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Linear Parameter Varying System
Identification for Joint Impedance

Estimation
Martijn Kerklaan*

Delft University of Technology
January 11, 2018

The dynamic relation between the displacement and
reaction torque of the human joint is known as joint
impedance. Properly quantifying joint impedance
has medical potential in the diagnosis, understand-
ing and modelling of movement disorders associated
with neuromuscular conditions like cerebral palsy,
stroke, dystonia and old age. The identification
of joint impedance is often done with Linear Time
Invariant (LTI) methods which lack the complexity
to fully capture joint impedance over large operat-
ing ranges and over time. In this report a novel
algorithm was developed which is able to identify
joint impedance as a linear parameter varying sys-
tem. This system description overcomes some of the
limitations of the LTI methods. The algorithm was
successfully tested in a simulation study in which
it identifies a time-varying impedance model with a
5dB signal to noise ratio. Also, the developed method
was applied on a force task with position perturba-
tions done with the ankle and wrist. However, these
data sets did not show sufficient time-varying be-
haviour and therefore the algorithm did not lead to
better results compared to LTI methods. The reason
the time-varying behaviour was not sufficiently ex-
cited was because of a faulty experimental protocol
where the input was the main culprit.

I. Introduction

Joint impedance is the dynamic relation between dis-
placements of the joint and the torque response that
is generated. Besides being a dynamical relationship,
it is also used as a descriptor for the physiology and
pathology of muscles and joints (Kearney and Hunter,
1990) as well as biomimetics. For example, in Scholtes
et al. (2006) joint impedance was used to assess spas-
ticity in children with cerebral palsy. Currently joint
impedance is assessed via tests like the Ashworth scale.

*correspondence to: martijn.kerklaan@gmail.com

These tests manually assess the resistance to fast and
slow movements on an ordinary scale. However, these
tests are not objective and it is hard to distinguish be-
tween neural and tissue components (Scholtes et al.,
2006; Pandyan et al., 1999). To distinguish between
neural and tissue components is important because it
determines the treatment that the patients will receive.
Therefore, there is a need for objective measures of joint
impedance which can be used for the assessment of
neuromuscular diseases.

Previously many Linear Time Invariant (LTI) methods
have been used to quantify impedance or its inverse:
admittance (Mugge et al., 2010; Schouten, 2004; Van Der
Helm et al., 2002; Kearney et al., 1997). However, LTI
methods are restricted to time invariant, linear systems
around specific operating points. Therefore LTI meth-
ods are not able to fully quantify joint impedance. A
logical next step in joint impedance identification is to
find methods that can overcome these limitations. A
solution is offered by ensemble-based methods which
require a lot of repetitions and a long recording time,
for example Lee and Hogan (2015), but this is not desir-
able when working with humans due to variability and
fatigue. Besides a long recoding time they assume that
each repetition has the same time-varying behaviour
which is violated for long recording times. A promis-
ing class of methods are the Linear Parameter Varying
(LPV) methods. LPV systems are systems whose pa-
rameters change depending on a Scheduling Variable
(SV). Imagine a rocket leaving orbit; the dynamics of
a rocket change with its mass, so the amount of fuel
can be used as an SV. LPV methods will be able to
capture time-varying behaviour as well as describing
behaviour over a larger operating range than LTI meth-
ods. Another advantage of LPV systems is that they
identify a general model which can predict output for
novel trajectories of the scheduling variable, unlike the
ensemble-based methods.

A promising LPV identification method to use for the
estimation of joint impedance is the LPV Predictor

7



II. LINEAR PARAMETER VARYING SYSTEM IDENTIFICATION

Based Subspace IDentification (LPV-PBSID) algorithm
by (van Wingerden and Verhaegen, 2009). This method
is promising because it is able to deal with closed-loop
systems; multiple scheduling variables, for example
joint angle and velocity; needs a single measurement to
identify a model and can easily be extended to multiple
input/output (MIMO) systems. This algorithm has also
been used in practise for the identification and control
of wind turbines (van Wingerden, 2008), using wind
velocity as an SV.

However, state space descriptions are not able to de-
scribe improper systems. Joint impedance identification
experiments are often done with position perturbations,
these experiments lend themselves for estimating sys-
tems using the following system description.

T(s) = (Is2 + Bs + K)θ(s) (1)

With T(s) torque, θ(s) angle, I Inertia, B the viscos-
ity, and K the stiffness. This description is a problem
because the LPV-PBSID is a state space method. To
overcome this problem, the LPV-PBSID algorithm was
combined with the generalized state space system

Exk+1 = Axk + Buk,

yk = Cxk + Duk.

The addition of E allows for the description of improper
systems. Improper systems do not only occur in biome-
chanics but also in economical systems and electrical
networks (Lewis, 1986). Ideas on how to implement
the generalized state space description were taken from
Verhaegen (1996).

The rest of the paper will have the following structure;
the LPV non-causal identification algorithm is derived
in Section II. With the algorithm derived, Section III
consists of a simulation study to verify the derived
algorithm with a discussion of the result. The algorithm
was subsequently applied to real life data of both the
ankle and wrist. These results are shown and discussed
in Section IV and V. In Section VI criticisms against
LPV methods for the identification of joint impedance
are discussed. This led to some recommendations in
Section VII and lastly the conclusions were drawn in
Section VIII.

II. Linear Parameter Varying System
Identification

In this section a closed-loop version of the LPV non-
causal subspace algorithm is derived. Important to note

is that this version was derived after the open-loop ver-
sion and is therefore not used in the other sections of
this paper. Theoretically this version is superior to the
open-loop version derived in Appendix B. Unfortu-
nately no time was found to implement and test this
version with an appropriate simulation.

i. Generalized State Space system

Given the following LTI generalized state space system
in predictor form:

Exk+1 = Axk + Buk + Kek,

yk = Cxk + Duk + ek

with input uk ∈ Rr, output yk ∈ Rl , zero mean white
innovation sequence ek ∈ Rl and state xk ∈ Rn. The
matrices A, B, K, C and D have appropriate dimensions.
The predictor form can be rewritten as:

Exk+1 = Axk + Buk + K(yk − Cxk − Duk)

⇒ Exk+1 = (A− K C)xk + (B− K D)uk + Kyk

⇒ Exk+1 = Ãxk + B̃uk + Kyk

yk = Cxk + Duk + ek.

Now, assuming that the matrix pencil zE− Ã is regular
i.e. there is at least one value of z such that det(zE−
Ã) 6= 0, the generalized state space system in predictor
form can be transformed into the so-called Kronecker
canonical form (Gerdin, 2004; Verhaegen, 1996) which
has the following structure:

z
[

I 0
0 E

]
−
[

A 0
0 I

]
.

Subsequently, splitting the non-causal system in a
causal and anti-causal part:

xc
k+1 = Axc

k + Bcuk + Kcyk causal part, (2)

Exac
k+1 = xac

k − Bacuk − Kacyk anti-causal part, (3)

yk =
[
Cc Cac] [ xc

k
xac

k

]
+ Duk + ek. (4)

where E is possibly singular and in some cases nilpotent.
E is singular or close to singular because else E would
be invertible. If E is invertible, the system would be
causal. For a nilpotent matrix, all eigenvalues = 0 and
Eh = 0, where h is an integer which is h ≤ n, with n
the order of the matrix.

