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ABSTRACT 
Intelligent systems might beneft from automatically detecting 
when a stimulus has triggered a user’s recollection of personal 
memories, e.g., to identify that a piece of media content holds 
personal signifcance for them. While computational research has 
demonstrated the potential to identify related states based on facial 
behavior (e.g., mind-wandering), the automatic detection of spon-
taneous recollections specifcally has not been investigated this 
far. Motivated by this, we present machine learning experiments 
exploring the feasibility of detecting whether a video clip has trig-
gered personal memories in a viewer based on the analysis of their 
Head Rotation, Head Position, Eye Gaze, and Facial Expressions. 
Concretely, we introduce an approach for automatic detection and 
evaluate its potential for (1) person-independent and (2) video-inde-
pendent predictions using in-the-wild webcam recordings. Overall, 
our fndings demonstrate the capacity for above chance detections 
in both settings, with substantially better performance for the video-
independent variant. Beyond this, we investigate the role of person-
specifc recollection biases for predictions of our video-independent 
models and the importance of specifc modalities of facial behavior. 
Finally, we discuss the implications of our fndings for detecting 
recollections and user-modeling in adaptive systems. 

CCS CONCEPTS 
• Human-centered computing → Empirical studies in ubiq-
uitous and mobile computing. 
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1 INTRODUCTION 
The personal memories spontaneously triggered by objects, places, 
and people have a substantial infuence in defning their meaning 
to us, e.g., as treasured mementos or beloved friends. Importantly, 
the memories that stimuli trigger in us are closely connected to 
our emotional responses and attitudes to them [15]. For example, 
a photograph that reminds us of a trip with good friends might 
lift our mood when we look at it, holding deep sentimental value. 
Similarly, visiting a location where someone had an accident in the 
past might bring that incident to mind and shape their behavior 
during the visit. As such, technologies that strive to provide socio-
emotional support to people throughout their daily lives could 
beneft from understanding when memories occur for a broad range 
of purposes [14]. For example, a personal media system might use 
detections of occurring recollections to learn whether a particular 
piece of content is evocative to a user without requiring self-reports. 
Such evocative stimuli could then be drawn on later for relevant 
recommendations in applications (e.g., to stimulate memories in 
dementia treatment [29]). 

While spontaneous recollections are common, psychological 
research has only begun to unravel the conditions under which 
situations are conducive for involuntary memories to be triggered 
in a person [4, 5, 36, 37]. As such, computational modeling of recol-
lections for use in intelligent systems has mainly been limited to 
the area of cognitive agents to synthesize plausible interaction be-
havior [25]) but has not been addressed in user-modeling research. 
However, experiencing recollections can also be considered a state 
where attention is primarily internally directed [8]. In such states, 
an individual’s focus is not absorbed by some external event in 
the world (e.g., a beautiful view) but instead by cognitive events 
inside their mind (e.g., when daydreaming) [8]. Work on detecting 
such attentional states for user models exists, and it has typically 
targeted the umbrella phenomenon of mind-wandering (e.g., Bixler 
et al. [6]). Findings here have demonstrated successful detections 
from facial behavior (e.g., Steward et al. [35]). While the majority 
of such studies have taken place in the laboratory to ensure experi-
mental control (e.g., Annerer-Walcher et al. [1]), some studies have 
demonstrated potential for predictions in the wild (e.g., a classroom 
setting [7, 30]). Particularly eye gaze behaviors have been identifed 
as indicative of internally-directed attention [1, 22]. However, no 
research in this area has specifcally explored the automatic de-
tection of spontaneous recollections. Nevertheless, their fndings 
lend credibility to the assumption that detections based on facial 
behavior are at least principally possible. 

This paper describes our attempts to empirically explore the fea-
sibility of automatically detecting the occurrence of recollections 
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based on visual recordings of a person’s facial behavior. Our inves-
tigation focuses on detecting memories triggered in a person when 
they watch a video clip in an in-the-wild scenario. We target this 
particular setting since it is a good initial situation for exploration. 
First, it provides a controlled exposure to triggering stimuli com-
pared to many other real-world situations (e.g., social interactions). 
In particular, a video’s content is fxed and likely forms a primary 
target of a viewer’s visual attention. Additionally, video-viewing 
ofers many aspects of ecological validity (i.e., exposure to infor-
mation from multiple senses and semantically meaningful content, 
potentially with a personal relevance). For this reason, videos are 
generally popular for elicitation of complex and dynamic psycho-
logical phenomena, such as emotions [19], and are potent triggers 
for spontaneous recollections [26]. Crucially, estimating the evoca-
tive properties of videos might be of immediate interest for a range 
of applications. For example, it could aid in recommending evoca-
tive content on social media for entertainment [9] or well-being 
[34], and support reminiscence therapy with dementia patients 
[27]. Finally, with the Mementos dataset [16] a resource capturing 
memories evoked by videos and associated behavioral responses 
already exists and is publicly available for study. This availability 
makes video-triggered memories a convenient starting point for 
our explorations. Overall, we present the following contributions: 

• A technological architecture for automatic facial behav-
ior analysis to detect the occurrence of recollections. This 
method is intended as suitable proof of concept to explore 
this novel detection task’s feasibility empirically. It uses 
frame-wise extraction of facial behavior features from video 
signals in combination with the MINImally RandOm Con-
volutional KErnel Transformation (MINIROCKET) algorithm 
[10] for time series representation. 

• An empirical exploration of the feasibility of detecting spon-
taneous recollections during video-viewing from facial be-
havior in the wild. Concretely, we investigate (1) person-in-
dependent and (2) video-independent predictions in a series 
of machine learning experiments. These demonstrate the 
above random performance for our approach in both set-
tings. However, our fndings indicate substantial accuracy 
benefts for video-independent predictions. 

