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 a b s t r a c t

The state-of-the-art tensor network Kalman filter lifts the curse of dimensionality for high-dimensional 
recursive estimation problems. However, the required rounding operation can cause filter divergence 
due to the loss of positive definiteness of covariance matrices. We solve this issue by developing, for 
the first time, a tensor network square root Kalman filter, and apply it to high-dimensional online 
Gaussian process regression. In our experiments, we demonstrate that our method is equivalent to 
the conventional Kalman filter when choosing a full-rank tensor network. Furthermore, we apply our 
method to a real-life system identification problem where we estimate 414 parameters on a standard 
laptop. The estimated model outperforms the state-of-the-art tensor network Kalman filter in terms 
of prediction accuracy and uncertainty quantification.

© 2025 Published by Elsevier Ltd.
1. Introduction

In a time when data-driven AI models are trained on an ex-
ponentially growing amount of data, it is crucial that the models 
can be adapted to newly observed data without retraining from 
scratch. These online or recursive settings are present in many 
fields including system identification (Batselier, Chen, & Wong, 
2017b; Doyle, Pearson, & Ogunnaike, 2002), sensor fusion (Solin, 
Kok, Wahlström, Schön, & Särkkä, 2018; Viset, Helmons, & Kok, 
2022), robotics (Liu, Chowdhary, Castra da Silva, Liu, & How, 
2018; Nguyen-Tuong, Peters, & Seeger, 2008), and machine learn-
ing (Hartikainen & Särkkä, 2010; Ranganathan, Yang, & Ho, 2010; 
Stanton, Maddox, Delbridge, & Wilson, 2021).

While Bayesian algorithms, like widely-used Gaussian pro-
cesses (GPs) (Rasmussen & Williams, 2006) are well-suited for an 
online setting, they are associated with potentially high compu-
tational costs. Standard GP regression using a batch of N observa-
tions has a cubic cost in N , i.e., O(N3). The number of observations 
is growing in an online setting, so the cost increases each time 
step and can become a computational bottleneck.
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There are numerous parametric approximations to address 
scalability in batch settings, including sparse GPs (Quinonero-
Candela & Rasmussen, 2005) and reduced-rank GPs (Solin & 
Särkkä, 2020), which both have a complexity of O(NM2), M
being the number of inducing inputs and basis function for the 
respective method. Structured kernel interpolation for sparse 
GPs (Wilson & Nickisch, 2015) reduces the complexity further to 
O(N + DM1+1/D), D being the number of input dimensions.

Parametric approximations allow for a straightforward recur-
sive update, where the posterior distribution from the previous 
time step is used as a prior for the current time step (Särkkä 
& Svensson, 2023). In this context, online GPs have been used, 
e.g., for GP state-space models (Berntorp, 2021; Särkkä, Solin, 
& Hartikainen, 2013; Svensson & Schön, 2017), rank-reduced 
Kalman filtering (Schmidt, Hennig, Nick, & Tronarp, 2023) and 
recursive sparse GPs (Stanton et al., 2021).

In this paper, we consider the online parametric GP model 
given by 
yt = φ(xt )⊤wt + ϵt , ϵt ∼ N (0, σ 2

y ),
wt−1 ∼ N (ŵt−1, Pt−1),

(1)

where yt is a scalar observation at discrete time t , φ(·) are basis 
functions that map a D dimensional input vector xt to a feature 
space, wt ∈ RM are the parameters at time t , and σ 2

y  denotes 
the variance of the measurement noise ϵt which is assumed to 
be i.d.d. and zero-mean Gaussian. With (1), the posterior dis-
tribution p(wt | x1:t , y1:t ) = N (ŵt , Pt ) — i.e., the distribution of 
wt given all inputs and measurements up until time t , x1:t =
[x1, x2, . . . , xt ], y1:t = [y1, y2, . . . , yt ] — is computed at each 
time step using the estimate ŵt−1 and covariance matrix Pt−1
from the previous time step as a prior.

https://doi.org/10.1016/j.automatica.2025.112694
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We consider commonly used product kernels with a feature 
map given by 
φ(xt ) = φ(1)(xt )⊗ · · · ⊗ φ(d)(xt )⊗ · · · ⊗ φ(D)(xt ), (2)

where φ(d)(xt ) ∈ RI with I being the number of basis functions 
in the dth dimension, and ⊗ denoting a Kronecker product. The 
resulting number of basis functions is M = ID, growing exponen-
tially with the input dimension D. Requiring exponentially many 
parameters in a high-dimensional setting is a known problem, 
discussed in the related literature: In Svensson and Schön (2017) 
separable kernels or a radial basis function expansion are pro-
posed as an alternative with the disclaimer of limiting the space 
of functions that is possible to describe. In Stanton et al. (2021) di-
mensionality reduction is applied for all experiments with D > 3. 
Alternatively, several tensor network (TN)- based methods have 
been proposed to break this curse of dimensionality and achieve 
a linear computational complexity in D. In the batch setting, Bat-
selier, Chen, and Wong (2017a) and Wesel and Batselier (2021) 
give solutions for the squared exponential and polynomial kernel, 
respectively. In the online setting, the state-of-the-art method is 
the tensor network Kalman filter (TNKF) (Batselier et al., 2017b; 
Batselier, Ko, & Wong, 2019), where the Kalman filter time and 
measurement update are implemented in TN format.