8



II. LINEAR PARAMETER VARYING SYSTEM IDENTIFICATION

Next, the time-varying or LPV case is considered where
E, A, Bac and Bc were made time-varying:

xc
k+1 = Akxc

k + Bc
kuk + Kc

kyk causal part,

Ekxac
k+1 = xac

k − Bac
k uk − Kac

k yk anti-causal part,
(5)

yk =
[
Cc Cac] [ xc

k
xac

k

]
+ Duk + ek. (6)

With affine dependency such that:

Ek =
m

∑
i=1

µ
(i)
k E(i)

µk =
[
1 µ

(2)
k . . . µ

(m)
k

]T
(7)

with µ
(i)
k ∈ R and m local models. By splitting the gen-

eralized state space system into a causal and anti-causal
part a PBSID identification scheme can be derived for
the anti-causal part and merged with the causal part
which was described in van Wingerden and Verhaegen
(2009) to create the non-causal identification scheme.

ii. Anti-Causal LPV identification

The derivation of the causal LPV part using PBSID is
already described in van Wingerden and Verhaegen
(2009). The steps taken in this derivation were used as
an inspiration to derive the estimation of the anti-causal
part. Assume the following system description where
the superscript ac is dropped for clarity.

Ekxk+1 = xk − Bkuk − Kkyk

⇒ xk = Ekxk+1 + Bkuk + Kkyk

⇒ xk = Ekxk+1 + B̆kzk

yk = Cxk + Duk + ek

(8)

where xk ∈ Rn, uk ∈ Rr and yk ∈ Rl are the state,
input and output, with k = {1, 2, . . . , N}. Here zk is
the stacked vector z =

[
uT

k yT
k
]T . The matrices Ek ∈

Rn×n, Bk ∈ Rn×r, Kk ∈ Rn×l , C ∈ Rl×n and D ∈
Rl×r are the system, input, observer, output and feed
through matrices. Where B̆k =

[
Bk Kk

]
is the packed

input observer matrix. It is important to note that now
Ekxk+1 is defined instead of Ek+1xk+1 which was done
in the open-loop case as can be seen in Appendix B.
Defining Ekxk+1 as such allows for a better definition of
Pp|k, which was less elegantly defined in the previous
derivation.

The time-varying matrices are dependent in an affine

way with m local models:

Ek =
m

∑
i=1

µ
(i)
k E(i) (9)

µk =
[
1 µ

(2)
k . . . µ

(m)
k

]T
(10)

with µ
(i)
k ∈ R. It is important to know that the matrix

Ek is possibly singular and in some cases nilpotent.

iii. Assumptions and notations

First the transition matrix is defined which is slightly
different from the one used for the causal LPV-PBSID:

φ f ,k = EkEk+1 . . . Ek+ f−1 (11)

with a future window f and the following stacked input
output vector:

z̄ f
k =

 zk
...

zk+ f−1

 .

The state sequence is assumed to be:

X =
[
xk, . . . , xN− f

]
and has full row rank. Notice how the anti-causal
system sequence is again slightly different from the one
used in the causal estimation. The matrix:

Γ f =


C(E(1)) f−1

...
CE(1)

C

 (12)

is the extended observability matrix of the first local
model and has full rank. Note that no assumptions
have been made on the correlation of the input and
the noise and therefore this description is suitable for
closed-loop identification.

iv. Factorization

In this subsection the time-varying extended control-

lability matrix, K f
k , is factorized in the unknown state

matrices and the known scheduling sequence. The time-
varying extended controllability matrix is given by:

K f
k =

[
φ f−1,k B̆k+ f−1, . . . , φ1,k B̆k+1, B̆k

]
,

with K f
k ∈ Rn×(r+l) f .

9



II. LINEAR PARAMETER VARYING SYSTEM IDENTIFICATION

Define K f : First K f is defined, the extended control-
lability. This matrix can be seen as the time-invariant
controllability matrix of the LPV system or as the matrix
containing all used combinations of affine matrices. In
the LTI case the controllability matrix is defined as

K =
[
En−1B, . . . , B

]
.

Since the LPV E and B matrices contain m local mod-
els, the product EB = (E(1) + E(2) + . . . + E(m))(B(1) +
B(2) + . . . + B(m)) results in m2 combinations and the
product E2B in m3 combinations, etc. All these com-
binations are defined in K f . Separating the combina-
tions from the weights given to them by the scheduling
variables is an important step in the algorithm. This
procedure is explained in more detail in Appendix A.
To make all possible combinations, the following defini-
tions are needed:

Lj =
[

E(1)Lj−1, . . . , E(m)Lj−1

]
,

with

L1 =
[

B̆(1), . . . , B̆(m)
]

and Lj ∈ Rn×(r+l)mj
.

With these variables the extended controllability matrix
can be defined:

K f =
[
L1, . . . , L f

]
, ∈ Rn×q̃

with q̃ = (r + l)∑
f
j=1 mj. Notice how K f is build up

from 1 to f instead of from f to 1 as was done in the
causal case.

Define Pj|k: Next the known time-varying part is de-
fined, this gives weight to the combinations of state
matrices in Lj.

Pj|k = µk ⊗ . . .⊗ µk+j−1 ⊗ Ir+l

with Pj|k ∈ Rm f (r+l)×(r+l) and ⊗ denoting the Kro-
necker product (Brewer, 1978).

Define N f
k : The weight matrices Pj|k can be combined

in a bigger matrix which gives the correct weights to
the different combinations made in K f

N f
k =


P1|k 0

P2|k
. . .

0 Pf |k



with N f
k ∈ Rq̃× f (r+l) such that.

K f
k = K f N f

k

Proof The proof is shown Appendix A. It follows from
extending xk and capturing the structure that appears.

v. Closed-loop identification

The first objective in order to identify the closed-loop
system is to reconstruct the state xk:

xk = φ f ,kxk+ f +K f N f
k z̄ f

k .

If f is chosen big enough such that φ f ,k ≈ 0 or in the
case of a nilpotent matrix we can guarantee φ f ,k = 0
given f ≥ h. With a big enough f a definition which
approximates the state can be given by:

xk ≈ K f N f
k z̄ f

k . (13)

In the case of a nilpotent Ek it can be guaranteed that
xk = K f N f

k z̄ f
k . With a definition of the state the input-

output behaviour can be approximated.

yk ≈ CK f N f
k z̄ f

k + Duk + ek (14)

Next, the stacked matrices can be defined:

U =
[
u1, . . . , uN− f+1

]
, (15)

Y =
[
y1, . . . , yN− f+1

]
, (16)

Z =
[

N f
1 z̄ f

1 , . . . , N f
N− f+1z̄ f

N− f+1

]
, (17)

Notice how Y starts at the first sample but cannot es-
timate the last samples because future values of the
input are required. If [ZT , UT ]T has full row rank, the
matrices CK f and D can be estimated by solving the
following minimization problem:

min
C,K f ,D

||Y− CK f Z− DU||2F, (18)

where || . . . ||F is the Frobenius norm (Golub and Loan,
1996).

vi. Observability matrix times controllability
matrix

Next the approximation of the product of the extended
observability matrix and controllability matrix can be

10



II. LINEAR PARAMETER VARYING SYSTEM IDENTIFICATION

constructed. Because of the slightly different notations
this will become a lower-block triangular matrix. This
was done to combine it with the upper-block triangular
matrix of the causal case. In the end this was only
possible for the LTI case because Zac 6= Zac due to the
scheduling variable appearing in a different order.

Γ fK f =


C(E(1)) f−1

...
CE(1)

C

 [L1, . . . , L f
]

≈


C(E(1)) f−1L1 0 0

...
. . .

