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Abstract

Many wheelchair users actively engage in wheelchair sports, for instance in the Para-
lympics. Trainers increasingly use the developments in sports technology for analysis.
But wheelchair athletes do not benefit as much from these developments. A wheelchair
can, for instance, disturb signal transmission. Recently, a set of studies describe the
development of a wheelchair measurement system, the Wheelchair Mobility Perform-
ance Monitor (WMPM). It monitors wheelchair kinematics based on a wheelchair
model and two Inertial Measurement Units (IMUs). The WMPM also gives relative
location and orientation i.e. relative pose. But this does not allow for game analysis,
which requires the absolute location of an athlete. A way to obtain the absolute loc-
ation of an athlete is the use of Ultra-wideband (UWB) technology. It is often used
due to its relatively high ranging accuracy and affordability. However, UWB signal
transmission can be disturbed due to Non-Line-Of-Sight (NLoS) situations, where
the body of an athlete, or the wheelchair, is located between two UWB nodes. This
reduces the localization precision and accuracy. Game dynamics, i.e. quick changes
in direction and velocity, also reduce the UWB localization precision and accuracy.
Separately, UWB and the WMPM are not sufficient for proper absolute pose tracking.
But a combination of these systems, i.e. sensor fusion, could be a good alternative.
To provide trainers with real-time tracking data, the sensor data of these systems
need to be fused on an embedded system. This requires an efficient UWB localization
solution. A recent algorithm by Larsson formulates a localization problem with an
easier-to-compute linear eigenvalue approach. In this work, this approach is validated
and compared with a previous implementation via simulations and measurements.
We show a execution time that is 5 times faster, without accuracy loss. An Unscen-
ted Kalman Filter (UKF) is implemented to fuse WMPM and UWB data and it is
improved with a Rauch-Tung-Striebel smoother. An IR-camera system (Optitrack),
providing the ground truth, is used to validate the UKF. The solution has a Root
Mean Square Error (RMSE) of less than 20 cm in dynamic wheelchair situations. This
work provides a basis for further development of a platform where WMPM and UWB
are integrated for paralympic sports.



“Now, this is not the end. It is not even the beginning of the end. but it is, perhaps,
the end of the beginning.” – WINSTON CHURCHILL
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Chapter 1

Introduction

The sports industry is developing rapidly. Trainers and athletes frequently apply
new technologies that provide information about the kinematics and performance of
athletes [5]. This is also true for Paralympic sports [44, 34, 45, 49]. Some Paralympic
sports involve the use of a wheelchair e.g. in basketball, fencing, rugby, and tennis.
Analyzing the performance of wheelchair athletes is more challenging than in standard
sports because wheelchairs can add significant interference and noise. For instance,
in the case of Ultra-wideband (UWB), in Non-Line-Of-Sight (NLoS) situations.

1.1 Motivation

Performance monitoring of athletes is in a large part done by monitoring their ab-
solute location and orientation during a match. This is called ’real-time absolute
pose tracking’ or in short pose tracking. Pose tracking of all athletes during a match
allows for insightful game analysis. This project aims at improving pose tracking for
wheelchair athletes.

1.1.1 Wheelchair monitoring

In a set of recent studies [47, 48, 50, 46], the development and improvement of the
Wheelchair Mobility Performance Monitor (WMPM) is covered. It provides a wheel-
chair user with insights in wheelchair kinematics e.g. velocity, trajectory length,
number of turns, etc. The WMPM consists of a mathematical model that uses spe-
cific wheelchair parameters and the data of two Inertial Measurement Units (IMUs).
But it has a couple of shortcomings related to the fact that it is based on odometry1:

• Wheel skidding [48]. Here, a wheel of a wheelchair is slipping with the wheelchair
barely moving because of the wheelchair inertia and the dynamic wheel friction.

• Wheelchair falls. Falls do not occur very often, but are nonetheless possible and
will interfere with the WMPM output.

• Wheelchair jumps. Wheelchair collisions regularly occur during a match. De-
pending on the collision intensity, this could be interpreted as a jump. The
point of impact is then a point of momentary rotation due to the wheelchair
momentum.

The WMPM can also output relative pose as seen in figure 1.1, by using the starting
pose of a wheelchair as a reference. However, this does not allow for game analysis
as every user will have a different starting position. Furthermore, this relative pose

1 A form of dead-reckoning.
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tends to diverge. For example, a ’clean’ wheel slip will not change the location of a
wheelchair, but it will be registered as a movement by the IMUs. This will inevitably
give an increasing error in the relative pose during a game. Additionally, wheelchair
impacts could also displace the IMUs during a match. The increasing relative pose
error can be reduced by incorporating technology that gives the absolute localization
of an athlete.

Figure 1.1: An example of a wheelchair measurement, obtained in this project, where
the location of the wheelchair is tracked. It shows the output of three systems: the ground
truth (Optitrack), UWB and the WMPM. The WMPM does not align with the ground
truth.

1.1.2 UWB localization

Camera systems, e.g. Marker Based Motion Capture System (MOCAP), are often
used in the localization of athletes. A MOCAP system has a localization accuracy in
the submillimeter range. This allows them to be used as a ground truth system. But
those systems have their disadvantages:

• they take a relatively long time to set up
• an athlete has to wear a MOCAP suit
• they are expensive (more than 20.000 e.)
• they give large amounts of data, which makes game analysis slower

There are several alternative indoor localization technologies [28, 41]. To name a few:
Wi-Fi, Bluetooth and UWB. Of those technologies, UWB has the highest ranging
accuracy. Ranging is the process of determining the distance between two (UWB)
nodes, which is required for localization. The relatively high UWB ranging accuracy
and the development of the DecaWave D1000 Radio Chip (DWM1000) have made
UWB a popular research area. To illustrate this, over 250 paper have been written
about UWB localization [3] since 2016.

1.1.2.1 UWB localization accuracy

A localization accuracy of approximately 30 cm is reported in research that applies
UWB in ’standard’ sports [21, 9]. With an UWB node attached to the head of an
athlete, an improved accuracy is reported of approximately 20 cm [33]. However,
attaching an UWB node to the head of an athlete is not desirable as the movement
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of the head of the athlete must be taken into account and because. It also potentially
interferes with the performance of the athlete as the Tag (TAG) has some weight and
can be displaced in dynamic situations.

Furthermore, UWB localization data has a significant amount of disturbance as can
be seen in figure 1.1. Simple filtering of this UWB data, for instance with a moving
average or a Savitsky-Golay filter will improve the precision. But these filters will
not compensate for the big jumps in UWB location which, for instance, could place a
wheelchair athlete outside the court. In general UWB is relatively accurate but lacks
precision (which is the other way around with the WMPM).

1.1.2.2 UWB wheelchair application

In the ideal situation, a wheelchair athlete should not notice any device attached
to his/her body (e.g. the head). An obtrusive system could otherwise potentially
distract an athlete from the game. This can be prevented, for instance, by attaching
a device (e.g. an UWB node) to the backseat or frame of the wheelchair.

But this type of UWB node attachment, introduces NLoS. Here the wheelchair
and the athlete disturb or block the UWB signal transmission or reception, which
negatively influences the ranging accuracy. Another factor that reduces the UWB
ranging accuracy in sports, is game dynamics [10]. Wheelchair sports are known for
their dynamics: the quick changes in direction and velocities.

1.1.3 Goal

There is no easy-to-use and affordable wheelchair localization system that provides
real-time pose tracking of wheelchair athletes. UWB could be a good addition to
the WMPM, alleviating these problems. It is unclear if this will give an acceptable
localization precision of 20 cm or less in a dynamic setting. Next to that, the solution
should be as unobtrusive as possible and localization should be as fast as possible to
deal with game dynamics.

The goal of this project is:

To improve the existing WMPM system with UWB in such a way that it allows for
real-time wheelchair pose tracking.

1.2 Contributions

The key contributions that this work provides are:

1. An overview of recent UWB research related to localization.
2. An overview of recent progress with relation to sports localization.
3. A state-of-the-art analysis and implementation of an improved localization al-

gorithm.
4. A sensor fusion implementation and evaluation of UWB and the WMPM.

1.3 Thesis organization

First, a global overview related to this project will be given in chapter 2 with a section
about relevant research. Followed by the description of the work done concerning
localization in chapter 3. This is followed by chapter 4 which covers the combination
of WMPM with UWB data. The measurement setup is covered in chapter 5 and
followed by the evaluation in chapter 6. Finally, chapter 7 describes the conclusions
and future work.
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Chapter 2

Background & Related work

This chapter gives UWB background information and an overview of related work.
UWB is briefly introduced in section 2.1 and followed by section 2.2 that explains
ranging and localization. Section 2.3 gives an overview of recent research about
(wheelchair) sports and UWB.

2.1 UWB

UWB is a radiofrequency technology that allows for data transmission between two
or more UWB devices [26]. Besides a ’wide bandwidth’ (500 MHz) another typical
property of UWB is the power spectral density limitation of −41.3 dBm/MHz. This
results in a couple of improvements compared to other radio technologies [11]:

• immunity to multipath fading
• interference mitigation
• increased throughput
• higher timing resolution

The high bandwidth allows for ’sharp’ pulses in the time-domain which gives an
improved timing resolution. This is important for the quality of distance estimation
and in extend for localization. Of the existing radiofrequency technologies UWB IEEE
Ultra Wide band (IEEE 802.15.4) has the highest localization accuracy [41]. Because
UWB has little interference with existing (narrow-band) radio systems, it is ideal for
integration in existing systems.

2.2 Ranging and localization

Ranging is the process of measuring the distance between two UWB nodes. A sta-
tionary UWB node, with a known location, is called an Anchor (ANC). A moving
UWB node is called a TAG and has an unknown location. If the distances between a
TAG and at least three other ANCs are measured, a unique location of the TAG can
be calculated. This is called true-range multilateration.

2.2.1 Accuracy

The localization accuracy depends on the ranging accuracy. The theoretical UWB
accuracy can be estimated with the radar range resolution δr [22, 37].

It is approximated by δr ≈ c
2B where B is the bandwidth of the UWB pulse. This

is shown in figure 2.1 and illustrates a theoretical ranging accuracy of approximately
5 cm at 3.1 GHz (the lower bound of the UWB frequency range). Most papers, report
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Figure 2.1: The ranging accuracy of UWB related to the bandwidth with the assumption
of Line-Of-Sight (LoS).

a lower localization accuracy. Also companies with a focus on UWB report a lower
localization accuracy as shown in section B.7. This mismatch can be explained by
some limitations of UWB technology:

• timing inaccuracies.
• measurement disturbances e.g. NLoS.
• signal reflections.
• absorption by the human body [27, 28]

Figure 2.2: A schematic example of Two Way Ranging (TWR). The x-axis represents
time. Please note that this figure only shows one ranging example. At least three unique
ranges are necessary to localize the TAG.

2.2.2 Time of Arrival

In order to measure the distance (d) between an ANC and TAG the duration or
Time-of-Flight (ToF) has to be known, as shown in figure 2.2. The distance can be
calculated by: d = ToF · c, where c is the speed of light. Measuring the ToF requires
that the TAG and ANC are synchronized, i.e. have the same absolute time reference.
When a TAG and ANC are synchronized, their distance can be estimated by the

5



Time-of-Arrival (ToA) of a message. This is, for instance, done with TWR as seen
in figure 2.2. Here ranging is achieved by sending two messages between two UWB
nodes. Then, the average ToF is calculated and used to estimate the distance.