• A detailed analyses of (1) the role played by person-specifc 
recollection biases for predictions of our models, as well as 
(2) the contribution of specifc modalities (e.g., Head Rotation 
or Eye Gaze) for their performance. 

2 BACKGROUND AND RELATED WORK 
The link between memory recollection and facial behavior has only 
been tentatively explored in existing psychological research [17, 32]. 
However, these fndings indicate a connection between the disper-
sion of fxations in eye gaze behavior [32]), as well as diferences 
in the amount of emotional facial expressions between episodic 
and semantic recollections of past experiences [17]. No work on 
automatic behavioral analysis or user-modeling up to this point has 
specifcally explored the detection of spontaneous recollections, i.e., 
memories that are involuntarily triggered by stimuli. Nevertheless, 
a recent study by Gupta et al. [20] demonstrates that measures of 

autonomic activity and eye gaze can automatically distinguish be-
tween conditions in which participants are explicitly instructed to 
recall emotional autobiographical memories and a neutral control 
state. While these fndings stem from a highly constrained setting 
in a Virtual Reality environment and a small number of participants 
(i.e., � = 20), they nevertheless show a promising connection be-
tween gaze behavior and another type of recollection process (i.e., 
voluntary or intentional recall). 

More generally, being immersed in the experience of a personal 
memory can also be considered a state of internally-directed atten-
tion (see Christof et al. [8] for a relevant taxonomy). In such states, 
the focus of a person’s attention is not (or no longer) focused on an 
external task or stimulus (e.g., the contents of a book while reading) 
but instead centers around mental content, such as thoughts or 
memories. Involuntary shifts from externally- towards internally-
directed attentional focus are often studied under the umbrella term 
of mind-wandering [6]. Indeed, flms have been identifed as a kind 
of stimulus that results in mind-wandering episodes frequently 
revolving around the recollection of personal memories [18]. A 
substantial body of computational research has explored detecting 
such mind-wandering episodes from physiological [31] and par-
ticularly behavioral data [1, 7, 21, 22, 38]. Findings in such studies 
indicate that detections of internally-directed attention based on 
facial behavior – especially gaze-related aspects – are feasible but 
typically challenging [1, 7, 21, 35]. Conceptually most similar to 
our work are studies demonstrating the capacity of detecting mind-
wandering or internally-directed attention from audiovisual data of 
facial behavior. For example, Steward et al. [35] explore detections 
during flm comprehension, Bosch&D’Mello [7] during interactions 
with an intelligent agent, and Putze et al. [30] in a classroom set-
ting. However, no existing work in this computational strain has 
focused specifcally on detections of internally-directed attention 
concerning spontaneous recollection. Additionally, the majority of 
investigations undertaken thus far have focused on detections with 
a relatively high temporal resolution (i.e., segments of only several 
seconds in length [7, 22]) requiring elaborate self-report protocols 
(e.g., probing at specifc intervals [7]). A primary motivation for 
this is the possibility for immediate intervention by intelligent sys-
tems when attention drifts away toward internal thoughts from 
important external tasks, such as driving [38] or studying [39]. Ob-
taining valid moment-to-moment self-reports for computational 
modeling in such settings is challenging. It is likely for this reason 
that existing studies often rely on a comparatively small number of 
participants [21, 22, 30, 31, 39] (However, notable exceptions exist, 
for example, the studies by Steward et al. [35] and Annerer-Walcher 
et al. [1]). Moreover, existing work on internally-directed attention 
often involves only a small degree of variation in stimuli to which 
responses are analyzed (e.g., during comprehension of only a single 
flm [22, 35]). In contrast to these eforts, our work in this article 
focuses on detecting the occurrence of recollections at a global level 
of stimulus exposure instead of moment-to-moment shifts between 
internally- and externally-directed attention. Our goal is merely to 
determine whether any recollections have occurred during stimulus 
exposure or not, not exactly when. This task formulation is similar 
to implicit tagging of stimuli [33] (e.g., with emotion labels), poten-
tially enabling downstream applications to act on tags describing a 
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video’s evocative potential for a particular user, such as for retrieval 
or recommendation. 

Another distinguishing feature of our investigation is that it 
draws on a dataset with a relatively large participant pool (� = 298) 
and broad range of diferent video stimuli (� = 42). Moreover, the 
Mementos dataset we used for analysis was captured in an in-the-
wild setting instead of a laboratory. As such, the facial recordings 
are technologically challenging to analyze (e.g., varying lighting 
conditions or viewing angles; consumer-grade cameras) and eco-
logically valid (e.g., captured in the homes of participants where 
they naturally engage with video content). 

3 DATASET 
For our empirical investigations we rely on the recently released 
Mementos dataset [16]. This corpus has been specifcally collected 
to support multimodal modeling of cognitive-afective memory 
processes, including spontaneous recollections. It captures the 1995 
responses of 297 participants to a total of 42 diferent music videos 
and includes audiovisual recordings of participants’ faces and self-
reports about triggered memories. Below we provide a brief de-
scription of the protocol used to collect the dataset and its contents 
(for more details see the relevant publication by Dudzik et al. [16]). 

3.1 Data Collection Procedure 
The dataset was collected by exposing crowd-workers online to a se-
lection of 42 music video segments from the DEAP corpus [23] and 
measuring their responses. Each participant was provided with 7 
music videos from this pool. They were recruited until 50 responses 
had been collected for each video. During the exposure to a video, 
a viewer’s face was recorded with the webcam embedded in their 
personal device. Once playback of the video fnished, participants 
were provided self-reports about whether any memories had been 
triggered while viewing. If so, they had to provide additional de-
scriptions of these recollections. The creators of the dataset fltered 
out several responses (e.g., due to technical corruption. This flter-
ing leaves 1995 unique responses in the published corpus out of the 
original 2099 recorded samples. These samples are the responses 
of � = 297 unique participants (����� = 159, �� ����� = 138). A 
more detailed description of the dataset can be found in its ofcial 
publication [16]. 

