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Time-Series Analysis if Data Are
Randomly Missing

Piet M. T. Broersen and Robert Bos

Abstract—Maximume-likelihood (ML) theory presents an ele-
gant asymptotic solution for the estimation of the parameters
of time-series models. Unfortunately, the performance of ML
algorithms in finite samples is often disappointing, especially in
missing-data problems. The likelihood function is symmetric with
respect to the unit circle for the estimated zeros of time-series
models. As a consequence, the unit circle is either a local maximum
or a local minimum in the likelihood of moving-average (MA)
models. This is a trap for nonlinear optimization algorithms that
often converge to poor models, with estimated zeros precisely
on the unit circle. With ML estimation, it is much easier to
estimate a long autoregressive (AR) model with only poles. The
parameters of that long AR model can then be used to estimate MA
and autoregressive moving-average (ARMA) models for different
model orders. The accuracy of the estimated AR, MA, and ARMA
spectra is very good. The robustness is excellent as long as the
AR order is less than 10 or 15. For still-higher AR orders until
about 60, the possible convergence to a useful model will depend
on the missing fraction and on the specific properties of the data
at hand.

Index Terms—Autocorrelation analysis, autoregressive moving-
average (ARMA) model, incomplete data, missing observations,
order selection, spectral analysis.

1. INTRODUCTION

N EFFICIENT, numerically stable, and simple algorithm

for spectral analysis when data are missing would be a
useful tool for signal processing in many areas of science and
technology. Practical observations are often incomplete, be-
cause sensor failure or outliers cause missing data. Discarding
all data records with spurious or missing observations may be
expensive or impossible. Sometimes the only information that
is available is a missing-data record. In meteorological, astro-
nomical or satellite observations, the weather conditions may
disturb the equidistant sampling scheme. In paleoclimatic data,
the relation between the chronological time and the physical
depth gives a time-base distortion, which is the cause that an
observed time series has missing observations on an equidistant
time grid [1].

An easily applicable spectral estimator for missing data is
the method of Lomb [2]. This computes Fourier coefficients
as the least squares fit of sines and cosines to the available
remaining observations. The Lomb-Scargle spectrum is accu-
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rate in detecting strong spectral peaks, but this assumption
biases the description of slopes and background shapes in the
spectrum [3], [4].

A second group of methods relies on estimation algorithms
that have been developed for uninterrupted equidistant data.
First, they reconstruct the missing data with linear, cubic, or
spline interpolation or with sample-and-hold or nearest neigh-
bor resampling. That is followed by the estimation of the
spectral density from the reconstructed uninterrupted signal.
These methods can only give accurate or acceptable results for
very small missing fractions [4].

A third type of estimators fits a time-series model directly to
the available observations. An exact maximum-likelihood (ML)
approach using Kalman filtering has been described for missing
data [5]. Also, an approximate method has been developed
for autoregressive (AR) models with good practical results [4].
The methods that have been tested for AR will be extended to
moving-average (MA) and combined autoregressive moving-
average (ARMA) estimation in this paper.

The layout of the paper is as follows. Time series are
described as a parametrical description of the power-spectral
density and of the autocorrelation function of measured data.
The main question in this paper is whether it is possible to
estimate reliable and accurate MA and ARMA models when
data are missing. Some choices for a numerically stable and
efficient ML algorithm are described for MA and ARMA
models. However, the results of ML estimation for MA and
ARMA are often disappointing in simulations. Therefore, a
reduced-statistics (RS) algorithm is developed that uses the
parameters of an intermediate estimated AR model to compute
MA and ARMA models. This AR model is first estimated from
the missing-data observations with an ML algorithm. Atten-
tion is given to the selection of appropriate MA- or ARMA-
model orders.

II. TIME-SERIES MODELS

ARMA models describe the characteristics of stationary
stochastic processes [6]. The power spectrum and the autoco-
variance function are determined completely as functions of the
estimated parameters of the ARMA model. An ARMA(p, q)
model can be written as