Figure 2.3: Example of simple ToA local-
ization in the noiseless case. The blue cross
illustrates the location of the TAG. The
blue triangles visualize the ANCs. This is
further explanation in the text.

Figure 2.4: Example of simple Time
Difference of Arrival (TDoA) localization
without noise. The blue cross illustrates
the location of the TAG. The blue triangles
visualize the ANCs. This is further explan-
ation in the text.

Figure 2.3 illustrates simple localization of a TAG, with TWR, in the noiseless case.
Each range between a TAG-ANC pair can be expressed as a circle. This gives a set of
intersecting circles. A line can be drawn on each circle intersection pair, this is called
an emitter line. The intersection of emitter lines represents the location of the TAG.
In practical ranging, there is always an amount of disturbance (or noise). Localizing a
TAG in those situations requires a more elaborate kind of localization (see chapter 3).

2.2.3 Time Difference of Arrival

Figure 2.5: A schematic example of TDoA. The x-axis represents time. The ANCs
are synchronized, i.e. have the same temporal reference. At least 4 ANCs are needed to
uniquely localize a TAG.
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Maintaining synchronization between a TAG and ANCs comes with disadvantages.
For instance, TWR is generally slower than other techniques. Sending multiple mes-
sages between a TAG and ANC will take time. A way to evade the synchronization
of a TAG and ANC, is applying TDoA or pseudorange multilateration.

In TDoA, the ANCs are synchronized, but not with the TAG. This method uses the
ToA difference of each unique TAG-ANC pair. With the ToA differences the unknown
temporal offset b1 can be estimated as shown in figure 2.5. Please note that in this case
the ToA can be measured, but not the ToF. TDoA requires accurate synchronization
between the ANCs. To achieve accurate synchronization, Global Positioning System
(GPS) satellites for instance, use atomic clocks. In an UWB setting, synchronization
of the ANCs often occurs via cables or with dedicated wireless transceivers. To
illustrate the importance of accurate synchronization we give the following example.
Suppose that a UWB system has a synchronization error τerr of 1 ns, this gives a
distance error derr = 1 ns · 299 792 458 m s−1 ≈ 30 cm.

Simple localization with TDoA is shown in figure 2.4. The ’difference’ in Time Dif-
ference of Arrival can occur at many possible circle-pairs. For instance, a TDoA
of 5 ns could be based on the ToAs 13 ns-8 ns but also the ToAs 16 ns-11 ns. This
explains the need to draw multiple circles per TAG-ANC pair. The intersection of
each possible circle is visualized with a red dot, the emitter dots1. Similarly to the
ToA example, the intersections of the emitter dots, which have a hyperbolic trend,
indicate the location of the TAG.

2.2.4 Wheelchair sports

In regular sports, an athlete is not limited in the way the athlete can move (this
excludes specific game related sport rules, e.g. in boxing one can not use their elbows).
But not everyone has access to ’regular’ motion. The Paralympic Sport Committee
recognizes eight types of physical disability and one of them is loss of limb, or limb
deficiency. An athlete, in this Paralympic Sports category, is bound to a wheelchair.

There are several wheelchair sports: wheelchair tennis, wheelchair basketball, wheel-
chair curling, etc. Each wheelchair sport can have a specific optimal wheelchair
configuration and even individual wheelchair modifications are possible for maximum
performance. Figure 2.6 shows a typical sports wheelchair. Some examples of specific
wheelchair parameters are: height of the seat, wheelchair mass, grip of the rim of the
wheel [8, 51]. The optimal wheelchair, most likely has a minimal design. This reduces
the options to mount an UWB TAG to the wheelchair as covered in chapter 5.

Depending on the game, also a different number of athletes are allowed on the court.
For instance, in wheelchair tennis, this is two or four. An example of wheelchair rugby
is shown in figure 2.7, this sport allows ten athletes on the court. The maximum
number of athletes that have to be simultaneously tracked, with a wheelchair pose
tracking solution, is ten.

2.3 Related work

This section gives an overview of research related to localization in sports, localization
in wheelchair sports and recent UWB research.

1 Choosing an appropriate resolution will allow for drawing an emitter line which is not done in
this case to improve the clarity.
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Figure 2.6: A typical sport wheelchair,
Celeritas 300.

Figure 2.7: Example of wheelchair sports
(photo by Frank van Hollebeke).

2.3.1 Localization in sports

Leser et. al. 2011 [18] gives an overview of localization technologies and their implic-
ations related to sports. They use the in Lee et. al [17] coined definition of intelligent
space (IS) to describe rooms equipped with sensors that can localize athletes. It il-
lustrates the idea of how an unobtrusive setup could be designed for game sports to
assist trainers in their activities. An IS could, for example, give feedback regarding:
tactics, fatigue, and the substitution of players. They state that it is crucial for a
localization system to have an accuracy between 15 cm and 20 cm in dynamic condi-
tions. Additionally, the update rate should at least be between 10 Hz-15 Hz. These
conclusions, give a lower-bound for the accuracy and update rate for this project.

The accuracy of UWB is investigated in Leser et. al. 2014 [19] concerning ’time-
motion analysis’. Time-motion analysis, covers the time spent on a movement during
a game. In a set of measurements, the TAG was placed on the head of an athlete
because that gave the best accuracy. 13 athletes got a trundle2 to measure the covered
distance. The UWB traject length, compared to the trundle distance, gave an average
difference of 3.45 % ± 1.99 %. Leser et. al. conclude that UWB provides sufficient
accuracy for time-motion analysis in basketball. However, this work does not say that
UWB is usable for game analysis or pose tracking.

Sports activities are generally characterized by fast changes in direction and velocity,
i.e. the dynamics. Ridolfi et. al. 2018 [33] paints a better picture about the game
analysis potential of the UWB. They assess UWB, the localization of an athlete, in a
set of dynamic situations for ’regular’ sports. First, they investigate the effect of on-
body TAG and secondly implement two different localization filters. The influence of
TAG placement on the human body was done by considering three metrics: accuracy,
packet loss and the number of visible anchors (i.e. LoS) 3. The different investigated
TAG placements are visualized in figure 2.8. They concluded that the best TAG

2 A trundle is a stick with a wheel on the end of it, touching the ground that, while moving, tracks
the covered distance.

3 Packet loss occurs when a packet or frame fails to reach a destination (intact). Packet loss is
influenced by shadowing and small-scale fading. Small-scale fading refers to the fast changes
of the phase and amplitude of a signal over a short period of time or a short distance. It is also
called Rayleigh fading. Shadowing refers to the effect that something close to a source (ANC)
will cast a ’shadow’ and in effect block the path between ANC and TAG.
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Figure 2.8: Setup of TAG and ANC placement w.r.t. the human body. Not shown in
the figure are the postures and dynamic movements. By Ridolfi et. al. [33].

placement, concerning packet loss, is the head of an athlete, similar to Leser et. al.
[19]. However, as stated in section 1.1.2.1 this is not ideal because attaching the TAG
to the head potentially interferes with the performance of the athlete.

Ridolfi et. al. furthermore looked at the improvement of athlete localization with
the Extended Kalman Filter (EKF) and the Particle Filter (PF). The disadvantage
of a PF is the increased computational power that is required, but it can handle
non-linearities better than the EKF, which are always present in dynamic sports
situations. Bias compensation, NLoS detection and path determination improved the
performance of these filters with 30 %. They finally conclude that the best localization
filter depends on the type of activity, but they do not give any guidelines.

In a football environment, Martinelli et. al. 2019 [21] tested the performance of
a custom UWB system. The objective was to measure the influence of the ANC
placement at 1 m, 1.6 m and 2 m height. This influence was researched with three
metrics: accuracy of location, packet loss and packet loss concerning the ANCs. The
average height of a football player (1.6 m) gave the best results with an Root Mean
Square Error (RMSE) of 31 cm and a package loss of 28 %. The conclusion seems
obvious as this height, gives the shortest distance between an ANC and a TAG,
which was mounted to the back of an athlete.

A recent review by Rico et. al. 2020 [32] looked at different tracking methods con-
cerning tactical variables in team sports. They conclude from 72 articles that UWB
technology is not used to date for tactical tracking and that UWB provides sufficient
accuracy for tactical tracking in a sports setting. Additionally, they state that a sys-
tem that is used in training and competition will facilitate the assessment of collective
tactical behavior. There are, however, commercial localization systems like Kinexon
4 that are being used for tactical tracking. However, the quality of the game analysis
information is unkown, moreover it is expensive for an UWB system.

The following list summarizes the most important findings in this subsection:

• The minimium UWB update rate suggested for a dynamic sports setting is
between 10 Hz-15 Hz [18].

• The minimum localization accuracy should be 20 cm or less in a dynamic sports
setting.

• The placement of an UWB TAG on the head of an athlete gives the best accuracy
[33].

4 https://kinexon.com/technology/tactical-analysis
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• There is no research indicating the use of UWB for tactical purposes (i.e. game
analysis) [32].

2.3.2 Wheelchair research

Slikke et. al. 2015 [47] developed a wheelchair kinematics measurement system based
on a three IMU configuration, the first version of the WMPM. Each wheel had one
IMU and another IMU was mounted to the base of the wheelchair. The system
performed well, based on a comparison with the ground truth, except for moments of
wheel skidding. The displacement and speed error were respectively RMSE < 0.05 m
and RMSE ≤ 0.01 m s−1 and averaged over 20 measurements. The results provide
a setup that can be used for wheelchair kinematics analysis. However, the absolute
location can not be tracked with an IMU based system. This is due to the requirement
of an absolute reference, which an IMU does not have.

To determine the quality of UWB localization related to wheelchair sports Perrat
et. al. 2015 [29] give a qualitative assessment. They looked at TAG placement,
update rate, data gaps and localization in static- and dynamic situations. Their
findings suggest that the TAG update rate (4 Hz, 8 Hz and 16 Hz), and the number of
wheelchairs present on the court do not significantly affect the localization accuracy.
An evaluation gave a localization error of 37 cm (σ = ± 24 cm) in a fake wheelchair
rugby match, with one person in a wheelchair and multiple TAGs on the court. The
covered distance, or traject length, was analyzed and compared to a ground truth
reference which can be used as a basic test to evaluate the performance of a localization
setup. The results show a traject length error of 0.5 % after applying a three-pass
moving average filter. Furthermore, the presence of data gaps was analyzed, in a
real match with eight wheelchair athletes. A data gap, was defined as an outage of
data for more than 0.5 s. On average, every 14.0 s a data gap was observed. It is
concluded, that a real match with eight players and a referee should not degrade
the localization performance. However, their conclusions could be incomplete. When
more athletes are present on the court there must be a higher probability of NLoS
and the authors do not explain why the results do not show this. A reason for not
observing a reduced localization accuracy, when more wheelchairs are on the court,
could be that the ANCs are placed on a mount of approximately 4 m height. Placing
an ANC on a high stand will prevent NLoS as seen in figure 2.9.

