
How does scaling a learning curve influence the curve fitting process?

Chaan van den Oudenhoven
Supervisor(s): Tom Viering , Taylan Turan, Cheng Yan

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
January 26, 2025

Name of the student: Chaan van den Oudenhoven Final project course: CSE3000 Research Project
Thesis committee: Tom Viering , Taylan Turan, Cheng Yan, Arie van Deursen

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract

Learning curves show the learning rate of a clas-
sifier by plotting the dataset size used to train the
classifier versus the error rate. By extrapolating
these curves it is possible to predict how well the
classifier will perform when trained on dataset sizes
that are currently not available. This can be useful
when trying to determine which classifier to select
when dealing with a classification problem. Ob-
taining these learning curves is usually done by fit-
ting a parametric model to the learning data. This
paper analyzes the potential of fitting the curve in
a different space scaling the fitting data. This is
done by analyzing the accuracy of the fit and the
frequency of the fit succeeding. Our main findings
are that log scaling produces better MSEs than not
scaling, while exponential scaling is inconclusive.

1 Introduction
Modern-day machine learning models are capable of doing
various things, with a common use case being solving a clas-
sification problem [1][2]. However, to solve these problems,
oftentimes significant amounts of data are required to suffi-
ciently train the models. What people oftentimes define as
sufficient in this context is that the performance of the model
should not exceed a certain error rate (in the case of classifica-
tion models). The error rate, also known as the classification
error [3], is the frequency of the classifier getting a classifi-
cation incorrect, represented as a ratio. Finding out exactly
how much data you need to reach a certain error rate can be
somewhat tricky, yet very important due to the potential mon-
etary or computational cost associated with gathering large
amounts of data. For this reason, it is often times of interest
to try to predict this point based on the error rate of lower
quantities of data.
Mohr [4] describes learning curves as the following: ”Learn-
ing curves describe a system’s performance on a task as a
function over some resource to solve that task.” The way these
curves are usually generated is by varying the amount of data
used to train a classifier and then measuring the error rate by
evaluating on either the training data, validation, or test set.
Curve fitting however is the process of taking some paramet-
ric model and trying to fit it to the learning curve data. For this
process, a parametric model is defined, and the curve-fitting
algorithm aims to find the optimal parameters such that the
loss function is minimized on either the data used to do the
curve on some subset of the data points. This curve can then
be used to predict the error rate on data quantities that are
currently unavailable. This is called interpolation and extrap-
olation.
This curve fitting does, however, have a number of flaws. It
can get stuck in a local minimum [5] or potentially fail to fit
all together. This can potentially make the extrapolation pro-
cess less accurate. Furthermore, Mohr [6] explains a number
of pitfalls that researchers should look out for when trying
to evaluate different curve-fitting techniques. Namely, one of
the mentioned pitfalls regards trying to scale the data before

attempting to curve fit. It explains that the MSE in a cer-
tain space is distinctly different from fitting in another space.
Regardless, we decided to investigate this pitfall more thor-
oughly to discover the impact this procedure might have and
answer the question: ”How does scaling a learning curve in-
fluence the curve fitting process?”

2 Related Works
Research regarding curve fitting after scaling is severely lim-
ited. Regardless, we still discuss some related works regard-
ing the general field of this research.

2.1 Learning Curves
Extensive work has been done within the field of learning
curves. Mohr [6] for example provides a comprehensive
overview of the general shape of learning curves. He debunks
the misconception that learning curves must always be well-
behaved. Well-behaved learning curves are ones that are both
non-increasing and smooth[7] in terms of error rate. How-
ever, some learning curves are ill-behaved and thus do not
always show improvement as the size of the dataset used to
train the classifier increases. One example that he mentions
has to do with something he refers to as the ”peaking phe-
nomenon”, where a classifier improves up until a certain point
and then becomes worse.
Furthermore, there have been various studies regarding ways
to improve the general curve fitting process. For example,
one study [8] proposes a method that involves using artificial
intelligence in the form of a neural network to curve fit. They
manage to fit onto, what they deem, difficult curves with de-
cent accuracies.
Another study [9] aims to improve the fitting process on
specifically NURBS curves. They propose using the geomet-
ric properties of the curves to generate weights that can be
used in the fitting process. They find that their method allows
for better fitting even on noisy data.
Lastly, there is also a study [10] that introduces the CurvPy
library. This library aims to make curve fitting more accessi-
ble to potential users while still retaining enough complexity
for it to be useful.

