<]
TUDelft

Delft University of Technology

Tensor network square root Kalman filter for online Gaussian process regression

Menzen, Clara; Kok, Manon; Batselier, Kim

DOI
10.1016/j.automatica.2025.112694

Publication date
2026

Document Version
Final published version

Published in
Automatica

Citation (APA)
Menzen, C., Kok, M., & Batselier, K. (2026). Tensor network square root Kalman filter for online Gaussian
process regression. Automatica, 183, Article 112694. https://doi.org/10.1016/j.automatica.2025.112694

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1016/j.automatica.2025.112694
https://doi.org/10.1016/j.automatica.2025.112694

Automatica 183 (2026) 112694

journal homepage: www.elsevier.com/locate/automatica

Contents lists available at ScienceDirect

Automatica

automatica

Tensor network square root Kalman filter for online Gaussian process

regression”
Clara Menzen *, Manon Kok, Kim Batselier

L))

Check for
updates

Delft Center for Systems and Control, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands

ARTICLE INFO ABSTRACT

Article history:

Received 3 September 2024

Received inrevised form 18 September 2025
Accepted 30 September 2025

Keywords:

Square root Kalman filtering
Tensor network

Gaussian processes
Recursive estimation

The state-of-the-art tensor network Kalman filter lifts the curse of dimensionality for high-dimensional
recursive estimation problems. However, the required rounding operation can cause filter divergence
due to the loss of positive definiteness of covariance matrices. We solve this issue by developing, for
the first time, a tensor network square root Kalman filter, and apply it to high-dimensional online
Gaussian process regression. In our experiments, we demonstrate that our method is equivalent to
the conventional Kalman filter when choosing a full-rank tensor network. Furthermore, we apply our
method to a real-life system identification problem where we estimate 4'4 parameters on a standard
laptop. The estimated model outperforms the state-of-the-art tensor network Kalman filter in terms
of prediction accuracy and uncertainty quantification.

© 2025 Published by Elsevier Ltd.

1. Introduction

In a time when data-driven Al models are trained on an ex-
ponentially growing amount of data, it is crucial that the models
can be adapted to newly observed data without retraining from
scratch. These online or recursive settings are present in many
fields including system identification (Batselier, Chen, & Wong,
2017b; Doyle, Pearson, & Ogunnaike, 2002), sensor fusion (Solin,
Kok, Wahlstrom, Schon, & Sarkka, 2018; Viset, Helmons, & Kok,
2022), robotics (Liu, Chowdhary, Castra da Silva, Liu, & How,
2018; Nguyen-Tuong, Peters, & Seeger, 2008), and machine learn-
ing (Hartikainen & Sarkkd, 2010; Ranganathan, Yang, & Ho, 2010;
Stanton, Maddox, Delbridge, & Wilson, 2021).

While Bayesian algorithms, like widely-used Gaussian pro-
cesses (GPs) (Rasmussen & Williams, 2006) are well-suited for an
online setting, they are associated with potentially high compu-
tational costs. Standard GP regression using a batch of N observa-
tions has a cubic cost in N, i.e., O(N?). The number of observations
is growing in an online setting, so the cost increases each time
step and can become a computational bottleneck.

™ Kim Batselier was supported by the project Sustainable learning for Artificial
Intelligence from noisy large-scale data (with project number VILVidi.213.017)
which is financed by the Dutch Research Council (NWO). The material in this
paper was not presented at any conference. This paper was recommended for
publication in revised form by Associate Editor Tianshi Chen under the direction
of Editor Alessandro Chiuso.

* Corresponding author.

E-mail addresses: cm.menzen@gmail.com (C. Menzen), m.kok-1@tudelft.nl

(M. Kok), k.batselier@tudelft.nl (K. Batselier).

https://doi.org/10.1016/j.automatica.2025.112694
0005-1098/© 2025 Published by Elsevier Ltd.

There are numerous parametric approximations to address
scalability in batch settings, including sparse GPs (Quinonero-
Candela & Rasmussen, 2005) and reduced-rank GPs (Solin &
Sarkka, 2020), which both have a complexity of O(NM?), M
being the number of inducing inputs and basis function for the
respective method. Structured kernel interpolation for sparse
GPs (Wilson & Nickisch, 2015) reduces the complexity further to
O(N + DM'1/P) D being the number of input dimensions.

Parametric approximations allow for a straightforward recur-
sive update, where the posterior distribution from the previous
time step is used as a prior for the current time step (Sarkka
& Svensson, 2023). In this context, online GPs have been used,
e.g., for GP state-space models (Berntorp, 2021; Sarkkd, Solin,
& Hartikainen, 2013; Svensson & Schon, 2017), rank-reduced
Kalman filtering (Schmidt, Hennig, Nick, & Tronarp, 2023) and
recursive sparse GPs (Stanton et al., 2021).

In this paper, we consider the online parametric GP model
given by

Ve =) W + €, e ~N(O, 0}12)7
Wi ~ N(We_q, Pr_q),

(1)

where y; is a scalar observation at discrete time t, ¢(-) are basis
functions that map a D dimensional input vector X; to a feature
space, w; € RM are the parameters at time t, and oyz denotes
the variance of the measurement noise ¢; which is assumed to
be i.d.d. and zero-mean Gaussian. With (1), the posterior dis-
tribution p(w; | X1, V1) = N(W¢, P;) — ie., the distribution of
w; given all inputs and measurements up until time t, Xy, =
[x1,X2,...,X], Vit = [V1.¥2,...,y:] — is computed at each
time step using the estimate W,_; and covariance matrix P,_;
from the previous time step as a prior.

https://doi.org/10.1016/j.automatica.2025.112694
https://www.elsevier.com/locate/automatica
https://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2025.112694&domain=pdf
mailto:cm.menzen@gmail.com
mailto:m.kok-1@tudelft.nl
mailto:k.batselier@tudelft.nl
https://doi.org/10.1016/j.automatica.2025.112694

C. Menzen, M. Kok and K. Batselier

We consider commonly used product kernels with a feature
map given by

px)=¢Vx)® - @ Vx)® - ® pPx,), (2)

where ¢(d)(xt) € R! with I being the number of basis functions
in the dth dimension, and ® denoting a Kronecker product. The
resulting number of basis functions is M = IP, growing exponen-
tially with the input dimension D. Requiring exponentially many
parameters in a high-dimensional setting is a known problem,
discussed in the related literature: In Svensson and Schon (2017)
separable kernels or a radial basis function expansion are pro-
posed as an alternative with the disclaimer of limiting the space
of functions that is possible to describe. In Stanton et al. (2021) di-
mensionality reduction is applied for all experiments with D > 3.
Alternatively, several tensor network (TN)- based methods have
been proposed to break this curse of dimensionality and achieve
a linear computational complexity in D. In the batch setting, Bat-
selier, Chen, and Wong (2017a) and Wesel and Batselier (2021)
give solutions for the squared exponential and polynomial kernel,
respectively. In the online setting, the state-of-the-art method is
the tensor network Kalman filter (TNKF) (Batselier et al., 2017b;
Batselier, Ko, & Wong, 2019), where the Kalman filter time and
measurement update are implemented in TN format.