Slikke et. al. 2017 [50] compared an UWB localization system (ITS Ubisense) to the
WMPM. To this end ’speed zones’ concerning speed and distance were defined. The
speed zones were used to compare the speed and distance measurements of the two
systems. At speeds lower than 2.5 m s−1 minor differences between the systems were
observed. A hybrid solution of the WMPM and a UWB was concluded to potentially
serve a new ’golden standard’ for measuring wheelchair kinematics.

To conclude, UWB has been previously used in wheelchair research, but the results
are limited. It would, moreover, be advantageous to mount the ANCs on a high stand
as shown in figure 2.9.

2.3.3 UWB research

This subsection gives an overview of recent research about UWB localization, moreover
it supports the future work section in section 7.2.

ToA and TDoA are covered in section 2.2, but it does not say which one is more
accurate, which could support the choice in the technology used in this work. In
work by R. Kaune [15] the accuracy of ToA and TDoA is investigated and uses the
well-known Cramer Rao Lower Bound (CRLB). The CRLB is a theoretical lower
bound of the variance of an unbiased estimator. A lower CRLB would allow for more
precise localization. The CRLB is shown to be identical for ToA and TDoA with
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Figure 2.9: A diagram that relates the ANC height with NLoS in a wheelchair setup.
The probability of NLoS gets lower as the ANCs are placed higher.

a fixed reference, and this is aligned with findings in Sathyan et. al. [38]. A set of
Monte Carlo simulations furthermore showed that there are no differences in accuracy
between ToA and TDoA. This suggests that the choice of using ToA or TDoA should
not depend on the CRLB or the localization accuracy. However, simultaneously both
Kaune and Sathyan [15, 38] note that the cost function of TDoA is more non-linear.
Which explains why ’in practice’ ToA tends to give a better localization accuracy.

In the last few years, different research groups showed new and exciting variations
of UWB ToA and TDoA system. This subsection will give an overview of these
state-of-the-art concepts.

The localization accuracy of an UWB setup could be in the millimeter range if several
ANCs are used. But this is not practical. Having only one ANC would be optimal in
terms of ease-of-setup and cost-effectiveness. GrossWindhager et. al. [12] developed
such an UWB system, called SALMA, as seen in figure 2.10. By exploiting multipath
components (MPC) it can work with a single ANC with an omnidirectional dipole
antenna. This setup does not need calibration or training, it only needs a crude
floorplan as seen in figure 2.10. A maximum update rate of 12.5 Hz is reported due to
the computational load of this method. The system is tested in a room with people
and they found an average error of 34 cm and the 90% error was below 79 cm. This
work provides a means for future research and a future iteration could give a solution
that makes a wheelchair UWB setup much simpler.

The number of TAGs in TWR is practically limited, see figure 2.11, due to the
message overhead and message collision avoidance. TDoA reduces this problem, but it
requires tight synchronization between the ANCs and the messaging is still sequential.
GrossWindhager et. al [11] created a system called SnapLoc that reduces some of
these limitations. In SnapLoc a TAG does not actively transmit messages, instead it
predominantly receives ANC messages see figure 2.11. An INIT message is send by
the TAG at the start. Each ANC responds after time ∆R and an individual delay
δi with a RESP message. This alleviates the need for tight clock synchronization
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Figure 2.10: The overview of the SALMA system design. Courtesy of B. GrossWind-
hager [12].

between the ANCs. The system with the wired clock correction, compared to a
wireless variant, gave the best results: with 90% error of 33.4 cm and a median error
of 18.4 cm. A theoretical upper bound update rate is stated of 2.3 kHz.

Corbalan et. al. [7] created a system called Chorus that exploits UWB very similar
to the work by GrossWindhager et. al. [11] with differences in implementation and
methodology. This system only gives submeter accuracy due to a higher clock drift
sensitivity and the TX inaccuracy 5) of the DWM1000.

Figure 2.11: Different localization schemes, the blue sattelite represents an ANC. A:
TWR. B: TDoA. C: The scheme applied in SnapLoc and Chorus.

Three main factors that negatively influence the localization accuracy are: hardware
delay, clock drift and signal power. Sidorenkoab et. al. [39] describes a solution that
improves the influence of clock drift and signal power. Clock drift is usually corrected
via a Phase Locked Loop (PLL) but can be affected by signal power fluctuations.
After warmup, three messages (T1, T2, T3) are send between two UWB nodes. When
a clocks exhibits drift, then the timestamp differences (∆T1,2,∆T2,3) are different.
Simple linear interpolation is used to correct this drift. There is however still a
dependency on signal power due to the distance between the nodes. By sending
three messages where the second message has a different signal strength, a relation
is found between the measured signal strength and the timestamp error. The clock
drift correction and signal power correction reportedly give a localization accuracy in
the centimeter range. This work has a similar clock drift correction as described by
Leugner et. al. [20]. These improvements could be implemented in a future version
of this project to improve the ToA accuracy.

5 Which has an accuracy of ≈ 8 ns which gives a maximum error of ≈ 2.4 m.
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The update rate of an off-the-shelf Decawave UWB system is improved with a factor
of 30 times ToA in Neuhold et. al. [25]. It operates by using ’beacons’ and hardware
interrupts for timestamping instead of embedding a TX timestamp to the header of the
message. This allows for a reduction of the delay between receiving and transmitting
and gives a higher precision. Because the HiPR system is more precise the ranging
bias is more linear. This allows for more compensation of systematic errors.

2.3.3.1 Conclusion

Perrat et al. [29] concluded that an update rate of 4 Hz-8 Hz-16 Hz does not signific-
antly affect the localization when relative constant velocities are maintained. For this
work, the best presumption is to use the highest attainable update rate.

Preliminary research was done by Slikke et. al. [50] concerning the use of UWB in
wheelchair sports. They concluded that the combination of UWB and the WMPM
could potentially serve as a new golden standard. This is aligned with the work of
[29] and supports the motivation of this work.

Choosing an UWB based on ToA or TDoA accuracy is trivial as Kaune [15] showed
that there is no theoretical accuracy difference. However, in practice ToA achieves
better accuracy. This supports the choice for ToA in this project. Neuhold et. al. [25]
described a way to achieve faster ToA. This is beneficial for the sensor fusion part of
this project because a higher update rate will give more localization information.
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Chapter 3

Localization algorithm

3.1 Introduction

Real-time localization should be as fast and accurate as possible. This section explains
three main trilateration algorithms and their performance is evaluated in section 6.1.
This first algorithm, is a previously used algorithm in a master thesis by the de-
partment of TU Delft Embedded and Networked Systems Group from Murphy [24].
The second algorithm is from the work of Larsson et. al. [16] that is based on an
eigenvalue approach (section 3.3). Lastly, a recently devised algorithm by H. Faber
is covered in section 3.4 in an attempt to improve Larsson. The covered trilateration
methods are described for the 2D case and can be extended for the 3D case.

Figure 3.1: A schematic UWB setup. There are four ANCs illustrated by blue triangles.
The gray cross designates the ’true’ unknown location of the TAG. The blue cross illus-
trates the estimated location x of the TAG. A ’measured distance’ between an ANC and
a TAG is illustrated with a partial circle d̃j .
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Figure 3.1 shows a schematic UWB setup, with the definitions used in this section,
that has N anchors (in this case N = 4) and one TAG. Each ANC aj (j = 1..N) has
a known location aj = [ax,j , ay,j ]

T and is illustrated with a blue triangle. The ’true’,

but unkown TAG location is designated with a gray cross. All measured ranges d̃j ,
i.e. ranges with an error, serve as an input for a localization algorithm. A localization
algorithm estimates the optimal TAG location x = [x, y]T given the measured ranges.
The estimated location of the TAG has a range dj to an ANC. Please note that there
can be a difference between the estimated ANC-TAG distances dj and the measured

ranges d̃j .

3.2 Murphy algorithm

Murphy compares in [24] a set of trilateration algorithms for the mining company
TBCC. His final method is based on a nonlinear least-squares approach (NLS). The
NLS determines the optimal estimated location of a TAG. It needs a first ’guess’
of the location of the TAG. In his case, the linear least-squares method is used as
a first guess. Then the NLS iteratively tries to improve the estimation of the TAG
by calculating the derivative of the error function F (x, y). The largest derivative
indicates the direction of most improvement. This process repeats until the amount
of change has reached a sufficiently small number.

The distances d̃j can be represented by a circle. This circle symbolizes all the possible
locations of a TAG based on that range, and this can be written in the circle equation
as:

||x− aj || =
√

(x− ax,j)2 + (y − ay,j)2 = d̃j (3.1)

To minimize the errors, the difference between the d̃j and the estimated distance dj
must be found. Squaring the difference for each TAG-ANC pair and summing the
difference gives:

F (x, y) =

N∑
j=1

(
d̃j − dj

)2
=

N∑
j=1

fj (x, y)
2

(3.2)

The Newton iteration method for minimization needs an initial guess or start from
where it will minimize the errors. An acceptable choice is obtained from the linear
approach in the next section.

3.2.1 Linearized trilateration

Starting with the circle equation:

(x− ax,j)2 + (y − ay,j)2 = d̃j
2

(3.3)

A seemingly arbitrary but advantageous addition and subtraction of a term ax,k and
ay,k gives:

(x− ax,k + ax,k − ax,j)2 + (y − ay,k + ay,k − ay,j)2 = d̃j
2

(3.4)

By expanding the terms in equation 3.4 and regrouping them one can get:

(x− ax,k)(ax,j − ax,k) + (y − ay,k)(ay,j − ay,k) = (3.5)

1

2

[
(x− ax,k)

2
+ (y − ay,k)

2 − d̃j
2

+ (ax,j − ax,k)2 + (ay,j − ay,k)2
]

= (3.6)

1

2

[
d̃2k − d̃j

2
+ d2j,k

]
= bj,k (3.7)
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The term bj,k consists of three known terms, the distance dj,k between ANCj and

ANCk, the measured ANCj-TAG distance d̃j , and the measured ANCk-TAG dis-

tance d̃k. Then, choosing an arbitrary ANC k, for instance k = 1, allows for equa-
tion 3.5 and equation 3.7 to be written as:

(x− a1,x)(a2,x − a1,x) + (y − a1,y)(a2,y − a1,y) = b2,1
(x− a1,x)(a3,x − a1,x) + (y − a1,y)(a3,y − a1,y) = b3,1

...
(x− a1,x)(aN,x − a1,x) + (y − a1,y)(aN,y − a1,y) = bN,1


Which can be written in matrix form:

Ax = b (3.8)

This gives an initial guess of the location of a TAG which is used as input for non-linear
least-squares optimization, explained in the next subsection.

3.2.2 Non-linear Least-squares optimization

To minimize the cost-function equation 3.2 it can be differentiated with respects to x
and y:

∂F

∂x
= 2

N∑
j=1

fj
∂fj
∂x

,
∂F

∂y
= 2

N∑
j=1

fj
∂fj
∂y

All TAG-ANC combinations of one measurement sample can be described with the
following matrix forms:

J =


∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

...
...

∂fN
∂x

∂fN
∂y

 , f =


f1

f2
...

fN


The Newton non-linear least squares minimization method is expressed by:

xk+1 = xk −
(
JTk Jk

)−1
JTk fk (3.9)

This is an iterative process. Each result, designated by {k + 1}, is used in the next
repetition of equation 3.9. This process stops when the desired accuracy has been
achieved which makes it relatively slow.