3.2 Contents 
3.2.1 Memory Self-Reports. After exposure to each video, partici-
pants in the Mementos dataset provide self-reports about whether 
any recollection was triggered in them while viewing or not. Out of 
the 1995 responses in the corpus, a total of 935 involves the recollec-
tion of at least one memory. Moreover, not all video clips shown to 
participants are equally evocative: some videos were substantially 
more likely to trigger memories in participants than others. Only 
18% of viewers of the least evocative video experienced recollec-
tions, while the most evocative video resulted in recollections for 
up to 64% of the people exposed. 

3.2.2 Face Recordings. Recordings were captured by participants’ 
webcams when viewing the eliciting video clips online in their 
browser. Because of this, there is little control over the circum-
stances in which recordings took place, and they cover participants 

in many diferent viewing positions and lighting conditions. More-
over, due to latency issues, the duration of the face recordings 
in the Mementos dataset varies slightly between 50.33 and 69.86 
(� (��) = 60.5(2.1)) seconds. They are encoded at 30 frames per 
second at a 640 × 480 pixel resolution. 

4 PREDICTIVE MODELING 

4.1 Overview 
This section describes our computational architecture for detecting 
spontaneous recollections from facial behavior. Its primary aim 
is to serve as a technologically valid and reproducible proof of 
concept for answering our research questions regarding the fea-
sibility of detecting recollections in light of the available dataset. 
Because of the comparatively small size of the Mementos dataset, 
data efciency is a concern and has been considered in selecting 
components throughout our architecture. Additionally, we are in-
terested in exploring how aspects of facial behavior relate to the 
performance of predictions. For this reason, our approach relies on 
interpretable features (e.g., Facial Action Units) capturing aspects of 
facial activity as intermediate representations. In contrast to learned 
representations (i.e., Deep Learning), these intermediary features 
facilitate such investigations more easily through targeted ablation 
studies. For a graphical overview of our architecture, please have a 
look at Figure 1. At a high level, it comprises three distinct stages: 
(1) Facial Behavior Represenation, (2) Time Series Represenation, and 
(3) Classifcation. In our empirical investigations, we use two dis-
tinct versions of this overall architecture: RIDGE and PCA99-SVM 
(see Section 4.4 for details). 

4.2 Facial Behavior Representation 
To represent facial behavior in terms of features, we rely on Open-
Face 2.0 [3]. We extract both Head Position-features provided by 
OpenFace, i.e., in (�,�, �) world-coordinates, as well as the Head 
Rotation-features, i.e. (����ℎ,���, ��������)-angles relative to the 
camera. Additionally, we use the gaze-direction vectors provided 
by OpenFace to represent Eye Gaze. These are the angles in radians 
along the (�,�)-axis relative to the camera averaged across both 
eyes. Finally, we extract features relating to Facial Expressions in 
terms of the activation-intensity of 17 Facial Action Units (AU In-
tensities). These intensities range from 0 − 5, with 0 denoting no 
activation and a value of 5 activation at maximum intensity. We 
combine the extracted frame-level features for each modality of 
facial behavior into time series by concatenating them along the 
time axis (the Concat-Time operation in Figure 1). This procedure 
results in a 25 univariate time series, one for each frame-level fea-
ture extracted via Openface. Because our approach for time series 
representation (see Section 4.3 below) requires data with a fxed 
length, we truncate each of these time series to that of the shortest 
series in our dataset (i.e., 50 seconds, or 1500 time steps). Finally, 
we replace time steps resulting from frames for which OpenFace 
provides low-confdence scores (i.e., < .1) with the mean value 
across the previous and following steps in a time series. 

4.3 Time Series Representation 
Representing time series in a manner that allows efective classif-
cation is a central component of research on bespoke Time Series 
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Figure 1: Overview of our Computational Architecture for Detecting the Occurrence of Spontaneous Recollections. All depicted 
components except for the Classifcation-part are shared between our two modeling approaches RIDGE and PCAS99-SVM. 
Orange marks indicate the position of the optional transformation operations for the experiments discussed in Section 5.2.3 

Classifcation algorithms [2]. ROCKET (RandOm Convolutional 
KErnel Transformation) and its derivatives are a series of recently 
developed approaches for time series representation that facilitate 
state-of-the-art performance in a wide variety of tasks [10, 11]. The 
transformation algorithm comprises two principal steps: (1) apply-
ing a large amount (10000 or more) of convolutional kernels with 
random parameters to an input time series, and then (2) comput-
ing aggregate features over the feature map for each kernel (i.e., 
pooling), resulting in a high-dimensional representation. 

In contrast to convolutional kernels in deep neural networks, the 
parameters for these kernels (e.g., their bias, length, and dilation) 
are not learned from the data but are sampled randomly. The initial 
ROCKET algorithm computes the Maximum (max) and Proportion 
of Positive values (PPV) for pooling of feature maps after convolu-
tion. The PPV pooling operation is a crucial element of ROCKET’s 
performance and is calculated as the proportion of timesteps in a 
series for which the convolution output is positive [10]. Intuitively, 
this operation refects the degree to which the pattern encoded 
by a particular kernel is present in the input data. MINIROCKET 
(MINImally-deterministic ROCKET) is an improved version of the 
basic ROCKET algorithm, minimizing stochastic behavior and com-
putational demands without displaying reduced performance [11]. 
Instead of sampling kernel parameters at random, the algorithm 
uses a fxed set of 84-kernels, bias values drawn from the output 

of the convolution, as well as a fxed amount of dilation values 
(relative to the length of the input time series) that are assigned 
to the kernels in the set. Moreover, MINIROCKET embraces the 
importance of the PPV operation and relies on it as the sole pooling 
operation for feature maps. 

