
The optimal meander planform shape from 

minimization of entropy production 

Prans Buschman 

April 5, 2004 



2 



Summary 

AU over the world natui'al lowland rivers and streams are winding tlii'ough the 
sediments deposited in earlier times. These meandering rivers and streams show 
remarkable geometric similaiity: the ratio of the meander length to the width 
of the channel is constant. The process of meandering is thus independent of 
scale. 

Many theories and models ai'e proposed to explain the process of meandering, 
but still meandering is not completely understood, due to the complexity of the 
processes involved. The valley slope, banldull discharge, sediment transported, 
vegetation growth, and bed material all influence the processes of meandering. 
Moreover they are rarely uniform and the conditions usually change with time, 
because of changing geology, climate or activities by man. Consequently, the 
sinuosity of a meandering channel is difficult to predict. To explain the behavior 
of meandering channels, St0lum [1996, 1998] proposed that meandering can be 
described with the self-organizing process: clusters of cut-offs of the meander 
planform tend to cause a transition from active meandering with many cut-off 
events into a stable, more ordered state without cut-offs. After some time, the 
channel may change into the active state, i f a cluster of cut-offs happens at 
for example high dischai'ges. In this way stabihzed meandering channels with 
constant planform shape can be found in most natm-al river reaches, i f sufficient 
time is present to adapt to the conditions. For a meandering river the timescale 
of the chamiel in stable state is likely to be hundreds of years. 

In nature, these stabihzed meandering channels show two asymmetries in 
their planform resulting from the interaction of flow and form: an upvalley 
skew of the meandering channel's minima and maxima and a delayed inflection 
point. Another planform characteristic is fattening with respect to a first order 
sine-generated cm-ve. In this research attempts were made to derive this optimal 
planform shape given the sinuosity from minimization of entropy production. 
Entropy is constantly produced in an open channel by friction. Prigogine [1945] 
stated that linear thermodynamic systems close to equilibrium evolve toward a 
stationary state characterized by the minimum entropy production compatible 
with the constraints imposed on the system. This statement is extended by 
Reiser [1996, 1998] to be valid for open, non-Unear systems like meandering 
channels as well. 

The problem of finding the optimal meander planform shape is reformulated 
as an optimal control problem. I n this problem the dimensionless Odgaard 
model is used to describe the flow in alluvial meandering channels. The optimal 
meander planform is calculated from minimization of total entropy production 
over one meander period. To find this optimal shape, the control or the cur-
vatm-e at the centerhne is changed at every longitudinal location. At every 
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longitudinal point the states and entropy production are derived from this con
trol by numerical integration. W i t h tliis model, no assumptions are made about 
the planform shape and the channel is free to flow in the most efficient way. 
For a sinuosity of three, a result was obtained, which exhibits most typical 
characteristics of natural, alluvial meanders. 



Preface 

In May 2003 I started to explore the world of meandering. Soon it was clear 
for me that many theories based on different principles were proposed to un
derstand the process of meandering. The processes are complex and not com
pletely understood. I t was a challenge to understand the different theories and 
to improve them. In the beginning of this study, I focused on the sinuosity of 
meandering rivers. I t became clear that many factors influence this variable 
and a prediction seems to be very difficult. Then it came out that the article 
by Ryan Teuling, SchaUc-Jan van Andel and Peter Troch submitted to water 
resom-ces research was not accepted. In this article the meander planform is 
derived from an entropy principle. In my study a shghtly difiierent entropy prin
ciple was used. Tliis was the result of three days of presentation and discussion 
with a thermodynamic expert: Bernard Reiser. The main reason for not ac
cepting the article, was the assumption that prescribes the meander plairform. 
Therefore we changed the focus of my research into the planform shape of al
luvial meanders. I tried to find extra equations, wiiich have to be satisfied for 
a stabilized meandering channel with minimal entropy production. These are 
Euler-Lagrange equations and we thought of ways to implement these into the 
calculation scheme of the article to circmnvent the assumption about the plan-
form shape. I tried to thinlt of different nmnerical calculation schemes, but that 
was trying to repeat many years of developing variational methods. Lucidly I 
came into contact with Gerard van WUligenburg, who is a variational methods 
expert of the systems and control group of the department Agrotechnology. The 
problem of finding the meander planform shape appeai-ed to be an optimal con
trol problem. We reformulated the problem and after many attempts one result 
showed the typical chai'acteristics of natm-al, alluvial meandering channels. 

This was my first thesis and I learned very much; not only about meander
ing, but also about writing a scientific report in English and about the ups and 
downs inherent to doing research. I am very thanldul for the friendly, scien
tific atmosphere in the hydrology and quantitative water management group. 
Everybody is wilhng to help by answering questions and giving ideas. In the 
first place I would Uke to thanlc both my supervisors Peter Troch and Gerard 
van WiUigenbm-g for their comments and suggestions and Ryan TeuUng for al
ways being ready for questions and sharing liis ideas. Special thanl<;s for the 
hydrology and quantitative water management group go to Paul Torfs, who was 
always present to solve mathematical problems with me, Patrick Bogaai't, the 
geomorphologist and Hidde Leijnse, who helped me with LateX and matlab 
often. Ei'om outside the Wageningen University I would like to thaiUc Bernard 
Reiser, Erik Mosselman (WL) and Koen Blanclcaert. 
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List of symbols 

a constant in equation 3.10 tliat follows from AIV- --

a' 
4 
constant described in AIlI-3a — 

b constant in equation 3.10 that follows from AIV-
A 

— 

y 
4 
constant described in AIII-3b 

c cruvatm-e 
c' constant described in AIII-3c 
C Chézy coefficient ^0 .5g- l 

Cc curvature at the centerline 
fattening paiameter -

skewing parameter — 

d local depth m 

d' fimction defined in equation AIII-13 -

D particle diameter m 

Ei internal energy J 

FD particle Eroude number -

9 gravitational acceleration on earth 9.81 

9' function defined in AlII-10 -

h Chebyshev coefficients, subscript denotes order 
H Chebyshev polynomials, subscript denotes order 
L meandering channel's length m 

m velocity profile exponent -

n transverse length m 

r radius of curvatm-e m 

rc radius of curvature at the centerhne m 

s longitudinal length 

So channel slope — 

S entropy 

ST transverse bedslope 

STC transverse bedslope at the channel's centerhne -

T absolute temperatm'e K 

V velocity vector ms^^ 

Vs longitudinal velocity ms^^ 

Vn transverse velocity ms"^ 

Vns transverse velocity at the surface ms~^ 

Q discharge 
w channel's width m 
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We effective width of the channel, no bankflow m 
X length in X-direction m 
y length in Y-direction m 
z length in Z-direction (vertical) m 
a ratio of projected sra'face area to volume for a — 

sediment particle divided by that for sphere of 
the same volume 

13 angle of the channel's cross direction n with val- rad 
ley axis 

e Idnematic eddy viscosity m?s~^ 
C, scahng factor used in Euler-Lagrange explana- — 

tion 
0 deviation angle of chamiel wi th vaUey axis rad 
6Q deviation angle at inflection point rad 
9' Shield's parameter — 
K von Kai-man's constant 0.4 ^ 
A meander wavelength m 
p fluid density kgm~^ 
Ps density of sohd kgm^^ 
a entropy production Jm~^K~^s^^ 
atot total entropy production of one meander period JK~^s~^ 
acs entropy production in a cross section Jm~^K^^s~^ 
T stress tensor Nm~'^ 
(j) phase along the channel 2-KS/L rad 
UJ specific streampower Wm^"^ 
c subscript to denote variable at the centerhne 
0 subscript to denote variable at the centerhne 
„ subscript that gives order of Chebyshev polyno-

miah 0 , 1 , . . . , 12 
superscript to denote dimensionless variable 
superscript to denote var-iable averaged over the 
depth 
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Chapter 1 

Introduction 

AU over the world natural lowland rivers and streams are winding thi-ougli the 
sediments deposited in earher times. Straight alluvial channels longer than 
about 10 to 12 times their width are rare [Odgaard, 1986a], irrespective of 
scale or boimdaxy material. This winding is called meandering after the river 
Büyükmenderes in Turkey. Tliis widely seen natm-al phenomenon has intrigued 
many researchers. Many theories and models are proposed to explain the pro
cess of meandering, but still meandering is not completely imderstood, due 
to the complexity of the processes involved. The most important determining 
quantities are the discharge and the vaUey slope, but also soil characteristics, 
vegetation cover, sediment load in the channel and the cUmate in the catchment 
area influence the process. 

Despite the complexity of the meandering processes a natm'al meandering 
channel often evolves towards an equihbrium planform shape [Hooke, 2003]. 
Most bends in rivers and streams have not reached this equiUbrium yet or wiU 
never reach i t , partly because of changing conditions with time. But rivers and 
streams with constant properties, like constant valley slope and homogeneous 
bed material, develop a number of bends with similar' equihbrium planform 
shape. This process shows self-similarity of meander geometry over a wide 
range of scales and environmental conditions [Knighton, 1998]. For example 
top-views of the Amazone river in Brazil and the Geul brook in the Netherlands 
caimot be distinguished on their planform shape, while one bend of the Amazone 
river is 250 times laxger than one bend of the Geul brook. This geometric 
similarity makes the derivation of the meander planform shape useful. For a 
given ratio of channel length to valley length, i t is likely that a natm'al aUuvial 
meandering channel evolves towards the most probable planform shape, which 
is the dynamic equilibrium planform shape of meandering rivers, broolcs and 
streams. This ratio is termed sinuosity and is equivalent to the ratio of vaUey 
slope to channel slope. I t is a measure for the wiggliness of a channel. 

For all these different sinuosities the meander planform shape is asymmetric 
[Carson and Lapointe, 1983]. This asymmetry can be demonstrated with one 
period of the Mississippi river's planform, see figure 1.1. This bend clearly shows 
that its maximum and minimum are not in the middle of the bend, but a httle 
shifted upstream. 

In our civiUzed world the natm'al bending planform shape of a meandering 
channel is often not desirable from economic point of view. A straight channel 
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12 CHAPTER 1. INTRODUCTION 

Figure 1.1: One period of the Mississippi river at Greenville, USA before arti
ficial cut-ofl:s with the maximuin and minimum sliifted upstream. The fiow is 
from left to right and the meander wavelength is 8 km. Modified after Teuling 
[2002] 

is more efiicient for shipping transport. Moreover meandering channels change 
their paths in downstream direction. A channel should be stationary for many 
pm-poses, for example the land alongside the channel can be used for living or 
economic activities. For these reasons man has exerted considerable influence 
on rivers and streams and only in more remote ai-eas large natm-al meandering 
rivers can be foimd. Another more indirect affect is the man induced change of 
land use in the catchment ai-ea. I t often increases the peak discharge, because 
less water is stored than in the natural situation. These interferences by man 
are likely to affect the planform shape of a meandering channel seriously. 

The aim of this research is to predict a meandering chamiels equihbrium 
planform shape for a given sinuosity. The research is mainly fundamental, but 
one could thinlc of practical use in meander restoration programmes. Many 
channels in Western Europe are straightened in the seventies and eighties for 
economic reasons. A current tendency is to retm-n to natural meandering chan
nels, because natm-aUy flowing brooks and rivers are considered to be more 
important than they were in earher times. The meandering planform shapes 
are remade hke they were before the straightening. Nowadays the planform 
shape of these newly created meanders is read from old topographical maps or 
soil m-aps. A.n easy alternative to find the meander planform shape from miaps 
is the derivation of the equilibrium meander plaifform shape from the sinuosity. 

This report is focussed on the derivation of the meandering channel's plan-
form shape, but also the factors that determine the sinuosity are highlighted. 
After this introduction the important processes of meandering are summarized 
in the chapter concepts in meandering. All the basic concepts and theories 
are stated to introduce the reader into the world of meandering. The follow
ing chapters deal with the tfieory and the model description. The flow model 
and the minimization technique are explained. The results from the model are 
presented afterward. Then conclusions wiU be drawn and the results wih be 
critically viewed in the discussion. In the last chapter, recommendations for 
futm-e research are presented. 



Chapter 2 

Concepts in meandering 

2.1 Introduction 

Meanders ai'e not only found in rivers and streams. I n both lai-ge and smah scale 
fluid flow the meandering pattern can be seen. Most meanders can be found 
in water flows. For example on glaciated inchned ai-eas water flows can appear 
from melting. The resulting supraglacial channels incised in the ice may evolve 
to nicely shaped meanders. An example of meanders in large scale flow is the 
Gulfstream in the Atlantic ocean. Meanders can be seen best a little of the coast 
of North-America with an amphtude of several hundreds of Idlometers. Also in 
the laboratory meanders can be created. Maybe the simplest to create are 
surface tension meanders. On an inclined plate with a small water stream going 
down, the initially straight flow evolves to a cmwed flow. After some time, the 
flow is stabihzed and a meandering pattern has developed mider certain plate 
inclinations and discharges [GuUdn and Davis, 1984]. 

The meandering pattern is not restricted to water flow. I t also exists in large 
scale flows of air. The large scale upper jet stream separates the cold polai- air 
from the warm tropical air and describes a meandering pattern [Heidom, 2002]. 
Much slower velocities are in the magma below the continental and oceanic 
crusts. Meanders are observed in these fluid flows as weU. 

Meanders are widely seen in fluid flows on earth. But meandering channels 
are not restricted to om- own planet. Even on the Moon, planet Venus and 
planet Mars, indications of meanders ai-e found [Komatsu and Baker, 1996]. 
They are probably formed by lava flows or in some cases they are hkely to be 
formed by water flows in former wetter times. 

The flow processes and sediment transport involved with the forming and 
shaping of meanders are complex and not completely miderstood. Despite this 
complexity, the initiation of meandering can be understood easily for an open 
channel with sediment in the bed: consider water flowing in a straight channel; 
i f a very small obstacle at one side of the channel is present (for example a 
gravel stone), the flow velocity increases a httle at the other side of the chaimel; 
this httle extra power of the flow wiU erode more sediment from the latter side 
of the chaimel; because of the centrifugal efiiect the flow velocity at this side 
increases more, which induces again more erosion; the channel forms a bend 
and the erosion at the outer bend does not stop before the power of the flow 
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14 CHAPTER 2. CONCEPTS IN MEANDERING 

is insufficient to erode more material from the outer bend. This imphes that a 
straight channel is not stable when the flow velocity is not too smaU. When the 
flow velocity is too large, the channel wiU be braiding in stead of meandering 
[Hooke, 2003]. 

