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Recursive Kronecker-Based Vector Autoregressive
Identification for Large-Scale Adaptive Optics

Guido Monchen, Baptiste Sinquin™, and Michel Verhaegen

Abstract— This brief presents an algorithm for the recursive
identification of Vector AutoRegressive (VAR) models of large
dimensions. We consider a VAR model where the coefficient
matrices can be written as a sum of Kronecker products.
The algorithm proposed consists of recursively updating the
Kronecker factor matrices at each new time step using alternating
least squares. When the number of terms in the Kronecker
sum is small, a significant reduction in computational com-
plexity is achieved with respect to the recursive least squares
algorithm on an unstructured VAR model. Numerical validation
of nonstationary atmospheric turbulence data, both synthetic
and experimental, is shown for an adaptive optics application.
Significant improvements in accuracy over batch identification
methods that assume stationarity are observed while both the
computational complexity and the required storage are reduced.

Index Terms— Kronecker product, large-scale systems,
recursive least-squares (RLSs), system identification, vector
autoregressive (VAR).

I. INTRODUCTION

DENTIFYING large-scale time-varying linear systems is

a major interest in a number of applications such as
Adaptive Optics (AO) for astronomy applications [1]. Such
systems reshape a wavefront in real time so as to compensate
for the disturbances caused by the light having to travel
through the turbulent atmosphere [2]. Recent technological
advancements in increasing the size of the prime mirror in
ground-based telescopes result in systems with thousands of
sensors and actuators [3] that require scalable identification
and control algorithms. Although state-space modeling and
‘H> optimal control for AO have shown significant improve-
ments in the control performances over nonpredictive meth-
ods [4], and scaling up the number of sensor channels has
so far been a challenge for both identification and control.
Guyon and Males [5] analyze the use of Vector AutoRegres-
sive (VAR) models to accurately predict the wavefront based
on pseudo open-loop wavefront data. However, the method
does not scale well as it does not exploit the structure on
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the coefficient matrices to allow its effective use for a large-
scale AO. The dimensionality prevents obtaining both accurate
and data-sparse models. In this brief, the analyzed input—
output representation is the VAR model [6]. When sensor
measurements are available on a square array of size N x N for
N; time samples, the coefficient matrices belong to RY 2xN?
and the computational complexity for the estimation in least-
squares sense reaches O(NCN;). Structural assumptions on
the matrices were studied in order to obtain the best tradeoff
between the compactness of the model and its accuracy.
First, the spatial coupling in the turbulence is ignored when
modeling the coefficient matrices with a diagonal structure as
discussed in [7]. In [8], the identification of sparse models has
been investigated but requires the knowledge of the topology
of the network, which may not be available beforehand. Such
sparsity patterns may be too restrictive for modeling the
atmospheric turbulence without increasing the variance of the
prediction error significantly with respect to the unstructured
case. There is indeed no guarantee that the spatial dynamics
of the turbulence considered in AO applications exhibit such
a sparse structure.

When modeling 2-D spatial systems with temporal dynam-
ics, a new class of Kronecker-VAR models named QUARKS is
introduced in [9], which parameterizes each coefficient matrix
as a sum of Kronecker products [10]. The QUARKS model
features matrices of size N x N rather than N> x N? in
the unstructured VAR model. Hence, the modeling paradigm
enables high data compression when there are only a few terms
r in the Kronecker sum, while achieving similar prediction
error performances with respect to the unstructured estima-
tion. Estimating QUARKS scales with O(rN3N;). Sinquin
and Verhaegen [9] consider the use of QUARKS models on
stationary turbulence; however, nonstationary turbulence has
not yet been analyzed in this modeling class.