Applying the MINIROCKET transformation, we use the follow-
ing procedure to create a high-dimensional representation of the 
input time series for each modality: 

(1) We separately apply MINIROCKET in its default confgu-
ration to each univariate input time series, resulting in a 
representation with 9996 features for each (i.e., the number 
of PPV features for all kernel-dilation combinations). 

(2) Next, we concatenate the resulting MINIROCKET represen-
tations created for input time series of each modality of facial 
behavior (i.e., grouped by Head Position, Head Orientation, 
Eye Gaze, and Facial Expressions) into matrices with dimen-
sions #modality-features × 9996. This operation is denoted 
Concat-TSR in Figure 1. 

(3) We then aggregate these modality-specifc matrices of time 
series representations by calculating their column-wise mean 
(�) and variance (�2). This creates a single feature vector for 
each modality with a dimensionality of 19992 features(i.e. 
2 × #��� � �������). This operation is denoted as Aggretate-
TSR in Figure 1. Intuitively, the resulting aggregate of the 
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PPV features provides a measure for the overall presence 
and dispersion of the pattern encoded by a particular kernel-
dilation combination across the time series comprising a 
particular modality. 

(4) Finally, we concatenate the aggregated representations 
for each modality into a joint multimodal representation 
(Concat-Multimodal in Figure 1) for classifcation. 

In total, this creates a multimodal representation of facial behav-
ior with 79968(= 4 × 9996 × 2) features. 

4.4 Classifcation 
Finally, we provide the resulting time series representation to either 
one of two classifers for training and inference 1, resulting in two 
diferent approaches for recollection detection: 

4.4.1 RIDGE:. The original ROCKET algorithm and its derivatives 
rely on an �2-regularized linear model (i.e., Ridge Regression) for 
classifcation [10]. This choice is motivated by the model’s fast 
training time and the capacity to handle high-dimensional input 
with many redundant features. Moreover, given the intuitive inter-
pretation of PPV features as the presence of the pattern represented 
by specifc kernels, the assumption of a linear relationship between 
them and a target in the original ROCKET algorithm seems broadly 
plausible. Building on this notion, in our aggregated time series 
representation, individual features can be conceived as indicating 
either the average presence or overall variation of a specifc pattern 
across a modality. Here, a linear relationship between these features 
and target classes seems similarly plausible. Together, this makes 
a Ridge classifer a sensible choice. We apply Standardization (i.e., 
conversion to Z-Scores) to the aggregated time series representation 
before classifcation. 

4.4.2 PCA99-SVM:. In this approach, we feed our time series repre-
sentation into a Support Vector Machine with Radial Basis Function 
(RBF)-Kernel. SVMs have been widely used in similar user-modeling 
tasks (e.g., afect detection [12]) and are typically data-efcient, 
making them a suitable choice for our explorations. Moreover, ex-
isting work using ROCKET for behavioral modeling has revealed 
improved performance when using SVMs over the default Ridge 
Classifer approach [13]. Before classifcation, we apply Standardiza-
tion (i.e., conversion to Z-Scores) and Principal Component Analysis 
(PCA) on our aggregated time series representation, preserving 99% 
of the input variance. Decreasing the dimensionality of our data in 
this way reduces the training time the SVM needs substantially. 

5 EMPIRICAL INVESTIGATIONS 
This section describes a series of machine learning experiments 
using our predictive modeling approach to explore the feasibility 
of detecting recollections from facial behavior. Concretely, we in-
vestigate two scenarios with diferent experiment setups: (1) the 
potential for Person-independent (PI) detections detections, i.e., we 
evaluate whether either of our two approaches can identify and 
exploit similarities across individuals’ facial behavior to make pre-
dictions on data from users that they were not trained on. Addi-
tionally, we investigate the potential for (2) Video-independent (VI) 
1For both classifes and the PCA, we rely on the existing implementations in the python 
library Scikit-Learn [28] 

detections, where we evaluate the capacity of our models to detect 
recollections occurring in potentially known individuals from their 
behavioral responses to novel videos not included in the training 
data. The outcome of either experiment holds immediate relevance 
for user-modeling in applications. For example, the capacity for 
person-independent detections is highly desirable for systems since 
it would enable them to estimate users’ recollections without re-
quiring additional person-specifc training. In essence, they would 
work for new users already on the frst trial (i.e., by avoiding a type 
of cold-start problem for predictions [24]). However, applications 
– especially those providing media content –, can often draw on 
a stable user base regularly interacting with novel content. Video 
streaming services are a prime example of this. In such a setting, a 
system might feasibly have access to past instances of any users’ 
behavior as training data. It can then use this to facilitate personal-
ized predictions based on a user’s behavior while watching newly 
available content for which no training data exists yet (i.e., in a 
video-independent way). In our experiments for these scenarios, 
we collect a sample with multiple data points of test performance 
for both our RIDGE and PCA99-SVM approach. The distribution 
of these samples forms the basis for statistical analyses in which 
we compare the performance of our approaches (1) against that 
of a majority classifer as a baseline to verify improvement over 
chance predictions, and (2) compare our two against each other. 
Beyond these comparisons, we conduct additional analyses of the 
performance of both approaches, focusing on their dependency 
on person-specifc recollection biases for accurate predictions and 
the importance of individual modalities of facial behavior for their 
performance. 