Braiding channels form at high sediment loads, steep valley slopes and high 
discharges. At liigh discharge, they transport and deposit sediments at high 
rates. The deposited sediments block their own gully and the cm-rent finds an
other path with less resistance. Braiding rivers often have a variable discharge, 
leaving the bed dry most of the year. Braiding channels are found in the ero-
sional zone of the river, where the slope is high. Meandering rivers on the other 
hand are less dynamic and flow in more moderate sloping areas. The two types 
of rivers can be discriminated based on the sinuosity, the vaUey slope and the 
discharge. Usuafiy a channel with a sinuosity higher than 1.5 is considered to 
be meandering. Braiding chairnels have a loigher sediment load, higher pealts 
in discharge and the variability of the discharge dm-ing the season is normally 
higher. These are cominon criteria to difi'erentiate between a meandering or 
braiding chamiel, but a transition zone between the two is present. A river 
can have a meandering pattern with braided channels in the bed or a braiding 
river can have some meandering pattern. Moreover the type of river that can 
be found in the field is not only a consequence from the conditions wiiich can 
be found nowadays, also the geologic history plays a role. For instance in an 
upUfting ai-ea a meandering river incises in the rock and continues to meander, 
where for this sloping angle a braiding river would be expected. The geologic 
history of the river must be taken into account to understand the type of river 
that can be seen in the field. 

To complete the different types of channels also straight and anastomosing 
channels should be mentioned. Straight flows in natm-e only occm at low slopes 
with a relatively low discharge. A straight chaimel cannot transport much 
sediment, because then it wih change into a braiding channel. Anastomosing 
chamiels occur at very low slopes and are the stable form of a braiding channel. 
The discharge is too low to erode much of the bed and as a result vegetation 
cover exists on the islands in an anastomosing river. They can be found in lower 
regions of the sedimentation zone of a river. Of course intermediate forms of 
these types of rivers do exist as weU, For example a braiding river can have 
some islands, that are stable for a longer period, which is a criterion for the 
anastomosing river. Another intermediate type of chaimel is a slightly cm-ving 
channel. I t can not yet be caUed meandering, but it is not straight either. 

In this report the bending and shaping of aUuvial meandering channels wiU 
be discussed. These are streams or rivers, that have formed their chamiel in 
the sediment that is being transported or has been transported by the channel 
[Schumm, 1994], Other meanders mentioned above have different forces work
ing, but the principle of minimal entropy production, explained later in this 
report, can be used on these meanders as weU. In the next section the geo
metric similarity of meandering cfiannels is discussed. Then the interaction of 
flow and planform shape is explained. Further the factors that determine the 
sinuosity of meandering cfiannels ai-e stated and the last section focusses on the 
planform shape of meandering channels, also the focus in this report. 
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Figure 2.1: Definition of radius of curvature, wavelength, channels length and 
width. For the point where the channel crosses the valley axis, the angle /3 is 
defined. 

2.2 Geometric similarity of meandering chan
nels 

Above it was already mentioned that meanders show geometric similarity. The 
wavelength (A) and the radius of curvatm-e (r) of a meandering channel are pro
portional to the channels width (w). The wavelength of a meandering channel 
is the traversed length in the valley direction (A), where L denotes the channels 
length in this report. The radius of curvatme is the radius of an imaginary cir
cle describing the meandering charmel (see figure 2.1). In a meander bend the 
radius of curvature is minimal (or maximal for a negative radius of cmwatm-e) 
at some point and then increases (decreases for a negative radius of curvatm-e) 
until the inflection point. At this point the radius of curvatm-e is (-)oo, the 
channel is straight and the radius of cm-vatm-e changes its sign. The radius 
of curvatm-e thus is in the range from —oo to oo in one period of a meander 
planform. For reasons of convenience, the cm-vatme (c) is introduced as 1 over 
the radius of cm-vature, which now has a range aromid zero. In figm-e 2.2 the 
meander length is related to channel width and mean radius of cm-va,tm-e. The 
plot consists mostly of meanders in rivers and in flumes, but also Gulfstream 
meanders and a meander on glacier ice are drawn in. From the figure of Leopold 
[1994] the almost linear relationship can be read: 

This relation is widely used and confirmed with other situations [Davy and 
Davies, 1979, Hey, 1976]. 

AdditionaUy, Leopold et al. [1964] fomid from a sample of 50 rivers difliering 
in size as weU as in geological and cUmatic circumstances that the ratio of radius 
of cm-vatm-e to the channel's width has a median value of 2.7. The minimmn 
value for this ratio in general is found to be 2.40 [Hey, 1976]. This value was 

A = 10.9w^'°Veet (2.1) 
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Figure 2.2; Geometric similarity in meandering chamiels, from Leopold et al. 
[1964], thek figure 4.2 

already compared to flow in pipes by Bagnold [I960]. In pipes the minimal 
energy loss or the least flow resistance in a bend occurs for a pipe with the ratio 
radius of curvatm-e to the pipe diameter between 2 and 3 [Bagnold, I960]. This 
range is confirmed for meandering channels by Hooke [1975]. He argued that a 
stable meander geometry, resulting from uniform downvaUey migration, requires 
a radius of cm-vatm-e in this range. If the ratio is smaUer than 2, the resistance 
of the flow in both pipe and open channel wi l l increase largely [Begin, 1981] 
and the flow wil l set free from the inner banlc This results in a widening of the 
bend. At higher ratios the migration rate in the upstream limb of a meander 
wiU be higher than in the downstream hmb [Knighton, 1998]. Consequently the 
radius of cm-vature increases. 

The ratio of radius of curvatiu-e to the channel's width in the range between 
2 and 3 corresponds to the minimal ratio found in meandering planforms. This 
is a first indication for the tendency of a meandering channel to evolve to a 
planform shape, where the energy expenditm-e is minimaal. The adjustmients 
of the river, which may include channel geometry, slope, roughness and other 
variables, reflect in pai-t changes in the rivers resistance and thus in energy 
expenditm-e [Chang, 1984]. The lower the energy expenditm-e, the more hkely 
is the channel's planform shape. This is the tendency to evolve to a minimum 
chaimel slope for the given conditions [Chang, 1984]. 

2.3 Interaction of flow and planform shape 

The meandering pattern influences the flow pattern in the channel and the 
flow pattern shapes the meandering pattern. This interacting system of flow 
and sediment in a meander bend, shows characteristic flow features that can 
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be seen in general. The first is the superelevation at the outer bank due to 
the centrifugal force, that forces the water against the outer banlc. The second 
flow characteristic is a transverse cui-rent directed towards the outer banlc at the 
surface and directed towards the iimer banlc near the bed. This is the secondary 
circulation, that also arises from the centrifugal force. 

Einstein was the first to explain this hehcal flow observed in rivers relating 
it to the flow in a flat bottomed cup with rotating tea and some tea leaves in it 
[Bowker, 1988]. In the outer bend in the river or near the side of the cup the 
centrifugal force is stronger than in the inner bend or in the middle of the cup, 
because the flow velocity is higher. At the bottom the flow velocity is lowest, 
because friction with the bed is strong. On the contrary close to the surface 
the flow velocity is liighest. The water near the surface is forced outwai'd more 
than the water near the bottom and tins gives rise to fluid flow towards the 
outer banlc near- the smTace. Consequently the pressure rises in the outer bend 
and the pressure gradient force results i n a flow back to the inner bank near the 
bottom, because the resistance from the centrifugal force is lowest near the bed. 
This flow transports sediments eroded at the outer banlc towards the inner banlc, 
where point bars are comprised. In Einsteins experiment with the tea leaves in 
a rotating fluid, the tea leaves are homologous to the sediment in the chamiel 
and wil l be centered in the cup. On the contrary, another process tends to erode 
the inner banlc. This is the BernouUi shear process caused by an increase in flow 
velocity and thus more erosion in the inner bend as the pressm-e is lowest here 
[Edwards and Smith, 2002]. But this process is usuaUy overwhelmed by the 
hehcal motion. 

Einstein further noted that because the hehcal flow possesses inertia, the 
circulation (and erosion) wiU be at their maximmn beyond the inflection point 
[Bowker, 1988]. Hence, the meander pattern wiU migrate in a dowiivalley direc
tion. This is a widely accepted property of a meandering channel. Einstein also 
explained why larger rivers have meander patterns with longer wavelengths (see 
equation 2.1). Larger rivers have larger cross-sectional area, which means that 
hehcal flow wil l be absorbed by friction slower. 

The last feature of the flow pattern in a meandering channel is a combination 
of the secondary circulation and the flow in downstream direction. The maxi
mum velocity current moves from near the inner banlc at the bend entrance to 
near the outer banlc at the bend exit, crossing the channel through the zone of 
greatest cm-vatm-e [Knighton, 1998, p. 217]. The geiierahzed fiow distribution 
resulting from the featm-es discussed above is ihustrated in figure 2.3. 

These flow processes inherent to meandering can have different effect on the 
meandering system. When a meandering system has high rates of activity or 
migration, a high sinuosity or curvature is hkely to occm-. On the other hand, 
a meandering system can be stable with a lower sinuosity and less migration 
of the channel. Empirical evidence indicates that a non-linear relationship of 
this rate and form exists [Hooke, 2003]. To make a distinction between the 
stable and active meanders, we first have to consider the timescale in which a 
meandering charmel is considered to be stable or in equilibrimn. The times in 
geomorphology are distinguished in cychc (10"̂  years), graded (10^ years) and 
steady (10° year) after Schumm and Lichty [1965]. Considering meandering 
channels, an equihbrium channel form may be expected to develop in the graded 
timescale. For meandering streams and brooks this time is shorter than for 
meandering rivers. W i t h this division in timescale a stable meandering chamiel 
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5 
Generalized velocity 

distribution 

Figure 2.3: Generalized flow distribution in a meander from Leopold et al. [1964] 
(their figure 7-42) 
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can be considered to be a chaimel where the form is adjusted to the average 
upstream channel characteristics from the cyclic time (for example geology and 
climate). Many rivers and streams however are not stable or i n equilibrium 
state. The migration rates and the flow are constantly changing as a result of 
geological uplift or subsidence, chmate changes or inhomogeneities in the bed 
material. I t is believed that these active and more stable meanders on the 
other hand can be found in one channel, if sufficient time is talcen [Howard and 
Knutson, 1984, St0lum, 1996, 1998]. After a period of relative stability some 
cut-offs may occur and a period of rapid changes and high migration rates is 
present. St0lum [1996] proposed this process, wi th oscillations in space and 
time between a state in which the river planform is ordered and one in which it 
is chaotic, to be the self-organization process. St0lum [1996] states: "Clusters 
of river cut-offs tend to cause a transition between these two states and to 
force the system into stationary fluctuations around the critical state." In the 
subcritical state, the sinuosity is lower and the system is more ordered than in 
the supercritical, chaotic state. I f cut-ofls occur, order can be destroyed and 
the system may evolve into the more chaotic state. In the chaotic, supercritical 
state cut-offs are likely to bring the system over to the ordered state [St0lum, 
1996]. These opposing processes seff-organize the sinuosity into a steady state 
around a mean value for the sinuosity of 3.14 in unconstrained meanders, or 
the sinuosity of a circle TT [St0lum, 1996]. Howard and Knutson [1984] aheady 
stated that a stabihzed meander fluctuates around a sinuosity of 3.4. 

The principle of self-organization is confirmed by Hooke [2003] and Hooke 
[2004], where the principle is illustrated with the river BoUin in England. Figm-e 
2.4 shows the types of channels discussed above. Only the anastomosing type 
of chaimel is not in the figure, because its existence also depends on vegetation 
growth and it can be considered to be a special form of a braiding channel. In the 
meandering type of channels a division is made between active and stable me
anders. In figure 2.4 the braided channels have a high bend radius of cm-vatiue 
and thus a low sinuosity, but a high rate of lateral movement. The active mean
ders have a large rate of movement, where the stable meanders have not. The 
active bends migrate both downstream and lateral, which results in an oblique 
net migration away from the vaUey direction. As the active meanders grow, the 
flow and thus the sediment transport is retarded, because of a decrease in slope 
and increase in form roughness. The sediment is stored in growing meanders 
and with a cut-off rapidly removed to the next reach [Schumm, 1994]. From the 
straight chaimels both active and stable meanders can be formed. Above the 
thick line the chaimel wil l evolve towards an active meander or braided channel. 
The dotted line is a possible plot of bend behavior. When the sinuosity gets 
high, the channel wil l form cut-offs and leave an oxbow lake. This can be ei
ther neck cut-offs when the channel cuts his own meander bend by eroding the 
shores, or chute cut-offs, resulting from a period with high discharges in which 
a preferential flow over the river sides was present (see figure 2.5). This process 
continues unti l a cluster of cut-offs results in the more ordered, stable meanders. 
Below the thick hne (see figm-e 2.4), a straight chaimel normally evolves towards 
a stable meandering channel. 

These stable meanders are the subject of this reseai-ch. These stable mean
dering channels can be subdivided into low-active meanders and real stabilized 
meanders that have evolved to one sinuosity and rate of movement. Both forms 
of stable meanders can form out of a straight channel. The low-active meanders 
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Figure 2.4: A Zones of different types of pattern beliavior and trajectory of 
meandering/braiding oscillation. B Examples of change in meander behavior; 
A-B change in effective discharge; C,D alternative pathways of development of 
sinuous but now stable meanders. From Hooke [2003], her figm-e 10. 
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Figure 2.5: Neclc and chute cut-offs 

wiU migrate downstream, varying only shghtly in sinuosity and rate of migra
tion. Only when the conditions change dramatically they could evolve to the 
active meanders or braided channels. NormaUy they wil l make small movements 
in the shaded area of the stable meanders, where the real stabilized meanders 
have evolved to a stable point (see figure 2.4). Stable meanders have been re
ported in many papers and articles, amongst others Shams et al. [2002], Hooke 
[2003], St0lum [1996], Knighton [1998]. 

