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Abstract—Generalized sidelobe canceler (GSC) uses a two
step procedure in order to produce a beampattern with a
fixed mainlobe and suppressed sidelobes. In the first step, a
beampattern with a fixed response in the look direction is
produced by convolving a vector of constraints with a normalized
beamforming vector with the desired mainlobe response. In the
second step, the signals in the look direction are blocked out using
so-called blocking matrix, while the output power is minimized.
Observing that for Griffiths-Jim GSC the beamforming vector
contains the coefficients of a polynomial with at least one root at
1, we find here that all rows of a blocking matrix should be the
coefficients of polynomials from the polynomial ideal with a root
at 1. This allows us to reveal and exploit the underlying algebraic
structure for GSC blocking matrix design using methods from
computational algebraic geometry. It also allows to arrive to and
prove several generalized statements. For example, the necessary
and sufficient condition for a signal to be blocked can be easily
found. The condition to a row-space of blocking matrix for
blocking multiple signals impinging upon the array from multiple
directions can also be easily formulated. The linear independence
of rows of blocking matrix implies that all the corresponding
polynomial share a single root. In general, understanding the
algebraic structure that GSC’s blocking matrix has to satisfy
makes the GSC’s design simpler and more intuitive.

Index Terms—Adaptive beamforming, Algebraic geometry,
Blocking matrix design, Generalized sidelobe canceler

I. INTRODUCTION

Adaptive beamforming is a powerful technique to signi-
cantly improve the antenna array output signal-to-interference-
plus-noise ratio (SINR) as well as other performance char-
acteristics which found a large number of applications in
multiple areas [1]– [6]. In many signal processing applications,
an adaptive beamforming technique known as generalized
sidelobe canceler (GSC) plays a key role for faster adaptation,
dimensionality reduction, and combining spatial and temporal
constraints [7]– [11]. GSC uses a two step procedure to
produce a beampattern with a fixed mainlobe and suppressed
sidelobes. In the first step, a beampattern with a fixed response
in the look direction is produced by convolving a vector of
constraints with a normalized beamforming vector with the
desired mainlobe response. In the second step, the signals in
the look directions are blocked out, while the output power is
minimized. The theory and practice of GSC is well understood,
but the selection of the so-called blocking matrix used in the
second step remains to be ad hoc and application dependent.

In this paper, following the recent success of algebraic
geometry [12]– [14] applications in array processing [15]–

[18], we build a general theory regarding the selection of the
blocking matrix in GSC. The main principles of such design
and the main properties are therefore explained here.

II. ADAPTIVE BEAMFORMING AND GSC
For adaptive beamforming design [4]– [6], the narrowband

signal at the output of an N -antenna receive array is given by

x(t) = s(t) + i(t) + n(t) (1)

where s(t), i(t), and n(t) are statistically independent vectors
corresponding to the signal of interest (SOI), interference, and
noise, respectively. In the case of point source signal, s(t) is
expressed as s(t) = s(t)a, where s(t) is the SOI waveform
and a is its steering vector (also called as the array response
or spatial signature of the SOI).

The receive beamformer output is given as

y(t) = wHx(t) (2)

where w is the N × 1 vector of beamformer complex weight
coefficients and (·)H stands for Hermitian transpose. The
beamforming problem is to find an optimal w maximizing
the beamformer output signal-to-interference-plus-noise ratio
(SINR):

SINR =
σ2
s |wHa|2

wHRi+nw
(3)

where σ2
s is the SOI power, Ri+n is the interference-plus-noise

covariance matrix, and | · | denoted magnitude. In practical
applications, the true covariance Ri+n is unavailable and,
consequently, the data sample covariance matrix estimate:

R̂ =
1

T

T∑
t=1

x(t)xH(t) (4)

is used. Here T is the number of available snapshots and x(t)
are the beamformer training data.

The SINR maximization problem is equivalent to the fol-
lowing well-known minimum variance distortionless response
(MVDR) beamforming convex problem [4]:

minimize
w

wHR̂w subject to |wHa| = 1. (5)

In many practical applications, however, the source cannot
be localized as a point source [8] and then multiple distor-
tionless constraints have to be enforced. The corresponding
optimization problem than can be expressed as

min
w

wHR̂w subject to CHw = f (6)
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where C is the matrix of constrained directions and f is
a vector of constraints. For example in the case of point
constraints, the matrix C consists of a multiple steering
vectors for different directions of arrival (DOAs) around the
presumed DOA and f is the vector of ones. The solution of
the optimization problem (6) can be easily found as

wopt = R̂−1C
(
CHR̂−1C

)−1
f . (7)

Decompose it into two components, one in the constraint
subspace, and another in the subspace orthogonal to the
constraint subspace, we can write that

wopt = (PC +P⊥C)wopt

= C(CHC)−1CHR̂−1C
(
CHR̂−1C

)−1
f

+ P⊥CR̂
−1C

(
CHR̂−1C

)−1
f (8)

where PC and P⊥C are respectively the projection and the
orthogonal projection matrices to the space spanned by the
columns of C.

