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Summary
This thesis presents a system-level reliability modelling framework for analyzing how failures, mainte-
nance activities, and operational disruptions spread through interconnected subsystems in container
terminal operations. The research combines reliability analysis with probabilistic reasoning to provide a
clear understanding of how technical, human, and environmental factors affect delays and system per-
formance. This connection is established by translating reliability states—such as equipment health,
availability, and maintenance effectiveness—into probabilistic delay outcomes, allowing the model to
quantify how reliability losses lead to operational delays.

The framework integrates Fault Tree Analysis (FTA) and Bayesian Networks (BNs) to capture both
causal and probabilistic relationships within the terminal system. FTA decomposes the top event—
total operational delay—into its contributing factors, providing the structural foundation for the BN. The
initial BN structure captures subsystem interactions through nodes representing equipment failure,
availability, efficiency, and environmental conditions. Each node describes a key aspect of terminal
performance. Equipment failure indicates the operational state of critical assets and is modelled with
a Weibull distribution. Availability represents the percentage of time each subsystem could work. Effi-
ciency reflects performance under different external or internal constraints. Environmental factors, yard
storage fullness, and terminal busyness acted as external drivers that influenced subsystem efficiency
and delay propagation.

The BN model was further expanded to include maintenance and operator availability as new influ-
encing factors. Both preventive and corrective maintenance were considered within the model. The
maintenance effectiveness was determined using Weibull-based reliability parameters. The scale and
shape parameters were adjusted through maintenance effect multipliers to account for imperfect repair
conditions. This method enabled the BN to show how preventive maintenance improves equipment
availability. Operator availability was also considered to account for human-related variability, showing
how workforce presence impacts subsystem operability and overall delays.

The analysis of the BN used forward inference and sensitivity testing. The results indicate that disrup-
tions in one subsystem can spread through the terminal, causing cumulative delays and underscoring
the strong interconnections between quay cranes, yard cranes, and horizontal transport. The mainte-
nance analysis revealed that by implementing preventive maintenance strategies, equipment availabil-
ity could be increased. Operator availability affected total delay mainly during severe disruptions like
strikes, while daily variations had a limited impact.

This developed framework combines reliability modelling and operational performance analysis in one
structure. It offers a clear way to study how maintenance, operator availability, and environmental
conditions influence reliability and delay in terminal operations. While the framework was created for
container terminals, the same approach could be adapted to other connected systems where equip-
ment, people, and external conditions interact to affect overall performance.

Ece Coksayar
Delft, November 2025

iii





Contents

List of Abbreviations xi

1 Introduction 1
1.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Literature Analysis 3
2.1 System Reliability Modelling Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Reliability Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Fault Tree Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Container Terminal Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Delay Propagation using Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Bayesian Network Applications in Container Terminals . . . . . . . . . . . . . . . . . . . 8
2.5 Research Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Methodology 11
3.1 System Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Reliability Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Reliability and Delay Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 System Description 13
4.1 Container Terminal Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.1 Vessel Arrival and Berthing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1.2 Quay Crane Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1.3 Internal Transport. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.4 Yard Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.5 Gate and Landside Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Maintenance Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.1 Maintenance Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.2 Preventive Maintenance Strategies by Equipment Type . . . . . . . . . . . . . . . 17

4.3 Fault Tree Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Bayesian Network Construction 21
5.1 Bayesian Network Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Node Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2.1 Equipment Health . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2.2 Availability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2.3 Environmental Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2.4 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2.5 Operator Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2.6 Delay Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3 Subsystem Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3.1 Quay Crane Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3.2 Horizontal Transport Subsystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3.3 Yard Crane Subsystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.4 Total Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.4 Complete BN Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4.1 Maintenance Modelling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4.2 Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

v



vi Contents

6 Bayesian Network Analysis 35
6.1 Introduction to Inference Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1.1 Forward inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.1.2 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2 The Base Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.2.1 Forward Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.2.2 Delay Propagation through Subsystems . . . . . . . . . . . . . . . . . . . . . . . 38
6.2.3 Weather Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2.4 Equipment Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2.5 Availability Sensitivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2.6 Terminal Situation Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2.7 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.3 Complete Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3.1 Operator Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3.2 Maintenance Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7 Discussion 49
7.1 Interpreting the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2 Practical relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.3 Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8 Conclusion 55

A Scientific Paper 61

B Environmental Node Modelling 69
B.1 Wind. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
B.2 Rain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
B.3 Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



List of Figures

2.1 RBD with system in sequential (a) and parallel (b) configuration (Friederich & Lazarova-
Molnar, 2024) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Fault tree with top (TE), intermediate (IE) and basic events (BE) (Friederich & Lazarova-
Molnar, 2024) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 FTA to BN visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Bayesian Network visualization of a complex system (Torres-Toledano & Sucar, 1998) . 6

4.1 Container Terminal System (Adapted from Voss et al., 2004) . . . . . . . . . . . . . . . 14
4.2 Left: Rail-mounted STS crane (Offshore Energy, 2021); right: Mobile Harbour Crane

(MHC) (Container Management, 2020). . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 AGV used for internal transport (Konecranes, n.d.) . . . . . . . . . . . . . . . . . . . . . 15
4.4 RTG crane used in yard operations (Seven Industry, n.d.) . . . . . . . . . . . . . . . . . 16
4.5 FTA of the container terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.1 Simplified version of the complete BN structure . . . . . . . . . . . . . . . . . . . . . . . 22

6.1 Probability distributions of subsystem and total delays for different scenarios . . . . . . 37
6.2 Delay Propagation through Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.3 Weather Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.4 Cumulative Probability of Failure of Equipment . . . . . . . . . . . . . . . . . . . . . . . 40
6.5 Availability State Distribution by Age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.6 Equipment Availability Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.7 Terminal State Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.8 Combined Sensitivity Results for the base terminal . . . . . . . . . . . . . . . . . . . . . 43
6.9 Downtime Breakdown for QC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.10 Downtime Breakdown for HT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.11 Downtime Breakdown for YC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.12 PM Strategy Percentage Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vii





List of Tables

4.1 RTG Maintenance Packages and Their Execution Schedule at Borusan Port . . . . . . 17

5.1 Environmental multiplicative factors for QC efficiency . . . . . . . . . . . . . . . . . . . . 26
5.2 Conditional probabilities for QC delay, when the QC is operable . . . . . . . . . . . . . . 27
5.3 Conditional probabilities for ’HT Delay Empty’ based on HT Availability and Terminal

Busyness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4 Conditional probabilities for ‘HT Delay Loaded’ based on HT Availability and YC Delay . 29
5.5 Conditional probabilities for ‘YC Delay’ based on YC Availability and Storage Capacity

Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.6 Conditional probabilities for ‘Total Delay‘ based on Crane Delay and HT Delay Loaded . 30
5.7 PM multipliers applied to Weibull parameters . . . . . . . . . . . . . . . . . . . . . . . . 32
5.8 Average duration of preventive maintenance events (hours per intervention). . . . . . . 33
5.9 Conditional probabilities for ’Operator Availability QC’ based on Shift and Strike . . . . . 34
5.10 Conditional probabilities for ’Operator Availability HT’ based on Shift and Strike . . . . . 34
5.11 Conditional probabilities for *Operator Availability YC* based on Shift and Strike . . . . 34

6.1 Reliability and availability parameters for each subsystem and age group . . . . . . . . 40
6.2 Scenario-based delay comparison relative to baseline. . . . . . . . . . . . . . . . . . . . 43
6.3 Maintenance Portfolio Results for QC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.4 Maintenance Portfolio Results for HT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.5 Maintenance Portfolio Results for YC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.6 PM strategy impact on terminal performance. . . . . . . . . . . . . . . . . . . . . . . . . 48

B.1 Wind classification based on the Beaufort scale. Wind speeds are 10-minute means
measured at 10 m height (adapted from van den Bos, 2015). . . . . . . . . . . . . . . . 69

B.2 Estimated QC efficiency and occurrence probability under high wind conditions based
on Beaufort classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

B.3 Classification criteria for daily rain categories based on KNMI precipitation data . . . . . 70
B.4 Probability of daily rainfall categories based on KNMI station 344 (Rotterdam) data from

2020 to 2025. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
B.5 Estimated QC efficiency under different daily rain conditions based on observed precip-

itation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
B.6 Fog classification criteria based on daily minimum and maximum visibility . . . . . . . . 70
B.7 Fog level probabilities based on daily visibility data from KNMI (station 344, 2020–2025). 71
B.8 Estimated QC efficiency under different fog conditions, based on daily minimum and

maximum visibility data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

ix





List of Abbreviations

Abbreviation Definition

AGV Automated Guided Vehicle
BN Bayesian Network
CBM Condition-Based Maintenance
CPT Conditional Probability Table
DBN Dynamic Bayesian Network
FTA Fault Tree Analysis
HT Horizontal Transport
KNMI Royal Netherlands Meteorological Institute
MHC Mobile Harbour Crane
MTBF Mean Time Between Failures
MTTR Mean Time to Repair
PM Preventive Maintenance
QC Quay Crane
RBD Reliability Block Diagram
RMG Rail-Mounted Gantry Crane
RTG Rubber-Tyred Gantry Crane
STS Ship-to-Shore (Crane)
TE Top Event (in FTA)
TT Terminal Tractor
YC Yard Crane

xi





1
Introduction

Reliability is a key concern in complex industrial systems, reflecting their ability to perform their intended
functions under specified conditions for a given period (Doguc & Ramirez-Marquez, 2009; Nakagawa,
2005; Rausand & Høyland, 2004). It serves as a key indicator of system quality and robustness,
ensuring safe, efficient, and cost-effective operations. High reliability minimizes downtime, stabilizes
output, and can lower maintenance costs (L. Zhao et al., 2023). In large-scale operational systems
such as container terminals, even minor reliability losses can disrupt interdependent processes. These
disruptions can create bottlenecks, delay vessel turnaround and increase logistics costs. Therefore,
it is crucial to understand the main technical and operational factors impacting the system’s reliability
and performance, and how to improve on them.
Reliability assessment traditionally relies on structured techniques like Failure Mode and Effects Anal-
ysis (FMEA), Fault Tree Analysis (FTA), and Reliability Block Diagrams (RBD) (Friederich & Lazarova-
Molnar, 2024; Rausand & Høyland, 2004). These methods provide systematic ways to spot potential
failure modes and assess their impact on system performance. FMEA evaluates risk based on the
likelihood of failure, its severity, and how easily it can be detected (Alyami et al., 2014; Nguyen et
al., 2019). RBDs represent systems as components arranged in series or parallel to calculate over-
all reliability (Friederich & Lazarova-Molnar, 2024; Lv et al., 2010). FTA uses logical relationships to
map out combinations of basic events that lead to system failure (X. Luo et al., 2024). Even though
these methods are useful, they mainly focus on component-level reliability and generally assume bi-
nary operating states: fully functional or failed (Animah, 2024). This simplification makes analysis more
straightforward but limits the ability to represent interdependencies, shared failure causes, and gradual
degradation. In real industrial operations, systems are dynamic and interconnected. A partial loss of
performance or reduced capacity in one subsystem can affect others through shared resources or pro-
cess connections (N. Wang et al., 2023; L. Zhao et al., 2023). Such degradations often do not cause
total failure but instead lead to delays that accumulate and propagate across the system. As a result,
traditional reliability methods are effective at estimating the likelihood of failure but not its operational
consequences in time-based performance terms, which are essential for understanding system-level
efficiency and delay behavior.
To represent these dynamic relationships, researchers have explored probabilistic and simulation-
based approaches that capture dependencies and uncertainty. Bayesian Networks (BNs) have gained
attention in reliability engineering for their ability to model probabilistic dependencies among compo-
nents and failure events (Langseth & Portinale, 2007). They improve on traditional methods by in-
corporating conditional relationships and allowing reasoning under uncertainty. However, most BN
applications still focus on component reliability, estimating failure probabilities or availability without
linking these states to operational performance.
Likewise, discrete-event and agent-based simulations can reproduce how reliability losses, congestion,
and operational disruptions propagate through a system with high realism. Yet, these methods require
extensive data and computational effort, making them less suitable for rapid scenario evaluation or
early-stage analysis. As a result, they provide limited ability to capture how reliability degradation
affects system performance over time, particularly in terms of delay propagation.
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2 1. Introduction

Understanding this connection between reliability and delay is especially important in container terminal
operations, where multiple subsystems—such as quay cranes, yard cranes, and horizontal transport—
are tightly interdependent. Technical reliability, maintenance effectiveness, workforce availability, and
environmental conditions all contribute to performance variation and delay propagation. Although sim-
ulation studies provide detailed representations of terminal operations, integrating reliability, mainte-
nance, and delay propagation within a single modelling framework remains a complex task.

1.1. Research Questions
The objective of this research is to develop a structured approach to system reliability modelling, in-
tegrating analysis methods to enhance decision-making in complex operations. The main research
question is ”How can system reliability be assessed and improved in dynamic operational environ-
ments where performance depends on interacting technical, human, and environmental factors?”. The
subquestions are as follows:

• How can reliability be modeled beyond component failures to capture interdependencies, degra-
dation, and operational disruptions at the system level?

• How can system-level analysis be used to evaluate the impact of maintenance, operator avail-
ability, terminal situation, and environmental factors on overall reliability and operational perfor-
mance?

The remainder of this thesis is organized as follows. Chapter 2 reviews the theoretical background
of reliability engineering and summarizes the relevant literature on system-level reliability modelling,
simulation studies in the container terminal context, and application of BNs within delay propagation
and container terminals. Chapter 3 describes the methodology, outlining the development of the pro-
posed reliability framework. Chapter 4 focuses on the system description, detailing the system structure
and maintenance strategies applied. Chapter 5 explains how the BN is structured and how the equip-
ment health is modelled. Chapter 6 discusses the results of the analysis, including how maintenance,
operator, and environmental factors influence reliability and operational performance and the delays
propagate within the system. Chapter 7 presents a discussion of the results, strengths, and limitations
of the model. Finally, Chapter 8 concludes the thesis by summarizing the key findings and suggesting
directions for future research.



2
Literature Analysis

Reliability analysis is essential for ensuring the consistent performance of complex systems. Over
time, various methods have been developed to model system failures, assess risks, and improve oper-
ational efficiency. System reliability modelling approaches such as Reliability Block Diagrams (RBD),
Fault Tree Analysis (FTA), and Failure Mode and Effects Analysis (FMEA), provide structured ways to
evaluate component reliability and system failure logic. However, they typically treat systems as static
and binary. With the increasing interconnection and data availability in modern operations, reliability
modelling has evolved toward probabilistic and data-driven techniques that can represent dependen-
cies and uncertainty. Among these, Bayesian Networks (BNs) have gained prominence for combining
causal structure with probabilistic inference, enabling updates from both expert judgment and data.

Parallel to these advances, discrete-event and agent-based simulations have become the dominant
tools for studying how reliability losses, congestion, and operational interactions affect performance.
While simulation offers high realism, it is computationally intensive and often impractical for extensive
scenario exploration or early-stage analysis.

Beyond reliability assessment, BNs have also been used to study delay propagation in complex sys-
tems such as aviation, rail, and public transport networks, where they capture how local disruptions
cascade through interdependent processes and affect overall performance. In the context of container
terminals, existing research has applied BNs mainly to safety assessment, operational risk manage-
ment, and resilience analysis. However, their potential to model the link between reliability and delay
propagation—how equipment failures and disruptions evolve into time-based performance losses—
remains underexplored.

This chapter reviews the system reliability modelling approaches and simulation approaches, examines
how BNs have been applied to delay propagation and within the container-terminal context. Finally, it
identifies the key research gap: the absence of an integrated probabilistic framework that connects
reliability, maintenance, and delay propagation within a single system-level model.

2.1. System Reliability Modelling Approaches
Reliability assessment has traditionally relied on structured modelling techniques that aim to quantify
failure risks and system performance. These methods typically represent a system as a combination of
individual components and their interactions. Three widely used techniques in system reliability anal-
ysis are Reliability Block Diagrams (RBD), Fault Tree Analysis (FTA), and Bayesian Networks (BN).
RBD provides a graphical method for modelling system reliability based on series and parallel con-
figurations, helping to calculate overall system reliability. FTA is used for deductive failure analysis,
enabling engineers to visualize failure pathways and determine the most critical failure events. BN
extends traditional methods by introducing probabilistic reasoning, allowing systems to dynamically
update failure probabilities based on observed conditions.

3



4 2. Literature Analysis

2.1.1. Reliability Block Diagram
The interconnection of components within a system can be represented using a RBD. Each block
represents a subsystem, and the overall system reliability depends on how these blocks are arranged
and interact. In an RBD, components are either arranged in series, or in a parallel configuration. In
a series configuration, all components must function correctly for the system to operate, as failure of
a single component leads to system failure. With parallel configuration, redundancy is introduced,
meaning that the system is operable as long as at least one component in the parallel block remains
operational. An RBD schematic can be found in Figure 2.1.

Figure 2.1: RBD with system in sequential (a) and parallel (b) configuration (Friederich & Lazarova-Molnar, 2024)

Using an RBD, the overall reliability of a system can be computed depending on whether its components
are connected in series or in parallel. According to Friederich and Lazarova-Molnar (2024), for a series
of 𝑁 connected components, the system reliability is defined as:

𝑅(𝑡) =
𝑁

∏
𝑖=1

𝑅𝑖(𝑡) (2.1)

For 𝑁 parallel-connected components, the system reliability is defined as:

𝑅(𝑡) = 1 −
𝑁

∏
𝑖=1
(1 − 𝑅𝑖(𝑡)) (2.2)

In practice, RBDs are widely used in industries where redundancy and system architecture play a cru-
cial role in ensuring safety and performance. Manufacturing and process industries apply RBDs to
identify bottlenecks in production lines and assess how component reliability affects overall system
uptime (Rausand & Høyland, 2004). General applications include modelling backup generator/turbine
redundancy in shipboard power systems (Van Der Sande et al., 2025) and parallel feeder–transformer
configurations in industrial power distribution (IEEE Recommended Practice for the Design of Reliable
Industrial and Commercial Power Systems (Gold Book), 2007). These applications demonstrate that
RBDs are a versatile and intuitive tool for quantifying system reliability and optimizing design configura-
tions before implementation. However, RBDs assume binary up/down behavior and independent com-
ponents, so they do not capture common-cause failures, load sharing, state- or sequence-dependent
behavior, repair/maintenance dynamics, queues and congestion, or multi-state performance levels (J.
Zhao et al., 2017).

2.1.2. Fault Tree Analysis
Within reliability engineering, FTA is used to analyse and predict the failure behaviour of systems and
processes (Friederich and Lazarova-Molnar, 2024). This method employs a graphical representation
known as a fault tree to illustrate the potential causes of a system failure. A fault tree is a diagram
that depicts the various combinations of events or conditions that can lead to the occurrence of an
undesired event, and it can be visualized in Figure 2.2.
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Figure 2.2: Fault tree with top (TE), intermediate (IE) and basic events (BE) (Friederich & Lazarova-Molnar, 2024)

This method models an undesired top event and decomposes it into combinations of basic events using
logic gates such as AND/OR, 𝑘-out-of-𝑁, to explain how failures propagate and to support qualitative
and quantitative assessment (Friederich & Lazarova-Molnar, 2024). In practice, FTA is used in many
industries, including power generation, process engineering, aerospace, and information technology,
to identify critical failure combinations and estimate the risk of system outages (Ruijters & Stoelinga,
2015). However, static FTA assumes binary and independent events. As a result, the method requires
specific extensions to capture effects such as event ordering, maintenance and repair dynamics, load
sharing, multi-state behaviour, and common-cause failures (Ruijters & Stoelinga, 2015; J. Zhao et al.,
2017).

2.1.3. Bayesian Networks
In reliability engineering, a BN provides a probabilistic framework for representing and reasoning under
uncertainty in complex systems. The network consists of a directed acyclic graph (DAG) and a prob-
abilistic model that defines dependencies between variables, and it has been widely used in reliability
analysis (Friederich & Lazarova-Molnar, 2024; H. Wang et al., 2019). One of its main strengths is the
ability to capture dependencies among system components and potential failure sources (Langseth
& Portinale, 2007). This approach allows representation of relationships between failures, such as
common causes and standby redundancies (Torres-Toledano & Sucar, 1998).

In a BN, nodes represent variables, while edges define conditional dependencies between them. Each
node is associated with a conditional probability table (CPT), which quantifies the probability of the
node’s state given the states of its parent nodes. These CPTs are typically used for discrete variables
and are initially derived from prior knowledge or empirical data. For continuous variables, conditional
probability distributions—such as normal or Poisson distributions—can be used instead. In both cases,
the network can be updated based on new observations using Bayes’ rule (Friederich and Lazarova-
Molnar, 2024).

When building a BN, FTA can serve as a structured foundation for systematically mapping fault relation-
ships into probabilistic dependencies. Since FTA represents system failures using logical gates (e.g.,
AND, OR) to define how component failures contribute to system failure, these gates can be directly
translated into BN fragments with binary nodes, where each node represents a failure state (X. Luo
et al., 2024). A visualization of constructing a BN using an FTA can be found in Figure 2.3.

For more complex systems, subsystems can be modeled independently and then integrated into a
larger network. This modular construction makes BNs particularly effective for large-scale systems,
where failure dependencies extend across multiple interconnected subsystems (Rigdon, 2008). Fig-
ure 2.4 shows an example of a BN representing a bridge-type system, where different paths between
components A–E can lead to system success. Rather than analysing all possible combinations manu-
ally, intermediate nodes (S1–S4) represent logical groupings of components, simplifying the structure
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and facilitating the calculation of overall system reliability. The final node (P) denotes the overall system
state.

