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ABSTRACT: As the bridge stock in The Netherlands and Europe is ageing, various methods to analyse the
capacity of existing bridges are being studied. Proof load testing is one of the method to test the capacity of
bridges by applying loads on the existing concrete bridges with small spans. Because of the fact that neither the
actual traffic load nor the design traffic load required by Eurocode can be directly applied on the target bridge in
real-life proof load testing, an equivalent wheel load has to be applied instead. The magnitude and the location
of the equivalent wheel load is determined in such a way that it generates the same magnitude of inner forces in
the cross section. Such calculation is usually done by linear finite element analyses (FEA). Whereas, different
bridges have different geometry such as length, width, thickness, skewness, number of spans and lanes etc. For
each configuration, FEA has to be done first to determine the loading position. The main aim of this paper is to
study the relation between bridge geometry and unfavourable loading positions. Based on that, a guidance tool is
developed for the determination of the critical proof load testing locations for the practice. To achieve this goal,
a Python script has been developed using the general purpose FEM platform DIANA FEA. The script enables
the automatic generation and analysis of a bridge model with different geometries and loading conditions. By
applying the Eurocode Load Model 1 (LM1) at variable locations, the most unfavourable loading positions
for the proof load are obtained at the corresponding boundary conditions. The output of the study provides a
convenient tool for future proof load testing.

1 INTRODUCTION

In the Netherlands, many existing bridges are ageing
and require detailed inspection. This is because of the
high building activity in road and railway construc-
tion that occurred during the Post-World War II pe-
riod, the fifties and sixties. Bridges built in this period
are reaching their originally advised service life. Also,
with the development of the society, both the number
and the weight of the vehicles are increasing. There-
fore, increasing requirement on assessment of the ca-
pacity and the remaining life time of existing bridges
can be expected in the coming years.

Field testing can be used for instance when the
effect of deterioration on the structural capacity is
unknown. Proof load testing is one of the field test
method that can assess the capacity of the structure.
The common and wildly accepted proof load testing

consists two stages, preparation stage and execution
stage. One of the main tasks in the preparation stage
is determining the critical proof load, which can be
separated into two steps. They are: 1) to determine
the location of the critical proof load. 2) to estimate
the magnitude of the critical proof load that need to
be applied during the test. The magnitude of the load
should be able to sufficiently represent the appropriate
safety level without causing any irreversible damages
or the collapse of the structure.

In the Netherlands, proof load testing is often ap-
plied on the small span concrete slab bridges. In a
concrete slab bridge, the determination of the critical
proof load requires the moment and shear force cal-
culation, which is not always straightforward. An ac-
curate estimation usually requires finite element mod-
elling. In this paper, a scripted FEM modelling tool is



provided to automatically determine the target mag-
nitude and location of the critical proof load based
on the design loading conditions. Simplified formulas
for calculating critical proof load are obtained, which
provides a convenient tool for the future proof load
testing.

The focus of this paper is to proof loading the bend-
ing capacity of concrete slab bridges. For the shear ca-
pacity, a different approach has to be considered. The
critical shear loading position of concret slab bridges
were studied in (Lantsoght, E. O. L. 2013)

2 SIMPLIFIED LOAD MODEL 1 (SLM1)

The loading configuration used in finite element
model is based on LM1 (EN1991-2. 2011). As
demonstrated in this paper, the same approach can be
extended to other definition of loading conditions.

LM1 consists of two partial systems: tandem sys-
tem and UDL (Uniformly Distribuyed Load) sys-
tem. The tandem system contains double-axle con-
centrated loads, representing heavy lorries, should be
placed at the most unfavourable location. UDL sys-
tem consists of uniformly distributed load, represent-
ing the fraffic flow, applied on the notional lanes and
the remaining area.

In a proof load testing, the application of the load
model is usually simplified by having only the tan-
dem load, and it is defined as Simplified Load Model
1(SLM1) in this paper.

Figure 1: A comparison between the Eurocode Load model 1 (a)
and the Simplified Load Model 1 (b).

Figure 1 (a), (b) shows the loading configuration of
LM1 and the SLM1 respectively. The absence of UDL
in the SLM1 will result in different inner forces distri-
bution comparing with the original LM1. In order to

make the SLM1 generate the same magnitude of mo-
ment at the same critical cross section as the original
LM1. The magnitude and position of the tandem load
has to be adjusted.

In the SLM1, two factors kq and kp are introduced
for tandem system. Factor kq is named as the equiva-
lent loading factor, which is responsible for the mag-
nitude of the load. The tandem load specified in LM1
multiplied by kq is the magnitude of tandem load that
should be applied in the SLM1. Factor kp is the criti-
cal position factor, which is a ratio between lSLM1 and
the span length as shown in Figure 1 (b), where lSLM1

is the distance between the edge of the span and the
middle of tandem system. The two factors kq and kp
should be determined by comparing the inner force at
the critical cross section of a specific target limit state.
In the case of bridge, that is Mmax when the tandem
load is at the most unfavourable position.