Generalizing this approach, we obtain the following decom-
position for wopt:

wopt = wq −Bwa (9)

where wq = C(CHC)−1f is the quiescent non-adaptive
weight vector and the vector wa is the new adaptive weight
vector. The matrix B here is called the blocking matrix, and
it is such that the condition

BHC = 0 (10)

should hold.
The adaptive beamformer of the form (9) is known as GSC,

and its design boils down to the design of a blocking matrix B,
since the choice of B is not unique. For example, B = P⊥C
can be selected as in the example above. However, then B
becomes not a full-rank matrix, which is an issue in many
applications. A more common choise for B is to assume that
it has to be N × (N − M) full-rank matrix. Such B then
will also lead to the dimensionality reduction for designing
the adaptive part of the beamforming vector by M elements,
which is of importance in many applications suach as, for
example, over-the-horizon radar as well as speech processing.
Indeed, in this case, the vectors z = BHx and wa both have
shorter length (N −M) × 1 relative to the N × 1 vectors x
and wq.

Since the constrained directions are blocked by the matrix
B, the SOI cannot be suppressed and, therefore, the weight
vector wa can adapt freely to suppress interference by mini-
mizing the output GSC power:

QGSC = (wq −Bwa)
HR̂(wq −Bwa)

= wH
q R̂wq −wH

q R̂Bwa −wH
a BHR̂wq

+ wH
a BHR̂Bwa. (11)

The solution of (11) can be found as

wa,opt =
(
BHR̂B

)−1
BHR̂wq = R̂−1z r̂yz (12)

where y(k) = wH
q x(k), z(k) = BHx(k), and R̂z ≈ Rz and

r̂yz ≈ ryz with Rz and ryz being

Rz = E{z(k)zH(k)} = BHE{x(k)xH(k)}B
= BHRB

ryz = E{z(k)y∗(k)} = BHE{x(k)xH(k)}wq

= BHRwq.

Here R is the true data covariance matrix.
Hence, the solution for the adaptive part of the GSC is

given by the well known Wiener-Hopf equation (12), and the
GSC design problem boils down to designing an appropriate in
some sense blocking matrix B. Obviously, a proper blocking
matrix should be composed by linearly independent vectors
bi, i.e., B = [b1, . . . ,bN−M ] such that (10) also holds, that
is, bi ⊥ ck , i = 1, . . . , N −M ; k = 1, . . . ,M , where ck is
the kth column of C. There exists many possible choices of
B. The choice of the blocking matrix is, however, typically
ad hoc and application dependent. In this paper, we attempt
to build a more general theory regarding the selection of the
blocking matrix B. It will be base on algebraic geometry, the
basic concepts of which are then introduced in the next section.

III. ALGEBRAIC GEOMETRY PRELIMINARIES

The key insight of the algebraic geometry based design of
the GSC’s blocking matrix relies on a basic understanding
of polynomial ideals (and their associated varieties) and their
relationship to linear vector spaces. As these concepts are
not commonly used in the signal processing literature, we
introduce them here. First we must define an algebraic group.

Definition III.1. A group is a set of elements G with a binary
operation • with the following properties:

Property 1. a • b ∈ G, ∀a, b ∈ G
Property 2. ∃e ∈ G | a • e = e • a = a, ∀a ∈ G
Property 3. ∀a ∈ G, ∃b ∈ G| a • b = b • a = e

Property 4. (a • b) • c = a • (b • c).

If a group G is commutative with respect to • then G
is said to be Abelian. As an example, consider the set of
all permutations of an n-tuple. This set is a group (in fact,
it is known as the symmetric group, Sn), with operation of
composition of functions.1 In this case, the identity element
is the zero permutation, which takes each element of the n-
tuple to itself. This is not an Abelian group as composition
of functions depends, generally speaking, on the order of the
composition. An example of an Abelian group are the integers
under addition.

1Note, that although it is common to refer to the operation • as multipli-
cation or addition, the operation • need not be the conventional notion of
multiplication or addition.
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Remark 1. Every vector space is an Abelian group with
respect to vector addition, which is a property which will be
used later.

Building on this definition, we next introduce the concept
of a subgroup.