Figure 2.3: FTA to BN visualization

Figure 2.4: Bayesian Network visualization of a complex system (Torres-Toledano & Sucar, 1998)

In reliability applications, BNs are used to combine expert judgement and empirical data for diagnosis,
prognosis, and decision support across domains such as power and process industries, transportation
systems, and condition-basedmaintenance. They are particularly useful when common causes, shared
environments, or standby dependencies are present (Friederich & Lazarova-Molnar, 2024; Langseth
& Portinale, 2007; H. Wang et al., 2019). The approach effectively captures dependency structures,
updates risk with new observations, supports modular modelling of large systems, and integrates FTA-
derived logic as BN fragments for probabilistic reasoning (X. Luo et al., 2024; Rigdon, 2008; Torres-
Toledano & Sucar, 1998).

2.2. Container Terminal Simulation Studies
Simulation modelling is one of the most established approaches for analysing and improving container
terminal operations in both academic research and industrial practice. In particular, discrete-event
simulation (DES) and agent-based modelling (ABM) dominate the field, as they can represent vessel
movements, container transfers, crane operations, and yard processes in detail (Carlo et al., 2014;
Dragović et al., 2017; Vis & De Koster, 2003).

In DES, terminal activities are modelled as a sequence of discrete events—such as ship berthing,
crane movements, and truck arrivals—each occurring at a specific time. The method is widely used to
analyse throughput, resource utilisation, queuing, and congestion, providing insights into how process-
level variations affect overall terminal performance. DES has been applied to a wide range of problems,
including berth allocation and quay-crane productivity (Legato & Mazza, 2001), capacity planning and
operational strategies (Cartenì & Luca, 2012; Elentably, 2016), and predictive estimation of vessel
operation times under stochastic conditions (Park et al., 2024). More recent work combines DES with
reliability modelling to capture how equipment failures and maintenance influence performance and
resilience (Rosca et al., 2025).

Agent-based modelling represents the terminal as a system of autonomous entities—such as cranes,
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yard vehicles, and operators—that follow behavioural rules and interact dynamically with one another
and their environment. This approach is particularly suited to capture coordination, decision-making,
and information exchange in complex terminal operations. ABM has been applied to model scheduling
and resource sharing among cranes and transport vehicles (Li & Li, 2010), to analyse coordination and
negotiation strategies in yard operations (Winikoff et al., 2011), and to explore multimodal interactions
between ships, barges, trains, and trucks (Mazloumi & Van Hassel, 2021). Across these applications,
ABM offers flexibility for testing operational policies, evaluating collaboration between subsystems, and
assessing how local interactions and adaptive behaviours affect overall terminal efficiency.

Within simulation-based research, delay is often used as a central indicator of terminal performance.
Delays typically arise from a combination of congestion, limited resources, and coordination issues
between terminal subsystems. Studies such as Dragović et al. (2017), Yang et al. (2004), and Park
et al. (2024) demonstrate that simulation models can effectively visualise how localised disruptions—
such as crane interference, vehicle queues, or yard congestion—propagate through interconnected
operations and extend vessel turnaround times. Broader simulation analyses, including Srisurin et
al. (2022) and Cartenì and Luca (2012), further show that discrete-event frameworks are capable of
assessing long-term capacity and congestion under varying infrastructure or policy scenarios.

While simulation models provide valuable insights into terminal operations, they generally focus on
operational efficiency rather than underlying reliability effects. Most studies analyse how congestion,
resource allocation, or scheduling decisions create delays but pay less attention to how reliability-
related factors influence these outcomes.

2.3. Delay Propagation using Bayesian Networks
Delays are a critical factor in system performance and have a direct impact on operational efficiency
across industrial systems. In interconnected systems, a delay at one stage can trigger future disruptions
in the system. A BN provides a probabilistic framework for modelling delay propagation by representing
how disruptions at one stage influence other parts of the system. This approach captures causal de-
pendencies between events, allowing for a more realistic representation of system-wide delay effects
while incorporating uncertainty.

Research on delay propagation using BNs has been applied in aviation systems to predict cascading
flight delays (Y.-J. Liu and Ma, 2008; Xu et al., n.d.), in rail transit networks to identify patterns of
systemic inefficiencies (Ulak et al., 2020), and in passenger transport systems (Cats and Hijner, 2021)
to quantify the cascading effects of disruptions. However, while BN models have proven useful for
analysing delay propagation, existing research often treats delays separately from system reliability,
without fully integrating them into broader reliability optimisation frameworks.

Delays can be generally categorized into primary (root cause) delays and secondary (propagated)
delays (Ulak et al., 2020). Primary delays are initial disruptions caused by specific events such as
equipment failures, weather conditions, or operational inefficiencies. Mechanical failures in trains or
aircraft (Ulak et al., 2020) and airport congestion affecting on-time departures (Y.-J. Liu and Ma, 2008)
can be given as examples of primary delays. Secondary Delays (Knock-On Delays) occur when an
initial delay affects other parts of the system. For example, a delayed flight causes missed passenger
connections, leading to further delays in the network (Wu and Law, 2019), and a train arriving late at
a transfer station leads to passenger delays on connecting services (Ulak et al., 2020). Categorizing
delays can help in identifying delay propagation patterns.

Data for delay propagation modelling typically comes from historical records, real-time tracking sys-
tems, simulation output, and expert knowledge. Different industries collect and analyse delay data in
various ways. Rail transit systems rely on real-time tracking applications, GPS logs, and scheduled
vs. actual arrival times to quantify delays at different stations (Ulak et al., 2020). In aviation networks,
airlines use flight operation databases that record scheduled and actual departure/arrival times to anal-
yse delay propagation across interconnected flights (Y.-J. Liu and Ma, 2008). Similarly, public transport
systems utilize smartcard transactions and vehicle GPS tracking to estimate how delays spread across
the network (Cats and Hijner, 2021). These datasets help in understanding where delays originate,
how they spread through the network, and which system components are most affected.
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2.4. Bayesian Network Applications in Container Terminals
Within container terminal and port logistics research, BNs have been applied to capture operational
dependencies and to support decision-making under uncertainty (Alyami et al., 2019; Animah, 2024;
García et al., 2015; Hossain et al., 2019; N. Wang et al., 2023). Safety and Operational Risk Assess-
ment, Resilience and Recovery Quantification, and Planning and Operational Optimisation are the main
focus of existing studies.

One of the most common applications is in evaluating safety and operational risks in container termi-
nal operating systems. Alyami et al. (2019) created one of the most detailed frameworks in this area.
They combined a Fuzzy Rule-Based Bayesian Network (FRBN) with evidential reasoning to improve
the traditional Failure Mode and Effects Analysis (FMEA). This hybrid FRBN-ER approach allows for
realistic modelling of uncertain failure data at the component level. It supports real-time, risk-based
decision-making for port operators by prioritizing hazardous events such as crane breakdowns, colli-
sions, and dangerous goods incidents, based on their overall impact on terminal safety performance.
Other studies have also used BN to model specific operational hazards. This includes vessel-berthing
collisions and internal port risks related to quay crane use and vessel turnaround times (Animah, 2024).

Another research direction involves assessing and modelling the resilience of port and terminal in-
frastructure, focusing on the ability to maintain and restore operations after disruptions. Hossain et
al. (2019) employs BN-based framework to assess the resilience of a full-service deep-water port.
This study identifies how different resilience capacities, such as absorptive, adaptive, and restorative,
contribute to recovery performance during challenging conditions. Their analysis showed that main-
tenance, alternative routing, and workforce restoration were the most influential factors in improving
recovery after disruptions. Similarly, N. Wang et al. (2023) created a strategy-oriented BN model that
grouped resilience factors into six key metrics: robustness, redundancy, visibility, flexibility, agility, and
recovery. Their findings revealed that automated terminals had higher overall resilience compared to
conventional ones.

Furthermore, BNs are applied in the container terminal context is to support strategic planning and
operational optimisation within terminal management. García et al. (2015) used a BN to infer causal
relationships between key port parameters—such as berth length, yard area, crane allocation, and an-
nual container throughput (TEU)—through structural learning. The study demonstrated that BN-based
models can predict how changes in infrastructure or equipment allocation impact terminal performance
by simulating different operational scenarios. Additionally, Fuzzy Bayesian Networks (FBN) have been
used to forecast container ship arrival times and scheduling uncertainties to help terminal operators to
coordinate berth allocation and vessel handling (Animah, 2024).

2.5. Research Gaps
Reliability studies largely focus on analysing component-level failures, using methods like Fault Tree
Analysis (FTA) and Reliability Block Diagrams (RBD). These approaches effectively identify failure
probabilities but often overlook how those failures affect operational performance metrics such as de-
lays or availability. On the other hand, operations research aims to optimize scheduling, resource allo-
cation, and vessel turnaround time, typically assuming ideal or static equipment performance. Although
delay propagation has been examined in broader transportation studies, these models generally treat
delays as independent random events without connecting them to the underlying reliability behavior of
interdependent subsystems.

Despite the increasing use of BNs in port and terminal research, current applications are still limited
in scope and integration. Most studies focus on specific areas like safety management, resilience
assessment, or operational planning and often treat these aspects as separate analytical domains.
While these studies show that BNs can model uncertainty and causal relationships, they usually look
at isolated events or steady conditions instead of the ongoing and interconnected dynamics that define
real terminal operations. Consequently, the temporal and systemic nature of reliability—how equip-
ment breakdown, maintenance activities, and external disruptions interact over time—does not receive
enough attention.

This gap between reliability analysis and operational performance modelling is significant. In practice,
the performance of a container terminal is influenced by technical failures, maintenance efficiency, op-
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erator behavior, and environmental factors. However, few existing frameworks bring these elements
together in a single probabilistic structure that shows how disruptions affect interconnected subsys-
tems and system-level availability and delay. While BNs offer a theoretical basis for modelling these
dependencies and uncertainties, their potential for showing reliability-performance interactions in con-
tainer terminals has not been fully explored. To address this gap, this research presents a system-level
Bayesian Network framework aimed at modelling how failures, maintenance, and operational variability
work together to influence delay propagation and overall terminal reliability.





3
Methodology

This chapter outlines the methodological framework developed to model and analyse system-level de-
lays in complex operational environments. The approach integrates reliability analysis and probabilistic
modelling to understand how failures and inefficiencies propagate across interconnected subsystems
and affect overall system performance. In addition, the framework provides a foundation for exploring
alternative maintenance strategies.

The methodology consists of several sequential stages. First, the system is defined in terms of its
operational phases and critical components. Then, two complementary modelling tools are employed:
Fault Tree Analysis (FTA) and Bayesian Networks (BNs). FTA systematically decomposes the top
event, defined as the total operational delay, into its contributing failure mechanisms and intermediate
events. The BN builds on this FTA logic and enables quantitative reasoning under uncertainty. The BN
models dependencies between environmental conditions, equipment reliability, and delay outcomes
using conditional probability distributions.

Finally, the developed BN framework is used to analyse system behaviour under different conditions.
By simulating various operational scenarios, maintenance policies, and external disruptions, the model
identifies key risk factors and measures their effects on overall reliability and delay propagation. While
this methodology is applied in the context of a container terminal in this study, its structure is general-
isable to other interdependent operational systems.

3.1. System Description
The first step in this framework is to define the system under study by identifying its critical components,
disturbances, and interdependencies. This stage requires determining how components interact by
mapping interfaces and coupling mechanisms. These interactions can be established via targeted
literature review, on-site observations, and stakeholder interviews. One essential aspect of this stage
is understanding delay propagation, which involves distinguishing between primary delays, caused
by direct disruptions such as equipment failures or scheduling inefficiencies, and secondary delays,
which result from cascading effects within the system, such as congestion or resource constraints.
Understanding these dependencies and failure mechanisms provides the foundation for constructing
the reliability model.

3.2. Reliability Model
Building a BN for system reliability and delay propagation requires defining nodes and dependencies,
setting up Conditional Probability Tables (CPTs), and representing the relationships within the system.
FTA is first used to systematically decompose the top event into its contributing failure mechanisms
and intermediate causes. The structure derived from the FTA provides a logical basis for the BN, in
which each basic failure event is represented as a node, and causal links between events define the
directed dependencies within the network. In this framework, ‘delay’ represents a relative performance
loss within the terminal system, modelled qualitatively in three discrete states (Low, Medium, High)

11
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rather than an absolute duration. This allows the Bayesian Network to capture uncertainty and inter-
dependencies without requiring detailed time-series delay data.

Once the structure is established, CPTs can be created to specify the likelihood of each node’s state
based on the states of its parent nodes. These CPTs quantify how delays spread through the system
as a result of failures, maintenance conditions, and external disturbances. In cases where historical
data are incomplete, expert judgement is used to approximate probability distributions (Xu et al., n.d.).

3.3. Reliability and Delay Analysis
Once the BN model is built, it provides the basis for examining how failures, maintenance conditions,
and external disruptions propagate through the system. The analysis aims to identify the factors that
most strongly affect the delay behaviour and assess how operational changes, equipment reliability, or
external disturbances alter system outcomes.

The analysis consists of three supporting approaches: forward inference, scenario analysis, and sensi-
tivity analysis. Forward inference estimates the likelihood of outcomes at the system level, such as total
delay or reduced availability, based on specific operational states or failure events. Scenario analysis
is conducted through repeated forward inference to assess how different operational or environmental
conditions impact subsystem delays and total delay. By changing the prior probabilities of input nodes,
the model can simulate different operational states and compare the results. This process enables
validation of the model by assessing whether the simulated outcomes align with expected operational
behaviour and observed delay patterns. Sensitivity analysis identifies which factors have the greatest
effect on the target variables, such as total delay or subsystem availability. The sensitivity analysis
can be performed by changing the prior probabilities of selected nodes and comparing the results to
a defined baseline scenario. This comparison reveals how strongly each variable influences overall
system reliability and delay behaviour. By looking at these differences from the baseline, the analysis
reveals the most influential factors.
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System Description

Container terminals play a critical role in global logistics and maritime transport networks by facilitat-
ing the efficient transfer of goods between ships and inland transportation modes, such as trucks and
trains. Due to their pivotal position, disruptions or operational inefficiencies at container terminals can
have extensive downstream effects, propagating delays across supply chains and significantly increas-
ing logistics costs (Dwitasari et al., 2021). Consequently, maintaining reliable and efficient container
terminal operations is highly relevant, underscoring the necessity for reliability analysis and operational
optimisation.

The developed model incorporates literature review and practical insights obtained through direct ob-
servations and expert discussions conducted during a two-day visit to Borusan Port, located in Bursa,
Turkey. Interviews were conducted with seven employees across operational and management levels,
who provided valuable explanations regarding terminal operations, common reliability issues, sources
of operational delays, and current maintenance strategies. This engagement offered an understanding
of real-world challenges faced by terminal operators, enabling the incorporation of realistic assump-
tions and accurate representations of container terminal reliability within the developed model. These
insights ensure that the modelling approach reflects practical operational dependencies and failure
mechanisms rather than purely theoretical assumptions, establishing a realistic foundation for the reli-
ability analysis.

This chapter defines the operational and reliability context that forms the foundation for the modelling in
the following chapters. The following sections outline the terminal’s operational context and determined
scope, maintenance activities, and provide an application of the Fault Tree Analysis (FTA) within the
container terminal.

4.1. Container Terminal Operations
Understanding general operations is essential for system-level reliability analysis. Efficient handling of
containers is critical to minimizing vessel turnaround times, reducing operational costs, and maintain-
ing reliability in the supply chain (Voss, 2007). This section provides an overview of port operations,
highlighting the flow of containers, key equipment used, and typical sources of operational complexity.
The schematic of the container terminal system can be found in Figure 4.1, and the red box indicates
the study scope.

The focus of this study is on modelling and analysing the reliability of key operational subsystems
within a container terminal, particularly those most directly involved in the horizontal and vertical flow
of containers during vessel emptying. The model scope includes quay crane (QC) operations, internal
transport using horizontal-transport vehicles (HTs), and yard management with yard cranes (YCs).
These three subsystems were selected because they represent the main transfer chain between vessel
and yard, where most operational dependencies occur and delays are most likely to propagate through
the terminal. Concentrating on the vessel emptying process allows for a consistent operational direction
of container flow and avoids the added complexity of modelling both loading and discharging cycles
simultaneously. Focusing on these subsystems enables the study to capture the dominant reliability
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Figure 4.1: Container Terminal System (Adapted from Voss et al., 2004)

interactions that determine overall system performance while keeping the model tractable and focused
on processes with the greatest operational impact.

Vessel arrival and berthing are not included in the model, as berth allocation has been widely studied.
Gate and landside operations—including external truck scheduling and interactions with customs or
rail—are also excluded from the reliability model. While operationally important, these elements are
treated as boundary inputs that influence, but are not directly modelled within, the internal dynamics of
quay-to-yard operations. The analysis therefore focuses on the terminal side of the process, capturing
delays that originate within handling equipment, coordination, and internal transport rather than those
caused by external scheduling or infrastructure constraints.

To understand the role of these subsystems within the wider terminal environment, the following sec-
tions describe the overall structure of terminal operations and how the selected elements interact with
other processes.

4.1.1. Vessel Arrival and Berthing
The container terminal operations start with the arrival and berthing of vessels. Once a vessel is sched-
uled to arrive, it must be assigned to a suitable berth equipped with quay cranes, considering its dimen-
sions, draft, and expected handling volume. This planning process, commonly referred to as the Berth
Allocation Problem (BAP), aims to minimize vessel waiting and turnaround times, optimize the utiliza-
tion of quay space, and support the smooth flow of subsequent operations. As noted by Voss et al.
(2004), minimizing the time a ship remains at berth is a core objective, directly impacting operational
performance and cost-efficiency.

Various studies have examined the berth allocation problem from different angles, all aiming to allocate
berths in a way that reduces delays, prevents congestion, and enhances schedule reliability across the
terminal. J. Luo et al. (2009) focuses on the Schedule Reliability Problem (SRP) for berth and crane
allocation, aiming to reduce deviation between planned and actual vessel departure times.

4.1.2. Quay Crane Operations
Once a vessel is berthed, container handling operations begin with the deployment of cranes. These
cranes transfer containers between the vessel and the quay. Ship-to-shore (STS) cranes, also re-
ferred to as Quay Cranes (QC), are typically rail-mounted gantries capable of moving both vertically
and horizontally to access container bays onboard the ship. Their performance directly affects vessel
turnaround time and overall terminal throughput. The operational cycle of an STS crane includes lifting
a container from the vessel, transporting it across the quay, lowering it onto a waiting terminal tractor
(TT) or an automated guided vehicle (AGV), and returning to the next pickup position. Weather con-
ditions, particularly wind speed, can restrict crane operations due to safety concerns, while equipment
failures and maintenance schedules introduce additional variability (Voss et al., 2004). Understanding
these variability sources is important for the reliability model, as they represent the main operational
and environmental factors affecting quay crane availability.

In addition to STS cranes, some container terminals, particularly smaller or mixed-use ports, also use
Mobile Harbour Cranes (MHCs). These wheeled, free-standing cranes offer greater operational flex-
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ibility, as they can be repositioned between berths and adapted for various cargo types. However,
they typically offer lower container handling speeds and throughput compared to STS cranes, making
them more suitable for terminals with lower volumes or infrastructure constraints. In operation, STS
performance is in the range of 22–30 boxes/h (Voss et al., 2004), while for the MHC 12-15 boxes/h can
be expected. Equipment used for transferring the containers to land from the vessel can be found in
Figure 4.2.

Figure 4.2: Left: Rail-mounted STS crane (Offshore Energy, 2021); right: Mobile Harbour Crane (MHC) (Container Management,
2020).

One of the critical challenges in crane operations is the coordination of multiple cranes on the same
vessel. To prevent interference, adjacent cranes must maintain a safe buffer zone, limiting the number
of cranes that can work simultaneously on a ship. Kizilay and Eliiyi (2021) highlights that optimizing
crane assignment and sequencing is essential to reduce idle times and ensure balanced workloads.

4.1.3. Internal Transport
Internal transport refers to the horizontal movement of containers between the quay and the container
yard. At many container terminals, this task is performed using Terminal Tractors (TTs), also known
as yard trucks. Their flexibility and relatively low investment cost make them the most widely used
transport method in terminals. Alternatively, Automated Guided Vehicles (AGVs) for internal container
transport are used in automated terminals. AGVs are driverless, battery-powered units that follow pre-
defined routes. While they offer benefits in terms of labour savings and 24/7 operation, AGVs require
significant infrastructure investment and are best suited for terminals with high automation maturity. An
image of an AGV can be found in Figure 4.3.

Figure 4.3: AGV used for internal transport (Konecranes, n.d.)
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4.1.4. Yard Management
Yard management includes the stacking, retrieval, and reshuffling of containers, with the goal of main-
taining efficient space utilization while minimizing re-handling. Containers in the yard are typically
stored in blocks based on operational priorities such as export vs. import status, pickup times, destina-
tions, or container type (e.g., refrigerated, hazardous) (Voss et al., 2004). The container yard functions
as a buffer between quayside and landside operations, and effective yard planning is essential for
preventing congestion, reducing dwell times, and supporting reliable vessel and truck turnaround. Im-
proper stacking can lead to excessive reshuffling, which increases equipment usage, delays outbound
operations, and reduces productivity.
To perform stacking and retrieval, container terminals typically use Rubber-Tyred Gantry (RTG) cranes
or Rail-Mounted Gantry (RMG) cranes, also referred to as Yard Cranes (YC). RTGs offer high flexibility,
as they are mobile and can navigate between different yard blocks. RMGs, by contrast, are fixed on
rails and are often deployed in automated or semi-automated terminals with predictable flows and high-
density storage layouts. An image of an RTG crane used in yard operations can be found in Figure 4.4.