While the TNKF lifts the curse of dimensionality, it has a
significant drawback. The TNKF requires a TN-specific rounding
operation (Oseledets, 2011), which can result in covariance up-
date losing positive (semi-) definiteness (De Rooij, Batselier, &
Hunyadi, 2023), resulting in the divergence of the filter.

This paper resolves this issue by computing the square root
covariance factor in tensor train (TT) format instead. Our approx-
imation represents the M x M square root covariance factor as
a tensor train matrix (TTm). This is motivated by prior square
root covariance factors of product kernels having a Kronecker
product structure, which corresponds to a rank-1 TTm. In addi-
tion, work by Nickson, Gunter, Lloyd, Osborne, and Roberts (2015)
and Izmailov, Novikov, and Kropotov (2018) approximates the
covariance matrix as a rank-1 TTm. This work generalizes the
rank-1 approximation to higher ranks which results in better
prediction accuracy and uncertainty quantification. We call our
method the tensor network square root Kalman filter (TNSRKF).

We show in experiments that the TNSRKF is equivalent to
the standard Kalman filter when choosing full-rank TTs. In ad-
dition, we show how different choices of TT-ranks affect the
performance of our method. Finally, we compare the TNSRKF to
the TNKF in a real-life system identification problem with 44
parameters and observe that, contrary to the TNKF, our method
does not diverge.

2. Problem formulation

Similar to the TNKF, we build on standard equations for the
measurement update of the Kalman filter, given by

S = ¢;rpt—1¢t + Uyz (3)
K =P_14S" (4)
We = W1 + Ke(yr — ¢tTVAVt—1) (5)
P = (Iy — Ki¢/ P_1(ly — K¢,)" + 0/ KK/, (6)

where S; denotes the innovation covariance and K; denotes the
Kalman gain. Note that for a scalar measurement, S; is a scalar
and K; a vector, whereas in the case of multiple measurements
per time step, they are matrices. Without the loss of generality,
we present the scalar case, where, beyond the scope of this paper,
our approach can easily be extended to vector measurements. We
recursively update the posterior distribution of the parametric

Automatica 183 (2026) 112694

weights from (1), i.e., p(W; | X1.¢, Y1.t). For product kernels with a
feature map given in (2), it is w, € R and P, € R""*/". In this
case, the Kalman filter suffers from the curse of dimensionality.

The first tensor-based Kalman filter, the TNKF (Batselier et al.,
2017b), solved the curse of dimensionality and implements (3)-(6)
in TT format, where the weights are represented as a TT and the
covariance matrix as a TTm. During the updates, the algebraic
operations in TT format increase the TT-ranks of the involved
variables, according to Batselier et al. (2019, Lemma 2). To coun-
teract the rank increase and keep the algorithm efficient, the
TNKF requires an additional step called TT-rounding (Oseledets,
2011). This SVD-based operation transforms the TT or TTm to
ones with smaller TT-ranks. TT-rounding can result, however, in
the loss of positive (semi-) definiteness.

To avoid this issue, we implement the square root formulation
of the Kalman filter (SRKF), as described e.g. in Grewal and An-
drews (2014, Ch. 7), in TT format. The SRKF expresses (3)-(6) in
terms of a square root decomposition P; = L[LtT, with the square
root covariance factor L; given by

L= [y — K] L1 oK. (7)

In each update, (7) is computed by concatenating two matrices,
such that the number of columns of L; increases. For the next
update, L; needs to be transformed back to its original size. In the
SRKEF, this is done by computing a thin QR-decomposition (Golub
& Van Loan, 2013, p. 248) of L, given by

L = Q@ R (8)
(M+1)xM (M+1)xM MxM

and replacing L; by R;r, i.e., by the transpose of R;.

The orthogonal Q;-factor can be discarded since
P, =LL =R Q QR =R/R. (9)

———
In

In TT format, performing the QR-decomposition as in (8) is not
possible. We solve this issue by proposing an SVD-based algo-
rithm in TT format that truncates L; back to its original size.

3. Background on tensor networks
3.1. Tensor networks

Tensor networks (TNs), also called tensor decompositions,
are an extension of matrix decompositions to higher dimen-
sions. There are multiple TN architectures, including the CAN-
DECOMP/PARAFAC decomposition (Kolda & Bader, 2009), the
Tucker decomposition (Tucker, 1966), and the tensor train (TT)
decomposition (Oseledets, 2011). In this paper, we focus on
TTs to approximate the weight vector’s mean as discussed in
Section 3.1.1, and a TT matrix (TTm) (Oseledets, 2010) to ap-
proximate the square root covariance factor, as discussed in
Section 3.1.2.

In this context, we denote TTs representing vectors as a lower-
case bold letter, e.g. w;, and their components, called TT-cores,
as capital calligraphic bold letters, e.g. W, TT matrices are de-
noted by upper-case bold letters, e.g. L; and their corresponding
TTm-cores as capital calligraphic bold letters, e.g. £%.

3.1.1. Tensor train vectors

As depicted in Fig. 1(a), a TT vector consists of intercon-
nected three-way tensors, called TT-cores, visualized as nodes
with three edges. Each edge corresponds to an index of a TT-core
and connected edges are summations over the involved indices.
Each TT-core is connected by two edges, called TT-ranks, to its

C. Menzen, M. Kok and K. Batselier

S9OIpPUl MOI
S9OIpPUIl TUWInNjod

thin SVD in
T TTm tall TTm TT format
(2) (b) (c) (d)

Fig. 1. Visual depiction of tensor diagrams for a (a) TT, (b) TTm, (c) tall TTm
and (d) thin SVD.

neighboring TT-cores, except for the first and last TT-core, whose
outer TT-ranks are by definition equal to one.

For the purpose of this paper, consider a TT that represents
the mean of the weight vector w; € RM. The TT-cores, denoted
by W, oW, WP with wi e RRexIXRen for d =
1,...D, where Ry and Ry, are the TT-ranks and I is the size of
the non-connected edge such that M = IP. By definition R; =
Rpy+1 = 1. Without the loss of generality, we use TT-cores with
equal TT-ranks Ry. The storage complexity of w; without TNs is
O(IP) and in TT format O(DIRZ,), where lower TT-ranks Ry will
result in more efficient representations.

An important characteristic of a TT for numerical stability is
that it can be transformed into the site-d-mixed canonical format.

Definition 1 (Site-d-mixed canonical format Schollwick (2011)). A
TT w; in site-d-mixed canonical format is given by

Wy = Gd,tW(td), (10)

where G, € RM*Rwlfw js an orthogonal matrix computed from
all TT-cores except the dth and w'*) € RRw/Rw s the vectorization
of the dth TT-core. In this format, the TT representation is linear
in the dth TT-core when all other TT-cores are fixed.