Definition III.2. A subgroup H < G is a subset of G for
which all of the group properties hold with respect to •.

Thus, every subgroup is a group unto itself which is also
contained in G.

Remark 2. Since all vector spaces are Abelian groups with
respect to vector addition, it follows that every subspace of a
vector space is an Abelian subgroup of that space with respect
to addition.

Ideals are algebraic substructures of rings, however, which
we now define.

Definition III.3. A ring is a set R with operations • and �
with the following properties:
Property 1. (R, •) is an Abelian group
Property 2. ∃1 ∈ R | 1 � r = r � 1 = r, ∀r ∈ R
Property 3. (a � b) � c = a � (b � c),∀a, b, c ∈ R
Property 4. a � (b • c) = (a � b) • (a � c),∀a, b, c ∈ R
Property 5. (a • b) � c = (a � c) • (b � c),∀a, b, c ∈ R.

Properties 2 and 3 state that a ring has a multiplicative
identity, and that a ring is associative respectively. Properties
4 and 5 of Definition III.3 state that in a ring, multiplication
� is left and right distributive over addition •. We will only
consider commutative rings which have the addition property
that a � b = b � a,∀a, b ∈ R.

Definition III.4. An ideal I in a commutative ring R is a
subgroup of R with the following properties:
Property 1. I is a subgroup of R
Property 2. ∀a ∈ I, r ∈ R, a � r ∈ I, r � a ∈ I

A relevant example of a ring with a non-trivial ideal, which
will be used in the contribution of this paper, is the ring of
univariate polynomials over a field K, which we will denote
as K[x]. To show that this is a commutative ring we need to
show that the relevant properties of Definitions III.1 and III.3
hold.

The fact that the polynomials are an Abelian group under
addition is obvious since P (x) + Q(x) = Q(x) + P (x) =
R(x) ∈ K[x], 0 ∈ K[x], and the additive inverse of a
polynomial P (x) is trivially −P (x) ∈ K[x].

To show that it is a commutative ring, we note that
A(x)B(x) = B(x)A(x) = C(x) ∈ K[x] for any polynomials
A(x), B(x), C(x) with coefficients in K. The set K[x] is
associative with respect to both multiplication and addition,
and polynomial multiplication is distributive over polynomial
addition since A(x)(B(x)+C(x)) = A(x)B(x)+A(x)C(x)
and (A(x) + B(x))C(x) = A(x)C(x) + B(x)C(x). Finally,
we note that the set K[x] has the multiplicative identity 1, thus
completing the proof.

It is important to mention that polynomials in K[x] also
form a vector space over K. Without restriction on the degree
of the polynomials, this space has infinite dimension, and as
such a finite dimensional vector space of polynomials implies
a restriction of the degree of the polynomials to a finite number
N . This vector space has a basis of {xi, 0 ≤ i ≤ N}.
We denote the space of polynomials with degree strictly less
than N by KN [x]. Fig. 1 demonstrates that the subscript N
corresponds to the dimension of the vector space, where N−1
is the restriction on the degree of the polynomials. Thus, there
should be no confusion with the definition of KN [x] being the
space of polynomials of degree strictly less than N .

 c x

 x2

 (a0, a1, a2)

 a2

 a1

 a0

Fig. 1. Depiction of an element of C3[x]. Notice that a polynomial of degree
2, corresponds to a 3 dimensional vector. Hence, C3[x] denotes the space of
all polynomials of degree strictly less than 3.

Let I be the set of all univariate polynomials C[x] with a
root at α0 ∈ C. This set forms an ideal in the ring C[x], which
we refer hereafter as a polynomial ideal. To see this, consider
a polynomial with a single root at α0. By Euclid’s division
algorithm, a univariate polynomial has a root at a point α0

if and only if it can be written as P (x) = Q(x)(x − α0).
Consider Definition III.4 and let P (x) = Q(x)(x−α0). Then
P (x)R(x) = Q(x)R(x)(x − α0) which is again in I. The
polynomials with a root at α0 are also clearly a subgroup of
C[x] since P1(x)−P2(x) ∈ I, where P1(x) , Q1(x)(x−α0),
P2(x) , Q2(x)(x − α0) for any Q1(x), Q2(x) ∈ C[x]. This
ideal is also an infinite dimensional vector space over C. Let
A(x) = P (x)(x− α0) and B(x) = Q(x)(x− α0). It is easy
to show that

α(A(x) +B(x)) = αA(x) + αB(x), α ∈ C, A(x), B(x) ∈ I
= α(P (x) +Q(x))(x− x1)
= αR(x)(x− x1), R(x) = P (x) +Q(x).