5.1 Experimental Setup 
5.1.1 Person-independent (PI) Detections: For training and eval-
uation of our models in this series, we rely on a Nested 10-Fold 
Leave-Persons-Out Cross-Validation procedure (10-Fold LPOCV). This 
procedure creates 10-folds such that no data points from the same 
person are simultaneously available for both training and evaluation 
of a model. Consequently, this evaluation provides insights into 
how well predictions based on behavioral patterns generalize to 
responses from new participants. The scheme is nested because it 
uses the assigned training data for a fold to conduct an additional 
inner 5-fold LPOCV for hyperparameter optimization of the clas-
sifer. We repeat this 10-Fold LPOCV-procedure 3 times, grouping 
the data into a diferent set of folds at each iteration. Together, this 
process results in a sample of � = 30 trained models. We keep 
all models trained in this setup and their predictions on the test 
data for further analysis. In particular, we evaluate their predic-
tive performance using the Balanced Accuracy (���� ) metric to 
account for a potential imbalance in the distribution of class la-
bels in our data. It is computed by taking the arithmetic mean of 
sensitivity (true positive rate) and specifcity (true negative rate):

1 �� �� ���� = 2 ( + ). Scores lie in the interval of [0, 1], with 
� � +�� �� +��

a classifer exploiting only the prevalence of the majority class scor-
ing ���� = .5. Overall, this procedure results in a sample of � = 30 
data points for the performance of our approach at PI detections 
of recollection on the data of unseen participants, thus providing 
more robust estimates than a single train-test split. 
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Table 1: Test-performance (���� ) our approaches (RIDGE and PCA99SVM in the person-independent (PI ) and video-independent 
(VI ) settings, including comparison versus Majority Classifer (fxed value of ���� = .5). Signifcant improvements are highlighted 
in bold. 

���� vs. Majority 

���.������� 

PI 
�������ℎ 

RIDGE 
PCA99SVM 

� (�� )
.52 (0.044) 
.512 (0.033) 

���/��� 

.434/.605 

.451/.563 

Δ� 

+.020 
+.012 

� (� � )
2.544 (29) 
2 (29) 

� 

.0165* 

.055 

VI RIDGE 
PCA99SVM 

.589 (0.028) 

.623 (0.037) 
.541/.642 
.526/.705 

+.089 
.123 

17.14 (29) 
18.06 (29) 

<.001*** 
<.001*** 

Figure 2: Test-performance (���� ) of our RIDGE and PCA99-SVM approaches in the person-independent (PI ) and video-
independent (VI ) settings. The orange line demarcates the performance of a Majority Classifer. 

5.1.2 Video-independent (VI) Detections: For this series of experi-
ments, we follow a Nested 10-Fold Leave-Videos-Out Cross-Validation 
(LVOCV) procedure, which is repeated 3-times. It includes the same 
steps as described above, except that it ensures that no responses of 
participants to the same video are present across folds. Note that this 
procedure results in video-independent but not person-independent 
detections because of how our dataset has been collected. In partic-
ular, responses from the same person are associated with diferent 
videos and may be shared across training and test folds. Overall, this 
procedure results in � = 30 trained models and a sample of � = 30 
measures of their associated test performance for VI detections of 
recollections (in ���� ). 

5.2 Results and Analysis 
In the following, we describe the results for person-independent 
(PI) and video-independent (IV) detections and additional analysis 
and experiments related to their performance. We show a graphical 
overview of the test performance displayed by the two variants of 
our architecture for both settings in Figure 2). 

5.2.1 Comparison against Majority Classifier: To verify the feasi-
bility of automatic detections with our approach we compare the 
displayed performance to that achieved by a majority classifer (i.e., 
���� = .5) using statistical analyses with one-sample t-Tests (see 
Table 1. This comparison indicates a slight improvement over the 
majority classifer baseline for detections in a PI setting for RIDGE. 
At the same time, our PCA99-SVM approach appears to display no 
substantial performance in this setting. In contrast, our approaches 
perform substantially above the majority baseline at VI detections. 

Together, these results confrm the feasibility of automatic detec-
tions of spontaneous recollections in a VI setting while casting 
doubt on the ease of detections in the more generic PI setting. 

5.2.2 Comparison between PI and VI detections: Statistical compar-
ison using two-sample t-tests between the average performance 
of our approaches within each experimental setting confrm that 
PCA99-SVM outperforms RIDGE at video-independent (Δ� = .03, 
� (54.187) = 3.976, � < .001), but not at person-independent predic-
tions (Δ� = −.008, � (53.764) = −0.837, � = .407). 

5.2.3 Dependence of VI detections on Person-specific Recollection 
Bias: One potential explanation for the better performance in VI 
detections is that models might have learned to identify specifc 
individuals in the training dataset and exploit their overall tendency 
for recollection. In the following, we describe a series of experiments 
to explore the dependence of our models on exploiting such person-
specifc biases in the training set. 

After transforming the video data into a time series of behavioral 
signals, all visual information is lost; only properties consistently 
present across a person’s time series data could feasibly indicate 
their identity to our models. In particular, we want to rule out the 
efect of any similarity in participant position infuencing signal 
amplitude or range (e.g., a person always positioned close to the 
camera might consistently have a greater apparent range of motion). 
For this purpose, we use two diferent transformations on univariate 
time series to generate invariant representations in participant 
position or movement variance. The one is (1) Centering (subtracting 
the mean amplitude of a time series from that at each time step), 
and the other (2) Standardization (centering and then dividing by 
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the standard deviation). See the relevant markers in Figure 1 for 
the locations in our overall architecture where we integrate these 
operations. 

We collect 30 performance samples using these transformations 
for both the RIDGE and the PCA99-SVM approach by training them 
in the VI prediction setting described in Section 5.1.2 above. We 
re-use the same cross-validation splits as with the untransformed 
time series. This process creates data for the following three condi-
tions: the original models without any transformation (None), when 
centering is applied (Center), and when standardization is applied 
(Standard). 