3.1.2. TT matrices and tall TT matrices

A TTm consists of interconnected four-way tensors, as de-
picted in Fig. 1(b). Analogous to the TT, the TTm components
and connected edges are called TTm-cores and TTm-ranks, re-
spectively, where each TTm-core has two free edges, the row and
column indices.

For the purpose of this paper, consider a TTm representation
of the square root covariance factor L, € RM*M, The TTm-cores
are denoted by LE”, e Lgd), o LED) with L(td) € RRaxIx]xRay1)
where I and J are the number of row and column indices, indi-
cated in Fig. 1(b) as red and blue edges respectively, such that
M =1P and M = JP. By definition, R; = Rp,; = 1, and for this
paper, we generally assume that all other TTm-ranks R = --- =
Rp = Ry are equal. The storage complexity of L, without TNs is
O(I” x IP) and in TTm format O(DRZ])).

A TTm can also be written in terms of the site-d-mixed canon-
ical format as defined in Definition 1, but it requires to be trans-
formed into a TT first. This can be done by combining the row
and column indexes into one index, which represents a kind
of vectorization of the matrix represented by the TTm. Note,
however, that the indices are not ordered as in conventional
vectorization. A site-d-mixed canonical format of a TTm is given

by
vec(L) = Hq 1\, (11)

where the orthogonal matrix Hy,; € R?™*RIRL js computed from
all the TTm-cores but the dth, and ¥ e RRuIR,

Automatica 183 (2026) 112694

To recompute L; in its original size in the QR step of the SRKF
(see (8)), here called the re-squaring step, we need a special case
of a TTm, the tall TTm, as well as a thin SVD in TTm format.

Definition 2 (Tall TTm (Batselier et al, 2017a)). A tall TTm, as
depicted in Fig. 1(c), has only one TTm-core with both a row and
column index, while all other TTm-cores have only row indices.
Then, the TTm represents a tall matrix with many more rows than
columns.

Definition 3 (Thin SVD in TTm format Batselier (2022)). Consider
a TTm in site-d-mixed canonical format, where the dth TTm-core
is the one that has the column index, £@ € RRJ*RL The SVD
of £@ reshaped and permuted in to a matrix of size R IR, x J, is
given by

U@s@VO)T, (12)

Now replace the dth TTm-core by U® reshaped and permuted
back to the original TTm-core dimensions.

Then the thin SVD is given by the TTm with the replaced TT-
core as the orthogonal U-factor, and S®(V®)T as the SV -factors,
as depicted in Fig. 1(d).

4. TNSRKF

We propose our method, combining efficient TN methods with
the SRKF formulation for online GP regression. More specifically,
we recursively compute the posterior distribution of the paramet-
ric weights in (1) from the measurement update of the Kalman
filter. To achieve this, we update the mean w, € RM as a TT
(Section 4.1), and the square root factor L, € RM*M as a TTm
(Section 4.2).

All computations are summarized in Algorithm 1, which out-
puts the posterior weight distributions p(w; | X, Vi) =
N(W;, P), and the prediction for a test input f,, in terms of a
distribution p(f, () = NM(m., 0*2_[) with predictive mean m,; and
variance af’t. Note that online GP regression refers to ingesting
one measurement at a time and updating the weights w, recur-
sively. Therefore, in a truly online scenario, where measurements
are collected on the fly, the input to Algorithm 1 would not be a
batch y, but a single measurement y;.

4.1. Update of weight mean

The mean of the weights is updated with a new measurement
y: € R, with (5). In the original tensor-based KF (Batselier et al.,
2017b), the two terms in Eq. (5) are summed together in TT for-
mat, which increases the TT-ranks. To avoid this rank increase and
application of TT-rounding, we propose solving an optimization
problem to compute (5) instead: We apply a commonly-used
optimization algorithm from the tensor community, called the
alternating linear scheme (ALS) (Holtz, Rohwedder, & Schneider,
2012; Rohwedder & Uschmajew, 2013). The ALS computes a TT by
updating one TT-core at a time while keeping all other TT-cores
fixed. The optimization problem to be solved is given by

min|\W—1 + Ke(ye — @, We_1) — w||?
w (13)
s.t. w; being a low-rank TT,

where W;_ is the estimate from the last time step, playing now
the role of the prior for the current time step.

Inserting (10) in (13), thus making use of G4, being an or-
thogonal matrix (see the site-d-mixed canonical format from
Definition 1), gives the optimization problem for the update of
one TT-core

) 2
min ’
w(®

‘GL (We—1 + Ke(ye — ¢;I—VAVr—1)) —w?

(14)

C. Menzen, M. Kok and K. Batselier

In one so-called sweep of the ALS, (14) is solved for each TT-core
once. A stopping criterion for the convergence of the residual in
(14) determines the total number of sweeps.

4.2. Update of square root covariance factor

To compute the covariance matrix with the standard covari-
ance update in the measurement update, see (6), we recursively
compute the square root covariance factor L; as defined in (7)
such that P, = L[LtT. To achieve this, we use the ALS to solve (7)
(ALS step) and then we transform L; as in (8) back to its original
size (re-squaring step).

ALS step. In this step, we use the ALS to compute a TTm repre-

senting L;. We solve the optimization problem given by
2

oK,] — L

min| [(ly — Kegy L1
Lt F

(15)
s.t. Ly being a low-rank TTm,

where L;_ is the estimated square root covariance factor from
time step t — 1 now serving as the prior. The original ALS
algorithm is defined for TTs, so we must adapt it for TT matrices.

For this, it is necessary to use the site-d-mixed canonical
form for TT matrices, as described in Section 3.1.2 above (11).
In addition, we need to horizontally concatenate two matrices in
TTm format, which can be done by summing two matrices of size
M x 2M such that (15) becomes

min Hy vec([1 0] ® (Iy — Ki¢p, Li_1)
1

f , (16)

+H vec([0 1]®@[1 Ou_1]®oyk:) — LV,
F

where vec denotes the vectorization of the involved TT matrices.

Re-squaring step. The optimization problem given by (15) re-
quires concatenating a matrix with a column vector. In TT format,
this results in a TTm of size M x 2M. For the TTm-cores of L; this
means that one TTm-core, which we call the augmented core, is
of size Ry x I x 2] x Ry. Before serving as a prior for the next time
step, a re-squaring step implementing the QR step (see (8)) in TN
format is required to transform L; back to its original size. Since
computing a QR decomposition of a TTm is not directly possible,
we present an SVD-based algorithm in TN format to transform L;
of size M x 2M back to M x M, as described in Algorithm 2.

4.3. Predictions

To perform GP predictions we compute the predictive distri-
bution for a test output f, ; = ¢(x,) w; with mean and variance
given by

Myt = ¢(X*)T‘;Vt

ol = ¢(x,) LL] (x,).

