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For transitions of control in automated vehicles, driver monitoring systems (DMS) may
need to discern task difficulty and driver preparedness. Such DMS require models that
relate driving scene components, driver effort, and eye measurements. Across two sessions,
15 participants enacted receiving control within 60 randomly ordered dashcam videos (3-
second duration) with variations in visible scene components: road curve angle, road sur-
face area, road users, symbols, infrastructure, and vegetation/trees while their eyes were
measured for pupil diameter, fixation duration, and saccade amplitude. The subjective
measure of effort and the objective measure of saccade amplitude evidenced the highest
correlations (r = 0.34 and r = 0.42, respectively) with the scene component of road curve
angle. In person-specific regression analyses combining all visual scene components as pre-
dictors, average predictive correlations ranged between 0.49 and 0.58 for subjective effort
and between 0.36 and 0.49 for saccade amplitude, depending on cross-validation tech-
niques of generalization and repetition. In conclusion, the present regression equations
establish quantifiable relations between visible driving scene components with both sub-
jective effort and objective eye movement measures. In future DMS, such knowledge can
help inform road-facing and driver-facing cameras to jointly establish the readiness of
would-be drivers ahead of receiving control.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. The potential of eye-based driver monitoring systems

With the advent of automated driving systems, drivers will be removed from sustained involvement in the driving task
until being called back in. Consequently, a large body of research has aimed to establish time budget requirements for reach-
ing situation awareness (SA) before the driver is given back control (e.g., Lu, Coster, & De Winter, 2016).

A major disadvantage of current SA measurement methods, such as probe-recall techniques, is that they are disruptive
and impractical in real-time applications. Instead of traditional accounts of SA, a directly measurable driver index should
be useful for driver monitoring systems (DMS) in transitions of control. Eye-based DMS in automated vehicles have the
potential to verify driver readiness ahead of returning control to the human.

Victor (2005) explained that: ‘the visual information you explicitly experience is not the same as the visual information that
guides your actions . . . Information enters the nervous system and influences action even when it doesn’t gain conscious attention’.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.trf.2019.11.001&domain=pdf
https://doi.org/10.1016/j.trf.2019.11.001
mailto:C.D.D.Cabrall@tudelft.nl
mailto:R.Happee@tudelft.nl
mailto:J.C.F.deWinter@tudelft.nl
https://doi.org/10.1016/j.trf.2019.11.001
http://www.sciencedirect.com/science/journal/13698478
http://www.elsevier.com/locate/trf


188 C.D.D. Cabrall et al. / Transportation Research Part F 68 (2020) 187–197
Neurological pathways identified by Ungerleider and Mishkin (1982) differentiate between a ‘vision-for-action’ sensorimotor
process that runs in parallel and fast and a more conscious ‘vision-for-identification’ process associated with traditional SA
measurement techniques. Moreover, De Winter, Eisma, Cabrall, Hancock, and Stanton (2019) propose a theoretical account
of SA that is based on eye movements in relation to the task environment to overcome task interruption of more common SA
measurement techniques and thus is more amenable to real-time applications. The contribution of our present approach is
to inform an eye-based DMS verification function.

During the automation-to-manual transition phase, we assume the eyes to undertake preparatory activities that can be
measured in the laboratory and later checked against measurements on the roads. Our investigation aims to extend the
present body of knowledge concerning take-over requests with an elaboration on eye movements between the moment
the driver first focuses on the road and the moment the driver resumes manual control. We are concerned with measuring
‘vision-for-action’, which is presumed to be available at an earlier point than the ‘vision-for-identification’ concepts of
conventional SA measurement methods.

1.2. Taking into account the visual demands of the driving scene

The present investigation proposes to capture real-world driving scene variation on a continuous scale. Around the world,
affordable dashboard cameras and video sharing sites have enabled access to a large body of realistic driving scenes. More-
over, both crowdsourced (e.g., Cabrall et al., 2018) and semi-automatic annotation (e.g., Jin, Li, Ma, Guo, & Yu, 2017) pro-
cesses are now available to rapidly perform classifications and thus allow for driving scene libraries of desired contents.
Lastly, advances in computer vision enable automatic processing of driving scenes down to the point where scenes can
be encoded at a pixel level (e.g., Yu, Xian, Chen, Liu, Liao, Madhavan, & Darrell, 2018). Thus, it is now conceivable to deter-
mine a total visible scene percentage per object of interest (e.g., cars, pedestrians, signs/symbols, buildings). Such techniques
enable controlled laboratory studies to answer questions such as which scene contents (and in which proportions) might be
expected to affect eye movements and perceived driver effort.