Furthermore, it is easy to show that if the polynomials A(x)
and B(x) are coprime, that is, if their greatest common divisor
(gcd) is a constant, the ideal is the entire ring. To show this,
we invoke Bezout’s identity

ap+ bq = gcd(p, q)

for some a, b ∈ R where R is a principal ideal domain (every
ideal is generated by a single element). Since every univariate
polynomial ideal is generated by a single element f ∈ I [13],
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[14], the univariate polynomials are a principal ideal domain.
Moreover, if 1 ∈ I, then I is the whole ring since r�1, 1�r ∈
I,∀r ∈ R. Thus, the only non-trivial subspaces which form
an ideal in C[x] are the subspaces of polynomials with roots
in common.

Since every ideal in C[x] is principal, i.e., can be generated
by a single element f ∈ C[x], we denote I ⊂ C[x]
as〈f〉 , {f ·g ∀g ∈ C[x]}, read as “the ideal generated by” f .
The generator of an ideal I ⊂ C[x] is given straightforwardly
as f =

∏
k(x−xk). The restriction of this ideal to polynomials

with degree less than N is written as 〈f〉|N , which is a
subspace of CN . To clarify the notations, it is important to
note that I|N ⊂ C[x] is an algebraic object as a subset of the
univariate polynomial ring, while 〈f〉|N is a vector subspace of
CN . The key difference between the two is the notion of scalar
multiplication under which both objects are closed. Scalars for
the former are elements of the polynomial ring itself, while
scalars for the latter are elements of C.

Finally, polynomial ideals have an associated “variety.” The
variety associated with a polynomial ideal is the set of points
on which the polynomials in that ideal are 0. As such, the
variety “generates” an ideal. Formally, the ideal generated by
a variety V is defined as

Definition III.5. V ∈ Kn : I(V ) , {f ∈
K[x1, · · · , xn] | f(V ) = 0}.

Importantly, in generating an ideal from a variety, the
inclusion operation is reversed. To see this consider two
varieties V1 ⊂ V2 in light of definition III.5. By definition
of I(V ), any f ∈ I(V2) = 0, ∀p ∈ V2. But since V1 ⊂ V2,
f = 0, ∀p ∈ V1. Thus, f ∈ I(V1). Therefore, I(V2) ⊂ I(V1).

IV. GSC’S BLOCKING MATRIX DESIGN VIA ALGEBRAIC
GEOMETRY

Assuming a uniform linear array structure, the matrix of
directions C has a Vandermonde structure. Specifically, its L
columns are the powers of a complex generator αl. In the
problem statement (6), the matrix C is involved to enforce
a number of constraints on the beamforming vector w. Such
constraints can be used, for example, to control the location
of nulls in the beampattern. The Griffiths-Jim beamformer is
an example of such a constraint [11].

Obviously, in order for (10) to hold, the columns of the
blocking matrix C(B) ⊂ N (CH), where C(·) and N (·)
denote the column and nullspace of a matrix. Since C is
a Vandermonde matrix, matrix multiplication becomes the
evaluation of polynomials defined by the coefficients in the
columns of B at αl, the generators of the columns of C. Thus,
the null constraints are equivalent to designing the columns of
B to be polynomials with roots at αl.

We leverage the Vandermonde structure of C in order to
develop a concise description of the nullspace of C. Using
the definition of the nullspace

N (CH) , {b ∈ CN |CHb = 0} (13)

it is easy to show that every vector in N (CH) describes the
coefficients of a polynomial of degree N − 1 with roots at
α∗1, · · · , α∗l , that is,

CHb = 0 ⇐⇒
N−1∑
i=0

(α∗l )
ibi = 0, ∀l ∈ 1, · · · , L. (14)

A polynomial P (x) has a root at some point α if and only if
(x−α) is a factor of P (x) [13]. By induction, it can be seen
that a polynomial P (x) has roots at points α∗1, · · · , α∗l if and
only if P (x) = Q(x)B(x) where

Q(x) ,
L∏

l=1

(x− α∗l ). (15)

From (14) and (15), N (CH) can be expressed as

N (CH) = Q(x)CN−L[x]. (16)

where CN−L[x] denotes the space of all polynomials of degree
strictly less than N−L. The degree is strictly less than N−L
as a constant polynomial is defined to have degree 0. CN−L[x]
has the standard polynomial basis of {1, x, x2, · · · , xN−L−1},
and thus, a basis for N (CH) is Q(x){1, x, x2, · · · , xN−L−1},
or 〈Q(x)〉|N .