While the TNKF lifts the curse of dimensionality, it has a 
significant drawback. The TNKF requires a TN-specific rounding 
operation (Oseledets, 2011), which can result in covariance up-
date losing positive (semi-) definiteness (De Rooij, Batselier, & 
Hunyadi, 2023), resulting in the divergence of the filter.

This paper resolves this issue by computing the square root 
covariance factor in tensor train (TT) format instead. Our approx-
imation represents the M × M square root covariance factor as 
a tensor train matrix (TTm). This is motivated by prior square 
root covariance factors of product kernels having a Kronecker 
product structure, which corresponds to a rank-1 TTm. In addi-
tion, work by Nickson, Gunter, Lloyd, Osborne, and Roberts (2015) 
and Izmailov, Novikov, and Kropotov (2018) approximates the 
covariance matrix as a rank-1 TTm. This work generalizes the 
rank-1 approximation to higher ranks which results in better 
prediction accuracy and uncertainty quantification. We call our 
method the tensor network square root Kalman filter (TNSRKF).

We show in experiments that the TNSRKF is equivalent to 
the standard Kalman filter when choosing full-rank TTs. In ad-
dition, we show how different choices of TT-ranks affect the 
performance of our method. Finally, we compare the TNSRKF to 
the TNKF in a real-life system identification problem with 414

parameters and observe that, contrary to the TNKF, our method 
does not diverge.

2. Problem formulation

Similar to the TNKF, we build on standard equations for the 
measurement update of the Kalman filter, given by
St = φ⊤t Pt−1φt + σ 2

y (3)

Kt = Pt−1φtS
−1
t (4)

ŵt = ŵt−1 + Kt (yt − φ⊤t ŵt−1) (5)

Pt = (IM − Ktφ
⊤

t )Pt−1(IM − Ktφ
⊤

t )
⊤
+ σ 2

y KtK⊤t , (6)

where St denotes the innovation covariance and Kt denotes the 
Kalman gain. Note that for a scalar measurement, St is a scalar 
and Kt a vector, whereas in the case of multiple measurements 
per time step, they are matrices. Without the loss of generality, 
we present the scalar case, where, beyond the scope of this paper, 
our approach can easily be extended to vector measurements. We 
recursively update the posterior distribution of the parametric 
2

weights from (1), i.e., p(wt | x1:t , y1:t ). For product kernels with a 
feature map given in (2), it is wt ∈ RID  and Pt ∈ RID×ID . In this 
case, the Kalman filter suffers from the curse of dimensionality.

The first tensor-based Kalman filter, the TNKF (Batselier et al., 
2017b), solved the curse of dimensionality and implements (3)–(6)
in TT format, where the weights are represented as a TT and the 
covariance matrix as a TTm. During the updates, the algebraic 
operations in TT format increase the TT-ranks of the involved 
variables, according to Batselier et al. (2019, Lemma 2). To coun-
teract the rank increase and keep the algorithm efficient, the 
TNKF requires an additional step called TT-rounding (Oseledets, 
2011). This SVD-based operation transforms the TT or TTm to 
ones with smaller TT-ranks. TT-rounding can result, however, in 
the loss of positive (semi-) definiteness.

To avoid this issue, we implement the square root formulation 
of the Kalman filter (SRKF), as described e.g. in Grewal and An-
drews (2014, Ch. 7), in TT format. The SRKF expresses (3)–(6) in 
terms of a square root decomposition Pt = LtL⊤t , with the square 
root covariance factor Lt given by 
Lt =

[
(IM − Ktφ

⊤

t )Lt−1 σyKt
]
. (7)

In each update, (7) is computed by concatenating two matrices, 
such that the number of columns of Lt increases. For the next 
update, Lt needs to be transformed back to its original size. In the 
SRKF, this is done by computing a thin QR-decomposition (Golub 
& Van Loan, 2013, p. 248) of Lt given by 

L⊤t
(M+1)×M

= Qt
(M+1)×M

Rt
M×M

(8)

and replacing Lt by R⊤t , i.e., by the transpose of Rt .
The orthogonal Qt-factor can be discarded since 

Pt = LtL⊤t = R⊤t Q⊤t Qt  
IM

Rt = R⊤t Rt . (9)

In TT format, performing the QR-decomposition as in (8) is not 
possible. We solve this issue by proposing an SVD-based algo-
rithm in TT format that truncates Lt back to its original size.

3. Background on tensor networks

3.1. Tensor networks

Tensor networks (TNs), also called tensor decompositions, 
are an extension of matrix decompositions to higher dimen-
sions. There are multiple TN architectures, including the CAN-
DECOMP/PARAFAC decomposition (Kolda & Bader, 2009), the 
Tucker decomposition (Tucker, 1966), and the tensor train (TT) 
decomposition (Oseledets, 2011). In this paper, we focus on 
TTs to approximate the weight vector’s mean as discussed in 
Section 3.1.1, and a TT matrix (TTm) (Oseledets, 2010) to ap-
proximate the square root covariance factor, as discussed in 
Section 3.1.2.

In this context, we denote TTs representing vectors as a lower-
case bold letter, e.g. wt , and their components, called TT-cores, 
as capital calligraphic bold letters, e.g. W (d). TT matrices are de-
noted by upper-case bold letters, e.g. Lt and their corresponding 
TTm-cores as capital calligraphic bold letters, e.g. L(d).

