of momentum in the boundary layer at the end of the glass plate. The resistance deduced from this loss of momentum will be:

$$W_{i} = b \rho \left[\int_{0}^{a} u (V - u) \, dy \right]_{x = l} = b \rho w_{i} \, . \, . \, . \, (17)$$

If the turbulent state of motion in the boundary layer has been developed sufficiently, then, according to VON KáRMÁN:

$$w_i = \frac{7}{72} V^2 \delta_l \ldots \ldots \ldots \ldots \ldots (18)$$

Taking into account the linear progress of the u(y) curve in the laminar part of the boundary layer a somewhat greater value will be found; according to a calculation given in § 6 the loss of momentum will be then:

$$w_i = \frac{7}{72} V^2 \delta_l + \frac{5}{72} \frac{V^3}{a} \cdot \ldots \cdot \ldots \cdot (25)$$

In the wind channel, however, V depends on x; the increase of the thickness of the boundary layers along the walls of the channel and along the glass plate as x increases will give rise to an increasing value of V.

The loss of momentum, determined from the velocity distribution at the end of the plate is influenced by this in two ways:

1⁰. As V has a smaller value at the more advanced points, a will have a smaller value than is given in table VIII.

 2° . The increasing value of V along the axis of the tunnel causes a pressure drop that has the consequence that the pressure forces in the boundary layer have a resultant in the direction of motion. This pressure gradient reduces the resistance that is experienced by the flow in the boundary layer.

ä

Fig. 9. Logarithmic diagram of the resistance coefficient as determined by various experimenters as a function of R,

Both influences together will have the consequence that w_i will be smaller then w_a . In table XIII the value of w_i is summarized next to the value of $w_a : w_a$ has been determined from $v \int_{0}^{x} a \, dx$ in the supposition that V is not affected by the change in the value of x and w_i is calculated by integrating numerically the values of u (V - u) between y = 0

and $y = \delta$. The values of u used for this are taken from the tables I to VI. Inaccuracies occurring in the values of u will cause irregularities in the behaviour of $w_i = \int_{0}^{\delta} u(V-u) dy$ when considering this value as a

function of x. The values of w_a and w_i have been represented graphically in Fig. 10, for the series with $V = 800_1$, 1200, 1600 and 2400 cm/sec. The points for V = 1200 cm/sec show rather large discrepancies at x = 100, 125 and 150 cm; all four series show that the value of w_i at x = 150 cm is too low.

In every case, however, the mean curve drawn through the w_i points goes nearly parallel to the w_a curve; the former curve lying always below the latter one, in accordance with what has been said above.

In the following table the values of w_i at x = 150 cm are given as originally calculated by numerical integration from the u(y) curve, as deduced from formula (25), and as derived from the smooth curves in figure 10:

V cm/sec	w_i	$\frac{7}{72} V^2 \delta + \frac{5}{72} \frac{V^3}{a}$	From Fig. 10
8001	135.10 ³	138.103	144.103
1200	250	298	296
1600	446	490	503
2400	999	1069	1055

As the third column comes nearer to the fourth than to the second, the smoothing of the u(y) curve by assuming the 1/7 power law seems to give the same results as the smoothing of the $w_i(x)$ curve in figure 10.

The differences between the smoothed values of w_i and the values of w_a at x = 150 cm amount to about 4 to $14^{0/0}$.

In order to account for these differences according to the views exposed before, it is advantageous to bring the complete equation of momentum ²²) in the following form:

$$\left[\int_{0}^{\delta} u \left(V-u\right) dy\right]_{x=l} = \nu \int_{0}^{l} a_{1} dx + \alpha l \quad . \quad . \quad (19)$$

Here α is the mean of

$$\frac{dV}{dx}\int_{0}^{\delta}(V-u)\,dy\,.$$

This equation clearly shows the relation between the correction that has to be applied to the calculated values of the loss of momentum given in table XIII, and the velocity gradient along the axis of the tunnel. On the right hand side of formula (19) that value of a has to be

22) TH. VON Kármán, Zs. f. angew. Math. u. Mech. I 1921, p. 235.

introduced that belongs to the smaller value of the velocity $V_{(x)}$ existing at the point x, so

$$a_1 = a_{table} \cdot \frac{V_{(x)}}{V_{(l)}}.$$

The differences between w_a and w_i may be estimated as follows: In the laminar part of the boundary layer is:

$$\int_{0}^{\delta} (V-u) \, dy \cong \frac{1}{3} \, V \, \delta_x$$

in the turbulent part:

$$\int_{0}^{\delta} (V-u) \, dy = \frac{1}{8} \, V \, \delta_x.$$

Taking as a mean value $1/10 V \delta_{(x=l)}$ and putting

$$l\frac{dV}{dx} = V_{x=150} - V_{x=0} = \beta V,$$

then the value of αl becomes:

$$\alpha l = \frac{1}{10} \beta V^2 \delta_l \cong \beta w_i.$$

On the other hand the correction to be applied to $\nu \int a \, dx$ is to be estimated at $\frac{1}{2} \beta w_a$.