Paired t-tests between these performance samples reveal that 
centering does not signifcantly decrease the performance of RIDGE 
but does hamper that of PCA99-SVM(Δ� = −.032,� (29) = −3.568, 
� =< .001.). In contrast to this, standardization results in a sig-
nifcant decrease in performance for both approaches (RIDGE: 
Δ� = −.045,� (29) = −5.925, � =< .001.; PCA99-SVM: Δ� = −.038, 
� (29) = −4.436, � =< .001.). These results quantify the impact of 
destroying information that models could use to exploit person-
specifc recollection tendencies in predictions. However, note that 
these transformations also may eliminate aspects of facial behavior 
that are likely legitimate for predictions (e.g., whether someone 
is leaning in to pay closer attention throughout a video). As such, 
transformations could harm performance beyond what could rea-
sonably be attributed to preventing the exploitation of biases. In 
the following, we describe additional analyses to investigate this 
potential impact. 

For this purpose, we frst compute an indicator for the average 
imbalance in the training examples for each participant across the 
folds of the LVOCV scheme (i.e., their person-specifc recollection 
bias as available to the model). It consists of the absolute distance of 
the observed proportion of positive training samples for a partici-
pant from a perfectly balanced proportion of .5. This measure is con-
strained to the interval [0, .5] and is high for a strongly imbalanced 
dataset. In addition, we use the predictions of the trained models to 
compute the per-participant-average accuracy achieved across all 
folds per distortion condition. Using these measures, we then con-
duct a statistical analysis of the diferences in the person-specifc 
accuracy (�������) across the three diferent transformation condi-
tions (����� � �������; factor with 3 levels) while controlling for 
the average recollection bias of a person in the relevant training data 
(�����������) as a covariate. Because data from the same partici-
pants are present across the conditions, observations are no longer 
independent (i.e., repeated measures). For this reason, we rely on 
linear mixed-efects models, which can account for this nested struc-
ture by including random efects (i.e., where supported by the data, 
we include participant identity as a factor with 295 levels when 
ftting models). Results reveal a signifcant efect of the transforma-
tions on the average participant-specifc accuracy for both PCA99-
SVM (� (2, 590) = 64.995, � < .001, Δ�2 = .093) and more strongly 
for RIDGE (� (2, 885) = 157.108, � < .001, Δ�2 = .258). Posthoc 
comparisons of the estimated marginal means reveal that there is no 
signifcant diference in the person-wise average accuracy between 
the Center- and the None-condition (RIDGE: Δ� = .0,� (593) = 0, 
� = 1.); PCA99-SVM: Δ� = −.02,� (592) = −2.105,� =< .107). 
This fnding indicates that centering has no substantial efect on 
the accuracy of predictions for a person when controlling for 

imbalances in their training data. In contrast, there is a signif-
cantly lower performance in the Standard-condition for both ap-
proaches (RIDGE: Δ� = −.31,� (593) = −15.317, � =< .001., SVM: 
Δ� = −.149,� (593) = −10.716, � =< .001.). This strong drop indi-
cates standardization harms performance beyond what could be 
attributed to imabalanced training data. 

These fndings suggest that centering destroys information about 
person-specifc imbalances more specifcally than standardization. 
Consequently, it seems plausible that the degree to which perfor-
mance of our approaches depends on exploiting person-specifc rec-
ollection biases resides between the None- and Center-conditions 
(i.e., around 0% for RIDGE, and around 3% for PCA99-SVM). More-
over, the results indicate that mere exploitation of person-specifc 
biases in recollection is not the primary driver for the performance 
of either approach in the VI-setting. 

5.2.4 Contribution of Individual Modalities to VI detections: To un-
derstand the relative contributions of the diferent aspects of facial 
behavior, we conduct systematic ablation studies. We limit these 
explorations to the VI setting since our approaches displayed low 
predictive accuracy at PI detections. Concretely, to investigate the 
informative value of specifc modalities, we generate new perfor-
mance samples for either of our approaches with the same splits of 
the repeated 10-fold LVOCV scheme used to evaluate their over-
all performance. However, instead of training and testing models 
of both approaches with the full input data, we drop all features 
belonging to one particular modality. We repeat this process for 
each modality in turn, i.e., we frst drop all features for Head Ro-
tation (w/o R), then Head Position (w/o P), next Eye Gaze (w/o G), 
and fnally Facial Expressions (w/o E). This procedure results in 
an additional set of � = 30 trained models and performance sam-
ples for each modality per approach. Comparing the performance 
diferences to samples from the full model (R+P+G+E) provides in-
sights into a modality’s unique information, with modalities making 
more unique contributions to the overall performance resulting in a 
steeper drop. We show a statistical analysis of the diference in per-
formance in Table 2 and graphical depiction in Figure 3. The results 
demonstrate that removing most modalities does not signifcantly 
change performance. The sole exception are Facial Expressions (E), 
denying access to which reduces performance (signifcantly so in 
the PCA99-SVM approach, but with a similar trend for RIDGE). 
This fnding indicates that facial expressions contribute unique 
information for the detection and cannot be easily compensated by 
any other modalities. This fnding is a contrast to the remaining 
modalities. Notably, there is no signifcant drop in performance 
when Eye Gaze (G) is removed, suggesting that Head Position (P) 
and Head Rotation (R) provide largely the same information to gaze 
behavior in this setting. 

6 DISCUSSION 

6.1 Empirical Findings 
Our empirical investigations explore the possibility of automatically 
analyzing facial behavior to detect the occurrence of spontaneous 
recollections. Concretely, our goal is to assess whether it is possible 
to use facial behavior to diferentiate between responses to a video 
that involve recollections and those that do not. We investigate this 
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Table 2: Test-performance (���� ) of the modality-wise ablations for each of the two variants of our approach (RIDGE and 
PCA99SVM in the video-independent (VI ) experiment setting. Includes statistical comparisons between models without the 
indicated modality (e.g. w/o R is without Head Rotation) and models with access to all modalities. Signifcant diferences are 
highlighted in bold. 