3.1.1. Tensor train vectors
As depicted in Fig.  1(a), a TT vector consists of intercon-

nected three-way tensors, called TT-cores, visualized as nodes 
with three edges. Each edge corresponds to an index of a TT-core 
and connected edges are summations over the involved indices. 
Each TT-core is connected by two edges, called TT-ranks, to its 
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Fig. 1. Visual depiction of tensor diagrams for a (a) TT, (b) TTm, (c) tall TTm 
and (d) thin SVD.

neighboring TT-cores, except for the first and last TT-core, whose 
outer TT-ranks are by definition equal to one.

For the purpose of this paper, consider a TT that represents 
the mean of the weight vector wt ∈ RM . The TT-cores, denoted 
by W (1)

t , . . . ,W (d)
t , . . . ,W (D)

t  with W (d)
t ∈ RRd×I×Rd+1  for d =

1, . . .D, where Rd and Rd+1 are the TT-ranks and I is the size of 
the non-connected edge such that M = ID. By definition R1 =

RD+1 = 1. Without the loss of generality, we use TT-cores with 
equal TT-ranks Rw. The storage complexity of wt without TNs is 
O(ID) and in TT format O(DIR2

w), where lower TT-ranks Rw will 
result in more efficient representations.

An important characteristic of a TT for numerical stability is 
that it can be transformed into the site-d-mixed canonical format. 

Definition 1 (Site-d-mixed canonical format Schollwöck (2011)). A 
TT wt in site-d-mixed canonical format is given by 
wt = Gd,tw

(d)
t , (10)

where Gd,t ∈ RM×RwIRw  is an orthogonal matrix computed from 
all TT-cores except the dth and w(d)

t ∈ RRwIRw  is the vectorization 
of the dth TT-core. In this format, the TT representation is linear 
in the dth TT-core when all other TT-cores are fixed. 

3.1.2. TT matrices and tall TT matrices
A TTm consists of interconnected four-way tensors, as de-

picted in Fig.  1(b). Analogous to the TT, the TTm components 
and connected edges are called TTm-cores and TTm-ranks, re-
spectively, where each TTm-core has two free edges, the row and 
column indices.

For the purpose of this paper, consider a TTm representation 
of the square root covariance factor Lt ∈ RM×M . The TTm-cores 
are denoted by L(1)

t , . . . ,L(d)
t , . . . ,L(D)

t  with L(d)
t ∈ RRd×I×J×Rd+1 , 

where I and J are the number of row and column indices, indi-
cated in Fig.  1(b) as red and blue edges respectively, such that 
M = ID and M = JD. By definition, R1 = RD+1 = 1, and for this 
paper, we generally assume that all other TTm-ranks R2 = · · · =

RD = RL are equal. The storage complexity of Lt without TNs is 
O(ID × ID) and in TTm format O(DR2

L IJ).
A TTm can also be written in terms of the site-d-mixed canon-

ical format as defined in Definition  1, but it requires to be trans-
formed into a TT first. This can be done by combining the row 
and column indexes into one index, which represents a kind 
of vectorization of the matrix represented by the TTm. Note, 
however, that the indices are not ordered as in conventional 
vectorization. A site-d-mixed canonical format of a TTm is given 
by 
vec(Lt ) = Hd,t l

(d)
t , (11)

where the orthogonal matrix Hd,t ∈ R2M×RLIJRL  is computed from 
all the TTm-cores but the dth, and l(d) ∈ RRLIJRL .
t

3

To recompute Lt in its original size in the QR step of the SRKF 
(see (8)), here called the re-squaring step, we need a special case 
of a TTm, the tall TTm, as well as a thin SVD in TTm format.

Definition 2 (Tall TTm (Batselier et al., 2017a)). A tall TTm, as 
depicted in Fig.  1(c), has only one TTm-core with both a row and 
column index, while all other TTm-cores have only row indices. 
Then, the TTm represents a tall matrix with many more rows than 
columns.

Definition 3 (Thin SVD in TTm format Batselier (2022)).  Consider 
a TTm in site-d-mixed canonical format, where the dth TTm-core 
is the one that has the column index, L(d)

∈ RRL×I×J×RL . The SVD 
of L(d) reshaped and permuted in to a matrix of size RLIRL × J , is 
given by 
U(d)S(d)(V(d))⊤. (12)

Now replace the dth TTm-core by U(d) reshaped and permuted 
back to the original TTm-core dimensions.

Then the thin SVD is given by the TTm with the replaced TT-
core as the orthogonal U-factor, and S(d)(V(d))⊤ as the SV⊤-factors, 
as depicted in Fig.  1(d).

4. TNSRKF

We propose our method, combining efficient TN methods with 
the SRKF formulation for online GP regression. More specifically, 
we recursively compute the posterior distribution of the paramet-
ric weights in (1) from the measurement update of the Kalman 
filter. To achieve this, we update the mean ŵt ∈ RM as a TT 
(Section 4.1), and the square root factor Lt ∈ RM×M as a TTm 
(Section 4.2).

All computations are summarized in Algorithm 1, which out-
puts the posterior weight distributions p(wt | x1:t , y1:t ) =
N (ŵt , Pt ), and the prediction for a test input f∗,t in terms of a 
distribution p(f∗,t ) = N (m∗,t , σ 2

∗,t ) with predictive mean m∗,t and 
variance σ 2

∗,t . Note that online GP regression refers to ingesting 
one measurement at a time and updating the weights wt recur-
sively. Therefore, in a truly online scenario, where measurements 
are collected on the fly, the input to Algorithm 1 would not be a 
batch y, but a single measurement yt .