From this follows that:

or

$$(I - \frac{1}{2}\beta) w_a = (I + \beta) w_i$$

$$\frac{w_a}{w_i} \cong \mathbf{I} + \mathbf{I}, \mathbf{5} \ \beta \ \ldots \ \ldots \ \ldots \ (20)$$

To explain the differences between the corrected values of w_i and w_a a value of β from 3 to 10% had to be accepted.

In order to prove that this is really the case for the experimental arrangement used, a separate experiment was carried out in the following way:

The hot wire anemometer was withdrawn from the tunnel and a removable Pitot tube was installed instead; for the rest the experimental arrangement was not altered: the position of the bars, fixing the plate, was here almost the same as in the experiments with the hot wire anemometer at x = 150 cm.

A fixed Pitot tube was mounted in the front part of the tunnel (also existing in the experiments with the hot wire anemometer); call this one A ($X_A = 70 \text{ cm}, y_A = -14 \text{ cm}, z_A = +1 \text{ cm}$), the removable Pitot tube B ($y_B = 12 \text{ cm}, z_B = 0$). By the aid of two equal manometers the differences in the static and dynamic pressures of these Pitot tubes were determined simultaneously at various values of x (V being 2400 and 1200 cm/sec). Calling the static pressure of $A: p_A'$, the dynamic pressure p_A ; the static pressure of $B: p_B'$ and the dynamic pressure p_B , then the differences of the values of $\frac{1}{2}\rho V^2$ at both places X_A and x_B can be found from the differences of the readings:

$$(1/_{2} \rho V^{2})_{B} - (1/_{2} \rho V^{2})_{A} = (p_{A} - p_{A}') - (p_{B} - p_{B}')$$
 . (21)

During the observings the differences of the dynamic pressure fluctuated considerably, the differences of the static pressure on the contrary were practically constant. On account of this the differences were determined during four minutes; the determination of the differences in the static and dynamic pressures at one value of x took place by reading every 10 sec. the manometers simultaneously; from these readings the mean value was taken and the velocity differences between X_A and x_B calculated. It should be noted that the number of revolutions of the air propeller was not regulated: the tunnel was left to itself.

Then the removable Pitot tube was adjusted at an other value of x and again a series of readings was taken.

As an example one series of readings follows here to show how the dynamic pressure varies:

Plate at a distance X = 225 cm from the honeycomb; velocity according to Pitot tube A = 2400 cm/sec; Pitot tube B at 372 cm from honeycomb:

time	Δp dyn.	Δp stat.	time	Δp dyn.	Δp stat.
o' o''	- 31	+113,5	2' IO"	- 34	+ 111,5
10"	33	+ 113,5	20"	— 3I	+ 113,5
20"	22	+ 112,5	30″	— I 2	+ 109,5
30″	34	+111,5	40″	- 32	+ 111,5
40″	29	+ 113,5	50″	- 32	+ 112,5
. 50"	- 33	+ 113,5	3' O''	- 43	+ 113,5
I' O''	28	+ 113,5	10″	- 36	+ 111,5
10"	5 I	+ 112,5	20″	— 4I	+ 112,5
20″	30	+111,5	30″	- 74	+ 111,5
30″	38	+ 111,5	40″	- 42	+111,5
40″	- 15	+ 113,5	50″	- 34	+ 112,5
50″	33	+113,5	4' 0''	— 3 I	+ 110,5
2′0″	- 28	+ 111,5	mean value	- 34	+ II2 . 0,05
					mini water pressure.

The pressure difference $(p_B' - p_B) - (p_A' - p_A)$ is found to be $+ 146 \times 0.05$ mm water pressure. As $p_A' - p_A$ at V = 2400 cm/sec corresponds to 720 \times 0.05 mm water pressure, the difference in the velocity between A and B is $9.5^{0}/_{0}$.