The use of recursive algorithms for handling the identifi-
cation of large-scale systems has two interests: 1) to cope
with temporal variations in the data and 2) to reduce the
computational complexity once an initial guess has been
obtained using a batch method. Updating the coefficient matri-
ces recursively in an unstructured VAR model is nonetheless
still not computationally feasible for large-scale systems as
it scales with O(N*). Both diagonal and block banded with
banded blocks structures enable a decentralized and scalable
recursive identification using the standard recursive least-
squares (RLS) algorithm [11] locally. In this brief, we consider
the modeling of large-scale 2-D spatial-temporal systems that
have varying dynamics and propose a recursive identification
of QUARKS models. More specifically, we investigate how to
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recursively update the coefficient matrices of the QUARKS
model in order to deal with 2-D spatial systems that are
affected by nonstationary disturbances. While the unstructured
VAR model has coefficient matrices that can be estimated in
a convex large-scale optimization problem, the matrix-VAR
model with Kronecker modeling is bilinear and nonconvex.
Sinquin and Verhaegen [9] propose an alternating least squares
(ALS) algorithm that estimates the coefficient matrices iter-
atively and converges to the global minimum under certain
conditions. To reduce the variance of the prediction error for
nonstationary disturbances, the RLS algorithm is analyzed to
keep the coefficient matrices of the QUARKS model up-to-
date [12]. Apart from improving over the standard identifica-
tion of QUARKS for nonstationary disturbances, the recursive
algorithm also significantly reduces the storage required for
estimating the QUARKS models for which no input data
is discarded, contrary to the case where a sparse pattern is
assumed on the coefficient matrices.

This brief is organized as follows. In Section II, we intro-
duce the QUARKS models and review how to efficiently
identify them using ALS. In Section III-A, we introduce the
method to update these models recursively. The computational
complexity between the unstructured RLS and the proposed
algorithm is compared in Section IV, and a numerical valida-
tion in the field of AO with synthetic and laboratory testbed
data is given in Section V.

Notations: A vector variable is written in lower case
letters (x) and matrix variables are written in upper case
letters (X). The Kronecker product between two matrices A
and B is denoted as A ® B. The vec(X) operator performs the
vectorization of the matrix X, thus stacking all columns below
each other. The two-norm of a vector x is denoted as ||x||», and
the Frobenius norm of a matrix X is written as || X || r. The big-
O notation is used for describing computational complexities
and indicates the asymptotic growth rate of the computational
cost for a given mathematical operation. We moreover recall
that y = (B® C)x = Y = CXB”, where x = vec(X) and
y = vec(Y).

II. MODELING 2-D SPATIAL-TEMPORAL
SYSTEMS WITH QUARKS

Let the measurements at time instant k be sampled from
a regular grid such that Y (k) € R™*". We denote the lifted
vector with y(k) = vec(Y (k)) and consider the following VAR
model with temporal order p:

p
vy =D Aiyk—i) +o(k) M
i=1
where v (k) € R™ is a zero-mean white noise process with the
covariance matrix R, = I, N; is the number of time samples
considered, and p < k < N,. The identification problem for
this model is to estimate the coefficient matrices A; € R™">mn
using all available data up to time N;. We assume, following
the lines in [9], that we can parametrize the matrices A; as a
sum of a few Kronecker products
ri
oo )
A= (87) ec” @
j=1

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

where r; is the so-called Kronecker rank of the matrix A;. The
Kronecker rank defines the number of terms used in the sum to
construct A; from Bi(j) € R™" and Ci(]) € R™*™_To achieve
an efficient representation for the matrices A;, we assume
ri < mn. The low-Kronecker rank decomposition of the
coefficient matrices as described in [9] is especially interesting
when there are only a few terms in the Kronecker sum of factor
matrices and when the coefficient matrices are dense. In other
words, the more sparse is, the less advantageous the Kronecker
structure is with respect to the sparse structure.
The VAR model is rewritten as

14 Ti . .
Yk => (D cPvk—iBY | + VK 3)

i=1 \j=1

where V (k) = vec(v(k)). The model (3) is called as Kro-
necker VAR model and is abbreviated as QUARKS [9]. The
problem of identifying the coefficient matrices now changes
to identifying the matrices Bi(j ) and Cl.(j ). Let us write the
identification as the following minimization problem:

2
N; )4 ri
: () ()
B.(_ri?lgm Z Y(k)—z ch. Y(k —i)B, NG
i i k=p+1 i=1 ]=1 F

This minimization problem is bilinear in its unknowns and as
such, we cannot write a closed-form solution for it. One way
to solve this is to use an algorithm based on the nonlinear
Gauss—Seidel method. Each iteration of this ALS method
alternatively estimates the matrices Bi(j ) and Ci(] ) until the con-
vergence is at a minimum. In [9], the convergence to the global
minimum of the cost function was proven using the fixed
point theory when the columns of one factor matrix were
normalized. However, normalization requires the knowledge of
the true factor matrix, which is not available in practice. Since
this algorithm is aimed at the practical application to AQO,
the normalization step is skipped. For N, sufficiently large,
an empirical convergence to the global minimum for a general
temporal order and the Kronecker rank was observed without
normalizing, starting from random initial guesses and with
persistently exciting data. The two latter conditions ensure
that each step in the ALS has a unique solution. For example,
if the initial guesses are zero, then the regression matrix is
not invertible and the iterations cannot start. It is shown in
Section V that removing the normalization slightly increases
the convergence speed and overall accuracy of the model.