The stable meanders occm-ring in the cycle of self-organizing process are 
widely accepted. When describing this process in more detail, the equilibrium 
cross-section and the channels bending pattern and flow pattern are derived. 
Two different approaches can be followed. The first approach derives the process 
from deterministic calculations: the continuity and the momentum equation 
of both water and sediment are the constraints and the driving forces of the 
system. Ikeda et al. [1981] were first to state that besides the instability of 
the alternate-bar, wMch is described above as the initiation of meandering, the 
bend instabihty should be taken into account as well to describe the channel 
morphology. The non-linear bend equation, based on a dynamical description of 
flow in bends and Idnematical description of banlc erosion, describes the channel 
migration [Parker et al., 1982]. In the case of alluvial meandering channels, the 
two mechanisms operate at similar wavelengths, which provides a rationale for 
the continuous evolution of alternate bars into true bends such that each bend 
contains one alternate bar [Ikeda et al., 1981]. A imified bar-bend theory was 
developed in which a resonance mechanism operates [Johannesson and Parker, 
1989, Parker and Andrews, 1986] to describe the process of meandering. This 
has resulted in complex thi-ee-dimensional, deterministic models, that describe 
the process of meandering. Assumptions made in this approach are mainly 
about the bottom shear stress and the description of the tm'bulent flow. 

An alternative to these determiiristic, complex models, is a variational ap
proach using thermodynamics. Jefferson [1902] aheady argued that meandering 
is the result of a minimization of energy. Yang and Song [1979] derived the 
principle of minimization of energy dissipation, which is entropy production 
times temperature, from the continuity equation and the equation of motion. 
In 1945 Prigogine discovered that not only closed thermodynamical systems, 
but also open linear thermodynamic systems close to equilibrimn evolve toward 
a state characterized by the minimmn entropy production compatible with the 
constraints imposed on the system [Prigogine and Stengers, 1985], For closed 
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Figui-e 2.6: The definition of curvilinear coordinates, redrawn after Smith and 
McLean [1984] 

systems the constraints upon the system have no efl:ect on the final state, so the 
system converges to an equihbrimn state where the entropy production is zero. 
In section 3.2 this statement is extended to be vahd in non-hnear open systems 
also. These extremal hypotheses (for example the strive towards miiumization 
of entropy production, maximal entropy, minimmn variance or minimum en
ergy dissipation) have been criticized, because they do not consider adjustment 
mechanics directly and because they cair give rise to mneaUstic imphcations 
[Knighton, 1998]. Despite the critics on the vai-iational approach, it is beheved 
that both theories wiU lead to an explanation of the meander planform shape. 
W i t h the theory based on the minimization of entropy production, the solution 
for the planform shape of meandering channels probably reveals less complex 
problems and is solved easier. 

For the description of the meandering pattern resulting from the interaction 
between flow and sediment, cmviUnear coordinates are best. The first coordi
nate (s) is the longitudinal length of the meandering channel, the second (n) 
the transverse length and the third (z) the vertical height taken from the water 
level. W i t h these coordinates flow in bending systems can be described effi
ciently. Figure 2.6 denotes the definition sketch of cm-vilinear coordinates. The 
angle /? in figures 2.1 and 2.6 is the same. Cm-viUnear and Cartesian coordinates 
are related in appendix I I taicen from Teuling [2002]. 

2.4 Sinuosity of meandering channels 

The sinuosity of a meandering channel was aheady defined to be the ratio of 
chaimel length over valley length or vaUey slope over channel slope. To predict 
an alluvial meandering channel's sinuosity quantitatively from different channel 
chai'acteristics is difficult, if not impossible [pers. comm. E. Mosselman]. The 
variables ai'e interrelated and have different impacts in different chamiels. The 
nuinber of variables is higher than the number of equations that can be used. 
Width, depth, velocity profile, slope, sediment load in the water, sediment load 
in the bed, hydraulic roughness, vegetation growth and (variability in) discharge 
aU infiuence the sinuosity, which the channel evolves to. The most important 
feedbacks hmiting the extent of meander development are the reduction in en
ergy gradient and the rise in resistance to flow with higher sinuosity [Ferguson, 
1973, Knighton, 1998]. In this section the most important quaUtative and some 
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quantitative characteristics are summarized. 
First of all the slope of the valley is the most important factor determining 

the sinuosity of a meandering channel. Together with the amount of water 
available, the discharge and thus flow velocity is governed by vahey slope. I f the 
slope is high and the channel is not yet braiding, the sinuosity is high. Schumm 
et al. [1972] related the valley slope to the sinuosity in an experimental study 
with different sediment loads and similar discharges in channels and bends in 
the Mississippi river. W i t h increasing slope starting with a horizontal valley, he 
found a straight channel gradually changing into a meandering channel and the 
sinuosity increasing gradually also. At some higher slope Schumm et al. [1972] 
found the meandering channel to change sharply into a braiding channel with a 
sinuosity shghtly higher than 1. This could be done for this particular river, but 
diflerences between channels in the amount of water available for run-off have to 
be taken into account. A nice example that iUustrates tliis, is the river Rhine. 
When dm-ing the last ice age, the discharge was considerable higher because of 
meltwater, the river was braiding in stead of showing the current meandering 
pattern. 

Together with slope, the discharge of the river is important. The dischai-gc 
varies during the year, but the discharge at banldull stage occurring once or 
twice a year on average governs both sinuosity and planform shape. Tins is 
widely accepted. I t can be explained from the fact that liigher floods do not 
occur often and induce cut-offs in stead of a stable chamiel. Lower discharges 
do not have the erosion power, which is available at banldull stage. The slope 
and discharge are combined in one vai-iable, the streampower. The specific 
streampower (tu) is the streampower divided by the width of the channel. In 
formula form tliis is: 

^=PE9^ (2.2) 
11) 

The more energy is present, the lugher the specific streampower and the higher 
the sinuosity of a meandering channel. This also imphes that the specific stream-
power can be used to make a distinction in meandering and braiding type of 
channel. Nanson and Croke [1992] proposed that a specific streampower be
low 50 - 60 W/mP' wi l l form meandering channels and higher numbers are in 
accordance with braiding channels. 

Another channel characteristic that is not included in the specific stream-
power and certainly influences sinuosity, is sediment load. The load carried by 
natural streams and rivers can be separated in dissolved load, wash load and 
bed-material load. The dissolved load consists of the material transported in 
suspension. The wash load is transported and temporarily maintained in the 
flow by tm-bulent mixing processes and the bed load are those particles that 
move by roUing, sliding or saltation [Knighton, 1998]. When a channel trans
ports a mix of these loads, the banlc stability is higher than channels with only 
bed load. Channels with a mixed load result in a narrower and deeper channel 
with a possibly higher sinuosity than channels that mainly transport sediment 
smaUer than medium sand [Shams et a l , 2002, Knighton, 1998]. This is con
firmed by Schumm et al. [1972], Ferguson [1975], who state that the sinuosity 
increases with the sUt-clay content of the banlcs. But banlc-material composi
tion is highly variable at different channel sites and differences in coliesiveness 
and erodibility between layers malces a quantification difficult. Information on 
the relationship between sediment load and meander form is meagre [Knighton, 
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1998]. 
Also the relationship of form and vegetation growth is not very clear and 

hard to quantify. Vegetation holds the banlc material and increases the hy
draulic roughness of the channel. Just as for the mixed sediment load, channels 
with denser vegetation give rise to a narrower and deeper channel [Knighton, 
1998]. Also a seasonal effect can be seen in some chaimels. R-om a practical 
study at the Keersop stream by Wohert [2001] i t foUows that plant growth in 
summer divides the stream. Between the vegetation beds chutes do occur and 
the helical cells are disrupted. In winter the stream is clean and higher pealc 
discharges are present. The chute channels are filled and erosion of the inner 
banlc prevails. This seasonal effect influences the bedform configm-ation and the 
sinuosity [Wolfert, 2001]. 

2.5 Planform shape of meandering channels 

Langbein and Leopold [1966] found that the meandering path reflects somehow 
a state of maximum hkelihood. They proposed a sine-generated curve, which 
has the property to minimize the sum of the squares of the changes in direction 
(changes in width, depth, velocity, shear and Darcy-Weisbach friction). This 
was the basis for the theory of minimum variance, stating that meanders are 
characterized by a minimmn variance not only of angular deflection, but also in 
hydraulic properties [Teuhng, 2002]. Tliis theory can be interpreted as a strive 
to miiformity in the rate of energy expenditm-e [Leopold and Langbein, 1966]. I t 
proved to be an oversimplification of the meander planform, because the theory 
did not account for bed topology (the pool-bar sequence) and hehcal motion 
[Teuling, 2002]. Also Carson and Lapointe [1983] concluded that the theory of 
minimum variance should be discarded. Prom inspection of 15 rivers' data they 
fomid statistical evidence for 2 asymmetries in meandering rivers. The first is 
a downchannel delay in the inflection point of meanders. This means that the 
cm-vatme is changing sign after the chaimel has past the center of the valley. 
The second asymmetry is an upvaUey skew or displacement of the minimmn 
and maximum of a meandering bend [Carson and Lapointe, 1983]. These asym
metries appeared not to depend on whether the meander was migrating freely, 
was constrained laterally or was incised in rock. For an explanation of these 
asymmetries, the persistence of helical circulation and cross-section distribution 
of the longitudinal velocity is of major importance [Carson and Lapointe, 1983]. 
The fiow pattern adjusts weU past the bend that forms them. This is in ac
cordance with downvalley migration of the bend as explained above. Another 
characteristic feature of the shape of the meander planform is that bends are 
fu l l and rounded or fattened in respect with a first order sine-generated curve 
[Parker et a l , 1982]. 

Parker et al. [1982] explained the fattening and skewing of meandering chan
nels with a non-hnear stability analysis. This was based on the equation of bend 
migi-ation [Ikeda et al., 1981]. Figure 2.7 illustrates that a meandering reach 
intensifies fatteiung and skewing as lateral and downstream migration progress 
[Parker et al., 1982]. Tliis combined dynamic description of flow in bends and 
the Idnematic description of bank erosion, resulted in the formulation of a third 
order sine-generated cm-ve or the Kinoshita cm-ve to describe meander bends: 

e(s) = do cos(p - el (cf cos^ + Cs sinSfj)) (2.3) 
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Figure 2.7: The formation of fattening and skewing in meandering channels, 
from Parker et al. [1982] 

Here, 9 is the angle of channel wi th valley axis, Öq is this angle at the first infiec-
tion point and c/ and Cg are the fattening and skewing parameters, respectively. 
For high-amphtude meander bends Pai'ker et al. [1983] fomid a prominent skew
ing with the bend instability analysis. The equihbrimn with skewing is unstable 
at lower amphtude, for higher amplitude bends the stabihty is unlmown [Parker 
et al., 1983]. This reflects that with the deterministic approach, the fattening 
and skewing of meandering channels is not perfectly understood. 
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Chapter 3 

Theory 

3.1 Introduction 

With the basic concepts in meandering smnmai'ized, focus is now laid on the 
planform shape of a meandering channel. This research stai'ts from Andel [2002] 
and Teuhng [2002]. They have aheady derived the most probable periodical 
planform shape of a meandering channel from entropy concepts. Their results 
show similarities with stable meandering channels found in natm'c, but they 
used two unsatisfactory steps in the reasoning procedm-e. The first assirmption 
is that a meandering charmel evolves to a planform shape that can be generated 
from a t l i i rd order sine-cm ve (see equation 2.3). This assumption was based 
on the article of Parker et al. [1982]. In this article the meandering channel's 
planform shape is the result of deterministic calculations. This result does not 
guarantee that the most probable planform shape derived from entropy concepts 
is a third order sine-generated curve. Moreover a delayed inflection point cannot 
result from this cmwe. For these reasons the planform shape in this research is 
derived without any assumptions regarding the planform shape of a meandering 
chamiel, but the assmnption of periodicity of the meander planform. R-om a 
given sinuosity, the equilibrium planform shape of a stable meandering channel 
is derived by minimization of the entropy production. The second unsatisfactory 
step in the reasoning procedure is about the entropy concept. Andel [2002] and 
Teuling [2002] based their research about the entropy concept on the assumption 
that the state to which a meandering river evolves is one in which the variance 
in entropy production is minimal [Teuling, 2002]. This chapter shows that it 
is not the entropy production variance that has to be minimized, but the total 
entropy production over one period of a meandering channel. 

In the next section of tins theory chapter the reasoning to end up with 
this latter entropy statement is presented. After founding evidence for this 
general statement is provided, the statement is apphed to meandering chaimels 
in section entropy production minimization in meandering cfiannels. In this 
section the total entropy production equation for meandering channels is derived 
and explained. In the last section the minimization technique used to minimize 
the total entropy production is explained. The problem of finding the most 
probable planform shape can be well cast as an optimal control problem, for 
which minimization can be done with variational procedm-es. 

27 
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3.2 Entropy production minimization in open 
systems 

Entropy of a system is a quantity that denotes the state of chaos in the system. 
For fluid flow in open channels, hke meandering rivers and streams, more tm-bu-
lence generaUy means higher entropy. In 1854 Clausius introduced the term as a 
measm-e of the dissipated potential. Many different definitions of entropy have 
been proposed in terms of probabihty or statistical variables. In this research 
only the thermodynamic entropy is used and thus only this definition is stated. 
In thermodynamics, the change in entropy (S) between two states A and B is 
defined as the integral of the ratio of change in internal energy (Ei) to absolute 
temperatm-e (T) [Ohanian, 1989, p. 559]: 

This expression clarifies the relation between entropy and energy. For a sys
tem with constant temperature, the entropy and energy can be interchanged in 
qualitative reasoning. 

Wi th this definition of entropy the second main law of thermodynamics 
can be stated: the entropy of a closed system must increase or remain the 
same. At equihbrimn state the entropy is maximal for closed systems, so no 
entropy is produced anymore. Wi th this second main law the direction of time 
is defined. Entropy cannot be transformed into work. Once mechanical work 
is transferred into entropy, this can not be reversed back into mechanical work. 
Tills irreversibihty imphes that every system develops towards a dissipation 
of potentials [Teuling, 2002]. The entropy at state B is larger or equal to the 
entropy at state A. For an open system this classical approach of entropy cannot 
be used. Clearly a meandering channel is an open system. The constraints upon 
the system and the open boundaries generate continuously entropy. An open 
system wiU not evolve to an equihbrium state, where the entropy production 
is zero. But Prigogine [1945] found that lineai- thermodynamic systems close 
to equihbrium evolve "toward a stationary state characterized by the minimum 
entropy production compatible with the constraints imposed on the system" 
[Prigogine and Stengers, 1985]. The entropy production per unit time and 
volmne (cr) can only decrease in such systems for time independent boundary 
conditions [Glansdorff and Prigogine, 1964]. At the stationary state itself the 
entropy production is minimal. Then the rate of entropy outflow is equal to the 
rate of entropy production. 