To search for the maximum bending momentMmax

, tandem system is moved from one end of the bridge
deck to the other end along the nominate lane of
the bridge with an increment of ∆l . For each lo-
cation, Mi can be found which represents the maxi-
mum bending moment of that tandem location. With
the movement of tandem system, a series of maxi-
mum bending moment Mi of each loading location
will be found: M1,M2,M3 · · ·Mn , n is the total num-
ber of the cases of different locations. Then, it can
be defined that: Mmax = max{M1,M2,M3 · · ·Mn}.
Mmax is the maximum bending moment represents
the largest bending moment that can be possibly in-
duced when tandem system moves through the entire
span.

3 FINITE ELEMENT MODEL

3.1 Reference case: De Beek viaduct

The presented study selected a typical concrete slab
bridge to create its baseline of the finite element
model. The selected bridge is the De Beek viaduct,
as it was previously proof loaded by Delft University
of Technology in 2015 (Koekkoek, R. T. 2016). Then,
skewness, span length, span width, average thickness
and thickness ratio are parameterized to study their
influence on the critical proof load.

De Beek is a 4-span concrete reinforced viaduct lo-
cated over the highway A67 in Netherlands, as shown
in Figure 2. It was constructed in 1963 and is owned
and managed by Rijkswaterstaat, the Ministry of In-
frastructure and Water Management. In this section,
the dimension of this viaduct is illustrated.

In Figure 3 the top view of the first two spans of the
viaduct is presented. The total width of the viaduct is
9940 mm and the width of the carriage way is 7440
mm. Cross section C-C’ gives an overview of the
thickness distribution over the length of the viaduct.
It can be seen that the thickness of the slab in span 1
changes from 470 mm at the end support to 870 mm



Figure 2: Location of viaduct De Beek

at the intermediate support. The thickness of the slab
in span 2 changes from 870 mm at the supports to
470 mm in the middle of the span. The end support
beams has an additional thickness of 200 mm result-
ing in a total thickness of 670 mm. For the interme-
diate beams, the thickness increases with respect to
the adjacent slab thickness is 250 mm which results a
thickness of 1120 mm in total.

Figure 3: Dimensions of viaduct De Beek

The thickness of the viaduct also changes in the
transverse direction. At the edges of the viaduct a kerb
is present with a height of 200 mm. The height of the
viaduct deck changes from 470 mm in the centre to
408 mm at the sides for the cross section near support
1 and from 870 mm at the centre to 808 mm at the
side for the cross section near support 2. A layer of as-
phalt varying between 50 mm and 75 mm is present,
according to the inspection report. (Koekkoek, R. T.
2016).

De beek is a 4-span bridge, but span 2 and span 3
are right above the highway A67. For safety reason,

it was decided that to perform proof load test on the
span 1 only. Figure 4 illustrates the configuration of
De Beek viaduct. Supports are simplified into point
supports. Figure 5 shows the corresponding finite ele-
ment model with a mesh size of 100 mm.

Figure 4: Configuration of De Beek viaduct

Figure 5: Finite element model with mesh size of 100mm

3.2 Geometry of deck slabs

Based on the study of the De Beek viaduct, the de-
scription of the geometry of slab bridge can be gen-
eralized. Skewness, span length, span width, average
thickness and thickness ratio are studied to investigate
their influences on critical proof load. The geometri-
cal parameters used in this paper is illustrated in Fig-
ure 6.

Figure 6: Geometrical parameters used in this paper

Where,
l is the length of tested span. Unit: meter [m].
w is the length of tested span. Unit: meter [m].
α is the angle of skewness. Unit: degree [◦].
d1 is the minimum thickness. Unit: meter [m].
d2 is the maximum thickness. Unit: meter [m].
r is the thickness ratio, r = d2/d1.

The thickness distribution along the span is simpli-
fied into circular shape. Thickness function has been



used to assign the thickness for the 2D deck. A thick-
ness filed need to be defined by the thickness function
and the filed can be larger than the geometry shape of
the deck. Figure7 shows the thickness field of the first
span of De Beek viaduct and its boundary.

