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Abstract

With the development of the technology, today’s digital systems’ growing design
complexity has outpaced the traditional RTL design flow. The manual steps of
micro-architecture definition, hand written RTL, simulation, debug and area/speed
optimization through RTL synthesis are becoming more and more time consuming
that gives the call of higher level abstraction in digital design. Catapult C synthesis
tool, a C/C++ based hardware synthesizer, was released by Mentor Graphics as a
solution of high complex digital system design. With this tool, designers are able to
describe a complex system in a more productive abstraction level and Catapult C will
generate an accurate RTL description turned to the target technology.

This thesis presents a practical introduction to C/C++ based high-level synthe-
sis with Catapult C synthesis tool including tips of writing efficient synthesizable
C/C++ code presented. In the design work of this thesis, the optical flow algorithm
“Lucas” is implemented into hardware by Catapult C. The simulation results shows
that with the clock frequency of 100MHz, the generated hardware has a minimum
latency of 133.46ms for processing three images, which means it can reach a processing
speed of 22.47 frames per second.
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Introduction 1
With the advance of semiconductor technology, the digital system complexity has been
increasing so fast that tranditional register-transfer level (RTL) design flow can hardy
maintain its design productivity and efficiency. Thus improving the RTL design flow
has become a hot spot in research.

1.1 The need of high-level synthesis

High-level synthesis, sometimes also called behavioral level synthesis, electronic system
level synthesis or algorithmic synthesis, is a technology used to interprete algorithmic
level design into hardware architecture.

The traditional RTL design flow is shown in Figure 1.1, we can see that when
the design integration scales up, all the manual work would become more and more
complex and time consuming.

Figure 1.1: Traditional RTL design flow

In order to keep or even increase designers’ productivity, high-level abstraction models
are introduced and used without concern of what is inside the blocks and how could
the blocks be implemented. Many of Electronic Design Automation solution companies
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have presented their own high-level synthesis tools, including the ability of determining
the data transfering, operation timing, storage as well as high-level optimization
options to help designers to balance the trade-off between area or resource usage
and latency. In this thesis, one of the tools called Catapult C, developed by Mentor
Graphics is introduced and used for hardware implementation of the Optical Flow
Algorithm, “Lucas”.

Figure 1.2 shows the new RTL design flow with the help of Catapult C. Here
we can see that the Micro-architecture definition, RTL design and RTL area/timing
optimization could be automated by Catapult Synthesis and no more manual work
maybe needed.

Figure 1.2: Catapult C design flow[7]

1.2 Brief introduction of optical flow algorithm

Optical flow represents the distribution of apparent velocities of movement of bright-
ness patterns in an image. The concept of Optical Flow was originated from the study
of human visual system, the term “optical flow” was first indroduced by American psy-
chologist James J.Gibson in his paper “ThePerceptionoftheV isualWorld”[19] in 1950.

The real study of Optical Flow Computation began after 30 years in the early
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1980s by Horn&Chunck[6]andLucas&Kanade[5]. Until now, varieties of Optical Flow
Algorithm have been developed and used in the field of computer vision.

1.3 Thesis goals

This thesis has the following goals.

• Study the transformation from C/C++ to RTL hardware in the perspective of
High-Level Synthesis.

• Study the capabablity of the High-Level Synthesis tool, Catapult C.

• Design the hardware of “Lucas” algorithm in hardware-oriented C code.

• Finally, use High-Level Synthesis tool Catapult C to convert the high-level C code
into RTL code and verify.

1.4 Contributions & Results

The major contributions of this thesis project are listed in below:

• A methodology and coding tips for writing efficient synthesizable C code.

• Developed synthesizable “Lucas” C code.

• Converted the synthesizable C code to RTL and verified its correctness.

• Optimized the C code by adding design constraints and compare the results with
a hand written solution.

1.5 Thesis outline

The rest of the thesis is organized as follows:

Chapter 2 presents the way that C/C++ code is being projected to hardware.
After that, rules of how to write efficient hardware-oriented C/C++ code are diss-
cussed.

Chapter 3 presents the principle of optical flow algorithm “Lucas” in detail.

Chapter 4 presents the system architecture as well as the design flow of this
project.

Chapter 5 shows the Catapult C RTL implementation flow as well as the simu-
lation results.

Chapter 6 is the conclusion.

3
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From C/C++ to Hardware
Description Language 2
High-level synthesis technology is introduced in order to reduce the increasingly
growing complexity of ASIC design, with its help the designers are able to raise the
design abstract level and put more effort on behavioral level (C/C++) design and
optimization.

However, not all C/C++ code can be converted to RTL level description and
not all synthesizable C/C++ code can be successfully converted into efficient RTL
descriptions.

Thus, in this chapter, C/C++ based high-level synthesis tool Catapult C will
be first introduced in 2.1, rules of C/C++ to HDLs based on Catapult C will be
presented in 2.2, tips and advices about how to write efficient synthesizable C/C++
code will be discussed in 2.3.

2.1 About Catapult C Synthesizer

Catapult C is a C/C++ based high-level synthesis tool developed by Mentor Graphics.
It has the following main features:

• C/C++ editor and compiler.

• C/C++ algorithm synthesizability analysis.

• Architecture constraints.

• RTL hardware generation and optimization.

• SystemC Verification

• Automatic generation of SystemC testbench

2.2 C/C++ mapping to HDLs

In this part, all the rules of C/C++ to HDLs will be based on Catapult C.

2.2.1 Differences between C/C++ and HDLs stuctures

As we know, HDL is well known for its ability of describing parallel operations, while
C/C++ is for serial operation description, they have the following features in their
structures:

5



• C/C++ consists of functions, while HDLs are made up of modules or entities.
Thus, the main task of C/C++ based high-level synthesis is to convert C/C++
functions to high performance, multi-threaded RTL modules. Subfunctions in
C/C++ corresponds to the sub modules/entities.

• In C/C++, a function call is made when a subfunction is needed, the function
variables or return values or even global variables can be used as communications
between one function and its outside world. Accordingly, in HDLs modules/enti-
ties can be instantiated when needed, they use their input and output ports to
communicate with outside.

However, their nature is different. First, the instantiation in HDLs reflects
physical interconnections among the ports. Second, in C/C++ one function can
be repeatively and limitlessly called while in HDLs each time an instantiation of
the same module leads to creation of a new hardware block.

• There is no timing in C/C++, there is no concept of clocking or synchronous/asyn-
chronous control. To solve this problem, C/C++ based high-level synthesizer will
create the timing according to the data flow and timing constrains.

• In C/C++, operations are executed line by line in serial while in HDLs there are
descriptions for parallel operations. Thus, one other important task for C/C++
based high-level synthesizer is to analyze the data dependencies and parallel the
operations automatically.

