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Evolved neuromorphic radar-based altitude controller
for an autonomous open-source blimp

Marina González-Álvarez1, Julien Dupeyroux1, Federico Corradi2, and Guido C.H.E. de Croon1

Abstract— Robotic airships offer significant advantages in
terms of safety, mobility, and extended flight times. How-
ever, their highly restrictive weight constraints pose a major
challenge regarding the available computational resources to
perform the required control tasks. Neuromorphic computing
stands for a promising research direction for addressing such
problem. By mimicking the biological process for transferring
information between neurons using spikes or impulses, spiking
neural networks (SNNs) allow for low power consumption and
asynchronous event-driven processing. In this paper, we propose
an evolved altitude controller based on an SNN for a robotic
airship which relies solely on the sensory feedback provided by
an airborne radar. Starting from the design of a lightweight,
low-cost, open-source airship, we also present an SNN-based
controller architecture, an evolutionary framework for training
the network in a simulated environment, and a control strategy
for ameliorating the gap with reality. The system’s performance
is evaluated through real-world experiments, demonstrating the
advantages of our approach by comparing it with an artificial
neural network and a linear controller. The results show an
accurate tracking of the altitude command with an efficient
control effort.

I. INTRODUCTION

The biological intelligence of living beings has long at-
tracted us to explore their innate ability to learn complex
tasks. For instance, despite their limitations in terms of
cognitive capabilities and energy resources, flying insects
can outperform some of the most advanced aerial robots
nowadays on navigating autonomously through complex
environments with fast and agile maneuvers. In recent years,
this inspiration has led to the development of controllers for
unmanned aerial vehicles (UAVs) that mimic the structural
and functional principles of the brain [1]. Artificial neural
networks (ANNs) [2] have proven successful for controlling
different flying robots such as a hexacopter [3], a heli-
copter [4], or a quadrotor [5]. However, when it comes
to light-weight micro air vehicles (MAVs), conventional
ANNs present several disadvantages regarding energy con-
sumption and response latency [6]. Spiking neural networks
(SNNs), are a promising research direction in this regard.
By processing information using just a small population
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Fig. 1. Proposed autonomous altitude control system for an indoor airship.
Evolution of the blimp altitude for two different set-points (ha and hb) for
several timestamps (t0, . . . , t4).

of spikes with a precise relative timing, they allow for a
more efficient learning and control [7, 8]. Among the main
advantages of SNNs for aerial robotic applications, we can
highlight that they enable computing with highly parallel
architectures and provide low-power and energy-efficiency
traits [9, 10]. Additionally, they are universal value function
approximators [11], which theoretically makes them suitable
for addressing complex control tasks. However, they have not
yet become a common method for designing controllers. This
is mainly due to the discrete spiking nature of SNNs, which
makes the use of gradient-based optimization algorithms,
such as the well-known back-propagation strategy for con-
ventional ANNs, more challenging. To tackle these issues,
in this paper we present an SNN-based altitude controller
for a low-cost micro airship with an open-source design,
equipped with an airborne radar (Fig. 1). The choice of the
problem of tracking an altitude command is motivated by
its relevance in key MAV applications such as autonomous
package delivery [12, 13], or landing [14, 15], among others.
On the other hand, the selection of a lighter-than-air craft
as a test platform instead of a rotorcraft, is driven by the
complementary advantages it poses, such as extended flight
times, excellent ease of assembly, low acoustic footprint, low
power consumption, and a simpler design [16]. By incorpo-
rating an airborne radar, the sensory feedback required for
the control loop is robust to variant illumination and visibility
conditions, while keeping the payload and computational
requirements within reasonable limits.

The main contributions of this paper are twofold. First,
we present an evolved altitude controller for a micro air
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vehicle based on an SNN, which relies solely on the sensory
feedback provided by an airborne radar. We successfully
demonstrate the performance of the radar-based neurocon-
troller onboard the aerial platform in real-world experiments,
quantitatively comparing the results with those of an ANN
and a proportional-integral-derivative (PID) controllers. Sec-
ond, we propose the design of an open-source, low-cost,
lightweight blimp platform with a 3D printable gondola, that
allows for the inclusion of custom sensors and actuators.
This facilitates its replication and customization for different
applications. The remainder of the paper is organized as
follows: Section II provides an overview of the state-of-
the-art in micro-airship design and spiking flight neurocon-
trollers. Afterwards, in Section III, we present the proposed
MAV design, introduce the altitude control approach based
on the airborne radar, the structure of the SNN controller, the
evolutionary strategy for training the network, and a blimp
computational model to perform the training in a simulated
environment. Then, in Section IV, we describe the real-world
experimental setup as well as discuss the obtained results.
Finally, Section V concludes the work and delineates future
research directions.