���� vs. G+P+R+E 

RIDGE 

PCA99SVM 

R+P+G+E 
w/o R 
w/o P 
w/o G 
w/o E 

R+P+G+E 
w/o R 
w/o P 
w/o G 
w/o E 

� (�� )
.589 (0.028) 
.585 (0.030) 
.587 (0.035) 
.592 (0.031) 
.571 (0.037) 
.623 (0.037) 
.619 (0.036) 
.609 (0.037) 
.606 (0.027) 
.593 (0.033) 

���/��� 

.541/.642 

.533/.686 

.507/.650 

.528/,644 

.505/.656 

.526/.705 

.542/.693 

.532/.684 

.564/.655 

.518/.664 

Δ� 

– 
-.004 
-.002 
+.003 
-.018 

– 
-.004 
-.014 
-.017 
-.030 

� (� � ) 
– 
-0.646 (29) 
-0.268 (29) 
0.294 (29) 
-1.873 (29) 
– 
-0.38769 (29) 
-1.5652 (29) 
-1.9284 (29) 
-4.409 (29) 

� 

– 
.523 
.791 
.771 
.071 

– 
.701 
.128 
.063 
<.001*** 

R: Head Rotation; P: Head Position; G: Eye Gaze; E: Facial Expressions; w/o: trained without modality 

Figure 3: Test-performance (���� ) of the modality-wise ablations for each of our two approaches RIDGE and PCA99-SVM) in 
the video-independent (VI ) experiment setting. The orange line demarcates the performance of a Majority Classifer. 

possibility in a person-independent (PI) and a video-independent 
(VI) setting. 

Our fndings suggest that PI detection may be possible, at least in 
principle, but is a very challenging task: we observe a very low av-
erage performance in this setting, with only one of our approaches 
performing signifcantly above the majority baseline. In contrast 
to this, the results of the VI experiments are promising for user-
modeling and personalization research. They indicate the principal 
possibility of detecting whether a particular video stimulus has trig-
gered personal memories in viewers under challenging in-the-wild 
conditions. Moreover, their performance suggests the existence of 
person-specifc behavioral patterns that can potentially be learned 
from relatively few observations of a particular user’s responses. 
Despite this, it is unclear what role the video stimuli play as context 
and drivers of responses. For example, it might be that people ex-
periencing a recollection fail to respond to certain cues present in 
the video, which reliably evoke characteristic responses from view-
ers otherwise. Targeted research is needed to clarify these points. 
Such a comparison would beneft from a dataset that includes a 
greater variation in participants and a greater amount of responses 
from each (Mementos only provides up to 7 unique responses per 

participant). While our models appear not to substantially exploit in-
valid person-specifc biases when making predictions, future study 
datasets would be constructed in ways that intentionally safeguard 
against this possibility. For example, responses from the same par-
ticipant could be recorded spaced out in time and taking place in 
diferent viewing conditions. 

Finally, our investigations of the relative importance of difer-
ent modalities for predictions reveal that facial expressions hold 
unique insights into the occurrence of recollections. This fnding is 
broadly in alignment with El Haj et al. [17], who identifed a connec-
tion between facial expressions and episodic memories. However, 
facial activity is overall sparse in the responses captured by the Me-
mentos dataset (see the relevant descriptions in the ofcial dataset 
publication [16]). Consequently, it might be a relatively strong in-
dicator for recollections when any facial activity does occur. In 
stark contrast, eye gaze did not contribute much unique informa-
tion to predictions in our setting. This fnding is surprising, given 
that much of the related work on internally-directed attention and 
mind-wandering has repeatedly identifed gaze behavior as an indi-
cator [1]. Notably, in our investigation, there seems to be no added 
beneft of accessing information about a person’s eye gaze com-
pared to looking at the overall orientation of their head. A possible 
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explanation for this could be the challenging setting captured by 
the dataset, with substantial variation in camera angle, distance to 
the camera, and lighting conditions. These conditions may result 
in noisy gaze detections that do not facilitate efective predictions. 
Moreover, many aspects of eye-related behavior indicative of some 
forms of internally-directed attention, e.g., pupil dilation, are not 
accessible using our approach [1]. Nevertheless, the possibility of 
substituting eye gaze with head orientation features for detecting 
recollections could beneft deployment in real-world applications 
since the latter are arguably less sensitive to certain conditions that 
are prominent in the wild (e.g., occlusions or refections by glasses). 
Future research should explore this connection more closely. Be-
yond application benefts, such investigations might shed light 
on the role of facial behavior and its diferent aspects as markers 
of internally-directed attention more generally. In particular, the 
majority of computational work on internally-directed attention 
has focused on stimuli or tasks involving a strong visual compo-
nent, such as reading [6], driving [38], or flm comprehension [22]. 
This focus could be why eye behavior has been identifed as a reli-
able source for automatic detections (see the relevant discussion 
of this point by Annerer-Walcher et al. [1]). The comparatively 
low importance of capturing eye gaze behavior for detections in 
the music-oriented setting that we investigate might indicate al-
ternative behavioral patterns when other sensory modalities are 
more important. Datasets capturing the evocativeness of stimuli 
across diferent modalities could shed further light on the role of 
diferent behavioral components and their overall use for detecting 
recollections. 