CE(1)L1 . . . CE(1)L f−1 0
CL1 . . . CL f−1 CL f


(19)

The zeros appear if f is chosen big enough such that
φ f ,k ≈ 0. In the case that Ek is nilpotent the block
triangular matrix can be guaranteed because φ f ,k = 0.

Using the following relations:

CK f =
[
CL1, . . . , CL f

]
,

CL f =
[
CE(1)L f−1, . . . , CE(m)L f−1

]
,

(20)

and the estimate of CK f from the minimization problem
enables the construction of Γ fK f . Subsequently, Γ fK f Z
can be constructed which is by definition Γ f X. Now,
assuming both X and Γ f have full rank and f is big
enough to satisfy the assumption φ f ,k ≈ 0, the state
sequence can be estimated up to a similarity transform
using the Singular Value Decomposition (SVD):

Γ̂ fK f Z =
[
U U⊥

] [Σn 0
0 Σ

] [
V

V⊥

]
. (21)

Where Σn is the diagonal corresponding to the n largest
singular values and V corresponds to the row space of
those singular values. With this the estimate of the state
is given by:

X̂ = ΣnV (22)

With the state found (8) can be used to estimate the
unknown system matrices.

Note that this method suffers from the curse of dimen-
sionality. This refers to the fact that the numbers of
rows in Z grows exponentially with f . Recommenda-
tions have been made to overcome this problem, see
Section VII.

LPV-AC-PBSID Algorithm The algorithm can be
summarized as follows:

1. Build Z, Y and U using ((15)-(17)) to find CK f and
D.

2. Solve the minimization problem given in (18).

3. Use relations (20) and Z to construct Γ fK f Z.

4. Use SVD to find an estimate of X

5. With the state estimate the system matrices can be
found up to a similarity transform using (8)

vii. Combining anti-causal and causal

To combine both the causal and anti-causal descrip-
tion and create the Linear Parameter Varying Non-
Causal Predictor Based Subspace IDentification (LPV-
NC-PBSID) algorithm, the following stacked matrices
from the input, output and SV are made:

U =
[
up, . . . , uN− f+1

]
, (23)

Y =
[
yp, . . . , yN− f+1

]
, (24)

Zac =
[

N f
ac,p z̄ f

p, . . . , N f
ac,N− f+1z̄ f

N− f+1

]
, (25)

Zc =
[

Np
c,1z̄p

1 , . . . , Np
c,N−p− f+1z̄p

N−p− f+1

]
, (26)

where Np
c,k and N f

ac,k are the weighting matrices for the
causal and anti-causal part respectively. Note that the
causal algorithm uses the same definition for z̄p/ f

k . With
the stacked matrices defined the following minimization
problem can be solved

min
C,Kp ,D

||Y−
[
Cc Cac] [Kp

c 0
0 K f

ac

] [
Zc

Zac

]
− DU||2F.

(27)

The solution of this problem is an estimate of[
CcKp

c CacK f
ac D

]
with CcKp

c ∈ Rl×q̃, CacK f
ac ∈

Rl×q̃ and D ∈ Rl×r. This solution can be used to find
estimates of the causal and anti-causal states. Notice
how the causal part has a past window size p and the
anti-causal part has a future window size f because
their respective state estimations are either dependent
on past or future inputs/states.

LPV-NC-PBSID Algorithm The algorithm can be
summarized as follows:

1. Build the stacked matrices using ((23)-(26)).

11



III. SIMULATION STUDY

2. Solve the minimization problem given in (27) to
find

[
CcKp

c CacK f
ac D

]
.

3. Use relations (20), the causal equivalent from (van
Wingerden and Verhaegen, 2009), Zac and Zc to
construct Γ fK f Zac and ΓpKpZc.

4. Use SVD to find an estimate of Xac and Xc

5. With the state estimate the system matrices can be
found up to a similarity transform using (5)

III. Simulation study

In this section the open-loop LPV-NC-PBSID algorithm
derived in Appendix B, which is an open-loop version
of the algorithm in Section II, was used in the estima-
tion of a mass spring damper model with time-varying
stiffness to show its viability.

i. Model

For the simulation study a mass spring damper model
with time-varying stiffness was used. The simulation
has the same model, input and noise as used in Lud-
vig and Perreault (2012). It can be represented by the
following equation:

T(s) = H(s, t)−1θ(s)

T(s) = (Is2 + Bs + K(t))θ(s)

with H(s, t) the admittance model from Figure 1, I the
inertia equal to I = 0.13 kgm2, B the viscosity equal to
B = 2.2 N m s rad−1 and K(t) the time-varying stiffness
equal to K(t) = 100 + 50sin(2πt)N m rad−1. Because
the simulation of improper systems uses derivatives,
which is undesirable, it was done by simulating the
proper system seen in Figure 1. By using xankle and
Tmeasure as input and output an improper system is still
estimated.

This system was simulated in Simulink, Matlab 2016a,
using a fixed time step of 4× 10−4 s. The input xper is a
PseudoRandom Binary Sequence (PRBS) which is rate
limited to ±0.5 rad/s and has an amplitude of 0.03 rad.
Subsequently the input is filtered by an 8th order Bessel
filter with a cutoff frequency at 8Hz before being fed
into the system. This type of input is not only used in
Ludvig and Perreault (2012), but also in other time in-
variant and time variant joint impedance identification
studies (Kearney et al., 1997; Mirbagheri et al., 2000;
Ludvig et al., 2011). The disturbance from Figure 1 is

104 1
0.13s2+2.2s+K(t)

Disturbances

xper

+Ttrue

−

xankle

Tmeasure

Figure 1: The human connected in closed-loop with the machine,
represented by a stiff gain of 104

white noise filtered with a 3th order Bessel low-pass
filter with a cutoff frequency of 3Hz. This filtered noise
represents the voluntary torque the participant would
apply. The noise was scaled such that the signal to
noise ratio(SNR) would be 5dB. Where the SNR was
calculated using the root mean square of the signal and
noise, like this:

SNR = 20 log10


√

mean(T2
true)√

mean(Disturbance2)



ii. Estimation and Analysis

The system was simulated a 100 times for 30s to get
an estimate of the error bound, each simulation had a
newly generated noise and perturbation signal. Subse-
quently, the data was decimated from 2.5kHz to 100Hz.
For the estimation, the xankle and Tmeasure were used as
input and output respectively. The time-varying signal
sin(2πt) was used as SV. All 30s of data was used for
the estimation of the system. The algorithm assumed
that Ak,Ek,Bc

k and Bac
k were time-varying. A past and

future window of pc = fac = 2 and an order selection
of nc = 1 and nac = 2 gave the best results. The quality
of the estimation was quantified by looking at the Vari-
ance Accounted For (VAF). The VAF was calculated as
follows

VAF(Tmeasure, T̂) =

max
(

0,
(

1− var(Tmeasure − T̂)
var(Tmeasure)

))
× 100%

In this case the measured torque and the predicted
torque, T̂, were used as an example. Besides calculat-
ing the VAF, the parameters of the system were also
estimated.