Unlike humans who can easily intuit differences between easy and demanding driving scenes, a DMS will require a priori
programming that ensures that the recorded eye movements are assessed relative to the visual demands of the driving scene.
Previous research about the association between driving scene characteristics and driver workload has relied on variables
that are nominal or ordinal in scale. For example, De Waard (1996) evidenced increased driver workload for sections of
motorways with entrances/exits over those without, for sections with adjacent noise barriers compared over those without,
and for areas of rural vegetation over those of monotonous moorland. Furthermore, Foy and Chapman (2018) evidenced high
to low mental demand responses across the following virtual road types : suburban roads, city center, arterial A-roads, and
dual carriageway. In lessons learned from developing driving research scenes and scenarios, Papelis, Ahmad, and Watson
(2003) argued that ‘Often times, specifications about the characteristics of the ambient traffic or ambient environment are missing
or incomplete’ and ‘it is often the case that variations in these ambient characteristics of a scenario can make a drastic difference on
how participants perceive the scenario’.

More research is needed concerning how eye measures can be predicted from driving scene determinants. Previous eye
measurement outcomes of driving scene components stand to be improved upon and extended by continuous scale mea-
surements. For example, drivers’ eyes have been found to frequently change their points of reference with different sized
cars and turn radiuses (Olson, 1964), in the presence vs. the absence of a lead vehicle (Mourant, Rockwell, & Rackoff,
1969), in relation to signs, other vehicles, and road edge markings (Mourant & Rockwell, 1970), while approaching and tran-
siting curves (Land & Lee, 1994; Laya, 1992), and with varying levels of experience across different types of roads: rural, sub-
urban, and expressway (Chapman & Underwood, 1998).

1.3. Study aims

The present study aims to relate a continuous quantification of driving scene contents (i.e., available from driving scene
semantic segmentation) to common eye measures (i.e., pupil diameter, fixation duration, saccade amplitude) and driver
effort ratings (i.e., driver visual workload). The present method was designed to support applications in real-time transitions
of control from automated driving to human driving via DMS verification of (in)adequacy of situated visual behavior.

2. Methods

We investigated the effects of visible driving scene characteristics on human perceived effort ratings and eye-tracking
measures.

2.1. Participants and apparatus

Written informed consent was obtained from all participants, and the research was approved by the Human Research
Ethics Committee of the Delft University of Technology under the title ‘Driving video ratings’ (16 December 2015). The
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experiment was completed by 15 participants (six female, nine male) aged between 18 and 36 (M = 26.60, SD = 4.26) with an
average driving experience of around seven years since obtaining the driver’s license (M = 7.20, SD = 4.20).

The experiment apparatus consisted of a stimulus display monitor, SR Research Eyelink 1000 Plus eye-tracking camera
with integrated IR source and dedicated head/chin rest mount, as well as a gaming steering wheel (Fig. 1). The display
was a 24-in. (diagonal) BenQ XL2420T-B monitor with a resolution of 1920 � 1080 pixels and a display area of
531 � 298 mm. The display was positioned about 95 cm in front of the participant and about 35 cm behind the eye-
tracking camera/IR source. The boundaries of the stimulus display area subtended approximately 31/18 degrees of horizon-
tal/vertical viewing angle per the setup ranges required by guidelines of the eye-tracker. Eye behavior data were recorded
after individual participant calibration. The eye event parser was set according to the default psychophysical configuration:
saccade velocity threshold of 22 deg/s, saccade acceleration threshold of 3800 deg/s2, and saccade motion threshold of 0 deg.
The steering wheel was an unconnected Logitech G27 and along with an isolating partition was used to facilitate driving
video stimulus immersion. A mouse was used for effort ratings.