4.1. Update of weight mean

The mean of the weights is updated with a new measurement 
yt ∈ R, with (5). In the original tensor-based KF (Batselier et al., 
2017b), the two terms in Eq.  (5) are summed together in TT for-
mat, which increases the TT-ranks. To avoid this rank increase and 
application of TT-rounding, we propose solving an optimization 
problem to compute (5) instead: We apply a commonly-used 
optimization algorithm from the tensor community, called the 
alternating linear scheme (ALS) (Holtz, Rohwedder, & Schneider, 
2012; Rohwedder & Uschmajew, 2013). The ALS computes a TT by 
updating one TT-core at a time while keeping all other TT-cores 
fixed. The optimization problem to be solved is given by 
min
wt
∥ŵt−1 + Kt (yt − φ⊤t ŵt−1)−wt∥

2

s.t. wt being a low-rank TT,
(13)

where ŵt−1 is the estimate from the last time step, playing now 
the role of the prior for the current time step.

Inserting (10) in (13), thus making use of Gd,t being an or-
thogonal matrix (see the site-d-mixed canonical format from 
Definition  1), gives the optimization problem for the update of 
one TT-core 

min
(d)

G⊤d,t (ŵt−1 + Kt (yt − φ⊤t ŵt−1)
)
−w(d)

t

2
. (14)
wt
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In one so-called sweep of the ALS, (14) is solved for each TT-core 
once. A stopping criterion for the convergence of the residual in 
(14) determines the total number of sweeps.

4.2. Update of square root covariance factor

To compute the covariance matrix with the standard covari-
ance update in the measurement update, see (6), we recursively 
compute the square root covariance factor Lt as defined in (7) 
such that Pt = LtL⊤t . To achieve this, we use the ALS to solve (7) 
(ALS step) and then we transform Lt as in (8) back to its original 
size (re-squaring step).
ALS step. In this step, we use the ALS to compute a TTm repre-
senting Lt . We solve the optimization problem given by 

min
Lt

⏐⏐⏐⏐ [(IM − Ktφ
⊤

t )Lt−1 σyKt
]
− Lt

⏐⏐⏐⏐2
F

s.t. Lt being a low-rank TTm,
(15)

where Lt−1 is the estimated square root covariance factor from 
time step t − 1 now serving as the prior. The original ALS 
algorithm is defined for TTs, so we must adapt it for TT matrices.

For this, it is necessary to use the site-d-mixed canonical 
form for TT matrices, as described in Section 3.1.2 above (11). 
In addition, we need to horizontally concatenate two matrices in 
TTm format, which can be done by summing two matrices of size 
M × 2M such that (15) becomes 

min
l(d)t

⏐⏐⏐⏐H⊤d,t vec ([
1 0

]
⊗ (IM − Ktφ

⊤

t )Lt−1
)

+H⊤d,t vec
([
0 1

]
⊗

[
1 0M−1

]
⊗ σyKt

)
− l(d)t

⏐⏐⏐⏐2
F
,

(16)

where vec denotes the vectorization of the involved TT matrices.

Re-squaring step. The optimization problem given by (15) re-
quires concatenating a matrix with a column vector. In TT format, 
this results in a TTm of size M× 2M . For the TTm-cores of Lt this 
means that one TTm-core, which we call the augmented core, is 
of size RL× I×2J×RL. Before serving as a prior for the next time 
step, a re-squaring step implementing the QR step (see (8)) in TN 
format is required to transform Lt back to its original size. Since 
computing a QR decomposition of a TTm is not directly possible, 
we present an SVD-based algorithm in TN format to transform Lt
of size M × 2M back to M ×M , as described in Algorithm 2.

4.3. Predictions

To perform GP predictions we compute the predictive distri-
bution for a test output f∗,t = φ(x∗)⊤wt with mean and variance 
given by 
m∗,t = φ(x∗)⊤ŵt

σ 2
∗,t = φ(x∗)⊤LtL⊤t φ(x∗).

(17)

Given ŵt as a TT and Lt as a TTm, we can compute (17) directly 
in TN format without explicitly reconstructing the mean vector 
and square root factor. For a test input x∗, Fig.  2 illustrates the 
computation of (a) the predictive mean m∗,t , (b) the predictive 
covariance σ 2

∗,t . The corresponding equation to Fig.  2(a) is given 
by

m∗,t =
R(2)∑
r(2)

· · ·

R(D)∑
r(D)

D∏
d

I(d)∑
i(d)

φ
(d)
i(d)

(x∗)Ŵ
(d)
r(d),i(d),r(d+1)

,

where the lowercase letters in the subcript, i.e. r (d), r (d+1) and 
i(d), denote the indices of size R(d)

= R(d+1)
= R and I (d) = I , 
4

Fig. 2. Visual depiction of (a) predictive mean and (b) predictive covariance for 
D = 5.

Table 1
Computational complexities for one TT-core mean and covariance update. We 
denote the TT-ranks of Kt by RK .
 Term Complexity  
 G⊤d,t ŵt−1 O(R4

wI)  
 G⊤d,tKt (yt − φ⊤t ŵt−1) O(R2

wR
2
KI)  

 (20)–(22) O(R4
L IJ)  

respectively. Fig.  2(b) can be written in a similar way. Moving 
forward, we provide only the TN diagrams, since the equations 
can become lengthy.
Algorithm 1 Online GP regression in terms of SRKF in TT format 
(TNSRKF)
Input: Measurements y = y1, y2, . . . , yN ,

basis functions for inputs φ(xt ), t = 1, . . . ,N ,
prior ŵ0 in TN format (Lemma 5)
prior L0 in TN format (Lemma 7),
noise variance σ 2

y ,
basis functions for prediction point φ(x∗).