2.2 LCDB Database
Mohr [11] also introduces the LCDB database. It contains, as
of writing this, more than 4000 unique learning curves spread
over various classifiers from Scikit-learn, with more being
added in the future. This database attempts to ensure that
the learning curves accurately reflect the true error rates of
the classifiers by creating curves using multiple datasets and
splitting these using 5 outer splits which each have 5 inner
splits, resulting in 25 unique learning curves for each unique
pair of classifier and dataset. This paper contains a couple
of notable findings. First of all, the majority of the learn-
ing curves they analyzed were well-behaved. Furthermore,
they also find that there is no overall curve model, but rather
that it depends on the size of the training dataset. All of the
experiments we performed make use of the learning curves
provided by this paper.



Figure 1: Example of a learning curve, taken from the LCDB
database [11]

Figure 2: Example of a learning curve along with a curve produced
by fitting a parametric model on it, taken from the LCDB database
[11]

Figure 3: Example of a learning curve along with a curve produced
by fitting a parametric model on it in a space in which we scaled the
Y axis with the natural logarithm, taken from the LCDB database
[11]

Figure 4: Example of 2 learning curves. The green curve is the
curve found in the log space after being scaled back to the normal
space, while the red curve was fit in the normal space, taken from
the LCDB database [11]

Figure 5: Example of a learning curve divided into fitting data, inter-
polation data, and extrapolation data, taken from the LCDB database
[11]

2.3 Curve Fitting
Curve fitting is a technique that involves trying to fit a para-
metric model to a given dataset so that the loss function is
minimized. One way of doing this is through the Levenberg-
Marquardt algorithm (LM)[12]. It combines the ability to
converge quickly from the Gradient Descent algorithm with
the ability to accurately fine-tune from the Gauss-Newton
method. We present a visualization of a learning curve and
a parametric model fit on it in figure 2.

2.4 Measuring Performance Using Interpolation
and Extrapolation

The primary ways in which we measure the performance of
our techniques is through interpolating and extrapolating the
data. Both of these techniques make use of the Mean Squared
Error (MSE) which is defined as follows:



Figure 6: Example of a learning curve divided into fitting data,
interpolation data and extrapolation data along with a curve that
produces great extrapolation but bad interpolation, taken from the
LCDB database [11]

MSE = 1
n

∑n
i=1(Yactual − Ypredicted)

2

Here Yactual is the actual data point, which represents
the error rate of the classifier when trained on the i-th dataset
size, while Ypredicted is the predicted error rate at that dataset
size according to the parametric model.
Interpolation involves trying to approximate unseen data
points between data points that have already been acquired
[13]. We illustrate this in figure 5. Even though we have
access to error rates of classifiers trained on dataset sizes of,
for example, 8 and 11, what if we want to know the error
rate of a classifier trained on a dataset of size 9? Having
access to a continuous function that fits well on all the data
points would allow us to interpolate between these known
data points and come up with an estimation of any unknown
data point in between them. Extrapolation on the other hand
involves calculating the MSE between predicted values and
data points to the right of the last point used for the curve
fitting. These points are not in between any known points,
or at the very least points that were used for curve fitting.
One practical use case in which extrapolation is useful is
when performing early discarding. Early discarding involves
having to choose between multiple classifiers and then
discarding some of them if, according to your extrapolation
results, they will perform worse compared to the rest and
training dataset sizes grow [14]. A curve that gives a good
extrapolation value indicates that it more accurately predicts
the error rate for larger, yet unseen, amounts of training data
than a curve with a lower extrapolation value.
A potential flaw regarding measuring interpolation and
extrapolation independently is something we illustrate in
figure 6. This figure shows an example of a line that produces
great extrapolation but bad interpolation. Even though this
line would show great performance if we were to measure
only extrapolation, overall it would still be a very bad fit. For

this reason, we decided to use the sum of interpolation and
extrapolation instead to see how well our curves fit on unseen
data in all parts of the graph.