Figure 4.4: RTG crane used in yard operations (Seven Industry, n.d.)

4.1.5. Gate and Landside Operations
Gate and landside operations form the critical interface between the container terminal and inland
logistics systems. These operations manage the arrival and departure of external trucks and, where
applicable, rail services that transport containers to and from inland destinations. The modal split of
hinterland transportation is very specific for different terminals (Voss et al., 2004).
Upon arrival, external trucks typically enter through the terminal’s in-gate, where container and vehicle
data are checked and either filed into the terminal operating system or updated if a pre-advice was
issued. After clearance, trucks proceed to designated transition points—locations where containers are
loaded or unloaded by internal equipment, such as yard cranes or straddle carriers. These transition
points may be located at the stack or within specific areas of the yard, depending on the terminal
layout and handling system. Rail operations follow similar logistical requirements but often occur at a
dedicated rail terminal within the yard. Trains are commonly loaded and unloaded by gantry cranes
while the transports between the stack and the railhead are performed by straddle carriers, trucks or
similar equipment (Voss et al., 2004).

4.2. Maintenance Strategies
Maintenance plays a critical role in ensuring the reliability of container terminal operations. Given the
high interdependence of key equipment, even short periods of unplanned downtime can cause signif-
icant operational disruptions. QCs, in particular, are high-value assets whose failure directly affects
vessel turnaround time. Similarly, HTs and YCs serve as vital links in the container flow between the
quay and the yard; delays in their operation can quickly propagate and lead to system-wide ineffi-
ciencies. Maintenance policies strongly influence how often failures occur and how quickly operations
recover, making them a key factor in overall terminal reliability.
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4.2.1. Maintenance Types
Effective maintenance strategies are critical for ensuring the reliability of systems. Maintenance strate-
gies range from traditional corrective and preventive methods to more advanced predictive approaches
(Sang et al., 2021). Corrective maintenance (CM) is a reactive approach, addressing failures only after
they occur, making it costly and unpredictable. Corrective maintenance can lead to high downtime and
cost for critical components of the system.

In contrast, preventive maintenance (PM) involves scheduled interventions, reducing the risk of unex-
pected failures by performing maintenance at predefined intervals. However, fixed schedules do not
account for actual equipment conditions, leading to either unnecessary maintenance or missed early
fault detection. Preventive maintenance strategies are widely employed in medium- to large-sized ter-
minals for cranes and yard systems, including the Borusan terminal.

Another maintenance strategy applicable for container terminals is predictive maintenance. This strat-
egy relies on condition monitoring, sensors and data analytics. It can allow optimal timing, reduced risk
and cost. However, it has high initial investment, so mostly applicable for highly automated terminals.

4.2.2. Preventive Maintenance Strategies by Equipment Type
Quay cranes (QCs) are the most critical and expensive assets in container terminal operations. Their
availability has a direct impact on vessel turnaround time, and downtime can lead to a decrease in
overall terminal throughput. At Borusan Port, QCs undergo time-based preventive maintenance, with
regular checks and servicing carried out at fixed intervals, regardless of crane usage or load. There are
different procedures they follow weekly, monthly, annually, biennially, and quadrennially. The weekly
procedures involve visual inspections and functional checks of critical components to ensure proper
operation and takes around three hours. As the maintenance intervals lengthen, the procedures be-
come increasingly detailed. For instance, annual tasks include component lubrication, calibration, and
the replacement of wear-prone parts. The most comprehensive maintenance is conducted every four
years, during which the crane undergoes a complete checkup, including paint removal to check the
welded components. This procedure spans over several days.

Rubber-Tyred Gantry (RTG) cranes are essential for yard operations, handling container stacking, re-
trieval, and reshuffling. While not as critical as quay cranes in determining vessel turnaround time, RTG
availability directly affects yard efficiency and container dwell times. At Borusan Port, RTGmaintenance
follows a usage-based preventive strategy, with service intervals determined by operating hours rather
than calendar time. The servicing frequency varies slightly depending on the crane’s age. Older RTGs
are maintained every 350 operating hours, while newer units follow a 450-hour interval, reflecting man-
ufacturer guidance and operational experience. Although the original equipment manuals recommend
500-hour intervals, Borusan applies a more conservative threshold to enhance reliability and provide
operational flexibility—allowing minor delays in maintenance scheduling without significantly increasing
the risk of failure. Maintenance tasks at Borusan Port follow a structured hour-based system, where
each milestone has a defined set of procedures. Every operating hour milestone has its own unique
maintenance package, and some packages are performed repeatedly at later stages. Table 4.1 illus-
trates this cumulative structure for a newer RTG, with a check mark (3) indicating which maintenance
package is applied at each service point.

Table 4.1: RTG Maintenance Packages and Their Execution Schedule at Borusan Port

Package 450 900 1350 1800 2250 2700 … 10,800
450 3 3 3 3 3 3 3
900 3 3 3 3
1350 3 3 3
2700 3 3
10,800 3

Automated Guided Vehicles (AGVs) and Terminal Tractors (TTs) play a central role in Horizontal Trans-
port (HT) operations, facilitating container movement between the quay and the yard. At Borusan Port,
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TTs are maintained using a usage-based preventive maintenance strategy, similar to that applied to
RTGs. Maintenance intervals are defined by the number of operating hours: 450, 900, 1350, 2700,
and 10,800 hours, with procedures triggered at specific milestones. While the maintenance structure is
similar, the operational strategy is more relaxed due to the built-in redundancy of the vehicle fleet. With
multiple TTs and AGVs available at any given time, individual units can be cycled out for maintenance
without significantly disrupting operations. This flexibility allows for easier alignment between servicing
schedules and ongoing terminal activities, reducing the risk of bottlenecks while still maintaining high
vehicle availability.

4.3. Fault Tree Analysis
To systematically identify and analyze potential failure possibilities within container terminal operations,
an FTA model was developed. The FTA is a top-down, deductive reliability modelling method that
begins with a defined system-level failure and explores the contributing events that could lead to it. In
the case of a container terminal, the top event can be defined as the total system delay, representing
a disruption to the terminal’s ability to maintain efficient, uninterrupted operations.

In this study, QC Delay and HT Delay (Loaded) are treated as the primary contributors to the overall
system delay. YC delay is incorporated as a contributing factor within the HT delay branch. This
modelling choice reflects the operational logic of the terminal, where yard-side inefficiencies, such as
slow yard crane performance or unavailability, primarily shows through delays in HTs waiting to unload.

The QC delay branch includes three main contributors: QC not being able to operate, low operational
efficiency, and interface delays caused by unavailable HTs. A QC can be considered not working either
due to mechanical failure or because it cannot operate under strong wind conditions. Wind, rain, and
visibility limitations are modeled as the environmental causes that affect its efficiency. Additionally, even
if the QC is operational, it may still experience idle time if it must wait for an empty HT to arrive.

The HT delay (loaded) branch reflects disruptions that occur while HTs are transporting containers
from the quay to the yard. This delay can be caused by low HT availability or YC delay. The YC delay
branch further includes two primary causes: YC failures and low YC efficiency. When storage is nearly
full, yard operations slow down due to increased reshuffling and stacking constraints, leading to longer
service times for inbound containers.

The FTA of the container terminal can be found in Figure 4.5.

Figure 4.5: FTA of the container terminal
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In summary, the fault tree defines the causal relationships among failures and operational conditions
within the terminal system. These relationships are carried forward into the Bayesian Network (BN),
which builds on the same structure to quantify how reliability losses and external factors contribute to
delay propagation. This transition from fault-tree logic to probabilistic reasoning allows the study to
quantify not only the likelihood of failures but also their cumulative effect on delay propagation under
uncertainty. The next chapter presents this probabilistic model in detail.





5
Bayesian Network Construction

This chapter presents the development of the Bayesian Network (BN) used to analyse system reliabil-
ity and delay propagation in the container terminal. The BN structure directly builds on the Fault Tree
Analysis (FTA) described in Chapter 4, ensuring that each dependency in the network corresponds to
a clearly defined operational relationship. The model is developed in two stages: a simplified ’base’
BN and a more detailed ’complete’ BN. The base BN represents the essential operational dependen-
cies between subsystems and serves as a reference for sensitivity analysis. The full BN extends this
structure by incorporating maintenance and operator availability nodes, providing a more realistic rep-
resentation of terminal operations under varying conditions.

The following sections describe the BN components in increasing detail. Section 5.1 presents the over-
all BN structure and explains how the main subsystems are connected within the network. Section 5.2
introduces the node categories and their functional roles within the network. Section 5.3 outlines sub-
system modeling for quay cranes (QCs), horizontal transport (HT), and yard cranes (YCs), including
the formulation of Conditional Probability Tables (CPTs). Finally, the complete BN structure integrates
maintenance and operator effects to support the performance analysis in Section 5.4.

5.1. Bayesian Network Structure
The top-level output node in the network is total delay, which aggregates delays caused by QCs, HTs,
and YCs. This top event and the overall causal structure were derived directly from the FTA presented in
Chapter 4. These three subsystems are modelled further through interdependent nodes capturing both
direct failures and environmental or systemic inefficiencies. Both the base and complete models share
this underlying structure, allowing a clear comparison between the simplified model and the detailed
model.

The delay in the QC subsystem is driven by both operational status and efficiency. The QC availabil-
ity node integrates multiple contributing factors: equipment condition, fleet availability, and weather-
sensitive operability. In parallel, weather conditions also directly affect QC efficiency, representing re-
duced performance during poor visibility, strong winds, or precipitation. Additionally, the quay crane’s
performance is tightly coupled with the availability of HTs. Since container handoff from the QC to
ground transport cannot occur without an empty HT, interruptions in HT return introduce waiting time
for the QC.

The HT subsystem includes two main types of delay: HT delay empty and HT delay full. These capture
scenarios where HTs are delayed while returning to the QC or while waiting to discharge full containers
at the yard. Both are conditioned on the HT availability node, which integrates the operational readi-
ness of the HT fleet based on vehicle health. In addition, terminal busyness affects HT Delay empty,
as congestion and high operational load primarily slow down empty vehicles returning to the quay. Up-
stream, HT delay empty effects the QC delay, as the QC operations are impacted when empty HTs
are unavailable. Downstream, HT delay full is influenced by YC delay, representing a bottleneck when
yard cranes are unable to offload containers due to limited availability or reduced efficiency caused
by storage capacity constraints. These interconnections between subsystems follow operational logic

21
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observed during the site visit and align with literature on container-terminal process coupling (Voss,
2007; Voss et al., 2004).

The complete BN structure extends the base structure by introducing nodes related to operators and by
considering maintenance actions. Operator availability nodes for QC, YC, and HT subsystems capture
potential disruptions due to labor shortages during day or night shifts or strikes. Maintenance effects
are taking into account within the equipment health and availability, as maintenance actions improve
the equipment health, while requiring downtime for the maintenance process to take place.

A simplified visualization of the complete BN structure can be found in Figure 5.1, providing an overall
view of the structure. Nodes are color-coded according to their functional category—blue for envi-
ronmental nodes, green for equipment health, yellow for availability, orange for efficiency, purple for
operators, and red for delay nodes. Additionally, subsystems (QC, HT, YC) are highlighted to empha-
size their internal structure and interactions.

Figure 5.1: Simplified version of the complete BN structure

5.2. Node Categories
The BN is composed of a set of nodes grouped into different categories. These include nodes for
equipment health, operator availability, environmental conditions, system availability and efficiency,
and resulting delays. Each category captures a specific dimension of the system, enabling the model
to represent both the immediate causes of disruption and the broader propagation of delays. The
categories are illustrated in Figure 5.1, where nodes are color-coded by category andmajor subsystems
are highlighted with bounding boxes. This section introduces each node type and outlines its general
function within the overall network structure.

5.2.1. Equipment Health
Equipment health nodes represent the technical condition of QCs, HTs, and YCs. Each node captures
the probability that the equipment remains operational based on the equipment’s underlying mechan-
ical state and age-dependent degradation. Failures are modelled using a Weibull distribution. The
Weibull distribution is widely used in reliability engineering because of its flexibility to represent early-
life, random, and wear-out failure patterns within a single formulation (Ebeling, 1996; Rausand and
Høyland, 2004).
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The Weibull distribution is flexible and can represent different failure behaviors through its shape pa-
rameter 𝛽 and scale parameter 𝜂. A value 𝛽 < 1 indicates a decreasing failure rate (early-life failures),
𝛽 = 1 represents a constant failure rate, and 𝛽 > 1 captures increasing failure likelihood due to aging or
wear-out. The scale parameter 𝜂 corresponds to the characteristic life, the time by which approximately
63% of components are expected to fail (Plousios, 2009).

Equipment age plays a central role for equipment health. New equipment exhibits low failure probability
and long Mean Time Before failure (MTBF), while older equipment shows a higher likelihood of failure
and shorter operational cycles. This can be reflected in the Weibull parameters: as equipment ages,
the shape parameter 𝛽 may increase slightly, capturing the accelerating failure rate, and the scale
parameter 𝜂 decreases, reflecting a shorter characteristic life. In this study, the equipment population
is grouped into discrete age categories (new, mid-life, old), and each group is assigned corresponding
𝛽 and 𝜂 values reflecting these degradation effects, based on reported reliability data for comparable
terminal equipment and adjusted proportionally across age groups.

The probability density function (PDF), 𝑓(𝑡), gives the instantaneous probability of failure at time 𝑡 and
is defined in Equation 5.1.

𝑓(𝑡) = 𝛽
𝜂 (

𝑡
𝜂)

𝛽−1
𝑒−(𝑡/𝜂)𝛽 , 𝑡 ≥ 0 (5.1)

The cumulative distribution function(CDF), 𝐹(𝑡), gives the probability that the equipment has failed by
time 𝑡. CDF can be calculated with Equation 5.2.

𝐹(𝑡) = ∫
𝑡

0
𝑓(𝜏) 𝑑𝜏 = 1 − 𝑒−(𝑡/𝜂)𝛽 (5.2)

The reliability function, 𝑅(𝑡), represents the probability that the equipment remains operational beyond
time 𝑡. Reliability can be calculated with Equation 5.3 (Rosca et al., 2025).

𝑅(𝑡) = 1 − 𝐹(𝑡) = 𝑒−(𝑡/𝜂)𝛽 (5.3)

These three functions are closely connected: 𝑓(𝑡) is the instantaneous failure rate, 𝐹(𝑡) accumulates
the probability of failure over time, and 𝑅(𝑡) gives the complementary probability of survival. The ex-
pected time to failure, also known as Mean Time Between Failures (MTBF), is computed from the
reliability function as the mean of the survival time distribution. The equation used to find MTBF can
be found in Equation 5.4 (Rosca et al., 2025).

MTBF = ∫
∞

0
𝑅(𝑡) 𝑑𝑡 = 𝜂 Γ(1 + 1

𝛽) (5.4)

In the BN, preventive and corrective maintenance are incorporated conceptually through their influence
on equipment health. In the basemodel, only correctivemaintenance is considered, and a perfect main-
tenance assumption is applied. This implicates that after each failure, the equipment is fully restored to
an as-good-as-new condition, restarting the reliability cycle. Preventive effects, which partially restore
equipment condition through scheduled interventions, are introduced later in the complete model. The
detailed formulation and parameterization of these effects are presented in the maintenance modeling
section (Section 5.4.1).

5.2.2. Availability
In this model, availability represents the expected proportion of operational equipment within each
subsystem (QC, HT, or YC) rather than the state of a single machine. Building on the reliability char-
acteristics derived from the Weibull model, this proportion reflects how frequently the subsystem can
operate relative to its total potential uptime. In the BN, the expected availability of each piece of equip-
ment is calculated by combining the MTBF with the Mean Time to Repair (MTTR), with the Equation 5.5
(Lv et al., 2010).
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𝐴 = MTBF
MTBF+MTTR (5.5)

MTTR is modelled as a truncated Normal distribution to capture variability in corrective maintenance
durations, given in Equation 5.6 (Szpytko & Salgado Duarte, 2021). This represents the spread of
typical repair times around an average value while avoiding non-physical negative durations.

MTTR ∼ TruncatedNormal(𝜇MTTR, 𝜎MTTR, 0,∞) (5.6)

The continuous availability 𝐴 is then discretized into three operational states—Low, Medium, and High.
For QCs and YCs, the thresholds are set at [0.0, 0.92, 0.97, 1.0], where values below 0.92 correspond
to a Low state, between 0.92 and 0.97 to Medium, and above 0.97 to High availability. For hori-
zontal transport (HT), higher nominal availability is assumed due to fleet redundancy, with thresholds
[0.0, 0.95, 0.98, 1.0]. These thresholds are assumed values, selected to capture the full range of oper-
ational conditions from reduced readiness to near-continuous availability across all subsystems.

Smoothed thresholds were used to avoid abrupt transitions between categories and reduce artificial
sensitivity to small parameter changes. The probabilities for these states are defined in Equation 5.7,
where a small smoothing margin 𝛿 controls the gradual transition between categories, and 𝐴low and
𝐴high specify the thresholds separating Low, Medium, and High availability levels. A margin of 𝛿 = 0.05
is used in this study as a modeling assumption, chosen to provide a smooth yet responsive transi-
tion between states. This formulation ensures that small variations in MTBF or MTTR do not cause
unrealistic jumps between discrete availability states.

𝑝Low =max(0,min(1, 𝐴low + 𝛿 − 𝐴2𝛿 ))

𝑝High =max(0,min(1,
𝐴 − 𝐴high + 𝛿

2𝛿 ))

𝑝Med = 1 − 𝑝Low − 𝑝High

(5.7)

In the complete BN, preventive maintenance interventions are also incorporated. While maintenance
improves the effective reliability of equipment by reducing its virtual age, it temporarily reduces avail-
ability due to scheduled downtime. For the complete model, this preventive downtime is included in
the availability calculation, enabling the network to capture both the benefits and the short-term inter-
ruptions of maintenance activities. The detailed formulation of this effect is presented in Section 5.4.1.

During maintenance analysis, slightly lower availability thresholds are applied to reflect the imperfect
nature of corrective maintenance (Pham & Wang, 1996; H. Wang, 2002). For all subsystems, the
thresholds are set to [0.0, 0.88, 0.95, 1.0], corresponding to Low, Medium, and High states. These ad-
justed values capture the progressive degradation of equipment condition and provide a more realistic
representation of long-term operational performance compared to the idealized basemodel (Gothanda-
pani et al., 2024).

5.2.3. Environmental Conditions
Weather nodes represent external factors that influence the terminal’s operating conditions such as
wind speed, visibility, and precipitation. These variables are modelled with categorical probability dis-
tributions with discrete levels (e.g., low, moderate, high) derived from historical data. In this study,
long-term daily records from the Royal Netherlands Meteorological Institute (KNMI) are used as an
illustrative example to define the state probabilities; these can be updated or replaced if more detailed,
location-specific data become available.

Weather conditions influence both the operability and efficiency of QCs. Under strong wind conditions,
operations are suspended for safety, while moderate wind, rain, or reduced visibility slow down lifting
and positioning, lowering overall handling efficiency. Unlike health or operator nodes, environmental
nodes are exogenous inputs to the network, introducing stochastic variability and representing real-
world constraints beyond the control of terminal operations. In this model, the weather influence is
limited to quay cranes, as their performance is most directly affected by external conditions, while
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the impact on other equipment types is disregarded for simplicity. Further information on the weather
conditions and how they effect the operations can be found in Appendix B.

5.2.4. Efficiency
Efficiency nodes quantify the effective operational performance of each subsystem under prevailing
constraints, representing how quickly and effectively equipment can perform its tasks when available.
Unlike availability, which captures whether a piece of equipment can operate at all, efficiency measures
how well it performs under given conditions.

For QCs, efficiency is primarily determined by weather conditions—including wind, rain, and visibility—
which can reduce lifting speed, accuracy, or force temporary operational slowdowns. For HT, efficiency
reflects terminal busyness and congestion, capturing delays caused by limited vehicle availability, wait-
ing times, or queueing at handover points. For YC, efficiency is affected by storage area utilization, as
high yard occupancy increases reshuffling operations and slows container stacking and retrieval.

5.2.5. Operator Availability
The operator availability node is only relevant for the complete BN model. It introduces a human-
performance factor into the BN, allowing the model to reflect workforce-related uncertainties in terminal
operations. Operator availability nodes represent the presence of qualified personnel required to op-
erate QC, HT, and YC. These nodes are modelled using three discrete states: fully available, partially
available, and unavailable. This structure captures the variability in staffing levels across different oper-
ational shifts—such as day, evening, and night—as well as the potential for labor disruptions, including
strikes or unexpected absences.

5.2.6. Delay Nodes
Delay nodes capture the primary output variables of the BN, linking subsystem reliability to overall
terminal performance at both the subsystem level—such as QC, HT, and YC delay—and the over-
all terminal level via the Total Delay node. These nodes are influenced by a combination of factors,
including equipment availability, operational efficiency, and interdependencies between subsystems.

Each delay node is modelled using discretized states (e.g., low delay, moderate delay, severe delay),
allowing the network to support probabilistic reasoning under uncertainty. A low delay state represents
normal operation or only minor inefficiencies that have little or no observable effect on overall system
performance. A moderate delay reflects noticeable but manageable disruptions, such as temporary
slowdowns or localized congestion within a subsystem. A severe delay corresponds to major disrup-
tions where system performance is significantly reduced. This structure enables the model to simulate
varying operational scenarios, assess the impact of disruptions, and infer the most likely causes of
observed delays.