Given W, as a TT and L; as a TTm, we can compute (17) directly
in TN format without explicitly reconstructing the mean vector
and square root factor. For a test input x,, Fig. 2 illustrates the
computation of (a) the predictive mean m,, (b) the predictive

covariance aﬁ[. The corresponding equation to Fig. 2(a) is given
by

(17)

R rD) p (@

@y 1AL
=TT oW o e
) rD) d

i(d)

My =
r2

where the lowercase letters in the subcript, ie. r@, r@+1) and
i@ denote the indices of size RY = R = R and I@ = |,

Automatica 183 (2026) 112694

¢(X*)TVAVt ¢(X*)T Lt L;r (,Z')(X*)

(a) (b)

Fig. 2. Visual depiction of (a) predictive mean and (b) predictive covariance for
D =>5.

Table 1
Computational complexities for one TT-core mean and covariance update. We
denote the TT-ranks of K; by Rg.

Term Complexity
Gl W O(RAD)

i Ki(ye — b Wi_1) O(R%,RAI)
(20)-(22) O(R'T)

respectively. Fig. 2(b) can be written in a similar way. Moving
forward, we provide only the TN diagrams, since the equations
can become lengthy.

Algorithm 1 Online GP regression in terms of SRKF in TT format
(TNSRKF)

Input: Measurements y = y1,¥2, ..., YN,
basis functions for inputs ¢(x;),t =1,...,N,
prior wg in TN format (Lemma 5)
prior Ly in TN format (Lemma 7),
noise variance oyz,
basis functions for prediction point ¢(x,).
Output: p(w | y;) = N(W;, P;) and
Pl | Y1) = N(my g, 0»<2,t)' fort=1,...,N.
1: Initialize w; = Wy and L; as a random TTm in site-d-mixed
canonical format.
2: fort=1,...,N do
3: Compute Wm, Wﬁz), cee, WED) with Eq. (14).
4: Compute cﬁ”, LEZ), e Lim with Eq. (16).
5: Save TT and TTm from step 3 and 4 as initializations for the
next time step.
Re-square L; with Algorithm 2.
Compute m, with Eq. (17) as depicted in Fig. 2(a).
Compute cr*z’t with Eq. (17) as depicted in Fig. 2(b).
end for

© ® N

5. Implementation

In this section, we give a detailed description of the non-
straightforward TN operations to update the mean estimate w;
and square root covariance factor L; as described in Algorithm 1.
The leading complexities of the mean and square root covariance
factor update are given in Table 1.

5.1. Updating w, in TN format

In the following sections, we discuss the implementation of
(14) for the mean update (Algorithm 1, line 3), and we describe
how the mean is initialized in TT format (Algorithm 1, line 1).

C. Menzen, M. Kok and K. Batselier

(1) (d—1) (d) (d+1) (D)

Fig. 3. Visual depiction of computation of Glt\iv[,l, resulting in three-way tensor
of size Ry x I X Ry (gray node). The indices are summed over from left to right,
alternating between the vertical and horizontal ones. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

5.1.1. Implementation of GJ ,(W;_1 + K,(y: — ¢ W_1))

To compute the TT representing the mean estimate w;, we
implement the ALS to solve (14) (Algorithm 1, line 3).

The following example illustrates the update of one TT-core
during the ALS.

Example 4 (TT-Core Update with ALS). Take a D = 5 dimensional
weight vector in TT format with I = 10 basis functions in each
dimension, resulting in 10°> parameters and uniform TT-ranks of
R, = R3 = Ry = 4. Say, we are currently updating the third
TT-core W) € R4*10%4 ysing

(3) T A T.A
W = Gg, Wi+ Ko (e — @, We) | (18)
—— N — S~ ————
160x1 160105 \105x1 109x1 1x1

We first multiply over the large dimension of 10° in c;vv[,l and
G;tl(t(y[- ¢tTvAvt,1). In TT format, this matrix-vector multiplica-
tion is done core by core, thus avoiding the explicit multiplication.
Finally, we sum two vectors of size 160.

Fig. 3 illustrates the multiplication of c;tw[_l in TT format,
resulting in a tensor Wt(d) of size Ry X I X Ry.

The multiplication of between GL and K;(y; — ¢tT\fvt_1) works
in the same way as depicted in Fig. 3, after firstly computing
qf\iv[_l in TN format and secondly multiplying one arbitrary
TT-core of K; by the scalar (y; — ¢tTvAv[_1).

During the update of the dth TT-core, the TT is in site-d-mixed
canonical format. Before updating the next TT-core, either the
(d — 1)th or the (d + 1)th, the site-(d — 1)-mixed or site-(d +
1)-mixed canonical format is computed. Note that because of
the recursive property, updating every TT-core once with a new
measurement is usually sufficient for the residual of (13) to
converge.

5.1.2. Initialization of Wy and w;

For the first time step t = 1 of Algorithm 1, we choose a zero-
mean assumption for the prior estimate wy. The following Lemma
explains how this can be implemented in TT format.

Lemma 5 (Zero-Mean Prior in TT Format Batselier et al. (2019)).
Consider a vector with all entries equal to zero. In TT format, such a
vector is given by a TT in site-d-mixed canonical format, where the
dth TT-core contains only zeros.

In addition, Algorithm 1 requires an initial guess for w; to
compute Gy from all TT-cores of wy, except the dth. For this,
we set w; = Wy.

Automatica 183 (2026) 112694
5.2. Updating L; in TT format

To compute the TTm representing L;, we implement the ALS to
solve (16) (Algorithm 1, line 4). The following example illustrates
the update of one TTm-core during the ALS.

Example 6 (TTm-Core Update With ALS). Take a D = 5 dimen-
sional TTm representing L, € RM*M where we are currently
updating the third TTm-core. We have I = 10 and J] = 10,
where the third TTm-core is augmented, and Ry = 4. We update
ﬁ(t3) € R4x10x20x4 using

l(t3) = HL vec [1 0]® L4
N——" —— N —’ ~—~—
3200x1 3300%2.1010 1x2 105x10°
- Hj, vec|[l 0]®K L, (19)
—— —— S——
3200%2-1010 1x2 10°x10°

+ Hy, vec|[0 1]®[1 Oy1]®aK
—— —— ———— ——
3200%2-1010 1x2 1x10° 10°x1

We first multiply over the large dimension of 2-10° in TT format,
then sum the three terms of size 3200 x 1.

From Example 6, it follows that the three terms of (19) need
to be implemented. We discuss them separately in the following
sections. We distinguish between the update of the augmented
TTm-core from all other ones, which result in TTm-cores of size
Ry x I x 2] x Ry and Ry x I x J x Ry, respectively. In the tensor
diagrams (Figs. 4-6), we depict the update for the augmented
TTm-core.