2.2.2 Data types

This part presents the basic data types in C/C++ and the way they will be mapped
into bit-accurate HDL data types. Also, the algorithm C data type will be introduced
here.

1. standard C/C++ data types

The table in Figure 2.1 shows the basic C/C++ integral data types and their
corresponding data types in HDLs in high-level synthesis. As we see standard
C/C++ data types don’t have the ability of bit-accurate precision control, neither
can they give fixed-point fractional description. Thus there are several C/C++
libraries being created to solve this problem, such as Algorithm C and System C
data types.

2. Algorithm C data types

Algorithm C data types are developed for Catapult C users to write arbitrary-
length bit-accurate algorithms that can be synthesized into hardware.

There are two commonly used Catapult C data types: ac int < W,S > and
ac fix < W, I, S,Q,O >.

For ac int < W,S >, the precision is determined by the template parame-
ter W, which is the integer that indicates the bit-width; and S, which is a boolean

6



Figure 2.1: Basic C/C++ data types and corrsponding representation in high-level
synthesis[21]

to determine if it is a signed or unsigned integer. S=true means it is a signed
integer, S=false means it is a unsigned number.

For fixed-point data type ac fixed < W, I, S,Q,O >, there are five tem-
plate parameters, W is an integer and gives the whole bit-width, I is an integer
and gives the integer parts bit-width, S is a boolean and determines if it is signed
or not, Q and O are the quantization and overflow modes, they can be left blank.

The table in Figure 2.2 shows the basic bit-accurate Algorithm C data types and
their numerical ranges.

7



Figure 2.2: Bit-accurate Algorithm C data types[22]

2.2.3 Interfaces

As is mentioned before, C/C++ function variables or return values or global variables
can be used as communication data types among functions, in order to precisely syn-
thesize a function into a hardware block, designers are recommended to use variables
and return values as interfaces.

1. Input ports

Function variables that are pass-by-value will be synthesized into input ports.
Functions variables that are pass-by-reference but only be read and never written
in the function will also be synthesized into input ports.

2. Output ports

Function variables that are pass-by-reference but only be written and never read
will be synthesized into output ports. Function return value with also be synthe-
sized into output ports.

3. Inout ports

Function variables that are pass-by-reference and be both written and read will
be synthesized into inout ports.

Here is an example of the top level.

#pragma des ign top // indication of top level block

void top (
unsigned char f1i [ 3 1 6∗2 5 2 ] , //input port

m_type norm_vels1_y [ 3 16∗252 ] //output port

) //m_type is a user defined datatype

/*---Whether it’s input or output is determined by the function body---*/

As we can see, this top level function has no return value and all variables are arrays,
which means they are pass-by-references.

2.2.4 Hierarchical design

When it comes to building a system which contains mutiple blocks that can run in
concurrent or sequential, designers should apply HLS contrains (in Catapult GUI) as

8



well as some recommeded coding styles.

The code below shows part of the top level description of this thesis project, the hi-
erarchy and dependency of the blocks can be easily identified from the way it is written.

#pragma des ign top //indication of top level

void top (

)
{

/*-----------data ports for blocks----------*/

int f1o [ 3 1 6∗2 5 2 ] , f2o [ 3 1 6∗2 5 2 ] , f3o [ 3 1 6 ∗ 2 5 2 ] ; //output of stackblur

int Ix [ 316 ∗ 252 ] , Iy [ 316 ∗ 252 ] , It [ 316 ∗ 2 5 2 ] ; //der_3x3 output

/*--------------stack blur-----------------*/

stackblur (f1i , f2i , f3i , f1o , f2o , f3o ) ;
/*--------------compute derivitives -------------------*/

compute_ders_3x3 (Ix , Iy , It , f1o , f2o , f3o ) ;
/*--------------compute velocities --------------------*/

compute_vels (Ix , Iy , It , full_vels_x , full_vels_y , norm_vels1_x ,
norm_vels1_y ) ;

}

As we see, there are three sub-blocks inside the top block, stackblur, com-
pute ders 3x3 and compute vels, each of them connectes to others by sharing the same
arrays as function variables. According to their data dependencies, we can tell that
they are connected in serial.

2.3 Efficient synthesizable C/C++ writing style

There is no doubt that C/C++ based high-level synthesizer will largely reduce the
design cycle , but it can not be perfect in every aspect. Synthesiability is becoming a
more important issue for Catapult C users.

Here in this section, unsynthesizeble writing styles will be first introduced in
2.2.1 and efficient synthesizable C/C++ writing styles will be presented in 2.2.2.

2.3.1 Unsynthesizable writing styles

Here we list the unsynthesizable writing styles.

1. Loops without finite bounds

Loops without finite bounds can not be synthesized into hardware, thus Catapult
C will examine in its starting point of synthesis and gives error. A synthesizable
loop should have the following elements:

• A constant start point.
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• A constant stop point.

• A constant increment.

2. Global variables

Global variables being used in hardware oriented C/C++ code leads to difficulty in
compilation and synthesis, the hardware generated may not function as expected.
Thus designers should avoid using global variables.

3. Dynamic interface mapping

In C/C++ coding, the following kind of function head writing style is very
common.

void function0 (
unsigned char img [ PIC_X ] [ PIC_Y ] , //image pixel value

unsigned w , // width of the image

unsigned h , // height of the image

)

However, this is unsynthesizable. The array indexes PIC X and PIC Y are dynamic
variables, which means the unsigned char variable of the function can be any one of
the elements in the array (or menory), but we never know which one it is. Here are
two synthesizable writing styles:

void function1 (
unsigned char img_in , // memory reading port

unsigned char img_out , // memory writing port

unsigned address , // memory address

bool read_en , // read enable

bool write_en , // write enable

unsigned w , // width of the image

unsigned h , // height of the image

)

void function2 (
unsigned char img [ w∗h ] // The port size equals to the memory size

unsigned w , // width of the image

unsigned h , // height of the image

)

In function1, variable img in, img out, address, read en, and write-en can be synthe-
sized into reading, writing, address, read enable, and write enable ports respectively
to connect with a dual port memory block. This style is more like a HDL description,
though it is synsizable, but has lost the convenience of using high-level synthesis.

Function2 has simply used the whole array (memory) “img” as variables, then
Catapult C will automatically create the read&write interface for this kind of writing
style. Thus it is the preferable style.

Please note that the clock will be automatically created by the synthesizer.
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2.3.2 Coding with better synthesizability

1. Using of parentheses in expressions

Arithmetic expressions are costy as they consume a great many hardware. With
the help of the C/C++ based high-level synthesizer, designers are able to manage
the amount of hardware to be used by using parentheses properly in C/C++ code.

Figure 2.3 and Figure 2.4 shows how parentheses affect the synthesis re-
sult.