5.3. Subsystem Modeling
To operationalize the node categories and conditional dependencies described earlier, the BN is struc-
tured around three core subsystems that reflect the physical and functional architecture of the terminal:
QC, HT, and YC operations. In this section, the focus is on the base BN, which models terminal op-
erations using equipment health, operability, efficiency, and environmental factors, without including
preventive maintenance actions or operator availability. Each subsystem integrates equipment health,
operability, efficiency, and interaction logic into delay outcomes. This section outlines how the various
node types are used within each subsystem, and how interdependencies between them propagate
effects across the terminal.

5.3.1. Quay Crane Subsystem
The QC subsystem is modelled to capture both the functional status and performance variability of
the QC subsystem under changing environmental and operational conditions. This part of the network
includes nodes that represent the equipment health, operability, efficiency, and coordination with the
internal transport system.



26 5. Bayesian Network Construction

Environmental Effect The QC efficiency and QC operability are directly influenced by environmental
conditions. As described in Section 5.2.3, these are represented in the BN by three weather-related
nodes: Wind, Rain, and Visibility. These factors quantify operational constraints due to high winds,
precipitation, and reduced visibility, which can reduce lifting speed, accuracy, or necessitate temporary
shutdowns. In the BN, each weather variable is discretized into a small number of states representing
increasing severity (e.g., Beaufort wind levels, rain intensity, fog density), and their probabilities are
derived from historical measurements at KNMI station 344 in Rotterdam as an example dataset. The
combined influence of these nodes is incorporated into the ’QC Efficiency’ node, modifying the QC’s
operational throughput under adverse conditions. For full details on the node definitions, categories,
probability distributions, and estimated efficiency impacts, see Appendix B.

QC operability The QC operability node models whether the QC can function under the given en-
vironmental conditions, specifically wind. It is conditionally dependent on the ’Wind’ node, which is
explained further in section B.1. The wind node categorizes wind strength into three levels aligned with
the Beaufort scale: normal conditions, strong wind (Beaufort 6–7), storm (Beaufort 8 or higher) (Na-
tional Weather Service, 2023). Operational policies at container terminals typically restrict crane usage
under extreme wind conditions due to safety risks (van den Bos, 2015). Reflecting this, the model
assumes that cranes remain fully operable under normal and moderate wind conditions, but become
inoperable when wind levels reach Beaufort 8 or above.

QC Efficiency The performance of the QC is further refined through the ’Efficiency’ node, which
quantifies the QC’s effective operational throughput under current environmental conditions. This node
is conditionally dependent on weather nodes ’Wind’, ’Rain’, and ’Visibility’, detailed in Appendix B.
Efficiency is evaluated only when the QC is operable; otherwise, it is assigned the lowest efficiency
level to represent a non-functional state.

Environmental effects are modelled using multiplicative modifiers derived from expert judgement pro-
vided by a QC operator during the Borusan Port visit. Environmental multiplicative factors used for QC
efficiency can be found in Table 5.1.

Table 5.1: Environmental multiplicative factors for QC efficiency

Environmental Factor State Multiplier
Wind Low 1.0

Medium 0.7
High 0.0

Rain None 1.0
Light 0.95
Moderate 0.85
Heavy 0.7

Visibility Clear 1.0
Light Fog 0.95
Moderate Fog 0.85
Dense Fog 0.7

The efficiency value can be calculated using Equation 5.8. The resulting scalar efficiency score, ranging
from 0 to 1, is then discretized into 10 bins representing operational efficiency levels from 0–10% up to
90–100%, where bin 1 corresponds to the highest efficiency, and bin 10 to the lowest.

Efficiency =Wind Multiplier × Rain Multiplier × Visibility Multiplier (5.8)

QC health and availability QC health is modelled using a Weibull distribution, capturing the age-
dependent probability of failure. The shape parameter 𝛽 is set to 1.2 for new cranes, 1.5 for mid-
aged cranes, and 2.0 for old cranes, reflecting progressive wear-out behavior (Ebeling, 1996). The
scale parameter 𝜂 is assigned values of 600, 500, and 400 hours, respectively. These values were
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adapted from the mean time to failure of approximately 1200 hours reported for similar QCs (Szpytko
& Salgado Duarte, 2021) and adjusted downward to represent a conservative scenario without any
preventive maintenance, in which older equipment is expected to fail more frequently. In the BN, these
parameters are used to compute the mean time between failures (MTBF) for each age category.

The mean time to repair (MTTR) is modelled with a truncated normal distribution, using a mean of
24 hours and a standard deviation of 12 hours, consistent with observed repair durations in crane
operations (Szpytko & Salgado Duarte, 2021). In the BN, the resulting Weibull parameters and MTTR
distribution are used to compute subsystem availability and the conditional failure probabilities for each
crane age category.

QC delay The QC Delay node captures the total delay experienced by a QC, combining effects from
its operational state, availability, environmental efficiency, and interaction with HT.

The QC operability acts as a hard gate: when wind conditions exceed operational thresholds, QCs
are assumed to be inoperable, and the node is set deterministically to a high delay state. When QCs
are operable, the probability of delay is then influenced by the three other factors. Lower availability
increases the likelihood of malfunctions or reduced performance; poor environmental efficiency (driven
by wind, rain, and visibility) reduces handling speed; and high HT (Empty) delays prevent the continu-
ous supply of horizontal transport vehicles, creating idle time at the quay side operations. CPD table
used for the QC Delay node can be found in Table 5.2. These probabilities were defined based on
expected cause–and–effect relationships between subsystem conditions and delay outcomes.

Table 5.2: Conditional probabilities for QC delay, when the QC is operable

QC Availability HT Delay (Empty) Eff 1–3 Eff 4–7 Eff 8–10

Low Med High Low Med High Low Med High

High High 0.60 0.20 0.20 0.45 0.30 0.25 0.35 0.40 0.25
Med 0.70 0.20 0.10 0.70 0.25 0.05 0.50 0.35 0.15
Low 0.90 0.10 0.00 0.80 0.20 0.00 0.70 0.30 0.00

Medium High 0.00 0.30 0.70 0.00 0.28 0.72 0.00 0.25 0.75
Med 0.10 0.25 0.65 0.05 0.28 0.67 0.05 0.25 0.70
Low 0.20 0.20 0.60 0.18 0.20 0.62 0.10 0.25 0.65

Low High 0.00 0.10 0.90 0.00 0.08 0.92 0.00 0.05 0.95
Med 0.00 0.15 0.85 0.00 0.13 0.87 0.00 0.10 0.90
Low 0.00 0.20 0.80 0.00 0.18 0.82 0.00 0.15 0.85

5.3.2. Horizontal Transport Subsystem
The HT subsystem models the internal transport component of the container terminal, specifically fo-
cusing on the movement of containers between the quay and yard areas. It captures both the oper-
ational availability of the HT fleet and the delays that arise from bottlenecks at handover points with
other subsystems.

HT health and availability HT health is modelled using a Weibull distribution. All HT types, includ-
ing Automated Guided Vehicles (AGVs) and terminal tractors (TTs), are assumed to share the same
parameters due to the lack of specific reliability data. The parameters were chosen to represent the
reliability between QCs and YCs, reflecting an average expected operational performance. The scale
parameter 𝜂 was set to 400 for new vehicles, 350 for mid-aged vehicles, and 300 for old vehicles. The
shape parameter 𝛽 is assumed to be the same as for QCs: 1.2 for new, 1.5 for mid-aged, and 2.0 for
old vehicles. The MTTR is assumed to be 8 hours with a standard deviation of 4 hours, consistent with
the parameters used for QCs and YCs, reflecting shorter repair times than QC and YC.

Terminal busyness The node ‘Terminal Busyness’ captures the overall operational load in the ter-
minal at a given time, reflecting how crowded or active the quay and yard areas are. It is modelled as
a categorical variable with three discrete states-Low, Normal, and High—corresponding to assumed
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probabilities of 0.2, 0.6, and 0.2, respectively. This distribution reflects typical operational conditions,
where normal busyness is most frequent, while low or high activity occurs less frequently. Terminal
Busyness influences ‘HT Delay Empty’, affecting the likelihood of delays due to congestion or coordi-
nation challenges within the terminal.

HT Delay Empty HT delay is modelled using two separate nodes to reflect operational context: ’HT
Delay Empty’ captures delays when HTs are returning empty from the yard to the quay, while ’HT Delay
Loaded’ models delays while transporting full containers from the quay to the yard. This separation
allows the model to capture both the QC-HT and HT-YC interactions more accurately.

The node ‘HT Delay Empty’ is conditionally dependent on two parent nodes: ‘HT Availability’ and ‘Ter-
minal Busyness’. As HT availability decreases or busyness increases, the likelihood of moderate or
high delay rises due to reduced vehicle redundancy and increased operational demand. The CPD was
defined with three states for both parent nodes—High, Medium, and Low—reflecting the combined
effect of equipment readiness and terminal congestion. The values used for the CPD are based on
assumptions derived from cause–and–effect relationships between availability, busyness, and delay,
and can be found in Table 5.3.

Table 5.3: Conditional probabilities for ’HT Delay Empty’ based on HT Availability and Terminal Busyness

Parent Nodes HT Delay Empty
HT Availability Terminal Busyness Low Moderate High
High Low 0.8 0.15 0.05
High Medium 0.7 0.20 0.10
High High 0.6 0.30 0.10
Medium Low 0.6 0.30 0.10
Medium Medium 0.5 0.30 0.20
Medium High 0.3 0.40 0.30
Low Low 0.3 0.30 0.40
Low Medium 0.2 0.30 0.50
Low High 0.1 0.30 0.60

HT Delay Loaded The node ‘HT Delay Loaded’ captures delays encountered by HT while moving full
containers from the quay to the yard. It is conditionally dependent on two parent nodes: ‘HT Availability’
and ‘YC Delay’. This structure represents the operational dependency between the readiness of the
HT fleet and the capacity of yard-side operations: low HT availability or high YC delay increases the
likelihood of moderate or severe delay.

The CPT accounts for all combinations of three HT availability levels (High, Medium, Low) and three
YC delay states (Low, Medium, High), resulting in a 3×3 input configuration. When availability is high
and YC delays are low, the probability of delay is minimal. Conversely, low availability combined with
high YC delays produces the highest of the severe delays. The conditional probabilities assumed in
the model are summarized in Table 5.4.

5.3.3. Yard Crane Subsystem
The YC subsystem models the performance of the container stacking and retrieval process within the
terminal’s yard area. This subsystem is essential for completing the vessel emptying cycle and directly
influences the overall efficiency of HT operations and container placement logistics.

YC health and Availability YC health is modeled using a Weibull distribution to represent the age-
dependent probability of failure. The scale parameter 𝜂 is set to 300 for new, 250 for mid-aged, and
220 for old yard cranes, while the shape parameter 𝛽 is set to 1.2, 1.5, and 2.0, respectively. Reported
reliability values for YCs are typically provided as mean moves between failures (MMBF); these were
converted to MTBF by assuming an average handling rate of 25 moves per hour (Automatic Stacking
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Table 5.4: Conditional probabilities for ‘HT Delay Loaded’ based on HT Availability and YC Delay

Parent Nodes HT Delay Loaded
HT Availability YC Delay Low Moderate High
High Low 0.9 0.1 0.0
High Medium 0.8 0.2 0.0
High High 0.7 0.2 0.1
Medium Low 0.6 0.3 0.1
Medium Medium 0.5 0.3 0.2
Medium High 0.4 0.4 0.2
Low Low 0.3 0.3 0.4
Low Medium 0.2 0.3 0.5
Low High 0.0 0.2 0.8

Crane Performance, 2018). The resulting MTBF values were then compared with those of QCs to
derive consistent scale parameters.

MTTR is modeled using a truncated normal distribution with a mean of 14 hours and a standard de-
viation of 7 hours, representing moderately complex repair activities—less demanding than for QCs
but more time-consuming than for HTs. These parameters are consistent with the reliability assump-
tions applied across the other subsystems and are used to compute the expected availability of the YC
subsystem in the BN.

Storage Capacity Level The node ‘Storage Capacity Level’ represents the overall yard utilization
(fullness), categorizing yard utilization into three discrete states: Low (<30%), Medium (30–70%), and
High (>70%). Based on typical operational conditions, these states are assigned probabilities of 0.2,
0.4, and 0.4, respectively. This node serves as a parent to ‘YC Delay’, influencing how efficiently YCs
can perform stacking and retrieval operations under varying yard congestion.

Yard Crane Delay The node ‘YC Delay’ represents delays occurring during container handling in the
yard and is conditionally dependent on two parent nodes: ‘YC Availability’ and ‘Storage Capacity Level’.
This structure captures how both the technical readiness of YCs and the level of yard utilization jointly
affect operational performance. Low availability or high storage occupancy increases the likelihood of
moderate or high delays due to reduced equipment capacity and more complex container handling.

The CPT accounts for all combinations of three yard crane availability levels (High, Medium, Low) and
three storage capacity states (Low, Medium, High), resulting in a 3×3 input configuration. When avail-
ability is high and storage utilization is low, delays are minimal. Conversely, low availability combined
with high storage occupancy produces the highest risk of severe delays. The conditional probabilities
assumed in the model are summarized in Table 5.5.

Table 5.5: Conditional probabilities for ‘YC Delay’ based on YC Availability and Storage Capacity Level

Parent Nodes YC Delay
YC Availability Storage Capacity Level Low Moderate High
High Low 0.8 0.15 0.05
High Medium 0.7 0.2 0.1
High High 0.6 0.25 0.15
Medium Low 0.5 0.3 0.2
Medium Medium 0.4 0.4 0.2
Medium High 0.3 0.4 0.3
Low Low 0.2 0.3 0.5
Low Medium 0.1 0.3 0.6
Low High 0.0 0.2 0.8
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5.3.4. Total Delay
The node ‘Total Delay’ represents the overall operational delay of the sea-side of the terminal, com-
bining upstream delays from both quay-side and yard-side operations. It is conditionally dependent
on two parent nodes: ‘QC Delay’, which captures QC–related delays, and ‘HT Delay Loaded’, which
represents disruptions in internal transport while moving full containers from the quay to the yard. This
structure reflects the two critical operational segments that most directly influence terminal turnaround
time. Delays in either segment—whether due to reduced QC efficiency, waiting for HT, or yard-side
congestion—can propagate and accumulate, amplifying the total delay. High delays in one or both
subsystems dominate the outcome, while low delays in both result in minimal total delay.

The CPT accounts for all combinations of three delay states in each parent node (Low, Medium, High),
resulting in a 3×3 configuration. When both QC and HTDelay Loaded are low, the total delay is minimal.
If one subsystem experiences high delay, it substantially increases the probability of moderate or high
total delay. When both parent nodes are in the high-delay state, total delay is almost certain to be high.
The conditional probabilities assumed in the model are summarized in Table 5.6.

Table 5.6: Conditional probabilities for ‘Total Delay‘ based on Crane Delay and HT Delay Loaded

Parent Nodes Total Delay
QC Delay HT Delay Loaded Low Moderate High
Low Low 0.90 0.10 0.00
Low Medium 0.55 0.35 0.10
Low High 0.35 0.45 0.20
Medium Low 0.10 0.40 0.50
Medium Medium 0.10 0.35 0.55
Medium High 0.05 0.30 0.65
High Low 0.00 0.10 0.90
High Medium 0.00 0.05 0.95
High High 0.00 0.00 1.00

5.4. Complete BN Model
The complete BN model extends the base reliability structure by explicitly integrating preventive main-
tenance and operator-related factors, representing the two main controllable dimensions of terminal
performance. This section explains how preventive maintenance and operator availability influence
the system reliability and availability.

5.4.1. Maintenance Modelling
Maintenance activities were included in the reliability framework to show how preventive maintenance
(PM) and corrective maintenance (CM) affect system performance over time.

Preventive maintenance is planned and carried out while the system is still working. Its main goal is
to slow down degradation, restore some functionality, and prevent sudden failures. Each PM event
temporarily boosts the system’s reliability by extending its effective lifetime and slightly slowing the
wear-out rate. To represent these effects quantitatively, PM in the model adjusts the Weibull parame-
ters of the equipment’s lifetime distribution. With PM activities, the scale parameter representing the
characteristic life increases, while the shape parameter decreases just enough to show a slower de-
terioration rate. The extent of improvement depends on the level of maintenance—minor, medium, or
major—each having a specific duration and effectiveness factor.

In contrast, corrective maintenance is done after a failure happens. Its purpose is to restore operability,
and the system typically resumes service in a condition short of its original performance. The expected
downtime from corrective actions is shown through the mean time to repair (MTTR), which reflects the
average length of unplanned outages.

Imperfect Maintenance and Virtual Age Modelling In practice, neither type of maintenance fully
restores the system to an “as-good-as-new” condition. Maintenance activities are usually imperfect
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(Jacopino et al., 2004, 2006; Pham and Wang, 1996; Pingjian Yu et al., 2008; Tanwar et al., 2014; H.
Wang, 2002). They improve reliability to some extent, but leave some wear and degradation (Pham
and Wang, 1996; H. Wang, 2002). To explain this behavior, the imperfect maintenance model used
in this study follows the theoretical framework created by Kijima (1989). This framework generalizes
maintenance actions using the idea of virtual age.

Traditional reliability analysis makes a distinction between two idealized repair processes: the Ordi-
nary Renewal Process (ORP), which represents perfect repair that brings the system back to a new
condition, and the Non-Homogeneous Poisson Process (NHPP), which represents minimal repair that
leaves the system “as-bad-as-old” (X. Liu et al., 2020). Kijima’s Generalized Renewal Process (GRP)
adds a restoration factor 𝜌 ∈ [0, 1] to describe the range between these two extremes (Ferreira et al.,
2015; Kijima, 1989; Pham and Wang, 1996; H. Wang, 2002; Yevkin and Krivtsov, 2012). When 𝜌 = 0,
the system is completely renewed (perfect repair). When 𝜌 = 1, it undergoes minimal repair (no reju-
venation). When 0 < 𝜌 < 1, maintenance is imperfect, resulting in a condition that is better than old
but worse than new.

This concept is formalized through Kijima’s virtual-age models, which show how the effective age of a
system changes after maintenance. In the Type I formulation, the system’s virtual age after the 𝑛-th
maintenance event can be represented with Equation 5.9.

𝑉𝑛 = 𝑉𝑛−1 + 𝜌𝑛𝑋𝑛 , (5.9)

Here, 𝑋𝑛 represents the operating time since the last intervention, and 𝜌𝑛 is the restoration factor.
This formulation realistically shows the partial rejuvenation effect of maintenance. Each intervention
reduces some of the accumulated wear without completely resetting the system’s condition.

In this study, the Type I model is applied to preventive maintenance, which gradually restores the
equipment and extends its lifetime. Type I was chosen because it represents partial rejuvenation as
an additive function of operating time, making it suitable for PM events applied at regular intervals
(Kijima, 1989; Pham & Wang, 1996). Type II, by contrast, models proportional rejuvenation of the total
virtual age, which is more appropriate for cumulative overhauls rather than routine PM (H.Wang, 2002).
Corrective maintenance is represented by the NHPP minimal-repair case, which returns functionality
but does not improve the underlying condition (X. Liu et al., 2020). This formulation adds a layer of
complexity compared to the base model, which assumes perfect restoration, but it provides a more
realistic representation of equipment behaviour over repeated maintenance cycles.

Preventive maintenance types and frequencies Three levels of PM are considered, representing
increasing scope, level of detail, and duration; namely, minor, medium, and major. Minor PM activities
are brief and limited in scope, typically carried out at short time intervals. Medium PM involves more
detailed procedures then minor, but not as detailed as major. Major PM represents comprehensive
interventions that require significant time and planning, are assumed to take the longest downtime. To
evaluate the effect of maintenance scheduling on equipment reliability, these three PM types are tested
under weekly, monthly, and yearly frequencies, representing alternative maintenance policy scenarios
within the model.

In the BN model, each preventive maintenance type (Minor, Medium, Major) is represented as a prob-
abilistic node with four possible policy states: None, Weekly, Monthly, and Yearly. These categorical
states determine the expected number of interventions per year (𝑛𝑡), which in turn influences the an-
nual maintenance effectiveness (𝐸𝜂, 𝐸𝛽). This structure allows themodel to sample or evaluate different
maintenance portfolios and quantify their impact on availability and reliability under uncertainty.

Maintenance effect by type Each PM type applies a pair of improvement multipliers, 𝑒𝜂 and 𝑒𝛽, to
the Weibull scale and shape parameters, respectively. The assumed factors can be found in Table 5.7,
reflecting the relative impact of each intervention type.
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Table 5.7: PM multipliers applied to Weibull parameters

PM Level �𝜂 (Scale Factor) �𝛽 (Shape Factor)
Minor 0.10 0.05
Medium 0.25 0.15
Major 0.60 0.30

The scale multiplier 𝑒𝜂 represents the fractional increase in effective lifetime (MTBF) achieved by each
PM event, while the shape multiplier 𝑒𝛽 adjusts the degradation rate. The assumed factors aim to
capture that more intensive PM (e.g., major overhauls) yields larger improvements in the equipment’s
virtual age.