Before diving in, recall from (11) that Hy; is computed from
TTm-cores of L;, except the dth, where row and column indices
are combined. In the tensor diagrams, the indices are depicted
not as combined because, in practice, they are generally summed
over separately. However, the vectorized format is necessary for
writing down the equations in matrix form.

5.2.1. Implementation of first term of (16)
Fig. 4 illustrates the computation of the augmented TTm-core
in the first term of (16), given by

Hj vec([1 0]®L4). (20)

The column indices of L;_; are indicated by the round edges that
are connected to the row indices of HL. The edge containing
e; = [1 0] is connected to the dth TTm core of L; with a
rank-1 connection, which corresponds to the Kronecker product
n (20). The summation over the vertical and curved indices has
the leading computational complexity of O(R‘L‘I]) per dimension.
When updating all TTm-cores except the augmented TTm-core,
the additional index of size 2 is summed over resulting in a tensor
of size Ry x I x] x Ry.

5.2.2. Implementation of second term of (16)
Fig. 5 illustrates the computation of

Hj, vec([1 0]®L_iL ¢S ¢/ L), 1)

which directly follows from the second term of (16). As shown,
the row and column indices of H], are connected separately
to the column and row indices of two TT matrices for L_;,
respectively. Like in the previous term, the edge containing e; =
[1 0]is connected to the augmented TTm-core of L; with a rank-1

C. Menzen, M. Kok and K. Batselier

(d—1) (d+1)

4B

2

Fig. 4. Visual depiction for computing the augmented TTm-core in (20) resulting
in a 4-way tensor of size Ry x I x 2] x Ry (gray node). The combined horizontal
and curved indices are summed over and alternating with the horizontal indices.

(d—1) (d)

.

(>
O OO0

Fig. 5. Visual depiction for computing (21) resulting in a 4-way tensor of size
Ry x I x 2] x Ry (gray node). First, the indices in the red and blue boxes are
summed over, then the indices between the red, yellow, and blue boxes, and
finally, the ones between the red, green, and blue boxes. (For interpretation of

the references to color in this figure legend, the reader is referred to the web
version of this article.)

(d+1)

0.

OO

connection, which corresponds to the Kronecker product in (21).
The leading computational complexity of O(Rflj) per dimension
comes from the summation over the vertical indices in the red
or blue box indicated in the figure. The most efficient order
of doing the computations in Fig. 5 was found with the visual
tensor network software by Evenbly (2019), assuming our use
case where D > 3and I,J,R; < 10.

5.2.3. Implementation of third term of (16)
Fig. 6 illustrates the computation of

Hi vec([0 1]®[1 Oy_1]®0oLL ¢S "), (22)

which directly follows from the third term of (16). The row of
nodes each filled with e; = [1 0;,_;] corresponds to [1 Oy_1]
from (22) and their rank-1 connections to the nodes above is
the second Kronecker product in (22), which is done dimension-
wise in TT format. The node with e, corresponds to [0 1] from
(22) and its rank-1 connection is the first Kronecker product

Automatica 183 (2026) 112694

(D)

Fig. 6. Visual depiction for computing (22), resulting in a 4-way tensor of size
Ry x I x 2] x Ry (gray node). The indices are summed over from left to right
by alternating between the vertical and horizontal ones. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

n (22). The summation over the vertical indices is the leading
computational complexity of O(R‘L‘I]) per dimension.

5.2.4. SVD-based re-squaring step in TTm format

When computing (16), we double the number of columns
of L; compared to L;,_;. For the next time step, however, we
need to transform L; back to its original size (Algorithm 1, line
6), otherwise its column size will grow with the iterations and
slow down the algorithm. The QR step, as in (8), computes a
full QR decomposition of L;, which cannot be done in TT format.
Instead, we compute a thin SVD in TTm format (Definition 3) of
L; transformed into a tall TTm (here also denoted by L;) with all
row indices of size IJ, except the dth which is of size I, and the dth
column index of size 2J. The J-truncated SVD of L; is then given
by

L~ Us V[, (23)
MIP=1x21 MJP-1xjy Jx2J

where U;S; is the new L; and VrT can be discarded because of (9).
In practice, we compute an SVD of the augmented TTm-core and
truncate it back to the size of Ry x I x J x Ry.

There is a way to make (23) exact. This is possible if the
augmented TTm-core is of size Ry x I x Zlez_ X Ry. In this case,
the SVD computed of the augmented TTm-core results in a square
U-factor. Since the number of columns is doubled every measure-
ment update, the re-squaring step can be skipped p times until
2P = ZRf. Choosing smaller values for p reduces computational
complexity at the cost of accuracy.

The SVD-based re-squaring step is described in Algorithm 2.
The SVD of the reshaped and permuted augmented TTm-core is
truncated for 2”7 < 2R} and exact for 2P > 2R}.

5.2.5. Initialization of Ly and L,

At time t = 1, Algorithm 1 requires the prior square root
covariance factor Ly in TTm format. We are considering prod-
uct kernels that have priors in Kronecker format. The following
Lemma describes how these types of priors can be transformed
into a TTm for Lg.

C. Menzen, M. Kok and K. Batselier

Algorithm 2 SVD-based re-squaring step of covariance update

Input: TTm L; in site-d-mixed canonical format with £@ ¢
RRLXIXZPJXRL_

Output: TTm L, with £@ ¢ RRuxIx2P" xRy

1: L' « Reshape | permute £@ into matrix of size RyIRy
x 2PH1],

2: Compute thin SVD(L@) = Ug@s@y@)T,

3. £ « Reshape | permute first 2°~!] columns of U¥S@ of
size RuIR, x 2P~] into tensor of size Ry x I x 2P~ x R,.

Lemma 7 (Prior covariance with Kronecker structure into TTm, fol-
lows from Golub & Van Loan, 2013, p.708). Given a prior covariance
Py = PE,” ®PE,2) ®-- -®P(D), the prior square root covariance in TTm
format is given by a TTm with all ranks equal to 1, where the cores
are given by L(U, LE)Z), ey LE)D) each reshaped into a 4-way tensor
ofsize 1 xIx]x 1

In addition, Algorithm 1 requires an initial guess in TTm for-
mat for L; € RM*2M, We cannot set L; = Lg since the prior has
TTm-ranks equal to one, and we may want higher TTm-ranks for
L;. This is because the choice of the TTm-ranks of L; determines
the rank manifold on which the TTm-cores will be optimized. We
initialize the TTm-cores as random samples from a zero-mean
Gaussian distribution and transform the TTm into site-d-mixed
canonical format, where d is the augmented TTm-core.

6. Experiments

In this section, we show how our method works in practice
by performing online GP regression on synthetic and real-life
data sets. We evaluate our predictions based on the root mean
square error (RMSE) for the accuracy of the mean and negative
log-likelihood (NLL) for the uncertainty estimation. The metrics
after t measurement updates are defined as

Ny

(m* ti — Y« i)2
RMSE); = ———— and
(RMSE), ; N
= (24)
- (M = Vo)
(NLL) = 0.5 log(2mo?, ;) + 00—

i=1 Oyt

where y,; is the ith measurement from the test set, m,; and
04¢i are the predictive mean and variance for the ith test point,
and N, is the number of test points.