Output: p(w | y1:t ) = N (ŵt , Pt ) and
p(f∗ | y1:t ) = N (m∗,t , σ 2

∗,t ), for t = 1, . . . ,N . 
1: Initialize w1 = ŵ0 and L1 as a random TTm in site-d-mixed 

canonical format.
2: for t = 1, . . . ,N do 
3: Compute Ŵ (1)

t , Ŵ (2)
t , . . . , Ŵ (D)

t  with Eq.  (14). 
4: Compute L(1)

t ,L(2)
t , . . . ,L(D)

t  with Eq.  (16). 
5: Save TT and TTm from step 3 and 4 as initializations for the 

next time step. 
6: Re-square Lt with Algorithm 2. 
7: Compute m∗,t with Eq.  (17) as depicted in Fig. 2(a). 
8: Compute σ 2

∗,t with Eq.  (17) as depicted in Fig. 2(b). 
9: end for

5. Implementation

In this section, we give a detailed description of the non-
straightforward TN operations to update the mean estimate ŵt
and square root covariance factor Lt as described in Algorithm 1. 
The leading complexities of the mean and square root covariance 
factor update are given in Table  1.

5.1. Updating ŵt in TN format

In the following sections, we discuss the implementation of 
(14) for the mean update (Algorithm 1, line 3), and we describe 
how the mean is initialized in TT format (Algorithm 1, line 1).
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Fig. 3. Visual depiction of computation of G⊤d,t ŵt−1 , resulting in three-way tensor 
of size Rw× I×Rw (gray node). The indices are summed over from left to right, 
alternating between the vertical and horizontal ones. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version 
of this article.)

5.1.1. Implementation of G⊤d,t (ŵt−1 + Kt (yt − φ⊤t ŵt−1))
To compute the TT representing the mean estimate ŵt , we 

implement the ALS to solve (14) (Algorithm 1, line 3).
The following example illustrates the update of one TT-core 

during the ALS. 

Example 4 (TT-Core Update with ALS). Take a D = 5 dimensional 
weight vector in TT format with I = 10 basis functions in each 
dimension, resulting in 105 parameters and uniform TT-ranks of 
R2 = R3 = R4 = 4. Say, we are currently updating the third 
TT-core W (3)

t ∈ R4×10×4 using 

w(3)
t

160×1

= G⊤3,t
160×105

⎛⎜⎝ŵt−1
105×1

+ Kt
105×1

(yt − φ⊤t ŵt−1)  
1×1

⎞⎟⎠ . (18)

We first multiply over the large dimension of 105 in G⊤3,tŵt−1 and 
G⊤3,tKt (yt − φ⊤t ŵt−1). In TT format, this matrix–vector multiplica-
tion is done core by core, thus avoiding the explicit multiplication. 
Finally, we sum two vectors of size 160. 

Fig.  3 illustrates the multiplication of G⊤d,tŵt−1 in TT format, 
resulting in a tensor W (d)

t  of size Rw × I × Rw.
The multiplication of between G⊤d,t and Kt (yt−φ⊤t ŵt−1) works 

in the same way as depicted in Fig.  3, after firstly computing 
φ⊤t ŵt−1 in TN format and secondly multiplying one arbitrary 
TT-core of Kt by the scalar (yt − φ⊤t ŵt−1).

During the update of the dth TT-core, the TT is in site-d-mixed 
canonical format. Before updating the next TT-core, either the 
(d − 1)th or the (d + 1)th, the site-(d − 1)-mixed or site-(d +
1)-mixed canonical format is computed. Note that because of 
the recursive property, updating every TT-core once with a new 
measurement is usually sufficient for the residual of (13) to 
converge.

5.1.2. Initialization of ŵ0 and w1
For the first time step t = 1 of Algorithm 1, we choose a zero-

mean assumption for the prior estimate ŵ0. The following Lemma 
explains how this can be implemented in TT format.

Lemma 5 (Zero-Mean Prior in TT Format Batselier et al. (2019)).
Consider a vector with all entries equal to zero. In TT format, such a 
vector is given by a TT in site-d-mixed canonical format, where the 
dth TT-core contains only zeros. 

In addition, Algorithm 1 requires an initial guess for w1 to 
compute Gd,1 from all TT-cores of w1, except the dth. For this, 
we set w = ŵ .
1 0

5

5.2. Updating Lt in TT format

To compute the TTm representing Lt , we implement the ALS to 
solve (16) (Algorithm 1, line 4). The following example illustrates 
the update of one TTm-core during the ALS.

Example 6 (TTm-Core Update With ALS).  Take a D = 5 dimen-
sional TTm representing Lt ∈ RM×M , where we are currently 
updating the third TTm-core. We have I = 10 and J = 10, 
where the third TTm-core is augmented, and RL = 4. We update 
L(3)

t ∈ R4×10×20×4 using 

l(3)t
3200×1

= H⊤d,t
3200×2·1010

vec

⎛⎜⎝[
1 0

]  
1×2

⊗ Lt−1
105×105

⎞⎟⎠
− H⊤d,t

3200×2·1010

vec

⎛⎜⎝[
1 0

]  
1×2

⊗Ktφ
⊤

t Lt−1  
105×105

⎞⎟⎠
+ H⊤d,t

3200×2·1010

vec

⎛⎜⎝[
0 1

]  
1×2

⊗
[
1 0M−1

]  
1×105

⊗ σyKt
105×1

⎞⎟⎠ .