12



III. SIMULATION STUDY

The parameters were estimated for 50 points along 1
period of the scheduling variable. At each point along
the SV the LTI state space model was calculated and
simulated with 1× 106 points of white noise. From this
input and output a frequency response function was
generated and a 2nd order transfer function was fitted
to the data using all frequencies up to 20Hz. From
this 2nd order transfer function the parameters were
extracted. This was done with the help of the inbuilt
Matlab functions tfestimate.m and tfest.m. For all the
parameters the range of the standard deviation is given
and in the case of the damping and inertia the mean
is given as well. How these Matlab commands were
applied can be seen in Appendix H.

iii. Results

The Figures 2 and 3 show the input and output signal
used for identification and the predicted output.
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Figure 2: Example of xankle used for identification

These input and outputs of every simulation were used
to predict the output. This prediction resulted in a
VAF(Ttrue, T̂), VAF(Tmeasure, T̂) and VAF(Tmeasure, Ttrue).
The result is shown in Table 1.

VAF(X, Y) (Tmeasure, Ttrue) (Tmeasure, T̂) (Ttrue, T̂)

LPV 68.4(1.45)% 68,2(1.52)% 99.1(0.67)%

Table 1: The average VAF with standard deviation comparing the
measured with true, measured with predicted and true
with predicted. It can be seen that the LPV-NC-PBSID
has great noise rejection capabilities.

Besides estimating the output torque, the parameters of
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The torque output

Estimate
Measurement
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Figure 3: Example of the measured torque output used for identifi-
cation, the predicted and true torque output

the model were also estimated. On average the 2nd or-
der system fitted on the found model had a 98.2%(0.53)
fit percentage. A plot showing the fit percentage and
standard deviation for each trial can be seen in Ap-
pendix C. Below in Figure 4 an example of two FRF
estimates is shown. These FRF’s are from the same
simulation but they made for different values of the SV.
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Example of FRF used for parameter extraction

Estimate K=100
True
Estimate K=150
True

Figure 4: Notice how the stiffness and inertia are fitted well but the
damping is underestimated

The result of the stiffness, damping and inertia estimate
can be seen in the Figures 5, 6, 7.

The damping and inertia estimates were also time-
varying even if their true parameters are not. The mean
and range of the standard deviation is given for each
estimate in Table 2.
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III. SIMULATION STUDY

Figure 5: The time-varying stiffness estimate of a 100 trials. It can
be seen that the mean almost follows the true stiffness and
that the true stiffness is within the standard deviation.

Mean Range std

Stiffness 97.97 N m rad−1 4.15-9.61N m rad−1

Damping 1.449 N m s rad−1 0.187-0.380N m s rad−1

Inertia 0.135 kgm2 0.0023-0.0048kgm2

Table 2: The mean and standard deviation of all the retrieved pa-
rameters

Lastly, an example is given of the prediction error in the
frequency domain, Tmeasure − T̂. This gives an idea if all
frequencies were equally weighted in the estimation of
the model and where the noise is most present.

iv. Discussion

The first results obtained from the simulation were
the VAFs shown in Table 1. From this table it can be
seen that the predicted torque accurately represents the
true torque and has roughly the same VAF with the
measured torque as the true torque. Together this indi-
cates the algorithm accurately estimated the underlying
model even with a 5dB SNR.

The second result obtained by the simulation was the pa-
rameter estimations. As can be seen in Figures 5, 6 and
7, the stiffness and inertia were accurately estimated
while the damping is biased. The most probable reason
why the damping is biased, is because the disturbance
is a coloured noise. The current system description,
(28) in Appendix B, is not able to properly deal with
coloured noise. This means that even though the bias

Figure 6: The time-varying damping estimate of a 100 trials. No-
tice how the damping estimate is time-varying even
though the true damping is not.

is only clearly present in the damping it could also
be in the stiffness and inertia estimates. This problem
can be solved by using the predictor form of the state
space description which was used in Section II and (van
Wingerden and Verhaegen, 2009) which is able to deal
with coloured noise.

Another reason why the damping could be biased is
because the frequencies needed for this estimation are
attenuated and therefore harder to distinguish from the
noise. Where a proper system would have a resonance
peak at its cutoff frequency, an improper system has an
anti-resonance valley at this frequency. The valley can
be seen in Figure 9 which appears to be an improper
system at low frequencies. This anti-resonance valley
causes the frequencies which give information about
the damping to be attenuated and harder to distinguish
from the noise. However, this explanation seems un-
likely; with the addition of noise one would expect the
valley to become less pronounced. This would lead to a
bias of the damping in such a way that there would be
more damping, not less.

What might be surprising is that the damping and iner-
tia were estimated as time-varying parameters as well.
The reason why this happens is because the simulated
system is a transfer function while the estimated model
is a state space system. In LTI systems switching be-
tween system description is not a problem, while it is
in the LPV case. For a more elaborated discussion on
this subject the reader is referred to (Tóth et al., 2012;
Tóth, 2007). In the case of this simulation the transform
between the LPV transfer function and LPV state space
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III. SIMULATION STUDY

Figure 7: The time-varying inertia estimate of a 100 trials. Notice
how the damping estimate is time-varying even though
the true damping is not.

system is determined analytically in Appendix G. This
derivation shows that the LPV transfer function can-
not be 100% accurately represented by the LPV state
space system. The discrepancy between these descrip-
tions also explains why all parameters are estimated
time-varying and could also explain part of the bias.

Another reason that the parameters vary over time is
because the combined causal anti-causal system is a 3th

order system. Looking at (6) it can be seen that it is
essentially yk = yc + yac, this is clearly shown in Ap-
pendix E, where the analytic solution of an LTI-NC state
space system to a transfer function is given. Adding
systems results in n = nc + nac. In order to illustrate
more clearly that summing lower order systems creates
a higher order system, an example with two first order
systems is shown below.

s− a
s− b

+
s− c
s− d

=
(s− a)(s− c)
(s− b)(s− d)

This also explains the choice for pc = fac = 2 as esti-
mation settings. Using these window sizes might seem
low for the estimation of a second order system because
p needs to be ≥ n. By using pc = fac = 2 actually a
p = 4 has been used which can accurately estimate a
3th order system.

In the introduction it is stated that the LPV-NC-PBSID
algoritm was developed to deal with improper systems.
One might be tempted to estimate a system from xper
to Tmeasure to solve this problem, but this will not help.
The system only becomes proper at a high frequency,
as can be seen in Figure 9. So using low frequencies for
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Figure 8: The prediction error in the frequency domain of a single
run.

xper will still result in an improper system. If one would
add high frequency content to xper to estimate a proper
system, the high frequency content would dominate
the output and thus drown out the time-varying low
frequency part. Simply put, an LTI method could be
used to correctly predict the output because the time
invariant high frequency content is dominant. Even if a
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Figure 9: The bode diagram of the system shown in Figure 1 from
xper to Tmeasure with K = 150 Nm/rad

proper input could be designed to estimate the system
from xper to Tmeasure the stiffness estimate would be
biased because the machine is not infinitely stiff. This
becomes clear when one looks at the transfer function
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of the bode plot shown in Figure 1.

P(s) =
104H(s)

1 + KH(s)
=

104(Is2 + Bs + K)
Is2 + Bs + K + 104 ,

P(0) =
104K

K + 104 =
K

K/104 + 1
.

Theoretically the machine would be infinitely stiff, this
would give the correct stiffness. However, in practise
it is not infinitely stiff and thus the estimated stiffness
will be biased. Therefore, xankle and Tmeasure were used
for the identification.

Using xankle and Tmeasure, one might be tempted to es-
timate the system from Tmeasure to xankle and estimate
a proper system in such a way. This approach is prob-
lematic because it introduces input noise. Input noise
biases the estimate of the system and is hard to deal
with. Since there already is a lot of noise present with
the estimation of joint impedance this is not recom-
mended.