The statement of Prigogine [1945] is only vahd for hnear thermodynamic sys
tems. This hnearity means amongst others, linear relations between forces and 
rates and constancy of phenomenological coefficients hke thermal conductivity 
and diffusion coefficients [Glansdorff and Prigogine, 1964]. This is not the case 
for a channel containing water flow, because the flow in most channels is tm'
bulent. Reynolds numbers of streamflows are normally in the order 10^, where 
tm'bulence begins to become persistent in open channels at a Reynolds number 
of about 500 [Davy and Davies, 1979]. Prigogine states [Davy and Davies, 1979]: 
laminar flow in open channels on the other hand " corresponds to a minimum of 
energy dissipation. Under isothermal conditions this is equivalent to minimum 
entropy production. Laminar flow corresponds to the state of the system near 

(3.1) 
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thermodynamic equihbrium." Laminar flow in open channels can be considered 
as a hnear system. Meanders formed out of lanunar flow can be foimd in sm-face 
tension meanders. These meanders on an inclined plate show the typical asym
metry in meander planform shape found in natm-e and they tend to a steady 
state [Teuhng, 2002]. This implies that flow conditions ai-e of little importance 
for apphcabihty of the minimal entropy production concept [Teuling, 2002]. The 
surface tension meanders with typical planform shape are in equilibrium state 
wliile tmbulent chamiel meanders are also in steady state with similar plan-
form shape. Another argument for the statement of Prigogine to be valid is the 
mathematical derivation of the theory of minimum rate of energy dissipation 
by Yang and Song [1979] based on the equations of motion and continuity. The 
dynamic natm-e of chaimels can be described by this theory. Meandering and 
braiding channels are distinguished on the entropy production quantity, which 
forms another indication for the validity of this criterion. Meandering channels 
usually flow on smaUer slopes and have a lower entropy production for the same 
discharge. 

A stronger reasoning would be to extend the statement of Prigogine [1945] to 
open systems generally. Reiser [1996] reaUzcd that the statement of Hehnholtz 
[1868] (statement of Hehnholtz and Rayieigh) also treats the principle of minimal 
entropy production. Both statements of Hehnholtz and Rayieigh and Prigogine 
are valid with their restrictions. The first holds for general and time-dependent 
fiow processes wiiich are only restricted by a certain connection to source fields 
and the latter holds for general hnear processes but restricted to stationary 
processes [Reiser, 1996]. This is an indication for a more general principle of 
entropy production that covers both statements of Prigogine and Hehnholtz and 
Rayieigh [Reiser, 1996]. The statement of Hehnholtz and Rayieigh is that the 
entropy production is minimal under the restrictions of the Helmholtz condition. 
The essential point of the derivation of the statement of Helmholtz and Rayieigh, 
named the Hehnholtz condition, is that the Laplacian of the velocity for which 
the continuity equation holds (V • v = 0) has to be a som-ce field [Reiser, 1996]. 
This reads: 

s = A v = VQ (3.2) 

where Q is a scalar potential and s is a vector. A n interpretation of equation 3.2 
is a representation of vector s by a potential Q, a som-ce field [Reiser, 1996]. To 
generahze the statement of Helmholtz and Rayieigh (1868) this representation 
should be a general vector field. Wi th the Clebsch Ansatz [Clebsch, 1859] the 
generaUzation can be made and the generalized representation of the vector s 
reads: 

s = yQ + hVR (3.3) 

where h and R are scalar functions simüai- with Q [Reiser, 1996]. W i t h the con
dition of Caratlieodory (1930) and reahzing the Clebsch condition can be treated 
by the method of an integration multiphcator initiated by Pfaff [1815], the same 
conclusion can be drawn as for the statement of Helmholtz and Rayieigh (1868) 
Reiser [1996]. The statement of Helmholtz and Rayieigh holds not only for 
velocities obeying condition 3.2, but also for general velocity fields (equation 
3.3) [Reiser, 1996]. The generahzed statement of Helmholtz and Rayieigh ex
plains many different extremal principles of irreversible thermodynamics and 
this leads to the consideration of the principle of minimal entropy production 
as a fom-th main law of thermodynamics [Reiser, 1998]. This law contains the 
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evolution principle of Glansdorff and Prigogine [1964] as a special case [Reiser, 
1998]. W i t h the generahzed principle of minimal entropy production, balance 
equations hke the momentum equation can be simplified [Reiser, 2000]. Solu
tions may be analytical in stead of only numerically available [Reiser, 2000]. 
For example the Hagen-PoiseuiUe flow and Couette flow can be derived in an 
elegant way by means of the principle of minimal entropy production [Reiser, 
2000]. Particularly for more comphcated processes this treatment is relatively 
easier than derivation from the balance equations [Reiser, 2000]. 

Wi th this generahzation of flow fields, the principle of minimal entropy pro
duction is no longer restricted to linear thermodynamic systems close to equihb
rium. The principle of mimmal entropy production can be applied to non-linear 
open systems as weU. For the meandering channel's planform this means that 
the shape, at wiiich minimal total entropy production occm-s, is the optimal 
planform shape for stable meandering channels. The equations to compute the 
total entropy production used to determine the optimal meander planform shape 
are presented in the next section. The interpretation concerning the optimal 
optimal shape of a meandering channel derived from this principle of minimal 
entropy production is that a chaimel reduces its velocity to minimize friction 
loss of the channel with the shore [Reiser, 2003]. 

3.3 Entropy production minimization in mean
dering channels 

Entropy production minimization can be used for a large number of (geoinor-
phologic) processes. For the reconstruction of dynamical systems from data, 
wluch are only partiaUy avaflable, methods are needed to extract the underly
ing dynamics: besides statistical methods, estimation of pai-ameters and filter
ing, entropy production minimization is one of them. For example an optimal 
river basin network is generated by minimizing energy expenditure by Carclio 
and Sol [2002]. This minimizing energy expenditure is equivalent to entropy 
production minimization. This example is hydrological, but the same theory is 
used in biology too. The optimal structm-e of a branching tree, the inner lung 
structm-e or the blood vessel structure is derived from minimization of entropy 
production. The derived optimal structures are similai- with structm-es found in 
natm-e. Another example where the entropy principle is used is in wave physics. 
The only way to distinguish between waves and their reflected waves with the 
same amphtude, period and (group) velocity is to use the entropy term (pers. 
comm. T. Hoitinlc, 2003). 

To derive the most probable planform shape of a meandering chaimel the 
principle of minimal entropy production wifi be used here. By minimizing the 
total entropy production, the most probable planform shape of a stable me
andering chaimel can be derived. For a given sinuosity a stable meandering 
channel has similar plairform shape to other channels with the same sinuosity, 
regardless of sediment in the bed, slope, discharge, vegetation, climate or other 
variables that effect the channel (see section 2.2). 

Another argmnent in favor of the use of the theory of minimization of en
tropy production is that the meandering pattern occm-s also in flows without 
sediment, for example in supraglacial streams, sm-face tension meanders on an 
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inclined plate or the large scale meanders in the Gulfstream in the Atlantic 
Ocean. This imphes a more general principle than mere sediment transport. I t 
is proposed here that entropy production minimization is this profomid principle 
which follows from physical laws. Before minimization of the total entropy pro
duction is possible, the total entropy production for arbitrary planform shape 
must be computed. 

In an isothermal system the entropy production is only caused by irreversible 
friction losses within the fluid [Davy and Davies, 1979]. A meandering channel 
can be considered to be isothermal, because the heat production by friction 
is only smaU. If the fluid is also considered to be incompressible, the entropy 
production per rmit volume and unit time, a, is described by [Yang, 1992]: 

^ = ^ l ( ^ : V v ) (3.4) 

In tliis equation T is the absolute temperatm-e, r is the stress tensor and v is the 
velocity vector. The equation is obtained from combination of the first law of 
thermodynamics with the equation for an isothermal system and incompressible 
fluid [Teuling, 2002]. In terms of energy the derivation can be found in many 
handbooks on fluid mechamcs, such as Bird et al. [I960]. This derivation is 
shown in appendix I , taken from Teuling [2002]. 

In a meandering chaimel the flow is tm-bulent. To be able to describe the 
stress tensor, the turbulent flow can be described by means of the kinematic 
eddy viscosity (e). This is similar to Idnematic viscosity in laminar flow, but 
the Idnematic eddy viscosity is often much larger than the Idnematic viscosity 
[Douglas et al., 1985]. I f the Idnematic eddy viscosity is used to approximate the 
average flow velocities (in longitudinal and transverse directions) of tmbulent 
flow, this impUes that the influences of turbulent flow on the meander planform 
are neglected [Teuling, 2002]. Odgaard [1986a] and Smith and McLean [1984] 
also used this assumption. This results i n the foUowing description of the stress 
tensor (see appendix I I by TeuUng [2002], equations AII-18 a and b): 

Tij = -pe{Vvij + Vvji) (3.5) 

The subscripts i,j represent pairs of the coordinate directions s, n and z. These 
are curvihnear coordinates, explained in the concepts in meandering chapter 
and appendix I I . The velocity gradient tensor in curvilinear coordinates is de
rived from the V v in Cartesian coordinates in appendix I I . Prom this tensor the 
different stresses can be derived, but the complete determination is complex. 
Fortunately, several components can be neglected, because they ai-e not impor
tant for the situation of a moderately meandering, shaUow chamiel with steady, 
subcritical flow. This assumption of steady flow implies that the meander plan-
form is determined by one unique discharge [Teuling, 2002]. The assumption of 
bankfuU discharge being this unique discharge is widely used in meander liter
ature, for example Parker et al. [1982], Parker et al. [1983], Ikeda et al. [1981], 
Chang [1984], Odgaard [1986a] and Odgaard [1986b]. This dominant dischai-ge 
occurs when the chamiels cross section is just filled and has a recm-reiice interval 
of 1-2 years [Knighton, 1998]. 

For the situation described above the velocity gradient tensor can be sim
plified. The normal stresses disappear because the fluid is considered to be 
incompressible. Moderately meandering means that the ratio of width to ra
dius of curvatm-e is smaU, which malces ^ and ^ smaU compared to 
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and Also the assumption of shallow channels (width is large compared to 
depth) implies this simphfication, but furthermore makes the bankflow region 
unimportant [Andel, 2002]. The velocity gradients ^ and ^ can therefore 
be neglected. Wi th this simphfication the calculation of the tensor product 
(equation 3.4) results i n an expression for cr oidy dependent on the vertical gi-a-
dients of the longitudinal and transverse velocity [Andel, 2002]. This derivation 
is shown in more detail in appendix I I , taicen from Teuling [2002]. 

(3.6) 

In appendix I I this equation 3.6 is derived for a river. Some relations and rea
soning are explained more below. A first remark is about equation AII-3 in 
appendix I I , which relates the cmwilinear equations to Cartesian coordinates. 
A l l variables in this expression have the dimension length except for the cosine 
and sine. This is important to realize, because i t could be interpreted as a di
mensionless variable. The variable s is the length along the channels centerhne, 
beginning for example at an inflection point. The subscript 0 in tliis equation 
denotes the coordinates at the centerhne. This subscript is used in equation 
AII-4 as well. This relation is the radius of cmwature only vahd at the center-
line. The more general expression for the radius of curvature (r) [Harris and 
Stocker, 1998, p. 520] is valid in the whole chaimel: 

ds ds-^ ds-^ ds ^ ' 

For n = 0 equation AII-4 follows directly. Both equations are relations for the 
radius of cmwature. This radius of cmwatm-e tends to infinity if the channel is 
straight, for example at the inflection points. For sharp pai-ts of the bend, the 
radius of curvatm-e divided by the channels width is in the order of 2-3. To 
circumvent this lai-ge range and to have continuous derivatives with respect to 
the longitudinal coordinate s, the cm-vature (c) is introduced. The relation with 
the radius of curvatm-e is simply c = ^. The range for this cm-vature divided 
by channel's width is (-0.5; 0.5). The negative values denote a negative radius 
of cm-vature. The cm-vatm-e of a simple, one period sine is negative in the first 
part and positive in the range (TT, 27r). To relate the curvatme at the centerhne 
(cc) and the curvatm-e (c) anywhere else the following expressions can be used: 

1 1 
c = 

r Tc-n Cc ^ 
(3.i 

The last expression from equation 3.8 agrees with equation 3.7. This can be 
seen, when the relations for x and y and their derivatives with respect to s 
are substituted. The result is an expression similar to equation AII-7 for the 
first scaling factor. The numerator of equation 3.7 then is (1 - ncc)^. The 
denominator of this equation has to be Cc(l — ncc)^ to agree with equation 
3.8. This can be found by replacing the derivatives of the denominator with 
derivatives vahd only at the centerhne. Then woridng out the bracketed terms 
and using equation AII-3 to relate the derivatives vahd at the centerline with 
the angle of the cross direction n and the valley axis {(3), yields an equation 
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for the curvature with only c, Cc, n and sines and cosines from this p. The 
latter can be replaced by the cmvature at the centerhne and the denominator 
is indeed found to be Cc(l — ncc)^. 

Because the interest of this research is to compute the total entropy pro
duction of one channel period (atot) relation 3.6 is integrated over the cross 
section and over the longitudinal centerline length of one meander period. The 
resulting relation is equation 3.9, in which We is the effective channels width, 
d the local depth and L the distance along the centerline of one period of the 
meander. The effective channel's width is introduced as the part of the chamiel 
not influenced by bankflow. 

3.4 Minimization technique 

To derive the most probable planform shape of a meandering chaimel the princi
ple of minimal entropy production can be used. By minimizing the total entropy 
production the most probable planform shape of a stable meandering channel 
will be derived. This comes down to optimization (in tliis case minimization) 
of the cost function, wiiich is the total entropy production. One optiniization 
technique is variational methods. To find the minima or maxima of a function 
of more than one variable, which has to satisfy certain constraints on these 
variables, this teclmique is widely used. Another name for this mathematical 
method is calculus of variations, of which examples are fomid in many research 
subjects [Wyhe and Barrett, 1982]. 

Probably the easiest and most obvious example is the problem to find the 
shortest path between two points. Of comse the solution of minimization of the 
integral, that corresponds to the length of the line, is a straight line. 

Another more difficult example is minimization of the remainder of mea
sured and modelled data. In this way models are improved to fit better with 
reality without losing the satisfaction of the constraints on the systein. This is 
done by introducing adjoints. These extra equations help to derive the mini
mum. This method is named variational data-assimilation, which is often used 
in meteorology and physical oceanography [Cadallero, 1994] [Vos, 2002]. 

These are just two examples. The calculus of variations is also used in 
minimizing time or financial cost for complex industrial processes or to make 
robots or machines work in the most efficient way. 