(19)

We first multiply over the large dimension of 2·1010 in TT format, 
then sum the three terms of size 3200 × 1.

From Example  6, it follows that the three terms of (19) need 
to be implemented. We discuss them separately in the following 
sections. We distinguish between the update of the augmented 
TTm-core from all other ones, which result in TTm-cores of size 
RL × I × 2J × RL and RL × I × J × RL, respectively. In the tensor 
diagrams (Figs.  4–6), we depict the update for the augmented 
TTm-core.

Before diving in, recall from (11) that Hd,t is computed from 
TTm-cores of Lt , except the dth, where row and column indices 
are combined. In the tensor diagrams, the indices are depicted 
not as combined because, in practice, they are generally summed 
over separately. However, the vectorized format is necessary for 
writing down the equations in matrix form.

5.2.1. Implementation of first term of (16)
Fig.  4 illustrates the computation of the augmented TTm-core 

in the first term of (16), given by 
H⊤d,t vec

([
1 0

]
⊗ Lt−1

)
. (20)

The column indices of Lt−1 are indicated by the round edges that 
are connected to the row indices of H⊤d,t . The edge containing 
e1 = [1 0] is connected to the dth TTm core of Lt with a 
rank-1 connection, which corresponds to the Kronecker product 
in (20). The summation over the vertical and curved indices has 
the leading computational complexity of O(R4

L IJ) per dimension. 
When updating all TTm-cores except the augmented TTm-core, 
the additional index of size 2 is summed over resulting in a tensor 
of size RL × I × J × RL.

5.2.2. Implementation of second term of (16)
Fig.  5 illustrates the computation of 

H⊤d,t vec
([
1 0

]
⊗ Lt−1L⊤t−1φtS

−1
t φ⊤t Lt−1

)
, (21)

which directly follows from the second term of (16). As shown, 
the row and column indices of H⊤d,t are connected separately 
to the column and row indices of two TT matrices for Lt−1, 
respectively. Like in the previous term, the edge containing e1 =
[1 0] is connected to the augmented TTm-core of L  with a rank-1 
t
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Fig. 4. Visual depiction for computing the augmented TTm-core in (20) resulting 
in a 4-way tensor of size RL × I × 2J × RL (gray node). The combined horizontal 
and curved indices are summed over and alternating with the horizontal indices.

Fig. 5. Visual depiction for computing (21) resulting in a 4-way tensor of size 
RL × I × 2J × RL (gray node). First, the indices in the red and blue boxes are 
summed over, then the indices between the red, yellow, and blue boxes, and 
finally, the ones between the red, green, and blue boxes. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web 
version of this article.)

connection, which corresponds to the Kronecker product in (21). 
The leading computational complexity of O(R4

L IJ) per dimension 
comes from the summation over the vertical indices in the red 
or blue box indicated in the figure. The most efficient order 
of doing the computations in Fig.  5 was found with the visual 
tensor network software by Evenbly (2019), assuming our use 
case where D > 3 and I, J, RL < 10.

5.2.3. Implementation of third term of (16)
Fig.  6 illustrates the computation of 

H⊤d,t vec
([
0 1

]
⊗

[
1 0M−1

]
⊗ σyLtL⊤t φtS

−1
t

)
, (22)

which directly follows from the third term of (16). The row of 
nodes each filled with e1 = [1 0J−1] corresponds to [1 0M−1]

from (22) and their rank-1 connections to the nodes above is 
the second Kronecker product in (22), which is done dimension-
wise in TT format. The node with e2 corresponds to [0 1] from 
(22) and its rank-1 connection is the first Kronecker product 
6

Fig. 6. Visual depiction for computing (22), resulting in a 4-way tensor of size 
RL × I × 2J × RL (gray node). The indices are summed over from left to right 
by alternating between the vertical and horizontal ones. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web 
version of this article.)

in (22). The summation over the vertical indices is the leading 
computational complexity of O(R4

L IJ) per dimension.

5.2.4. SVD-based re-squaring step in TTm format
When computing (16), we double the number of columns 

of Lt compared to Lt−1. For the next time step, however, we 
need to transform Lt back to its original size (Algorithm 1, line 
6), otherwise its column size will grow with the iterations and 
slow down the algorithm. The QR step, as in (8), computes a 
full QR decomposition of Lt , which cannot be done in TT format. 
Instead, we compute a thin SVD in TTm format (Definition  3) of 
Lt transformed into a tall TTm (here also denoted by Lt ) with all 
row indices of size IJ , except the dth which is of size I , and the dth 
column index of size 2J . The J-truncated SVD of Lt is then given 
by 

Lt
MJD−1×2J

≈ UtSt
MJD−1×J

V⊤t
J×2J

, (23)

where UtSt is the new Lt and V⊤t  can be discarded because of (9). 
In practice, we compute an SVD of the augmented TTm-core and 
truncate it back to the size of RL × I × J × RL.

There is a way to make (23) exact. This is possible if the 
augmented TTm-core is of size RL × I × 2JR2

L × RL. In this case, 
the SVD computed of the augmented TTm-core results in a square 
U-factor. Since the number of columns is doubled every measure-
ment update, the re-squaring step can be skipped p times until 
2p
= 2R2

L . Choosing smaller values for p reduces computational 
complexity at the cost of accuracy.

The SVD-based re-squaring step is described in Algorithm 2. 
The SVD of the reshaped and permuted augmented TTm-core is 
truncated for 2p < 2R2

L and exact for 2p
≥ 2R2

L .