The experiments at x = 100 cm and x = 147 cm were performed with the bars that fixed the plate in transverse direction being present, these bars were placed at x = 97 cm; at the other experiments where the frame carrying the Pitot tube *B* had to be shifted in the upstream direction, the bars were withdrawn to coordinate these measurements with those that were carried out with the hot wire anemometer at x = 150 cm. The presence of these bars proved to affect the experimental results in an appreciable way: when these bars (at $x_B = 147$ cm) were withdrawn the difference in the static pressure of A and B dropped with 18×0.05 mm water pressure, which is equivalent to a difference of 1.25 % in the measured velocity.

Ths experiments with V = 2400 and 1200 cm/sec gave the following result:

	X	glassplate	= 225 cm	n $V = 2$	2400 cm/se	ec
x cm	Δp dyn.	Δ_p stat.	$\Delta (1/_2 \rho V^2)$	$\begin{array}{c} \Delta V \text{in}{}^0/_0 \\ \text{of} \ V_A \end{array}$	$\Delta V \text{in } 0/_0 \text{ of } at$	of $V = 2400 \text{ cm/sec}$ x = 150 cm
(X=70) 0 46 100 147	39 34 35 33 34 . 0,05 m	- 12 + 24 + 64 + 84 + 112	+ 27 + 58 + 99 + 117 + 146 ressure	1,9 4,0 6,6 7,1 9,7	— 5,5 — 2,9 — 1,8 0	without bars with bars

	X	glassplate	= 225 cm	n $V = 1$	200 cm/s	ec
x cm	Δp dyn.	Δp stat.	$\Delta (1/2 \rho V^2)$	$\begin{array}{c} \Delta V \mathrm{in} {}^{0}\!/_{0} \\ \mathrm{of} \ V_{A} \end{array}$	ΔV in $^{0}/_{0}$ at	of $V = 1200 \text{ cm/sec}$ x = 150 cm
(X=70) 0 47 100 147	3,5 4,2 4,5 5 5	-2 + 6 + 17 + 21 + 27	+ 1,5 + 10,2 + 21,5 + 26 + 32	0,42 2,8 5,8 7,2 8,9	— 5,8 — 3,1 — 1,6 0	without bars with bars
	. 0,05 n	nm waterp	ressure			

The mean value of β is now 5,5 $^{0}/_{0}$ of $V_{x=150} = 2400$ cm/sec and 5,8 $^{0}/_{0}$ of $V_{x=150} = 1200$ cm/sec.

By aid of the velocity gradient determined in this way, the correction which has to be applied to the values found from the theorem of momenta can be calculated accurately.

The loss of momentum is equal to the corrected value of $\nu \int a \, dx$ minus αl .

At the series with V = 2400 cm/sec is found:

 The value of αl is 0,055.2400 $\frac{I}{I50} \sum_{x=0}^{x=150} \int_{0}^{\delta} (V-u) dy =$

40800 cm³/sec²

so the value calculated for w_i is = 1022000 cm³/sec²

By numerical integration of the u(y) curve at x = 150 cm was found, however, $w_i = 999000$ cm³/sec²; therefore the difference is 2 $^0/_0$. The agreement between the corrected values of w_i and w_a is to be considered fair. However, the graphically smoothed value of w_i is $4^0/_0$ more than the calculated one.

With the series with V = 1200 cm/sec is found:

 $\nu \int a dx$ (not corr.) = = 318100 cm³/sec² the correction is here $-2,9^{0}/_{0}$ = -9200 cm³/sec² the corrected value of $\nu \int a dx$ is now = 308900 cm³/sec²

The value of αl is here: 0,058.1200 $\frac{I}{I50} \sum_{x=0}^{x=150} \int_{0}^{\delta} (V-u) dy =$

= 12100 cm³/sec²

so the value determined for w_i is = 296800 cm³/sec² By numerical integration of the u(y) curves at x = 150 cm was found $w_i = 250000$ cm³/sec²; this gives therefore an appreciable difference. The agreement between the values determined for w_i and w_a becomes much more favourable, however, when the graphically smoothed value of w_i is used instead of the calculated one.

These calculations lead to the supposition that the values of a derived from the u(y) curves must be rather trustworthy and that errors of the magnitude mentioned in the considerations at p. 32 are improbable.

In these considerations the measurements with V = 400 cm/sec have been left aside. Here the differences between w_i and w_a are great, their ratio amounting to 1,75 at x = 150 cm.