Generally the minimum or maximum of a function of more than one vari
able can be derived by using the Euler-Lagrange equation, i f the fmiction is to 
extremize an integral, which includes the variables of the fimction [Wyhe and 
Barrett, 1982]. The function must satisfy this differential equation at aU points 
and times. I f the Euler-Lagrange differential equation is satisfied, this is not 
necessarily the solution of the problem. The Euler-Lagrange equation can be 
compared to the adjoints in the second example. For complex problems this 
relation can simplify solving the problem. This is true for the derivation of the 
optimal planform shape for a meandering channel. The Euler-Lagrange equa
tion for this particular problem is derived below from the chmensionless total 
entropy production (see model description chapter) of one period of a mean-
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dering channel, which is indeed an integral. The derivation for this problem is 
beised on Wylie and Barrett [1982], where a general fmiction is minimized. 

The starting point for the derivation of Erder-Lagrange equation for the 
problem of finding the optimal meander planform shape is equation 3.10, which 
results from analytic calculations on equation 3.9 in appendix IV, explained 
later in this report. This equation is not directly a fmiction of the curvatme, 
but all vai-iables in the equation are a function of this curvatm-e or its partial 
derivatives. So the integrand is a function of s, n, c, Cg and c„. The dependence 
on the partial derivatives is crucial, because without these the resulting Euler-
Lagrange equation does not add any information to the problem. In this section 
subscripts for this cmvatm-e (c) mean the partial derivatives with respect to this 
direction. 

<ytot'=K^f [ (avs^+ bvsvl^)dnds = [ [ ƒ (s, n, c, c ,̂ c„) dnds 
Jo J-i Jo J-i 

(3.10) 
Now suppose that this function ƒ is twice differentiable with respect to any 
combination of its arguments. Also suppose a fmiction c = c{s,n) exists, which 
is twice differentiable on the domain, which satisfies the end conditions of the 
integral and which minimizes the cost function (atot)- Under these assumptions 
the minimizing function for the curvatm-e is determined. Wi th this derivation 
of the Euler-Lagrange equation the constraints on the system are not included. 
The problem would be too complex to explain here. For an extension of the 
derivation with constraints, mathematical handboolcs like Wylie and Barrett 
[1982] can be used. This extension is based on the implementation of Lagrange 
multipliers, wiiich are ai-bitrary constants for integral constraints. For the me
andering problem the constraints are not integrals. Tliis should be circmnvented 
by choosing suitable comparison functions. In this way the Lagrange multiphers 
are not constant anymore, but are a function of the longitudinal coordinate (s). 

The next step towards the unconstrained Euler-Lagrange equation is to write 
the curvatm-e with an additional term, where ( denotes a scaling factor and both 
C (new cmvature) and r] (arbitrary function of s and n) are only defined in this 
section: 

C(s, n, C) = c(s, n)+C 7?(s, n) 

Gs = cs + <:r]s (3.12) 

This can be done if both the introduced rj and C are twice differentiable with 
respect to s and n and if this new cmvatm-e function has the same value at the 
boundaries of the integral for the new and the former cm-vatm-e: 

rj{0,n) = r,{L,n)=0 

»7(s , -^ ) =??(s,^) = 0 

0(0, n, 0 = c(0, n) , 0(1, n, ( ) = c ( i , n) 

Cis -1,0 = c{s,-I), C ( s , i , C ) = c ( s , i ) 

(3.14) 

Now the entropy production is a function of the newly introduced C instead of 
c. I f we differentiate wi th respect to ( , the scahng factor in the new curvature. 
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we end up with the foUowing equation: 

/•^ n { ( ^ d c d^dc^ d^dCrA 

io i - 1 \ d c dC ^ dCs dC dCn dC J " ^ 
(3.15) 

For C = 0 the new curvatme (C) is again the former cm-vatm-e c. The entropy 
production has a minimum for an existing function c, because we Imow that a 
minimum is present in the total entropy production of a meandering river. So 
equation 3.15 can be set equal to 0. After partial integration of the second and 
third term of the integrand (where the condition for to be 0 at the boundai-ies 
is used), the equation has the foUowing form: 

d'ytot 2 /"^ P f d f 9 df d df 

dC Jo X i ^ ( ö c dsdcs 9 n ö c „ ) ^"•^^ ° ^^'^^^ 

To fulfiU tliis integral wi th the conditions for ry taiei i into account the integrand 
without T] has to be 0 [Wyhe and Bai-rett, 1982, Lemma 1, p. 827]. This is the 
Euler-Lagrange equation in cm-vilinear coordinates: 

^ _ ^ ^ _ A ^ = 0 (3.17) 
dc ds dcs dn dcn 

We must be caxeful wi th tins Euler-Lagrange equation, because i t is not a suf
ficient condition to minimize the corresponding cost function (the integral for 
total entropy production). The fact that ^ = 0 is a value wiiich makes the 
derivative of the cost function zero, imphes only that it is a stationai-y point, 
where the cost function has a minimum or maximum or a horizontal iiifiection 
point [Wylie and Barrett, 1982]. And even i f a minimum occm-s, it may be a 
local minimum in stead of the absolute minimmn. 

The problem to find the optimal planform shape of a meander is complex. 
This makes a numerical approach inevitable. The Euler-Lagrange equation can 
be used to find the optimal planform shape of a meander, but the problem could 
not be solved alone by using this extra equation. For this reason an existing 
optimization technique was searched for to solve the minimization problem. I t 
turned out that the problem can be formulated as an optimal control problem 
with constraints. 

At Wageningen University, the systems and control group uses and devel
ops optimal control software. Among the apphcation areas ai-e indoor chmate 
control (greenhouses, stables, storage buildings), the control of mechanical sys
tems (agricultm-al field machines, a tomato picking robot), processes in the food 
industry (sterilization, drying) and economics [http://www.aenf.wau.nl/im-s/]. 
A complete different application of optimal control problems is the problem of 
finding the optimal meander planform shape. Below the optimal control theory 
is explained based on Vlassenbroeck and Dooren [1988], WiUigenbm-g [2003], 
Lambregts [1995] and Bryson j r . and Ho [1975]. 

In optimal control problems a criterion is minimized and the system equa
tions are equahty constraints [Lambregts, 1995]. For this system the state vari
ables, parameters and the control variables are set up. The state variables are a 
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function of the control variables and the state equations represent the system's 
behavior [Wilhgenbm-g, 2003]. The parameters are the constants in the system. 
The criterion is the cost fmiction of the system, which has to be minimized for 
most systems. I f the criterion is minimal, the control variables are optimal and 
the trajectory of state vaiiables represents the optimal system behavior. As for 
the Euler-Lagrange equation, a minimmn for the criterion does not guarantee 
to be the absolute minimum. I t could be a local minimmn. Unfortunately no 
conditions are Imown to distinguish global from local minima. In general, the 
only thing we can do is compare the fmiction values of local minima and from 
them pick the one with lowest value [Wilhgenburg, 2003]. If different numbers 
of input lead to the same output, the probabihty of being the global minimmn 
is high. 

The variables in problems are related. These relations can be implemented 
as (in) equality constraints. Not only the relations between the variables are 
needed, also the derivatives with respect to the time or place are needed to 
solve the problem with optimal control. The derivatives are used to derive the 
neighboring points variables. 

The problem is solved numericaUy, as stated above. AU points ai-e some 
distance away from the neighboring points. For aU points the states and controls 
are considered to have initial values. These values ai-e saved in a matrix for the 
state variables and a matrix for the control variables. In the rows ai-e the 
different values for the different points in time or space and in the columns the 
different state or control variables. By setting the initial conditions in a proper 
way the minimization can be helped to search in the right domain. At one time 
this method derives aU values in these matrices in the first iteration. In general, 
in optimal control problems an analytical solution does not exist and thus the 
solutions are obtained numericaUy [Lambregts, 1995]. The value for the states 
in points is determined with numerical integration. The control is described by 
Chebyshev polynomials. These mathematical functions wiU be explained below. 
When the state and control variables are derived, the criterion is computed and 
in the next iteration the programme loofe for a lower value of the criterion. This 
calculation can be helped by setting the control variable in the proper domain. 
Next to the minimization of the criterion, the state and control output error 
with respect to the constraints is minimized. For every constraint this error 
should be smaU. The largest error is retmrned after every iteration. I f the errors 
are smaU enough and the criterion is also minimized the result is said to have 
converged successfuUy and the optimal control is found! 

The control variable controls the problem's state variables and so the crite
rion. The control has to be prescribed in a way to prevent an infinite number of 
output solutions. A parametrization with Chebyshev polynomials is an efiicient 
way of parameterizing the control and i t is a suitable numerical solution method 
[Wilhgeiibm-g, 2003]. I t is also possible to parameterize the states with Cheby
shev polynomials. The parametrization can be compai-ed to the parametrization 
of any function with Fomier series. The definition of a Chebyshev polynomial 
is stated in equation 3.18 [Lambregts, 1995]. The order zero polynomial is 
Hois) = 1, the first order polynomial is iJi(s) = s and for n = 2 ,3 , . . . the 
higher ordered polynomials are defined in equation 3.18. For example the fifth 
order Chebyshev polynomial is Hsis) = 16s^ ~ 20s^ + 5s. For a pictm-e of the 
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Chebyshev polynomials up to the fifth order see figure 3.1. 

Hn{s) = 2sHn-l{s) ^ Hn-2{s) (3.18) 

To use the polynomials for control parametrization the time or space interval 
is sliifted and scaled onto [—1,1]. Similar to Fourier series, any function of time 
or space can be approximated by adding a iimnber of Chebyshev polynomials 
like in equation 3.19. The Chebyshev parameters ho,hi,... jh^-i are caUed 
the Chebyshev coefficients. 

JV-l 

f{s) « hnHnis) (3.19) 
n=0 

The polynomials are orthogonal and every function can be described exactly by 
infinite Chebyshev series. These are advantages of the Chebyshev polynomials 
compared to other polynomials. Another advantage is that for a specific order 
of polynomials, the error of the Chebyshev polynomials with the parameterized 
function is lowest [Lambregts, 1995]. I f the order is 6 for example, only N = 7 
parameters have to be computed, but stiU the control can be approximated well. 
By setting the coefficients properly, every smooth function ƒ (s) can be approx
imated weU. Especiahy for smooth problems this parametrization is good. The 
problem of finding the optimal meander's planform shape is smooth, because 
very sharp bends or sharp corners are not found for a meander in equilibrium 
state. A l l the derivatives of the state and control variables are continuous. A 
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useful property of Chebyshev series is that Chebyshev series approximations 
of the s-coordinate can be related to Chebyshev series approximations of the 
derivative with respect to this s-coordinate. W i t h this property the differential 
equation constraint of the control can be replaced by equality constraints on 
the Chebyshev coefficients of the control. Thereby time consuming numerical 
integration is avoided. When higher order Chebyshev polynomials are used, the 
accuracy improves at the expense of computation time [WiUigenbm-g, 2003]. 



Chapter 4 

Model description 

4.1 Introduction 

With the important theories for the derivation of the optimal meander planform 
shape stated, the model that is used to derive tliis optimal shape of the meander 
planform can be explained. The starting point is the flow model developed by 
Odgaard [1986a]. This model simulates the flow and bed topography in a mean
dering alluvial channel. I t is summarized in the dimensionless flow model and 
entropy production section below. Because of geometric similarity, the model 
was made dimensionless by Teuhng [2002]. In this dimensionless model, the 
total entropy production was implemented. Section the optimal control problem 
formulation explains how this total entropy production is minimized by con
verting i t into an optimal control problem. In section numerical solution the 
computation method is described. Chebyshev polynomials are used to describe 
the curvatm-e at the centerline. These polynomials are explained and finaUy the 
different possible outputs of the computations are explained. 

4.2 Dimensionless flow model and entropy pro
duction 

The flow model used to calculate velocity profiles in a meander bend of arbi-
trai-y shape was developed by Odgaard [1986a]. For a complete description of 
this model see Odgaard [1986a] and for apphcations of this model we refer to 
Odgaard [1986b] and Odgaard [1987]. The model is based on the solution of 
the equations for conservation of mass and momentum and the equation for 
lateral stabihty of the channel's bed. The equation of bed stabflity is hnlced to 
the momentum equations with a simple mass and flux balance. The net lateral 
transport of flow volmne togetlier with the mass and flux balance determines 
the streamwise variation of transverse bed slope. The main controlhng pai-am-
eters are the channel's width to depth ratio, the ratio of radius of cmvature 
of the channel to width, the resistance characteristics and the sediment Fronde 
number [Odgaard, 1986a]. 

The flow model has an analytical approach and is vahd for steady, subcrit
ical, tm-bulent flow in channels with uniform bed sediment. The longitudinal 

39 
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and transverse flow is derived at every point in longitudinal and transverse di
rection from sm'face to bed. This makes the model two dimensional. I t should 
be noted that the stable meanders in this report can be considered to be in 
equilibrium state and thus ai-e in steady state. The most important reason for 
choosing tliis flow model is that it is based on the same assmnptions as the en
tropy production equation (equation 3.9) [Teuling, 2002]. Also for the entropy 
production equation the effects of banlcs on flow is considered to be insignificant. 
As a consequence the fiow model apphes to the effective width (we) [Odgaard, 
1986a]. Other constraints of the Odgaard model are; (1) the channel width is 
constant; (2) the centerhne radius of curvature is large compared to channel 
width; (3) the depth is small compai'cd to the width; (4) cross-channel velocity 
components ai-e small compai-ed with down-channel components; and (5) the 
tm-bulence is isotropic [Odgaard, 1986a]. Isotropic tmbulence means that the 
tm-bulence has the same magnitude in all directions at one point. Tliis does not 
imply that the tm-bulence is homogeneous in the fluid, because the magnitude 
can be different everywhere in the fluid. These restrictions are satisfied for a 
shallow, moderately meandering channel with constant width. 

Above i t was shown that meandering is independent of scale. W i t h this 
geometric similarity it is convenient to have a flow model that is independent 
of scale as weU. The dimensions in the problem ai-e time, length, mass and 
temperatm-e. Since the entropy production wil l be written times temperatm-e 
and per unit mass, only characteristic scales for length and time have to be 
defined [Teuling, 2002]. This can be done in the Odgaard model by dividing 
the velocities by the longitudinal velocity at the centerline averaged over the 
depth (vsc) and by dividing the length scales by the effective width {wg). These 
variables are assumed constant in the flow model, wiiich makes them appropriate 
for normahzation. As an example the normalized transverse direction (n) and 
dimensionless longitudinal velocity (vg) are derived in equation 4.1 and 4.2. In 
this report a tilde denotes dimensionless variables. 