II. RELATED WORK

A. Micro-airship Design

Even though the golden era of giant cargo airships has
faded, the advantages offered by lighter-than-air crafts pre-
vail. Blimps are, slowly but surely, attracting increasing
interest in the realm of unmanned aerial vehicles [17, 18].
They present endless possibilities in terms of their design.
For example in [19], a three-propeller, low-cost platform is
presented that is equipped with a camera and a compact,
but closed-configuration gondola. An alternative design is
proposed in [20], where the authors introduce a novel ac-
tuation mechanism based on two propellers mounted on a
rotating shaft, which is oriented using a servomotor. Other
examples of higher complexity include [21–23]. Although
these alternatives have proven successful for their specific
applications, they lack the versatility that can be achieved
by leaving room for incorporating additional sensors and/or
actuators. Besides, only [19] is open-source and lightweight
enough to be mounted on commercially available blimp
balloons. For the purpose of clear comparison, the main
contributions of the state-of-the-art and our approach are
summarized in Table I.

TABLE I
COMPARISON BETWEEN THE DIFFERENT BLIMP DESIGNS

Property [19] [20] [21] [22] [23] Ours
Easily customizable gondola - ✓ - - - ✓

Low-cost design ✓ ✓ ✓ ✓ - ✓

Open-source availability ✓ - - - - ✓

Lightweight Microfoil blimp ✓ - - - - ✓

Number of propellers 3 2 4 6 4 2
Number of servomotors - 1 - 3 - 1

B. Spiking Neural Network-based MAV Control

The inherent nonlinear dynamics of most MAVs makes
them challenging to control. Moreover, their restrictive
weight constraints inevitably limit the computational power
of the controller. SNNs enable computing with highly paral-
lel architectures made of simple integrate-and-fire neurons
interconnected by weighted synapses. Implementations of
spiking flight neurocontrollers include [24], where the au-
thors propose an SNN for robust control of a simulated
quadrotor in challenging wind conditions. They achieve a
better performance in waypoint holding experiments com-
pared with a hand-tuned PID and a multi-layer perceptron
network. Another example is presented in [25], where an
SNN controller that adapts online to control the position
and orientation of a flapping drone is proposed. SNNs have
also been applied to obstacle avoidance tasks, as direct
flight [11] or decision-making [26] controllers. In both cases
they use reward-modulated learning rules for training the
SNN. Although these MAV controllers have excelled in
simulated environments, their main limitation is that they
have not been evaluated in real-world experiments. The scope
of works that have implemented SNN controllers for MAVs
in real scenarios is much more limited. The first work that
integrates an SNN in the closed-loop control of a real-world
flying robot is very recent [27]. There, the authors present an
SNN for controlling the landing of a quadrotor by exploiting
the optical flow divergence from a downward-looking camera
and the readings of an inertial measurement unit (IMU).
To address the learning problem of SNNs [28], they adopt
an evolutionary training strategy. In [29], this controller
is enhanced by using hardware specifically designed for
neuromorphic applications. Although not tested in free flight
experiments, the potential advantages of SNN controllers
implemented in these devices are also demonstrated in [30].
Our work aims to extend the framework proposed in [27], by
(1) controlling the altitude instead of landing; (2) considering
an open-source micro blimp, which has less control authority
and harder to model dynamics than a quadrotor; and (3)
exploiting solely the range measurements provided by a
radar, reducing the number of required sensors on-board.