3.3 Larsson algorithm

In 2019 Larsson published a paper [16] that formulates optimal trilateration as an
eigenvalue problem. This approach is expected to have a reduced computational load
compared to the iterative non-linear least-squares optimization by Murphy. In this
section, a specific part of the Larsson localization approach is explained concerning
ToA.

We want to estimate the unknown location of a TAG xεRn. Here n is the number of
dimensions. The position is recovered by measuring the distance between the TAG
(black cross) and an ANC designated by a blue triangle.
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A typical trilateration case aims to have ||x− aj ||2 = dj for j = 1, 2, ..., N which are
the number of ANCs. For these type of situations the following cost function is often
used:

N∑
j=1

(||x− aj || − dj)2

These types of problems can have multiple local minima. An alternative cost function
for trilateration is formulated:

h1(x) =
∑
j

1

4d2j

(
||x− aj ||2 − d2j

)2
(3.10)

The difference in this formulation is the fourth-order formulation with a normalization
factor wj = 1

4d2j
which can be written in the form:

h(x) =
∑
j

wj
(
xTx− 2xTaj + aTj aj − d2j

)2
(3.11)

Equation 3.11 is differentiable everywhere. The globally optimal solution must lie at
a point where:

∇h(x) = 4
∑
j

wj
(
xTx− 2xTaj + aTj aj − d2j

)
(x− aj) = 0 (3.12)

This gives a polynomial equation with a degree of three. The next step is to write out
equation 3.12 and to collect the terms in their respective degrees (e.g. equation 3.13
has the degree of 3, and equation 3.14 the degree of 2 upto equation 3.16):

1

4
∇h(x) =

∑
j

wj

(xTx
)
x (3.13)

−
(
xTxI + 2xxT

)∑
j

wjaj

 (3.14)

+

∑
j

wj
(
aTj aj − d2j

)
I + 2aja

T
j

x (3.15)

+
∑
j

wj
(
d2j − aTj aj

)
aj = 0 (3.16)

These terms can be simplified with the following assumptions. The ANCs aj have
known locations that are expressed in an arbitrary coordinate system. These locations
can be translated to a for this problem optimal location:

t =

(∑
j wjaj

)
(∑

j wj

) (3.17)

This equation makes the factor
∑
j wjaj = 0, and leads to the cancellation of equa-

tion 3.14. Another simplification is the observation that the weights of the cost
function are homogeneous. Then it can be assumed without loss of generality that∑
j wj = 1. That makes all the coefficients of equation 3.13 equal to 1. These as-

sumptions combined give a simpler form of equation 3.12:(
xTx

)
x + Ax + b = 0 (3.18)
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The matrix A in equation 3.18 is symmetric (because the 2aja
T
j term in equa-

tion 3.15), which allows it to be decomposed with the orthogonal eigenvalue de-
composition: A = UDUT. Based on the decomposition an advantageous change of
variables can be performed: x→ Ux and b→ Ub which lead to:(

(Ux)TUx
)
Ux + UDUTUx + Ub = 0 (3.19)

The multiplication of an orthogonal matrix with its transpose gives the identity matrix
which simplifies equation 3.19 to:

U
((

xTx
)
x + Dx + b

)
= 0 (3.20)

Now, two factors can be zero, the matrix U or the factor
(
xTx

)
x + Dx + b. This

allows to work with one or the other, in this case the latter.

Next, equation 3.20 is written in the following form:(
xTx

)
xi +Diixi + bi = 0, i = 1, 2, ..., n (3.21)

This is allowed as xTx is a constant and D is a diagonal matrix, and a value on the
diagonal can be written as Dii. A value from the vector b is written as bi. The goal
of this set of conversions is to write the equation in an eigenvalue problem form. A
first step is multiplying equation 3.21 by xi, giving:(

xTx
)
x2i +Diix

2
i + bixi = 0, i = 1, 2, ..., n (3.22)

The vector of squares as used in equation 3.22 can be written as: x2
∗ = (x21, x

2
2, ..., x

2
n)T

and the same goes for x∗ = (x1, x2, ..., xn)T . Here the notation is abused compared
to previous section, but this allows to better discriminate the form in equation 3.23.
Finally, to get the desired eigenvalue form equation 3.21 and equation 3.22 are com-
bined:

(xTx)

x2
∗

x∗
1

 =

−D −diag(b) 0
0 −D −b
1T 0T 0

x2
∗

x∗
1

 (3.23)

Please note that the last row of equation 3.23 is an arbitrary equality. Equation 3.23
can be interpreted as an eigenvalue problem of the familiar form:

λv = Mv (3.24)

In this case every solution to equation 3.23 must be a solution to equation 3.12.
The right eigenvector contains, amongst others, the location of the TAG. To get the
location of the TAG the following steps must be executed:

1. Compute matrix M
2. Compute all its eigenvectors (each one containing a candidate for the best fitting

location of the TAG
3. Normalize all the eigenvectors so that the last element is equal to one. This is

done because the last element of the vector in equation 3.23 is also one
4. Use equation 3.12 to find the best candidate by iterating over all eigenvectors

The last step guarantees to find the global optimal solution1.

This approach is faster than Murphy because it consists of a lower amount of cal-
culations that are computationally more efficient. But some iteration is still present
in Larsson. For instance, the calculations of eigenvalues are, internally, often done

1 This solution still requires extra care in case of colinear ANCs.
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iteratively. Next to that, all eigenvectors have to checked with equation 3.23. But
this number of iterations is constant assuming that the number of ANCs does not
change.

3.4 Faber algorithm

During the analysis of Larsson and Murphy, a collaboration started with H. Faber
(The Hague University of Applied Sciences). Inspired by Larsson, an attempt was
made to find a better trilateration algorithm. The Faber algorithm was conceived by
H. Faber and tested and simulated by the author.

The sum of the squared distances between an ANC and TAG should be close to the
sum of the measurement distances:

N∑
j=1

||x− aj ||2 =

N∑
j=1

d̃j
2

(3.25)

This was formulated to minimize the error, and it was simulated and concluded that
the constraint equation 3.25 could be too strict. Equation 3.26 shows a relaxation of
that constraint:

N∑
j=1

||x− aj ||2 = Rtot (3.26)

Here Rtot is one of the variables that has to be calculated. Expand equation 3.26:

N∑
j=1

x2 + a2x,j − 2x · ax,j + a2y,j + y2 − 2ay,j · y = Rtot (3.27)

This can further be expanded to:

N · x2 +N · y2 +

N∑
j=1

a2x,j +

N∑
j=1

a2y,j −
N∑
j=1

2 · x · ax,j −
N∑
j=1

2 · y · ay,j = Rtot (3.28)

Collect and isolate the desired position:

x2 + y2 =

2 · x ·
N∑
j=1

ax,j + 2 · y ·
N∑
j=1

ay,j +Rtot −
N∑
j=1

a2x,j −
N∑
j=1

a2y,j

N
(3.29)

Based on figure 3.1 a range measurement, the circle equation can be formulated as:

(x− ax,j)2 + (y − ay,j)2 = d̃j
2

(3.30)

Expanding and reordering gives:

x2 + y2 + a2x,j − 2 · x · ax,j + a2y,j − 2 · y · ay,j = d̃j
2

(3.31)

The same terms are present in equation 3.29 and in equation 3.31 and so the equations
can be combined via substitution:

2 · x ·
N∑
j=1

ax,j + 2 · y ·
N∑
j=1

ay,j +Rtot −
N∑
j=1

a2x,j −
N∑
j=1

a2y,j

N
+ (3.32)

a2x,j − 2 · x · ax,j + a2y,j − 2 · y · ay,j = d̃j
2
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This equation is linear for x, y and Rtot and be written in the following form:(
2·

N∑
j=1

ax,j

N − 2 · ax,j

)
· x+

(
2·

N∑
j=1

ay,j

N − 2 · ay,j

)
· y +

1

N
·Rtot = (3.33)

d̃j
2

+

N∑
j=1

a2x,j +
N∑
j=1

a2y,j

N
− a2x,j − a2y,j

This can be written in matrix form:

2·
N∑

j=1
ax,j

N − 2 · ax,1
2·

N∑
j=1

ay,j

N − 2 · ay,1 1
N

2·
N∑

j=1
ax,j

N − 2 · ax,2
2·

N∑
j=1

ay,j

N − 2 · ay,2 1
N

...

2·
N∑

j=1
ax,j

N − 2 · ax,N
2·

N∑
j=1

ay,j

N − 2 · ay,N 1
N
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 = (3.34)



d̃1
2
− a2x,1 − a2y,1 +

N∑
j=1

a2x,j+
N∑

j=1
a2y,j

N

d̃2
2
− a2x,2 − a2y,2 +

N∑
j=1

a2x,j+
N∑

j=1
a2y,j
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N∑
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a2y,j

N


Which has the well known form:

Ax = b (3.35)

As the last step, the A matrix2 are normalized by dividing each row by their associated
distance squared. This normalization gave the best results in practice. An explanation
can be that the combination of equation 3.29 and equation 3.31 both predominantly
contain terms that are squared. The weight matrix is given by:

W =


1

d̃1
2 0 0

0 1

d̃2
2 0

...
0 0 1

d̃N
2

 (3.36)

Then the matrix equation becomes:

WAx = Wb (3.37)

Equation 3.37 is tested in section 6.1 with Matlab R2020a. The measurements done
in this project are based on a setup consisting of four ANCs which gives an overde-
termined set of equation in the Faber case. In the overdetermined case where AεRn×m
with n > m Matlab uses a QR-solver 3 which gives a least-squares approximation.
This means that Murphy, Larsson and Faber all give results in the least-squares sense.

2 In this case not explicitly designated.
3 see https://nl.mathworks.com/help/matlab/ref/mldivide.html.
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The Faber localization algorithm has the least amount of calculations compared to
Murphy and Larsson. This most likely makes the Faber solution the fastest of them
all.

3.5 UWB error modeling

Noise is often simulated by adding a Gaussian Random Variable to the coordinates.
Gaussian noise, opposed to other types of noise, tends to give tractable solutions [40].
However, in UWB localization, noise is not necessarily a Gaussian Random Variable.

In the work of Alavi et. al. [4] the authors try to introduce an empirically established
statistical model for UWB distance measurement errors and finally arrive at:

εM,W (d) = γW log(1 + d) = G(mW,M , σM,W )log(1 + d) (3.38)

The mean mM,W and the variance σ2
M,W is given by Alavi et. al. in a table con-

taining the typical values for different Bandwidths (BWs). The UWB error distance
dependency is aligned with the results in other similar work [54]. This is applied to
the localization algorithms in this work to get more realistic UWB noise.
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Chapter 4

Sensor fusion

The goal of this project is to improve the localization of wheelchair athletes. The cur-
rent system, the Wheelchair Mobility Performance Monitor (WMPM) is solely based
on Inertial Measurement Units (IMUs) and does not provide absolute coordinates.
Ultra-wideband (UWB) is chosen as the technology to improve this. The WMPM has
a relatively high precision (figure 4.2) and a relatively low accuracy. The UWB data
has a relatively high accuracy (figure 4.3) but a relatively low precision. Combining
these systems should improve the overall precision and accuracy.