~ n , , 

= I: (̂'̂̂  
The characteristic timescale results from combining equations 4.1 and 4.2 [Teul
ing, 2002]. 

To determine the most probable meander planform shape the entropy pro
duction is minimized. Therefore the entropy production was implemented in 
the Odgaard model by Teuhng [2002] and Andel [2002]. In appendix I I I taicen 
from Teuhng [2002] the Odgaard model is made dimensionless and the result
ing model is summarized. This is slightly different from the Odgaard model 
[Teuling, 2002]. The most important equation in the dimensionless model is the 
equation that determines the transverse bedslope at the centerline: 

^ + a ' - | £ + 6 ' 5 . . = c'c. (4.3) 

The parameters a', b' and c' are deflned in appendix I I I . The parameters con
tain the dimensionless particle Proude number at the centerhne (FDC) and the 
dimensionless velocity profile exponent (m). Although FD,. and m are dimen
sionless, their value caimot be determined because the velocity profile exponent 
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Figui-e 4.1: A Transverse velocity profiles in a cross section, transverse depth 
distribution and definition of model parameters; B longitudinal velocity profiles 

is a function of the scale dependent Chézy coefficient and the particle Pi'oude 
number is a fimction of the actual velocity and sediment size [Teuling, 2002]. 
However the scale dependent parameters have only small effect on the results 
[Teuling, 2002]. The values of the velocity profile exponent and the particle 
Fi'oude number are taken as 2.8 and 6.78 respectively, the average values of the 
two river sites tested in Odgaard [1986b] [Teuling, 2002]. 

Equation 4.3 is a second order, inhomogeneous and ordinary differential 
equation. I t is a forced and damped wave equation. The second term in tlris 
equation is the damping term and the term on the right hand side is the forc
ing term. The damping indicates that the system does not react instantly or 
in other words refiects the inertial forces of the system. The system is under-
damped if a'̂  < 46', critically damped i f a'̂  = 4h' and overdamped if o'̂  > 46'. 
If the system is underdamped, the system osciUates many times. I f the system is 
critically damped, the system has one overshoot of the system's resting position 
at most [Vives, 2003]. If the system is overdamped the system only slowly re-
tm-ns to equihbrium, because of the strong damping term [Fowles and Cassiday, 
1999]. For the values of F^c and m in the most usual range the system behavior 
is mostly underdamped [Vives, 2003]. 

A little fm-ther in appendix I I I , the depth distribution is clarified. The 
foUowing statement is made by Teuling [2002]: "When interpreting ST as dd/dr 
this can be written for convenience as AIII -8 ." This follows from integration. 
The integration constant can be found by looking at the centerline. The equation 
then reads: Inrfc = Inr3' -|- C, where 7 denotes This can only be satisfied 

if the integration constant (C) is set to be hide — Inr^*. Then equation AIII-8 
foUows from this integration constant. W i t h the depth distribution Imown, the 
next step in the Odgaard model is to derive the velocity profiles. The result for 
the longitudinal velocity is equation 4.5 and for the transverse velocity equation 
4.9. Examples of these velocity profiles are shown in figm-e 4.1 after Teuling 
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[2002]. 
W i t h the velocity profiles derived in appendix I I I , the total entropy produc

tion equation (equation 3.9) can be simplified. The inner two integrals represent 
the entropy production in a cross section {(TCS)- The most inner or first integral 
of equation 3.9 can be solved analytically. Normahzing acs by the temperature, 
density, effective width and averaged centerline longitudinal velocity, integrating 
and real-ranging of terms yields (see appendix I V taken from Teuhng [2002]): 

The total dimensionless entropy production is now only dependent on the trans
verse sm-face velocity and the averaged centerhne longitudinal velocity. Because 
no fm-ther analytical solution is available, this equation wil l be solved numer
icaUy. This is the equation to be minimized in order to derive the optimal 
planform shape of a meandering channel. One remark should be made about 
this minimization. The Odgaard model is made dimensionless and this imphes 
that the longitudinal slope of the valley is uot in the model anymore. The veloc
ities are not dependent on the longitudinal slope, because they are normalized 
with the averaged centerline longitudinal velocity (v^c)- This makes that the 
lowest value for the total entropy production is found for a straight channel, 
where the path is minimized. In order to find a realistic solution, the model 
should have some constraint that makes the chamiel does not foUow a straight 
line. For example the angle at the beginning and end of the channel can be 
set to some value that can be expected to occm- in nature. Another example is 
to set the meander wavelength to the value usuaUy found in nature (13.2 when 
normaUzed with the effective width). 

4.3 The optimal control problem formulation 

Finding the optimal meander planform is an optimal control problem where 
the planform is the control, the channel flow is the dynamic system and entropy 
production is the criterion to be minimized by the control. The dynamic system 
is described in the previous section. This is programmed in the sysmean-file (see 
appendix VI ) . This file is different for every optimal control problem. Together 
with the other files that describe the optimal control problem, i t is called the 
programme in this report. 

Normally in optimal control problems the state variables are denoted by x, 
the control by u and the time by t. For this study, the time was replaced by 
the longitudinal length without any problem, because we deal with a systein in 
steady state. The problem only has 1 control input and the optimal control is 
expected to be smooth. Because the problem is smooth, the curvatm-e or con
trol is set between control bounds with inequahty constraints. Another special 
property of this problem is that it is periodical. 

A requirement for the programme are the differential equations for every 
state with respect to s. The states 1 to nx-6 (see appendix VI) refer to the 
square of the longitudinal velocities averaged over the depth (u^) at points with 
the transverse coordinate from -0.5 to 0.5. Here, iix is set to 22, so the transverse 
discretisation steps are 1/15 Wg. Their relation with the control and bed slope 
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^ = -g'^v^^+g'i (4.5) 

In this equation the depth and the curvatiore ai-e related to their centerhne 
values. Thus these relations are substituted: 

' """" (4.6) 
c • 

1 
(4.7) 

The restdting equation is programmed for every transverse point in the first lines 
of the system dynamics. The sign function and the maximum of the control and 
epsi are used to prevent the programme from dividing by zero. The second state 
is the transverse bedslope at the centerline. This is described by the second 
order differential equation 4.3. Because it is a second order relation, also the 
first differential with respect to s is a state variable. This is the third state, 
irx-4. The next state represents the angle (3 (see figm-e 2.1). The derivative of 
this angle with respect to the longitudinal coordinate is minus the cm-vatme at 
the centerline: 

ds 

Wi th this angle derived, the X-coordinate and Y-coordinate can easily be ob
tained by adding the sine and cosine of this angle to the previous steps, re
spectively. Consequently the resulting planform shape can be drawn in usual 
Cartesian (X,Y)-coordinates. W i t h the X-coordinate value at the end of the 
channel, the wavelength of the meander is Imown. The last state is the crite
rion that has to be minimized (equation 4.4. Because the flow velocity at the 
centerhnes sm-face in the transverse direction (vns) is only needed to derive tlris 
criterion, the Vns is defined only here in the programme. Its relation with the 
states and control results from: 

Vns=^d'STcii (4.9) 
dc Co 

In the programme the relations 4.6 and 4.7 are substituted in equation 4.9. 
This transverse flow velocity at the centerhnes surface is used together with the 
longitudinal velocity averaged over the depth (#s) to derive the criterion. 

The pai-ameter vector includes all constants in the programme.. The first 
thi-ee parameters ai-e a', b' and c' in equation 4.3. The fom-th is the g' in equa
tion AIII-10. The fifth is the depth at the centerline. The sixth and seventh 
parameters are needed to derive the criterion or total entropy production. They 
are the first and second fractions without flow velocities i n equation 4.4, respec
tively. The last parameter is the d' in AIII-12. For this the pai-ticle Fronde 
number is taken to be the particle Fronde number at the centerhne. 

To have reaUstic solutions for u^, a state inequality constraint was imple
mented to have only positive values. Because only one period of a meandering 
channel is derived in this programme and the process is assumed to be periodi
cal, all state variables and the control variable except for the criterion and the 
X-coordinate have to be equal at the begirming and end of this period. In fact. 
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all derivatives with respect to the longitudinal coordinate should be equal at 
the beginning and end. The first derivative is set equal at beginning and end in 
comments. Pm-thermore a terminal state constraint was set on the Y-coordinate 
to make sm-e the chaimel flows in vaUey direction. A terminal constraint on the 
X-coordinate to end around 13.2 was attempted, but could not be satisfied. 

The initial conditions for the states and control were optimized in this prob
lem, except for the angle jS in most runs. This was set to some value to find a 
downvahey flowing channel with some sinuosity. 

4.4 Numerical solution 

The optimal control problem is programmed in matlab consisting of several files. 
Because the optimal control software call the optimization command FMIN-
CON, a matlab version with optimization toolbox is needed. On top of every 
file is an explanation about the ai-guments in brackets. The input files or vari
ables and the output are explained. 

To start the calculations the Tcmr-file is caUed (see appendix V ) . At first 
the matlab workspace is cleared and the constants in the meander model are 
defined in the parameter vector. The next step in the file is to set the tolerance 
on the computation. After this the file optchebi is called. Tlris file parameter
izes the control (cc) with Chebyshev polynomials. The states are derived by 
numerical integration. Tliis is done by the function ODE45 in matlab. Further 
the longitudinal coordinate (0 to L) is scaled onto the range of the Chebyshev 
polynomials [-1,1] . The arguments of the optcliebi-file are stated in brackets 
following the file-name optchebi. 

The sysmeanfinal file is the system file that wiU be used. The empty ar
gument is the startname, which is an easy option to use former calculations 
for input. Mr20 is the optname, which is the output of the programme with 
extension mat. In this mat-file the optimal values for the matrices are saved for 
the best solution, i f the calculation ended successfully. The fom-th argument is 
the order of Chebyshev polynomials used. In the Tcnn-file added this order is 
set to 6 and in comments the same calculation is repeated with an order of 12 
and with input from the first calculation. The fifth argument can be used to 
set the nmnber of longitudinal points. In this run the longitudinal discretisa
tion steps ai-e set to 1/99 L, which makes 100 longitudinal points. The sixth 
and seventh argument are defined just above the calling of optchebi. Wi th the 
options argument different calculation options can be set. The last argument 
is the parameter vector stated above. W i t h these argmnents the optchebi-file 
generates a vector bopt. In tins vector the coefficients of the Chebyshev polyno
mial serie that parameterize the cm-vatm-e at the centerline are generated. The 
number of coeflicients is 1 plus the order, so in this case 7. In the first step an 
initial guess for the 7 coefficients is made that satisfies the constraints as good 
as possible. These initial values are improved every step by decreasing the error 
on the constraints and by looldng for a lower value of the criterion. This is done 
by the function FMINCON. This minimization function has the files optchbco 
and optchbfi as input-files. In these files all relevant information is stored to 
solve the problem. When the computation succeeds the solution is saved in the 
mat-file and the file cheb2tmr displays the resiüt. 

Then the Lxu is integrated with the trapezoidal rule in the transverse di-
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rection by adding the different values of Lxu in one cross section. The first and 
the last value are thus oiüy a half time in the equation. This is the most precise 
way of integrating numerically. Then out(nx,i) is the derivative of the criterion 
in longitudinal direction at every longitudinal point. I t should be noted that in 
the programme the constant in front of the integral in equation 4.4 is omit
ted. This has no effect on the control and state values found by minimizing the 
total entropy production. Just below the system dynamics in the sysmean-file, 
a safety line is programmed. I f for some reason imaginary numbers do occur, 
a warning is given and the computation can be stopped. Something must be 
wrong in the programme, where only realistic values should be generated. 

The next important hnes in the sysmean-file are the constraints. For ex
ample the square of the longitudinal velocity averaged over the depth (v^) can
not be smaller than zero. Also, the cm-vature at the centerline is set in the 
range [—0.5; 0.5] and in comments (not used in the calculations) the value of 
the X-coordinate at the end point is set around 13.2. A little fmther the ini
t ial conditions for the first longitudinal point are stated. The state variables 
defined in the vector pa are only to start the computation with at the first lon
gitudinal point. For the squared longitudinal velocity averaged over the depth 
(wf), the initial values for the points in ft-direction from -0.5 to 0.5 are taken 
to be cos^(27rn). For the transverse bedslope and the derivative with respect 
to s, the initial value is taken for an imaginary negative sine-generated cm-ve. 
Consequently, the cm-vatm-e of this negative sine-generated curve is positive in 
the beginning and the derivative is negative. The values in the vector pa are 
optimized in the programme to the value where the criterion is lowest. In tliis 
case only the angle ^ is a hard constraint. This value cannot be optimized and is 
the same at the end and beginning. This is programmed in the final conditions, 
where also the Y-coordinate is set to 0. Tlris forces the X-coordinate at the final 
longitudinal point to be the wavelength of the meandering channel. Fmther the 
end time (or the longitudinal length in this study) can be set to be free or fixed. 
In this case it is fixed to the value Sf, defined to be 39.6 on top of the file. 

An alternative for the use of optchebi is the file optcheb. This file parame
terizes both states and control wi th Chebyshev polynomials, which malces the 
calculation computationally faster, but less accurate. Aopt is derived by the file 
clieby. The file cheb2t compares the final result of the states with the states 
generated by numerical integration. The difference is generated as output with 
the name dynamic error. Not surprisingly, this difference should be small. I t 
should be noted that the Chebyshev polynomials in the range of -1 to 1 are 
either equal at the end (even orders) or they have the same differential with 
respect to the longitudinal coordinate at end and beginning (odd orders). Both 
should be equal to have a real meandering river, which is not the case for any 
order of Chebyshev polynomials. 

The retm-ned output by the programme is in the matlab command window. 
I f the programme is programmed correctly, the calculations start by caUing the 
Tcmr-file. Dm-ing the calculation for every iteration, the error with respect to 
the constraints, the criterion and the procedm-e foUowed is a line of output. 
The programme minimizes the error and the criterion. When the calculation 
is finished, the optchebi-file checks if the solution is feasible. Tliis is done by 
comparing the final output with tolerances stated. I f the solution is feasible, a 
good solution is found and the computation stops by itseff. The other possibility 
for matlab to stop the calculation is when the maximum number of function 
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evaluations is exceeded. This number can be set in the file optchebi under 
options MaxPunEvals. The iteration with minimal error on the constraints is 
the best solution to the problem. FinaUy, this value is written in the output 
together with the value of the criterion. 