The version shown in Figure 2.4 has no parenthese used, which infers a
serial design.

Figure 2.3: Inferring serial hardware[12]

The version shown in Figure 2.5 has parentheses used, which infers a parellel
design.

Figure 2.5 shows that proper using of parentheses in sub-expression can reduce
the resource usage.

2. Shorten the dependency chain

A short dependency chain is always prefered to achieve small latency and to fit
the design into a higher clock frequency.

Now we present some of the typical suggestions can be followed to reduce
the dependency chain.
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Figure 2.4: Inferring parallel design[13]

Figure 2.5: Common sub-expression allow hardware reuse[14]

The first suggestion is to use more iterators in a loop. Here is an example
of using only one iterator or multiple iterators in Figure 2.6.

As we see in the one-iterator version, indexes of in1 and in2 are calculated by mod
operator, which leads to a long dependency chain in this loop.

Figure 2.7 shows an example of multiple iterators being used.
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Figure 2.6: Loop using one iterator[15]

The version shown in Figure 2.7 with three independent loop iterators is faster
than the previous version shown in Figure 2.6 because the dependency chain has
been split into shorter ones, but please note that extra hardware is required to
control the iterators.

In addition to using more loop iterators, writing the conditional logic in a proper
way also helps in shortening the dependency chain. Using of “else” can generate
mutually exclusive conditions and thus split the dependency chain.

Figure 2.8 shows an example of using conditional “if” logic.

Figure 2.9 shows an example of using conditional “else” logic.

As we can see, when the else is used, the synthesizer knows it is a mutually
exclusive condition and will split the dependency chain into two, as a result, the
design becomes faster.

The last suggestion is to use more small memory blocks instead of a few large ones.
The reasons are simple. First more memory blocks means more datas can be read
or write at the same time thus the dependeny chain can be shorten compared with
when large memory is used, also smaller memory size means the multiplexer size
can also be smaller.
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Figure 2.7: Loop using multiple iterators[16]

2.3.3 Loop controls

Catapult C provides loop control options as part of the architecture constraints. There
are thre kinds of loop control: loop unrolling, loop merging and loop pipelining.

Loop unrolling is a technique that reduces the loop iteration numbers by flat-
tening the loop body. Here in Catapult C, when you apply loop unrolling, you actually
unrolled this loop fully such that only one iteration is left.
Here is an example shown in Figure 2.10, on the left side, the loop is left rolled, the
synthesis result shows one adder is used and the latency is four cycle; while the right
side shows when the loop is fully unrolled, in synthesis four adders are needed and the
latency is one cycle.
If we say loop unrolling is a instruction-level parallelism, loop merging represents a
loop-level parallelism. In loop merging, various sequential loops can be merged into
one loop with the same functionality as the original loops. This technique helps to
reduce latency and area consumption in the design.

In Catapult C, users just need to tick on the option to enable or unable the
loop merging, if loop merging is enabled, Catapult will automatically find out whether
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Figure 2.8: Conditional “if” creates dependency chain[17]

Figure 2.9: Conditional “if” splits dependency chain[18]
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Figure 2.10: Loop unrolling[8]

and how can it be merged and do the merging according to the analysis result.
Figure 2.11 shows how sequential loops being merged. We can see that the second
loop can be merged into the first bigger one.

Figure 2.11: Loop merging[9]

Pipelining a loop can increase the throughput of the loop and is also very simple to do
through Catapult C. What the users need to do is to determine whether to pipeline a
loop or not and what the initial interval is.
Figure 2.12 shows the principle of pipeline.

2.4 Summary

C/C++ based high-level synthesizer Catapult C provide a new solution for digital
system design, as a result, a new study area intended for helping the designers to
write high quality hardware-oriented C/C++ code has been created. In the following
chapters, an image processing algorithm “Lucas” will be implemented in hardware
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Figure 2.12: Loop pipelining[10]

using Catapult C, to give us a better understanding of how this C/C++ based high-
level synthesizer works.
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Optical flow algorithm “Lucas” 3
One important reseach area in the field of Computer Vision is analysis of the dynamic
scenes through sequential images. Dynamic scenes refers to scenes with object
movements inside, its not only a function of spatial positions, but also a function of
time. The picture sequences taking from a dynamic scene are called dynamic image
sequences. Between any neighboring frames, there are grayscale and color difference in
some part of the pixels.

The basic task of dynamic scene analysis is to find out the movement informa-
tion, detect and track the moving objects from the dynamic image sequences. Athough
relevant study has been continued for decades, various kinds of motion estimation
algorithms have been developed, finding an algorithm with good robustness, high
accuracy and high performance is still a very challenging task.

Here in this thesis, the focus is not about finding out a better algorithm, but to
get an efficient hardware solution in terms of processing speed by using high-level
synthesis tool. Thus a mature and well developed object movement tracking algorithm,
optical flow algorithm “Lucas”, is analyzed and used. Optical flow algorithm will be
introduced in section 3.1, the detailed analysis of “Lucas” algorithm will be presented
in section 3.2.

3.1 Optical flow method

3.1.1 Introduction of optical flow method

As is mentioned in the introduction, the concept of optical flow is originally introduced
by an American psychologist James J. Gibson, in his study of human visual system.
Optical flow is the brightness pattern of the apparent motion of objects in a visual
scene, it arises from relative motion between the object and the observer. When our
eyes are looking at a moving object, its like continuous optical images flow through
our retina, thus called optical flow.

When we talk about the optical flow method in computer vision, we are actu-
ally studying the optical flow field. To understand what optical flow field is, first we
need to know another term, motion field. Motion field describes three-dimensional
motion in the real world, including three-dimensional velocity in terms of velocity
magnitude and its direction.

However, when we observe the world from a camera, what we see is a sequence
of flat images, the three-dimensional real world has been squeezed into a two-
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dimensional plane. To describe the motion of the objects in the images, optical flow
field is used as a substitute of motion field.

Optical flow field is a two-dimensional velocity field presented in an image as a
projection from the three-dimensional motion field. Once we have the optical flow
field calculated, we know the object movements in the image, though it is not exactly
the real world motion field, but its still useful. That is why optical flow method is
regarded as one of the classical solutions for motion estimation.
Figure 3.1 shows an example of motion field and example of optical flow field is shown
in Figure 3.2. Here we can see in Fig 3.2, optical flow method calculates the overall

Figure 3.1: Motion field

movements in the image.
Below shows some of the applications of optical flow method:

1. Velocity Measurement

Velocity measurement is one basic application of optical flow method. Assume
a robot is travelling at a certain altitude, given the altitude of the robot, the
velocity can be calculated by analyzing the pixel velocity.