Figure 7: Thickness field of span1 and its boundary

3.3 Tandem System

The load of tandem system is simulated with quadri-
lateral force load in the finite element software DI-
ANA. A quadrilateral force load defines a force that is
distributed through a quadrilateral surface on a larger
surface of 2D elements. The quadrilateral area is rect-
angular and the edges do not have to match with
the element edges. Internally, the quadrilateral force
load is converted to element surface load. The sum of
forces and moments will be exactly matching with the
user defined force value and position of the quadrilat-
eral force load.(Manie J. and Kikstra M.P. 2017) For
instance, in Figure 8, here it is seen that in P1 phase,
there is no overlap between the loaded surface and
the interest area, which means there will be no load
applied on the interest area. In P2 phase, half of the
loaded surface where indicated with shadow are over-
lapped with interest area. Thus, half of the load are
applied on interest area. According to the same mech-
anism, all the load is applied on interest area in P3
phase.

Figure 8: Mechanism of quadrilateral force

According to LM1, the loaded surface has an area
of 0.4 m×0.4 m ,which represents the contact area
between the wheel and the bridge surface. The com-
pressive forces spread with an angle of 45◦. In the 2D
model, an equivalent tandem area is applied, which
is the area that compressive force distributed on the
middle layer of the bridge deck. Figure 9 shows the
case when the thickness of asphalt and deck are 75
mm and 470 mm respectively.

Figure 9: Equivalent tandem area

3.4 Post-process of bending moment

The results of the finite element analysis has to be fur-
ther processed. In order to limit the mesh sensitivity
and the thickness dependency of the bending moment.
The probe curve are used to access the results. Probe
curve is a fictitious curve that can be used to read
the results from its surrounding integration points. As
presented in Figure 10, two probe curves are set along
the longitudinal and the transverse direction with a
length of 1 meter. The intersection of the two probe
curves is the location of the maximum bending mo-
ment Mmax. Here to calculate the equivalent bending
moment, the effect of the thickness of the slab is taken
into account by assuming the internal level arm of the
cross section that is linearly related to the slab thick-
ness. The following steps described howMmax is pro-
cessed using python script:

(i) Search for the maximum bending moment within
span 1 and its position.

(ii) Create probe curve x (longitudinal direction) and
probe curve y (transverse direction) with a length
of 1 meter. Mmax is located at the intersection of
curve x and y.

(iii) Extract the corresponding bending moment
{Mx}i and{My}i of nodes pxi and pyi .

(iv) Extract the corresponding thickness dxi, dxi of
points pxi and pyi .

(v) Calculate {Mx}i/dxi and {My}i/dyi.

(vi) Take the average of all the points as
modified bending moment: Mmd,max =
(
∑11

i=1{Mx}i/dxi + {My}i/dyi)/22

Figure 10: Use probe curve to access moment



Table 1: List of parameters
Parameters ranges
Skewness 90◦-60◦

Span width 9m-13m
Span length 6m-15m
Average thickness 0.3m-1.3m
Thickness ratio 1.10-2.8

4 PARAMETRIC STUDY

Different input geometrical parameters, their influ-
ences on critical proof load are analysed with a large
set of models created by Python scripts. A diagram
shown in Figure 11 illustrates the flow of Python
scripts. A model is created using the input geomet-
rical parameters, and loaded based on LM1 to search
for the Mmax. Then, based on the obtained Mmax, the
output kp and kq can be find according to SLM1.

Using the data provided by Rijkswaterstaat. The
ranges of the input parameters are selected in a way
that most of the existing bridges and viaducts config-
urations in Netherlands are covered.

The five parameters have been divided into four
groups, namely, the span length and thickness group,
the thickness ratio group, the span width group and
the skewness group. The span length and thickness
group contains two parameters since they are not
independent. Increasing the length leads to an in-
crease of thickness, satisfying the following equation:
(li/l0)

2 = di/d0, where l and d are the length and the
thickness of a span respectively. The skewness group
is combined with the span width group, the length
and thickness group, and the thickness ratio group as
shown in Figure 12.

Figure 11: Flow diagram of Python scripts

Figure 12: Visualization of combined parameters

5 RESULTS

Results are presented in two types of graphs, namely
the critical position factor graph and the equivalent
loading factor graph, corresponding to the two factors
kp and kq as discussed in section 2.

5.1 Skewness

Figure 13 shows the relation between the critical po-
sition factor kp and the angle of skewness α. Here it is
seen that with the decrease of the angle α,kp increase
from 0.36 to 0.56, which means the critical loading
position moves away from the edge of the span to the
middle. Trendline shows a linear relation between kp
and α. Figure 14 described the linear relation between
kq and α.

Figure 13: Critical position factor versus skewness

Figure 14: Equivalent loading factor versus skewness

5.2 Span Width

Figure 15 shows that kp is independent to the vari-
ation of w. Attention need to be paid on the constant
vertical intervals between the trendlines. The constant
interval denotes that kp increases with a constant rate
when the angle α drops, which is coincided with the
trend shown in Figure 13.

In Figure 16, it is shown that in spite of a small
slope, the effect of w to kq is limited.