In Figure 8 the prediction error in the frequency domain
can be seen. The error is present up to around 3Hz, as
was expected because 3Hz is the cut-off frequency of
the disturbance. The error is present there because the
model did not fit the noise.

Lastly, the model used in this simulation has a weak-
ness. The weakness is that the stiffness modulation
and the torque generated are represented as separate
entities, while they are related either as reflexive or
as visco-elastic properties of the muscle (Nichols and
Houk, 1976; Zhang and Rymer, 1997). In practise the
scheduling function would have to be retrieved from
the measurements. This means that the scheduling vari-
able is never available without noise. The search for the
right scheduling variable was not taken into account in
this simulation.

IV. Analysis of B1 ROBIN Data

In 2013 a little over a thousand experiments were con-
ducted, these were evenly split between 15 healthy el-
derly subjects. 129 of these experiments were called B1
Torque Control experiments. These experiments were
designed to elicit time-varying behaviour in the ankle
during a force task with position perturbations. How-
ever, the behaviour was not time-varying, as will be
shown in this section.

i. B1 Protocol

The B1 experiment was a force task experiment with a
position perturbation. The experiment was performed
by fifteen healthy elderly, aged 64.0(10.2) years, 8 male.
The participant needed to apply a torque with their
ankle following a chirp signal from 0.02-0.25Hz. These
experiments have a duration ranging from 45s for
the first 3 subjects to 90s for the other 12 subjects.
The torque range differs within subjects, but on aver-
age(standard deviation) it was 8.87(3.45)Nm Planarflex-
ion and 8.71(3.72)Nm Dorsiflexion, which was 25% of
their Maximum Voluntary Contraction (MVC).

Of the 129 B1 experiments, roughly half was done with
70° and the other half with 20° knee flexion, as can
be seen in Figure 10. The experiments were done at
two measurement moments, where the second measure-
ment was always three weeks after the first. During
the first measurement moment the participants did the
experiment twice but with different experimental su-
pervisors. The initial position of the motor was such
that the foot and lower leg would be at a 90° angle with
each other.

Figure 10: Measurement setup showing a person with either the
70° or 20° flexion of the knee. This figure is copied from
Sloot et al. (2015).

The torque that the participant applied was filtered
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with a 2nd order Butterworth filter with a cutoff fre-
quency of 1.25Hz and visualized. The applied torque
was displayed together with the torque trajectory the
participant needed to follow, in this case a chirp. This
process has been schematically represented in Figure
11. During the task the participants were perturbed
with a low-pass filtered multisine. The multisine con-
sisted of a crested sum of sines with frequencies from
1-15Hz in steps of 0.1Hz. The signal was filtered with
a second order low-pass filter with a damping ratio of
1
2

√
2 and a natural frequency of 10Hz. The perturbation

had an amplitude of ±0.015 rad and was applied by the
motor. The data was recorded with a sampling rate of
fs = 1024Hz.

Figure 11: Experimental Setup of the B1 experiment, notice how
the response is due to active compnents triggered by fol-
lowing the trajectory and passive components triggered
by the pertubation signal

ii. Analysis with LPV, LTI and FRF

To analyse the data three methods were used, the LPV-
NC-PBSID, LTI-NC-PBSID and an LTI-FRF method. The
VAF was used to asses the quality of each estimation. To
asses whether the results of the different methods var-
ied between each other, statistical tests were used. First
the Kolmogorov-Smirnov test was used to asses nor-
mality. Subsequently, the parametric or non-parametric
correlation and one way ANOVA were used, as well as
ad hoc tests that were needed.

For all methods the measured data from t = 5s until
t = 35s was used in case of the 45s experiments and the
data from t = 10s until t = 70s was used in the case
of the 90s experiments. From all measured signals the
mean was removed.

For the LPV-NC-PBSID and LTI-NC-PBSID the mea-

sured position and the measured torque were used
as input and output respectively. Both signals were
decimated from 1024Hz to 128Hz. Subsequently, both
signals were bandpass filtered with a 6th order Butter-
worth filter with cutoff frequencies at 2Hz and 40Hz. In
Figure 11 it can also be seen how the measured torque
is partly active and partly passive the bandpass filter
was used to separate these responses. For the LPV
method the measured torque was low-pass filtered (2nd

order Butterworth, 0.25Hz) and used as the SV. This
filtering approach was also applied in Van Eesbeek et al.
(2013) and aims to separate voluntary and involuntary
torques. For both the LPV-NC and LTI-NC a window
size of pc = fac = 2 was used and nc = nac = 2, fur-
thermore both algorithms assumed D = 0. In the LPV
case, it was assumed that Ak, Ek, Bc

k and Bac
k were all

time-varying.

The LTI-FRF was made by estimating a Frequency Re-
sponse Function (FRF) using the unfiltered raw mea-
sured torque and the measured position as input and
output respectively. The FRF from 1Hz-15Hz with
∆0.1Hz was used to fit a second order transfer func-
tion using the Matlab function tfest.m. The torque was
used as input because Matlab is not able to simulate im-
proper transfer functions. The position was estimated
from the torque and the VAF was calculated accord-
ingly. The FRF was calculated using the tfestimate.m
function of Matlab. How this was implemented and
what settings were used can be seen in Appendix H.

iii. Results

In Figures 12, 13 the input, output and predicted output
are shown.

The VAF was calculated for each experiment and
method; the results are displayed in Figure 14. The
Kologorov-Smirnov test was significant for the LPV re-
sults (D(129)= 1, p<0.05), significant for LTI-NC (D(129)
= 1, p<0.05) and significant for the LTI-FRF (D(129) =
0.99, p<0.05). Because all the sets were non-normal,
a Kruskal-Wallis test was used to asses if there is any
differences between the groups. The Kruskal-Wallis
test showed that there was no significant differences
between groups (H(2.08), p=0.35) therefore no post hoc
tests were conducted.

A Pearson’s correlation test was used because it does
not assume normality and VAF is on a rational scale.
There was a strong correlation found between LPV-NC
and LTI-NC of (r(127) = 0.995, p<0.05), as well as be-
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Figure 12: Example of an input, named xankle, used for identifica-
tion of the B1 experiment
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Figure 13: Example of the measured and bandpass filtered output
torque used for identification and the prediction

tween LPV-NC and LTI-FRF (r(127) = 0.869, p<0.05), and
between LTI-NC and LTI-FRF (r(127) = 0.8714, p<0.05).

In Figure 15 an example of the second order fit to the
FRF is shown, using the raw input and output data.

Figure 16 shows an example of the prediction error in
the frequency domain. This is the prediction error of
the first trial of the first subject. This trial had a VAF of
83.2%.

Graphs displaying the VAF of all methods for each trial
are shown in Appendix F. Besides the healthy elderly
analysed in this section, Appendix F also contains simi-
lar graphs for elderly with a stroke. The elderly with a
stroke are split into two groups: CVA and stroke. Stroke
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VAF boxplot of 129 B1 experiments of healthy elderly

Figure 14: Box plot of the VAF for each method. The medians of
each box were LPV-NC 74%, LTI-NC 73% and LTI-FRF
73%

and CVA are groups of different elderly who all had
the same condition, stroke. Besides graphs of the B1
experiment, the appendix also contains the same graphs
for all three groups of the C1 position task experiment.
The C1 experiment is similar to the B1 experiment but
with position trajectory and torque perturbations. The
results of the groups Stroke and CVA as well as the C1
experiments are not analysed in this report.

iv. Discussion

One of the first observations is that the whiskers of
the boxplot from Figure 14 cover a large range. The
reason why the VAF has such a large variance is mostly
likely because one setting was used for all experiments.
The window size, order of the system, filtering and
amount of the data used for identification: all these
variables can have a big impact on the variance of the
VAF. Another possibility is that, since all experiments
were treated the same, possible faulty data was also
used for identification.