4.1 Overview

For sensor fusion, we consider three coarsely defined options: the Kalman Filter (KF)
and the Particle Filter (PF) and a combination thereof [6]. As stated in section 4.2
the obtained measurement data is non-linear which eliminates the standard KF and
suggests the use of a non-linear KF: the Extended Kalman Filter (EKF) or the Un-
scented Kalman Filter (UKF). The particle filter is less suitable as a solution due to
the associated computational loads.

Figure 4.1: Groundtruth
data (Optitrack). Note the
parts in the missing data.

Figure 4.2: Relative loca-
tion from the WMPM.

Figure 4.3: UWB data,
simultaneously acquired
with figure 4.1 and fig-
ure 4.2.

Typically, the KF is used for optimal estimation under the assumption of linearity
and Gaussian disturbance. But is also often used for sensor fusion [13, 30, 42, 6].

In the sensor fusion solution, as can be seen in figure 4.4, the data from UWB and
IMUs serves as input. The WMPM is used as a form of preprocessing of IMU data
and outputs the frame velocity ṽk. A tilde symbol represents a measured value from
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the IMUs. A hat symbol, on the other hand, represents a variable from the state
vector after filtering. The subscript k designates the k-th discrete timestep. The
wheelchair frame IMU, part of the WMPM setup, will be used for its rotational

velocity
˜̇
θk output in the horizontal plane1. The IMUs together, provide the frame

velocity ṽk. UWB provides an estimation of the true position xk and yk which again
has a similar notation as in chapter 3. Together, these outputs serve as the input
for sensor fusion and filtering and give absolute pose (x̂k, ŷk, θ̂k) tracking. The sensor
fusion output will be evaluated in comparison to the ground truth (Optitrack) which
gives the coordinates x∗k, y

∗
k. Lastly, some state variables are not measured, but they

are still an output of the UKF. They are called ’hidden state variables’ as they are
not observed.

Figure 4.4: Schematic overview of sensor fusion. Similar to chapter 3 a measured value
is indicated with a tilde. It illustrates the type of data obtained from the systems that
serve as input for the sensor fusion (UKF). The UKF returns the state variable (indicated
with a hat, e.g. x̂k. Note that the UKF also returns quantities not directly measured, the
so-called ’hidden state variables’. The Optitrack data is used for evaluation purposes.

4.2 Non-linear measurement data

In figure 4.1, figure 4.2 and figure 4.3 an example is shown of simultaneous measure-
ments done with respectively the Optitrack system, WMPM system and the UWB
system. Please note that in figure 4.1 there is some missing data. This is due to a
too low Optitrack camera density and a sub-optimal TAG placement with regards to
Optitrack marker visibility. It can be seen that the data is non-linear. A KF is based
on the assumption that the movement model F is linear and that the measurement
data z is also linear. To deal with non-linearities in the KF the respective covari-
ance values Q, R are increased. This means that non-linearities are interpreted as a
disturbance. During the development phase, this was shown not to be sufficient.

In general, there are two non-linear KF implementations the EKF and the UKF.
The literature suggests that the UKF is the better choice for implementation and
performance reasons [52, 53, 14].

1 The dot in [̇] represents the first derivative.
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4.3 Kalman Filter description

Figure 4.5: The schematic proces of the Kalman Filter for comparison with the Unscen-
ted Kalman Filter.

To understand the UKF a good start is the KF, which is briefly covered in this
subsection. A state vector x is defined based on the variables that can be tracked and
that are needed:

x =
[
x y θ θ̇ θ̈ v v̇

]T
(4.1)

Also the covariance matrix P is update every iteration. The covariance matrix P
contains the (co)variance(s) of each state variable and can be seen as the uncertainty
of each variable. Here, a high variance for a certain state variable, means a high
uncertainty in the predict phase and more weight is given to the measurement value
in the update phase.

The linear KF consists of two phases: the predict phase and the update phase as
schematically visualized in figure 4.5. In the predict phase, a movement model F,
also called transition matrix, is used to predict the next state vector xk+1|k as seen
in equation 4.2.

x̂k+1|k = Fx̂k|k (4.2)

P̂k+1|k = FP̂k|kFT + Q (4.3)

Also, the covariance matrix is calculated based on the movement model and the
previous values the process noise Q is added which signifies the uncertainty of the
process model. Each discrete timestep k the discrete linear KF executes these two
phases. Here subscript k+1|k represents the output of the predict phase with subscript
k + 1 given the state vector from the previous timestep k. This is called the prior,
i.e. the state vector after the ’predict’ phase. After the update phase, the subscripts
of the state vector and covariance matrix change to k + 1|k + 1.

Because the prediction does not have any information about the true state, measure-
ment information has to be incorporated to ’update’ the state vector. This is done
in the update phase with the measurement data represented by the vector z, the
observation vector. This vector z must be transformed, so it is similar formatted as
the state vector x. This is done by multiplying the measurement function H with the
state vector, which is used to calculate the residual vector y in equation 4.4.

yk+1|k+1 = zk+1 −Hxk+1|k (4.4)
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In the predict phase, given an initial or previous state vector x̂k|k and the corres-
ponding covariance matrix Pk|k, a prediction can be made, see equation 4.2 and
equation 4.3. The next step is to calculate the Kalman gain K as seen in equa-
tion 4.6. First the system uncertainty S is calculated which uses the measurement
noise R in equation 4.5. The measurement noise is difficult to obtain as sensor man-
ufacturers often forget to specify the sensor noise. In a typical KF implementation
the measurement noise is estimated and then tuned for a specific goal.

S = HP̂k+1|kHT + R (4.5)

K = P̂k+1|kHTS−1 (4.6)

Finally, K is used to calculate the posterior state vector x̂k+1|k+1 and posterior

covariance P̂k+1|k+1 as seen in equation 4.7 and equation 4.8 which will serve again
as input for the prediction phase 2. These quantities are called the posterior 3.

x̂k+1|k+1 = x̂k+1|k + Kyk+1|k+1 (4.7)

P̂k+1|k+1 = (I−KH)P̂k+1|k (4.8)

4.4 The Unscented Kalman Filter

Figure 4.6: The schematic UKF. It consists of a couple of additions compared to the
Kalman filter figure 4.5.

In figure 4.6 the UKF is schematically represented. The idea behind the UKF is that
it is easier to approximate a model with samples, than to approximate a non-linear
function for instance with a EKF. The samples, called ’sigma-points’, sample the
non-linear model to represent it as good as possible with as few samples as possible.
For instance, if a certain state variable is very non-linear (e.g. the coordinate xk),
only one sample of that state variable will likely give a bad prediction. Multiple
samples, a distribution, will give a better representation of the non-linear behavior.

2 In that transition from update output to predict input the subscripts change from x̂k+1|k+1 to
x̂k|k.

3 Which can be interpreted as ’after the update phase’.
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Each ’sigma-point prediction’ of a state variable will be compared to the measurement
value in the update phase and the best fitting will be used. This is how an UKF deals
with non-linearities.

In this project, the sigma points are obtained via the method of van der Merwe [43].
The sigma points χ are picked in such a way that their sample mean is similar to
x̂ and P̂. Then each consecutive sigma point is an input to F() which gives a set
of transformed points Y called the prior sigma points. The prior sigma points are
used in the update phase to calculate the best possible representation of the state
vector and covariance matrix. A mathematical description of the UKF is given in
section B.4. An important distinction with a Monte Carlo-type method, like the PF,
is that the set of points or samples are in the UKF given by a deterministic algorithm.

4.4.1 Measurement function and motion model

This section describes the measurement function and the motion model. The state
vector x is expressed in equation 4.1.

The measurement vector for UWB zUWB is:

zUWB =
[
x̂ ŷ

]T
(4.9)

The measurement vector for IMU zIMU is:

zIMU =
[
v̂

ˆ̇
θ

]T
(4.10)

Every timestep (or iteration) the state vector and covariance need to be predicted.
In this discrete Kalman implementation every timestep k has an assumed duration of
dt:

F =



xk + vk · cos(θk) · dt+ vk · cos(θk) · 0.5 · dt2
yk + vk · sin(θk) · dt+ vk · sin(θk) · 0.5 · dt2

θk + θ̇k · dt+ 0.5 · θ̈k · dt2
θ̇k + θ̈ · dt

θ̈k
vk + v̇k · dt

v̇k


(4.11)

In the movement model, the wheelchair velocity ṽ from the WMPM is used to give

a magnitude to the state variables xk and yk. The rotational velocity
˜̇
θ is used to

determine the hidden state variable θ̂, the angle or orientation of the TAG. This
state variable θ̂, combined with ṽ is used to determine the change of xk and yk in one
timestep.

4.4.2 Multi-rate sensor fusion

The WMPM and UWB systems operate at different update rates, such combinations
of systems are called multi-rate systems. In this specific UKF implementation the
fastest sensor determines the timing resolution dt. At every timestep k the slower
sensors are checked for new data. If new data from a slower sensor is available, then
the update phase is executed specifically for that sensor. In one iteration k the update
phase can be executed two times, one for each sensor.

This has the disadvantage of offsetting the data and reducing the precision (the data
becomes ’jumpy’). The reduced precision is caused by the difference in update rate
of the sensors and the fact that the sensors ’update’ different state variables. This is
illustrated in figure 4.7 which shows two simulations with different update rates.
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The offsetting and inprecision increases with the difference in update-rate which is
shown in figure 4.7 a and b. At the start of a measurement, a location offset is obtained
related to the UWB variance. This offset is slowly recovered due the relatively low
localization update rate.

a b

Figure 4.7: The simulated effect on the output of the UKF by combining multi-rate
sensors at different updates rates. In a the simulated update rate (8Hz) is similar to the
update rate in UWB. In b the simulated update rate is 50Hz.

These simulations support the statement that the update rate of the used systems
should be as high as possible. A lower update rate will increase a potential offset and
make the result less precise.

4.5 Rauch-Tung-Striebel Smoother

To ’smooth’ the offsetting and reduced precision the ’Rauch-Tung-Striebel’ smoother
is applied, named after the authors [31], and abbreviated with RTS. There is a differ-
ence between filtering and smoothing. Filtering is considered as the forward pass over
the data, i.e. the KF. Smoothing is the backward pass over the data, also considering
future data, a form of batch processing. Kalman smoothers provide the best estimate
as they incorporate all past and future data. Smoothing is more computationally
intensive but also comes with considerable advantages:

• It can handle missing values better
• It provides better estimates of the state vector
• It provides a better estimate of the covariance
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4.5.1 Types of KF smoothers

There are three types of smoothing implementations of which one could be used in a
real-time solution. The Fixed-interval is the batch-processing variant of the RTS-
smoother and will process all available data. In this work, a Fixed-interval type of
smoothing is applied.

A Fixed-lag type will introduce a fixed-lag into the output. For instance, at timestep
k, n number of update frames are awaited. Then at timestep k all the previously
collected samples k − n...k and the corresponding KF state vector and covariances)
will be taken into account. These types of smoothers can be used in real-time systems.

A Fixed-point smoother uses all measurements from a timestep k up to a timestep
k+n to accurately determine the state at timestep k. This is useful when, for instance,
an initial state of a system needs to be accurately determined.