Maintenance effectiveness In practice, a system’s overall reliability improvement results from the
combined effect of several PM types performed at different intervals. To capture this interaction, the cu-
mulative annual maintenance effectiveness is computed using the formulation shown in Equation 5.10,
which follows the same principle used to combine independent reliabilities in parallel systems (Rausand
and Høyland, 2004). This ensures that the marginal benefit of each additional maintenance activity de-
creases as total frequency increases.

𝐸𝜂 = 1 − ∏
𝑡∈{Minor, Medium, Major}

(1 − 𝑒𝜂,𝑡)𝑛𝑡/𝐹𝑁 , (5.10)

In this expression, each maintenance type 𝑡 contributes independently to the overall improvement. 𝑒𝜂,𝑡
denotes the per-event effectiveness of type 𝑡, and 𝑛𝑡 the number of events per year. Frequency normal-
ization factor 𝐹𝑁 is used to preventing the model from overestimating rejuvenation when maintenance
is done very frequently and is set to 12. The resulting 𝐸𝜂 approaches unity asymptotically, preventing
unrealistically large cumulative gains. Although the cumulative effectiveness 𝐸𝜂 is not used directly
to update the adjusted scale parameter 𝜂′, it provides a useful measure of the overall preventive-
maintenance performance.

A similar formulation is used for 𝐸𝛽, and can be found in Equation 5.11.

𝐸𝛽 = 1 − ∏
𝑡∈{Minor, Medium, Major}

(1 − 𝑒𝛽,𝑡)𝑛𝑡/𝐹𝑁 , (5.11)

Adjustment of Weibull parameters The baseline Weibull parameters (𝜂0, 𝛽0) represent the charac-
teristic life and wear-out rate of the equipment in the absence of maintenance. To reflect the partial
rejuvenation achieved through PM, these parameters are updated to (𝜂′, 𝛽′). The adjustment accounts
for the cumulative influence of all PM activities—minor, medium, andmajor—performed during the year,
incorporating both their frequency and effectiveness.

The scale parameter 𝜂′ determines the characteristic life of the equipment and is modified accord-
ing to the retained-age fraction 𝜙, which expresses the proportion of degradation that remains after
maintenance, and is given in Equation 5.12.

𝜂′ = 𝜂0
𝜙 . (5.12)

In this expression, a smaller𝜙 corresponds to a stronger rejuvenation effect, leading to a longer effective
lifetime (𝜂′ > 𝜂0). The retained-age fraction 𝜙 is computed from the restoration factors 𝜌𝑡 associated
with each maintenance level, as shown in Equation 5.13.

𝜙 = (1 − 𝜌min)𝑛min/𝐹𝑁(1 − 𝜌med)𝑛med/𝐹𝑁(1 − 𝜌maj)𝑛maj/𝐹𝑁 . (5.13)

Here, 𝜌 denotes the per-event rejuvenation fraction—the proportion of accumulated wear that is re-
moved by a maintenance activity of type 𝑡. Higher values of 𝜌 therefore correspond to stronger rejuve-
nation and greater lifetime extension. In this study, the rejuvenation fractions were set to 𝜌𝑚𝑖𝑛 = 0.10,
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𝜌𝑚𝑒𝑑 = 0.30, and 𝜌𝑚𝑎𝑗 = 0.60, representing progressively more effective interventions for higher main-
tenance levels.

The shape parameter 𝛽′ defines the rate at which the failure probability increases with time. Mainte-
nance actions can slightly reduce this rate by smoothing the wear-out process, leading to a lower 𝛽′
value than the baseline. The adjusted 𝛽′ is given in Equation 5.14.

𝛽′ = 𝛽0 [1 −min(𝐵𝛽𝐸𝛽 , Max beta drop)] . (5.14)
where 𝐸𝛽 represents the overall annual effectiveness of PM in moderating the wear-out rate, 𝐵𝛽 is a
sensitivity coefficient controlling how strongly maintenance affects 𝛽. In this study, 𝐵𝛽 is set to 0.5,
representing a moderate influence of maintenance on the shape parameter. Maximum beta drop is set
to 0.30 to limit the maximum reduction in 𝛽 to prevent unrealistic flattening of the failure distribution.
A lower 𝛽′ indicates that failures become less concentrated toward the end of life, representing a
smoother deterioration trend after effective maintenance.

Preventive maintenance downtime PM durations differ between equipment types and levels of in-
tervention. Table 5.8 summarizes the assumed average duration of each PM event, expressed in
hours.

Table 5.8: Average duration of preventive maintenance events (hours per intervention).

Equipment Type Minor PM Medium PM Major PM
Quay Crane 2 6 24
Yard Crane 3 6 20
Horizontal Transport 1 2 4

The total annual preventive-maintenance downtime can be computed with Equation 5.15, where 𝑛
denotes the number of PM events per year and 𝑡 denotes their respective durations from Table 5.8,
depending on the type of equipment.

𝑇PM,year = 𝑛Minor ⋅ 𝑡Minor + 𝑛Medium ⋅ 𝑡Medium + 𝑛Major ⋅ 𝑡Major (5.15)

Availability underminimal repair Operational availability is computed using theminimal-repair (NHPP)
formulation rather than the perfect-repair approximation (X. Liu et al., 2020). Under this approach, each
corrective maintenance (CM) event restores functionality but does not improve the underlying condition
of the system. Expected failures per year 𝑓 can be found with Equation 5.16.

𝑓 = (
𝑇 − 𝑇PM,year − 𝑓 ⋅MTTR

𝜂′ )
𝛽′

(5.16)

Here, 𝑇 is the total annual operating time, 𝑇PM,year is the total planned preventive maintenance down-
time, 𝜂′ and 𝛽′ are the adjusted Weibull parameters incorporating the effects of imperfect maintenance,
and MTTR denotes the mean time to repair for unplanned corrective actions. This equation needs to
be solved iteratively with damping for numerical stability.

Operational availability can be computed with Equation 5.17.

𝐴 = 1 −
𝑇PM,year
𝑇 − 𝑓 ⋅MTTR𝑇 , (5.17)

This formulation therefore integrates both planned and unplanned downtime.

5.4.2. Operator
In the complete model, operator availability is a critical factor in terminal performance, influencing the
operational readiness of QC, HT, and YC. In the model, operator availability is primarily determined by
two factors: the terminal shift and the presence of labor strikes.

The node ’Shift’ captures the time of day during which operations occur, discretized into two levels:
Day and Night. Based on typical operational patterns, these states are assigned probabilities of 0.6
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and 0.4, respectively. The node ’Strike’ models the occurrence of labor strikes, with states ’No’ and
’Yes’. The labor strike node has probabilities of 0.95 and 0.05, respectively, reflecting the infrequency
of strike events.

Each equipment subsystem has a dedicated operator availability node, which depends on the ’Shift’
and ’Strike’ nodes. This allows the model to account for the different criticality and staffing requirements
of each subsystem.

Quay Crane Operators QC operations depend on highly specialized personnel, and even short-term
unavailability affects the performance. The conditional probabilities reflect this high criticality, with a
sharp reduction in operator availability during strikes or uncovered shifts. The conditional probabilities
for ’Operator Availability QC’ are summarized in Table 5.9.

Table 5.9: Conditional probabilities for ’Operator Availability QC’ based on Shift and Strike

Parent Nodes Operator Availability QC
Shift Strike High Medium Low
Day No 0.90 0.10 0.00
Night No 0.85 0.15 0.00
Day Yes 0.00 0.00 1.00
Night Yes 0.00 0.00 1.00

Horizontal Transport Operators HT operations are less dependent on specialized labor, and shift
or strike effects are therefore slightly less pronounced. The conditional probabilities for ’Operator Avail-
ability HT’ are provided in Table 5.10.

Table 5.10: Conditional probabilities for ’Operator Availability HT’ based on Shift and Strike

Parent Nodes Operator Availability HT
Shift Strike High Medium Low
Day No 0.95 0.05 0.00
Night No 0.90 0.10 0.00
Day Yes 0.00 0.00 1.00
Night Yes 0.00 0.00 1.00

Yard Crane Operators YC operators have intermediate criticality in terms of operators. YC operator
unavailability impacts operations more than HT but less than QC. The CPD capturing this moderate
sensitivity is provided in Table 5.11.

Table 5.11: Conditional probabilities for *Operator Availability YC* based on Shift and Strike

Parent Nodes Operator Availability YC
Shift Strike High Medium Low
Day No 0.95 0.05 0.00
Night No 0.90 0.10 0.00
Day Yes 0.00 0.00 1.00
Night Yes 0.00 0.00 1.00

Effective availability for each subsystem is calculated as the minimum of equipment availability and
operator availability, ensuring that operations cannot exceed the capability of the least available com-
ponent. This approach represents a conservative yet realistic assumption, as the absence of either
functional equipment or personnel immediately limits subsystem performance.
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Bayesian Network Analysis

This chapter presents an analysis of terminal performance using the constructed Bayesian Network
(BN), which captures the causal relationships and conditional dependencies between environmental
factors, equipment reliability, operator availability, and subsystem interactions. By leveraging the prob-
abilistic structure of the BN, it is possible to estimate the likelihood of different delay outcomes and
assess the potential impact of hypothetical interventions on terminal operations.

Two complementary approaches are applied in this study: forward inference and sensitivity analysis.
Forward inference propagates known input conditions—such as weather, equipment state, and storage
utilization—through the BN to compute posterior probabilities of subsystem and total terminal delays.
Sensitivity analysis quantifies the influence of individual nodes on these outcomes, highlighting which
factors most strongly affect terminal performance. Both the base and complete BNmodels are analyzed
to illustrate the effects of different operational assumptions.

The analysis focuses on understanding how variations in equipment reliability, environmental condi-
tions, maintenance, and operator availability influence overall delay risk at the terminal. This allows a
detailed examination of how different conditions propagate through the network and affect subsystem
dependencies and overall delay behavior.

The BN was implemented in Julia using the BayesNets.jl package (Stanford Intelligent Systems Labo-
ratory (SISL), 2025), allowing efficient scenario testing and applying inference methods. The complete
code is provided at https://github.com/ececoksayar/Graduation-assignment-BN-code- for transparency
and reproducibility.

6.1. Introduction to Inference Methods
This section introduces the analytical approaches used to extract insights from the BN. By applying
forward inference and sensitivity analysis, it is possible to quantify how variations in input factors prop-
agate through the network and affect subsystem and total terminal delays. Forward inference predicts
the likelihood of delay outcomes under specific scenarios, while sensitivity analysis identifies which
factors have the greatest influence on overall performance.

6.1.1. Forward inference
Forward inference estimates the probability of specific outcomes based on known input conditions. This
is useful for scenario simulation and forecasting, as it propagates evidence through the BN to update
the likelihood of downstream outcomes such as subsystem delays or total terminal delay. Forward
inference allows for the prediction of system behavior under different hypothetical conditions, enabling
planning, risk assessment, and operational decision-making. In the context of this study, forward infer-
ence is used to simulate how environmental factors (e.g., weather), equipment status (e.g, age), and
operational conditions (e.g., storage level) contribute to total system delay and its intermediate causes.

The forward inference process involves conditioning the network on known states of input nodes (such
as weather, equipment availability, and storage capacity) and performing a Monte Carlo simulation

35
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with many runs to estimate posterior probability distributions for downstream nodes. In this study, one
million samples were used. This sample size was chosen to ensure statistical stability of posterior
probabilities while keeping computation time manageable. Each sample is then filtered to match the
specified evidence, and the relative frequency of Low, Medium, and High delays is computed for each
subsystem and the total terminal delay. This approach captures the stochastic variability inherent in
equipment performance, environmental conditions, and subsystem interactions, which explains why
rare high-delay events may still occur even under optimal input conditions.
The outputs of forward inference can be summarized in tables or visualized using stacked bar charts.
This not only facilitates interpretation of how changes in individual inputs or combinations of inputs
affect subsystem and total delays, but also serves as a sanity check to ensure that the BN produces
results consistent with domain knowledge and operational expectations, helping to validate that the
model is working correctly.

6.1.2. Sensitivity Analysis
Sensitivity analysis evaluates how variations in a specific input node affect the probability distribution
of a target node, such as total terminal delay. In this study, each input node was varied individually by
conditioning on a specific value, while all other nodes were left unconstrained and sampled according
to their prior distributions in the BN. This approach isolates the effect of the selected node on subsystem
and total delays, while still accounting for probabilistic variability in the rest of the system.
For each input scenario, the Bayesian Network is sampled repeatedly using Monte Carlo simulation
(100,000 samples per scenario). For each sample, the states of the delay nodes — Quay Crane
(QC) Delay, Horizontal Transport (HT) Delay (Empty and Loaded), Yard Crane (YC) Delay, and Total
Delay — are recorded. The expected value of each delay node is then computed from the posterior
distribution by taking a weighted sum over the discrete states (Low = 1, Medium = 2, High = 3). These
expected values are presented as percentages of Low, Medium, and High delays for each scenario. By
comparing these values across different input scenarios, the analysis quantifies the marginal influence
of each input node on subsystem and total terminal delays, highlighting the factors that most strongly
affect system performance.
This type of analysis is particularly useful for prioritizing interventions or operational monitoring. By
identifying which single factors have the largest effect on terminal performance, sensitivity analysis
can indicate where targeted improvements—such as maintenance schedules, staffing adjustments, or
operational policies—would likely produce the most significant gains in reliability and efficiency.

6.2. The Base Model
The base BN serves as a reference framework for analysing the reliability and delay propagation within
the terminal system under typical operating conditions. In this simplified model, equipment reliability
is represented solely through age-dependent Weibull-based failure probabilities. Environmental con-
ditions (wind, rain, and visibility) together with operational factors (terminal busyness and yard storage
utilization) determine subsystem operability and efficiency. Preventive maintenance interventions and
operator availability are not included at this stage, allowing the analysis to focus on the inherent be-
havior of the system components and their interactions.
This baseline scenario establishes the foundation for understanding how delays arise naturally from
subsystem performance and environmental factors. It enables the quantification of the impact of
weather, equipment age, and basic operational constraints influence delay formation and propagation
across subsystems. The results provide a benchmark against which the effects of additional inter-
ventions, such as maintenance or staffing variations, can later be evaluated. The following sections
present detailed analyses of weather sensitivity, equipment reliability, availability, terminal state, and
delay propagation using this base BN.

6.2.1. Forward Inference
Forward inference was applied to the base BN to evaluate the effect of different operational scenarios
on subsystem and total terminal delays. Initially, an optimal scenario was examined, in which weather
conditions were mild (low wind, no rain, high visibility), storage capacity was sufficient, and all equip-
ment subsystems (QC, YC, HT) were in the high availability bins. Posterior distributions of subsystem
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delays and total delay were computed by conditioning the network on these inputs, allowing the proba-
bility of Low, Medium, and High delays to be assessed. This ’Optimal Scenario’ establishes a reference
distribution of subsystem and total delays, providing a benchmark against which other, less favorable
conditions can be compared.

To illustrate the sensitivity of the terminal to adverse conditions, three additional scenarios were ana-
lyzed, each varying only a single input nodewhile keeping all other conditions at baseline. In the ’Severe
Wind Scenario’, only wind was increased to ’high’ to simulate strong wind conditions, demonstrating
how environmental constraints alone can propagate through the network and elevate the probability of
High delays. In the ’LowHT Availability’ Scenario, the availability of HTs was reduced to represent aging
equipment or operational faults, highlighting the sensitivity of subsystem and total delays to equipment
reliability. Finally, in the ’Low Storage Capacity Scenario’, terminal storage utilization was constrained
to a low-availability state, showing how limited yard space affects YC performance and contributes to
total delay.

Figure 6.1 shows a stacked bar chart summarizing the delay probabilities for the QC, HT, and YC
subsystems, as well as the total delay for the given scenarios.

(a) Delay Distribution for the Optimal Scenario (b) Delay Distribution for the Severe Wind Scenario

(c) Delay Distribution for the Low HT Availability Scenario (d) Delay Distribution for the Low Storage Capacity Scenario

Figure 6.1: Probability distributions of subsystem and total delays for different scenarios

In the ’Optimal Scenario’ shown in Figure 6.1a, 96 out of 1,000,000 samples matched the evidence.
The majority of the simulations produced low delays across all subsystems, reflecting smooth terminal
operations. However, a small fraction of samples still resulted in medium or high delays. This oc-
curs because the BN captures stochastic variability and inherent uncertainty in subsystem interactions,
such as random repair times and high availability bin including a range rather than only 100%. Even
under optimal input conditions, these random factors can propagate through the network, occasionally
producing higher-than-expected delays, illustrating the non-deterministic nature of terminal operations
and highlighting the importance of probabilistic modelling for reliability assessment.

In the ’Severe Wind Scenario’ shown in Figure 6.1b, extreme wind conditions primarily disrupt quay
crane operations. Out of one million samples, only 2,999 samples matched this high-wind evidence.
However, in those cases, high QC delays were observed due to QC not being able to operate under
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severe wind conditions, which substantially increased the total terminal delay. The ’Low HT Availability
Scenario’ shown in Figure 6.1c gave similar results with 406,155 samples matching the conditioned
low-availability evidence. Low HT availability increases the delay for the HT subsystem, which also
causes a slight increase in the QC subsystem due to QCs waiting for HTs.

Finally, in the ’Low Storage Capacity Scenario’ given in Figure 6.1d, 400,525 samples matched the
evidence. In these simulations, YC delays increased substantially due to congestion, which in turn
propagated to HT delays, particularly for loaded HTs, as containers could not be offloaded efficiently.
This cascading effect amplified total terminal delay, illustrating how limited storage capacity can dras-
tically affect YC operations and indirectly increase HT delays, ultimately impacting overall system per-
formance.

6.2.2. Delay Propagation through Subsystems
Delay propagation through subsystems is examined to understand how local slowdowns spread through
the terminal. In this analysis, the delay level of one subsystem at a time (HT-Empty, HT-Loaded, YC, or
QC) is fixed to medium or high, while all other nodes remain at their baseline distribution. The baseline
in this subsection represents the average state of the system without additional evidence. This base-
line does not correspond to a perfect or “ideal” condition, but rather to the expected performance of the
terminal under typical operating circumstances. By comparing this baseline with scenarios in which
a single delay node is elevated, the model demonstrates how congestion in an individual subsystem
propagates through the network and influences the overall terminal delay. This analysis highlights the
relative importance of each subsystem in contributing to network-wide performance losses. The effect
of subsystem delays on the total delay can be visualized in Figure 6.2.

Figure 6.2: Delay Propagation through Subsystems

The results show important interactions between subsystems. When the HT (Empty) delay increases,
the QC delay rises in parallel, since QCs depend on the timely supply of empty vehicles to continue
operations. This illustrates the coupling between quay and horizontal transport at the seaside interface.
Similarly, when YC delay increases, the effect is transmitted directly into HT (Loaded) delay, as yard-
side congestion restricts the turnaround of loaded vehicles.

The results also underline the significance of subsystem delays for overall terminal performance. Each
component contributes to congestion at the system level, but the strength of the effect varies. HT
(Loaded) has the strongest impact on total delay, reflecting its role as the key link between quay opera-
tions and the yard. YC delays follow closely, as they directly increase HT (Loaded) delays and reinforce
landside congestion.

QC delays are also substantial, but their influence on terminal-wide delay is weaker than that of HT and
YC. While QC delay levels themselves can rise considerably, their effect on total delay is moderated
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by the structure of the BN. QC feeds into the system through a single pathway (through QC delay),
whereas HT and YC affect several dependent nodes simultaneously, explaining their stronger overall
impact on terminal performance.

6.2.3. Weather Sensitivity
In the BN model, weather has an impact on the QC subsystem. To assess these effects, several
weather scenarios were defined and compared to a baseline condition of no wind, no rain, and high vis-
ibility. The scenarios include varying wind speeds (moderate to strong), different levels of rainfall (light
to heavy), and changes in visibility (moderate to low). In each scenario, only the specified weather vari-
able is conditioned, while the remaining weather nodes are left unconstrained and sampled according
to their prior distributions. This approach isolates the marginal effect of each weather factor on terminal
performance while preserving the natural variability of other environmental conditions. An additional
“Severe Weather” scenario combines strong wind and heavy rain to represent extreme conditions. The
relative impact of each weather condition on QC and total delays is shown in Figure 6.3.

Figure 6.3: Weather Sensitivity

The results show that wind is the dominant weather factor influencing terminal performance. Under
strong wind and severe weather conditions, QC operations slow down sharply, leading to a noticeable
rise in overall terminal delays. Even moderate wind produces a visible increase, confirming that QC
operability is highly sensitive to wind conditions. In comparison, the influence of rain and visibility is
more modest. Heavy rain and low visibility lead to some increase in QC delay, but their effect on
overall terminal delay remains limited. Moderate or light rain and visibility changes have only minor
consequences.

Overall, the sensitivity analysis indicates that terminal-wide performance is governed mainly by wind-
driven interruptions of QCs, whereas rain and visibility play a secondary role, reducing efficiency but
not stopping operations. Interestingly, the increase in total delay under severe weather is smaller than
might be expected. This occurs because such extreme wind events are rare in the sampled data, and in
those cases, other subsystems, such as horizontal transport, are not always simultaneously congested.
As a result, the impact of quay crane stoppages on total terminal delay is partially absorbed by the
probabilistic interactions across subsystems.

6.2.4. Equipment Reliability
In the base model, the availability of critical equipment is directly influenced by its age, with older
equipment having higher failure rates. As equipment ages, both the Mean Time Between Failures
(MTBF) and the availability of the equipment decreases. This is captured in the Weibull distribution,
used to model failure rates, where older equipment experiences more frequent failures.