Denote a prior nonzero initial guess of the matrix C as
c=cC (0) and N, as the total number of alternating iterations
performed. When choosing for simplicity p = r; = 1, the ALS
algorithm for estimating the coefficient matrices B,and C
consists of the steps highlighted in Algorithm 1.

III. ONLINE UPDATING OF QUARKS

A. Recursive Least Squares for Updating
Unstructured VAR Models

The ALS algorithm provides a computationally efficient
way for the offline estimation of QUARKS parameters on
a prior identification data set. Because of the nonstationary
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Algorithm 1 QUARKS({y (k) }=1:N,, 1, m, Na, €min)

Input :ty(&)}kzl;Nt,n7m,Naaemin
Output: B,C

1 ¢=0, e=+Inf

2 C = randn(m, m)

3 while ¢ < N, and e > e,,;, do

4 Solve, forall j =1...n,
. Ny . -~

min SN 1Y (R) ) = CY (k — 1)ty

Denote the solution with B
Solve, for all j =1...m,:
. N, . ~
min 372 (Y (R) (G 2) — ¢f Y (k= 1) B[3

7 Denote the solution with C

e(k) = 33, [[Y (k) = OV (k — 1) B,
e=le(k) —e(k —1)|

10 {=/+1

1 end

nature of the atmospheric disturbances in AO applications,
we investigate whether the algorithm can be implemented in
a recursive manner. In this way, the coefficient matrices can
be continuously updated during closed-loop operation of the
system. For unstructured VAR models like in (1), we focus on
the RLS algorithm [12], [13].

We first discuss the RLS algorithm in the unstructured VAR
case (1) for the case p = 1. Let us consider at time instant k
to have an estimate of the parameter matrix A, denoted with
Z(k). The variables a;(k) for all j = 1,...,mn denote the
rows of the matrix A. The jth element of the vector y(k) is
denoted with y;(k). Whenever a new measurement y(k + 1)
becomes available, these estimates are updated. Such an update
is the fusion of the prior information and the information about
A derived from the new measurements. This fusion can be
interpreted as optimizing the following cost function for all
the rows a; of A:

Vji=1,...,mn, minila;—a;(k)P;k) '[a; —a;k)]"
+(yk+D—y® a] )R vtk +1) — y(k)'a])
)

where 4 is a forgetting factor in the interval [0, 1], and P; (k)
represents the covariance matrix defined as

Pj(k) = El(aj — a; (k)" (aj — a;(k))].
Equation (5) is equivalently written as

yj(k+1):|

Vj=1,...,mn min u’pu s.t:|: AT
al k)

aj
_ [y - R)?
1 J 0

with IE[,u(k),u(k)T] = [ and E[u (k)] = 0. The solution to
this least squares problem is given by the following recursive

0
il/sz(k)l/2:| u(k) (6)

Algorithm 2 RLS(y(k+1), y(k), A(k—1), P(k—1), A, N)

Input : y(k+1),y(k), A(k — 1), P(k — 1), A

Output: A(k), P(k)
1 g(k) = A"1P(k — y(k)[I + A"y (k)T P(k — y(k)] ™
2 P(k) = A"HP(k = 1) — g(k)y(k)" P(k - 1)]
3forj=1...N do
4 | a;(0)" = a;(k=1)"+g(k)[y; (k+1)" —y(k)"a;(k—1)7]
5 end

equations:

ajk+ 17" =a;()" + gk + Dly;(k+1) —y(k)a; (k)"
gik+1) = 27" Pi(k)y ()[R, + 2~ y (k)T Py (k) y (k)"
Pi(k+1) = A7'[P;(k) — g;(k + D)y(k)" P; (k)]. (7

We summarize the algorithm updating the estimates of
aj(k) and P(k) in a computationally efficient manner in
Algorithm 2. When P;(0) is chosen identical for all j, then
gj(k) and P;(k) are independent of j and can be written as
g(k) and P (k).