First, we show the equivalence of the full-rank TNSRKF and
the conventional Kalman filter. Then we show in a synthetic
experiment how the choice of Ry, and Ry impacts the accuracy of
the approximation. Finally, we compare our method to the TNKF
on a benchmark data set for nonlinear system identification.

All experiments were performed on an 11th Gen Intel(R)
Core(TM) i7 processor running at 3.00 GHz with 16 GB RAM.
For reproducibility of the method and the experiments, the code
written in Julia programming language is freely available at
https://github.com/clarazen/TNSRKF.

6.1. Equivalence of full-rank TNSRKF and Kalman filter

In the first experiment, we show in which case our method
is equivalent to the measurement update of the conventional
Kalman filter. We generate D = 3 dimensional synthetic data
sampled from a reduced-rank GP by Solin and Sarkka (2020) with
a squared exponential kernel (lengthscale ¢> = 0.1 and signal
variance on = 1), set the noise variance to ay2 = 0.01 and use

Automatica 183 (2026) 112694

Table 2
RMSE and NLL at time t = N for the full-rank setting and different choices of p
in comparison to the conventional Kalman filter (KF).

Method Setting (RMSE)n (NLL)y
KF - 0.07873 —106.864
TNSRKF Rw Ry p
4 16 8 0.07873 —106.864
4 16 4 0.07879 —108.338
4 16 2 0.07444 —157.716
4 16 1 0.06765 —166.178

I = 4 basis functions per dimension, such that P; € R%4*%4 The
input data lies in a cuboid given by [-1 1] x [—1 1] x [—1 1]
and N, N, = 100.

Table 2 shows the RMSE and NLL for test data at time t = N
for different choices of p. The TNSRKF is equivalent to the Kalman
filter when both Ry, and Ry are full-rank. In addition, p must
be chosen, such that the QR step, discussed in Section 5.2.4, is
exact. For settings with lower values for p, the method trade-in
accuracy.

In the following sections, we look at scenarios where the
Kalman filter can no longer be computed on a conventional laptop
because both storage and computational time become unfeasible.

6.2. Influence of the ranks on the approximation

The choice of the TT- and TTm-ranks is not obvious and can be
intricate. However, the computational budget often determines
how high the ranks can be chosen. In this experiment, we use our
method to make online GP predictions on synthetic data while
varying the TTm-ranks of L;, as well as the TT-ranks of w;.

We consider the Volterra kernel, a popular choice for nonlinear
system identification. It is known that the truncated Volterra
series suffers from the curse of dimensionality, which was lifted
in a TN setting by Batselier et al. (2017a). With the notation of
this paper, the basis functions ¢ of parametric model (1) are a
combination of monomials computed from the input sequence
of the given problem. We generate synthetic training and testing
data as described in Batselier (2021), where D = 7 and I = 4 such
that the number of parameters is 4’ = 16 384. We set the SNR to
60, corresponding to o) = 6.96 x 107°.

Fig. 7 shows the RMSE and NLL on the testing data for Ry, =
2,4 and R, = 2, 4 over time iterations of the TNSRKF. At t = N,
the RMSE is lower for Ry = 2 and Ry = 4 than for Ry, = 4 and
Ry = 4. Thus, it seems that a lower value for the mean estimate
represents the data better. Note that although having larger TT-
ranks increases the degrees of freedom of the TT, it may not
always improve the accuracy of the approximation, e.g. because
higher TT-ranks can result in overfitting, while lower ranks can
have a regularizing effect. The NLL is the lowest for Ry, = 4 and
R. = 4, which is close to the NLL for Ry, = 4 and Ry = 2.
Note that the NLL for the same Ry is different for the two settings
of Ry, because the NLL also depends on the difference between
predicted and actual measurements, thus on the accuracy of w;.

This experiment showed that the choice of Ry, and Ry influ-
ences the performance of the TNSRKF. Since higher values for the
ranks also increase the computational complexity, the computa-
tional budget will determine the higher limit for the ranks. In
addition, an assumption with lower ranks may be fitting the data
better in some cases.

6.3. Comparison to TNKF for cascaded tanks benchmark data set
In this experiment, we compare our method to the TNKF on

a nonlinear benchmark for system identification, the cascaded
tanks data set. A detailed description can be found in Schoukens

https://github.com/clarazen/TNSRKF

C. Menzen, M. Kok and K. Batselier

—Re=2R,=2
—Ry=4,R, =2
— Ry, =2R, =4

Ry =4,Ry =4

3 2000

[S~)

RMSE

Fig. 7. RMSE and NLL over time iterations for different combinations of Ry, and
R]_‘

— TNSRKF, Ry =1
— TNKF, Rp=1
— TNSRKF, Ry =2
— TNKF, Rp =41

u 1000

500

NLL

0.125 —500

G250 500 750 1000 "0 6250 500 750 1000
t t

Fig. 8. RMSE and NLL over iterations for TNKF and TNSRKF for R = Rp = 1 and
Ry = 2, Rp = R, - R = 4. The orange and blue lines mostly overlap because both
methods perform similarly for Ry = Rp = 1. Also, the violet curve leaves the
plot window because the TNKF diverges. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

and Noél (2017). The training and testing data both consist of
a data set of 1024 data points each. To train our GP model,
we choose lagged inputs and outputs as input to our GP, as
described in Karagoz and Batselier (2020), resulting in an input
of dimensionality D = 14. We use a squared exponential kernel,
which hyperparameters we optimize with the Gaussian process
toolbox by Rasmussen and Williams (2006), and we choose I = 4,
such that the model has M = 4% = 268 435 456 parameters.

For the comparison to the TNKF, we choose the TT-ranks for
the mean to be R, = R4 = 4, R3 = ---Ry3 = 10, and
we vary Ry and the TTm-ranks of the covariance matrix for the
TNKF denoted by Rp. Figs. 8 and 9 show the RMSE and NLL over
the time iterations of the respective filter. When Ry = 1 and
Rp = 1, both methods perform almost the same, as visualized
by the overlapping orange and blue lines. When Ri = Rp = 4,
our method improves both prediction accuracy and uncertainty
estimation compared to the Ry, = 1. On the contrary, the TNKF
diverges and leaves the plotted figure area because the covariance
matrix loses positive definiteness. When Rf = Rp = 16, the
TNKF shows a similar behavior, while the TNSRKF results in lower
RMSEs but mostly higher NLL values. This setting shows that
higher values for Ry are not always beneficial for the uncertainty
estimation.