Ty + 011+ F ApTpp = €p + b1Ep—1 + -+ bgEn—q
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where ¢, is a purely random white-noise process with zero
mean and variance Uf [6]. It is a pure AR model if ¢ = 0, and
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MA for p = 0. Almost any stationary stochastic process can
be described as a unique AR(cc) or MA(o0) or ARMA(p, q)
process. In practice, finite orders are sufficient. The power
spectrum h(w) of the ARMA(p, ¢) model (1) is given by [6]
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Also, the infinitely long true autocorrelation function is com-
pletely determined by the p + ¢ true parameters of (1). For
MA (¢) models, the finite autocorrelation length is given by [6]
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where p, denotes the expectation E(z;7;i,)/c2. The
Yule—Walker relations [7] describe the complete autocorrela-
tion function of an AR(p) process and also the autocorrelation
for ARMA(p, q) for orders greater than the maximum of p
and g+ 1

Pnt+a1pp—1+ -+ QppPn—p = 0
n>max(p,q+1); pon = pn. 4

For pure AR processes, (4) is valid for all n > 0. The complete
ARMA autocovariance function for the first lags is easily
derived [7]. Equations (2)—(4) can be used with the true process
parameters as well as with the parameters of estimated models.

Reflection coefficients k; are used to recursively determine
the AR parameters A, (z) of all model orders m between 1 and
p, with the Levinson—Durbin formulas [7]

at =k
a =a" "t + kpnam ! 1<i<m
ary =k, 1<m<p (5)

where a7 is the estimated parameter of order ¢ in the model
of order m. These relations have the property that all poles are
inside the unit circle if and only if the reflection coefficients are
all less than 1 in absolute value. This property is important for
a robust algorithm for missing data.

The accuracy of estimated models is evaluated with the
model error (ME). This is a relative measure in the frequency
domain based on the integrated ratio of estimated and true
spectra. Also, a time-domain expression for ME exists as a
normalized prediction error (PE) [8]

ME:N(PE—1>. (6)

The PE is defined as the expectation of the mean-square error
of the one-step-ahead prediction of an estimated model to new
uninterrupted data of the same process. The multiplication with
the number of observations NV gives the ME an expectation that

is independent of the sample size for unbiased models from
uninterrupted data. It yields the number of parameters p’ + ¢’
as the minimally obtainable expectation of the ME for unbiased
estimated ARMA(p/, ¢') models, with p’ > pand ¢’ > q. When
data are missing, the minimum value of the ME can sometimes
be smaller, but it will generally be much greater than the
number of estimated parameters [4].

III. MA AND ARMA ESTIMATORS
A. Numerically Stable ML Estimator

Two different algorithms for the ML estimation of AR
models have been described for missing-data problems [4], [5].
They can also be used for MA and ARMA models. The exact
estimator [5] requires a computing time that is proportional to
the sum of the number of available and missing data, which
is equal to the total observation interval. The approximate
estimator’s time is proportional to only the available number
of data [4]. The speed of the exact algorithm is higher if more
than about 15% of the data remains; the approximate can be
much quicker for very sparse data. To improve the numerical
robustness, the algorithms build the estimated polynomials
A(e’*) and B(e’¥) in (2) with reflection coefficients k;, like
in (5). Then, the unconstrained optimization of tan(w/2 * k;)
gives estimated parameters for increasing orders p and q. This
transform guarantees that the estimated k; is always in the
range —1 < k; < 1. Hence, all AR, MA, and ARMA models
computed by nonlinear numerical-optimization routines are
stationary and invertible, with all the poles of A(z) and zeros
of B(z) inside the unit circle [6].

B. Starting Values

The AR and the MA parts have separate starting values.
As possible starting values for the nonlinear optimization
of the ARMA(p,q) model, the reflection coefficients of the
ARMA(p — 1,q — 1) model have been considered. They are
the reflections coefficients of the AR(p — 1) model and of the
MA(g — 1) model, with additional zeros as the start for the new
kp and k. These starting values were successful in AR estima-
tion [4]. However, this method fails completely for MA and
ARMA. In estimating the ML parameter of an MA(1) model,
that parameter will exactly be +1 if the correlation coefficient
p1 atlag 1 is greater than 0.5, and it would be —1 if p; < —0.5.
This value 1 or —1 for k; also remains as a local minimum
of the likelihood for higher order MA models. By adding an
additional zero as the initial value for the second parameter in
an MA(2) model, the MA(2) solution found by the nonlinear
minimization always kept the first reflection coefficient at +1
or —1, if that was taken as the starting value for the optimization
algorithm. In almost all simulation examples, it did not get
out of this lower order local minimum. This behavior can be
improved somewhat by taking 0.95 or 0.98 times the previous
reflection coefficients as new starting values, which forces the
initial search vector away from that local lower order minimum.
However, this improved trick also often failed to converge to
the global minimum. The same problem arises with the esti-
mated zeros of an ARMA model.