The solution to (5) can thus be written as

[A(k), P(k)] = RLS(y(k + 1), y(k), A(k — 1),
Pk — 1), 2, mn).

Transposing the scalar value y;(k 4+ 1) on line 4 has no
effect here; however, in Section III-B, this value will be
a vector that makes the transposition necessary. The initial
estimate for A can be determined by doing an initial offline
identification step or can be set to a random matrix. The
initial value for the matrix P is usually set to d1, where [
is the identity matrix of appropriate size and J is a design
parameter. Choosing J depends on how much confidence
is placed in the initial guess of A, e.g., a low value for
0 means that a high amount of confidence in the initial
guess.

B. Recursive Least Squares for QUARKS Models

The algorithm in Section III-A gives an update at each new
time step k for the coefficient matrix A of the VAR model
in (1), thus providing the possibility to update this coefficient
matrix each time when new data are available. We now address
the question whether this scheme can be adapted to recursively
update a QUARKS model. In particular, there are two matrices
that need to be updated, thus creating a bilinear minimization
problem with no closed-form solution. A similar problem was
tackled for estimating bilinear systems in the case where B
and C are the vectors in [14].

For the QUARKS model in (3) with p=r; =1

Y(k) = CY(k — 1)B + V (k). (8)

Let us denote the estimates for B and C at time k as B (k) and
C (k). In this brief, we propose to use the initial estimate of
the matrix C, denoted as C (k), and update the estimate of B,
denoted as E(k + 1). This is then followed by updating C
by fixing the previously obtained estimate for B, resulting
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Recursive algorithm
k=1 2 3
I ! eeeeen.
f T 1
(1), B(1) C2.B2)  C(3).B(3)
édau coefficients )Gn to next time step
Update B(1) from C(0)  Update C(1) from B(1)
Fig. 1. Time line of the QUARKS-RLS algorithm. Every time step &,

we calculate estimates C| (k) and §(k) using two alternating steps.

in one ALS update. A schematic is presented in Fig. 1. For
each time step k, the factor matrices B and C are updated
once.

Similar to Section III-A, we partition B(k), C(k), and Y (k)
as follows:

é1(k)
Chky=| : B(k) = [b1 (k) by (k)]
ém (k)
yi(k)
Y (k) = [y1(k) w1 =
i (k)

The variables y;(k), i = 1,...,n and y;(k),i = 1,...,m
are now the vectors instead of scalars as in Section III-A.
We moreover introduce the new variable U, (k) as

Ue(k) = C(k)Y (k)

and consider the following problem for updating the estimate
of the columns b; (k) of the matrix B(k) using C (k) inspired
by the solution of the previous section

Vj=1....n min 27Nk —biGNT Py (k)b — b (k)]
J

+lyjtk+ 1) = Uct)b; 13 (9

where we consider the case R,; = I. The solution to (9) is
provided in Algorithm 2 and can be written as

[B(k), Py(k)] = RLS(Y (k + 1),
Ue(k), Btk — 1), Py(k — 1), 1, n).

The second step of the ALS consists of updating C (k) based
on the estimate B (k)

Vi=1,...,m min 27 '[c; — & ()P (k)[c; — ¢; (k)"

+ 5k + DT = U] (10)
where
Up(k) = B)TY (k)T .

The solution to (10) is obtained by running Algorithm 2 with
the following parameters:

[C(k)T, Pe(k)] = RLS(Y (k + )T, Uy (k),
Ckk— DT, Ptk — 1), 2, m).

Applying the ALS algorithm for updating the matrices B (k)
and C (k) in the minimization problems in (9) and (10) results

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Algorithm 3 QUARKS-RLS Algorithm

1 Pb(O) =01

2 P.(0) =61

3 for 1 <k < N; do

s | Uek) = Ch)Y (k)

s | [B(k), By(k)] = R

RLS(Y (k + 1), Uq(k), B(k — 1), P,(k — 1), A\, n)

6 | Up(k) = B(k)TY (k)T

7 [C(k)T’ Pc(k)] = .