To show the influence of the time-varying behaviour,
both the LTI and LPV state space method had the same
identification settings (window size, order, etc.). The
LTI-FRF method was added to determine if any dif-
ferences between LTI- and LPV-NC-PBSID would be
due to an LTI method or because of the PBSID algo-
rithm. The results show that the VAFs of all methods
differ very little from each other and are strongly corre-
lated. It can therefore be concluded that the experiment
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Figure 15: An example of an FRF with the LTI second order fit
from the second subject, during the second measurement
moment with 70° flexion. This 2nd order fit had a VAF
of 94% with xankle. The area between 1-15Hz is marked

did not elicit significant time-varying behaviour. This
conclusion leads to following advice: in any joint time-
varying identification experiment the data needs to be
estimated with both the time-varying and time invari-
ant methods to assure the researcher(s) and reader(s)
that there is actually time-varying behaviour present.
This is needed because a time-varying method will also
accurately estimate an LTI system.

In Figure 15 the FRF of the raw data can be seen, and
this example particular had a very good fit. It can
be seen that the fit is only accurate in the range of
2-15Hz. The fit and FRF separate after 15Hz, which
is the frequency where the disturbance signal had no
power any more. In the low frequencies, <1Hz, there
is a big drop in the FRF. This drop is there because
the measured torque had power at those frequencies
but the disturbance did not. The output, Tmeasure had
power at frequencies <1Hz due to satisficing and due
to the SV. Satisficing occurs because people search for a
solution that is good enough, not the optimal solution
(SIMON, 1976). They follow the trajectory good enough
and correct only when they get too far from the de-
sired trajectory and this introduces low frequency noise.
Satisficing was also the reason Tmeasure and xankle were
bandpass filtered starting from 2Hz for the state space
methods. The SV elicits torques between 0.02-0.25Hz,
which are frequencies not present in the disturbance
signal. This explains part of the drop in the FRF. Lastly,
from Figure 15 it can be seen that the stiffness is most
dominant at frequencies <5Hz, where there were few
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Figure 16: The prediction error in the frequency domain of the first
run of the first subject.

excited frequencies.

The reason the B1 experiment does not elicit any time-
varying behaviour is most likely due to a faulty B1
protocol. This has been deduced as follows. It has long
been known that the ankle demonstrates time-varying
behaviour using only 15% MVC (Kirsch and Kearney,
1997), therefore the problem cannot be with the ankle.
The algorithm works, as was shown in the simulation
section, therefore the problem is not with the algorithm.
What remains, is that the problem must lie with the
protocol. The B1 protocol consisted of an experimental
setup, a task and instruction, and a perturbation signal.
The experimental setup has also been used in other
studies, for example Sloot et al. (2015). The task seems
clear and also appears to be followed fairly well by the
subjects, but that does not mean it is optimal in eliciting
time-varying behaviour. Lastly the perturbation signal
remains and is probably the biggest cause as will be
explained in the next paragraph.

The most probable reason why time-varying behaviour
was not observed is because this behaviour mainly oc-
curs at low frequencies, <5Hz, which is dominated by
stiffness. The used disturbance signal had little power
available at low frequencies. Besides having little power
at low frequencies the output behaviour is dominated
by the inertia, which adds power to the higher frequen-
cies. The reason the inertia is dominant is because an
improper system is identified, see equation (1). The
B1 experiment was designed such that the the volun-
tary and involuntary torque were separated by putting
them in 0.02-0.25Hz and 1-15Hz frequency ranges re-
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spectively. The problem with this approach is that by
separating those torques low frequency power needs
to be sacrificed. For example, in the ensemble based
approaches of (Kirsch and Kearney, 1997; Ludvig et al.,
2011; Bennett et al., 1992) a PRBS was used for the time-
varying identification. The PRBS has frequency content
below 1Hz. Another difference in those approaches is
that they treated the voluntary torque as noise. In the
study of Van Eesbeek et al. (2013) a perturbation signal
from 2-20Hz was used in combination with the LPV-
PBSID algorithm to identify a wrist. In the study the
same filtering approach to find the SV and involuntary
output was used. The study concluded that it accurately
found time-varying behaviour. The findings from this
section cast doubts on their result. However, a wrist
was identified instead of an ankle which could explain
the differences. If the study would have performed a
verification with an LTI method this doubt could be put
to rest.

In Appendix D a simulation study is described of the
B1 experiment using the input and scheduling variable
used in the B1 experiment. This simulation can be
seen as a B1 experiment with a known time-varying
system where the participants perfectly followed the
trajectory. Analysing the B1 simulation resulted in the
same problems as the analysis of the B1 experiment.
This confirms that the problem of the B1 experiment
lies with the perturbation signal.

From the previously mentioned studies two experimen-
tal paradigms for time-varying identification can be
distinguished. One paradigm in which the frequency
content of the voluntary torque is separated from per-
turbations and one in which they are mixed. The ad-
vantage of the separated approach is that it has to deal
with less noise due to voluntary actions, but it lacks
power at low frequencies. The mixed approach has to
deal with more noise, but has power in low frequencies.
The problem when using the mixed approach for the
LPV-NC algorithm is that very noisy data is used. Es-
timating with noisy data makes it hard to determine
whether the correct underlying model is found. As can
be seen in table 1, on average a VAF of around 70% was
obtained. Is this result trustworthy enough? Probably
not, in which case extra measures are needed to assure
validity of the model.

In Figure 16 the prediction error in the frequency do-
main can be seen. The error seems mainly present in the
low frequency ranges. This could be interpreted in two
ways. Firstly, the system is estimated well but it will
not fit the low frequency noise. Therefore, the error is

mainly in the low frequencies as was the case in the sim-
ulation study. Secondly, it could be that the error is not
equally distributed over all excited frequencies. There-
fore, not all frequencies were weighted equally in the
estimation. The error is biggest in the frequencies that
were given the lowest weight. Since the time-varying
behaviour is mainly present in the low frequency range
this could mean that: pre-filtering to give equal weights
to all frequencies could still result in the identification
of an LPV system which performs better than an LTI
system. These different interpretations of the error have
been investigated in Appendix D and it was showed
that the first interpretation of the prediction error is
correct.

Lastly, humans will have voluntary torque in frequen-
cies that are not present in the disturbance signal or the
SV due to satisficing. Both the mixed and separate ap-
proach do not deal with the satisficing problem, which
is a big source of noise. To circumvent this problem
one could design an experiment in which satisficing
is reduced. The filtering approach for finding the SV
can help with experimental design where the specific
trajectory of the SV is not known but it is known that it
is a slowly varying signal. Another way to deal with the
satisficing problem might be to design a disturbance sig-
nal with a bandstop where the voluntary torque should
be. This bandstop could then be closer to the satisficing
frequency such that those overlap but there is still low
frequency content for estimating the stiffness. However,
even if the satisficing problem is reduced, you still have
the problem that the voluntary torque contribution is in
a low frequency range and it cannot be shifted to any
desired frequency range.