2. Altitude Measurement

As a converse of velocity measurement, altitude can be calculated from the ve-
locity. Anyone who has been on a flight knows, when looking out of the window
of an airplane, the higher we are, the slower we find the ground scene moves.
Assume an aircraft moves with a constant speed, by analyzing the pixel velocity
on pictures taken by downward facing camera, the altitude can be calculated.

3. Tracking

Since optical flow method has no interest in identifying any specific object, the way
of tracking should contain the background subtraction[1] part. After removing the
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Figure 3.2: Optical flow field[4]

irrelevant parts, the rest of work lies in analyzing the pixel velocity along with
the pixel to distant ratio.

4. Three-dimensional Scene Recovery

As is mentioned before, optical flow field is a projection from the three-dimensional
real world motion field. By analyzing the pixel movements, we can see the velocity
field of different parts of an object in an image are different because of its shape
and the placement.

5. Navigation

Optical flow method can be used to supervise the navigation of robot[20]. With
a camera put on the robot, by calculating the optical flow field of the observed
environment continuously, we can get the obstacle positions, the robot heading
direction, the time to collision and the depth.

3.1.2 Principle of optical flow algorithm

In optical flow theory, every pixel in an image has its brightness (or intensity value),
the movements of the objects can be illustrated by the movements of the pixel intensity
values in a sequence of images.
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One critical prerequisite of optical flow algorithm is the assumption called brightness
constancy. Let’s explain it here. Assume there is a point, positioned in (x, y) and
possesses an intensity value I(x, y), after some time t, due to the movement of the
object or the observer, what we find on the later frame is that this pixed has moved
to somewhere else and possessed another position and intensity value (x + δx, y + δy)
or (x(t), y(t)) and I(x+ δx, y + δy) or I(x(t), y(t)).
Figure 3.3 shows the optical flow in different frames of images.

Figure 3.3: Optical flow field in images

Brightness constancy here means, given one point in an image taken from a dynamic
scene, no matter where this point moves to in the following frames, we assume its
intensity value will not change within some time.
Equation 3.1 shows the brightness constancy:

I(x, y) = I(x+ δx, y + δy) = I(x(t), y(t)) (3.1)

If we add time as another parameter, we get equation 3.2:

I(x, y, t) = I(x+ δx, y + δy, t+ δt) = I(x(t), y(t), t+ δt) (3.2)

By applying Taylor series expansion, we get equation 3.3:

I(x+ δx, y+ δy, t+ δt) = I(x, y, t) +
∂I

∂x
δx+

∂I

∂y
δy+

∂I

∂t
δt+HighOrderTerms (3.3)

Discard the high order terms and apply the brightness constancy, substitute equation
3.2 into equation 3.3, we can get the optical flow constraint equation, which is shown
in equation 3.4.

∂I

∂x
δx+

∂I

∂y
δy +

∂I

∂t
δt = 0 (3.4)
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Then both sides divided by δt, we get equation 3.5:

∂I

∂x

δx

δt
+
∂I

∂y

δy

δt
+
∂I

∂t
= 0 (3.5)

Where δx/δt = ux which is the velocity in x direction, δy/δt = uy the velocity in y
direction, δI/δt = Ix, δI/δt = Iy, δI/δt = It. Then we can get the final version of
constraint in equation 3.6.

Ix × ux + Iy × uy + It = 0 (3.6)

By solving this function , we can have the optical flow field ~u = (uxuy)
T calculated.

So what we actually have to do is calculating the intensity value derivitives(Ix, Iy, It)
from a sequence of images taken from a dynamic scene.

3.2 “Lucas” algorithm

“Lucas” algorithm, abbreviation of “Lucas-Kanade” algorithm, developed by Bruce D.
Lucas and Takeo Kanade, was regarded as a classical differential method for computing
the optical flow field.

3.2.1 Principle of “Lucas” algorithm

As we know in the earlier section, calculating the derivitives of the intensity value is
the essential part of solving the optical flow constraint function.

However, equation 3.6 has two variables ux and uy, which means even if we
provide all the other parameters, the two terms can not be calculated by a single func-
tion, there must be other constraint functions. Here “Lucas” algorithm gives a solution.

“Lucas” algorithm assumes the pixels in a neighbourhood share the same optical flow
field, which means we will get more than one constraint functions to solve two variables.

Figure 3.4 simply shows the principle of the “Lucas” algorithm. There are three
prerequisites for this assumption:

1. Brightness constancy.

2. Frames have to be consecutive, time interval between each frame has to be small
and the object movements should not be speedy.

3. Neighbourhood pixels have the similar motion and they keep together.

The above conditions have to be met, otherwise the accuracy of this algorithm will be
dramatically affected.
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Figure 3.4: principle of “lucas” algorithm

In “Lucas” algorithm, we get the following equations:

Ix1 × ux + Iy1 × uy = −It1
Ix2 × ux + Iy2 × uy = −It2

· · ·
Ixm × ux + Iym × uy = −Itm

(3.7)

After transform the above into a matrix, we get equation 3.8.
Ix1 Iy1
Ix2 Iy2
...

...
Ixm Iym

(uxuy
)

= −


It1
It2
...
Itm

 (3.8)

Actually, solving equation 3.8 can not give us the right result, beause with the
assumption that all neighbourhood pixels share the same velocity (optical flow), this
set of linear equations are not determinant.

Thus we have to find some limits for this overdetermined set of linear funtions,
equation 3.9 shows the new matrix with errors counted in. The errors come from the
neighbourhood optical flow constant assumption.

Ix1W1 Iy1W1

Ix2W2 Iy2W2
...

...
IxmWm IymWm

(uxuy
)

+


It1W1

It2W2
...

ItmWm

 =


ε1W1

ε2W2
...

εmWm

 (3.9)

The parameters W1 −Wm represent the weights of the neighbourhood pixels’ contri-
bution in the calculation. Figure 3.5 shows an example of 3x3 neighbourhood pixel
weights. Then we can apply the leastsquare solution to achieve the least errors. Here
is the cost function:
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Figure 3.5: Neighbourhood pixel weight

ε =
m∑
i=0

W 2
i (Ixi × ux + IxiIyi × uy + IxiIti)

2 (3.10)

To get the least ε, we calculate the derivatives and find out the zero point of it:

∂ε

∂ux
=

m∑
i=0

W 2
i (I2xi × ux + IxiIyi × uy + IxiIti) = 0

∂ε

∂uy
=

m∑
i=0

W 2
i (I2yi × ux + IxiIyi × ux + IyiIti) = 0

(3.11)

Then we get the new equation:( ∑m
i=0W

2
i I

2
xi

∑m
i=0W

2
i IxiIyi∑m

i=0W
2
i IxiIyi

∑m
i=0W

2
i I

2
yi

)(
ux
uy

)
+

(∑m
i=0W

2
i IxiIti∑m

i=0W
2
i IyiIti

)
= 0 (3.12)

let

( ∑m
i=0W

2
i I

2
xi

∑m
i=0W

2
i IxiIyi∑m

i=0W
2
i IxiIyi

∑m
i=0W

2
i I

2
yi

)
= M ,

(
ux
uy

)
= ~u,

(∑m
i=0W

2
i IxiIti∑m

i=0W
2
i IyiIti

)
= b.