2.5 Fitting after axis scaling

Figure 7: Example plot of the effect of log scaling the Y axis of a
learning curve

The main behavior that this paper aims to research is what
happens when we try to fit our curves after scaling one of the
two axes. To illustrate this, we showcase example figure 7.
The data in the left graph shows an exponential relationship
between X and Y, but if we plot it after scaling the Y axis,
it becomes a linear relationship. We hypothesize that trying
to fit this simpler, more linear, curve could result in a faster
convergence rate of the MSE, which is what the curve-fitting
algorithm is trying to optimize. To then produce a curve that
fits in the original space, we scale both the data and the func-
tion with the inverse of our original scaling method. Addi-
tionally, we also wish to know what the effect would be on
the quality of the fit itself, both in terms of whether the curve
fits more reliably or if the MSE of the fit turns out to be bet-
ter. Our general procedure is as follows: First we define the
learning curve we want to fit on and the parametric model we
want to fit with. The LCDB database comes with learning
curves for classifiers evaluated on the training data, evalua-
tion data, and test data. Due to the fact that in the real world,
we want to predict how well our classifier will perform on test
data, we decided to use this one for our experiments. Further-
more, since the LCDB database comes with learning curves
produced using different training data splits, we use the mean
curve of all 25 splits to attempt to avoid any bias the curve
might have due to taking a specific split. As for our paramet-
ric model, we use one of the parametric models defined by
Viering[11]:
EXP3 : a ∗ e−b∗x + c Next we define and use our scalar
function. Due to time constraints, our experiments focus on
the effects of scaling the Y-axis. The way we do this is by
scaling both the Y values and the entire parametric function
with the natural logarithm (in this example). This means that
all the data points go from (X, Y) to (X, log(Y)) while our
parametric model becomes log(a ∗ e−b∗x + c).

For exponential scaling, this is very similar, except we con-
vert all the data points to (X, eY ) and our parametric model
becomes e(a∗e

−b∗x+c) we fit the curve in this space, and sub-
sequently, we take the optimal parameters found in the scaled



space and use them in the original space Lastly we analyze
our findings using our metrics. We are most interested in an-
alyzing the following behavior:
First we wish to know the accuracy of the fit in terms of MSE
for the sum of interpolation and extrapolation. We use the
sum due to the previously stated flaw regarding only measur-
ing one. Secondly we wish to know what the frequency of
successful fits is. In the case that two fitting procedures result
in similar MSEs, it is still possible that one fitting procedure
produces successful fits more frequently which could be ben-
eficial from a computational standpoint as that way fewer re-
tries would be required in case of the curve fitting procedure
producing a failed fit. We define a failed fit as one that sur-
passes the default amount of max function calls that the Scipy
curve fit uses, which is 800 or if the best MSE produced by
any of the scaling methods is more than 100. This last point
was inspired by Viering[11]

3 Experimental Setup

Learner No Scalar vs
Log Scalar

No Scalar vs
Exp Scalar

SVC linear .022 <.001
SVC poly .003 <.001
SVC rbf .025 <.001
SVC sigmoid .193 .419
DecisionTree <.001 <.001
ExtraTree <.001 <.001
LogisticRegression <.001 <.001
PassiveAggressive .035 <.001
Perceptron <.001 <.001
RidgeClassifier <.001 <.001
SGDClassifier .002 <.001
MLPClassifier <.001 <.001
LDA .082 .013
QDA .436 .013
BernoulliNB .047 <.001
MultinomialNB .738 .008
ComplementNB .054 .012
GaussianNB .621 .162
KNN <.001 <.001
NearestCentroid .749 .015
ens.ExtraTrees <.001 <.001
ens.RandomForest .002 <.001
ens.GradientBoosting <.001 <.001
DummyClassifier .010 .043

Table 1: Wilcoxon signed-rank test results comparing different
scalars

To conduct our experiment and answer our research ques-
tion we make use of the following methodology:

• First, we collect the learning curves of the 24 different
learners that are provided in the LCDB database. These
come with precomputed mean learning curves using dif-
ferent train and test splits to create curves that more ac-
curately represent the true learning rate, instead of being
biased due to choosing a specific split.

• Subsequently, we perform the curve fitting using the
model EXP3. As for our scalars, we scalars, we scale
with the natural log and the exponential according to our
previously defined methodology. Furthermore, due to
certain learning curves producing error rates of 0, we set
the MSE to be a very small number of 0.0001 at a mini-
mum so we can still perform the Natural log scaling.

• After we have gathered the models and functions, we
perform the curve fitting procedure on each unique pair
of learners and models using the SciPy [15] curve fit-
ting implementation. Due to the fact that curve fitting
has a chance of failing, and because we wish to analyze
how curve fitting affects the chance of a successful fit,
we perform 50 curve fits per combination of learner and
dataset for every scaling technique. The only difference
between curve fits is the initial guesses of the parame-
ters. We sample these from the uniform distribution be-
tween 0 and 1. Since the LM algorithm is deterministic,
sampling for our initial guesses is necessary to produce
different fits between our 50 attempts, although we rec-
ognize that the choice of our sampling distribution and
the number of attempts could possibly have an influence
on the results of our experiment.