4.5.2 RTS Implementation

The RTS smoother continues with the UKF data and works backward from the
timestep N − 1 to the first sample. This way ’future’ data is incorporated in the
calculation of the state vector and the covariance. The mathematical steps are given
in section B.5.
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Chapter 5

Measurement setup

The main goal of the measurements is to test the localization algorithms in an UWB
setting and to have a dataset for development of a sensor fusion solution. To evaluate
the accuracy of the algorithms, the Optitrack system was used as the ground truth.
The measurement setup consisted of:

• An Optitrack System with 20 Flex13 camera’s
• The Pozyx Creator UWB System which had four TAGs and four Anchors

(ANCs) and uses Two Way Ranging (TWR)
• An RC-Car, for Line-Of-Sight (LoS) measurements as seen in figure 5.3
• A Wheelchair, a seen in figure 5.4, for simultaneous measurement with the

WMPM.
• An custom electronic setup consisting that provided synchronization of the dif-

ferent measurement systems figure 5.1
• A computer with Motive version 2.2.0 Final (Optitrack operational software).

This is visualized in figure 5.1 in which the red dots illustrate the space where the
Opitrack markers can be tracked. UWB data was obtained with the Pozyx Creator
system. The Pozyx system is used due to its robustness, maturity, reproducibility
and ease-of-use.

Optitrack and UWB were automatically synchronized with a custom solution (see:
figure 5.1). The solution was used to start and stop UWB measurements and simultan-
eously turn on a set of Optitrack compatible IR-LEDs which could be automatically
recognized in the post-processing.

UWB can, besides ranging, be used to transmit information. In the setup, as shown
in figure 5.1, UWB is also used to transmit the ranges from the TAG to the computer.

5.1 UWB and Optitrack combination

Figure 5.2 shows that the UWB ANCs had Optitrack markers mounted to them. Each
ANC has a specific Optitrack marker layout, to uniquely define that UWB antenna in
the Optitrack data. The UWB antenna chip, the white chip with the blue square in
figure 5.2 between the lower two Optitrack markers, is considered the point of origin
for ranging.
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Figure 5.1: The global measurement setup. During the measurements 4 ANCs were
available and 4 TAGs. One TAG was used for the streaming of data via an Arduino.
That Arduino also had an electronic board for synchronization with a fixed configuration
of 3 850nm IR-LEDS.

5.2 WMPM

The WMPM consists of three IMUs shown in figure 5.5. One IMU is placed on
the wheel close to the axis of rotation. Another IMU is placed on the base of the
wheelchair. The last IMU measured the movements of the athlete and was placed on
the seat and ignored.

The IMUs are made by a company called Movesense and consist of the LSM6DS3
IMU that has an 3D accelerometer and 3D gyroscope. The WMPM version used in
the measurements, did not output accelerometer data for throughput reasons. This
means that no wheelchair acceleration data is used, which would otherwise provide
extra input for the sensor fusion solution.

5.3 Measurements

Three types of measurements were recorded for 3 days:

• Static and dynamic ranging measurements (to test the localization algorithms)
• Static and dynamic localization measurements, based on a proprietary Pozyx

algorithm for comparison with the localization algorithms used in this project.
• Static and dynamic ranging combined with WMPM for sensor fusion chapter 4.

In every measurement at least 2 wheel slip moments are added to introduce
noise.
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Figure 5.2: An example of Optitrack
markers (for reference purposes) attached to
an ANC. Each ANC was provided with an
unique marker configuration for automatic
recognition by Motive (Optitrack software).

Figure 5.3: The RC-car with the Opti-
track markers (for reference purposes). Five
markers were used to create unique marker
configuration for automatic recognition by
Motive (Optitrack software).

Figure 5.4: The wheelchair used in the
measurements.. The wheelchair has 7 Op-
titrack markers, illustrates with red circles,
and a UWB TAG illustrated with a blue
hexagon, attached to the backseat of the
wheelchair. This is the Non-Line-Of-Sight
(NLoS) setup as a wheelchair user blocks
the UWB signal partially.

Figure 5.5: Schematic of the placements
of IMUs in the WMPM system.

31



5.4 Post processing

All datasets were converted and synced with Matlab R2020a. Every measurement
was visually checked for integrity with Matlab. The Optitrack measurements had
on average 10 % of missing markers. This percentage is acceptable for evaluation
purposes. The missing markers are not filtered or ’filled’ in the sensor fusion algorithm
and ignored in the calculations of the performance evaluation.
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Chapter 6

Evaluation

This chapter covers the evaluation of the localization algorithms (chapter 3) and the
sensor fusion solution (chapter 4).

6.1 Simulations

The performance of the localization algorithms is initially checked with simulations.
Simulations give more freedom in an analysis compared to measurements. For ex-
ample, the number of UWB ANCs in the measurements was limited to four, but
simulations do not have these limitations. To evaluate the effects of the number of
ANCs, five noiseless datasets with 3 to 7 ANCs were created, each with more than
30000 samples. Such a noiseless dataset was used as a validity check for each al-
gorithm. A localization error based on this clean dataset would suggest an error in
the algorithm or otherwise a reason to discard it. All other simulations include the
noise model described in section 3.5.

Figure 6.1: The cumulative Root Mean
Square Error (RMSE) values of the local-
ization algorithms related to the number of
ANCs. Please note the starting value of the
y-axis.

Figure 6.2: The cumulative duration of all
simulations, related to the number of ANCs.

Figure 6.1 shows the cumulative localization error related to the number of ANCs.
It can be observed that the differences between the algorithms are small. To check
the resemblance of the Larsson and Faber algorithm with Murphy the Intra-Class-
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Correlation (ICC) was calculated. All combinations gave an ICC of more than 0.98
(α = 0.01). It can be concluded that there are no localization differences based on
the simulations.

Figure 6.2 shows the execution time of the localization algorithms that was measured
with Matlab. There is in general no observed difference in execution time related to
the number of ANCs. The Faber is 5.2 times faster than the previously implemented
method of Murphy. Larsson is 5 times faster than Murphy. Both could be a good
alternative to Murphy, but that choice also depends on the measurement results.

6.2 Measurements

Different static and dynamic measurements were done as described in chapter 5. This
section covers the following type of measurements:

• Static LoS with Murphy, Larsson and Faber
• Dynamic LoS with Murphy, Larsson and Faber
• Dynamic NLoS with Murphy, Larsson and Faber
• Static LoS with a proprietary Pozyx algorithm (a black box)
• Dynamic LoS with a proprietary Pozyx algorithm

6.2.1 Static LoS

The TAG was placed in the approximate center of the ANC constellation on the
ground and did not move. These static ranging measurements served as localization
input and the localtion is compared to the groundtruth location. The differences
between UWB location and groundtruth are visualized in figure 6.3.

For visualization of the error a violin-plot is used. This is a box-plot where the box
is replaced by a density distribution. The black line represents the mean (µ), the red
dot represents the median, the gray rectangle illustrates the first and third quartile.
In this document it can be used to check, for instance, what level of error occurs most.

Figure 6.3: A violin plot of UWB errors. Average update rate 7.5 Hz.
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The distributions in figure 6.3 are not Gaussian. In general, the three algorithms
perform similarly where Faber has a slightly higher average error. In the dynamic
measurements the TAG is moving and there is more diversity in the ranges, which
tends to give a normal distribution.

6.2.2 Dynamic LoS

Figure 6.4 show the results of the dynamic LoS measurements. The average velocity of
the TAG was 6 m s−1. The average error in the dynamic measurements is, remarkably,
slightly lower than in the static measurements. This can be explained by the fact
that the TAG in the static case was approximately in the center of the ANCs. If a
certain TAG-ANC combination performs slightly worse, then this will result in a larger
error. The ranging result of the closest ANC will probably determine the location the
most. Moreover, the Faber algorithm has a larger average error due to more outliers.
These measurements show that Larsson has the best practical localization accuracy
in dynamic situations, which is the case in wheelchair situations.

Figure 6.4: A violin plot of UWB measurements (reference Optitrack). Average update
rate 7.5 Hz. For each localization algorithm the mean (µ) error is displaced at the rightside
of the label.

6.2.3 Pozyx proprietary localization LoS

The Pozyx system has a proprietary algorithm to perform localization for its users.
Comparing the results in figure 6.3 and figure 6.4 with figure 6.5 shows that the
accuracy of the Pozyx proprietary localization algorithm (PLA) is slightly better than
the Larsson algorithm. In this case, the PLA performs on average in the dynamic
case better by 7.7 mm RMSE. This is explained by an Pozyx update rate that is 2.3
times higher and an lower average TAG velocity.

6.2.4 Dynamic NLoS

The Dynamic NLoS measurements, with wheelchair and person are shown in fig-
ure 6.6. Similar to the dynamic LoS Larsson has the highest accuracy, but the plots
show more outliers which is explained by the velocity of the TAG.
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Figure 6.5: The violin plots of the proprietary Pozyx algorithm in a static and dynamic
LoS situation. Average update rate 16.8 Hz. The average velocity of the TAG was 3 m s−1.

Figure 6.6: The violin plots of the dynamic NLoS measurements. The average update
rate was 7.5 Hz and the average velocity of the TAG was 6.2 m s−1.

6.2.5 Conclusion

The simulation results show that the three localization algorithms are similar in per-
formance. Especially the dynamic LoS measurements show some nuance in the dif-
ferences. For instance, Faber has a reduced performance which makes it less suitable.
The Pozyx proprietary localization performs better than Larsson, which is explained
by the differences in update rate and TAG velocity. This requires more investigation
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to compare their differences. Because Faber and Larsson are approximately 5 times
faster than Murphy and Larsson has the best accuracy, Larsson is the algorithm of
choice in the Sensor fusion.

6.3 Sensor fusion

The results of the UKF chapter are shown in table 6.1. The first column shows the
UWB RMSE and gives an indication on the precision of UWB Larsson localization
off the bat. The second column shows the RMSE when IMU and UWB is combined.
By implementing the RTS-smoother the RMSE further reduces to an average RMSE
of 123.9 mm. On average the UKF RTS implementation gives a 43.8 % reduction in
RMSE compared to UWB. In figure 6.7 this is visualized by the 2D-coordinates.

# UWB RMSE UKF RMSE UKF RTS RMSE % UKF % UKF RTS

1 194.8 146.0 115.3 −25.1 −40.8
2 248.8 155.5 116.2 −37.5 −53.3
3 229.6 185.1 130.7 −19.4 −43.1
4 239.2 167.1 128.5 −30.1 −46.3
5 199.4 169.0 128.9 −15.3 −35.4

Table 6.1: Measurement (#) results expressed in RMSE (in mm) are based on ground
truth reference. The percentual error change has as reference the UWB RMSE and is
indicated by %. A negative change indicates a reduction

Figure 6.7: Left: The groundtruth (green) with the input data for sensor fusion. Right:
The groundtruth with the UKF (magenta) result.

6.3.1 Measurement limitations

The UWB ranging measurements had a relatively low update rate of 7.5 Hz. This was
not observed during initial tests in a smaller room of 2 m by 3 m, where the setup had
an update rate of over 15 Hz. The manufacturer suggested that a dedicated telemetry
module (e.g. a wifi modules) per ANC would resolve this. There were no indications
during the initial test that a larger room, as used in the measurements, would give
this reduction.