We can get the following equation.

~u = M−1~b (3.13)

This equation is solvable under the below mentioned conditions:

1. The matrix M is nonsingular[3].

2. The matrix is not too small due to noise.

3. The matrix should be well-conditioned[2].

If the matrix M is singular, we can only get the norm velocity instead of the full velocity.
To find out if the matrix is solvable, the eigenvalue and eigenvectors are required.
Given the matrix M is in the following form:(

m00 m01

m10 m11

)
(3.14)
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The determinant is:

determinant = m00 ×m11 −m10 ×m01 (3.15)

The eigenvalues are :

eigenvalue0 =
m00 +m11 +

√
(m00 +m11)2 − 4× determinant

2

eigenvalue1 =
m00 +m11 −

√
(m00 +m11)2 − 4× determinant

2

(3.16)

The eigenvectors can be calculated in the following way:

eigenvector0 =

(
m01

eigenvalue0−m00

)
√

(m01)2 − (eigenvalue0−m00)2

eigenvector1 =

(
m01

eigenvalue1−m00

)
√

(m01)2 − (eigenvalue1−m00)2

(3.17)

Till here, the principle of “Lucas” algorithm has been presented.

3.3 Summary

Optical flow method gives us an opportunity to learn the visual world from images. It
is a very useful method and still under research. In combination with other techniques,
optical flow field has a very wide usage in the field of computer vision. In next chapter
we will go the design part of this thesis project.

26



System architecture design 4
The task of this thesis project is to implement “Lucas” algorithm in hardware with
C/C++ based high-level sysnthesis methodology developed by Mentor Graphics. In
this chapter, the original “Lucas” C code will be analyzed and cleaned up in section
4.1, the hardware system architecture will be presented in section 4.2.

4.1 Code clean up

The original C code gives many options of subfunctions to be used in each step. The
purpose of code cleaning is to get rid of the unused parts including the code for process-
ing function arguements and the unused subfunctions to get a clean code without any
instructional inputs. In the following sections, the chosen subfunctions of the design
will be presented one by one.

4.1.1 System flow chart

The system flow chart of “Lucas” code is presented in Figure 4.1 to illustrate how the
system works in a straightforward way. As we see in Figure 4.1, the images have to go

Figure 4.1: System flow chart

through three main steps to get the optical flow field calculated. Here we see a blur
algorithm being used to smooth the images in order to have more continuous derivative.
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4.1.2 Stackblur algorithm

The choosen smoothing algorithm is radius=3 stackblur algorithm. The principle of
stackblur algorithm is shown below in Figure 4.2. Figure 4.2 shows the principle of

Figure 4.2: Principle of stackblur algorithm

stackblur algorithm, first we look at the above colored block array, yellow block repre-
sents the pixel being smoothed, green ones are the pixels used to smooth the yellow one,
the numbers are the weights of the pixels in computation, there is also a smoothing step
in the column which hasn’t be shown here. The blank block array under the colored
one represents the stack being used to store the pixel values for calculation. Here we
can see, the new pixel value is stored into the stack one after another in a circular way.

4.1.3 Compute derivative

For this part, a 3 × 3 derivative computation algorithm is chosen, which means three
frames of consecutive images are needed. The instensity value derivative with x, y and
time are calculated respectively by simple subjections. Figure 4.3 presents the simple
way of calculating the intensity value derivatives, under the condition that the three
frames of images have to be taken with a small time interval.

4.1.4 Compute velocity

The velocity computation is a very essential part of the whole “Lucas” source
code. It comprises of three sub-parts, the first part is used to calculate the matrix
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Figure 4.3: Compute derivatives

being used for the least square solution, the second part is for solving the matrix
and the last part is for identifying the velocity types and computing the velocity values.

The oringinal code gives options in the matrix calculation part, there are choices for
the 5 × 5 weighted window and 3 × 3 weighted window. Here the weighted 3 × 3
window size is choosen. The principle of which has been shown in Figure 3.5 and
equation 3.12.

Hereby the code clean up part is finished, what we have choosen is radius=3
stackblur, 3 × 3 derivative computation and weight 3 × 3 window. The next section
will present the hardware system architecture.

4.2 Hardware system architecture

The difference between high level C/C++ code and HDL code as well as the principle
of converting C/C++ to HDLs have been discussed in detail in chapter 2. This section
is going to show us how those theories work on converting “Lucas” C code to RTL code
with the help of Catapult C.

4.2.1 System architecture

The hardware system architecture is shown in Figure 4.4. This system architecture is
designed based on the software system flow chart in Figure 4.1. As we see clearly, the
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Figure 4.4: Hardware system architecture of “Lucas” algorithm

top level has the image datas as input and velocity datas as output. Inside top level
there are three big blocks, radius 3 stackblur block, 3 × 3 compute derivative block
and velocity compute block, the last one also consists of three sub blocks, weighted
3× 3 window matrix calculation block, eigenvalue block and velocity output block.
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What we then need to do is to redesign the blocks based on the original C code
to make them useable and synthesizable, also the correct communications among the
blocks have to be assured.

4.2.2 Datatype redefine

In Catapult C every datatype has to be fixed-point in order to be synthesizable, that’s
the prerequisite for hardware design

First let us look at the datatypes being used in the design.

1. Unsigned char datatype is used for the image data, its representation in hardware
is a 8-bit binary number.

2. Int datatype has the representation of 32-bit binary numbers in hardware, it is
used for the smoothed image data, derivative data and some of the intermediate
signals and variables in the velocity compute block.

3. The algorithm C fixed-point datatypes ac fixed < 32, 16, true > and ac fixed <
32, 16, false > are used to replace any of the float datatypes originally being used
for such as, the matrix data, eigenvalues, eigenvector elements and velocity data.

Then we can move on to take care of the ports and interconnections among the inner
blocks.

4.2.3 Block interfaces

Interface define is one key element of a synthesizable C/C++ design, it has to be
defined explicitly like the way HDLs do, the type and size of the interface ports have
to be static. The top level of this design has three input ports and four output ports,
it is shown below.