• Lastly we scale the curve back to the original space, once
again as defined in our methodology. We then compare
it to a curve that was fit on data in the original space
using the following two metrics:

– The MSE calculated for the sum of the interpola-
tion and extrapolation. We measure interpolation
by taking the first 80% of our data points and uni-
formly taking 20% of that 80 to produce our inter-
polation points resulting in 64% of the total data
being used for fitting. For extrapolation, we use the
last 20% of the data.

– The frequency of a curve fit being successful. Of-
tentimes the curve fitting process fails, thus a higher
success frequency would indicate that the curve fit-
ting procedure was easier to perform.

4 Results
Figure 8 depicts a bar chart depicting the performance of the
curve fitting algorithm when using different scaling methods.
For each learner, the three bars depict the mean MSE of
Sum(interpolation, extrapolation) over all the datasets for
not scaling, scaling using the log, and scaling using the
exponential function. We see that out of the 3 scaling
methods, log scaling produces the best overall MSE, while
exponential scaling.

In table 2 we display how often each scaling technique
produces the best MSE. To clarify, for each learner we fit on
all of the datasets using the specific scaling techniques. Every
time a specific scalar produces the best MSE, we count that
as one ”best MSE”. We observe that for every single learner
scaling with the log produced the highest frequency of best
MSEs while exponential scaling produced the second bet for
every learner except DummyClassifier, ens.ExtraTrees and



Figure 8: Bar chart depicting the performance of the curve fitting
algorithm when using different scaling methods. For each learner,
the three bars depict the mean MSE of Sum(interpolation, extrapo-
lation) over all the datasets for not scaling, scaling using the log, and
scaling using the exponential function

Figure 9: Bar chart depicting the mean frequency of fits failing over
the different scaling methods. For each learner, the three bars depict
the mean frequencies over all the datasets for not scaling, scaling
using the log, and scaling using the exponential function

RidgeClassifier.

In table 1 we produce a Wilcoxon signed-rank test[16]
comparing the MSE results between the pairs (no scaling,
log scaling) and (no scaling, exponential scaling). This test
allows for comparisons between pairs of dependent data. Our
null hypothesis in this case is:

H0 :

The median difference between paired samples is zero (no
difference).

Furthermore, we reject the null hypothesis for P<.05
It is important to note that obtaining a low P only indicates
that it is highly likely that the two compared datasets follow
a different distribution, but not necessarily that one produces
better MSEs than the other. For this reason, we have to
cross-reference it with figure 8

5 Discussion
5.1 Discussion of Results
Most of our findings, especially table 2 appear to indicate that
scaling the Y axis with the log causes the parametric model to
create better fits for the entire curve, according to our metric.
This finding supports our previously stated hypothesis.
As for scaling the Y axis with the exponential function, it
is quite difficult to draw any conclusions. Simply looking at
figure 8 seems to indicate a slight deterioration of the mean fit
quality for most of the classifiers. However, when looking at
figure 2, there seem to be certain classifiers for which scaling
with the exponential function produces better fits significantly
more often. Examples of these are these are SVC sigmoid
and GaussianNB.

5.2 Potential Flaws and Explanations
Regarding our methodology, there are a couple of potential
flaws. First of all, as mentioned before, our method for
comparing the frequency of successful fits involves changing
the initial guesses of the parameters by sampling from a
distribution between our 50 fit attempts. The resulting
frequency could however be heavily influenced by the
distribution that these guesses are sampled from along with
the amount of attempts. Increasing the number of attempts
and distributions was however infeasible due to a lack of
computational resources.