Chapter 5 

Results 

In the previous chapter, the model was described. Rrms of tliis dimensionless 
model, with the Odgaard flow model and the entropy production equation em
bedded in the optimal control problem, are presented in this chapter. One result 
of the model approximates a natm-al, stabihzed meandering channel. This plan-
form shape comes close to the empirical relations stated in section 2.2. First, 
this result wi l l be described. After that, the attempts made to acliieve more 
results with an expected shape of meander planform wiU be smnmarized and 
some results wiU be given additionally. 

The best result obtained in tliis research is shown in figme 5.1. This figm-e 
shows that the wavelength of the meander is ai-omid 13.2 (actual value is 13.658) 
and the amplitudes of both bends are in the same order of magnitude. These 
are results that are expected for a natm-al, stabihzed meandering channel. The 
result is achieved with the hard constraint on the angle (3 to be at beginning 
and end 1.27r and meander length (L) 39.6, which implies a sinuosity of thi-ee. 
Initial values for the transverse bedslope and its derivative with respect to longi
tudinal length were given (-0.03 and 0.015 respectively), but after optimization 
these values differ largely from these initial values (-0.18609 and 0.24874). The 
initial values of the dimensionless, squared, longitudinal, averaged velocity at 
the transverse points are set to be co5^(27rn). The constants a', b' and c' in 
equation 4.3 and the constants in equation 4.4 were determined using k = 0.4, 
m = 2.8, a = 1.27 (as for ordinary river sand), FDC = 6.78 and 9' = 0.27. The 
order of polygons that describe the control is set to 6. 

I t is important to reahze that the inflection point does not have to be at 
the X-axis. Partly because the beginning of the channel is arbitrary determined 
to be 0 for the X and Y coordinates and partly because the inflection point 
may be delayed. Figm-e 5.1 shows some imexpected characteristics as well: the 
second bend is much wider than the flrst bend in the figm-e; and the skewing is 
not upstream as expected, but the maxima and minima appear to be shifted in 
downstream direction, in the positive X-direction. This planform shape is de
rived from optimizing the control, the curvature. This is shown in the last graph 
in figm-e 5.2, titled u l . The X-axis in these graphs represents the longitudinal 
length. This last graph shows that the cmvatm-e is positive in the first part, 
negative after the first infiection point and after the second inflection point it is 
positive again. The maximum and minimum curvatm-e are both around (—)0.3. 
Unexpected is that no symmetry in the positive and negative parts of the graph 
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Figure 5.1: Tlie planform shape resulting from a model run with a sinuosity of 
3 and /3 fixed to be 1.2n at beginning and end of the meander period. 



Figure 5.2: Tlie states and control for the result wi th a sinuosity of 3 and /3 
fixed at 1.2ff at beginning and end of the meander period. 
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Figui-e 5.3: The planform shape resulting from a model run with a sinuosity of 
3 and /3 fixed to be I.ITTT at beginning and end of the meander period. 

can be seen for and STC- The values at transverse points of are steep in 
the first bend and not so steep in the second. 

The other graphs in figure 5.2 represent the states of the problem. State 
x l to x l6 are the squared, dimensionless, longitudinal velocities averaged over 
the depth (öf) from the effective right side of the chamiel to the effective left 
side. The distance from the point where x l is taken to the point where x l 6 
is taken is thus 1 eflective width. x8 and x9 are in the middle of the chamiel 
and here the amphtude of the is lowest. The maxima are in the middle for 
the first 8 points and in the beginning and end for the last eight lateral points. 
Also the maxima and minima increase going in outward direction. Graph x l 7 
represents the transverse bedslope at the centerhne. I t shows periodicity and 
the maximum and minimum are a little delayed after those of the cmwature. 
The amplitude of both maximum and minimum is about 0.5. Pui'ther, more 
than one minimum and maximum is present. The next state is the derivative 
of the transverse bedslope in longitudinal direction. I t can be deduced from the 
transverse bedslope. x l9 represents the angle f3. I t starts and ends at 1.27r and 
is negative in fom* points in the middle of the chaimel. At these longitudinal 
points, the channel flows in negative direction of the X-axis or upwards in the 
vahey. For the control and aU states mentioned so far, the values at beginning 
and end are the same. This is due to the equality and end constraints. For f3 
this imphes that the first derivative with respect to s is also the same, because 
of the relation with the curvature. The states x l9 and x20 are the X and Y 
lengths respectively. Together they result in figure 5.1. The last state is the 
entropy production. I t increases not completely linear to a value of 4.6483. 

Because this result is promising, attempts have been made to find more 
results like the one described above. When the angle was increased with O.OOSTT, 
the X-coordinate at the end point increased largely and thus the wavelength 
was too long to be realistic. AU input parameters were held constant, only 
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River shape 

X coordinate river 

Figure 5.4: The planform shape resulting from a model run with a sinuosity of 
3 and /3 fixed to be 1.2l7r at begiiming and end of the meander period. 

the hard constraint (3 was changed. When i t was changed to I.ITTT (see figm-e 
5.3), 1.2027r and 1.257r, this resulted for all three runs in a channel flowing in 
upvalley direction. To overcome tlris error, the angle (3 was set to be maximal 
4 with an inequahty constraint. Every value for the starting angle (even 1.27r) 
with this inequality constraint did terminate the optimization. Apparently this 
constraint is too strong for the optimization programme. 

Another attempt was to increase the angle (3 to 1.2l7r. This resulted in figm-e 
5.4. This result shows a strange cut-off, not known for meandering channels. 

The results gathered from the changes in the angle /? show that the non-
lineai- model is very sensitive for this hard constraint. Only a smaU change in 
angle, results in a completely different planform shape. The result for (3 = 1.27r 
is a lucky hit! I t would be satisfactory not to t ry different angles, but to have 
a constraint on the model that restricts the wavelength of one meander bend 
in a range around 13.2. Tliis constraint was implemented as haxd inequahty 
constraint (see appendix V I in comments). The range is arbitrarily chosen to 
be -1 and + 1 from 13.2. Consequently the angle /? could be optimized freely. 
Many rmis have been made, but an error occurred on every run and no solution 
was obtained. The errors were amongst others: search direction is less than 2 
times options.toDC, but constraints not satisfied; no feasible solution fomid, no 
convergence. This was not only tried for a sinuosity of 3 with the good result 
as input, but also for a channel length of 26.4 (so a successful result would have 
sinuosity 2). The problem seems to fu l f i l l the equality constraints together with 
this constraint. 

Because it is beheved that the stable meandering planform shape is repeated 
for every period, an extra constraint on the derivatives of the states x l to x l9 
and the control was implemented. Not only the value at beginning and end have 
to be the same for an iterative system, but also all derivatives with respect to 
s. The first derivative is set equal at the first and last point for these vai-iables. 
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Figure 5.5: Tlie planform shape resulting from a model run with a sinuosity of 
1.6 and /3 fixed to be O.STT at begirming and end of the meander period. 

Runs did not lead to results, probably because the constraint was too strong. 
Even for only one variable with this constraint, no solution was obtained. 

Another variation in the good result is to lengthen the longitudinal length. 
Then a non-iterative system can be fomid and possibly a meandering system is 
slightly different in every bend dependent on the initial conditions of the bend. 
Wi th tliis assumption, no constraints have to be met concerning the begin and 
end points of a meander period. The longitudinal length was increased to 118.8 
and to 200, but both runs resulted only in a longer computation time, a higher 
maximum error and a higher value for the criterion. No periodic behavior was 
fomid. 

The most runs have been made with an expected sinuosity of three, but also 
other values have been tried. The longitudinal length was set to 21.12, which 
resulted in figures 5.5 and 5.6. I t can be seen that the meander wavelength 
is far above the expected range. The solution is not enough cmwed or the 
charmel is too linear. Attempts to use increased angles as constraint, did not 
lead to a solution. I f a solution was found, often ah squared, dimensionless, 
longitudinal velocities averaged over the depth (iTf) evolved to a value of one 
exponentiaUy and in the end part of the period, the -ê^ remained one constantly. 
For a longitudinal length slightly higher, the model output was almost straight. 
The length was set to 21.2 and a completely different planform shape resulted. 
This can also be due to the lower order of Chebyshev polynomials used to 
describe the control: order thi-ee in stead of six. In an other attempt this 
order was increased to 12. The computation time increased, but the good result 
obtained with order six was not changed obviously. 



Figure 5.6: The states and control for the result with a sinuosity of 1.6 and /? 
fixed at O.STT at beginning and end of the meander period. 
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Chapter 6 

Discussion 

6.1 A comparison with planform shape found in 
nature 

The stable, natural meander planform shape can be derived from minimizing 
the total entropy production of an open alluvial chaimel reach with homoge
neous meandering characteristics for a given sinuosity. To predict tlris sinuosity 
is difficult, if not impossible, because variables that influence the sinuosity are 
interrelated and have different impacts i n different channels. In this study a 
dimensionless meander model has been formulated as an optimal control prob
lem. For a given sinuosity the optimal planform shape can be derived. Because 
no restrictions on the resulting planform shape are implemented in this model, 
both the asymmetric downchannel delay of the inflection point and the upvaUey 
skew asymmetry can be found, as weU as the fattening with respect to a first 
order sine-generated cmve. The downchannel delay of the inflection point can
not be found with the assumption on the planform shape to be a third order 
sine-generated cmve. At least one result wi th sinuosity 3 is promising. It shows 
typical characteristics of the meander planform shape: the meander wavelength 
around 13.2, an expected velocity profile and both bends having the same order 
of amplitude in control and states. But not all constraints that should be satis
fied to describe a natural alluvial meander, could be implemented in the optimal 
control problem successfully. For the promising result, the states and control 
are not periodical and the upper bend differs considerably from the lower bend. 
This may be, because the result does not satisfy all the constraints to make it 
a periodical meander. The planform shape derived in this study is thus not a 
final result. For this reason the correspondence of the resulting meanders from 
this model with natm'al meanders found in nature is not further investigated. 

The question may arise, whether the stable meanders derived in this study 
do exist in natm-e. For the modelhng in this study it is assumed that the mean
dering channel is stationai-y, has homogeneous sediment and is regularly (shows 
periodicity). This ideal, stable characteristics are seldom found, because of the 
constantly changing boundai-y conditions in natme. But in nature meandering 
channels are likely to evolve towards an equihbrium plaifform shape. This is in 
the stable state of the meandering process in the theory of St0lum [1996]. The 
planform shape in this stable state seems to be independent on bed material. 

55 



56 CHAPTER 6. DISCUSSION 

vegetation or changes in discharge. These variables only affect the length of 
time, at which the equihbrium state wih be reached. The existence of these 
stabilized meanders appears at topographical maps of places, where man do not 
influence the meandering chamiel. In figure 7 of the extended version by Teuling 
[2002], 24 stable river bends with one complete wavelength ai-e redrawn after 
topographical maps. Nice extended regular meander systems can be found in 
the tectonically stable Precambrian shield areas hke the Amazon basin. The 
assumption of periodicity is also made by for example Carson and Lapointe 
[1983], Edwai-ds and Smith [2002], Hey [1976], Ikeda et al. [1981] and Parker 
et al. [1983]. This strengthens the assumption that the optimal planform shape 
of meanders shows periodicity. On the other hand, most river reaches do not 
show this regularity. FoUowing bends are shghtly different shaped, partially 
caused by different external conditions or changes in downvalley directions. An
other reason might be that different meander bends have slightly different initial 
conditions and consequently a different plaifform shape. Because the system is 
non-hnear, the solution is extremely sensitive for only small changes in initial 
conditions as shown in the results. Some models describe the meander planform 
without using the assmnption of periodicity, for example Lancaster and Bras 
[2002], Liverpool and Edwards [1995], St0lmn [1996] and St0lum [1998]. Pos
sibly, the process of meandering is chaotic and best described by the Lorentz 
chaotic principle. Then no conclusion can be drawn from the planform shapes 
of one meander period derived in this study, because the initial conditions de
termine the final result to a large extend. 

For larger rivers natural, free meanders can oifly be found in more remote 
areas. Brooks and streams show the natm-al meandering pattern more often, 
because changes in planform ai-e faster than in rivers. The transition from 
active to stable meanders and the other way round is more rapidly. This also 
impUes that a smaller channel is more susceptible to changes in flow or sediment 
conditions. For example, when the discharge is high for some period, the chamiel 
adjusts to this discharge and is likely to be in the active state, changing its 
planform shape. Because the planform shape adjusts to the conditions more 
easily, the stream or brook wifl be in the stable state faster than a cumbersome 
river. Consequently, for a river the time in the stable state wil l be longer and 
may be up to hundreds of years. 

6.2 Dimensionless flow model and entropy pro
duction 

The flow in meandering chaimels is approximated in this study with the Odgaard 
model. This model strongly simplifies the flow pattern and is only valid for 
steady, subcritical, tmbulent fiow in chaimels with miiform bed sediment. The 
flow is modeUed to be 2 dimensional. Secondary flow is implemented in the 
model and the resulting transverse velocity is assumed to be hnearly related with 
the depth in the channel. The Odgaard model applies to shaUow, moderately 
meandering alluvial channels with constant width. Near the banks, where a 
vertical flow is expected because of the secondary flow, flow velocities ar-e not 
derived. The model apphes only to the effective width of the channel, where 
no banlcflow occurs. On the contrai-y, in the deterministic model of Ikeda et al. 
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[1981] the difference between flow near the banl: and the average longitudinal 
velocity determines to a large extend the bank retreat and thus the planform 
shape. Furthermore, the friction factor is taken to be constant in the Odgaard 
model. Silva [1999] points out that the friction factor is not only dependent on 
channel roughness, but also on position and sinuosity. VerticaUy averaged flows 
for two test sites can only be explained with a changing friction factor. 

Because only small changes in flow velocities can cause large changes in 
planform shape, simplifications in the flow can result in um-eahstic solutions of 
the model. Therefore it could be satisfactory to derive the optimal planform 
shape from more sophisticated models, for example Delft 3D. But for this model 
the stresses should be Imown on forehand, so also assumptions that wih affect the 
resulting planform shape have to be made. Furthermore, the Odgaard model 
is successfuUy tested for a sequence of sine-generated cmwes. The simulated 
flow and bed features are in good agreement wi th a data set of a field study 
without the use of calibration factors [Odgaard, 1986b]. This proves that the 
simpUfications made are reasonable and physically acceptable [Odgaard, 1986b]. 
The model could provide input to general analysis of meander patterns [Chang, 
1984]. 