The values of w_i nearly correspond to the values calculated from BLASIUS's resistance formula for laminar motion (form. (2) p. 3) as will be seen in the following table:

x cm	$w_i \mathrm{cm}^3/\mathrm{sec}^2$	0,664 $V^{3/2} (l \nu)^{1/2} \text{ cm}^3/\text{sec}^2$
25	7,9 . 10 ³	10,3 . 10 ³
50	12,2	14,5
75	18,1	17,7
100	19,1	20,7
125	20,8	23,2
150	23,5	24,8

The difference at x = 150 cm is only $6^{0}/_{0}$ which can be easily accounted for by the variations of V along the axis of the wind channel.

The conclusion seems to be allowed that the values of a are too high in this case.²³)

§ 6. APPROXIMATE FORMULA FOR THE DISTRIBU-TION OF THE VELOCITY OVER THE TURBULENT BOUNDARY LAYER.

In the immediate vicinity of the wall the irregular velocity components superposed on the mean value of u will diminish to zero and so the turbulence will disappear; one can say therefore that a laminar layer must exist. Various authors have given an estimation of the thickness of this laminar layer which is situated between the wall and the turbulent region of motion in the boundary layer.

It will be easily seen that the thickness of this layer (δ_1) will be smaller than $\mu \frac{V}{\tau_0}$.

Starting from the formula given by VON KáRMáN a simple relation can be deduced by assuming that the thickness of this laminar layer δ_1 is determined by the point where the curves:

$$u = \frac{\tau_0}{\mu} y$$

and

$$u = V\left(\frac{y}{\delta}\right)^{1/7}$$

cross each other.

²³) In the paper "Over het Omslaan van den Laminairen Stroomingstoestand in de Grenslaag in den Turbulenten Toestand" by J. M. BURGERS (Verslagen der Koninklijke Akademie van Wetenschappen te Amsterdam, 1923 deel XXXII N⁰. 8 p. 856), a calculation has been given of the loss of momentum in the neighbourhood of the point of transition for the measurements executed in Sept. 19/20 1923 with $V = 800_1$ cm/sec and x ranging from 50 to 100 cm. The numbers mentioned there have been recalculated since, as it has been found that some irregularities occur in the w_i values which make the error at the point in question rather large; the whole series is mentioned here:

ж	a	$(w_a)_x - (w_a)_{50}$	$(w_i)_x - (w_i)_{50}$
50	4520	0	0
60	4640	6,9 . 10 ³	3,3 · 10 ³
70	5200	14,3	7,0
75	6040	18,5	11,5
80	7800	23,7	29,7
85	8080	29,7	34,3
90	8800	36,0	33,3
100	8800	49,2	46,4

If a smooth curve is drawn through the values of w_i , a good correspondence with the values of w_a is found, the difference being accounted for by the change of V along the plate. The intersection of the line $u = \frac{\tau_0}{\mu} y$ and $u = V \left(\frac{y}{\delta}\right)^{1/7}$ gives the value of

$$\delta_1 = \left(\frac{\mu V}{\tau_0}\right)^{7/6} \delta_k^{-1/6}$$

and the velocity component u_1 in this point will be:

$$u_1 = \left(\frac{\mu}{\tau_0}\right)^{1/6} V^{7/6} \delta_k^{-1/6}$$

With the formula for τ_0 according to VON Kármán:

$$\tau_0 = 0.0225 \ \rho \ V^2 \left(\frac{\nu}{V \delta_k}\right)^{1/4}$$

is found

$$\frac{u_1 \,\delta_1}{\nu} = R^{**} = \left(\frac{I}{0,0225}\right)^{4/3} = I57,3 \dots (22)$$

This relation between u_1 and δ_1 is represented by the line A - A in figure 8 (with ν is 0.15 cm²/sec).

The lower limit of γ for which VON KáRMáN's formula applies is obtained approximately when a parabola is used in the lower part of the boundary layer in stead of the straight line.

This parabola has to satisfy the following conditions:

I. the velocity gradient at the surface must be $\frac{\tau_0}{\mu}$, according to VON Kármán;

2. the velocity curve must be continuous over the whole boundary layer, therefore the velocity gradient in the point where the parabola passes into the curve $u = V\left(\frac{y}{\delta_k}\right)^{1/7}$ (the point u_1 , δ_1) must be the same for the parabola and the curve $u = V\left(\frac{y}{\delta_k}\right)^{1/7}$.

3. u_1 deduced from the parabola must be the same as that which follows from $u = V \left(\frac{y}{\delta_k}\right)^{1/7}$.