5.2.5. Initialization of L0 and L1
At time t = 1, Algorithm 1 requires the prior square root 

covariance factor L0 in TTm format. We are considering prod-
uct kernels that have priors in Kronecker format. The following 
Lemma describes how these types of priors can be transformed 
into a TTm for L .
0
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Algorithm 2 SVD-based re-squaring step of covariance update
Input: TTm Lt in site-d-mixed canonical format with L(d)

∈

RRL×I×2pJ×RL .
Output: TTm Lt with L(d)

∈ RRL×I×2p−1J×RL .

1: L(d) ← Reshape / permute L(d) into matrix of size RLIRL
× 2p+1J . 

2: Compute thin SVD(L(d)) = U(d)S(d)(V(d))⊤. 
3: L(d)

← Reshape / permute first 2p−1J columns of U(d)S(d) of 
size RLIRL × 2p−1J into tensor of size RL × I × 2p−1J × RL.

Lemma 7 (Prior covariance with Kronecker structure into TTm, fol-
lows from Golub & Van Loan, 2013, p.708). Given a prior covariance 
P0 = P(1)

0 ⊗P(2)
0 ⊗· · ·⊗P(D)

0 , the prior square root covariance in TTm 
format is given by a TTm with all ranks equal to 1, where the cores 
are given by L(1)0 , L(2)0 , . . . , L(D)0 , each reshaped into a 4-way tensor 
of size 1× I × J × 1. 

In addition, Algorithm 1 requires an initial guess in TTm for-
mat for L1 ∈ RM×2M . We cannot set L1 = L0 since the prior has 
TTm-ranks equal to one, and we may want higher TTm-ranks for 
Lt . This is because the choice of the TTm-ranks of L1 determines 
the rank manifold on which the TTm-cores will be optimized. We 
initialize the TTm-cores as random samples from a zero-mean 
Gaussian distribution and transform the TTm into site-d-mixed 
canonical format, where d is the augmented TTm-core.

6. Experiments

In this section, we show how our method works in practice 
by performing online GP regression on synthetic and real-life 
data sets. We evaluate our predictions based on the root mean 
square error (RMSE) for the accuracy of the mean and negative 
log-likelihood (NLL) for the uncertainty estimation. The metrics 
after t measurement updates are defined as 

(RMSE)t =

√ N∗∑
i=1

(m∗,t,i − y∗,i)2

N∗
and

(NLL)t = 0.5
N∗∑
i=1

log(2πσ 2
∗,t,i)+

(m∗,t,i − y∗,i)2

σ 2
∗,t,i

,

(24)

where y∗,i is the ith measurement from the test set, m∗,t,i and 
σ∗,t,i are the predictive mean and variance for the ith test point, 
and N∗ is the number of test points.

First, we show the equivalence of the full-rank TNSRKF and 
the conventional Kalman filter. Then we show in a synthetic 
experiment how the choice of Rw and RL impacts the accuracy of 
the approximation. Finally, we compare our method to the TNKF 
on a benchmark data set for nonlinear system identification.

All experiments were performed on an 11th Gen Intel(R) 
Core(TM) i7 processor running at 3.00 GHz with 16 GB RAM. 
For reproducibility of the method and the experiments, the code 
written in Julia programming language is freely available at 
https://github.com/clarazen/TNSRKF.

6.1. Equivalence of full-rank TNSRKF and Kalman filter

In the first experiment, we show in which case our method 
is equivalent to the measurement update of the conventional 
Kalman filter. We generate D = 3 dimensional synthetic data 
sampled from a reduced-rank GP by Solin and Särkkä (2020) with 
a squared exponential kernel (lengthscale ℓ2 = 0.1 and signal 
variance σ 2

= 1), set the noise variance to σ 2
= 0.01 and use 
f y

7

Table 2
RMSE and NLL at time t = N for the full-rank setting and different choices of p
in comparison to the conventional Kalman filter (KF).
 Method Setting (RMSE)N (NLL)N  
 KF – 0.07873 −106.864 
 TNSRKF Rw RL p  
 4 16 8 0.07873 −106.864 
 4 16 4 0.07879 −108.338 
 4 16 2 0.07444 −157.716 
 4 16 1 0.06765 −166.178 

I = 4 basis functions per dimension, such that Pt ∈ R64×64. The 
input data lies in a cuboid given by [−1 1] × [−1 1] × [−1 1]
and N,N∗ = 100.

Table  2 shows the RMSE and NLL for test data at time t = N
for different choices of p. The TNSRKF is equivalent to the Kalman 
filter when both Rw and RL are full-rank. In addition, p must 
be chosen, such that the QR step, discussed in Section 5.2.4, is 
exact. For settings with lower values for p, the method trade-in 
accuracy.

In the following sections, we look at scenarios where the 
Kalman filter can no longer be computed on a conventional laptop 
because both storage and computational time become unfeasible.

6.2. Influence of the ranks on the approximation

The choice of the TT- and TTm-ranks is not obvious and can be 
intricate. However, the computational budget often determines 
how high the ranks can be chosen. In this experiment, we use our 
method to make online GP predictions on synthetic data while 
varying the TTm-ranks of Lt , as well as the TT-ranks of wt .