2.2. Procedure

The height of the head/chin rest mount was adjusted to each participant. Participants kept their heads stationary within
the mount except for voluntary rest breaks around every five minutes across about 15 min of driving video viewing and rat-
ing trials. Each trial began with a drift correction dot in the center of the screen to which participants needed to fixate and
click the mouse at the same time. A 3-second long driving video clip was then played during which participants were tasked
to move their hands to the wheel while imagining that they were taking over control (i.e., from automated driving) and that
they must drive within that scene.

2.3. Stimuli and measurements

Stimuli consisted of 60 randomly ordered 3-second long dashcam clips (Fig. 2). The clips were shown in two rounds of 60
exposures each separated by a break of about 5 min. To incorporate a variety of different driving scene circumstances, we
selected the video clips from different complexity levels, extended from a driving scene library presented in Cabrall et al.
(2018). Reasonably, DMS will need to assess drivers at a high frequency, on the order of seconds rather than minutes.
Short-lasting clips were used as a tradeoff of informative eye data (i.e., an average fixation duration is around 0.3 seconds,
thus in 3 seconds about 10 fixations might occur) while constraining the scene to be fairly similar (e.g., curves might not last
more than a few seconds, so longer durations of measurement would need to average large changes of scene components).
Furthermore, as a simplified approach, only a representative frame (i.e., the mid-point of the 3 seconds) was used to char-
acterize objective quantifications of driving scene contents.

Driving scene content components were manually outlined and color-coded (cf. CityScapes Dataset, 2018) into five sep-
arate categories:

(1) road surface,
(2) road users (vehicles, bicycles, pedestrians),
(3) signs (stop signs, crosswalks, roadway writing, billboard advertisements, etc.),
Fig. 1. Experiment apparatus.



Fig. 2. Examples of continuously scaled quantities of scene contents (road area, road users, signs/symbols, buildings/infrastructure, vegetation/trees, road
curve angle) along with participants’ (i.e., p01, p02 . . . p15) measures of effort ratings and eye measures (pupil diameter, fixation duration, saccadic
amplitude).
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Fig. 3. Driving effort response scale.
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(4) buildings (houses, light poles, fences, etc.), and
(5) vegetation (trees, bushes, hedges, etc.).

A free online image processing tool (Krzywinski, 2018) was used to determine a percentage of the windshield view that a
specific category covered in terms of pixelated area. A transparent protractor overlay was used to manually approximate the
curve angle of the road for a representative frame in the 3-second video clip (i.e., the middle frame). First, a mid-lane position
point was picked where the road ‘‘disappeared” beneath the vehicle. Next, a furthest visible point in the middle of that same
lane of travel along the horizon was picked and a line drawn to connect these points. Lastly, this line was measured in
approximated angular difference (degrees) from a straight-ahead line.

The eye-tracking camera recorded the eyes of the participant and delivered measurement outputs as averages across the
3-second duration exposure scene viewings: average pupil diameter (arbitrary units), average fixation duration (ms), and
average saccade amplitude (degrees). After the clip finished and disappeared, an effort rating response scale and prompt
(‘‘How much effort for you to take control and drive within that segment?”) was presented on the upper half of the screen,
and participants moved a vertical cursor to click on the scale to input their answer from between ‘‘Very Low” to ‘‘Very High”.
Cursor click horizontal positions were divided by the pixel length of the scale and rounded to a single point resolution from 0
to 100. The presented horizontal effort scale contained 21 equally spaced demarcations from left to right following from
those described within the seminal NASA-TLX (Task Load Index) subscales (Hart & Staveland, 1988) (see Fig. 3).

3. Results

Data were collected in two rounds. Round 1 data (eye-tracking and effort ratings) were collected during the first exposure
period of the 60 randomly ordered driving video clips. Round 2 concerned a repetition of the video clips in a new randomized
order after a break of about 5 min.

3.1. Overview of data from first exposures

All continuously scaled quantifications of driving visual scene contents from each video clip are depicted in Fig. 4 as
ranked by Round 1 effort rating responses, averaged across the 15 participants (M = 24.40%, SD = 11.10%) along with averages
for pupil diameter in arbitrary units (M = 4129.81, SD = 60.42), fixation duration (M = 433.99 ms, SD = 74.27 ms), and saccade
amplitude (M = 1.79 deg, SD = 0.67 deg). The standard deviations at the level of 15 participants after averaging the 60 videos
were 14.40% for effort, 430.57 for pupil diameter, 126.05 ms for fixation duration, and 0.33 deg for saccade amplitude. At the
level of individual videos separately, the standard deviations were 21.54% for effort (n = 900), 444.06 for pupil diameter
(n = 900), 218.20 ms (n = 899) for fixation duration, and 1.06 deg (n = 898) for saccade amplitude.