BROERSEN AND BOS: TIME-SERIES ANALYSIS IF DATA ARE RANDOMLY MISSING 81

In Monte Carlo simulations, it has been demonstrated that
convergence to the global minimum really was a problem of
choosing good starting values. Using the true parameters of the
process as starting values for the ML estimator in simulations
would often converge to a good model. However, knowledge of
the truth is no option for practical data with unknown process
parameters. No good recipe for practical starting values has
been found in the literature or in our simulations.

ARMA models have a second problem in the ML method. If
the true process has a pole and a zero that both have a rather
small radius, they are almost canceling. The estimated model
with one pole and one zero less would be more accurate than the
estimated model of the true order. The likelihood will mostly
converge then to a model with an almost-canceling pair of a
pole and a zero, but their joint location has often a zero close
to the unit circle in the complex plane, with a narrow spectral
valley. For high-order ARMA models, there is an especially
strong tendency to estimate such models. This happens if high-
order models are estimated from measured observations where
the true order is not known, which is usually the case in practice.

C. RS Estimator

A practical solution that has been found for the estimation of
MA(q) or ARMA(p, q¢) models is the RS estimator [9]. This
algorithm estimates MA and ARMA models from a limited
number of estimated AR parameters, using the methods of
Durbin [10], [11]. This RS MA(q) or ARMA(p, ¢) model is
itself a good estimator for uninterrupted data [9]. However, if
data are missing, it can also be used as a realizable starting point
for the nonlinear ML optimization for that model. First, the best
MA(g) or ARMA(p, ¢) model will be estimated and selected
with the RS estimator in missing-data problems. Afterwards,
a nonlinear ML optimization is carried out with that selected
model as starting point. The model-quality ME of the RS model
and the ME of the resulting ML model will be compared in
this paper, to see how much the minimization of the likelihood
function can improve the estimated model that was used as the
recipe for the starting point.

D. Order Selection

Order selection for models estimated by likelihood min-
imization can be performed with a generalized information
criterion (GIC) defined as

GIC(p+q,a) =L (X;@p,éq, 63) +alp+q). @
The model with the smallest GIC value is selected. In missing-
data problems, N denotes the number of remaining obser-
vations. Only these N give a contribution to the likelihood;
the fraction of missing data has no explicit influence in (7).
In ML optimization, it iS common to minimize the negative
of the log-likelihood function, which is denoted L in (7).
The best value for the penalty factor a for MA and ARMA
estimation with missing data is investigated later in this paper.
The famous Akaike’s information criterion (AIC) is given by
(7), with « = 2 [6], [7]. In order selection for finite samples of

uninterrupted data, o = 3 gives better results [8]. For missing-
data AR models, penalties a between 3 and 5 are good choices,
depending on the missing fraction [12]. Penalty 3 was the best
in simulations if less than 25% is missing, penalty 5 if more than
75% was missing, and penalty 4 for a missing fraction between
25% and 75%. The GIC criterion of (7) is used for the order
selection of all estimation methods for missing data. If models
are estimated with methods other than ML, e.g., with RS, the
likelihood of that estimated model is computed afterwards for
use in order selection.

IV. FIXED-ORDER SIMULATIONS

Several algorithms have been studied in simulations. If a total
of N remaining observations is required, N/+ uninterrupted
equidistant MA or ARMA observations are generated first,
where v denotes the remaining fraction and the missing fraction
is given by 1 — . Those observations are transformed into a
missing-data problem by randomly leaving out observations,
keeping a fraction 7, which gives precisely /N remaining ob-
servations. For each missing-data record, AR(p’), MA(q'), and
ARMA(r', 7" — 1) models have been estimated to show that
it is possible to estimate all types of models from unknown
data. The limitation to ARMA models with one order difference
between AR and MA is computationally attractive. It is often
used in spectral estimation for uninterrupted data if the order
has to be selected [8], [9], and it has no serious influence on the
accuracy of the selected models.

For the simulations with AR and MA processes, the true
parameters of the generating process are built from reflection
coefficients with (5), with k,, = 5. In this way, all poles or
zeros of the generating process have the same radius 5. ARMA
processes are generated with the same rule for the AR part;
the MA part is found using k,,, = (—3)™, which gives the true
zeros in the complex plane at the same radius £, but at different
angles.