Furthermore regarding our methodology for Y axis scaling,
while this methodology produces a better overall MSE when
log scaling compared to not scaling at all, what could be
the case is that this is influenced by the loss function that
this is trying to optimize. It is possible that the main reason
why Y axis scaling produces different parameters is simply
because the loss in the scaled space is different than in the
normal space. This possibility has been mentioned by [6]
and Singh [17] raises concerns about fitting in the log space
as well. This could also partially explain why log scaling
seems to perform so well. Since most learning curves are



Learner No scalar log scaling exponential
SVC linear 12 42 18
SVC poly 9 49 14
SVC rbf 9 45 18
SVC sigmoid 5 37 30
DecisionTree 4 61 7
ExtraTree 2 60 10
LogisticRegression 11 50 11
PassiveAggressive 9 42 21
Perceptron 10 48 14
RidgeClassifier 13 47 12
SGDClassifier 14 44 14
MLPClassifier 4 59 9
LDA 9 37 26
QDA 16 34 22
BernoulliNB 10 43 19
MultinomialNB 8 27 21
ComplementNB 6 33 17
GaussianNB 8 35 29
KNN 10 48 14
NearestCentroid 10 30 32
ens.ExtraTrees 12 51 9
ens.RandomForest 13 48 11
ens.GradientBoosting 8 56 8
DummyClassifier 18 39 14

Table 2: Best MSE counts for each learner and scalar. Each cell indicates the number of datasets for which that scalar produced the best MSE
for that classifier

well-behaved and more importantly have a generally non-
increasing error rate. What might happen is that data points
on the left side of the curve, which are bigger compared to
the right, have comparatively less weight in the log space,
which causes the curve to prioritize later points of the fitting
data when curve fitting. Then, because data points on the
right side of the curve tend to converge, i.e their difference
in terms of error rate is not as much as on the left, having
a curve that weighs the later fitting points more could also
result in it fitting very well on the extrapolation points.

Lastly, we performed our methodology on the classifier
and dataset combinations that the LCDB database provides.
However, some of the curves and datasets in this database
contain quite a lot of noise. One of which is the learner
SVC Sigmoid, which is also apparent in figure 9 in which it
produced the highest mean frequency of failed fits compared
to all of the classifiers. While we show our results per
classifier, we do not do this per dataset. Including pairs of
classifiers and datasets that produced very noisy learning
curves could have had a significant impact on our results,
however for the sake of not nitpicking we still decided to
include them in our analysis.

6 Conclusions and Future Work
6.1 Conclusion
In conclusion, in this paper, we aimed to analyze the effects
of curve fitting in a scaled space. We did this by fitting after

scaling the Y-axis using log scaling and exponential scaling.
We evaluated these fits by measuring the mean sum of the in-
terpolation and extrapolation for every classifier over all the
datasets provided by the LCDB database along with perform-
ing a Wilcoxon signed rank test and showing a comparison
table depicting how often each scaling technique managed to
produce the best fit for a specific pair of classifier and dataset.
We find that in the majority of cases, scaling with the log pro-
duced the best MSEs for different (classifier, dataset) pairs,
while the effects of exponential scaling are difficult to con-
clusively comment on. Furthermore, after running a statisti-
cal test we conclude that most of the found results are statis-
tically significant.

We do however note that these results should perhaps not
be taken at face value as we have discussed a number of
choices that we made in our methodology that could have had
a significant impact. The impact of these choices should be
investigated in future work.

6.2 Future Work
Most of our recommendations regarding research that aims to
expand upon ours have to do with the various potential flaws
that we have mentioned earlier.
First of all, the LM algorithm tries to optimize the MSE by
default, so future research should look into analyzing the ef-
fect of applying our methodology while curve fitting using
a different loss function, possibly the absolute distance. Al-
ternatively, something similar to this can also be achieved by
making use of the sigma parameter in the curve fit function,



which allows the user to attach weights to the fitting data.
Second of all, future work should apply our methodology
while sampling from a different distribution. Especially for
our failed fits analysis, this could have had a significant im-
pact.
Furthermore, while we only report on the sum of the interpo-
lation and extrapolation, researching in what ways those two
metrics are influenced individually by our methodology could
provide interesting results as well. Lastly, one metric that we
did not analyze but we believe could be interesting is the num-
ber of function calls that were done during the curve fitting
procedure. A lower amount of function calls for a specific
scaling technique could indicate that the curve fitting proce-
dure happens faster.

7 Responsible Research
7.1 Ethical Considerations
Since our research is related to machine learning models and
figuring out ways to more accurately predict their learning
rates, there are numerous ethical concerns to consider.
First of all, while we ourselves do not intend to do this,
machine learning models can potentially be used for ne-
farious purposes. Considering that we attempt to provide
ways to more accurately predict the accuracy of a machine
learning model as the provided data set grows, this could
result in some parties using our findings to better gauge how
much data they should gather for their model. Using this
more accurate prediction, they might then be more tempted
to acquire more data, data which could in turn be acquired
illegally or at the very least without informing the sources
they got the data from.