V. Wrist data analysis

In this section an experiment with a torque task and
position perturbations of the wrist is analysed. It was
performed and analysed in a similar way as the B1
ankle experiment.

i. Wrist protocol

The wrist experiment was a torque task with a position
perturbation. The experiment was performed by two
healthy subjects: 1 male, 30 year and 1 female, 31 years.
The participants needed to apply a torque with their
wrist following a sinusoidal signal of 0.05Hz. These
experiments have a duration of 50s. During the first
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and last 5s of the experiment, no perturbations were
applied to the subjects. The subjects were requested to
modulate their flexion torque between 5− 20% of their
Maximum Voluntary Torque (MVT). Each participant
performed the task 5 times on the experimental setup
depicted in Figure 17.

Figure 17: Picture and caption from Cavallo (2017), showing the
experimental setup. 1: screen, showing the desired
torque trajectory in blue, allowing for an error of around
±2%, and the applied torque in red. 2: handle of the
manipulator. 3: armrest around the forearm of the
subject.

The torque that the participants applied was low-pass
filtered with a cutoff of 0.6Hz and visualized on the
screen as seen in Figure 17. The applied torque was
displayed together with the torque trajectory the partic-
ipant needed to follow. During the task the participants
were perturbed with a low-pass filtered random phase
multisine. The random phase multisine consists of a
sum of sines with frequencies from 0.1-19.3Hz in steps
of 0.8Hz. The signal was filtered with a second order
low-pass filter which was constant up to 6Hz. The per-
turbation had an amplitude of ±0.02 rad which was
applied by the motor and all data was recorded with a
sampling rate of fs = 2500Hz.

ii. Analysis with LPV, LTI and FRF

In order to analyse the data three methods were used:
the LPV-NC-PBSID, LTI-NC-PBSID and an LTI-FRF
method. The first trial of each subject was used to
estimate a model which was used to estimate the out-
put of all the trials. The VAF was used to assess the
quality of each estimation. For all methods the mea-
sured data from t = 5s until t = 45s was used and from
all measured signals the mean was removed.

For the LPV-NC-PBSID and LTI-NC-PBSID the mea-
sured position and the measured torque were used
as input and output respectively. Both signals were
decimated from 2500Hz to 100Hz. Subsequently, both
signals were bandpass filtered with a 6th order Butter-
worth filter with cutoff frequencies at 2Hz and 20Hz,
respectively. For the LPV method the measured torque
was low-pass filtered (2nd order Butterworth, 0.1Hz)
and used as the SV. For both the LPV-NC and LTI-NC a
window size of pc = fac = 2 was used and nc = nac = 2,
also both algorithms assumed D = 0. In the LPV case,
it was assumed that Ak, Ek, Bc

k and Bac
k were all time-

varying.

The LTI-FRF was made by first estimating an FRF using
the unfiltered raw measured torque and the measured
position as input and output respectively. The torque
was used as input because Matlab is not able to sim-
ulate improper transfer functions. From the torque,
the position was estimated and the VAF was calcu-
lated accordingly. This FRF was calculated with the use
of the tfestimate.m function of Matlab. The FRF from
0.1Hz-19.3Hz with ∆0.8Hz was used to fit a second or-
der transfer function using the Matlab function tfest.m.
How this was implemented with specific settings can
be seen in Appendix H.

iii. Results

In Tables 3 and 4 the VAF of each estimation for each
participant is shown. Along side the VAFs, the mean
and standard deviation of each method is given as well.
In the tables LPV-NC-PBSID and LTI-NC-PBSID are
short handed to LPV and LTI.

The VAF of each method are shown using different
trials as initial trial to estimate a model in Appendix I.
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T1 T2 T3 T4 T5 Mean(Std)

LPV 86% 87% 87% 85% 84% 86(1)%
LTI 94% 94% 96% 96% 96% 95(1)%
FRF 76% 77% 83% 78% 80% 79(3)%

Table 3: Participant 1

T1 T2 T3 T4 T5 Mean(Std)

LPV 94% 96% 96% 95% 95% 95(1)%
LTI 98% 96% 96% 98% 98% 97(1)%
FRF 65% 30% 35% 66% 76% 54(21)%

Table 4: The VAF values of participant 2 using her first trial to
build a model and estimate the other trials. T1 is the first
trial, T2 the second, etc.

iv. Discussion

From Tables 3 and 4 it can be seen that the LTI-NC-
PBSID method performed best and could accurately
predict the output for both participants. In Appendix I
the same conclusion can be drawn if other trials were
used. The LPV-NC-PBSID also performed well but
overall a little less then the LTI equivalent. Suprisingly
enough the FRF method performed a lot weaker than
the other methods. This could be due to the fact that
a proper transfer function was estimated which used
input noise. From these results it can be concluded
that no significant time-varying behaviour is elicited by
the experimental protocol. The reasons for not eliciting
time-varying behaviour are the same as described in the
discussion of Section IV concerning the ankle. Mainly a
perturbation signal which does not have enough power
at the low frequencies and an experimental setting in
which the time-invariant inertia is dominant.

With the addition of this experiment it can now be con-
clusively said that the experiment in Van Eesbeek et al.
(2013) did not elicit time-varying behaviour. Therefore
the results presented in the paper are misleading but
not necessarily false. In Van Eesbeek et al. (2013) the
identification using the causal LPV-PBSID resulted in
a VAF of 91(2.6)% which is in the range of results ob-
tained by the LPV-NC-PBSID as can be seen in Tables 3
and 4, and Appendix I.

Because a time-varying model is estimated, time-
varying parameters can also be extracted. In Van Ees-
beek et al. (2013) the estimated stiffness displays time-
varying behaviour while the inertia does much less so.
A reason why the LTI method can accurately estimate

the output is because the inertia is the dominant com-
ponent, as can be seen from equation (1). Even if the
stiffness is time-varying, an LTI system can describe
much of the behaviour because the inertia is dominant.
A solution would be to do a position task with torque
perturbations such that stiffness would be the dominant
component.

These results also show the importance of using linear
methods to estimate supposed time-varying systems
because time-varying systems will fit on time invariant
ones.

VI. Discussion LPV as identification
method

Some studies like Ludvig and Perreault (2014) show
that the stiffness displays a more complex behaviour
than the sinusoidal varying position and torque during
voluntary movement. In the discussion of the simula-
tion study in Section III it was mentioned that the SV is
not always perfectly available. These arguments could
lead one to think that: it is impossible to find the right
SV for joint impedance and therefore LPV methods can-
not be used. This idea sells LPV methods short and
multiple arguments will be presented why.

Firstly, for LPV state space systems it is more accurate
to think of linear varying models instead of parameters.
This is already hinted at by the fact that the system
description in equation (5) has m local models. In fact,
the LPV state space system is a linear weighted com-
bination of different local models where the weights
can change in accordance to the SV. Because models
are varied instead of parameters, the parameters can
change along a different trajectory than the SV. This can
be seen from the estimated damping and inertia shown
in the results of Section III.

Another advantage of using a state space model is that
similarity transforms exist which might be able to han-
dle an altered version of the scheduling variable and
still accurately reproduce the output behaviour.

Another possibility is to add more SVs to give the al-
gorithm more freedom to fit the model. However, this
approach is not recommended because the SVs will lose
their physical interpretation and it can cause overfitting.

Lastly, a scaled version of the SV can always be used
because the SV is used to give relative weight to local
models. Because of these reasons the filtering approach
to find the SV is very powerful and circumvents the
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problem of finding the ‘true’ scheduling variable. These
statements about the SV can also easily be checked in
a simulation using either the LPV-NC-PBSID or the
LPV-PBSID.