III. METHODOLOGY

A. Open-source Micro-airship

The proposed design for the micro autonomous airship is
illustrated in Fig. 2. The reader interested in replicating the
platform can find further details, links to re-sellers, prices,
and parts for 3D printing at: https://github.com/
tudelft/blimp_snn. The airship’s gondola can be 3D
printed and assembled in a modular fashion, with a total
frame weight of just 9g. Due to its open configuration,
the components mounted on the gondola can be easily
interchanged, leaving room for versatility on the selection
of sensors and actuators. In addition, we include a rotary
shaft with a case for accommodating the propellers on both
ends for controlling the altitude. Finally, we incorporate
four hitches on top of the gondola, where we tape Velcro
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Fig. 2. Proposed airship design. (A) Raspberry Pi W Zero; (B) 24
GHz Infineon Radar Position2Go; (C) Sub-micro Servo SG51R; (D) 8520
Coreless Motor; (E) PowerBoost 500 Basic; (F) 550mA 3.8V Li-Po battery.

strips for attaching the envelope. Regarding the electronic
components, we use a Raspberry Pi W Zero as the central
communication and control unit, running the Raspbian Lite
operating system. The robot’s steering is achieved through
the micro servomotor mounted on the gondola and the two
core-less direct current (DC) motors attached at each end of
the shaft. Specifically, the servo is responsible for the rotation
of the shaft, up to 180◦, and the DC motors allow for an
independent control of the thrust on each side. Additional
peripheral components include a step-up voltage regulator, a
500 mAh Li-Po battery and a motor driver. Finally, a fast
chirp frequency-modulated continuous wave (FMCW) radar
module from Infineon with a resolution of ±20 cm is used as
a ranging sensor for the closed-loop control. Concerning the
airship’s envelope, the material chosen is Microfoil due to its
excellent gas retention capabilities [19]. We select a model
that provides the largest achievable payload among the com-
mercially available miniature blimps (150g) while keeping a
relatively low price. For our application, we use helium as
the lifting gas. Considering all the aforementioned elements,
the proposed platform weights a total of 147g. To integrate
the different components and perform the computations on-
board we adopt the Robot Operating System (ROS) [31]
framework. In addition, a teleoperation package to manually
control the airship from a ground computer keyboard via
a secure shell (SSH) connection is also provided in the
repository included at the beginning of this section.

B. Altitude Controllers

In order to control the airship’s altitude, the commands
are provided in terms of motor voltages, u ∈ [−umax,umax]
[V ], with umax = 3.3 [V ]. The larger the absolute value of
u, the more thrust the propellers provide, and therefore, the
greater the acceleration of the blimp will be. When u > 0,
the robot moves upwards and, when u < 0, the robot moves
downwards, with the shaft rotated 180◦. To determine the
required control actions for tracking an arbitrary reference
altitude href, we process the readings from the radar to get
an estimate of the current altitude hcurr of the blimp [32] –
the range-Doppler algorithm [33], along with a median filter,
is used to estimate the altitude. Then, to effectively track
an arbitrary altitude command, we design a controller that

. . . . . .

|
|
|

|
|| |

|

| |

| |

Fig. 3. Schematic of the SNN controller architecture. The (evolved)
network parameters are highlighted in violet, being w the synaptic weights,
θ the spiking threshold, αv/t the scaling constant for the increase of the
voltage/trace by a single spike, and τv/t the decay for the voltage/trace.

provides a mapping between the altitude error, href − hcurr,
and the motor voltages, u, such that the former is minimized.
We consider three distinct approaches for benchmarking
purposes: a linear PID, an artificial neural network, and a
spiking neural network.

1) PID controller: A conventional PID is one of the
most simple, yet widespread methods for addressing control
problems. In discrete form, the mapping between the error
signal ek = hre f (k)−hcurr(k) and the motor command uk is
given by [34]:

uk = Kpek +
Kd

T
(ek − ek−1)+KiT (ek + ek−1) (1)

where Kp, Ki and Kd refer to the proportional, integral and
derivative gains, respectively, T to the sampling period, and
k to the timestamp. These are tuned empirically using the
proposed MAV platform.

2) ANN controller: We propose a standard, non-
neuromorphic ANN controller where the tracking error href−
hcurr is directly fed into the network in the form of a
continuous signal. The network consists of a single neuron in
the first and last layers, and two hidden layers containing 3
and 2 neurons respectively. The input and the two hidden
layers operate with a tanh() activation function. At the
output layer, a linear neuron provides the value of the motor
command u, clamped to the interval ±umax [V ].