Figure 15: Critical position factor versus width

Figure 16: Equivalent loading factor versus width

5.3 Span Length and Thickness

In this group, the length of the span changes from 6.48
to 15.12 m and with a corresponding thickness chang-
ing from 0.17 to 0.92 m. Figure 17 shows the relation
between kp and l. Taking α=90◦ as an example, kp
decreases linearly with the increase of length l. How-
ever, the decreasing trend shown for all angle ranging
from 60◦ to 90◦, but the slopes are different. The inter-
vals between different angle at l=6.58 m is larger than
intervals at l=15.12 m. This means the span length
l do not only affect the critical loading position, but
also the relation between kp and α.

Figure 17: Critical position factor versus span length

Figure 18 presents the relation between kq and l.
kq increases with the increase of l, and the trendlines
seems to be linear. Whereas, it can also be observed
that the intervals of the adjacent trendlines become
larger with the decrease of angle α.

Figure 18: Equivalent loading factor versus span length

5.4 Thickness ratio

Figure 19 shows the relation between the critical
position factor kp and the thickness ratio r. Here it is
seen that the change of kp based on r can be predicted
by parabolic curves. When r is smaller than 2, there
is a strong dependency between kp and r. When r is
between 2.35 and 2.85, kp is not sensitive to r any
more. The intervals between the different curves are
the same, which means with the increase of α, critical
position factor decreases with a constant rate.

Figure 19: Critical position factor versus thickness ratio

The relation between the equivalent loading fac-
tor kq and the r can be described by straight lines as
shown in Figure 20. kq decreases with the increase
of r. However, the slopes of those lines are different.
This means the sensitivity between kq and r can be
affected by the skewness.

Figure 20: Equivalent loading factor versus thickness ratio



5.5 Extrapolation of the general formulas

As discussed in the previous sections, kp and kq can
be affected by the span l, the thickness ratio r, and
the skewness α. Thus, kp and kq can be formulated
as a function of l,r and α respectively. By applying
linear least squares regression with 166 sets of data
obtained from the numerical results. Formulas of kp
and kp are obtained:

kp = 0.002lr2 − 0.0123lr − 0.000038lα− 0.0043α+ 0.9684

kq = 0.0055lr− 0.0012rα+ 0.000043α+ 1.1518

A comparison has been made between the numeri-
cal results and the predicting results calculated using
the above formulas. For kp, among all the 166 points,
the maximum relative error is 8.8% and the mean rela-
tive error is 2.1%. For kq, the maximum relative error
is 3.1% and the mean relative error is 0.59%. These
expressions of kp and kq were determined based on
LM1. For bridges which has to be assessed by dif-
ferent load models according to different codes, the
formulas have to be recalibrated.

5.6 Sensitivity of kp and kp

For the critical position factor kp, applying the critical
proof load at the predicted position with an allowable
error of ±0.5m will lead to a maximum error of 2%
for bending moment. For the equivalent loading factor
kq, the relation between kq and the bending moment
is linear. However, the accuracy of the simplified ex-
pression is relatively high.

6 CONCLUSION AND RECOMMENDATIONS

Bridges with different geometrical configurations
have been studied with linear finite element analy-
sis. The aim is to find the magnitude and location of
the critical proof load to simplify the loading con-
dition. Five different parameters, namely skewness,
span length, span width, average thickness and thick-
ness ratio, are studied to investigate their influence
on cirtical proof load are found. In total, 166 sets of
data are obtained by performing thousands of finite
element analyses. Formulas for predicting critical po-
sition factor kp and equivalent loading factor kq are
proposed by these data and they are approved to be
capable enough to predict the results.

The possible improvements of the presented study
are discussed below. Most of them can be achieved by
directly modifying the python script.

According to LM1, EC1991-2. The increase of
width may lead to the increase of notional lanes,
which is not included in this paper. Further analysis is
needed to search the influence of extra notional lanes
on critical proof load.

The equivalent critical proof load was found by ap-
plying two sets of tandem systems. However, in real-

ity the second tandem system is not always possible.
The equivalent critical proof load of one tandem sys-
tem should be applied in this case.

In this paper,kp and kq of other safety levels can be
obtained by changing the design load in python script.
In order to maintain the same safety level, the target
limit state should be estimated taking into account the
original uncertainty of the design load and the resis-
tance of the structure when it was designed. In (Casas
and Gmez 2013) (Val and Stewart 2002) such analysis
is demostrated.

The thickness distribution has been simplified into
circular curve. Whereas, the thickness distribution is
more complicated in realty, it is considered necessary
to describe the thickness in a more accurate way since
the bending moment is very sensitive to thickness.

The parameters that analysed in this paper is span
length, width, skewness and thickness ratio, however,
more parameters can be included, such as the number
of spans, the length ratio between different span etc.
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