#pragma des ign top //indicatoin of top level function

void top (
unsigned char f1i [ 3 1 6∗2 5 2 ] , //input image1

unsigned char f2i [ 3 1 6∗2 5 2 ] , //input image2

unsigned char f3i [ 3 1 6∗2 5 2 ] , //input image3

m_type full_vels_x [ 3 1 6∗2 5 2 ] , //output full velocity x

m_type full_vels_y [ 3 1 6∗2 5 2 ] , //output full velocity y

m_type norm_vels1_x [ 3 1 6∗2 5 2 ] , //output norm velocity x

m_type norm_vels1_y [ 3 16∗252 ] //output norm velocity y

)

As we can see each port will be assigned to an exterior memory block after
synthesis. The intermediate interconnections are shown below.
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{
/*-----------data ports for blocks----------*/

int f1o [ 3 1 6∗2 5 2 ] , f2o [ 3 1 6∗2 5 2 ] , f3o [ 3 1 6 ∗ 2 5 2 ] ; //output of stackblur

int Ix [ 316 ∗ 252 ] , Iy [ 316 ∗ 252 ] , It [ 316 ∗ 2 5 2 ] ; //der_3x3 output

/*--------------stack blur-----------------*/

stackblur (f1i , f2i , f3i , f1o , f2o , f3o ) ;
/*--------------compute derivatives -------------------*/

compute_ders_3x3 (Ix , Iy , It , f1o , f2o , f3o ) ;
/*--------------compute velocities --------------------*/

compute_vels (Ix , Iy , It , full_vels_x , full_vels_y , norm_vels1_x ,
norm_vels1_y ) ;

}

As we can see six memory blocks of int type are defined inside the top level to be
used as interconnections among the three sub-blocks, array f1o, f2o, f3o are used as the
ouputs and inputs of stackblur block and compute ders 3x3 block respectively; array
Ix, Iy, It are used as the outputs and inputs of compute derivative block and compute
velocities block respectively.

4.2.4 Memory access

Since the the interfaces have been defined differently from the way it was in the original
code, the data access inside the blocks also need to be reformed. As we can see in
section 4.2.3, memories are used as interconnections between the blocks, which means
each of the data being processed has to be accessed from a memory. The example
shown below is part of the compute derivative block, from where we can clearly find
out how memory access being established.

/* 1D kernel in t direction*/

It [ pic_y ∗ x + y ] = ( pic2 [ pic_y ∗ x + y ] − pic0 [ pic_y ∗ x + y ] ) ; //

pic_y=imgage width

//It[x][y] = (int)(pic[2][x][y] - pic[0][x][y] ); original code

/* 1D kernel in x direction*/

for (p=0;p<=1;p++) { //To avoid two read action on same

RAM

if (p==0)
tmp=pic1 [ pic_y ∗ (x−1) + y ] ;

else

Ix [ pic_y ∗ x + y ] = ( pic1 [ pic_y ∗ (x+1) + y ] − tmp ) ;
}

//Ix[x][y] = (int)(pic[1][x+1][y] - pic[1][x-1][y]); original code

We can see the original used code has been commented out. In the rewritten code,
no format convert funtion such as (int) can be used because it can not be compiled
by the synthesizer, also, memory address need to be recalculated. Apart from that,
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one extra “for” loop is used to prevent the read action on the same Ram at the same
time, because as we see the calculation of Ix involves two read actions from the same
memory.

4.2.5 Use of Catapult C build in library

The C/C++ has its own mathematics library, including functions such as sine, cosine,
square root etc.

However, they are not yet compilable by the Catapult C synthesizer. Because
such kind of heavy computing complexity operations should be well designed and
optimized for different data types and have the ability of pipelining to meet the
requirements of the growing clock frequency.

Therefore Mentor Graphics has developed its own C++ synthesizable mathematics li-
brary for Catapult C, operational modules such as division, square root, sine, cosine are
included, some of them have been further classified into fixed-point and integer versions.

In this project, the fixed-point square root function in Catapult C Mathematics
library has been used to replace the sqrt() function which is originally used. Also
the fixed-point division module has been used. Note that designers have to include
math/mgc ac math.h .

4.2.6 Parallel design

In order to acclerate the system operation speed, parallel designs are recommended.

The code below roughly shows the difference between the original and redesigned code
of stackblur algorithm.

/* original "Lucas" code */

for (k=0;k<FRAMES ; k++) // FRAMES is the number of images being used

{
stackblur ( (∗ inpic ) [ k ] , (∗ pic_x ) , (∗ pic_y ) , radius , radius ) ;

//pixel value, width , height, x radius, y radius

}

/* redesigned code */

stackblur (f1i , f2i , f3i , f1o , f2o , f3o ) ; )
// f1i,f2i,f3i are the three input images; f1o,f2o,f3o are the three

output images

Regardless of the difference between the two functions’ variables, in the original code
the function is recalled every time as an image comes in, while in the redesigned version
all three images comes in together and be processed in parallel, which saves a lot of
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computing time. Of course the internal code of stackblur have to be redesigned to
parallelize the process.

4.2.7 Testbench design

Testbench is an important part of digital design. For this C/C++ based high-level
digital design method, testbench in C/C++ is supported and required for the gcc
based simulation. Another amazing feature about Catapult C is it can transform the
C/C++ testbench into system C automatically, thereby we can run the modelsim
simulation right after the generation of the HDL code needless of writing a system C
or VHDL or verilog testbench.

The C testbench fo this project consists of the following parts:

1. Define interfaces

2. Read input data

3. Run with input data

4. Display output data

In below, some parts of the testbench are shown.

/*-----------data ports for blocks----------*/

unsigned char f1i [ 3 1 6∗2 5 2 ] , f2i [ 3 1 6∗2 5 2 ] , f3i [ 3 1 6 ∗ 2 5 2 ] ;
// inputs of stackblur

m_type full_vels_x [ 3 1 6∗2 5 2 ] , full_vels_y [ 3 1 6 ∗ 2 5 2 ] ;
// output full velocity

m_type norm_vels1_x [ 3 1 6∗2 5 2 ] , norm_vels1_y [ 3 1 6 ∗ 2 5 2 ] ;
// output norm velocity

/*------------read input images-----------*/

fp1=fopen ("yos.8" ,"rb" ) ;
fread(&fhead [ 0 ] , 1 , 3 2 , fp1 ) ; //the first 32 values are the head

code of the ras image format

fread(&f1i [ 0 ] , 1 , 3 1 6∗2 5 2 , fp1 ) ;
fclose ( fp1 ) ;

fp2=fopen ("yos.9" ,"rb" ) ;
fread(&fhead [ 0 ] , 1 , 3 2 , fp2 ) ;
fread(&f2i [ 0 ] , 1 , 3 1 6∗2 5 2 , fp2 ) ;
fclose ( fp2 ) ;

fp3=fopen ("yos.10" ,"rb" ) ;
fread(&fhead [ 0 ] , 1 , 3 2 , fp3 ) ;
fread(&f3i [ 0 ] , 1 , 3 1 6∗2 5 2 , fp3 ) ;
fclose ( fp3 ) ;

/*----------run inputs in top level------------*/
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CCS_DESIGN ( top ) (f1i , f2i , f3i , full_vels_x , full_vels_y , norm_vels1_x ,
norm_vels1_y ) ;

As we see there is no synthesizability requirement for the testbench, we can use normal
C/C++.