7.2 Reproducibility
In terms of the reproducibility of our research, since our code
is publicly available and we have outlined our methodology
in detail, we believe that our research is fully reproducible
to any party that might be interested in doing so. Addi-
tionally, the repository containing our code also contains the
datasets from the LCDB database we used. The repository
containing the latest version of our code can be found here:
https://github.com/Coudenho/Research Project Q2

7.3 Use of Large Language Models
The ways in which Large Language Models were used were
for code generation in my experiment and for general con-
cept explanation for personal use. This does include code for
generating latex tables like the ones we use in this report. In
no way were they used to produce any of the text in this re-
port. All the text in this paper that is not directly a part of a
table or figure, is a part of the title page, or is referenced to
be from an outside source is solely written by the author(s) of
this paper.

References
[1] Aized Soofi and Arshad Awan. Classification tech-

niques in machine learning: Applications and issues.

Journal of Basic Applied Sciences, 13:459–465, 08
2017.

[2] Haoyuan Tan. Machine learning algorithm for clas-
sification. Journal of Physics: Conference Series,
1994:012016, 08 2021.

[3] Marco Loog. Chapter 5 - supervised classification:
Quite a brief overview. In Enrico Camporeale, Simon
Wing, and Jay R. Johnson, editors, Machine Learning
Techniques for Space Weather, pages 113–145. Elsevier,
2018.

[4] Felix Mohr and Jan N. van Rijn. Learning curves for
decision making in supervised machine learning – a sur-
vey, 2022.

[5] Nazri Mohd Nawi, Abdullah Khan, and M.Z. Rehman.
A new levenberg marquardt based back propagation al-
gorithm trained with cuckoo search. Procedia Technol-
ogy, 11:18–23, 2013. 4th International Conference on
Electrical Engineering and Informatics, ICEEI 2013.

[6] Tom Viering and Marco Loog. The shape of learning
curves: A review. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 45(6):7799–7819, June
2023.

[7] G. M. Weiss and A. Battistin. Generating well-behaved
learning curves : An empirical study. 2014.

[8] Michael M. Li and Lily D. Li. A novel method of curve
fitting based on optimized extreme learning machine.
Applied Artificial Intelligence, 34:849 – 865, 2020.

[9] Tuo-Ran Wang, Ning Liu, Lei Yuan, Ke-Xin Wang, and
Xian-Jun Sheng. Iterative least square optimization for
the weights of nurbs curve. Mathematical Problems in
Engineering, 2022, 04 2022.

[10] Sidharth S S. Curve fitting simplified: Exploring the
intuitive features of curvpy, 2024.

[11] Felix Mohr, Tom J Viering, Marco Loog, and Jan N
van Rijn. Lcdb 1.0: An extensive learning curves
database for classification tasks. In Machine Learn-
ing and Knowledge Discovery in Databases (ECML
PKDD), volume 13717 of Lecture Notes in Computer
Science, pages 3–19. Springer, 2022.

[12] Henri P. Gavin. The levenberg-marquardt method
for nonlinear least squares curve-fitting problems c ©.
2013.

[13] Muhammad Wahab. Interpolation and extrapolation. 01
2017.

[14] Romain Egele, Felix Mohr, Tom Viering, and Prasanna
Balaprakash. The unreasonable effectiveness of early
discarding after one epoch in neural network hyperpa-
rameter optimization. Neurocomputing, 597:127964,
2024.

[15] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua
Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew



R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J
Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake Van-
derPlas, Denis Laxalde, Josef Perktold, Robert Cimr-
man, Ian Henriksen, E. A. Quintero, Charles R. Har-
ris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pe-
dregosa, Paul van Mulbregt, and SciPy 1.0 Contributors.
SciPy 1.0: Fundamental Algorithms for Scientific Com-
puting in Python. Nature Methods, 17:261–272, 2020.

[16] Ana Durango and Craig Refugio. An empirical study on
wilcoxon signed rank test, 12 2018.

[17] Sameer Singh. Modeling performance of different clas-
sification methods : Deviation from the power law.
2005.


	Introduction
	Related Works
	Learning Curves
	LCDB Database
	Curve Fitting
	Measuring Performance Using Interpolation and Extrapolation
	Fitting after axis scaling

	Experimental Setup
	Results
	Discussion
	Discussion of Results
	Potential Flaws and Explanations

	Conclusions and Future Work
	Conclusion
	Future Work

	Responsible Research
	Ethical Considerations
	Reproducibility
	Use of Large Language Models