The convergence of the ML algorithms is rather good for
low-order AR models and for few missing data [4] and it may
become a problem if higher orders must be calculated for a
large missing fraction. Furthermore, the convergence of the
likelihood is generally much better for AR models than for the
other model types.

Fig. 1 shows a true ARMA(4, 3) spectrum, together with
three estimates in a single simulation run with 500 remaining
observations and v = 0.75. The best fitting model in this ex-
ample is the AR(4) estimate selected with (7), with ¢ = 0 and
a = 3. The ARMA(4, 3) RS estimate obtained from the AR(6)
model has a spurious small wide peak around f = 0.4. Using
this RS model as the starting value for the ML procedure gives
the ARMA(4, 3) ML model with the neighboring peak and
valley in Fig. 1. The estimated and selected AR(4) ML spec-
trum is quite accurate for this example; the ARMA(4, 3) ML
estimate shows a narrow peak and a narrow valley.

It has been observed in many examples that ML solutions
tend to diverge if more data are missing, giving spurious peaks
and valleys in the estimated spectra. It happens for rather low
orders in MA and ARMA, but high-order AR models can also
have this behavior. The likelihood is used in (7) for order
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True and selected spectra for ARMA(4,3) simulation
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Fig. 1. True spectrum of the ARMA(4, 3) process and the estimated spectra of

the selected AR(4), the ARMA(4, 3) RS estimated from the AR(6) model, and
the ML estimate with starting values taken from the true process. All spectra are
estimated from 500 remaining observations with 25% missing data, generated
with 8 = —0.5. In this realization, the ME for AR(4) is 6.0, for ARMA(4, 3)
RS is 11.4, and for the ARMA(4, 3) ML solution is 33.5.

selection. It is the smallest for the ARMA(4, 3) ML solution
in the example of Fig. 1. Therefore, it would be selected with
(7), but the ME quality (6) of that model is poor. Many other
ARMA(4, 3) models and also the true ARMA(4, 3) process
have a much better ME quality, although the value of the
log likelihood is higher, especially for large missing fractions.
In missing-data problems with a finite number of remaining
observations, the relation between a small or minimum value
of the log likelihood of ARMA models and a small ME is not
as strong as it is when all data are available.

The occurrence of combined peaks and valleys is very
common in higher order estimated ARMA models, if the ML
optimization is used. It can also happen if no data are missing.
If poles and zeros are distinct and statistically significant, ML
estimation may be accurate. However, higher order ML models
often give spurious peak—valley combinations that lead to a
lower value of the likelihood but at the same time to a poor
model quality. This is a serious problem in selecting the order
of MA and ARMA models estimated with ML, because there is
a strong tendency to select those questionable models.

V. SIMULATIONS WITH ORDER SELECTION

Without data missing, order-selection criteria are generally
based on the log likelihood or on the decrease of the residual
variance for higher model orders. If there are data missing, the
value of the likelihood function is the only available basis for
order selection with (7). Even for RS models that do not use
the likelihood for estimation but a long AR model, the log
likelihood has to be computed for use in the order-selection
criterion (7).

In missing-data records, convergence and order selection
have never been a problem with AR models for orders lower

than 10 or 15. Sometimes, very-high-order AR models until
order 60 could be estimated accidentally in a single simulation
run, at considerable computational costs. It has been found that
the GIC criterion of (7) sometimes selected a very high AR
order in those situations. The selected model would then always
have a number of strong peaks in the estimated spectrum for
data where the true spectrum and lower order estimated AR
models were smooth. For reasons of convergence, automatic
order selection, and computation time, the maximum AR can-
didate order is taken to be 15 in the simulations.

The AR model order is selected as the order K with the
minimum GIC (K, «). It has been shown that the best compro-
mise penalty o for AR depends on the remaining fraction .
This gives penalty o = 3 for v > 0.75, a = 5 for v < 0.25,
and o = 4 in the range between those limits [12]. The inter-
mediate AR order to determine MA or ARMA models for
uninterrupted data is chosen with a sliding window [8]. That
order is then much higher than the selected order K of the best
AR model. For AR models estimated from uninterrupted data,
too-high model orders are only slightly less accurate than the
model with the best order. However, it turns out that high-order
AR models from missing-data problems can have very much
greater values for the ME, and are poor representations for the
character of the data. Therefore, the choice for the intermediate
order has to be adapted for missing data to make sure that no
spurious details are present in that AR model. The intermediate
AR order to estimate MA or ARMA models is taken as the
highest order P for which the ME in comparison with the
selected AR(K) model is less than 2(P — K)

P = arg max [ME (AR(P), AR(K)) <P - K)} . ®)

The orders K and higher are candidates for P. This ensures that
the spectra of the AR(K') and the AR(P) models are similar,
because a difference of 2 in the ME for each extra parameter
is rather small. This is a practical compromise between the
high preferred orders for uninterrupted data [8] and the fact that
high-order estimated AR models can become very inaccurate
for small values ~y of the remaining fraction.