Bivariate correlations between driving scene content variables were computed to examine the presence of multicollinear-
ity. All correlations between predictors were found to be well below a conventionally considered threshold of r = 0.80
(Table 1, top).

Correlations between predictor driving scene variables and the dependent variables of effort ratings and eye measures are
given in Table 1 (bottom). For effort ratings, road curve angle, signs, road users, and buildings evidenced moderate positive
correlations (r = 0.25 to 0.34). For the pupil diameter measure, correlations were all near zero. For fixation duration, road
surface area and vegetation showed a positive correlation, while road curve angle, signs, and road users showed negative
correlations; however, associative strengths here were all weak. For saccade amplitude, road curve angle, road users, and
signs evidenced moderate-to-strong positive correlations (r = 0.36–0.42) while buildings showed a moderate positive corre-
lation (r = 0.26) and vegetation a weak negative correlation (r = �0.11).

3.2. Linear regression analyses

While Section 3.1 allowed for considering the scene components in an isolated fashion, the present section reports on the
scene components taken together. Linear regression analyses were performed to investigate relationships between the scene
components (independent variables) and dependent variables of effort ratings or driver eye measures.



Fig. 4. Driving scene visual characteristics per video clip with averages of effort ratings and eye measures (Round 1).
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Table 1
Correlations between driving scene contents, effort ratings, and eye measures (n = 900, 15 participants � 60 videos) (Round 1).

Road curve angle Road users Buildings Road surface Signs Vegetation/trees

Road curve angle (deg) – – – – – –
Road users (%) 0.35 – – – – –
Buildings (%) 0.20 0.45 – – – –
Road surface (%) 0.02 �0.18 0.31 – – –
Signs (%) 0.41 0.51 0.41 0.20 – –
Vegetation/trees (%) �0.01 �0.08 �0.09 �0.06 �0.07 –

Effort (%) 0.34 0.26 0.25 0.09 0.28 0.04
Pupil diameter (a.u.) 0.03 �0.01 �0.02 �0.02 �0.01 0.03
Fixation duration (ms) �0.19 �0.09 �0.07 0.07 �0.14 0.06
Saccade amplitude (deg) 0.42 0.38 0.26 0.02 0.36 �0.11

Note. n = 899 for fixation duration, n = 898 for saccade amplitude.
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These regression models were taken first at a general level across all participants and subsequently at an individual level.
In all cases, a conventional split off of 66.7% of the data (i.e., data for a random 40 of 60 videos) was used to fit a model on a
majority of the data. Next, three separate validation assessments (VA) were performed for ascertaining both repetition (con-
sistency) and generalization (cross-validation) performance. In each case, correlations were calculated between predicted
and observed values in the first and second rounds of video data.

(1) VA-1) Model computed with data for 2/3 of Round 1 video clips was used to predict data for the same 2/3 of video clips
in Round 2

(2) VA-2) Model computed with data for 2/3 of Round 1 video clips was used to predict data for the remaining 1/3 of video
clips in Round 1

(3) VA-3) Model computed with data for 2/3 of Round 1 video clips was used to predict data for the the remaining 1/3 of
video clips in Round 2

3.2.1. General level modeling across all participants and validation assessments
The regression models for the randomly selected 2/3 of Round 1 per dependent variable are presented in Tables 2–5.

Coefficients of correlation between the predictor variable set of scene components were observed to be moderate to strong
(r = 0.46), weak/none (r = 0.06), moderate (r = 0.26), and strong (r = 0.54), respectively for effort ratings, pupil diameter, fix-
ation duration, and saccade amplitude.

Validation assessments of the regression models exhibited moderate repetition and weak generalization capabilities
(Table 6). In terms of prediction performance with repetition of the same video clips in the test model as used in the training
of the model, effort ratings (r = 0.48) and saccadic amplitude (r = 0.47) had the highest correlative associations.
Table 2
Model summary statistics for prediction of self-reported driver effort (%) from driving scene contents.