3) SNN controller: The proposed SNN architecture is
illustrated in Fig. 3: it consists of three fully connected layers
(10 – 5 – 1 neurons). The input layer encodes the altitude er-
ror signal into spikes using position coding: the input values
of href−hcurr are divided into 10 intervals, with each of them
assigned to a different neuron. The first and last intervals
corresponds to ]−∞,−0.4[ and ]0.4, ∞[, respectively, while
the range of the remainder 8 neurons is uniformly distributed
between [−0.4, 0.4]. Each time the altitude error falls within
one of these intervals, the corresponding neuron fires a single
spike. The hidden layer consists of five leaky integrate-and-
fire (LIF) neurons, where the membrane potential of the i-th
neuron, vi(t), is governed by the following equation:

vi(t) = τvi · vi(t −∆t)+αviui(t) i = 1, . . . ,5 (2)
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referring τvi ∈ [0,1] to the decay factor per time-step ∆t, αvi

to a scaling constant, and ui(t) to the synaptic input current:

ui(t) =
10

∑
j=1

wi js j(t). (3)

that is, multiplying the incoming spikes from the j-th input
neuron s j(t), by the synaptic weights wi j. Whenever the
membrane potential vi(t), reaches a certain threshold θi, a
postsynaptic spike is triggered and vi(t) resets back to 0.
The output layer decodes the spikes back into a real value.
It consists of a single non-spiking neuron with a scaled tanh()
activation function. The neuron conducts a weighted sum of
the so-called spike traces, Xi(t), which acts as a low-pass
filter with decay τti ∈ [0,1], and is computed as:

Xi(t) = τti ·Xi(t −∆t)+αtisi(t), (4)

being the definition of τti and αti analogous to τvi and αvi .
The resulting value is scaled within the control limits, ±umax.
Following this, the motor command, u, is given by:

u(t) = umax · tanh

(
5

∑
i=1

wiXi(t)

)
(5)

C. Evolutionary Framework

For training the neural controllers we adopt an evolution-
ary strategy with a mutation-only procedure. Each evolution
begins with a randomly initialized population of N individ-
uals. The offspring is obtained by performing a randomized
tournament selection of M individuals, i.e., randomly select-
ing M aspirants from the population and keeping the one
with the best fitness. This is repeated N times, so that the
population size is invariant. The n-th individual is mutated
with a probability of p(n)mut = 0.4, and its m-th parameter with
p(m)

mut = 0.6. These mutations take place according to uniform
probability distributions U {,}, whose range is shown in
Table II for both the SNN and ANN. For the latter, the open
parameters are the biases, bi, and analogously to SNNs, the
weights, wi j.

TABLE II
PARAMETERS MUTATED DURING EVOLUTION

Parameter Domain Mutation

SNN
wi j [−5, . . . ,5] U {−2.5,2.5}

θi, τvi , τti [0, . . . ,1] U {−0.5,0.5}
αvi , αti [0, . . . ,2] U {−1.0,1.0}

ANN wi j , bi [−5, . . . ,5] U {−2.5,2.5}

The mutated offspring is then evaluated in a model-
based simulation environment (see Section III-D), where
a source of random Gaussian noise is added to the radar
signal. Since this randomization stimulates the persistence
of controllers that are independent of such disturbances, it
helps minimizing the reality gap [35]. During the evaluation,
a set of 10 different reference altitudes href ∈ [0,3] is provided
along a total simulated duration of T = 15 seconds each. The

fitness of each individual is then quantified as the root mean
squared altitude error (RMSAE):

RMSAE =

√
1
T

T

∑
k=0

(
href(k)−hcurr(k)

)2 (6)

During the evolution process, a hall of fame which holds
the 5 best performing individuals across all generations,
is maintained. This prevents discarding those who have
achieved a good performance. After Ngen generations, the
individuals are also reevaluated on five more random sets
of altitudes to increase the robustness. The best-performing
ones are selected for further real-world experiments. The
architecture of the neural controllers is kept fixed during
the evolution. The choice for a specific network architecture
is made experimentally, after repeating this training process
several times for networks of different complexities. Con-
cretely, the simplest and smallest network which does not
compromise the control performance is selected.

D. Model-based Simulation Environment

The altitude controllers evolve in a simulated environment
since it would be infeasible to perform all the required
evaluations in the real world. For that, we develop a dynam-
ical model of the blimp to obtain a mapping between the
motor commands and the evolution of the blimp’s altitude
over time. To simplify the training and avoid adding further
complexity, we consider a linear model. We assume that the
acceleration at the k-th time step ḧk, is proportional to the
voltage applied to the motors, u, i.e.