RLS(Y (k + 1), Uy(k),C(k — 1)T, P.(k — 1), \,m)

3 end

in the RLS algorithm for QUARKS models as defined in
Algorithm 3.

By performing these steps at each new time step k,
we obtain an RLS algorithm for low Kronecker-rank-
structured models. The initial guess for the coefficient matrices
B (0) and C (0) is obtained using the QUARKS as described
in Section I and [9] for more thorough explanations.

IV. COMPUTATIONAL COMPLEXITY

We compare the computational complexity of the recursive
algorithm for the QUARKS model with the unstructured model
and distinguish between the offline and online computational
parts. The offline part has no real-time constraints, although
recursive algorithms do not store the whole data batch but only
the last measurement and the matrices P, and P.. This makes
it attractive even for offline use on large-scale stationary data.
Of higher interest is the online computational complexity, as it
is constrained by the frequency of operation of the system.

When considering the RLS equations in Algorithm 2 with-
out the Kronecker structure, the most computationally com-
plex operation is a matrix—vector multiplication [P (k)y(k)].
The complexity is O(m?n?). For the RLS equations using
the Kronecker structured matrices in Algorithm 3, the most
complex operation is a matrix—matrix multiplication (MMM)
[Py (k)Y (k)]. Its computational complexity is O(m?n) if
m > n or O(mn?) if m < n.

V. NUMERICAL VALIDATION

The algorithm is validated using an application to AO using
synthetic and validation data. The light from a star needs to
pass through the Earth’s atmosphere before it can be seen
by a ground-based telescope. The wavefront that enters the
atmosphere is flat and smooth while it is no longer the case
when it reaches the aperture of the telescope. In order to
restore the wavefront to its original shape, a combination of
a wavefront sensor (WFS) and a deformable mirror is used to
compensate for this disturbance. The WFS consists of an array
of small lenslets which focuses the light for each lenslet in a
point on an imaging sensor. Because of the local curvature
of the wavefront, these points deviate from their original
position (i.e., when the wavefront is flat). The amplitude of
the deviation in the horizontal and vertical coordinates yields
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Fig. 2. Generating an oversized phase screen over which a smaller square
aperture will move. By varying the speed v, at which this aperture will move,
the simulated wind speed is changed.

two measurements of the local derivative of the wavefront. In
this particular example, the focus is on an open-loop model.

A. Synthetic Data

The turbulence is generated according to the multiscale
phase screen synthesis approach detailed in [15]. More specif-
ically, only the low-resolution process is used here based
on the fast Fourier transform moving average (FFT-MA)
generator [16]. In short, the phase screen x with dimensions
m x m can be represented as an MA model

x(,0) = D Ok ko)e W — ku v — ky)
ku’ku

(1)

with € being a zero-mean white noise process with variance 1,
and 6 being the MA coefficients. To determine the MA
coefficients 6, the spatial covariance matrix Cy(u,v) of the
atmospheric turbulence based on the von Karman theory [1]
is considered, such that

Copu,v) = D" Olkus k)0 + ks 0 + k).
ku’ku

12)

The coefficients 8 can now be calculated from the spatial
covariance matrix Cy using the FFT-MA generator. Since
Cy(u,v) tends to zero for large u, v, the index terms k,, k,
can be seen as finite and are assumed to be k, = —0,...,0
and k, = —0,...,0.

The wind speed is simulated by generating an oversized
turbulence phase screen and moving a smaller aperture over
this phase screen (see Fig. 2). In order to create a nonstationary
turbulence, the wind speed varies by moving the aperture
over the phase screen at a piecewise constant speed v,. More
specifically, we divide the simulation in a number of time
sections of equal length, each of which has a constant wind
speed in each section. In this simulation, we use the piecewise
constant wind speed distribution in the horizontal direction:
[4 1 3 9 5] pixels/sample with a simulation duration of
20 - 103 samples. Each piecewise constant section consists of
4 . 10% samples such that an oversized phase screen of size
(4-10°- 4+ 1+34+945)+m) x m is generated.