Finally, Fig. 10 shows the predictions with the TNSRKF on
testing data after seeing 100, 200, and 922 data points. Aligned
with the plot showing the RMSE and NLL, after 100 data points,
the prediction is quite bad and uncertain. After 200 data points,
the predictions are better and more certain and further improve
after seeing the entire data set.

Automatica 183 (2026) 112694

— TNSRKF, Rp=1
— TNKF. Rp=1
— TNSRKF, Ry =4
— TNKF, Rp =16
2000
0.225
0.200 1000
20175}
2
& 0.150
0
0.125
0.100}
Jooot

0 250 500 750 10000 250 500 750 1000
t t

Fig. 9. RMSE and NLL over iterations for TNKF and TNSRKF for R = Rp = 1 and
RL = 4, Rp = Ry-Ry = 16. The orange and blue lines mostly overlap because both
methods perform similarly for Ry = Rp = 1. Also, the violet curve leaves the
plot window because the TNKF diverges. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

—0.4ke |
0 250 500 750 1000
®)
2O A
0.25 i\ N\ | B\
| N B (//
0 250 500 750 1000
(c)
8? | — truth
2 A \ W T | Y33:1024
0.3 M N W A
0.0f ./ \\ v, \ ///’\‘/;‘\‘/ \A' \\
—0.3}] ' V : v
0 250 500 750 1000

Fig. 10. Predictions on test data with uncertainty bounds after seeing (a) 101,
(b) 201, and (3) 992 data points for Ry = 4. The measurements start at 33
because the memory goes back 32 time steps.

7. Conclusion

In this paper, we presented a TT-based solution for online GP
regression in terms of an SRKF. In our experiments, we show that
our method is scalable to a high number of input dimensions at
a reasonable computational cost such that all experiments could
be run on a conventional laptop. In addition, we improve the
state-of-the-art method for TN-based Kalman filter: In settings
where the TNKF loses positive (semi-)definiteness and becomes
numerically unstable, our method avoids this issue because we
compute the square root covariance factors instead of the covari-
ance matrix. In this way, we can choose settings for our method
that achieve better accuracy than the TNKF.

A future work direction is online hyperparameter optimiza-
tion. We are looking at a truly online scenario, so future data
is not available. Thus, we cannot swipe over mini-batches of
data multiple times like other methods, e.g. Schiirch, Azzimonti,
Benavoli, and Zaffalon (2020), to optimize hyperparameters.

Finally, there is still ongoing research to determine how to
choose TT-ranks and TTm-ranks. In the synthetic experiments,
we showed the impact of Ry and Ry. Generally, the TT- and
TTm-ranks need to be treated as hyperparameters.

C. Menzen, M. Kok and K. Batselier
References

Batselier, K. (2021). Enforcing symmetry in tensor network MIMO Volterra
identification. IFAC-PapersOnLine, 54(7), 469-474.

Batselier, K. (2022). Low-rank tensor decompositions for nonlinear system
identification: A tutorial with examples. IEEE Control Systems Magazine, 42(1),
54-74.

Batselier, K., Chen, Z., & Wong, N. (2017a). Tensor network alternating linear
scheme for MIMO Volterra system identification. Automatica, 84, 26-35.
Batselier, K., Chen, Z., & Wong, N. (2017b). A tensor network Kalman filter with
an application in recursive MIMO Volterra system identification. Automatica,

84, 17-25.

Batselier, K., Ko, C.-Y., & Wong, N. (2019). Extended Kalman filtering with low-
rank tensor networks for MIMO Volterra system identification. In 2019 IEEE
58th conference on decision and control (pp. 7148-7153).

Berntorp, K. (2021). Online Bayesian inference and learning of Gaussian process
state-space models. Automatica, 129, Article 109613.

De Rooij, S. J. S. Batselier, K, & Hunyadi, B. (2023). Enabling large-scale
probabilistic seizure detection with a tensor-network Kalman filter for LS-
SVM. In 2023 IEEE international conference on acoustics, speech, and signal
processing workshops (pp. 1-5). IEEE.

Doyle, F.]J., Pearson, R. K., & Ogunnaike, B. A. (2002). Identification and control
using Volterra models. Springer.

Evenbly, G. (2019). TensorTrace: An application to contract tensor networks.
arXiv preprint arXiv:1911.02558.

Golub, G. H., & Van Loan, C. F. (2013). Matrix computations. JHU Press.

Grewal, M. S., & Andrews, A. P. (2014). Kalman filtering: theory and practice with
MATLAB. John Wiley & Sons.

Hartikainen, J., & Sarkkd, S. (2010). Kalman filtering and smoothing solutions
to temporal Gaussian process regression models. In 2010 IEEE international
workshop on machine learning for signal processing (pp. 379-384). IEEE.

Holtz, S., Rohwedder, T., & Schneider, R. (2012). The alternating linear scheme
for tensor optimization in the tensor train format. SIAM Journal on Scientific
Computing, 34(2), A683-A713.

Izmailov, P., Novikov, A., & Kropotov, D. (2018). Scalable Gaussian processes with
billions of inducing inputs via tensor train decomposition. In International
conference on artificial intelligence and statistics (pp. 726-735). PMLR.

Karagoz, R., & Batselier, K. (2020). Nonlinear system identification with
regularized tensor network B-splines. Automatica, 122, Article 109300.

Kolda, T. G., & Bader, B. W. (2009). Tensor decompositions and applications. SIAM
Review, 51(3), 455-500.

Liu, M., Chowdhary, G., Castra da Silva, B., Liu, S.-Y., & How,]J. P. (2018). Gaussian
processes for learning and control: A tutorial with examples. IEEE Control
Systems Magazine, 38(5), 53-86.

Nguyen-Tuong, D., Peters,]., & Seeger, M. (2008). Local Gaussian process regres-
sion for real time online model learning. In Advances in neural information
processing systems: Vol. 21.

Nickson, T., Gunter, T., Lloyd, C., Osborne, M. A., & Roberts, S. (2015). Blitzkriging:
Kronecker-structured stochastic Gaussian processes. arXiv preprint arXiv:
1510.07965.

Oseledets, I. V. (2010). Approximation of 2D x 2D matrices using tensor
decomposition. SIAM Journal on Matrix Analysis and Applications, 31(4),
2130-2145.

Oseledets, 1. V. (2011). Tensor-train decomposition. SIAM Journal on Scientific
Computing, 33(5), 2295-2317.

Quinonero-Candela, J., & Rasmussen, C. E. (2005). A unifying view of sparse ap-
proximate Gaussian process regression. Journal of Machine Learning Research,
6, 1939-1959.

Ranganathan, A., Yang, M.-H., & Ho, J. (2010). Online sparse Gaussian process
regression and its applications. IEEE Transactions on Image Processing, 20(2),
391-404.

Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine
learning. The MIT Press.

Rohwedder, T., & Uschmajew, A. (2013). On local convergence of alternating
schemes for optimization of convex problems in the tensor train format.
SIAM Journal on Numerical Analysis, 51(2), 1134-1162.