ḧk = a1uk−1 +a2uk−2 (7)

where ai is the proportionality constant for the motor com-
mand at time instant k− i. However, since the acceleration
cannot be directly measured with the radar sensor, we can
instead express this relation in terms of the measured altitude,
h by taking Euler’s discretization of the derivative. Applying
the Z-transform, we obtain the following transfer function,
which maps the commands uk to the altitude hk:

hk =
a1z−1 +a2z−2

1−2z−1 + z−2 uk (8)

To determine the unknown parameters ai, we collect
a data-set by tele-operating the blimp and measuring its
altitude over time. After subtracting the mean, we infer the
model parameters by minimizing the normalized root mean
squared altitude error (NRMSAE), which can be interpreted
as a measure of how well the expected response hk matches
the observed data ĥk.

IV. RESULTS

A. Experimental Setup

1) Simulation: To train the neural controllers, we evolved
five randomly initialized populations of 100 individuals
through 300 generations, following the procedure described
in Section III-C. The implementation of the evolutionary
optimization is based on the Distributed Evolutionary Al-
gorithms in Python (DEAP) [36] framework, while the
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Fig. 4. System overview. After processing the feedback provided by the
radar sensor, an estimate of the range is sent to the Raspberry Pi Zero
W control unit. Only data recording and real-time plotting operations are
conducted on the ground computer, which communicates with the Pi via
an SSH connection. The OptiTrack is used during the post-processing stage
just for validation purposes.

Fig. 5. Validation of the blimp model. Bottom: Motor commands. Top:
The ground truth evolution of the altitude, hreal, compared with the evolution
predicted by the model, hmodel. The error is represented by the blue area.

simulation of the networks is performed by means of the
PySNN library [37].

2) Real-World: An overview of the setup is shown in
Fig. 4. The on-board control unit is a 1GHz single-core
processor Raspberry Pi Zero W with 512MB RAM. The
Infineon Position2Go radar provides altitude measurements.
The control loop runs at a rate of 5 Hz.

B. Blimp Model

Following the procedure explained in Section III-D, we
infer the parameters of a blimp model of the form (8), based
on experimental data gathered using the real hardware. In
Fig. 5 we show a comparison between the evolution of the
altitude predicted by the model and the ground truth when
applying identical motor commands. We can see that we are
able to reproduce the blimp’s behavior using the proposed
data-driven model, with a RMSAE of 0.27m over the 300
seconds run.

C. Controller Evaluation

We evaluate the performance of three different altitude
controllers based on a linear PID, an ANN, and an SNN. The
tracking precision is tested on a sequence of five different
way-points hd = {3,2,1,2.5,1.5}m, maintained during 60s.

Fig. 6. Experimental evaluation of the considered controllers. For all three
sub-figures, at the bottom we have the motor commands, and on top, the
evolution of the blimp’s altitude hreal compared with the reference href. (a)
PID. (b) ANN. (c) SNN.

1) PID controller: The experimental results are depicted
in Fig. 6(a). We can see that we can track the altitude
commands effectively. Quantitatively, we obtain a RMSAE
of 0.29m, which indicates a satisfactory performance, con-
sidering that the uncertainty of the radar sensor is of ±0.2m.

2) ANN controller: The obtained results are shown in
Fig. 6(b). We can see that the blimp effectively converges
to the altitude set-point but presents an oscillatory behavior.
This is mainly because of two reasons: the minor contribution
of the diminished discrepancies between the model and the
vehicle’s inherent dynamics; and the slow responsiveness of
the system, especially when the motor commands are not too
abrupt, as it is the case. However, it can be noted that the
trajectory is smoother than with a PID. The RMSAE now
corresponds to 0.27m.

3) SNN controller: The experimental results for this case
are displayed in Fig. 6(c). We note that the behavior and
performance are similar to the ANN case, but with faster
oscillations, due to the output’s binary nature caused by the
presence or absence of the spike. The RMSAE is of 0.27m.

V. CONCLUSION

In this paper, we aim at paving the way toward fully
neuromorphic control for flying vehicles. The results ob-
tained in real-world experiments successfully demonstrate
the system’s performance. By comparing it with a standard
PID and an artificial neural network, we corroborate the

89

Authorized licensed use limited to: TU Delft Library. Downloaded on July 18,2022 at 12:19:50 UTC from IEEE Xplore.  Restrictions apply. 



advantages offered by SNNs in terms of adaptability and
low control effort – ultimately, the use of SNNs on-board
neuromorphic controllers such as the Loihi [38] will fully
demonstrate their advantages in terms of processing time
and energy, while helping closing the loop towards a fully
neuromorphic control of robotic systems.
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