We consider the Volterra kernel, a popular choice for nonlinear 
system identification. It is known that the truncated Volterra 
series suffers from the curse of dimensionality, which was lifted 
in a TN setting by Batselier et al. (2017a). With the notation of 
this paper, the basis functions φ of parametric model (1) are a 
combination of monomials computed from the input sequence 
of the given problem. We generate synthetic training and testing 
data as described in Batselier (2021), where D = 7 and I = 4 such 
that the number of parameters is 47

= 16 384. We set the SNR to 
60, corresponding to σ 2

y = 6.96× 10−6.
Fig.  7 shows the RMSE and NLL on the testing data for Rw =

2, 4 and RL = 2, 4 over time iterations of the TNSRKF. At t = N , 
the RMSE is lower for Rw = 2 and RL = 4 than for Rw = 4 and 
RL = 4. Thus, it seems that a lower value for the mean estimate 
represents the data better. Note that although having larger TT-
ranks increases the degrees of freedom of the TT, it may not 
always improve the accuracy of the approximation, e.g. because 
higher TT-ranks can result in overfitting, while lower ranks can 
have a regularizing effect. The NLL is the lowest for Rw = 4 and 
RL = 4, which is close to the NLL for Rw = 4 and RL = 2. 
Note that the NLL for the same RL is different for the two settings 
of Rw, because the NLL also depends on the difference between 
predicted and actual measurements, thus on the accuracy of ŵt .

This experiment showed that the choice of Rw and RL influ-
ences the performance of the TNSRKF. Since higher values for the 
ranks also increase the computational complexity, the computa-
tional budget will determine the higher limit for the ranks. In 
addition, an assumption with lower ranks may be fitting the data 
better in some cases.

6.3. Comparison to TNKF for cascaded tanks benchmark data set

In this experiment, we compare our method to the TNKF on 
a nonlinear benchmark for system identification, the cascaded 
tanks data set. A detailed description can be found in Schoukens 

https://github.com/clarazen/TNSRKF
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Fig. 7. RMSE and NLL over time iterations for different combinations of Rw and 
RL .

Fig. 8. RMSE and NLL over iterations for TNKF and TNSRKF for RL = RP = 1 and 
RL = 2, RP = RL ·RL = 4. The orange and blue lines mostly overlap because both 
methods perform similarly for RL = RP = 1. Also, the violet curve leaves the 
plot window because the TNKF diverges. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this 
article.)

and Noël (2017). The training and testing data both consist of 
a data set of 1024 data points each. To train our GP model, 
we choose lagged inputs and outputs as input to our GP, as 
described in Karagoz and Batselier (2020), resulting in an input 
of dimensionality D = 14. We use a squared exponential kernel, 
which hyperparameters we optimize with the Gaussian process 
toolbox by Rasmussen and Williams (2006), and we choose I = 4, 
such that the model has M = 414

= 268 435 456 parameters.
For the comparison to the TNKF, we choose the TT-ranks for 

the mean to be R2 = R14 = 4, R3 = · · · R13 = 10, and 
we vary RL and the TTm-ranks of the covariance matrix for the 
TNKF denoted by RP. Figs.  8 and 9 show the RMSE and NLL over 
the time iterations of the respective filter. When RL = 1 and 
RP = 1, both methods perform almost the same, as visualized 
by the overlapping orange and blue lines. When R2

L = RP = 4, 
our method improves both prediction accuracy and uncertainty 
estimation compared to the RL = 1. On the contrary, the TNKF 
diverges and leaves the plotted figure area because the covariance 
matrix loses positive definiteness. When R2

L = RP = 16, the 
TNKF shows a similar behavior, while the TNSRKF results in lower 
RMSEs but mostly higher NLL values. This setting shows that 
higher values for RL are not always beneficial for the uncertainty 
estimation.

Finally, Fig.  10 shows the predictions with the TNSRKF on 
testing data after seeing 100, 200, and 922 data points. Aligned 
with the plot showing the RMSE and NLL, after 100 data points, 
the prediction is quite bad and uncertain. After 200 data points, 
the predictions are better and more certain and further improve 
after seeing the entire data set.
8

Fig. 9. RMSE and NLL over iterations for TNKF and TNSRKF for RL = RP = 1 and 
RL = 4, RP = RL ·RL = 16. The orange and blue lines mostly overlap because both 
methods perform similarly for RL = RP = 1. Also, the violet curve leaves the 
plot window because the TNKF diverges. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this 
article.)

Fig. 10. Predictions on test data with uncertainty bounds after seeing (a) 101, 
(b) 201, and (3) 992 data points for RL = 4. The measurements start at 33 
because the memory goes back 32 time steps.

7. Conclusion

In this paper, we presented a TT-based solution for online GP 
regression in terms of an SRKF. In our experiments, we show that 
our method is scalable to a high number of input dimensions at 
a reasonable computational cost such that all experiments could 
be run on a conventional laptop. In addition, we improve the 
state-of-the-art method for TN-based Kalman filter: In settings 
where the TNKF loses positive (semi-)definiteness and becomes 
numerically unstable, our method avoids this issue because we 
compute the square root covariance factors instead of the covari-
ance matrix. In this way, we can choose settings for our method 
that achieve better accuracy than the TNKF.

A future work direction is online hyperparameter optimiza-
tion. We are looking at a truly online scenario, so future data 
is not available. Thus, we cannot swipe over mini-batches of 
data multiple times like other methods, e.g. Schürch, Azzimonti, 
Benavoli, and Zaffalon (2020), to optimize hyperparameters.

Finally, there is still ongoing research to determine how to 
choose TT-ranks and TTm-ranks. In the synthetic experiments, 
we showed the impact of RL and Rw. Generally, the TT- and 
TTm-ranks need to be treated as hyperparameters.
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