Be the equation of the parabola

$$u = P\left(\frac{2 y}{p} - \frac{y^2}{p^2}\right)$$

then the evaluation of P and p leads to

$$\frac{u_1 \,\delta_1}{v_1} = \left(\frac{1,86}{0,0225}\right)^{4/3} = 360.$$

This relation between u_1 and δ_1 is represented in figure 8 by the line B - B (with $\nu = 0.15$ cm²/sec).

A formula for the distribution of the velocity which can be used over the whole boundary layer (i.e. both for values of γ comparable to δ and for very small values) is obtained by putting:

$$\mathcal{Y} = \frac{u}{a} + b u^n \quad . \quad . \quad . \quad . \quad . \quad . \quad (23)$$

Here b is determined by the condition that for u = V, y becomes equal to δ , this gives:

In accordance with VON KáRMáN's theory *n* will be taken equal to 7. At x = 150 cm, we have the following values of δ_k and $\frac{V}{a}$.

V =	8001	8002	I 200	тбоо	2400 cm sec
$\delta_k =$	2,16	3,24	2,06	1,91	1,865 cm
$\frac{V}{a} =$	0,095	0,11	0,09	0,08	0,06 ст

In order to show the approximation given by the formula, the following example has been calculated for $V = 800_1$, 1600 and 2400 cm sec and represented graphically in fig. 11. The equations of these u(y) curves are at x = 150 cm:

$$V = 800_1 \text{ cm/sec} \dots \dots y = \frac{u}{8480} + 2,06 \left(\frac{u}{V}\right)^7$$
$$V = 1600 \text{ cm/sec} \dots \dots y = \frac{u}{20500} + 1,83 \left(\frac{u}{V}\right)^7$$
$$V = 2400 \text{ cm/sec} \dots \dots y = \frac{u}{40000} + 1,80 \left(\frac{u}{V}\right)^7$$

The loss of momentum $w_i = \int_{\circ} u (V - u) dy$ becomes now with:

As $\frac{V}{a\delta}$ is a small quantity, the influence of the second term usually is only a few percents.

By introducing into VON KáRMáN's equation:

$$\frac{d\,w_i}{d\,x}\,\equiv\,\nu\,a\,,$$

the formulae:

$$w_i = \frac{7}{72} \delta V^2 + \frac{5}{72} \frac{V^3}{a}$$

and
$$a = c \frac{V^2}{\nu} \left(\frac{V\delta}{\nu}\right)^{-m}$$

Fig. 11. Graphical representation of the u(v) curves at the section x = 150 cm according to the approximate formula, compared to the experimental values of u.

(these relations being regarded as mere empirical interpolation formulae comp. $\S 4 g$), we obtain:

$$\frac{d\delta}{dx}\left(\frac{7}{72}V^2 + \frac{5}{72}\frac{m}{c}\delta^{m-1}V^{m+1}\nu^{1-m}\right) = c\,\delta^{-m}V^{2-m}\nu^{m}$$

the integral of which is:

$$x - x_0 = \frac{7}{72 c (m + 1)} \delta^{m+1} V^{m} v^{-m} + \frac{5}{144 c^2} \delta^{2m} V^{2m-1} v^{1-2m}.$$

In most of our series the second term is only $I^{0}/_{0}$ of the first one. Neglecting it, the formula can be simplified into:

In this form, which is very easy for calculations, the exponent m occurs only in the factor (m + 1), the coefficient c having disappeared altogether.

Applying formula (26) to the measurements executed with V = 2400 cm/sec and m = 1/2 according to p. 32 we get:

x cm	$\frac{V\delta_k}{\nu}$	a sec-1	$x - x_0 \operatorname{cm}$	$x_0 \mathrm{cm}$
62,5	I 2 2 00	боооо	32	30
75	15800	59000	42	33
87,5	18200	53000	54	34
100	21100	48500	68	32
125	28900	44000	102	23
150	31300	41000	119	31

These values of x_0 are considerably less subjected to variations than that found at p. 30.

The only conclusion which can be drawn from this result is that the equation of momenta (loss of momentum = integral of friction) is fulfilled in a satisfactory manner, as has already been shown in the foregoing paragraph.

SUMMARY.

The principal results of the foregoing measurements may be summarized as follows:

- 1. It has been demonstrated that a permanent transition exists from the laminar to the turbulent motion; the position of the region of transition has been determined under various circumstances.
- 2. In the turbulent part of the boundary layer VON KáRMáN's formula $u \sim y^{1/2}$ has been proved to be correct; the deviations (most probably due to experimental errors) being at most $2^{0}/_{0}$.
- 3. In a less satisfactory way BLASIUS's formula for the laminar part has been verified.
- 4. The equation of momentum appears to be satisfied with sufficient accuracy.