Figure 6.4 illustrates the cumulative failure distributions (CDFs) for QC, HT, and YC subsystems across
different equipment ages. The curves clearly show how aging shifts the probability of failure toward ear-
lier times: new equipment has a slower rise in cumulative probability, while mid-life and old equipment
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experience much steeper increases, reflecting higher failure likelihoods and shorter expected lifetimes.

Figure 6.4: Cumulative Probability of Failure of Equipment

Table 6.1 shows the relationship between equipment age (New, Mid, Old) and expected availability
for QC, HT, and YC subsystems. It also includes the Weibull parameters used, the MTBF calculated,
and the MTTR values used to compute availability. New equipment shows higher availability, reflect-
ing lower failure likelihood and shorter repair times, while older equipment exhibits significantly lower
availability, with failure rates more pronounced and longer total repair times. To integrate these contin-
uous availability values into the Bayesian Network, the availability is discretized into three operational
states—Low, Medium, and High—using smoothed thresholds defined in Equation 5.7.

Subsystem Age 𝛽 𝜂 MTBF (h) MTTR (h) Mean Avail. (%) Low (%) Medium (%) High (%)

QC New 1.2 600.0 564.39 24.66 95.81 0.00 79.67 20.33
Mid 1.5 500.0 451.37 24.66 94.82 0.00 100.00 0.00
Old 2.0 400.0 354.49 24.66 93.50 12.62 87.38 0.00

YC New 1.2 300.0 282.20 14.39 95.15 0.00 96.27 3.73
Mid 1.5 250.0 225.69 14.39 94.01 0.00 100.00 0.00
Old 2.0 220.0 194.97 14.39 93.13 21.80 78.20 0.00

HT New 1.2 400.0 376.26 8.22 97.86 0.00 53.45 46.55
Mid 1.5 350.0 315.96 8.22 97.46 0.00 63.40 36.60
Old 2.0 300.0 265.87 8.22 97.00 0.00 74.98 25.02

Table 6.1: Reliability and availability parameters for each subsystem and age group

Figure 6.5presents the distribution of availability states (Low, Medium, High) for QC, HT, and YC sub-
systems across different equipment ages. The results show that as equipment ages, the proportion of
units in the high availability state decreases, while low availability state increases.

Figure 6.5: Availability State Distribution by Age
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6.2.5. Availability Sensitivity
The subsystem delays and total terminal delays are influenced by the availability of its critical equip-
ment. This analysis evaluates how reductions in equipment availability affect subsystem performance
and the propagation of delays through the terminal network. The baseline scenario is determined to
have high availability for all types of equipment. For the other scenarios, only one subsystem’s avail-
ability is altered at a time, while the others remain fixed at high availability. The effect of equipment
availability on subsystem delays and the total delay is visualized in Figure 6.6.

Figure 6.6: Equipment Availability Sensitivity

The sensitivity analysis demonstrates that equipment availability has a clear influence on subsystem
delays and overall terminal performance. Among the subsystems, HT availability shows the strongest
effect. Under low availability, both HT delays rise sharply, leading to a noticeable increase in total delay.
Even under medium availability, HT delays remain elevated. YC availability also shows a significant
effect, particularly on its own subsystem. Low YC availability increases YC delays significantly and
also amplifies HT (Loaded) delays, but its effect on total delay remains more moderate. Medium YC
availability produces a smaller rise in subsystem delays and a limited overall effect.

In contrast, QC availability shows only a modest influence. Low QC availability slightly increases QC
delays, but its effect on total delay is minimal and in some cases even slightly negative. This reflects
both the BN structure and the probabilistic interactions between subsystems. QC availability affects
only the QC delay node, while HT and YC availability influence several nodes simultaneously. In ad-
dition, in some samples, lower QC availability coincides with relatively favorable HT or YC conditions,
partially offsetting its impact at the terminal level. HT availability dominates because it connects the
two critical operational areas and acts as a bottleneck when capacity is reduced.

6.2.6. Terminal Situation Sensitivity
Terminal state variables such as yard storage capacity and terminal busyness determine how efficiently
containers can be transferred between subsystems under varying workload and space constraints. An-
alyzing their influence helps to understand how congestion and yard utilization affect delay propagation
through the terminal. Figure 6.7 shows the sensitivity of terminal delays to different operational con-
ditions, including busyness levels and storage availability, relative to the baseline scenario. Baseline
scenario used in this case is low terminal busyness and high storage availability. Visualization of the
results can be found in Figure 6.7.
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Figure 6.7: Terminal State Sensitivity

The results show that storage availability is the most critical factor among the terminal state variables.
When storage capacity is reduced, it introduces a significantly high YC delay. Due to the YC and HT
interaction, this situation also increases HT delay (Loaded). This combination leads to a clear rise in
overall terminal delay. Under medium storage conditions the effect is still visible, though less severe,
while the worst-case scenario of low storage and high busyness produces the strongest disruption
across the system.

Increasing the terminal busyness has a significant impact on the HT delay empty, which also causes a
delay in the QC subsystem. However, these effects remain largely localised and do not translate into a
substantial increase in terminal-wide delay. Even at elevated levels of busyness, the effect on overall
performance is limited compared with the impact of storage shortages.

6.2.7. Sensitivity Analysis
For the sensitivity study, a universal baseline scenario was defined in which all input variables were set
to their best-case states: favorable weather (low wind, no rain, high visibility), low terminal busyness,
sufficient storage capacity, and high availability of QC, YC, and HT. This baseline serves as a reference
point for measuring relative changes in delay outcomes.

To assess the impact of each factor, scenarios were defined by fixing the corresponding BN node
to a specific state, while leaving all other nodes free to vary according to their conditional probability
distributions. This approach captures the individual effect of each variable on total terminal delay while
allowing the probabilistic dependencies among other factors to remain active.
The combined sensitivity results identify wind, storage availability, and HT availability as the most influ-
ential factors driving terminal performance. Among all variables, strong wind has the strongest impact,
producing the largest increase in total delay. This underlines the vulnerability of QC operability to se-
vere wind conditions, which can directly suspend operations. Low storage availability also ranks near
the top, demonstrating how yard-side constraints quickly propagate through the network and restrict
container flows. Low HT availability is the most critical equipment-related factor, as it has impact on
both quay-side and yard-side operations.
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Figure 6.8: Combined Sensitivity Results for the base terminal

6.3. Complete Model
The complete BN model extends the base reliability structure by integrating both operator and main-
tenance related components, which represent the two main controllable dimensions of terminal perfor-
mance. While the baseline model captures the inherent reliability of equipment and its dependencies
on environmental conditions, the complete model introduces the capacity to evaluate how human per-
formance and maintenance strategies jointly influence system availability and delay propagation.

In this section, the effects of operator behavior and preventive maintenance policies are analyzed sep-
arately to illustrate their respective contributions to overall terminal reliability.

6.3.1. Operator Effect
The operator-related nodes were introduced to capture human performance variability and its influence
on the terminal’s overall reliability and delay behavior. For the sensitivity analysis, the day shift without
strike scenario was used as the baseline reference, representing normal operating conditions.

During strike events, operator availability is automatically set to unavailable, regardless of whether the
event occurs during day or night, effectively representing a complete shutdown of human-operated ac-
tivities. Conversely, during regular night operations, operator availability is slightly reduced compared
to the day shift, reflecting the possible availability differences between shifts. This effect is most pro-
nounced for quay crane (QC) operations, where operator availability plays a critical role due to the need
for highly specialized and certified personnel.

The resulting impact of these scenarios on subsystem and total delays is summarized in Table 6.2,
where the strike and night conditions are compared against the baseline.

Table 6.2: Scenario-based delay comparison relative to baseline.

Scenario QC Delay (%) YC Delay (%) HT Delay Loaded (%) Total Delay (%)
Strike +111.8 +110.2 +159.4 +108.3
Night +6.3 +0.2 -0.2 +1.8
Baseline +0.0 +0.0 +0.0 +0.0
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The results indicate that strike conditions have a drastic impact across all operational layers, with total
delays more than doubling relative to the baseline. This reflects the complete unavailability of operators
and the resulting halt in equipment utilization. In contrast, night operations produce only marginal
increases in delay, mainly driven by slightly lower operator availability and slower coordination between
subsystems.

6.3.2. Maintenance Effect
Preventive maintenance (PM) portfolios were developed to examine how different combinations of
maintenance types and frequencies influence equipment reliability and terminal availability. Three
levels of maintenance intensity were considered: Minor, Medium, and Major, each corresponding to
progressively deeper restorative effects. Each type was evaluated under multiple frequency regimes
(none, weekly, monthly, and yearly), and several combined portfolios were designed to represent real-
istic maintenance practices.

The tested portfolios include single-frequency strategies as well as more realistic combined policies.
These combinations allow for the comparison of short-cycle preventive maintenance routines against
longer-term overhaul-based policies. This analysis provides insight into how different maintenance
planning strategies affect overall terminal reliability and delay propagation within the complete BN
model.

Maintenance effect in QC Table 6.3 summarizes the resulting reliability metrics for all maintenance
portfolios for QC, including the expected parameter multipliers (𝐸𝜂, 𝐸𝛽), mean time between failures
(MTBF), mean time to repair (MTTR), and resulting availability.

Table 6.3: Maintenance Portfolio Results for QC

Portfolio 𝐸𝜂 𝐸𝛽 MTBF [h] MTTR [h] Availability
No PM 0.000 0.000 454.552 24.440 0.823
Minor Weekly 0.367 0.199 732.902 24.411 0.907
Minor Monthly 0.100 0.050 507.882 24.710 0.843
Minor Yearly 0.009 0.004 458.876 24.516 0.824
Medium Weekly 0.713 0.506 2277.457 24.518 0.951
Medium Monthly 0.250 0.150 656.707 24.722 0.889
Medium Yearly 0.024 0.013 469.299 24.569 0.827
Major Weekly 0.981 0.787 26377.657 24.788 0.857
Major Monthly 0.600 0.300 1176.962 24.722 0.929
Major Yearly 0.074 0.029 491.853 24.762 0.834
Minor Weekly + Major Yearly 0.413 0.223 788.893 24.658 0.912
Minor Monthly + Major Yearly 0.166 0.078 550.105 24.459 0.858
Medium Monthly + Major Yearly 0.305 0.175 711.157 24.429 0.899
Minor Weekly + Medium Monthly 0.525 0.319 1059.268 24.675 0.935
Minor Weekly + Medium Monthly + Major Yearly 0.560 0.339 1147.658 24.910 0.938

Figure 6.9 shows the breakdown of yearly downtime for each maintenance strategy applied to the quay
cranes, highlighting how preventive maintenance reduces corrective downtime at the cost of additional
planned maintenance hours.
For the QCs, the baseline scenario without preventive maintenance (No PM) showed an availability
of 82.3%. This corresponds to about 1,569 hours of corrective downtime per year, which is around
18% of the total operational time. Implementing preventive measures greatly improves performance.
The ’Medium Weekly’ strategy achieved the highest availability of 0.951, cutting corrective downtime
to just 118 hours per year. This is a reduction of more than 1,100 hours compared to the baseline.
The improvement comes from both fewer failures (around five per year) and the benefits of regular
maintenance, despite the additional 312 hours of planned downtime per year.



6.3. Complete Model 45

Figure 6.9: Downtime Breakdown for QC

Moderate strategies offer the best efficiency in terms of downtime saved per hour of maintenance. For
example, ’Minor Weekly’ (104 hours of PM annually) increased availability to 90.7%, lowering total
downtime to 826 hours. Meanwhile, ’Minor Weekly + Medium Monthly’ (176 hours of PM) achieved
93.6% availability with only 561 hours of total downtime. These plans save about 6-7 hours of total
downtime for each hour of preventive maintenance, making them the most balanced and cost-effective
options. Adding ’Major Yearly’ maintenance to this mix results in a slight additional gain (availability
93.8%) for a small increase in PM hours (up to 200). In contrast, ’Major Weekly’—which includes
1,248 hours of planned downtime per year—resulted in only 85.7% availability. Although the number
of failures dropped nearly to zero, the heavy PM workload outweighed the benefits. This shows clear
over-maintenance and suggests that major interventions should follow annual schedules. Overall, the
results show that frequent minor and mediummaintenance actions provide the highest availability gains
with optimal efficiency, while excessive major maintenance quickly becomes counterproductive.

Maintenance effect in HT Table 6.4 summarizes the resulting reliability metrics for all maintenance
portfolios for HT, including the expected parameter multipliers (𝐸𝜂, 𝐸𝛽), mean time between failures
(MTBF), mean time to repair (MTTR), and resulting availability.

Table 6.4: Maintenance Portfolio Results for HT

Portfolio 𝐸𝜂 𝐸𝛽 MTBF [h] MTTR [h] Availability
No PM 0.000 0.000 317.267 8.206 0.869
Minor Weekly 0.367 0.199 510.788 8.186 0.943
Minor Monthly 0.100 0.050 354.889 8.238 0.893
Minor Yearly 0.009 0.004 320.774 8.297 0.870
Medium Weekly 0.713 0.506 1592.706 8.162 0.981
Medium Monthly 0.250 0.150 459.903 8.226 0.932
Medium Yearly 0.024 0.013 327.995 8.182 0.875
Major Weekly 0.981 0.787 18515.115 8.286 0.976
Major Monthly 0.600 0.300 816.066 8.191 0.971
Major Yearly 0.074 0.029 343.572 8.170 0.885
Minor Weekly + Major Yearly 0.413 0.223 552.488 8.187 0.949
Minor Monthly + Major Yearly 0.166 0.078 383.535 8.364 0.905
Medium Monthly + Major Yearly 0.305 0.175 498.167 8.214 0.941
Minor Weekly + Medium Monthly 0.525 0.319 743.397 8.230 0.967
Minor Weekly + Medium Monthly + Major Yearly 0.560 0.339 802.465 8.193 0.969
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Figure 6.10 shows the breakdown of yearly downtime for each maintenance strategy applied to the HT
subsystem.

Figure 6.10: Downtime Breakdown for HT

For the HT subsystem, the baseline scenario without preventive maintenance (No PM) achieved an
availability of 86.9%, which is about 1,149 hours of corrective downtime per year. This accounts for
around 13.1% of the total operational time. The ’Medium Weekly’ plan achieved the highest availability
of 98.1%, reducing total downtime to only 166 hours per year, a cut of nearly 984 hours compared to
the baseline, even though it required 104 hours of planned maintenance. This strategy also reduced
the annual number of failures from about 104 to only 5 times.

Moderate preventive strategies deliver strong reliability gains with minimal maintenance effort. The Mi-
nor Weekly policy (52 hours of PM per year) increased availability to 94.3% and reduced total downtime
to 500 hours, saving roughly 486 hours of lost time. Similarly, the Minor Weekly + Medium Monthly
combination (156 hours of PM) boosted availability to 96.74% with 291 total downtime hours, provid-
ing a balanced trade-off between maintenance effort and reliability. The ’Major Weekly’ policy, which
includes 208 hours of PM annually, only slightly improved availability to 97.6% compared to lighter
schedules, as the large maintenance workload offset most of the benefits.

Maintenance effect in YC Table 6.5 summarizes the resulting reliability metrics for all maintenance
portfolios for YC, including the expected parameter multipliers (𝐸𝜂, 𝐸𝛽), mean time between failures
(MTBF), mean time to repair (MTTR), and resulting availability.

Figure 6.11 shows the breakdown of yearly downtime for each maintenance strategy applied to the YC
subsystem.

For the YC subsystem, the scenario without preventive maintenance (No PM) resulted in an availability
of 78.0%. This corresponds to about 1,926 hours of corrective downtime per year, which is roughly 22%
of the total operating time. PM improves system performance, especially with medium-level policies.
The ’Medium Weekly’ plan achieved the highest availability of 94.7%. It reduced total downtime to just
466 hours per year, a decrease of about 1,460 hours from the baseline, despite adding 312 hours of
planned maintenance.

Moderate maintenance strategies also perform effectively. The ’Minor Weekly’ schedule, which in-
cludes 156 hours of preventive maintenance per year, improved availability to 86.5% and nearly halved
total downtime to 1,180 hours. Similarly, the ’Medium Monthly’ plan, with 72 hours of preventive main-
tenance, reached an availability of 0.85 and had 1,317 total downtime hours, achieving strong results
with minimal added maintenance time. Combining ’Minor Weekly’ and ’Medium Monthly’ further raised
availability to 91.4% while keeping downtime at a moderate level of 755 hours per year, making it one of
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Table 6.5: Maintenance Portfolio Results for YC

Portfolio 𝐸𝜂 𝐸𝛽 MTBF [h] MTTR [h] Availability
No PM 0.000 0.000 230.537 14.438 0.780
Minor Weekly 0.367 0.199 371.110 14.470 0.865
Minor Monthly 0.100 0.050 257.982 14.491 0.804
Minor Yearly 0.009 0.004 233.000 14.391 0.784
Medium Weekly 0.713 0.506 1162.005 14.544 0.947
Medium Monthly 0.250 0.150 334.058 14.309 0.850
Medium Yearly 0.024 0.013 237.843 14.503 0.787
Major Weekly 0.981 0.787 13375.448 14.272 0.880
Major Monthly 0.600 0.300 593.276 14.327 0.916
Major Yearly 0.074 0.029 249.539 14.447 0.797
Minor Weekly + Major Yearly 0.413 0.223 400.162 14.496 0.876
Minor Monthly + Major Yearly 0.166 0.078 278.310 14.473 0.813
Medium Monthly + Major Yearly 0.305 0.175 360.888 14.394 0.863
Minor Weekly + Medium Monthly 0.525 0.319 538.469 14.352 0.914
Minor Weekly + Medium Monthly + Major Yearly 0.560 0.339 584.471 14.495 0.919

Figure 6.11: Downtime Breakdown for YC

the most cost-effective options. In contrast, the ’Major Weekly’ maintenance plan, which requires 1,040
hours per year, did not yield any improvement. Availability fell to 88.0% with 1,048 h total downtime,
as the excessive maintenance time outweighed the minor reduction in failures.

Comparative Analysis of PM Strategies Across all three subsystems, PM improved reliability and
availability compared to the baseline no preventive maintenance scenario. However, the extent of im-
provement varied by equipment type. The QCs, with their long repair durations, showed the greatest
response to preventive actions. In contrast, horizontal transport, which has a short mean time to re-
pair, needed much less intervention to maintain high performance. In all systems, medium-frequency
and mixed policies, such as Medium Weekly and Minor Weekly + Medium Monthly, provided the best
balance between reduced failures and manageable preventive downtime. These strategies cut failure
hours by more than half while keeping total preventive maintenance time under 5% of the operational
year.

Nonetheless, the results also point to clear signs of over-maintenance. The ’Major Weekly’ portfolios,
while nearly eliminating failures, led to some of the lowest overall availabilities because the cumulative
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PM time overshadowed the operating year.

Maintenance Effect on Total Delay To demonstrate how preventivemaintenance influences terminal
performance, the recalculated subsystem availabilities were propagated through the complete BN to
estimate the resulting total delay. Table 6.6 summarizes the corresponding subsystem availabilities
and improvement of delay compared to the no PM condition.

Table 6.6: PM strategy impact on terminal performance.

PM Strategy QC Availability YC Availability HT Availability Improvement

No Preventive Maintenance 82.2% 78.1% 86.7% 0.0%
Minor PM Weekly 90.5% 86.5% 94.2% 14.5%
Minor PM Monthly 84.0% 80.2% 89.4% 4.0%
Major PM Yearly 83.1% 80.0% 88.5% 3.2%
Comprehensive PM 93.9% 91.9% 96.9% 21.8%

Figure 6.12 illustrates the percentage reduction in total delay relative to the No Preventive Maintenance
baseline.

Figure 6.12: PM Strategy Percentage Improvement

The results show that increasing maintenance intensity generally improves subsystem availability and
reduces total delay, although higher levels of interventios are not as effective. The ’Comprehensive
PM’ portfolio combines minor, medium, and major interventions at weekly, monthly, and yearly fre-
quencies respectively, yielding the best overall result with a 22% reduction in total delay. Among the
evaluated strategies, this portfolio represents the most realistic approach for terminal operations, bal-
ancing routine preventive tasks with periodic deeper maintenance without excessive downtime. Light
and frequent actions, such as ’Minor PM Weekly’ strategy, provide efficient balance between planned
downtime and reliability gain, achieving around a 14% delay reduction. In contrast, ’Major PM Weekly’
performs worse than ’Major PM Yearly’ because excessive PM adds substantial planned downtime
without proportional reliability improvement, thereby reducing overall availability. Heavy but infrequent
maintenance, such as ’Major PM Yearly’, results in limited improvement, as failures tend to accumulate
during long intervals between interventions.
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Discussion

This chapter discusses the implications of the Bayesian Network (BN) analysis for system-level relia-
bility and maintenance planning in container terminals. The results are interpreted in the context of the
research questions, highlighting how the model captures delay propagation, subsystem behaviour, and
the role of maintenance and operator factors. This section also includes the strengths and limitations
of the model.

7.1. Interpreting the results
This subsection interprets the main findings of the BN analysis in terms of system behaviour, mainte-
nance effectiveness, and delay propagation across terminal subsystems.

System-level interactions and delay propagation The BN effectively demonstrates how disrup-
tions spread through interconnected subsystems in the terminal. The availability, efficiency, and delay
nodes interacted with probabilistic dependencies that reflect real operational connections. Quay cranes
(QCs) mainly rely on the timely arrival of empty horizontal transport (HT) units. In turn, the HT system
depends on the yard crane (YC) efficiency and storage availability to finish cycles.