37



The reduced update rate also reduces the accuracy of localization. When TWR is used
each TAG and ANC range is registered in sequence. Consecutive measured ranges of
a moving TAG will give an increased localization error. This inevitable inaccuracy
can be alleviated, in a future setting, by increasing the update rate.
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Chapter 7

Conclusion and Future work

7.1 Conclusion

Measuring the performance of an athlete is important for coaches to evaluate the game
they have played. A recently developed IMU measurement system, the WMPM,
tracks the kinematics of wheelchair athletes. This odometry-based system, gives
coaches offline kinematic wheelchair feedback and the relative location of an athlete.
But game analysis requires that the absolute location of a wheelchair athlete is known.
UWB is a good candidate to extend the WMPM with absolute location. However, it
is unclear if this would give the desired precision.

The WMPM system would ideally give a coach, in the future, real-time game inform-
ation. This requires that the localization algorithm is as fast as possible. Previously,
a master thesis by Pathi [28] at the TU Delft describes a sports related UWB im-
plementation. Pathi used the localization algorithm described by Murphy et. al.
[24]. This work started with this Murphy localization algorithm. Recent work by
Larsson et. al. [16] was found that could potentially provide faster localization.
Additionally, a collaboration with H. Faber (The Hague University of Applied Sci-
ences) started which resulted in the Faber localization algorithm. The comparison of
Murphy, Larsson and Faber was done in a set of simulations and showed that Larsson
and Faber were approximately 5 times faster than Murphy. Moreover, the accuracy
of the algorithms was shown to be the same (ICC of 0.98 or higher, α = 0.01). The
simulations were validated with measurements, combining an UWB system by Pozyx,
the WMPM and a IR-camera system by Optitrack. The Pozyx UWB system came
with a proprietary localization algorithm, which was compared to Murphy, Larsson
and Faber. The measurements show that Pozyx algorithm has a better performance
of on average 7.7 mm RMSE. However, the Pozyx proprietary algorithm had a higher
update rate of 16.8 Hz compared to UWB ranging at 7.5 Hz and had a lower TAG ve-
locity. This requires a better comparison, in future work, where similar TAG velocity
and update rates are maintained. A higher update rate will generally give a better
TWR localization accuracy. It is concluded, that Larsson is a good alternative for
Murphy and the proprietary Pozyx algorithm.

This project aims to improve wheelchair pose tracking by combining UWB and the
WMPM which requires sensor fusion. Different sensor fusion methods were invest-
igated and simulated. Due to the non-linear nature of the measurement data and
the movement model, it was decided to use the Unscented Kalman Filter. Due to
the multi-rate nature of the systems (UWB and WMPM) the UKF showed a poor
precision and a localization offset. A Rauch-Tung-Striebel (RTS) smoother was imple-
mented to improve this. After a tuning process, an average localization improvement,
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compared to UWB, was obtained of 43.8 %. This work provides a basis for future
wheelchair pose tracking development and shows that UWB could be a good addition
to the WMPM.

7.2 Future work

The update rate of the UWB ranging solution in this work was undesirably low.
The minimum update rate should be at least 15 Hz [18]. It is suggested, after a
conversation with Pozyx, that a higher update rate in that vicinity is achievable if
each ANC would get its own telemetry module (Wi-Fi or Bluetooth). The UKF
localization performance could furthermore be improved by enabling the wheelchair
frame accelerometer, which was disabled due to bandwidth limitations. This could
be improved in the next version of the WMPM that includes UWB. Furthermore,
this future version should enable the accelerometer of the wheelchair frame IMU. The
accelerometer data will provide extra measurement information for the sensor fusion,
eliminating the tracking of one ’hidden’ state variable.

Due to the achieved absolute pose tracking in this project, there is another way to
deal with NLoS. The orientation of a wheelchair could be used to determine which
ANC must give ranging information based on NLoS. This specific NLoS based ranging
information could be removed from the real-time localization algorithm (i.e. Larsson)
which could provide better results.

The measurements in this project included only one type of NLoS, due to one wheel-
chair and one person. But in a sport setting up to ten athletes could be on the court
and it is unclear what the localization performance would be with this number of ath-
letes. To minimize the effects of NLoS the ANCs should be placed high at 2.5 m or
more, alongside the court. This way NLoS due the wheelchair athletes is minimized1.
A dynamic test with four wheelchair users would be an appropriate start.

In other related work, the PF is implemented to improve UWB localization [19].
This is due to its inherent ability of non-linear estimation and the handling of multi-
modality (i.e. tracking multiple athletes). The biggest disadvantage of the PF though,
is that it requires much more computational power, which makes real-time tracking
unfeasible. However, it could reduce the setup complexity by reducing the number of
ANCs. For example, with a strategic placement of two ANCs, assuming 2D tracking,
each range between a TAG and two ANCs, would give two circles. A solution that
knows the ANC locations, relative to the court, could use logic to ignore the inter-
section of these two circles (i.e. the TAG location) outside of the court. This means
that localization could, theoretically, be obtained by two ANCs, reducing the setup
complexity. Sensor fusion would again be needed to obtain improved precision.

1 Compared to an ANCs on the floor of the court that would always lead to NLoS.
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Appendix A

Acronyms

ANC Anchor (A static UWB transceiver with a know location. Also known as:
beacon. The tag and anchor transmit UWB signals to determine their respective
distance. Anchors are sometimes called sensors), p. 4

AoA Angle-of-Arrival (By using certain antenna configuration the angle of a messag
can be determined from which triangulation or multiangulation can be applied),
p. 53

BW Bandwidth (A range of frequencies.), p. 21
CRLB Cramer Rao Lower Bound (A lower bound for the variance of ’unbiased estim-

ators’. An estimator that achieves this theoretical lower bound is most efficient.),
p. 10

DWM1000 DecaWave D1000 Radio Chip (The chip that is thought to have stimu-
lated the increase in popularity of UWB. source.), p. 2

EKF Extended Kalman Filter (See: Kalman Filter and Unscented Kalman Filter.),
p. 9

GPS Global Positioning System (A system with accurately synchronized sattelites
that send their coordinates and time-of-transmission. From this the time-of-
arrival can be calculated from which the true-range (distance) can be determ-
ined.), p. 7

ICC Intra class correlation (A descriptive statistic a measure which describes how
strongly units of the same group are similar. ), p. 39

IEEE 802.15.4 IEEE Ultra Wide band (The ranging standard is defined in IEEE
802.15.4a link. It specifies the physical layer and media access control for Low-
Rate wireless personal area networks.), p. 4

IMU Inertial Measurement Unit (In this document it is referred to as a device with
a 3DoF Accelerometer, 3DoF Gyroscope and a 3Dof Magnetometer.), p. iii

KF Kalman Filter (A filter that uses measurements that contain noise and a model
of the object that is ’filtered’ which often produces better results than one single
measurement. The Kalman Filter is less suited for non-linear situations (see:
Extended Kalman Filter and Unscented Kalman filter).), p. 22

LoS Line-Of-Sight, p. 4
MOCAP Marker Based Motion Capture System, p. 2
MPC multipath components (UWB is relatively resilient against multipath compon-

ents compared to narrowband because it transmits short pulses over a large band-
width.), p. 11

NLoS Non-Line-Of-Sight, p. iii
PF Particle Filter, p. 9
PLL Phase Locked Loop (A control circuit that tracks the difference between the

input and output phase (locking) which can be used for clock synchronization.),
p. 12
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RMSE Root Mean Square Error (Generally used to measure the error of prediction.
It is a measure of accuracy. It increases with the variance of the frequency
distribution of the error. ), p. iii

TAG Tag (The UWB transceiver that is attached to an object that needs to be local-
ised. Also know as: Node.), p. 2

TDoA Time Difference of Arrival (The difference of arrival times of a packet from
synchronized senders (e.g. anchors). This method will be used if there is no
synchronization between a sender and a receiver (anchor and tag). ), p. 5

ToA Time-of-Arrival (The timestamp at which a message has been received. Please
note, that this timestamp has the time-reference of the receiver (i.e. TAG and
ANCHOR are not necessarily synchronized which means they each has their own
time reference).), p. 5

ToF Time-of-Flight (The time taken by a particle or a wave to travel through a
medium (e.g. from ANCHOR to TAG). This information can be used to derive
the distance. For ToF synchronized TAGs and ANCHORS are needed.), p. 5

TWR Two Way Ranging (Ranging between two transceivers when they are not syn-
chronized. This method applies synchronization by sending multiple messages.),
p. 5

UKF Unscented Kalman Filter (See: Kalman Filter and Extended Kalman Filter.),
p. iii

UWB Ultra-wideband (A radio technology which can be used for short-range, high-
bandwidth and low energy communications but also for ranging.), p. iii

WMPM Wheelchair Mobility Performance Monitor (A method to measure wheel-
chair mobility performance.), p. iii
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Appendix B

Miscellaneous

B.1 Position versus location

In this project UWB is investigated with regards to producing coordinates. What
should the process of obtaining coordinates be called? There are two possibilities:
localization and positioning. Positioning often includes orientation. If you rotate a
coffee mock that is placed on a surface, the location is the same but its position is
changed. Or, it’s location is the same but the orientation is changed. 1 UWB only
provides location, thus localization is the more descriptive term.

B.2 Accuracy and precision

The definitions accuracy and precision are easily confused. Accuracy is the term
that describes the deviation between a measured value d̂ and the true value d. A
low deviation means a high accuracy. The deviation or error ε should be as small as
possible and can be denoted as:

εi = d̂i − d (B.1)

Here i denotes a single measurement. Accuracy can then be defined, when n is
sufficiently high, as the average error:

ε̄ =
1

n

n∑
i=1

εi (B.2)

Precision is defined as the inverse 2 of the variability of d̂. E.g. if all the d̂i are close
to each other (i.e. low variability) there is a high precision. Denoted:

σ2
ε =

1

n− 1

n∑
i=1

(εi − ε̄)2 (B.3)

1 UWB does not give orientation.
2 Note that no inversion is shown. It is assumed the reader knows that a low variability means a

high precision in this context.
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Figure B.1: Visualisation of accuracy versus precision. Source Wikipedia.

B.3 Error function

To determine the performance of an algorithm an error function needs to be defined.
In this section some options are covered.

The investigated trilateration algorithms (e.g. Murphy, Larsson, etc.) are initially
simulated. To simulate an localization algorithm a setup of K ANCs and a TAG is
created, see figure 3.1. A measurement consists of a trajectory of the TAG in time
which consists of N measurements. The true distances di in that situation are known.
In the simulations to every true distance di also some noise is added (d̃i).

A trilateration algorithm outputs the calculated position x∗. In a real scenario (by

doing actual ranging measurements) the measured distances d̃i are known. 3.

B.3.1 The error function in simulation

In simulation the true position of a TAG is known. This gives 2 options to express
an error function, namely based on the position and based on distances.