6.2 Limitations 
Our fndings have several limitations rooted in our technological 
approach and the dataset we relied on for our empirical investiga-
tion. Regarding technology, we only provide explorations with a 
particular computational architecture as a proof-of-concept. While 
it serves our research goal of exploring the principal feasibility 
of automatic recollection detection, our comparison ofers only 
limited insights into the overall difculty of the task, e.g., with dif-
ferent algorithms for time series representation and classifcation. 
Notably, large-scale comparisons demonstrate a substantial degree 
of variability in the performance of any one particular approach 
for representing time series across tasks, with large-scale ensem-
bles of diferent approaches consistently performing best (albeit 
at great computational expense) [2, 11]. We have motivated our 
decision to choose MINIROCKET based on its performance and 
overall time and data efciency. However, other representations 
might lead to better results, and future work could explore a wider 
variety of diferent modeling approaches. Notably, our experiments 
reveal poor performance in the PI-setting, pointing towards two 
potential causes: (1) that our specifc approach is ill-suited to exploit 
any existing person-independent behavioral markers efectively, 
or (2) that patterns of facial activity indicating recollections in a 
person-independent fashion are sparse and comparatively uninfor-
mative. An indication that our approach for this task might limit 
performance is that related work on detecting mind wandering and 
internally-directed attention has repeatedly identifed potential for 
person-independent predictions [1, 6]. However, some of this work 

has been undertaken in more stable laboratory conditions, aims for 
predictions at a fner-grained temporal resolution, and involves dif-
ferent task settings (e.g., detecting attentional drifts during reading 
[6] or interacting with a tutoring system [7]). Moreover, there are 
also existing computational studies that underline the challenge of 
person-independent predictions of mind-wandering (e.g., based on 
driver behavior [38]). Overall, this state of afairs makes it difcult 
to compare existing fndings to ours directly and requires further 
research focusing on recollections. However, the comparatively 
strong performance of our approach in the VI experiments suggests 
both the existence of person-specifc behavioral markers and the 
capacity of our approach to pick them up. A straightforward way to 
shed further light on the dependence of the results on our particular 
approach would be to evaluate the performance of alternative ar-
chitectures in both PI and VI experiment settings on the Mementos 
dataset. 

Beyond technological aspects, there might be additional limi-
tations resulting from our dataset. For once, the video segments 
to which participants in Mementos respond are short (about one 
minute). This duration might not be enough for spontaneous 
thoughts with a prolonged or pronounced behavioral component 
to emerge for automatic analysis to register. Moreover, the recol-
lections captured in the dataset are not coded in terms of their 
specifc phenomenological properties. For example, whether they 
are primarily episodic (involving mental time traveling back to spe-
cifc events) or semantic (mainly language-based factual knowledge 
about one’s past). However, these diferent types have been associ-
ated with variations in the degree of facial expressions that they 
evoke [17]. Additionally, the dataset does not lend itself to studying 
whether patterns of facial behavior indicative of recollections mean-
ingfully difer from those for other forms of internal attention (such 
as creative thinking or goal-directed thought [8]). Consequently, 
future explorations of detecting recollections from facial behavior 
would beneft from additional datasets capturing both (1) responses 
to various kinds of media stimuli in a wider variety of situations 
(e.g., photographs, text, or musical pieces), and (2) self-reports dif-
ferentiating between various forms of internally directed attention 
in general and types of recollection in specifc. Such corpora would 
substantially support progress towards detecting the evocativeness 
of stimuli and situations, and they would also complement existing 
eforts in modeling states of internally-directed attention more gen-
erally. Finally, the scale of the Mementos dataset limits the types 
of algorithms that can be meaningfully applied to it (e.g., for deep 
learning). As such, the development of larger corpora capturing 
recollection processes in response to stimuli would be a valuable 
asset for further technological research. 

7 SUMMARY AND CONCLUSION 
The personal memories that we associate with people, places, and 
even media content are an important ingredient for what makes 
these things take on signifcance in our present lives. For this rea-
son, recollections can strongly infuence our emotional experience 
in the presence, which, in turn, can defne our responses and atti-
tudes towards whatever triggers them [15]. As such, detecting the 
occurrence of recollections might facilitate powerful potential ca-
pabilities for intelligent systems, such as learning about a person’s 
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unique preferences (e.g., for a particular video) and understanding 
where these come from (e.g., it is because of personal memories 
and not due to stylistic preferences). 

In this article, we have explored a frst step towards leveraging 
this potential by demonstrating the principal feasibility of automat-
ically detecting whether a video has triggered recollections in a 
viewer based on their facial behavior. For this purpose, we have 
developed a predictive modeling architecture that we use in a series 
of machine learning experiments to investigate feasibility in two 
diferent settings that are relevant for applications. One of these 
is person-independent (PI) detection, where ideally, no data from 
any specifc user would be required for training to analyze their 
responses accurately. The other setting is video-independent (VI) de-
tection, where accurate estimates of occurring recollections should 
be possible, at least for responses of an existing user-base to new 
video stimuli, without the system frst needing to be trained on asso-
ciated data for that stimulus. Our results show performance above 
chance level in both settings. However, detection performance was 
overall poor in the PI setting, indicating that detections without 
personalization might be challenging. However, the performance of 
our approaches in the VI setting is promising. Since predictions in 
this setting approximate detections based on an existing user base’s 
responses that are exposed to new video content, this is a fnding of 
direct relevance for application contexts where similar conditions 
hold (e.g., media content platforms). Overall, our fndings indicate 
that recollections detection based on visual analysis of facial be-
havior is principally possible, even in technologically challenging 
in-the-wild conditions. Moreover, in contrast to fndings in exist-
ing research, analysis of our models for VI detections reveal that 
their performance does not substantially depend on access to gaze 
behavior. Instead, they indicate that gaze can be reasonably well 
substituted with more coarse information about head rotation and 
position alone. Because of this, automatic recollection detection 
might be able to side-step some of the challenges faced by gaze esti-
mation in the wild (e.g., refections, eyewear, or angle and distance 
to the camera), further adding the robustness needed for real-world 
applications. Nevertheless, while our fndings are promising and 
indicate a potential for progress towards applications in the wild, 
they also underline the challenging nature of the task and the need 
for further data collection and technological research. 
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