Predictor B b t p

Constant 7.258
Road curve angle (deg) 0.229 0.309 7.626 <0.001
Road users (%) 80.211 0.126 1.944 0.052
Signs (%) 56.200 0.052 0.945 0.345
Buildings (%) 23.576 0.103 1.849 0.065
Road Surface (%) 37.152 0.054 1.252 0.211
Vegetation/trees (%) 13.141 0.108 2.907 0.004

F(6,593) = 27.03, p < 0.001, r = 0.46, r2 = 0.21.

Table 3
Model summary statistics for prediction of mean pupil diameter (arbitrary units) from driving scene contents.

Predictor B b t p

Constant 4128.378
Road curve angle (deg) 0.559 0.036 0.799 0.425
Road users (%) �62.268 �0.005 �0.065 0.948
Signs (%) �224.933 �0.010 �0.162 0.871
Buildings (%) �168.657 �0.035 �0.568 0.571
Road Surface (%) �116.379 �0.008 �0.168 0.866
Vegetation/trees (%) 58.160 0.023 0.552 0.581

F(6,593) = 0.32, p = 0.928, r = 0.06, r2 = 0.00.



Table 4
Model summary statistics for prediction of mean fixation duration (ms) from driving scene contents.

Predictor B b t p

Constant 412.582
Road curve angle (deg) �1.266 �0.171 �3.874 <0.001
Road users (%) 396.261 �0.062 0.883 0.378
Signs (%) �1303.525 �0.120 �2.015 0.044
Buildings (%) �78.374 �0.034 �0.565 0.572
Road Surface (%) 638.426 0.093 1.978 0.048
Vegetation/trees (%) 100.016 0.082 2.034 0.042

F(6,593) = 7.17, p < 0.001, r = 0.26, r2 = 0.07.

Table 5
Model summary statistics for prediction of mean saccade amplitude (deg) from driving scene contents.

Predictor B b t p

Constant 1.741
Road curve angle (deg) 0.011 0.288 7.461 <0.001
Road users (%) 8.221 0.254 4.120 <0.001
Signs (%) �4.710 �0.085 �1.638 0.102
Buildings (%) 1.531 0.131 2.484 0.013
Road Surface (%) �3.363 �0.096 �2.342 0.019
Vegetation/trees (%) �0.827 �0.134 �3.781 <0.001

F(6,592) = 39.90, p < 0.001, r = 0.54, r2 = 0.29.
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In terms of prediction performance with new video clips yet-unseen by the model, correlation coefficients between pre-
dicted and observed values for effort ratings, fixation duration, and saccade amplitudes on average between the two gener-
alization assessments were typically weak to moderate (i.e., r between 0.04 and 0.30) while pupil diameter remained weak
(i.e., r = 0.03 and 0.05).

3.2.2. Individual level modeling and validation assessments
Table 7 shows that person-specific regression models exhibited ‘moderate’ to ‘strong’ repetition and generalization capa-

bilities. In terms of prediction performance with repetition of the same video clips as used in the training of the model, effort
ratings (Mean r = 0.58) and saccadic amplitude (Mean r = 0.49) had the highest correlations between what was predicted and
what was observed.

In terms of prediction performance with new video clips yet-unseen by the model, correlation coefficients between pre-
dicted and observed values for effort ratings were of moderate to high strength (Mean r = 0.49, 0.55) and for saccade ampli-
tude as well (Mean r = 0.36, 0.43). Comparatively, prediction performances for fixation duration and pupil diameter were
weaker (i.e., between 0.07 and 0.22).
Table 6
Predictive correlation coefficients between observed scores and those predicted by a regression analysis with scene components as predictor variables.