The most prominent of the unexplained parts are:

- I. the large differences between a_k and a_e (p. 31),
- 2. the rather low values of c_f at the high velocities.

48

STELLINGEN.

I.

Het gebruik der "Volt-thermometers", volgens THOMSON (beschreven door R. O. KING, "Engineering", 1924 No. 3034) verhoogt wel de bereikbare gevoeligheid der gloeidraadsnelheidsmeters, doch niet de absolute nauwkeurigheid dezer meetinstrumenten.

II.

De afwijkingen van de experimenteel bepaalde ijkkromme der gloeidraadsnelheidsmeters van het rechtlijnig verloop der i^2 (\sqrt{V}) lijnen zooals deze uit het experimenteele werk van L. V. KING (Phil. Trans. A 215, p. 373) blijken, zouden aannemelijk gemaakt kunnen worden uit de analogie met de verandering der weerstandscoefficient van cylinders boven een bepaalde waarde van het getal van REYNOLDS.

III.

Het is te verwachten dat metingen met behulp van gloeidraadsnelheidsmeters met draden van verschillende dikte en van verschillende temperatuur een oordeel kunnen geven omtrent de toelaatbaarheid van de op pag. II van dit proefschrift vermelde correctie op de directe afkoeling door den wand.

IV.

Bij de bepaling der krachten en momenten, die in luchttunnels op modellen worden uitgeoefend, verdient het aanbeveling een afzonderlijk onderzoek te wijden aan den invloed van den bouw van de tunnel op de strooming om deze modellen.

v.

De onderlinge afwijkingen van de door verschillende onderzoekers bepaalde waarden van de weerstandscoefficient voor gladde oppervlakken zouden waarschijnlijk verklaard kunnen worden uit de gebezigde wijze van onderzoek en uit den aard der oppervlakken. De verschillende formules voor de snelheidsverdeeling in stroomend water (zie b.v. FORCHHEIMER "Hydraulik") hebben voor de practijk weinig waarde.

VII.

Het is niet waarschijnlijk dat de behandeling der problemen der niet-stationaire strooming om vliegtuig- of vogelvleugels met behulp der eigenschappen der wél-stationaire strooming tot een bevredigende oplossing leidt, zooals tot nu in de literatuur wordt aangenomen.

VIII.

Hoewel uit proeven gebleken is dat boven de kritische waarde van het getal van REYNOLDS de turbulente strooming voldoet aan de door VON KáRMáN afgeleide betrekking $u \sim y^{1/7}$ (pag. 26 van dit proefschrift), is er vooralsnog geen aanleiding om aan te nemen dat dit steeds het geval zal zijn.

IX.

De kritiek van GÜMBEL (Jahrbuch der Schiffbautechnischen Gesellschaft 1917 p. 262) op de theorie van SOMMERFELD (Zs. f. Math. und Phys. 1904) betreffende de smering is niet steekhoudend.

Х.

Het is over het algemeen, in verband met de smering, wenschelijk om langzaamloopende en zwaar belaste assen met de daarbij behoorende metalen of bussen nauwkeuriger te bewerken dan snelloopende assen.

XI.

Het door Dr. Ing. G. KEMPF (Uittreksels der Voordrachten, Internationaal Congres voor Technische Mechanica, Delft, 1924, p. 125) genoemde bezwaar tegen formules gebaseerd op de uitkomsten der proeven met vlakke gesleepte platen, wordt slechts gedeeltelijk ondervangen door gebruik te maken van de uitkomsten met zeer lange gebogen oppervlakken verkregen. Aan boord van motorzeeschepen is in het algemeen een electrische aandrijving der hulpwerktuigen te verkiezen boven een aandrijving door stoom.

XIII.

De vraag of hoogedruk- dan wel middeldrukmotoren voor de binnenvaart het meest geschikt zijn, kan slechts voor iedere onderneming afzonderlijk beantwoord worden.

XIV.

Voor aan een draaistroomnet aangesloten verbruikers kan de toepassing van een windmotor, aan een asynchrone motor-generator gekoppeld, een verlaging der stroomkosten teweeg brengen.

XV.

Voor de voortstuwing van schepen heeft het zuigerstoomwerktuig thans nog slechts reden van bestaan, toegepast op kleine vrachtschepen in de wilde vaart.