4.3 Summary

Writing synthesizable C/C++ code requires a deep understanding of the algorithm as
well as a concept of hardware architecture.The C/C++ to HDLs converting process
and simulation results will be shown and discussed in the next chapter.
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Code conversion and
simlulation results 5
Now that we have prepared the written C code and testbench, the next is to convert the
C code to RTL language as well as verify its functionality and efficiency by Catapult
C. Apart from that, Catapult C can apply some optimizations automatically as well as
optionally, in that way we can refine the design to meet different hardware requirements.
In the following sections, the code conversion will be presented in section 5.1, the
simulation results will be presented in section 5.2.

5.1 Code conversion

In this section, the Catapult C operation flow will be presented step by step.

5.1.1 Import design

The first step is to import the source code and testbench into a Catapult C project,
note that the test bench has to be excluded from the compilation. The process is shown
in Figure 5.1. We can see the Synthesis Tasks window on the left, in which the whole
design process is listed step by step, also we see there is a solution window on the upper
left, which shows different solution for one design, any change of the code or constraints
will generate a new solution.

Figure 5.1: Import design
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Next, we need to setup the design, in which the technology, design library, design
frequency, handshake mode and top level function can be set. Figure 5.2 shows the
graphic user interface of the setup design process, we can see from Figure 5.2 the Xinlinx
Virtex 5 VLX220TFF1738 FPGA is chosen as the target device. The accerlerated
library, base FPGA library, single port RAM is chosen as the compatible libraries. The
clock frequency is set to be 50MHz.

Figure 5.2: Setup design

5.1.2 Apply constraints

After the design has been setup, we need to apply some design constraints in order
to meet the design requirements. In this design we want to have a fast processing
speed regardless of the resource usage, thereby we will try to parallelize or pipeline
the design as much as we can. Figure 5.3 shows the design constraints settings in this
project, as we see the software offers options like unroll or pipeline the loop which can
be found in Figure 5.3.

As we see in Figure 5.3, the blue circles represent the loops left rolled in the
design flow, the green and yellow little blocks mean that the loop has been fully
unrolled, the blue circle with red arrow means the loop has been pipelined, the initial
interval time is highlighted in blue, the blue square around the loop means the loop
merging has been deactivated.
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Figure 5.3: Design constraints

5.1.3 Scheduling

Now we can click on schedule task in synthesis tasks to do the automatic scheduling.
As one of the main tools of algorithm analyzing in Catapult C, the scheduling
window graphically shows the hierarchical nesting of loops, the relative runtime
of each loop, the types of operatons, the operations scheduling sequences and the
dependencies between operations. Textually, the loop names operations and compo-
nents, the area, delay are shown. Also, all items can be cross-probed to the source code.

The Gantt chart can be shown in compacted or expended mode. In compacted
mode, all information are tightly arranged to save space on the screen. In expanded
mode, we can see every detail of the operation scheduling. Scheduling details of
radius=3 stackblur block are partly shown in Figure 5.4, in which we can clearly see
the operation timings as well as their dependencies.
When we move our mouse indicator onto the operation elements, we can see the detailed
information of this operation element. An example is shown in Figure 5.5.

5.1.4 Generating HDL code

If the scheduling has been smoothly done, we can click on the Generate RTL task to
generate all the other output files, including HDL files, report files, schematics.
Figure 5.6 shows the project files after the complete HDL generation process.
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Figure 5.4: Gantt chart of stackblur block(partly)

Catapult C generates two types of HDL codes, the cycle and rtl.

• The cycle output is for fast simulation because the I/O of the design is cycle
accurate. In this project it’s not used.

• The RTL output is for RTL level simulation.

The generated VHDL code rtl.vhdl has 17155 lines.

5.1.5 Schematics

Catapult C outputs four kinds of schematic files, RTL, DataPath, CriticalPath and
CriticalMap.The DataPath and CriticalPath are filtered from the RTL schematic.
The schematics are shown in a hierarchical way. We can go into lower-level blocks by
double click in the upper-level blocks.

Figure 5.7 shows the top-level schematic, Figure 5.8 shows the first page of the
top core inside RTL schematic, there are 202 pages in all.
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Figure 5.5: Operation element details

As we see in Figure 5.7 the big block on the left side is the top core, the six
small blocks on theside are the six intermediate ports.

The Critical Path schematic is shown in Figure 5.9, we can see the window is
divided into three parts, the schematic in the top, the path table in lower left side and
the path quick view in the lower right side. There are ten most critical paths listed in
the path table and the selected one will be highlighted in the schematic, the detailed
timing data about each instance in the selected path is shown in the path quick view.
Also It is also possible to find out the point to point path delay.

5.1.6 reports

The Catapult C will automatically generate two reports for each solution.

• The cycle.rpt is a high-level architecture/algorithm report which includes infor-
mations regarding I/O ports, memory resources, loops and latency.

• The rtl.rpt includes informations about materials usage, area, register-to-variable
mappings and timing.

Figure 5.10 shows the area score in rtl.rpt. Figure 5.11 shows part of the cycle.rpt,
from where we can find the process general information, clock information and loop
information.

From Figure 5.11, we can find that with the clock frequency set to be 50MHz
the generated design has a latency of 136.58 ms for processing three frame of images.
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Figure 5.6: Output file after HDL generation

5.2 Simulation results

Catapult C provides a gcc based simulation on user provided C/C++ source code and
testbench. Once the RTL is generated, Catapult C provides a push-button verification
flow that allows simulation of the generated code against the source code and testbench.
However, in this project, the output velocity of the RTL simulation is slightly different
from that of the souce code simulation, the reason lies in the difference between the
C++ datatype float and algorithm C datatype ac fixed < 32, 16, ture >. Thereby
for this design, the souce code and generated HDL code are simulated separately and
compared manually.

The source code simulation can be done by double clicking on the Original De-
sign + Testbench in the verification folder and the results are shown in Figure 5.12.
Three sets of the velocity datas are choosen to be printed out.

For RTL simulation, Catapult C will automatically generate a makefile to take
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Figure 5.7: Top-level RTL schematic

care of compiling and linking with Modelsim, no extra testbench needed because
Catapult C will convert the user supplied C/C++ testbench into SystemC.

Figure 5.13 shows part of the Modelsim simulation wave form, we can see all
the interface signals are automatically included into the wave form.