Table I gives the average ME of models for simulations
with an ARMA(2, 1) process, all with N = 500 remain-
ing observations and six different values for the remaining
fraction ~. Table II gives the ME of models estimated for
MA(4) data with 250 remaining observations. The ME of two
different AR models, two ML models, and five RS models
estimated from a long AR model are compared in each table.
All algorithms can also be applied to uninterrupted data; the
accuracy for v = 1 is given in the final columns of the tables
for comparison.

1) The first two rows of the tables give the average ME
in 100 runs of two ML AR models: the AR(K) model
selected with (7) and the highest order AR(15) model that
has been computed.
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TABLE 1
AVERAGE ME OF 100 MONTE CARLO SIMULATION RUNS, AS A FUNCTION
OF THE REMAINING FRACTION . MODELS ARE ESTIMATED FROM
N = 500 OBSERVATIONS OF AN ARMA(2, 1) PROCESS WITH 3 = 0.4

TABLE 1I
AVERAGE ME OF 100 MONTE CARLO SIMULATION RUNS, AS A FUNCTION
OF THE REMAINING FRACTION . MODELS ARE ESTIMATED FOR

- ¥ 25 5 a5 09 9 1
AR
Selected AR model 29.2 136 7.6 64 6.1 5.6
AR(15) 72612 555.0 30.8 17.5 17.215.0
ARMA with ML
ML ARMA(2,1) start true 1587 2609 53 3.8 33 33
ML start sel =3 1407 3102 21.5 39 4.6 3.6
ARMA from AR(P)
ARMA(2,1) 276 105 51 42 34 34
Selected with o= 2 283 112 59 50 49 48
Selected with =3 28.1 10,6 54 42 42 36
Selected with o= 4 299 105 53 42 38 34
ARMA(2,1) from AR(15) 918.4 159.0 93 4.1 34 34

2) Then, the ME of two different ML models is given.
ARMA models are estimated in Table I for the
ARMA(2, 1) data and MA models in Table II for MA(4)
data. The first row gives the true-order model and is
computed with the true process parameters as starting
values. This is only possible in simulations where the
truth is known and it is considered as the best possible
starting value for the ML minimization. If it did not
converge from these starting values, it never converged in
our simulations. Also, a realizable ML solution is given,
with the parameters of the RS model that was selected
with penalty oo = 3 as the starting values and with the
same order as that selected RS model. In this way, it can
be verified whether postprocessing with an ML algorithm
can improve the quality of the model estimated previously
with the RS algorithm.

3) Then, the quality of five RS models follows. Four are
estimated from the same AR(P) model, with an individ-
ually ordered P in every simulation run, selected with
(8). The first and the fifth of these rows have the true
model order, the others are selected with o = 2, 3, and 4,
respectively. To illustrate the advantage of the AR(P)
model as an intermediate AR model in comparison with
a fixed high-order AR model, the ME of the true-
order model computed from AR(15) is also given in the
final row.

The results presented in the two tables are just representative
illustrations of what has been found in numerous other simu-
lations with different generating processes. Only conclusions
that are supported by similar results in all other simulations
are drawn. Therefore, the conclusions to be presented are more
general than only for the examples in Tables I and II.

All AR models are estimated with the ML method of
Jones [5]. The first two rows show that selecting the AR order
is always better than taking order 15. The quality of the AR(15)
model deteriorates strongly if more than 25% is missing. Gen-
erally, lower AR orders are selected from the same number of
remaining observations if the missing fraction becomes greater.