A WES consists of an N x N lenslet array with its lenslets
evenly distributed on a square grid. Each of these lenslets
measures the average slopes of the turbulence in both the
horizontal and vertical direction, resulting in a total of 2N?
output channels. These slopes Y (k) € R*V*N are related to the
disturbed wavefront ¢ (k) € R™*™ according to the following
linear model:

vec(Y (k)) = Gvec(¢p(k)) + w(k) (13)

TABLE I
NUMERICAL SIMULATION PARAMETERS FOR SECTION IV-A

Model

N x N WEFS sensor points 9x9
SNR sensor noise 20 dB
D aperture diameter I m
Turbulence

m X m turbulence phase screen 28 x 28
ro Fried parameter 0.2 m
Lo outer scale 10 m

& MA neighborhood 50

Horizontal wind speed [4 1 39 5] pixels/sample
Vertical wind speed 0 pixels/sample
Identification data set

N¢ phase samples 10 x 103

Ng ALS iterations 20

Simulation data set

N¢ phase samples 20 x 103
A forgetting parameter 0.9988
P(1) initial value 1

where G € RzNzxmz, and w(k) is the sensor noise modeled
as white Gaussian noise with a specific signal-to-noise ratio.
To represent the open-loop system {turbulence + sensor},
a QUARKS model in open loop with temporal order 1 and
Kronecker rank r > 1 is considered (3). In this brief,
the covariance E[v(k)v (k)] in (1) is not analyzed. Two data
sets are generated under the same atmospheric conditions
(see Table I). For the nonrecursive methods, one data set is
used for offline identification and the other one is used for
validation. The first data set is used to generate a starting
value for the recursive identification methods.

The criterion stop for the ALS algorithm is reached when
the difference of the residual in absolute value between two
consecutive instants is less that 1 x 1073 or a maximum of 20
N, iterations is reached.

In order to illustrate the convergence of the recursive Kro-
necker algorithm, the variance accounted for (VAF) between
the two signals y(k) and y(k) is defined as

VAF(y (k), y(k))
s 2 i) — 5013

s S i ()13
Since the turbulence is modeled as a stochastic process,
we perform 100 Monte-Carlo simulations. In this experiment,
the QUARKS algorithm in Algorithm 1 is used.

The number of iterations needed for ALS to achieve a
difference in residual less than 1x 1073 is determined with and
without normalization over 100 simulations. The average num-
ber of iterations needed with normalization is 8.53 and without
normalization is 7.16. In Fig. 3, the accuracy of the estimates
of the coefficient matrices over entire simulation duration is
shown. The VAF is computed for each simulation. The mean
and standard deviation over all Monte-Carlo simulations are
then calculated and represented with the shaded area in Fig. 3.
In red, the accuracy of the recursive QUARKS algorithm
can be seen, compared with the accuracy of the nonrecursive
QUARKS algorithm (blue) when the identification is per-
formed on the whole data set assuming the latter is stationary.

1— x 100

=max {0,
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Fig. 3.  Comparing the spatial VAF for QUARKS-RLS (red), FSW for

QUARKS (green), and nonrecursive QUARKS model over the entire simula-
tion duration assuming nonstationary turbulence (blue). The standard deviation
for each of the three method is shaded.

The recursive estimation with the scalable method proposed
in Section II reaches higher performances when the temporal
dynamics have reached stationarity. In green, the VAF is
plotted for a QUARKS-fixed sliding window (FSW) model.
This is obtained by estimating a QUARKS model at each new
time sample, with the regression data within a FSW containing
the last 200 time samples. This last method is an upper bound
on the accuracy that can be achieved with the QUARKS
method for nonstationary modeling at the expense of a much
higher computational cost as a new ALS is solved at each
time sample. The number of ALS iterations to meet the stop-
ping criterion, however, is very small when the atmospheric
conditions are slowly time varying. In purple, the recursive
QUARKS algorithm is shown where normalization is applied
to one of the factor matrices during recursive estimation.
It shows that using normalization with recursive QUARKS
decreases the rate of convergence and slightly decreases the
overall accuracy of the algorithm.