The assumption in the Odgaai-d model that the radius of cmwature is large 
compared to the width, is not satisfied for lugher sinuosities. Then high cmva-
tm-es are present in the plaifform and the assumptions about the flow pattern 
are not valid anymore. These sharp bends have been shown to be hkely to evolve 
to a stable state with the deterministic approach. I f the transverse velocity at 
the border of the channel does not increase in the entire depth as assumed in 
the Odgaard model, but decreases at some depths with higher vertical place, 
two flow cells that converge away from the outer bend are present [pers. comm. 
K. Blancliaert, 2003]. These cells protect the outer bend from erosion by the 
main flow. 

In the model set up in this study, the relation between the meander wave
length and the width is taken to be lineai'. In fact, Leopold et al. [1964] found 
that the meander wavelength is proportional to the width to a power 1.01. This 
simphflcation in making the model dimensionless does not influence the end 
result to a large extend. For a comparison of a 100 meter wide river and a 4 
meter wide brook, the error between modelled and real meander wavelength is 
not larger than 5 %. AdditionaUy, if this model is used for deriving the shape 
of a meander planform, the meander wavelength can be set to the meander's 
dimension easily. 

In the Odgaard flow model, the total entropy production was implemented. 
To set up an equation for this entropy production, assumptions are made. These 
assumptions are the same as made for the Odgaai'd model, which have been 
discussed above. The assmnption to neglect flow influenced by the banlc, seems 
to be a rough estimate. Near the banlcs the friction wi th the bed is high and 
as a result entropy is produced. But in Hooke [1975] i t is explained that it is 
not the bed shear- stress that governs the entropy production, but the internal 
shear stress. This makes this assumption much better. 

The minimization of entropy production is an extremal hypothesis. These 
statements are criticized, because they do not have the explaining power that 
deterministic derivations have and because the thermodynamical statements 
used are strictly not valid for non-linear and open thermodynamic systems. 
But i n section 3.2 the vaUdity of the entropy production minimization in open. 
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non-linear systems is strengthened with the theory of Reiser [1998, 2000, 2001, 
2003]. Another argument in favor of the minimization is that meanders ai-e 
not restricted to the presence of sediment. Meanders can be foimd in many 
fluid flows and some general law should prescribe the equilibrium state of the 
meander planform shape. I t is proposed that this law is minimization of entropy 
production. For complex problems, a solution can be obtained more easily 
using the principle in stead of solving the momentum equations. In general, 
the tendency towards minimization of entropy production can be used to solve 
many complex chemical and physical problems. 

The flow model with the entropy production equation was made dimension
less. This is satisfactory, because the process of meandering is independent on 
scale. Two variables in the flow model are dimensionless, but their value cannot 
be determined. These are the particle Froude niunber, which is a function of 
the actual velocity and sediment size, and the velocity profile exponent, which 
is a function of the scale dependent Chézy coefficient. They have been set to 
the average values in the two test sites in Odgaai-d [1986b]. Teuhng [2002] per
formed a sensitivity test on these flow and sediment parameters and they seem 
not to influence the flow pattern and resulting planform sliape to a large extend. 
This test was performed with the assumption of third order sine-generated func
tion, but probably the conclusion is also valid for the optimal planform shape 
derivation in this study. 

6.3 The optimal control problem formulation 

The problem of finding the optimal planform shape of an aUuvial meander was 
formulated as an optimal control problem. The control and states for this three 
dimensional system were derived using numerical integration. In general, this 
is assmned to be a precise way of integration also for non-linear models, but 
possibly errors are generated. A spatial discretisation is reqmred which should 
be sufficiently accm-ate. 

Iifliereiit to minimizing some function, is that solutions obtained can be 
local minima. In this model, attempts have been made to find the solution with 
the global minimal total entropy production, but it is never definite that this 
minimum is found. The good result found for the hard constraint on the stai'ting 
angle 1.27r appeared to be independent on the initial conditions. I t is hkely that 
this result is indeed a global minimum of the total entropy production. 

The control or curvatm-e was parameterized with Chebyshev polynomials. 
These polynomials are efficient to use, because only smaU order can make a large 
range of curves. Wi th a run of the model with the order only thi-ee, the resulting 
planform shape did show some simplifications. Another run with order 12 did 
result in a similar solution with the solution obtained with order 6, therefore i t 
can be concluded that the order 6 is indeed sufficient, as expected for smooth 
problems. 

In this study the assumption was made that a meander shows periodic
ity. Because Chebyshev polynomials are not restricted to periodic behavior, 
constraints had to be implemented to end up with reahstic, regular solutions. 
Chebyshev polynomials of some order have either the value or the first deriva
tive equal at begimiing and end. So a combination of orders has to made to 
satisfy both constraints. At least two even or two odd orders ai-e needed to 
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satisfy both these constraints. The constraints that the first derivatives of the 
states and control wi th respect to the longitudinal coordinate should be equal 
at beginning and end of the meander period ai-e not satisfied for the good result. 
The freedom to optimize the coefBcients is largely restricted. When even higher 
derivatives are set equal at begimiing and end, this freedom becomes very smaU 
and i t is likely that no solution can be obtained that satisfies these additional 
constraints. Nevertheless, the good result shows that the planform shape and 
the states are more or less periodical, but the solution still has to be improved. 

A remark can be made about the calculation process. Although constraints 
were implemented to find reahstic solutions, during calculations the path of the 
curvature or states can be um-ealistic. The assmnptions made when setting up 
the model (for example that the channel is moderately meandering), do not 
have to be satisfied for aU iterations. As long as the final result of a calcula
tion is realistic and does satisfy the constraints, this problem is miimportant. 
Moreover, when a run is performed with for example the good result as input, 
the constraints ai'e hkely to be satisfied for aU iterations if the end result does 
satisfy them as well. For the cmwature this error can not be large: a constraint 
was implemented that it is in the range from —0.5 to 0.5. Values out of this 
range denote too sharp bends and ai-e um-ealistic. 

I f the calculation succeeded to find a meander planform shape resulting in 
minimization of total entropy production, a solution of the model was obtained. 
Only one solution was in the range of the meander length around 13.2. For this 
good solution the final point has (X,Y)-coordinates: (13.658;—0.0006358). A 
constraint on the Y-coordinate was implemented to be around 0, because the 
definition of the angle (5 is that it is the angle of the transverse direction of the 
centerline with the negative X-axis (see figm-e 2.1). Consequently the meander 
wavelength could be read from the end value of the X-coordinate directly. Maybe 
this constraint is too strong and it is not very necessary to be exactly 0. The 
range of the final Y-coordinate can be set a little wider. As a result, other more 
important constraints can be satisfied possibly. 

I t was found that the end result is very sensitive on the hard constraint that 
the angle is set at beginning and end. For a sinuosity of three, this angle was 
calculated to be around this value. Then the chaimel fiows upvaUey in smaU 
parts of the reach, which is also seen in natm-e for this sinuosity. The solution 
did end in the range around 13.2: the expected wavelength. But when the angle 
was only increased or decreased with small steps, the resulting planform was 
completely different. The good result is a lucky l i i t ! 

Also the sensitivity on the discretisation in both n and s direction has been 
investigated. Both discretisations were increased. The computation time in
creased up to 3 hom-s, but the result did not show considerable differences with 
results derived with lower discretisation. Thus for the s-direction a discretisa
tion of 100 points and for the n-direction of 16 points seem to be sufficient for 
deriving the first solutions of the problem. 
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Chapter 7 

Recommendations 

7.1 Dimensionless flow model and entropy pro
duction 

In the previous chapter, tire results obtained with tire optimal control problem 
were discussed and some recommendations for futm-e reseai-ch foUow directly 
from this discussion. A first recommendation is about the flow model (see 
section 6.2). When a final result is obtained with the dimensionless Odgaard 
model with the total entropy production implemented, it is wise to use another 
(more sophisticated) flow model to test if the assumptions made about the 
flow pattern in the Odgaard flow model do not influence the resulting planform 
shape. I f the Odgaard model does not approximate the flow weU, the entropy 
production caimot be derived with the assumptions made in the flow model as 
weU. 

Another test that should be performed is a sensitivity test on aU input pa
rameters. Especially those parameters, that were assumed to have values mea
sured in only a few practical studies and are related to actual, non-dimensionless 
velocities, sediment size and Chézy coefficient, need to be checked on their range 
of validity. Although Teuling [2002] performed such a test for the particle Proude 
number and the velocity profile exponent, this test should be repeated when a 
final restdt is obtained with the model set up in this study. Because no as
sumptions that prescribe the planform are made, the sensitivity of the model 
output on these parameters can be different in this study. Another parameter 
that needs a sensitivity test is the ratio of width to depth at the centerline. 
To complete the testing of input parameters, the constants in the equation for 
the transverse bed slope at the centerline can be tested as well. This is for the 
Shields parameter and the ratio a. 

Although the extension of the statement of Prigogine to non-hnear and open 
systems is strengthened in this report, the validity of this principle of minimal 
entropy production needs to be fmther investigated. The assmnptions used to 
derive this extended law should be tested and the vahdity of the application of 
the general fom-th main law introduced by Reiser [1998] on turbulent meandering 
fiow should be investigated. 

61 
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7.2 The optimal control problem formulation 

In the good result the necessary states and control are equal at beginning and 
end. Attempts were made to set the first derivative with respect to the longi
tudinal coordinate equal at the beginning and end, but this has not resulted 
in solutions yet. Only the simplest way of implementing was tried. Other 
ways of implementing the constraints in the variational procedm-es should be 
tried. Probably the result wiU improve considerably when the first derivatives 
are equal, but actually all derivatives must be equal at beginning and end of 
the meander period to have a periodical meander planform shape. Ah these 
constraints can probably not be satisfied at once. 

An alternative for the parametrization of the control with Chebyshev poly
nomials is a parametrization of the curvatme with Fourier series. These are 
periodical fmictions and thus they satisfy the continuity constraints by defini
tion. The third order sine-generated curve used by Teuling [2002] to describe 
the planform shape is a Fom-ier serie, but tlris is not able to describe the de
layed inflection point asymmetry in the planform shape. Tins asymmetry can 
be found additionaUy, when Irigher orders of Fourier series are used. The plan-
form shape is the result from the control and thus it is beheved that also higher 
orders Fom-ier series have to be used to parameterize the control. Wi th a fifth 
order parametrization of the cm-vatm-e the delayed inflection point can prob
ably be fomid, but maybe higher orders are needed to describe the resulting 
planform shape with delayed inflection good. This parametrization leaves more 
freedom to find the optimal solution, because no constraints have to be satisfied 
to describe periodical behavior. 

The good result with the constraint on the angle (3 to be 1.27r at the beginning 
and end, is a lucky hit. The range of this angle with realistic end resuhs needs 
to be further explored. This can be done by trying angles and see what is 
the result. I f several solutions are found, it could be useful to combine them 
and see whether combinations of these solutions represent planform shapes as 
well. An algorithm that could be useful then, is the genetic algorithm. I t 
combines solutions and sometimes strange solutions as weU, to make an overview 
of the range of solutions. As only the global minimmn is of interest, the lowest 
minimum can be chosen to be the best planform shape for the given sinuosity. 
In this study only one good result was found for sinuosity three. For other 
sinuosities a search for reahstic solutions should be performed as weU. Change 
the meander length and consequently the constraint on /? and rmi the model! 

Another algorithm that helps to find the global minimum is simulated an
nealing. I t is a powerful stochastic seai-ch algorithm apphcable to a wide range 
of problems for which little prior knowledge is available. I t is hkely to con
verge to the global optimum by maldng large and smaU steps. Other algorithms 
decrease their stepsize when the solution is close to a local minimum and are 
hkely to find the local minimum to be the solution. Wi th this algorithm the 
probabihty for the solution to be global is higher. 

Not oifly algorithms, also data from field sites can be helpful in finding the 
global minimum. When stabUized, regular, alluvial meander planform shapes 
are used for input of the model, the end result should be similar with the input. 
Tlus is a good test for the model assmnptions and of the models abihty to find 
the global miiumum. 

Some tests have been performed to test the sensitivity. The discretisation 
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and order of Chebyshev polynomials seemed to be sufficient, but when a final 
result is obtained, these tests should be repeated. I t could be that for this final 
result the sensitivity is different or deviations are more clear. 

The assumption made in this study that the meandering process shows peri
odical behavior, does not have to be right. The high sensitivity on the constraint 
about is an indication that the system is chaotic. Very shght changes in initial 
conditions for every bend, can result in different planform shapes. To test this 
hypothesis, the parametrization of the curvatm-e wi th Chebyshev polynomials is 
good. For a large number of bends the optimal planform shape can be derived. 
To do this the meander length should be set to n • 39.6 to result in a meandering 
chaimel with sinuosity three. A complication is that either the constraint on 
(3 or a constraint on meander wavelength has to be satisfied to end up with 
reahstic planform shapes. The best would be to implement a constraint that 
forces the end point to have coordinates ai-ound (n • 13.2,0). I t might help to 
decrease the discretisations to save computation time. 

This optimal control problem formulation can also be used for a model with 
dimensions, for example the model of Andel [2002]. Then no constraint has to 
be implemented to force the chaimel to meander. Wi th this m.odel, the optim.aJ 
sinuosity and planform shape could be derived for a site in nature with parame
ter values and constants measm-ed at this site. These can be interpreted as the 
optimal characteristics of the chaimel in the ordered state after the chaimel has 
evolved to steady state. 

7.3 Final remarks 

In this section I would like to make some final remarks, that do not consider 
aUuvial meandering channels. 

Surface tension meanders can be created in the laboratory. A problem arises, 
when determining the cross-sectional shape of these meander fiows. When two 
paraUel inclined plates are used, the cross sectional shape can probably described 
and measm-ed easier. The contact angle with the two glass plates possibly 
can be set to be hnear and the contact angle is no longer dependent on the 
centrifugal force. Interesting is what sinuosity results from this experiment 
compared with the experiment with one inchned plate. A compai-ison might 
lead to conclusions about the surface tension influence. Moreover, for both 
experiments it is interesting to derive whether these planform shapes represent 
a state in which the entropy production is minimal. 

The principle of minimal entropy production can be used not only for me
andering chaimels, but also for many other problems. EspeciaUy fof complex 
problems, where solution of the momentum equations is difficult, the minimiza
tion theory can be useful. For example, it was already appUed to find the 
drainage pattern found in natm-e, for the derivation of the three dimensional 
long structm-e and the brandling pattern of trees. 
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