The quality of the true-order ARMA(2, 1) and MA(4) models
obtained from the intermediate AR(P) models is about the

N = 250 OBSERVATIONS OF A TRUE MA(4) PROCESS WITH 8 = —0.8
- v 25 5 75 9 95 1
AR
Selected AR model 72.0 425 256 18.0 153 13.1
AR(15) 133020 1774 56.0 22.0 18.4 15.6
MA with ML
ML MA(4), start true 7676 49732272 104 6.8 4.8
ML start sel oo =3 34204 4822 5079 28.0 82 54
MA from AR(P)
MA(4) 63.7 300 148 72 57 45
Selected with o0 =2 663 356 179 96 82 58
Selected with o0 =3 672 350 168 86 6.6 49
Selected with o0 = 4 68.6 346 167 8.0 6.1 4.8
MA(4) from AR(15) 4616 1161 32.0 63 5.1 4.4

same as from AR(15) models if 10% or less of the data
is missing. It is also close to the accuracy without missing
observations. For more data missing, say v < 0.9, the quality
of the RS models obtained from the AR(P) model is the best.
Therefore, selecting the intermediate order P with (8) gives
good results in the simulations for all missing fractions.

The comparison of the three values for the penalty factor
« in the RS estimates obtained from AR(P) definitely shows
that penalty 2 is not the best. Hardly any preference for 3 or 4
can be given in those examples. However, it is known that
penalty 4 can lead to an undesirable underfit in simulations with
small true-parameter values with uninterrupted data. Based on
this experience, the penalty 3 is advised. In contrast with AR
order selection [12], there is no reason to make the penalty
dependent on the missing fraction for MA and ARMA order
selection.

Two different models have been estimated with ML. The
difference between using the realizable starting values obtained
from the RS estimate with the AR(P) model and selected with
o = 3 and using the true parameters as starting values for the
ML minimization is small, if not too many data are missing.
This is a strong indication that it is not possible to improve the
quality of the ML algorithm by using still other starting values.
The optimization converges mostly to the true minimum of the
likelihood function.

However, the quality of the model belonging to the minimum
of the likelihood is sometimes disappointing, especially if many
data are missing. The poor quality of the ML solution for
ARMA models is also illustrated in Fig. 1, where the true-order
model with the smallest likelihood has a spurious peak—valley
combination for f = 0.39. An extensive search did not deliver
an example where the average ME quality of the ML model
was much better than the average ME of the RS model obtained
from the intermediate AR(P) model. That agrees more or less
with the conclusion that has been obtained for uninterrupted
data. There, it has been concluded that the RS estimators for
MA and ARMA estimation were as accurate as the best of the
other existing algorithms [9].

In the examples, the RS estimates obtained from the AR(P)
model and selected with o = 3 or 4 provide the best estimated
ARMA and MA models. There is no reason to optimize the
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likelihood function to estimate MA or ARMA models. The
result of postprocessing that selected the model by using it as
a starting value for an ML optimization does not improve the
quality of the model. A smaller value of the likelihood does
not give a better value of the model quality measured with the
ME. This follows from the comparison of the second ML row
with the third RS row in the tables.

The Cramér—Rao lower bound for the ME is given by the
number of estimated parameters if all observations are avail-
able. For small missing fractions, several estimated models are
close to that benchmark value, which is 3 and 4 in Tables I
and II, respectively.

The quality of the selected RS model is good in compar-
ison with the true-order RS model. Hence, if good models
are among the estimated candidates, they will be selected
with the described algorithm. Selection of the MA or ARMA
order gives about the same quality as estimating the true-
order model. Not knowing the true order is not a problem
because the order can be selected with a very small loss of
accuracy.

Taking a model of too-high order can have an enormously
detrimental influence on the accuracy. This is clear from the
ME of the AR(15) models for small v in the second row of
both tables. This is not the case in the RS MA and ARMA
models of different orders, because these are all derived from
the same intermediate AR(P) model, with P defined in (8).

The average quality of the selected MA or ARMA models
in the presented examples is always better than the quality of
the selected AR model. It was significantly better for small
missing fractions. The difference becomes small if more data
are missing. Therefore, MA and ARMA models are a welcome
addition as candidate models for measured unknown data.
Using only AR models may lead to less accuracy.

AR models can be estimated for very small values of ~,
as long as v is great enough [4]. This number YN can be
seen as an effective number of observations because it gives
approximately the number of pairs of two contiguous observa-
tions and of pairs separated by one missing observation and of
pairs separated by any specific larger gap. The RS algorithm
can always be used to investigate whether a better fit to the data
can be found with MA or ARMA models.