We now investigate the online computational complexity
in Fig. 4 with timing experiments on different sizes of the sen-
sor. 2pr MMMs are required for QUARKS; Algorithm 3 and
2pr MMM are required for QUARKS-RLS; and Algorithm 1
and 2pr MMM are required for QUARKS using an FSW.
A linear model log 10(Time) = a xlog 10(N)+b was fit to the
timing data, and we are particularly interested in the parameter
a as it indicates how well the method scales with an increasing
size of the sensor. The lower a is, the better the scalability
will be. The online computational complexity for QUARKS,
QUARKS-RLS, and QUARKS-FSW scale theoretically with
O(N3), and regression coefficients a of, respectively, 1.56,
1.54, and 2.33 are obtained. Although the size of the temporal
window for QUARKS-FSW is constant over N, it still shows
lower scalability than QUARKS and QUARKS-RLS. Further-
more, the regression coefficient for the unstructured RLS is
4.90 and hence a relative difference of 3.36 with QUARKS-
RLS.

B. Laboratory Validation on a AO Testbed

We now consider the AO laboratory setup used to test
the proposed identification approach. A schematic is shown
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Fig. 4. Timings experiments for QUARKS (blue), recursive QUARKS (red),
QUARKS with a FSW (green), and unstructured VARX-RLS (purple) for
different sensor sizes. The coefficients of the models are: for QUARKS,
(a,b) = (1.56,—6.88); for QUARKS-RLS, (a,b) = (1.54,—5.83); for
QUARKS-FSW with length of sliding window 200, (a, b) = (2.33, —4.99);
and for VARX-RLS, (a, b) = (4.90, —8.33).

Laser P1 L1 TS L2 L3 SH+C1

Fig. 5. Schematic of the laboratory testbed. The light emitted from the laser
goes through the pupil P1 and the lens L1. It is collimated when reaching the
turbulence plate TS that is placed at the focal plane of the lens L2. The lens
L3 conjugates TS with the sensor SH 4 C1.

in Fig. 5. The light is emitted from a He-Ne laser source
(A = 635 nm) and is then collimated into a beam of size
D =9 mm using the lens L1. The atmospheric turbulence for
a single frozen layer is generated using a pseudorandom phase
plate Turbulence Simulator (TS) machined by Lexitek Inc. The
optical path difference is defined as follows. A phase design
that follows the spatial Kolmogorov distribution is generated
and is then multiplied by a factor that varies with an angle
from the center of the array equal to (14 1/5sin@)™>/®. The
effect is to produce a phase design where the local value of
the Fried parameter ro varies as (1 4+ 1/5sin@). Different
wind speed conditions are simulated by rotating the disk.
In this brief, we propose to vary the speed to illustrate the
improvements that the Kronecker-RLS algorithm enables over
the batch method. Every 50 time samples, the speed in rounds
per minute is set as follows:

1 T . (27rk)
RPM = - 4+ —sin | —
2 6 N;
where T € {1,1.5,2,2.5,3}, and N; is the total number of
time samples.

The beam goes through the turbulence disk that is placed
at the focal plane of the lens L2, f; = 10 cm. The lens
L3 has a focal length of 10 cm and forms a telescope with
L2. An OKOtech Shack—Hartmann WFS SH+C1, 1-in optical

(14)
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Frequency (H

Fig. 6. Slope signal is considered in the middle of the aperture. Spectrogram
for T =1 (left). Spectrogram for 7" = 3 (right). The y-axis is in log10 scale.
Each window contains 300 points and there is 50% overlap between the
segments. The elements below —30 dB have been thresholded to 0 and appear
in deep blue.

format, with a lenslet array pitch of 300 um and focal length
18.6 mm, is placed perpendicular to the optical beam path
at the focal point of L3. The turbulence phase profile and
the grid of lenslets are on conjugated planes. An array of
28 x 28 lenslets is selected among which 566 are illuminated
and considered as active. The Kronecker structure does not
adapt well to circular apertures and we consider the rectangular
aperture of the active lenslets. Therefore, the slope signals
corresponding to the nonactive lenslets are set to 0, and hence,
a total of 2 x 28 x 28 sensors signals are considered. Such
approximation implies larger prediction errors on the boundary
of the pupil, although this effect is all the more mitigated if the
factor matrices are sparse. At each time sample, the nonzero
values predicted outside the circular aperture are set to 0.

The noise on the WFS affecting the slopes is a combination
of different sources. The arrival of photons on the charge-
coupled device (CCD) follows a Poisson distribution. The
CCD has thermal and readout noises that are assumed inde-
pendent and identically distributed. The finite discretization
of the CCD plane with pixels also causes errors in computing
the centroids. We assume nonetheless a zero-mean white noise
and illustrate the robustness of the method with respect to this
assumption.