Sarkkd, S., Solin, A., & Hartikainen, J. (2013). Spatiotemporal learning via infinite-
dimensional Bayesian filtering and smoothing: A look at Gaussian process
regression through Kalman filtering. IEEE Signal Processing Magazine, 30(4),
51-61.

Sarkkd, S., & Svensson, L. (2023). Bayesian filtering and smoothing: Vol. 17,
Cambridge University Press.

Automatica 183 (2026) 112694

Schmidt, J., Hennig, P., Nick, J., & Tronarp, F. (2023). The rank-reduced Kalman fil-
ter: Approximate dynamical-low-rank filtering in high dimensions. Advances
in Neural Information Processing Systems, 36, 61364-61376.

Schollwock, U. (2011). The density-matrix renormalization group in the age of
matrix product states. Annals of Physics, 326(1), 96-192.

Schoukens, M., & Noél, J. P. (2017). Three benchmarks addressing open challenges
in nonlinear system identification. IFAC-PapersOnLine, 50(1), 446-451.

Schiirch, M., Azzimonti, D., Benavoli, A, & Zaffalon, M. (2020). Recursive
estimation for sparse Gaussian process regression. Automatica, 120, Article
109127.

Solin, A., Kok, M., Wahlstrom, N., Schon, T. B., & Sarkkd, S. (2018). Modeling
and interpolation of the ambient magnetic field by Gaussian processes. IEEE
Transactions on Robotics, 34(4), 1112-1127.

Solin, A., & Sarkkd, S. (2020). Hilbert space methods for reduced-rank Gaussian
process regression. Statistics and Computing, 30, 419-446.

Stanton, S., Maddox, W., Delbridge, 1., & Wilson, A. G. (2021). Kernel interpolation
for scalable online Gaussian processes. In International conference on artificial
intelligence and statistics (pp. 3133-3141). PMLR.

Svensson, A., & Schon, T. B. (2017). A flexible state-space model for learning
nonlinear dynamical systems. Automatica, 80, 189-199.

Tucker, Ledyard R. (1966). Some mathematical notes on three-mode factor
analysis. Psychometrika, 31(3), 279-311.

Viset, F., Helmons, R., & Kok, M. (2022). An extended Kalman filter for magnetic
field SLAM using Gaussian process regression. Sensors, 22(8), 2833.

Wesel, F., & Batselier, K. (2021). Large-scale learning with Fourier features and
tensor decompositions. In Advances in neural information processing systems:
Vol. 34.

Wilson, A., & Nickisch, H. (2015). Kernel interpolation for scalable structured
Gaussian processes (KISS-GP). In International conference on machine learning
(pp. 1775-1784). PMLR.

Clara Menzen received the M.Sc. degree in engineering
science at the Technical University of Berlin, Germany.
She is currently finalizing her Ph.D. in large-scale
probabilistic modeling using tensor networks at Delft
University of Technology, Delft, The Netherlands.

Manon Kok received the dual M.Sc. degrees in philos-
ophy of science, technology, and society and in applied
physics from the University of Twente, Enschede, The
Netherlands, in 2007 and 2009, respectively, and the
Ph.D. degree in automatic control from Linképing Uni-
versity, Linkoping, Sweden, in 2017. From 2009 to
2011, she was a Research Engineer with Xsens Tech-
nologies. From 2017 to 2018, she was a Postdoctoral
with the Computational and Biological Learning Labo-
ratory, University of Cambridge, U.K. She is currently an
Associate Professor with the Delft Center for Systems
and Control, Delft University of Technology, Delft, The Netherlands. Her research
interests include probabilistic inference for sensor fusion, signal processing, and
machine learning.

Kim Batselier received the M.S. degree in Electrome-
chanical Engineering and the Ph.D. Degree in Applied
Sciences from the KULeuven, in 2005 and 2013 respec-
tively. He worked as a research engineer at BioRICS
on automated performance monitoring until 2009. He
is currently an associate professor at the Delft Uni-
versity of Technology, The Netherlands. His current
research interests include linear and nonlinear system
theory/ identication, algebraic geometry, tensors, and
numerical algorithms.

http://refhub.elsevier.com/S0005-1098(25)00591-6/sb1
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb1
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb1
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb2
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb2
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb2
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb2
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb2
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb3
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb3
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb3
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb4
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb4
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb4
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb4
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb4
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb5
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb5
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb5
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb5
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb5
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb6
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb6
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb6
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb7
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb7
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb7
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb7
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb7
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb7
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb7
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb8
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb8
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb8
http://arxiv.org/abs/1911.02558
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb10
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb11
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb11
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb11
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb12
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb12
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb12
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb12
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb12
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb13
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb13
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb13
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb13
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb13
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb14
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb14
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb14
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb14
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb14
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb15
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb15
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb15
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb16
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb16
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb16
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb17
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb17
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb17
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb17
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb17
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb18
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb18
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb18
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb18
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb18
http://arxiv.org/abs/1510.07965
http://arxiv.org/abs/1510.07965
http://arxiv.org/abs/1510.07965
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb20
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb20
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb20
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb20
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb20
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb21
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb21
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb21
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb22
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb22
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb22
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb22
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb22
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb23
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb23
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb23
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb23
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb23
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb24
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb24
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb24
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb25
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb25
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb25
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb25
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb25
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb26
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb26
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb26
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb26
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb26
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb26
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb26
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb27
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb27
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb27
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb28
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb28
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb28
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb28
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb28
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb29
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb29
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb29
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb30
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb30
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb30
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb31
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb31
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb31
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb31
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb31
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb32
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb32
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb32
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb32
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb32
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb33
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb33
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb33
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb34
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb34
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb34
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb34
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb34
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb35
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb35
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb35
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb36
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb36
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb36
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb37
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb37
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb37
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb38
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb38
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb38
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb38
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb38
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb39
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb39
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb39
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb39
http://refhub.elsevier.com/S0005-1098(25)00591-6/sb39

	Tensor network square root Kalman filter for online Gaussian process regression
	Introduction
	Problem Formulation
	Background on tensor networks
	Tensor networks
	Tensor train vectors
	TT matrices and tall TT matrices

	TNSRKF
	Update of weight mean
	Update of square root covariance factor
	Predictions

	Implementation
	Updating hat wt in TN format
	Implementation of Gd,t⊤(hat wt-1 + Kt(yt-φt⊤hat wt-1))
	Initialization of hat w0 and w1

	Updating Lt in TT format
	Implementation of first term of eq:ALScov
	Implementation of second term of eq:ALScov
	Implementation of third term of eq:ALScov
	SVD-based re-squaring step in TTm format
	Initialization of L0 and L1

	Experiments
	Equivalence of full-rank TNSRKF and Kalman filter
	Influence of the ranks on the approximation
	Comparison to TNKF for cascaded tanks benchmark data set

	Conclusion
	References