VI. CONCLUDING REMARKS

AR models of increasing orders can be estimated with the
ML approach. Starting values for AR are found by using the
reflection coefficients of the previous model with an additional
zero for the nonlinear optimization for the higher order. The
AR models can also be used as input for an RS algorithm for
MA and ARMA estimation. That turns out to be better for the
accuracy of MA and ARMA models than the nonlinear opti-
mization of the log-likelihood function. The minimum of the
log-likelihood function is often found at MA or ARMA models
with spurious spectral details. For each model type, examples
have been given where that specific type gives the most accurate
estimated spectrum. Therefore, it is advisable in missing-data
problems to estimate AR models with the ML estimator and to
estimate MA and ARMA models with the RS estimator. MA

and ARMA model orders can be selected automatically with
an order-selection criterion based on the afterwards-calculated
likelihood of those candidate models, with penalty of 3.

REFERENCES

[1] J.R. Petit et al., “Climate and atmospheric history of the past 420.00 years
from the Vostok ice core, Antarctica,” Nature, vol. 399, no. 6735, pp. 429—
436, Jun. 1999.

[2] J. D. Scargle, “Studies in astronomical time series analysis II. Statisti-
cal aspects of spectral analysis of unevenly spaced data,” Astrophys. J.,
vol. 263, no. 2, pp. 835-853, Dec. 1982.

[3] R. Bos, S. de Waele, and P. M. T. Broersen, “Autoregressive spec-
tral estimation by application of the Burg algorithm to irregularly sam-
pled data,” IEEE Trans. Instrum. Meas., vol. 51, no. 6, pp. 1289-1294,
Dec. 2002.

[4] P. M. T. Broersen, S. de Waele, and R. Bos, “Autoregressive spectral
analysis when observations are missing,” Automatica, vol. 40, no. 9,
pp. 1495-1504, Sep. 2004.

[5] R. H. Jones, “Maximum likelihood fitting of ARMA models to time series
with missing observations,” Technometrics, vol. 22, no. 3, pp. 389-395,
1980.

[6] M. B. Priestley, Spectral Analysis and Time Series.
Academic, 1981.

[7]1 S.M. Kay and S. L. Marple, “Spectrum analysis—A modern perspective,”
Proc. IEEE, vol. 69, no. 11, pp. 1380-1419, Nov. 1981.

[8] P. M. T. Broersen, “Automatic spectral analysis with time series models,”
IEEE Trans. Instrum. Meas., vol. 51, no. 2, pp. 211-216, Apr. 2002.

[9] P. M. T. Broersen and S. de Waele, “Automatic identification of time series
models from long autoregressive models,” IEEE Trans. Instrum. Meas.,
vol. 54, no. 5, pp. 1862-1868, Oct. 2005.

[10] J. Durbin, “Efficient estimation of parameters in moving average models,”
Biometrika, vol. 46, no. 3/4, pp. 306-316, 1959.

, “The fitting of time series models,” Rev. Inst. Int. Stat., vol. 28,
no. 3, pp. 233-243, 1960.

[12] P. M. T. Broersen and R. Bos, “Order selection for autoregres-
sive spectral estimation with randomly missing data,” in Proc. IEEE
Benelux Signal Processing Symp. (SPS), Hilvarenbeek, The Netherlands,
Apr. 15-16, 2004, pp. 33-36.

London, UK.:

[11]

Piet M. T. Broersen was born in Zijdewind, The
Netherlands, in 1944. He received the M.Sc. degree
in applied physics in 1968 and the Ph.D. degree in
1976, both from the Delft University of Technology,
Delft, The Netherlands.

He is currently with the Department of Multi
Scale Physics of the Delft University of Technology.
His main research interest is in automatic identifica-
tion on statistical grounds by letting measured data
speak for themselves. He developed a practical solu-
tion for the spectral and the autocorrelation analysis
of stochastic data by the automatic selection of a suitable order and type for a
time-series model of the data.

Robert Bos was born in Papendrecht, The
Netherlands, in 1977. He received the M.Sc.
degree in applied physics from the Delft University
of Technology, Delft, The Netherlands, in 2001. He
is currently pursuing the Ph.D. degree at the Delft
University of Technology.

He currently works at the Delft Center for Sys-
tems and Control, Delft University of Technology.
His research is aimed at the development and the
application of state-estimation techniques for high-
order-first-principle models of complex processes in
the process industry.