Let q , [(−1)L−1sL−1, (−1)L−2sL−2, · · · , (−1)s1, 1]T
where s1, · · · , sL−1 are the elementary symmetric functions
of α∗1, · · · , α∗l . The k-th elementary symmetric function in L
variables (in this case, α∗1, · · · , α∗l ) is the sum of the products
of the k subsets of those L variables. For example, if L = 3
then

s3 = α∗1 + α∗2 + α∗3

s2 = (α1α2)
∗ + (α2α3)

∗

s1 = (α1α2α3)
∗.

Let q′ , [q, 0, · · · , 0]T ∈ CN . Then a basis of N (CH) is
represented by the columns of the Toeplitz matrix

Q = [q′,q′1, · · · ,q′N−L−1] (17)

where q′i is the i-th cyclical shift of q′. For a polynomial
Q(x) = a0+a1x+ · · ·+aLxL, with roots α∗1, · · · , α∗l , Viète’s
formulas yield the coefficients a0, · · · , aL−1 as

s1(α
∗
1, · · · , α∗l ) = −

aL−1
aL

s2(α
∗
1, · · · , α∗l ) =

aL−2
aL

...

sL(α
∗
1, · · · , α∗l ) = (−1)L a0

aL
.

Thus, the elements of the vector q are the coefficients of Q(x),
which are given as a function of the roots of Q(x) by Viète’s
formulas, with aL = 1.
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Following this procedure for c = [1, 1, . . . , 1]T , corre-
sponding to a single broad-side signal, yields the Griffiths-Jim
blocking matrix exactly [11], that is,

BH =


1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 −1

 .
Thus, the blocking matrix B corresponding to the Griffiths-

Jim beamformer is actually a basis for the space of polyno-
mials with a single root at α = 1. However, following the
procedure in this section, a general and complete description
of all blocking matrices may be attained.

From this derivation we observe the direct correspondence
between the number of roots of the polynomial Q(x) and the
size of the blocking matrix B. From the Toeplitz structure
of B, and the fact that a polynomial with L roots has L + 1
coefficients, the blocking matrix B has N−L linearly indepen-
dent columns. This fits exactly with the fundamental theorem
of linear algebra (that rank and nullspace dimensions are
complementary). However, our approach differs fundamentally
from a singular value decomposition (SVD) based approach
to setting nulls. Indeed, one could solve the blocking matrix
problem by selecting the columns of B as the right singular
vectors of C. However, additional solutions to the problem
also exist which are not amenable to solution via SVD.

Consider the case where we wish to set multiple roots
corresponding to the same direction. If one were to attempt to
construct a direction matrix C with multiple sources impinging
from the same direction, the matrix would be rank deficient.
Supposing for the moment that the matrix C had dimension
N × L, with two sources impinging from the same direction,
its rank would only be L − 1 due to the identical columns.
From the fundamental theorem of linear algebra, CT would
have a null-space dimension of N − L + 1, and thus have
N − L + 1 right singular vectors. However, by calculating
B via Viéte’s formulas, the matrix B would have dimension
N × (N − L) with rank N − L, owing again to the Toeplitz
structure. This solution is also fully contained in the nullspace
of C which can be readily seen from the variety-ideal inclusion
property. Specifically, if for two varieties V0 ⊂ V1, then
I(V1) ⊂ I(V0). The “varieties” in question here are sets
of points. The variety specified by the SVD approach is the
set of unique generators, whereas the variety in question in
the proposed method would contain a double element. As the
former is contained by the latter, and inclusion is reversed
by generating an ideal from a variety, the solution arrived at
by the proposed method is contained in the nullspace of CT ,
and thus achieves the blocking task. However, the solution is
distinct from that achieved via SVD.

V. CONCLUSION

In this paper, a novel approch based on algebraic geometry
for blocking matrix design in GSC has been developed. It
provided, perhaps for the first time, a solid theoretical ground
for the problem of blocking matrix design. For example,

the necessary and sufficient condition for a signal to be
blocked have been discusses. The condition to a row-space of
blocking matrix for blocking multiple signals impinging upon
the array from multiple directions have been also explained. In
general, understanding the algebraic structure that the blocking
matrix of GSC has to satisfy makes the design procedures
simpler and more intuitive. Moreover, the GSC’s blocking
matrix design problem is related to many rank-constrained
semidefinite programming problems with additional sum-of-
squares-type constraints, which are common in such areas
as downlink beamforming design for multiple-input multiple-
output (MIMO) communications and transmit beamspace de-
sign in MIMO radar to name just a few. The study in this
paper is also helpful to address these problems [18].
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