B.3.2 Positions

Figure 3.1 illustrates the parameters in trilateration. The true positions of the ANCs
and TAG are known. Then their respective distances (di) can be calculated which

are also polluted with some noise (d̃i). Those distances are the input for the trilater-
ation algorithm which outputs the x̃∗ which consists of the (x̃∗, ỹ∗) coordinates. The
distance dp between x and x̃∗ can be calculated and used in an error function:

etpos =

√√√√√ N∑
j=0

||xj − x̃∗j ||2

N
=

√√√√√ N∑
j=0

dp j

N
(B.4)

3 Please note that no difference is made between measured distances and true distances with added
noise.
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B.3.3 Distances

Instead of using the position an error function etdis can be conceived. In this error
function the distances d̃∗i are calculated based on d̃i. This function is better compar-
able to the error function used in a practical scenario as described in section B.3.4.

etdis =

√√√√√ K∑
i=0

N∑
j=0

(
dij − d̃∗ij

)2
K ·N

(B.5)

B.3.4 The practical error function

In a practical situation the true location of a TAG is not known. A trilateration

algorithm provides a calculated position based on measurements d̃ij . Because the

absolute location of the ANCs is known, the calculated location x̃∗ can again be used

to determine the distance between x̃∗ and the anchors ai with d̃∗ij = ||x̃∗ − ai||.

ecdis =

√√√√√ K∑
i=0

N∑
j=0

(
d̃ij − d̃∗ij

)2
K ·N

(B.6)

B.3.5 Error function choice

It is clear that equation B.6 will be used to express the performance of the localization
system as the true distances are not known. For simulation purposes equation B.5 is
most comparable and thus the best option to use.

B.4 UKF mathematical model

This section briefly covers the mathematics behind the UKF. It is assumed that the
reader knows the basic steps from the KF and it is furthermore related to figure 4.6.

Y = F(χ) (B.7)

As seen in figure 4.6 the weights wmi and wci serve as input to create each i-th sigma

point. Then the mean state vector ˆ̄x and mean covariance ˆ̄P can be calculated by
equation B.8 and equation B.9 which will serve as input for the update phase.

ˆ̄x =
∑
i

wmi Yi (B.8)

ˆ̄P =
∑
i

wci
(
Yi − ˆ̄x

) (
Yi − ˆ̄x

)T
+ Q (B.9)

The measurement input needs to be converted to the state vector format via H():

Z = H(Y) (B.10)

Next, the mean µZ and the covariance matrix PZ of the measurement data has to
calculated as seen in equation B.11 and equation B.12:

µZ =
∑
i

wmi Zi (B.11)

PZ =
∑
i

wci
(
Zi − ˆ̄x

)
(Zi − µZ)

T
+ R (B.12)
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The residual is obtained by:
y = Z − µZ (B.13)

The Kalman gain K is, similar to the KF case:

K =

(∑
i

wci
(
Yi − ˆ̄x

)
(Yi − µZ)

T

)
P−1Z (B.14)

Lastly, the Kalman gain is used to calculate the posterior state vector and covariance
(equation B.15, equation B.16).

x̂k+1|k+1 = ˆ̄xk+1|k+1 + Ky (B.15)

P̂k+1|k+1 = ˆ̄P−KPZKT (B.16)

B.5 RTS smoothing implementation

The RTS smoother continues with the UKF data and works backward from the
timestep N − 1 to the first sample. This way ’future’ data is incorporated in the
calculation of state and covariance. The calculation of the prior sigma points Y and
the mean state vector and covariance is the same as equation B.7, equation B.8 and
equation B.9. For the initial step, the smoothed RTS covariance is:

P̂UKF,k+2|k+2 = P̂N |N = P̂k+2|k+2 (B.17)

The RTS mean state vector and covariance:

ˆ̄xRTS =
∑
i

wmi Yi (B.18)

ˆ̄PRTS =
∑
i

wci
(
Yi − ˆ̄x

) (
Yi − ˆ̄x

)T
+ Q (B.19)

The cross-variance of the mean state vector and posterior state vector (x̂k+1|k+1) is:

PRTS =
∑
i

wci
(
Yi − ˆ̄xRTS

) (
χ− x̂k+1|k+1

)T
(B.20)

Calculate the Kalman gain for this instance:

K = PRTSP̂−1k+1|k+1 (B.21)

Use the future information and correct the posterior state vector and covariance:

x̂UKF,k+1|k+1 = x̂k+1|k+1 +
(
K
(
x̂k+1|k+1 − ˆ̄xRTS

)T)T
(B.22)

P̂UKF,k+1|k+1 = P̂k+1|k+1 + K
(
P̂UKF,k+2|k+2 − ˆ̄PRTS

)
KT (B.23)

B.6 Measurements, additional information

In this section, a collection of premature, or earlier output with a different take or
perspective are presented that could be of interest in a future project.
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Table B.1: Example data to illustrate the explanation of the difference between pseudo
interpolation and the currently used interpolation method.

Timestamp Range 1 Range 2 Range 3 Range 4

1 - 1200 mm - -
2 800 mm 1200 mm
3 800 mm 1200 mm 3300 mm
4 800 mm 1200 mm 3300 mm 5600 mm
5 800 mm 1250 mm 3300 mm 5600 mm
6 860 mm 1250 mm 3300 mm 5600 mm

B.6.1 UWB datacollection types

There are 3 different ways to format and present UWB data. In this section, those
types are explained.

B.6.1.1 Pseudo interpolated

In the plots below the UWB data is preprocessed differently than in chapter 6. There,
the UWB error data (also presented in violin plots) is interpolated in section B.6.1.2.
As explained in section 6.2 UWB ranging is a consecutive activity. If the update rate is
relatively low, then a certain amount of displacement of the TAG can happen between
each consecutive ranging. Because the localization algorithms use all the ranges to
calculate the location of a TAG of one update cycle that amount of displacement
could contribute to a significant error.

Originally, the UWB ranging data for each ANC 4 was simply repeated in a next
ranging. This is visualized with some example data in table B.1.

The errors related to this way of pseudo interpolating or data padding are visualized
in figure B.2 and figure B.3.

Figure B.2: A violin plot of UWB meas-
urements (reference Optitrack). Average
update rate 7.5 Hz. For each localization
algorithm the mean (µ) error is displaced
at the rightside of the label.

Figure B.3: A violin plot of UWB meas-
urements (reference Optitrack). Average
update rate 7.5 Hz. For each localization
algorithm the mean (µ) error is displaced
at the rightside of the label.

B.6.1.2 Interpolated

In figure 6.3 and figure 6.4 (in chapter 6) the UWB ranging data is used in linearly
interpolated form.

4 This means, for each TAG and ANC combination.
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When the results in section B.6.1.1 are compared to figure 6.3 and figure 6.4 it can
be observed that with regular interpolation the error is slightly lower.

B.6.1.3 Localization timestamp

Another way of formatting the UWB data is by collecting the ranges of all TAG and
ANC combinations and consider those to be collected at the first timestamp.

B.7 Companies

This is an incomplete list of companies currently working on UWB technology 5. In
[36] different UWB products of three different companies (Bespoon, Ubisense and
DecaWave) were compared. It is concluded that the DecaWave company produces
the most accurate products.

Table B.2: List of companies which are working on UWB ranging technology with a
selection of parameters. *reported accuracy.

Name Accuracy* IMU Price Range # Tags samplefreq. Protocol

Kinexon decimeter 9DoF - - - 60Hz -
Pozyx 10− 30cm - - - 8 125Hz TWR &Time Difference of Arrival (TDoA)
Infsoft - - - - - -
DecaWave - - - - - -
Eliko 5− 30cm - - 70m - 40Hz TDoA
Starix NA NA NA NA - - -
Pulselink - - - - - -
CUWB centimeter 9DoF - - - - -
Sewio decimeter - - - ∞ - -
Ubisense - no - - - variable TDoA &Angle-of-Arrival (AoA)
Bespoon ≤ 10cm no - 600m - < 200Hz TWR
UwinLoc - no - - - ≤ 1 Hz -

B.8 Wheelchair sport parameters

This section covers some of the wheelchair sport parameters of importance to this
project.

As seen in figure B.4 the court size is 24 m by 11 m. The minimum number of players
is 2, the maximum number of players is 4. Figure B.5 illustrates the wheelchair rugby
court size of 28 m by 15 m. The maximum number of players on the court is 8. Every
team has a maximum number of players of 12.

B.8.1 Anchor placement dimensions

The maximum wheelchair court size is 28 m by 15 (rugby). In tennis a court size of
24 m by 11 m is used. Because the ANCs can not be on the perimeter or in the field,
and some margin is needed for localizing players close to the perimeter of the court an
additional distance of 2 m is added to each side of the court making the dimensions:
28 m by 15 m.

5 source1,source2
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https://kinexon.com/technology/player-tracking
https://www.pozyx.io/pozyx-academy/uwb-and-obstacles
https://www.infsoft.com/technology/sensors/ultra-wideband
https://www.decawave.com/
https://www.eliko.ee/
https://www.starixtech.com/
http://www.pulselink.com/pl3100-family-integrated-circuits/
https://cuwb.io/
https://www.sewio.net/uwb-anchors/
https://www.ubisense.net/brand/sensor-systems
https://uwinloc.com/
https://www.360marketupdates.com/TOC/13976640
https://www.marketwatch.com/press-release/ultra-wideband-uwb-market-2025-top-companies-regional-growth-overview-and-growth-factors-details-by-regions-types-applications-2019-09-04


Figure B.4: Size of wheelchair tennis
court. Source: Telegraph.co.uk .

Figure B.5: Size of wheelchair tennis
court Source Wikipedia.
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https://www.telegraph.co.uk/sport/olympics/paralympic-sport/8716298/London-2012-Paralympics-wheelchair-tennis-guide.html
https://nl.m.wikipedia.org/wiki/Bestand:Wheelchair_rugby_court.png

	Preface
	Introduction
	Motivation
	Wheelchair monitoring
	UWB localization
	Goal

	Contributions
	Thesis organization

	Background & Related work
	UWB
	Ranging and localization
	Accuracy
	Time of Arrival
	Time Difference of Arrival
	Wheelchair sports

	Related work
	Localization in sports
	Wheelchair research
	UWB research


	Localization algorithm
	Introduction
	Murphy algorithm
	Linearized trilateration
	Non-linear Least-squares optimization

	Larsson algorithm
	Faber algorithm
	UWB error modeling

	Sensor fusion
	Overview
	Non-linear measurement data
	Kalman Filter description
	The Unscented Kalman Filter
	Measurement function and motion model
	Multi-rate sensor fusion

	Rauch-Tung-Striebel Smoother
	Types of KF smoothers
	RTS Implementation


	Measurement setup
	UWB and Optitrack combination
	WMPM
	Measurements
	Post processing

	Evaluation
	Simulations
	Measurements
	Static LoS
	Dynamic LoS
	Pozyx proprietary localization LoS
	Dynamic NLoS
	Conclusion

	Sensor fusion
	Measurement limitations


	Conclusion and Future work
	Conclusion
	Future work

	Appendix Acronyms
	Appendix Miscellaneous
	Position versus location
	Accuracy and precision
	Error function
	The error function in simulation
	Positions
	Distances
	The practical error function
	Error function choice

	UKF mathematical model
	RTS smoothing implementation
	Measurements, additional information
	UWB datacollection types

	Companies
	Wheelchair sport parameters
	Anchor placement dimensions