VA-1: Repetition Dependent
variable

r Mean absolute
error

40 random video clips in Round 1 (600 data points), repeated as the 40 same video clips in Round 2 (600
data points)

Effort 0.48 15.85 (%)
Pupil diameter 0.08 338.55 (a.u.)
Fixation duration 0.17 152.17 (ms)
Saccade
amplitude

0.47 0.74 (deg)

VA-2: Generalization Dependent
variable

r Mean absolute
error

40 random video clips in Round 1 (600 data points), generalized to 20 new video clips in Round 1 (300 data
points)

Effort 0.30 15.84 (%)
Pupil diameter 0.03 327.56 (a.u.)
Fixation duration 0.18 155.66 (ms)
Saccade
amplitude

0.14 0.74 (deg)

VA-3: Generalization Dependent
variable

r Mean absolute
error

40 random video clips in Round 1 (600 data points), generalized to 20 new video clips in Round 2 (300 data
points)

Effort 0.25 16.67 (%)
Pupil diameter 0.05 331.53 (a.u.)
Fixation duration 0.20 151.72 (ms)
Saccade
amplitude

0.04 0.81 (deg)



Table 7
Predictive correlation coefficients between observed scores and those predicted by person-specific regression analyses with scene components as predictor
variables.

VA-1: Repetition Dependent variable Mean r N r SD r Mean absolute error

40 random video clips in Round 1, repeated as the 40 same video clips in Round 2 Effort 0.58 15 0.18 10.79 (%)
Pupil diameter 0.20 15 0.19 145.61 (a.u.)
Fixation duration 0.15 15 0.21 153.60 (ms)
Saccade amplitude 0.49 15 0.20 0.69 (deg)

VA-2: Generalization Dependent variable Mean r N r SD r Mean absolute error

40 random video clips in Round 1, generalized to 20 new video clips in Round 1 Effort 0.49 15 0.27 10.58 (%)
Pupil diameter 0.07 15 0.29 125.87 (a.u.)
Fixation duration 0.15 15 0.27 131.58 (ms)
Saccade amplitude 0.36 15 0.25 0.73 (deg)

VA-3: Generalization Dependent variable Mean r N r SD r Mean absolute error

40 random video clips in Round 1, generalized to 20 new video clips in Round 2 Effort 0.55 15 0.19 11.69 (%)
Pupil diameter 0.12 15 0.23 155.99 (a.u.)
Fixation duration 0.22 15 0.20 156.19 (ms)
Saccade amplitude 0.43 15 0.25 0.71 (deg)
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4. Discussion

4.1. Using driving scenes to predict effort ratings

Our experiment exposed participants to a range of driving scene contents, and a range of subjective effort ratings were
captured regarding imagined reception of driving control within those driving scenes. With video clips as short as only a few
seconds, visible driving scene contents were evidenced to be predictive of subjective effort. As a starting place, our driving
scenes featured no emergency conditions. Driving scenes of greater urgency could also be worthwhile for further investiga-
tions as suitable to different DMS design assumptions.

Not all visual information in the driving scenes was found to be well correlated with the effort ratings. For example, the
amount of vegetation/trees and road surface were weakly associated with effort. So, expecting effort to rise just on account of
having more to look at would appear to be an oversimplification. The driving scene features and objects that were found to
be correlated with effort rating response appear to be those that are semantically meaningful to the task of receiving driving
control. Participant effort ratings appeared to be most closely associated with road curve angle (i.e., an aspect of lateral
control).

Within the regression model, at the general level across all participants, effort ratings were explainable from the driving
scene contents taken together with a moderately strong correlation (r = 0.46). In validation assessments (repetition and gen-
eralization), the average observed error for this general level model was around 16 points on the effort scale and dropped to
around 11 points from individual-level models. An estimation error of 11% for driver effort sounds sufficient for practical
benefit in automated real-time DMS judgments in transitions of control. However, future simulator or on-road studies with
prolonged active driving should confirm such assumptions. Regardless, an apparent increase in strength of correlation was
evidenced by moving from a general level model prediction of visual workload to individually tailored ones.

4.2. Using driving scenes to predict driver eye behavior

Saccade amplitude appears to be a more relevant eye measure compared to pupil diameter (generally lacking relations)
and fixation duration (generally weaker relations) in terms of association with driving scene contents. Vegetation/trees actu-
ally produced a negative correlation with saccadic amplitude. Although vegetation/trees can contain varying amounts of
visual information, such features are likely interpretable as background with respect to the driving task of taking over con-
trol. Greater amounts of vegeration reduce the probability of the presence of other road users and the visual scanning
required to detect and track their movements. Predictions of pupil diameter were not statistically distinguishable from
non-influence of driving scene components while fixation duration and saccadic amplitude were. Nearly 30% of the variance
in saccade amplitude was explainable from the full set of continuously scaled driving scene contents. In validation assess-
ments, around 0.75 degrees of error in saccadic amplitude was observed. Future simulation studies need to validate whether
such levels of error might be viable in DMS transitions-of-control applications.