The sampling frequency is fs = 12.5 Hz. We introduce the
Greenwood per sample frequency ratio, defined as

1
I _ a2 L

s ro fs
It relates the wind speed with the sampling frequency and gives
insight on how much the frozen flow has traveled over the
aperture during a sample. It is upper bounded with 0.14, which
is well below the Nyquist criteria, and hence, no temporal
aliasing occurs.

We collect N; = 3 x 103 samples for each value of T.
0.5 x 10 samples are used for a batchwise identification of a
QUARKS model, which serves as an initial guess for obtaining
temporally varying estimates on the next 2.5 x 103 samples.

The temporal variations in the data are represented by
the spectrogram using the short-time Fourier transform that
illustrates the differences in the power spectrum of consecutive
sliding windows [see Fig. 6]. Although the largest contribution
is mostly located in the low frequencies, larger variations in
the frequency content are observed for 7 = 3 than for 7 = 1.

The Kronecker rank and the temporal order both take values
within the set {1, 3}. The accuracy is measured by calculating

TABLE 1I
LABORATORY TESTBED EXPERIMENT: VAF (%)
QUARKS-RLS QUARKS Diag-RLS Ratio
T,r= p=1 p=3 p=1 p=3 p=1 (%)
81.15 84.41 79.06 78.10 51.98 8.08
1.5 81.26 84.18 78.36 77.16 52.45 9.09
2 80.04 82.86 73.48 72.09 52.75 14.9
2.5 79.77 81.18 71.10 70.48 52.32 15.2
3 79.76 81.01 65.76 64.53 50.51 25.5
T,r=3
1 82.23 84.42 80.02 78.65 7.34
1.5 82.08 84.50 80.84 77.87 8.51
2 80.85 83.54 73.10 72.53 15.1
2.5 80.22 83.12 71.47 71.05 17.0
3 80.91 80.83 65.66 65.76 22.9

for each lenslet, the VAF (averaged in both the horizontal
and vertical directions of the slopes signal) between the true
signal Y and the reconstructed signal Y. Such measurement is
different from Section I'V-A in which the VAF was computed
spatially for each time sample. We compare the accuracy of
the QUARKS algorithm with the recursive QUARKS-RLS
algorithm for varying conditions of nonstationarity in Table II.
The relative improvement between the VAF for the QUARKS-
RLS and the VAF for the QUARKS with p = 3 is indicated
as Ratio in Table II.

In this AO configuration with one turbulence disk and at
relatively low (fg/fs), increasing the temporal order or the
Kronecker rank of the model leads to little improvements.
Moreover, when increasing the amplitude 7" of the sine func-
tion, and hence the nonstationarity, the recursive algorithm
is better equipped to handle the large changes induced by
the varying rotational speed of the turbulence disk. The
accuracy does decrease relatively less compared to the nonre-
cursive case.

VI. CONCLUSION

This brief introduces a scalable method for recursively
identifying 2-D temporally varying systems. We have inves-
tigated in [9] the parameterization of the coefficient matri-
ces as a sum of a few Kronecker products to decrease
the computational requirements when identifying large-scale
VAR models. Within the same class of structured matrices,
we have analyzed the use of recursive algorithms for modeling
nonstationary data. The estimates obtained with the QUARKS
are used as initial guesses for the RLS steps that consist
of sequentially updating the left and right factor matrices.
It is also shown that the computational complexity of the
QUARKS-RLS algorithm reduces from O(m?n?) to O(mn?)
compared to the unstructured VAR-RLS while guaranteeing
low prediction error performances. Importantly, it alleviates
the memory burden on QUARKS insofar as only the left and
right covariance matrices along with the last measurement
sample need to be stored, as opposed to the whole data set.
A numerical validation for AO purposes was proposed on
synthetic and laboratory testbed data. Although the discussion
has dealt with a temporal order and a Kronecker rank equal
to 1, the algorithms generalize as shown in the experimental
section. The coefficient matrices A; can be further decomposed
into a product of many matrices Aj; ® ... ® Agy,; for d
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larger than 2, which allows for further data compression.
The QUARKS-RLS algorithm adapts by updating each factor
matrix alternatively at each time sample.

VII. ADDITIONAL MATERIAL

The code leading to these results is found online [17].
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