When any of these nodes dropped in availability or efficiency, the chances of delays in connected
subsystems increased. A slowdown in HT operations significantly increased total delay because it
restricted both the quay and yard interfaces. YC-related congestion further strengthened this effect
by delaying HT discharge cycles. These findings confirm that the BN successfully illustrates the cu-
mulative nature of delays across interdependent processes, by showing how local disruptions lead to
performance losses throughout the entire terminal.

Subsystem behaviour Each subsystem behaved as expected in terms of physical and operational
performance. For the QCs, wind was the main cause of delays. Strong winds directly reduced the op-
erability and efficiency of the quay cranes. This increased total delays, even when other subsystems
worked well. YCs were most affected by storage capacity. As yard occupancy rose, reshuffling oper-
ations increase, leading to longer cycle times and extended delays in horizontal transport. HT served
as the key link between the quay and the yard. When its availability decreased, both upstream and
downstream processes were affected right away.

Overall, the BN results reflected real operations. The performance of QCs depended mainly on the
weather, YCs on yard utilization, and HT on its availability and congestion, all contributing to total
delays.

Maintenance–availability trade-offs The results of BN showed that the medium weekly mainte-
nance strategy struck the best balance between availability and reliability among the tested portfolios.
However, this outcome should be interpreted within the scope of the model, which represents mainte-
nance through its frequency and type but does not account for the specific technical actions performed
during each intervention. In reality, the effectiveness of maintenance relies heavily on what is actually
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done during these activities. Performing high-level maintenance too often, such as doing major pack-
ages monthly or medium packages weekly, would not necessarily lead to significant improvements in
reliability. Many actions, like component replacements or full overhauls, do not need to happen as
frequently and may cause unnecessary downtime or excessive maintenance costs.

Thus, while the model suggests that moderate maintenance frequencies work best, this reflects the
balance between preventive and corrective downtime instead of the specific content of the maintenance
tasks. In practice, mixed strategies that combine regular medium-level maintenance with less frequent
major overhauls are usually more effective, as they better match actual maintenance needs.

Human Factor The human factor was represented in the BN through the operator availability node,
which shows how staffing shortages or disruptions in labor affect terminal operations. The results
indicated that operator availability had a localized but noticeable impact on total delay, especially during
extreme situations like strikes or significant absenteeism. Under normal operating conditions, changes
in staffing levels did not greatly affect delay probabilities.

However, the model only captures this factor in probabilistic terms and does not distinguish between
skill levels, fatigue, or coordination efficiency. These elements can be crucial for performance in the
real world. In practice, these qualitative aspects of human behaviour could either worsen or lessen the
effects of operator availability seen in the model.

7.2. Practical relevance
This section discusses the practical relevance of the developed BN framework by comparing it with
other system reliability approaches and outlining its potential applications in terminal management.

Comparisonwith other system reliabilitymodelling approaches Reliability Block Diagrams (RBDs)
are effective for quantifying overall reliability in systems with independent and binary components
and can clearly show how redundancy improves performance. However, they focus primarily on
component-level reliability, describing whether individual elements succeed or fail within the system’s
overall structure. Therefore, an RBD cannot capture the conditional dependencies that dominate ter-
minal operations. In this study’s context, subsystem performances are interlinked, so assuming com-
ponent independence would oversimplify the system’s behaviour.

Fault Tree Analysis (FTA), in contrast, is useful for identifying causal relationships leading to a top
event such as total delay. It provides a clear logical breakdown of contributing failures and remains
an essential foundation for many reliability frameworks. However, once probabilities are assigned, an
FTA is static; it cannot represent varying operational states, update when new information becomes
available, or model feedback effects between subsystems.

The BN framework developed in this study builds on the FTA structure. It allows subsystem interac-
tions, environmental influences, and human factors to be modelled within a single framework. Through
its conditional dependencies, the BN captures how disruptions propagate across the quay, yard, and
transport systems, while maintaining the flexibility to update probabilities when new data or evidence
are introduced. This makes the BN particularly well suited for representing the uncertainty and inter-
dependence inherent to container terminal operations.

Application in terminal management The developed BN framework can help terminal managers
identify which operational factors most strongly influence total delay and overall reliability. Scenario and
sensitivity analyses make it possible to test different conditions and enable decision-makers to quickly
assess their combined effects on performance. Compared to conducting detailed simulation studies,
the BN can provide quicker results and is easier to interpret, which makes it suitable for scenario testing
or early decision-making.

In practice, the model can be used to study how different maintenance intervals affect downtime across
subsystems, or to see how operator availability influences total delay. Factors such as weather and
terminal busyness cannot be controlled, but including them in the model makes the analysis more real-
istic and helps explain performance variations under different conditions. This shows how operational
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choices, such as maintenance and staffing planning, interact with external factors to influence reliability
and delay, supporting more informed operational decisions.

7.3. Strengths
The developed framework demonstrates several key strengths that contribute to its robustness and
applicability. They reflect the model’s design, implementation, and flexibility across diverse operational
environments.

Modularity A key strength of the reliability framework is its modular structure. Each subsystem acts
as an independent module within the BN, with its own set of variables and conditional relationships.
With this structure, the performance and reliability of individual components can be analysed separately
and then combined into a single system-level representation. Modularity also allows for updates or
extensions without needing a complete rebuild. New components, dependencies, or influencing factors
can be added as additional nodes or upgrading the already existing nodes with minimal changes to the
existing structure.

Flexibility Due to this flexibility, the framework can be easily adjusted to different system configu-
rations, operational scenarios, or levels of detail. For instance, if more detailed data on a specific
subsystem becomes available, that module can be refined independently while maintaining consis-
tency across the network. On the other hand, modules can be simplified when information is limited,
ensuring the framework remains useful even in data-scarce situations.

Scalability The model is scalable as it can be applied across terminals of different sizes, operational
capacities, and technological maturity. This scalability ensures that the same modelling principles can
be applied, regardless of the system size.

7.4. Limitations
Despite its strengths, the proposed framework has several limitations that should be addressed in future
research. Thesemainly concern data availability, model assumptions, and the simplified representation
of dynamic system behaviour.

Data realism and expert-based assumptions The BN relies on assumed conditional probabilities
for factors such as delay propagation, maintenance effects, and operator availability. These values
were defined based on engineering judgement and conceptual understanding of terminal operations,
rather than derived or fitted from empirical data. As a result, the model provides a qualitative represen-
tation of system behaviour rather than statistically validated performance estimates.

In modelling delay propagation, several simplifying assumptions were made to ensure the process was
manageable while keeping the results easy to understand. It was assumed that one delay’s impact on
another follows a proportional and consistent pattern. This means that a delay in one subsystem, like
QC operations, raises the chances of delays in related processes, such as HT or YC operations, in a
steady way. However, feedback loops and queuing dynamics were not explicitly modelled. External
factors, including weather, maintenance, and operators, were treated as separate contributors affect-
ing subsystem performance instead of changing variables over time. These assumptions allow the
framework to capture the main ways delay propagation occurs within the BN while keeping the model
easy to compute. However, they also restrict its ability to show complex time-related dependencies or
feedback effects that go in multiple directions.

For determining the scale and shape parameters, literature values were used. However, there was
variability within the literature. While the Mean Time Between Failures (MTBF) and Mean Time to
Repair (MTTR) are mentioned in the literature, it does not specify the size of the failure, leading into
different Weibull parameters. For maintenance modelling, this uncertainty also affects how the shape
and scale parameters are adjusted. For example, MTBF improvements and downtime penalties were
modelled using fixed scaling constants (𝐸𝐸𝑇𝐴, 𝐴𝐸𝑇𝐴, and PM duration) instead of data-fitted distributions.
Consequently, the model shows plausible relative trends but not absolute performance levels.
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Sampling and computational constraints Another limitation concerns the sampling process used
for forward inference and sensitivity analysis. Although a large number of Monte Carlo samples were
generated to ensure the stability of posterior probabilities, the results still depend on the chosen sample
size and random seed. The sample size was selected based on judgment and preliminary testing
rather than formal optimisation. Rare combinations of input conditions may not be fully captured in
the sampling process, which can lead to minor inaccuracies in very low-probability outcomes such as
severe delay scenarios.

Simplified maintenance modelling The model assumes all the equipment has the same mainte-
nance policy. This assumption of uniform policy effectiveness across equipment (QC, HT, YC) over-
looks manufacturer-specific or age-related differences. In reality, the frequency of the equipment being
used is also taken into account for maintenance. In this model, the equipment is assumed to be in use
with no stops, which can be a strong assumption for non-busy terminals.

While the maintenance sub-model introduces imperfect PM through parameter scaling, this formula-
tion remains highly idealized. It treats maintenance actions as deterministic modifiers of the Weibull
parameters rather than stochastic events with uncertainty. In reality, terminals often show varied main-
tenance effectiveness depending on part availability, technician skill, or wear state—all of which are
missing from the current model.

Another important point to mention is that the preventive maintenance frequencies are modeled cat-
egorically (weekly, monthly, yearly) without considering opportunistic scheduling between equipment.
Opportunistic maintenance, where preventive maintenance takes place when the system is not active,
can make a huge impact on the equipment availability.

So as a result of these limitations, the model effectively captures theoretical trade-offs (How more PM
leads into longer MTBF, and lower availability if overused) but underrepresents the logistical complexity
of maintenance in real terminals.

Discretization and binning assumptions The BN variables were discretized into three qualitative
states—Low, Medium, and High—to simplify interpretation and reducemodel complexity. This three-bin
structure was an assumed setting rather than derived from data. In practice, the number and placement
of bins can be determinedmore objectively using clustering techniques, which identify natural groupings
in continuous data (H. Liu et al., 2002). Applying such a data-driven approach could refine the model’s
sensitivity and improve how gradual changes are represented once sufficient empirical data become
available.

Static BN structure – lack of temporal dynamics The current BN is static. It shows average states
of reliability and delay, but it does not reflect changes over time. This limits its ability to capture ongoing
degradation, realistic maintenance planning, or track cascading failures in real time.

Operator and human factors simplification Operator availability is represented through a small
set of clear states, such as Shift and Strike. This assumes that all operators have the same skills
and that there are no effects from the learning curve or fatigue. This simplification was necessary for
analysis, but it oversimplifies human differences, especially in smaller terminals where staffing and
shift changes lead to significant reliability variations. Additionally, the BN currently treats human and
technical reliability as separate. In reality, operator errors and equipment wear and tear are connected.
For example, a mistake in operation can increase the chances of failure.

The current model does not explicitly represent automated terminal operations. However, automation
can be approximated by disabling or simplifying the operator-related nodes, effectively assuming con-
tinuous availability. Future extensions could include dedicated automation nodes to compare human-
operated and automated scenarios more systematically.

Structural and scope limitations The analysis focuses exclusively on the vessel�emptying process
rather than the full vessel turnaround cycle. This restriction simplifies the modelling of container flow
and subsystem interactions while keeping the process direction consistent from quay to yard. As a
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result, vessel loading and combined loading–discharging operations are not represented, which limits
the model’s ability to capture two-way interactions or overall turnaround performance.

The BN structure looks at the interactions between the quay, transport, and yard, leaving out gate, rail,
and hinterland operations. This focus isolates the main interdependent subsystems but overlooks the
potential spread of delays upstream and downstream.

In the model, weather only has an impact on the QC and is not included for the HT and YC subsystems.
Additionally, environmental factors like wind, rain, and visibility are modeled separately. The relation-
ships between them—such as how strong winds often come with reduced visibility—were not included.
This separate treatment simplifies the CPTs, but it makes the model less realistic in terms of extreme
weather situations.





8
Conclusion

This study developed a system-level reliability modelling framework that illustrates how failures, mainte-
nance activities, and operational disruptions propagate across interconnected subsystems in container
terminal operations. The aim was to combine reliability analysis with probabilistic reasoning to give
a better understanding of how technical and operational factors together affect delay behavior and
system performance.

The research showed that system reliability in dynamic operational environments can be effectively
assessed using a Bayesian Network (BN) framework. The BN captures probabilistic dependencies be-
tween equipment reliability, maintenance effectiveness, operator availability, and environmental con-
ditions, linking these factors to overall system performance. Through Conditional Probability Tables
(CPTs), the model quantifies how local failures, maintenance decisions, and external disturbances
propagate through the system to affect reliability, availability, and delay. Scenario and sensitivity anal-
yses identify the factors that most strongly influence these outcomes.

To explore the broader research aim in more depth, the study was guided by two sub-questions that
focus on different but related aspects of the proposed framework. The first looks at how to model
reliability at the system level, going beyond individual component failures. The second looks at how
the framework can be used to analyze the effects of maintenance, operational, and environmental
factors on performance.

Sub-question 1: How can reliability be modelled beyond component failures to capture system-
wide dependencies and operational disruptions?

The research expanded traditional reliability modeling by capturing interdependencies and cascading
effects between terminal subsystems. Using Fault Tree Analysis (FTA) as a structural foundation, the
BNwas developed to include both technical and operational factors. The initial base model represented
the key operational and environmental interactions within the terminal, with nodes for equipment failure,
subsystem availability, efficiency, and delay propagation. The top node, total delay, reflected the com-
bined system-level outcome resulting from these interactions. To represent subsystem efficiency, the
model included environmental nodes such as weather conditions affecting quay crane performance,
yard storage fullness representing yard crane congestion, and terminal busyness influencing horizontal-
transport operations. This structure explicitly links reliability parameters to time-based performance
effects. It shows how reliability loss appears as increased delays at the system level.

The complete model extended this framework by incorporating maintenance and operator performance
as additional influencing factors, providing a more realistic representation of system-level reliability and
delay behavior. These nodes directly affected equipment availability by capturing the impact of operator
efficiency and equipment health on performance. Preventive maintenance (PM) was modelled by mod-
ifying the probabilities of equipment failure and recovery. Maintenance effectiveness was represented
through Weibull based reliability parameters, where the scale (𝜂) and shape (𝛽) parameters were ad-
justed using maintenance effect multipliers to account for imperfect repair conditions. This adjustment
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allowed the model to capture how preventive actions extend the mean time between failures and re-
duce degradation rates over time, enhancing the network’s ability to reflect real-world maintenance
behavior.
Sub-question 2: How can system-level analysis be used to evaluate the impact of maintenance,
operator availability, terminal situation, and environmental factors on overall reliability and per-
formance?
The analysis phase looked at how maintenance, operator availability, terminal situation and environ-
mental factors affect behavior at the system level. The BN allowed for a thorough examination through
forward inference and sensitivity analysis. Forward inference was used to calculate the likelihood of
delay outcomes under specific operational and environmental conditions. It was used to analyze the
effects of different maintenance frequencies, operator efficiency, and external disruptions like weather
or congestion. Sensitivity analysis measured the impact of each variable on key performance indica-
tors, especially total delay and subsystem availability, by observing how changes in input probabilities
differed from a defined baseline.
The results showed that the BN effectively represented how disruptions in one part of the system
spread through interconnected subsystems. This leads to cumulative effects on overall reliability and
delay. The analysis also confirmed that the model’s predictions matched operational expectations. This
demonstrates its ability to capture realistic terminal behavior under different conditions. In practice,
this offers a structured method to test operational strategies and assess the effects of maintenance
or staffing changes before they happen. This approach supports better and more proactive reliability
management in terminal operations. It also demonstrates that the BN can serve as an efficient pre-
simulation layer, identifying the most critical scenarios and parameters to explore in more detailed
discrete-event or agent-based simulations.

Overall Contributions The proposed BN framework bridges the gap between traditional reliability
engineering and operational performance modeling by integrating technical, human, and environmen-
tal factors within a single structure. Unlike previous BN applications that focused mainly on safety or
resilience assessment, this framework explicitly links reliability states to operational delay behavior,
quantifying how failures and maintenance decisions influence system performance. It provides a deci-
sion support tool that helps analyze how local failures and operational disturbances propagate through
interconnected subsystems and influence overall delay behavior. Compared to simulation-based ap-
proaches, the BN allows much quicker exploration of scenarios and system behavior. It provides prob-
abilistic insights without the long runtimes of detailed simulations, making it practical for early-stage
planning and decision support.
The study addresses the limitations identified in existing approaches, which often model reliability and
operational performance separately or rely on component-level assumptions. The developed frame-
work unifies these domains by representing dependencies between maintenance, operator availability,
and environmental conditions as probabilistic relationships. Although it was created for container ter-
minals, the framework can be applied to other complex systems with limited data, where reliability loss
and operational performance are closely related.

Future Work Future research could build on the developed framework by adding temporal dynam-
ics through a Dynamic Bayesian Network (DBN). This would allow the model to capture how reliability,
degradation, and maintenance effects evolve over time rather than being represented as static re-
lationships. In parallel, Bayesian updating techniques could be implemented to continuously revise
probability distributions as new operational data become available, enabling the model to learn and
adapt over time. Such an extension would lay the foundation for predictive maintenance, where the
model anticipates equipment failures based on observed degradation patterns and schedules inter-
ventions before breakdowns occur. Cost-based optimization can also be included for evaluation of
maintenance policies, enabling a balance between reliability improvement and financial aspects. In-
cluding operator skill level as a probabilistic factor would enhance the model’s representation of human
performance. This would provide a better understanding of how workforce expertise affect the delay
behavior. Furthermore, incorporating operational data for empirical validation would allow for more pre-
cise calibration of the model. This would reduce reliance on expert estimates and improve the accuracy
and generalization across different operational conditions.
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Abstract:
This paper presents a system-level reliability modelling framework for container terminals
that integrates failure behaviour, maintenance, and delay propagation across interconnected
subsystems. System reliability modelling approaches such as Fault Tree Analysis (FTA) and
Reliability Block Diagrams (RBD) describe how component failures contribute to system failure
but cannot capture interdependent component behaviour, while simulation-based approaches de-
mand extensive data and computation. To address this gap, a Bayesian Network (BN) framework
is developed to represent probabilistic interactions between equipment reliability, maintenance
effectiveness, operator availability, and environmental variability. The model is applied to quay
crane (QC), yard crane (YC), and horizontal transport (HT) subsystems using Weibull-based
reliability parameters and imperfect maintenance formulations. Numerical analyses show that
moderate preventive maintenance schedules substantially improve availability and reduce total
delay, while excessive maintenance yields diminishing returns. Horizontal transport acts as the
key coupling path for delay propagation. The approach is modular and applicable to other
terminal configurations or comparable complex systems, supporting maintenance planning and
scenario analysis.

Keywords: Bayesian Networks, System-level reliability, Container terminal, Delay propagation,
Preventive maintenance

1. INTRODUCTION

Reliability is essential for maintaining the safety and effi-
ciency of complex industrial systems. It reflects a system’s
capacity to perform as intended under defined condition
and directly influences operational stability, cost efficiency,
and service quality [Rausand and Høyland, 2004].

System reliability modelling approaches such as Reliability
Block Diagrams (RBD) and Fault Tree Analysis (FTA)
provide structured ways to assess failure logic and overall
reliability. However, they are not suited for analysing dy-
namic, interdependent behaviour in complex operations.
They typically assume static system states and do not
reflect how degradation, maintenance, and operational dis-
ruptions evolve or interact over time. In reality, complex
industrial systems function as tightly coupled networks
where technical components, human actions, and exter-
nal conditions continuously interact. Failures or inefficien-
cies in one part can propagate through shared processes,
creating bottlenecks, cumulative delays, and performance
losses.

Probabilistic and simulation-based approaches have been
developed to address these limitations. Bayesian Networks
(BNs) combine probabilistic reasoning with a graphical
representation that captures causal relationships and un-
certainty [Langseth and Portinale, 2007]. Simulation mod-
els, such as discrete-event and agent-based approaches, can
reproduce detailed process interactions and delay propaga-

tion [Carlo et al., 2014, Dragović et al., 2017, Park et al.,
2024], yet they require extensive data and computation,
making them less practical for rapid scenario evaluation
or early-stage decision support.

This paper presents a system-level reliability framework
that integrates technical, human, and environmental fac-
tors to analyse how disruptions propagate through inter-
connected subsystems. The framework is designed to be
modular and applicable to other complex systems charac-
terized by interacting reliability, maintenance, and opera-
tional factors. A container terminal is used as a case study
to demonstrate the approach, as it provides a realistic
setting with strong subsystem dependencies between quay
cranes (QC), horizontal transport (HT), and yard cranes
(YC).

The research is guided by the following questions:

• RQ1: How can reliability be modelled beyond com-
ponent failures to capture system-wide dependencies
and operational disruptions?

• RQ2: How can system-level analysis be used to eval-
uate the effects of maintenance, operator availability,
and environmental factors on overall reliability and
performance?

2. RELATED WORKS

System reliability analysis has traditionally relied on de-
terministic methods such as FTA and RBD to assess



component-level reliability and identify critical failure
paths [Friederich and Lazarova-Molnar, 2024, Rausand
and Høyland, 2004]. While these techniques remain foun-
dational, they primarily capture static relationships and
are limited in addressing uncertainty propagation across
subsystems. BNs extend these approaches by combining
probabilistic reasoning with a graphical representation,
allowing for inference under uncertainty and integration of
both data and expert judgment [Langseth and Portinale,
2007].

Delay propagation has been widely studied in other trans-
portation domains such as aviation and rail networks [Liu
and Ma, 2008, Ulak et al., 2020], where BNs have been used
to trace how disruptions evolve through interconnected
subsystems. However, comparable research in container
terminals remains limited. Most performance analyses rely
on simulation-based approaches to study congestion, re-
source allocation, and vessel scheduling. Discrete-event
simulation (DES) and agent-based modeling (ABM) dom-
inate terminal performance research due to their ability to
capture detailed operational dynamics and process interac-
tions [Carlo et al., 2014, Dragović et al., 2017, Yang et al.,
2004, Park et al., 2024]. While these methods provide
high realism, they require long computation times and
detailed data that are often unavailable in early analysis
stages. Consequently, simulation models are less suited
for rapid reliability assessments or probabilistic reasoning
under uncertainty.