4.3. Potential applications and example use case

The most relevant application areas for the findings of the present investigation and its produced regression model equa-
tions are envisioned to support further research and development of real-time DMS applications for the transitional phases
between automated and human driving control. Ahead of being given full control of a vehicle, the eyes of the would-be driver



196 C.D.D. Cabrall et al. / Transportation Research Part F 68 (2020) 187–197
can be compared against stored predicted values based on the present driving scene the contents of which can be quantified
on a continuous scale resolution. By periodically viewing various video clips of real-world driving scenes and responding to
prompts of subjective effort ratings (i.e., while not driving), automated eye-tracking enabled DMS might pre-train and fit its
expectations for specific owner/user behavior towards improved assessment operations. When using only the individual dri-
ver as ground truth, such modeling would only be expected to be as good as the driver him/herself and thus vulnerable to
maladaptive eye movements, particularly if the driver is unaware of such vulnerabilities (see Kruger & Dunning, 1999).
Because standard driver education programs do not appear to adequately address emergent hazards (Fisher, Pollastek, &
Pradhan, 2006), supplemental driving video clips with data beyond the individual driver may prove useful for special pop-
ulations such as learner drivers.

In a hand-over of driving control situation, as the person him/herself begins to assess the driving scene and ascertain task
demands, allocate attentional resources, and ultimately regain situation awareness, an automatic DMS safety layer can pro-
vide oversight and correct as needed. If the driving scene is one where moderate or high amounts of driving visual workload
is expected (e.g., as inferred from a sharp curve, as well as other road users and many signs and symbols to read and inter-
pret, etc.) but the driver’s eyes are moving with shorter distances than has been previously computationally predicted (e.g.,
they are still mentally fixated on that last email they were composing), then any number of different adjustments might be
made in terms of automated warnings and/or vehicular control to modulate the potential risks of the transition. One exam-
ple interface solution might be to begin to highlight relevant missed parts of the driving scene until the driver can unlock full
manual control by gazing at these, but of course, there are many alternative design solutions. In any case, a real-time assess-
ment of driver fitness to drive within the present scene through directly observable constructs (i.e., vision-for-action ahead
of vision-for-identification aspects typically construed by information processing models of situation awareness) should be
desirable and the present study represents a starting point method and resulting models for generating such information.

4.4. Limitations

There are important considerations in common across our measures that should be taken into account. Due to difficulties
in reliable manual human annotation, a potentially confounding effect of ego-vehicle speed in the driving video segments
was not yet controlled, and we recommend such an aspect as an interesting independent factor to investigate in future stud-
ies. Eye measurements were taken while viewing a previously filmed driving video rather than in a full-fidelity environment
where additional fields of view might be expected to be present and relevant (e.g., mirrors and periphery). Eye-tracking and
scene identification will be limited by the cost and availability of technological software and hardware components (e.g.,
computer vision and machine learning) although these have been recently undergoing rapid advancements. For example,
our first approach of manual annotations of scene contents limited us to quantifying only a single representative frame of
each 3-second clip, whereas, in the future, more automatic processes could extend such objective quantification of scene
characteristics. As with all models, more data is expected to improve the presently provided regression equations. The cur-
rent framework could be extended via additional videos of greater variety and increased sets of classifiable items.

5. Conclusions

In conclusion, the present study has established correlations between driving scene components and subjective driver
effort as well as objective eye measures of fixation duration and saccade amplitude. In particular, the degree of road curve
angle plays a strong role in human judgments of driving scene difficulty and has a prominent influence on eye movement
behavior. Saccade amplitude appears to be the most sensitive eye measure (i.e., as compared to pupil diameter and fixation
duration). Additionally, we contribute new regression model equations of various driving scene contents on workload and
eye measures. From the continuous data level resolution used to train these models, we have been able to perform multiple
validation assessments to show that our models have predictive capabilities both in terms of repetition and generalization
relevant towards anticipating nominal adaptive eye behavior of would-be drivers.
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