Table 5.1 shows the comparison between the results of source code and RTL
simulation. We can see in Table 5.1, the modelsim simulation results are almost

C simulation result

full velocity x full velocity y norm velocity x norm velocity y

pixel address 6787 6787 7963 7963

pixel data 2.77983 -2.28939 0.56255 -0.19875

modelsim simulation result

full velocity x full velocity y norm velocity x norm velocity y

pixel address 6787 6787 7963 7963

pixel data(Hex) 0002C7A3 FFFDB5EA 00009003 FFFFCD1F

pixel data(Dec) 2.7798 -2.2879 0.5625 -0.1987

Table 5.1: Simulation result comparison

the same with the gcc simulation results, which means this C to RTL conversion is
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Figure 5.8: First page of Top core inside RTL schematic

successful in terms of functionality.

5.3 Different design constraints

After verifying the design functionality, we can move on to optimize the design to get a
faster solution. Different synthesis clock frequencies and design constraints have been
applied to generate several solutions.

The following four solutions have been implemented and verified.

1. Clock frequency 50MHz, no design constraints added, loop merging disabled for
the compute ders 3 × 3 block. In the comparison table and charts (Figure 5.14,
Figure 5.15, Figure 5.16) this solution is called top.v3.

2. Clock frequency 50MHz, design constraints setting as shown in Figure 5.3, loop
merging disabled for the compute ders 3× 3 block. This is the version previously
implemented in the before sections of chapter 5. In the comparison table and
charts (Figure 5.14, Figure 5.15, Figure 5.16) this solution is called top.v2.

3. Clock frequency 100MHz, design constraints setting as shown in Figure 5.3, loop
merging disabled for the compute ders 3 × 3 block. Higher clock frequency has
been tried but errors happened because the feedback path is too long to schedule
design with current pipeline, thus 100MHz is the maxim frequency used in this
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Figure 5.9: Critical path schematic

Figure 5.10: Area score

project. In the comparison table and charts (Figure 5.14, Figure 5.15, Figure
5.16) this solution is called top.v1.

Figure 5.14 shows the table which lists the area and latency of the four different
solutions of design.
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Figure 5.11: Latency, clock and loop report

Figure 5.15 shows the bar chart of the area scores of different solutions, we can
see that in each solution memory and mux takes up most of the area, the top.v3
solution is the raw solution without any extra architecture contraints added (except
that loop merging is disabled on the compute derivative block), it costs the least area
but it’s also the slowest one. Figure 5.16 shows the XY plot chart, X and Y axises
represent the total area score and latency time respectively. We can see clearly that
top.v1 is the fastest solution and top.v3 is the slowest solution.

5.4 Compare with hand write VHDL code

There is a previous work on the same “Lucas” algorithm done by a previous MSc
student T.M.F.Hurkmans[23], which is about implementing the algorithm in hardware
with hand-write VHDL. Thus it is meaningful to compare the two solutions to see if
C/C++ based high-level synthesis flow can really help in digital IC design.

Table 5.2 shows the features of the two solutions. Please note that this design
is not fully pipelined, it has a latency for processing three images, thereby the
FPS(frames per second) of this design is calculated by how many pictures it can
process in one second.
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Figure 5.12: C testbench result

Solution Hand written VHDL Catapult C generated VHDL

Clock frequency (MHz) 30.884 50.00

Image size 316*252 316*252

FPS 15.99 22

LUTs 7006 (Virtex 5) 14251 (Virtex 5)

I/O pins 447 (Virtex 5) 438 (Virtex 5)

FF 2802 (Virtex 5) 6586 (Virtex 5)

DSP48s 106 (Virtex 5) 47 (Virtex 5)

Table 5.2: Comparison of previous hand wirte deisgn and this design

As we can see in table 5.2, compared with the formal design, this design can be run at
a higher clock frequency than that of the hand written one and it’s processing speed is
also faster.
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Figure 5.13: Modelsim simulation waveform
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Figure 5.14: Solution table

Figure 5.15: Bar chart
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Figure 5.16: XY plot chart
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Conclusion 6
Now that this design has been finished, it is time to draw the conclusion of this work.
This chapter is divided into three parts, the summary of writing synthesizable C/C++
will be shown in section 6.1, the summary of the Catapult C benefits will be shown in
section 6.2, section 6.3 will present the future work.

6.1 Summary of writing synthesizable C/C++ code

Here I want to give a summary on the steps of wirte synthesizable C/C++ code in this
design.

• Analyze the source code, discard any unused or instructional part, make sure the
rest of the code is all indispensable.

• Draw the system architecture graph. Better to map each block to a destination
subfunction in the source code.

• Redefine the data types, change any unsynthesizble data types into fixed-point.

• Redefine the function variables, as they will be converted into block ports, the
correct data transfer as well as the explicit size of ports should be assured.

• Now take care about the inside of the blocks, make sure all the code is synthesiz-
able. Rewrite any unsupported write styles, replace any unsupported functions
like fabs(), sin() by a hand written one or the one in the Catapult C library.

• Try some special writing styles to meet the goals, please refer to chapter 2.

• Write the C++ testbench and move on to the verify and converting stage with
Catapult C

6.1.1 Hardware descriptive ability of C/C++

6.2 Summary of Catapult C

With Catapult C, the design period can be dramatically reduced, for example,
designers can change the synthesis clock frequency in the Catapult C GUI and then
the synthesizer will automatically analyse the datapath and do the scheduling; while in
the traditional design flow, changing the clock frequency may lead to a lot of manual
work, for example lots of registers may need to be displaced.

Catapult C is not only a tool for C/C++ to RTL conversion, it is also a very
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good algorithm/hardware architecture analysis tool. It shows graphically the system
structure, data path, scheduling gantt chart, schematics as well as charts for area,
latency comparision.

6.3 Summary of results

The design can be run at a frequency of 50MHz, the process speed is 22 frames of
images per second. The image size is 316×252. The design is compiled with the Xilinx
Virtex 5 FPGA library, which means it is possible to be synthesized and implemented
onto an FPGA.

The synthesis tool is chosen to be Mentor Graphics Precision RTL Synthesis, the syn-
thesis results shows that this design can be synthesised into Virtex 5VLX330TFF1738
FPGA. Figure 6.1 shows the resource usage.

Figure 6.1: Synthesis result

6.4 Future work

Some work can be done in the future to improve the design and find out more about
writing better synthesizable C/C++ code.

• Run the design on FPGA.

• Pipeline the full design, let it be able to process consecutive image streams.

Catapult C provides function level pipeline for complex system consisting of vari-
ous processing stages, which is called hierarchical synthesis, as is shown in Figure
6.2.

• Improve the algorithm to shorten the dependency chains.
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Figure 6.2: Hierarchical synthesis makes function overlap[11]
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