In the maritime and port context, BNs have been applied
primarily to assess operational safety, risk, and resilience
rather than performance and delay propagation. Alyami
et al. [2019] developed a fuzzy-rule-based BN for port risk
analysis, while Hossain et al. [2019] used a BN framework
to evaluate port resilience and recovery performance. Sim-
ilarly, Wang et al. [2023] applied a BN model to study
port robustness and flexibility. These studies highlight the
versatility of BNs in modelling uncertainty and complex
interactions but generally focus on safety and resilience
metrics rather than operational reliability.

This study contributes to the literature by proposing an
integrated probabilistic framework that links reliability
behaviour, maintenance strategies, and delay propagation
within a single BN structure. The framework is modu-
lar and flexible, enabling system-level reliability analysis
across different container terminal configurations as well
as other complex operational systems where technical,
human, and environmental factors interact.

3. MODEL DESCRIPTION

3.1 Methodology

The proposed framework integrates FTA with BN to
evaluate system-level reliability and delay propagation in
complex operational environments. FTA decomposes the
top event—total operational delay—into its contributing
causes and intermediate failure mechanisms. These logical
relationships are then translated into probabilistic depen-
dencies within the BN, allowing for quantitative reason-
ing under uncertainty. Forward inference and sensitivity
analysis are applied to evaluate system performance un-

der varying maintenance, environmental, and operational
conditions.

3.2 System Description

The methodology was implemented for a container termi-
nal, which serves as the transfer point between maritime
and inland transport, where containers are moved between
vessels, storage yards, and external trucks or trains. Ter-
minal operations are organized into several interconnected
stages that must function in coordination to maintain
efficient cargo flow.

The process starts with handling vessels at the quay,
where quay cranes (QC) lift containers on and off ships.
After unloading, horizontal transport (HT) vehicles, such
as terminal tractors (TTs) or automated guided vehicles
(AGVs), transfer containers to the storage yard. In the
yard, yard cranes (YC), typically rubber-tyred or rail-
mounted gantry cranes, stack, retrieve, and rearrange
containers. This system creates a closed operational loop
where the quay, transport, and yard subsystems rely on
each other. Disruptions in any part can delay the entire
process and impact vessel turnaround time.

To represent these dynamics, the developed framework
models three main subsystems: QC, HT, and YC. Each
one is modelled based on its reliability, availability, and
efficiency, showing how technical performance and envi-
ronmental conditions affect overall system output. Gate
operations and external logistics processes are not included
in the analysis since they mainly serve as boundaries and
do not directly influence the internal coordination between
quay and yard operations. The analysis focuses on the
vessel-emptying phase of operations. Figure 1 illustrates
the container terminal layout, with the red box indicating
the modelled scope.

Fig. 1. Container terminal system overview (adapted from
Voss et al. [2004])

3.3 Node Categories

Each subsystem (QC, HT, YC) contains nodes represent-
ing equipment health, availability, efficiency, and operator
status, which together determine delay outcomes. In the
base model, the BN includes only technical and environ-
mental dependencies, while the complete model extends
this structure by incorporating preventive maintenance
and operator availability nodes. Figure 2 illustrates the
overall BN structure.



Fig. 2. Simplified BN structure showing QC, HT, and YC interconnections

The BN consists of the following node categories:

• Equipment Health: Represents the probability of
technical failure for QCs, HTs, and YCs, modelled
using a Weibull distribution. It connects directly to
availability nodes, linking mechanical condition to
system operability.

• Availability: Expresses the expected fraction of op-
erational time for each subsystem, discretised into
low, medium, and high states.

• Efficiency: Captures subsystem performance un-
der environmental and congestion-related constraints.
QC efficiency is affected by wind, rain, and visibility;
HT efficiency depends on terminal busyness; and YC
efficiency is influenced by yard storage utilisation.

• Operator Availability: Represents the presence of
qualified personnel for each subsystem, distinguish-
ing between day/night shifts and strike conditions.
Availability is set to zero during strikes and slightly
reduced at night.

• Delay Nodes: Defines performance outcomes at
both subsystem and terminal levels (low, medium,
high). Each subsystem’s delay depends on its avail-
ability, efficiency, and interdependencies with other
nodes, while the total delay node aggregates their
combined effects on terminal performance.

3.4 Equipment Health Modelling (Base Model)

In the base BN, equipment health is modelled using a
Weibull distribution representing the probability of failure
over time. The distribution is characterized by the scale
parameter η (characteristic life) and the shape parameter
β (failure-rate trend). The mean time between failures
(MTBF) is derived as:

MTBF = η Γ

(
1 +

1

β

)
,

where Γ(·) denotes the Gamma function.

Only corrective maintenance is considered in the base
model. When a failure occurs, the equipment is repaired
and restored to full operation, starting a new reliability
cycle without accumulated degradation. To reflect the
effect of equipment ageing, different η and β values are

assigned to new, mid-life, and old equipment categories,
based on literature-informed assumptions about degrada-
tion in container-handling equipment. Higher η and lower
β represent newer, more reliable equipment, whereas lower
η and higher β indicate accelerated wear in older assets.

Equipment availability (A) is calculated from the relation-
ship between MTBF and the mean time to repair (MTTR)
as:

A =
MTBF

MTBF +MTTR
This expression provides the proportion of time that
equipment remains operational, combining the effects of
both reliability and repair duration.

3.5 Maintenance Modelling (Complete Model)

In the complete BN, preventive maintenance (PM) is
incorporated into the model. Three PM levels are con-
sidered—minor, medium, and major—corresponding to
increasing intervention scope and downtime. Each level is
assigned a frequency policy (None, Weekly, Monthly, or
Yearly), which determines the expected number of inter-
ventions per year nt for type t ∈ {minor, medium, major}.
Event durations are equipment-specific (e.g., QC: 2/6/24
h; YC: 3/6/20 h; HT: 1/2/4 h for minor/medium/major),
yielding a total planned PM time:

TPM,year = nminor tminor + nmedium tmedium + nmajor tmajor

Per-event improvement multipliers (eη, eβ) capture the
average rejuvenation effect on the Weibull scale and shape
parameters (e.g., minor: eη=0.10, eβ=0.05; medium: 0.25,
0.15; major: 0.60, 0.30). To combine multiple PM types
and frequencies without overestimating gains, the cumu-
lative annual effectiveness is calculated as:

Eη = 1−
∏

t∈{minor, medium, major}

(1− eη,t)
nt/FN , (1)

Eβ = 1−
∏

t∈{minor, medium, major}

(1− eβ,t)
nt/FN , (2)

where the frequency normalization factor FN=12 limits
asymptotic growth.

PM effects are applied through a virtual-age formulation
based on Kijima’s Type I model, representing an imperfect



repair process in which maintenance partially restores
but does not fully renew equipment condition (Kijima
[1989]). Per-event restoration fraction is expressed with ρt
(e.g., ρmin=0.10, ρmed=0.30, ρmaj=0.60). The retained-age
fraction over one year is given by:

ϕ = (1− ρmin)
nmin/FN (1− ρmed)

nmed/FN (1− ρmaj)
nmaj/FN

The updated Weibull parameters are then calculated as:

η′ =
η0
ϕ
, β′ = β0 [1−min(BβEβ ,max drop)] ,

where Bβ is a sensitivity coefficient and max drop limits
the reduction in β (e.g., 0.30).

Given T yearly operating hours, the expected number of
failures per year f (under minimal repair between PM
events) satisfies:

f =

(
T − TPM,year − f ·MTTR

η′

)β′

, (3)

which is solved iteratively. The resulting operational avail-
ability is expressed as:

A = 1− TPM,year

T
− f ·MTTR

T
.

PM policies affect the Equipment Health node by updating
(η, β) → (η′, β′), and influence the Availability node
through TPM,year and f , thereby propagating their effects
to subsystem and total delay nodes in the BN.

4. NUMERICAL RESULTS

The Bayesian Network model was implemented in Julia
using the BayesNets.jl package. Forward inference was
applied to compute posterior delay probabilities under dif-
ferent subsystem and maintenance states, while sensitivity
analysis quantified the relative influence of each node on
total delay.

4.1 Base Model

The base BN captures the core subsystem dependencies
(QC, HT, YC), environmental effects (wind, rain, visibil-
ity), and terminal situations such as terminal and storage
busyness. Maintenance and operator factors are excluded
to establish a neutral reference scenario.

Delay Propagation. Delay propagation was examined
to quantify how local disruptions spread through inter-
connected subsystems. The BN structure explicitly cap-
tures these causal links: QC delay depends on HT avail-
ability, while HT delay is influenced by YC performance
through container handover constraints. By conditioning
the network on specific delay states—such as setting HT
delay (Loaded) or YC delay to a high level—the resulting
posterior probabilities reveal how congestion or equipment
failures in one area propagate across the terminal.

The analysis shows that high delays in HT (Loaded)
produce the strongest cascading effects, increasing the
probability of severe total delay by more than 150%
relative to baseline conditions. YC delays also propagate
upward, raising HT delays by approximately 80% and total
delay by 130%. In contrast, QC delays, though critical
for vessel operations, have a more localized impact, as
their influence mainly effects the quay-side interface. These

Fig. 3. Delay propagation between subsystems

results highlight the central role of horizontal transport
as the main coupling mechanism between quay and yard
operations.

Equipment Ageing. The influence of equipment age
on reliability and availability was evaluated using age-
dependent Weibull parameters for new, mid-life, and old
equipment categories. As shown in Figure 4, availability
decreases gradually with age across all subsystems, re-
flecting the cumulative effects of wear, fatigue, and more
frequent corrective repairs.

Fig. 4. Availability state distribution for new, mid-life, and
old equipment

QC availability declines from approximately 97% for new
units to 95% for older ones, while YC availability drops
from 94% to 91%. HT follows a similar but slightly less
pronounced trend.

As subsystem availability decreases, the likelihood of se-
vere delay states increases, emphasizing the importance of
timely maintenance and replacement planning to sustain
operational reliability. The effect of availability on overall
delay performance is shown in Figure 5.

Fig. 5. Equipment availability sensitivity

When HT availability decreases from high to low, the
probability of severe total delay increases by more than
18%, reflecting its central role in maintaining continuous



container flow. YC availability also has a noticeable im-
pact: low YC availability increases YC delay by about
22% and indirectly raises total delay by nearly 8%. In
contrast, QC availability has a smaller system-wide effect,
since disruptions are partially absorbed by the buffering
capacity of the horizontal transport subsystem.

4.2 Complete Model

The complete model extends the base BN by including
operator availability and preventive maintenance effects,
representing the two main controllable factors in terminal
operations. This enhanced version captures how human
performance variability and maintenance schedules affect
subsystem reliability, downtime, and total delay propaga-
tion.

Operator Impact. Operator-related effects were ana-
lyzed to assess how variations in staffing and labour disrup-
tions influence subsystem and total delays. Two scenarios
were modelled: normal shift operations (day and night)
and strike conditions that represent complete operator
unavailability. Table 1 summarises the relative change in
delay probabilities compared with the baseline day-shift
scenario.

Table 1. Scenario-based delay comparison rel-
ative to baseline.

Scenario QC (%) YC (%) HT (%) Total (%)

Strike +111.8 +110.2 +159.4 +108.3
Night +6.3 +0.2 -0.2 +1.8
Baseline +0.0 +0.0 +0.0 +0.0

The results show that strike conditions have a severe im-
pact across all subsystems, with total delay more than dou-
bling relative to baseline. QC operations are most affected
due to their reliance on certified operators. In contrast, the
night shift scenario produces only minor deviations, with
total delay increasing by less than 2%, reflecting slightly
reduced staffing efficiency and coordination speed. These
findings indicate that while normal shift variation has a
limited influence on system performance, labor disruptions
such as strikes can severely constrain terminal operations.

Maintenance Portfolios. The effect of different preven-
tive maintenance (PM) strategies was evaluated through
a portfolio-based analysis combining maintenance level
(minor, medium, major) and frequency (weekly, monthly,
yearly). Figure 7 illustrates the results for QC, the most
reliability-critical subsystem. The figure compares the
share of planned and unplanned downtime for each PM
policy, showing how preventive interventions shift total
downtime composition.

The baseline scenario without preventive maintenance (No
PM) yields an availability of about 82%, with approxi-
mately 18% of total operational time lost to corrective
repair. Introducing medium-level weekly PM increases
availability to 95%, reducing unplanned downtime by more
than 1,100 hours per year. Moderate portfolios such as
Minor Weekly + Medium Monthly achieve nearly the
same improvement (around 94%) with far less planned
maintenance effort, representing the most efficient balance
between maintenance workload and reliability gain. In
contrast, heavy portfolios such as Major Weekly produce

diminishing returns; although failures nearly disappear,
excessive planned downtime reduces overall availability to
below 86%.

Fig. 6. PM Strategy Percentage Improvement

These improvements in equipment availability translate di-
rectly into operational performance, as shown in Figure 6.
Comprehensive (Minor weekly + Medium monthly + Ma-
jor yearly) and moderately frequent PM strategies produce
the largest reductions in total delay, with diminishing
returns beyond a certain intervention level. The figure
demonstrates that moderate PM portfolios not only min-
imise unplanned downtime but also yield the most signif-
icant delay reduction relative to maintenance effort. This
highlights how reliability improvements achieved through
preventive maintenance propagate through interconnected
subsystems, ultimately influencing delay performance at
the terminal level.

Similar trends were observed for HTs and YCs. For HT,
the short repair time and built-in redundancy make light,
frequent maintenance most effective, while YC perfor-
mance responds best to medium-frequency policies. These
consistent patterns confirm that moderate, regular PM of-
fers the highest efficiency in maintaining system reliability
without excessive downtime.

5. DISCUSSION

The proposed BN framework is modular and flexible,
allowing new components or dependencies to be added
without altering the overall structure. It is suitable for
terminals of different sizes, degrees of automation, and
operational settings, and can be extended to other com-
plex systems beyond port operations. Unlike traditional
methods such as FTA or RBD, the BN approach can
represent probabilistic dependencies and uncertainty prop-
agation between subsystems, offering a more integrated
view of system reliability and performance. The framework
can be used for rapid scenario exploration and reliability
assessment without the heavy data and runtime demands
of full simulation models.

Despite these advantages, the model remains constrained
by the number of simplifying assumptions required for
its implementation. Several input parameters, such as
maintenance effectiveness and operational dependencies,
were derived based on expert judgment rather than from
consistent field measurements. Subsystem relationships
were treated as static instead of changing over time. These
simplifications lower quantitative accuracy and restrict the
model’s capability to capture feedback effects.



Fig. 7. QC downtime distribution under different preventive maintenance policies

Future efforts should focus on integrating empirical data
and dynamic models to enhance accuracy and support
predictive reliability analysis in actual operational set-
tings. A Dynamic Bayesian Network (DBN) can be used
to capture how reliability, degradation, and maintenance
effects evolve over time. Furthermore, integrating Bayesian
updating could further strengthen the approach by allow-
ing probability distributions to adapt as new operational
or maintenance data become available, improving accuracy
through continuous learning.

6. CONCLUSION

This work introduced a probabilistic framework for an-
alyzing system-level reliability in container terminal op-
erations. Building on Fault Tree Analysis (FTA) struc-
ture, the Bayesian Network (BN) approach captures how
technical reliability, maintenance actions, and operational
conditions interact within a single structure. Its modular
design makes the framework flexible and transferable, al-
lowing extensions to different terminal configurations and
other complex, interdependent systems. Beyond providing
quantitative reliability assessment, it offers a practical
basis for decision support by linking engineering insight
with probabilistic reasoning.

The results show that preventive maintenance plays a
decisive role in improving equipment availability, although
overly frequent interventions lead to diminishing returns
due to excessive planned downtime. HT acted as the
key coupling element between quay and yard systems,
driving the propagation of operational delays. Operator-
related disruptions, particularly strikes, had an immediate
and severe effect, highlighting the vulnerability of labour-
dependent processes.

Overall, the framework provides a foundation for linking
reliability analysis with operational performance. By cap-
turing the interactions between technical, human, and en-
vironmental factors, it offers a systematic way to interpret
and predict how local disruptions translate into system-
wide delays.
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B
Environmental Node Modelling

In order to determine the Conditional Probability Tables (CPTs) for weather nodes, daily weather data
was obtained from Koninklijk Nederlands Meteorologisch Instituut (KNMI), 2025 open data archive, as
an example data. The dataset contains daily weather measurements for station 344, located in the
Rotterdam region, and includes data ranging from October 1956 to April 2025. During the analysis,
only the last 5 years was included.

B.1. Wind
High and extreme wind conditions can cause increased container sway, reduced crane precision, and,
in severe cases, temporary shutdowns for safety. The Beaufort level is a standardized scale used to
describe wind strength based on observed effects or measured wind speed, ranging from 0 (calm) to
12 (hurricane force), widely used in maritime operations (National Weather Service, 2023). Table B.1
outlines the thresholds used to classify wind risk levels.

Beaufort Level Wind Speed (m/s)
6 – Strong Breeze 10.8 – 13.8
7 – Near Gale 13.9 – 17.1
8 – Gale 17.2 – 20.7
9 – Strong Gale 20.8 – 24.4
≥10 – Storm+ > 24.5

Table B.1: Wind classification based on the Beaufort scale. Wind speeds are 10-minutemeansmeasured at 10m height (adapted
from van den Bos, 2015).

In general, international standards and port authorities assume that ports remain operational under
wind conditions up to Beaufort scale levels 6 to 8 (van den Bos, 2015). At Beaufort 6 and 7, port-
specific policies vary: some terminals may continue operations with caution, while othersmay choose to
suspend crane activity depending on equipment type, wind direction, and safety margins. While crane
drivers are generally able to correct for sway caused by head-on winds, skew—especially from diagonal
winds—is more difficult to manage and may lead to operational inefficiencies. Crane operations are
typically suspended from Beaufort 8 onward, as wind speeds at this level pose significant safety risks
and can cause uncontrollable sway and skew of suspended containers (van den Bos, 2015).

According to data found online, over a 14-year period, 445 days had wind over 11.8 m/s (roughly Beau-
fort 6) and 27 days had winds over 17 m/s (roughly Beaufort 8). Table B.2 summarizes the estimated
Quay Crane (QC) efficiency levels under increasing wind conditions, reflecting practical limits informed
by terminal practice and safety standards.
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Beaufort Level Estimated QC Efficiency Occurrence Probability
Beaufort 6–7 50% 8.7%
Beaufort 8 or higher 0% 0.3%

Table B.2: Estimated QC efficiency and occurrence probability under high wind conditions based on Beaufort classification

B.2. Rain
Daily precipitation data (in 0.1 mm increments) from the KNMI dataset was analyzed to classify each
day according to rainfall intensity. Table B.3 defines the thresholds used to distinguish between rain
categories such as Light, Moderate, and Heavy. Based on this classification, Table B.4 presents the
probability of each rain category occurring on a given day during the observation period from 2020 to
2025.

Rain Category Daily Precipitation (mm)
None 0 mm
Light 0.1 – 2.0 mm
Moderate 2.1 – 10.0 mm
Heavy > 10.0 mm

Table B.3: Classification criteria for daily rain categories based on KNMI precipitation data

Rain Category Probability (%)
None 37.11
Light 33.66
Moderate 21.07
Heavy 8.16

Table B.4: Probability of daily rainfall categories based on KNMI station 344 (Rotterdam) data from 2020 to 2025.

This classification aims to capture the potential operational impact of rain on QC activities. Table B.5
presents the estimated QC efficiency ranges associated with each rain category.

Rain Category Estimated QC Efficiency
None 100%
Light 98%
Moderate 85%
Heavy 70%

Table B.5: Estimated QC efficiency under different daily rain conditions based on observed precipitation

B.3. Visibility
For determining the visibility, the minimum (VVN) and maximum (VVX) daily visibility values, measured
in tenths of kilometers, were used. Data was converted to kilometers. Days were classified into four
fog categories: Clear, Light Fog, Normal Fog, and Dense Fog. Fog classification criteria based on daily
minimum and maximum visibility can be found in Table B.6.

Fog Level Classification Criteria
Clear Minimum visibility > 1.0 km
Light Fog Minimum visibility ≤ 1.0 km and > 0.5 km
Moderate Fog Minimum visibility ≤ 0.5 km and > 0.2 km
Dense Fog Minimum visibility ≤ 0.2 km and maximum visibility ≤ 0.5 km

Table B.6: Fog classification criteria based on daily minimum and maximum visibility

The relative frequency of each category was computed to derive the fog level probabilities used in the
BN model can be found in Table B.7.
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Fog Level Probability (%)
Clear 86.37
Light Fog 3.45
Moderate Fog 4.93
Dense Fog 5.25

Table B.7: Fog level probabilities based on daily visibility data from KNMI (station 344, 2020–2025).

Fog can impact QC efficiency due to visibility-related challenges such as reduced spreader alignment
accuracy. Table B.8 summarizes the estimated efficiency levels associated with each fog category
based on observed visibility data.

Fog Level Estimated QC Efficiency
Clear 100%
Light Fog 98%
Normal Fog 90%
Dense Fog 70%

Table B.8: Estimated QC efficiency under different fog conditions, based on daily minimum and maximum visibility data
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