VII. Recommendations

Firstly, implementing the algorithm derived in Section
II would allow for the identification of closed-loop sys-
tems which is important for joint impedance identifica-
tion. Closed-loop identification was one of the reasons
the PBSID algorithm was chosen in the first place.

An improvement of the algorithm can be done by
adding the kernel method (van Wingerden and Verhae-
gen, 2009). The LPV-NC-PBSID algorithm, like many
subspace algorithms, suffers from the curse of dimen-
sionality. The curse of dimensionality refers to the fact
that the number of rows in Z of equation (17) increases
exponentially with the size of the window, f . This can
be seen from the equation of the number of rows in Z:

rows = (r + l)
f

∑
j=1

mj.

The kernel is a dimension reduction which contains
some information of the system. For example, the dot
product of a vector with itself is its kernel. This re-
duces the dimension of the pieces needed to calculate
the solution. The advantage of this improvement is
that it reduces the computational load of the algorithm
and allows for handling bigger systems and more data.
The disadvantage is that the solution becomes ill con-
ditioned, but this can be solved with regularization as
was done in van Wingerden and Verhaegen (2009).

The last algorithm related recommendation is to expand
the algorithm to include Hammerstein systems (a sys-
tem with a static non-linear component followed by a
linear component). The response of the joint to a per-
turbation is partly due to visco-elastic properties of the
tissues around the joint and partly due to the reflexes
that are triggered by the disturbance. The reflexive
component can be modelled by a Hammerstein system
as done in (Mirbagheri et al., 2000; Jalaleddini et al.,
2016). These studies use a parallel cascade description
to model the joint, the non-causal system description
lends itself very well for this description. The Hammer-
stein system could even be made LPV to incorporate
different reflexive behaviour.

Next two experimental recommendations are made.

Firstly, it is recommended to experiment with the dif-
ferent experimental paradigms (mixed vs. separated)
to see what will elicit the most time-varying behaviour,
handles satisficing the best and is easiest to implement.
This could for example be done by carrying out a simu-
lation study to find the limitations of using the filtering
approach to find the correct SV. Secondly, it is recom-
mended to design an experiment with a position task
and force perturbations. In such an experiment an ad-
mittance model, in which stiffness is dominant, can
be estimated and the LPV-PBSID algorithm from van
Wingerden and Verhaegen (2009) can be used. The ad-
vantage of this algorithm is that it is already usable for
closed-loop systems and uses the kernel method.

Lastly, it is recommended to identify presumed time-
varying data with one and preferably multiple LTI meth-
ods to make sure it is time-varying.

VIII. Conclusion

The theoretical framework for a closed-loop linear pa-
rameter varying non-causal predictor based subspace
identification (LPV-NC-PBSID) was developed. The
algorithm’s open-loop version has successfully been im-
plemented and used to identify a time-varying system
with a low SNR.

It was shown that both the ankle B1 torque control ex-
periments performed in 2013 and similarly recorded
data on the wrist did not elicit significant time-varying
behaviour. This was most likely due to a poorly de-
signed perturbation signal which had little power <5Hz
where the time-varying behaviour is present. Thus
more work is needed to find the correct experimental
paradigm for LPV techniques.

Lastly, the results from this report can cast reasonable
doubt on the conclusions drawn in Van Eesbeek et al.
(2013). To prevent these doubts in the future it is
strongly recommended to always identify supposed
time-varying data with a time-invariant method.
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A. Closed-loop LPV-NC-PBSID derivation

Full written derivations

In this appendix the computations will be shown such that the definitions of φp,k, Kp, Np
k and Pp|k for the anti-causal

system can easily be found.

The first step is to expand xk = Ekxk+1 + B̆zk such that a structure becomes visible.

x1 = E1x2 + B̆1z1 = E1E2x3 + E1B̆2z2 + B̆1z1 = E1E2E3x4 + E1E2B̆3z3 + E1B̆2z2 + B̆1z1

x2 = E2x3 + B̆2z2 = E2E3x4 + E2B̆3z3 + B̆2z2

x3 = E3x4 + B̆3z3

Notice how the state is defined with future inputs. When only looking at x1 and generalize it to xk a pattern starts
to emerge this pattern can be described as

xk = Ekxk+1 + B̆kzk

= EkEk+1xk+2 + Ek B̆k+1zk+1 + B̆kzk

...

= Ek . . . Ek+p−1xk+p + Ek . . . Ek+p−2B̆k+p−1zk+p−1 + Ek . . . Ek+p−3B̆k+p−2zk+p−2 + . . . + B̆kzk

From this example we can now define φp,k as can be seen above

φp,k = EkEk+1 . . . Ek+p−1

To find Kp, Np
k and Pp|k a specific example will be written out more. This will show how we can factorize the

unknown state matrices from the known time varying behaviour. Assume m = 2, p = 3, k = 1

x1 = E1x2 + B̆1z1

= (E(1) + E(2)µ
(2)
1 )x2 + (B̆(1) + B̆(2)µ

(2)
1 )z1

= (E(1) + E(2)µ
(2)
1 )(E(1) + E(2)µ

(2)
2 )x3 + (E(1) + E(2)µ

(2)
1 )(B(1) + B(2)µ

(2)
2 )z2 + (B(1) + B(2)µ

(2)
1 )z1

= (E(1) + E(2)µ
(2)
1 )(E(1) + E(2)µ

(2)
2 )(E(1) + E(2)µ

(2)
3 )x4 + . . .

. . . (E(1) + E(2)µ
(2)
1 )(E(1) + E(2)µ

(2)
2 )(B(1) + B(2)µ

(2)
3 )z3 + . . .

. . . (E(1) + E(2)µ
(2)
1 )(B(1) + B(2)µ

(2)
2 )z2 + (B(1) + B(2)µ

(2)
1 )z1

Now we substitute φ3,1 to increase the readability.

x1 = φ3,1x4 + ((E(1))2 + E(1)E(2)µ
(2)
2 + E(2)E(1)µ

(2)
1 + (E(2))2µ

(2)
1 µ

(2)
2 )(B(1) + B(2)µ

(2)
2 )z3 + . . .

. . . (E(1) + E(2)µ
(2)
1 )(B(1) + B(2)µ

(2)
2 )z2 + (B(1) + B(2)µ

(2)
1 )z1

Next we define

L1 =
[

B̆(1) B̆(2)
]

L2 =
[

E(1)B̆(1) E(1)B̆(2) E(2)B̆(1) E(2)B̆(2)
]

=
[

E(1)L1 E(2)L1

]
L3 =

[
(E(1))2L1 E(1)E(2)L1 E(2)E(1)L1 (E(2))2L1

]
=
[

E(1)L2 E(2)L2

]
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Or more generally we can define

Lj =
[

E(1)Lj−1, . . . , E(m)Lj−1

]
,

with,

L1 =
[

B̆(1), . . . , B̆(m)
]

With Lj defined we can separate the time varying behaviour from the unknown state matrices.

x1 = φ3,1x4 + L3



1
µ
(2)
3

µ
(2)
2

µ
(2)
2 µ

(2)
3

µ
(2)
1

µ
(2)
1 µ

(2)
3

µ
(2)
1 µ

(2)
2

µ
(2)
1 µ

(2)
2 µ

(2)
3


⊗ Ir+lz3 + L2


1

µ
(2)
2

µ
(2)
1

µ
(2)
1 µ

(2)
2

⊗ Ir+lz2 + L1

[
1

µ
(2)
1

]
⊗ Ir+lz1

x1 = φ3,1x4 + L3(µ1 ⊗ µ2 ⊗ µ3 ⊗ Ir+l)z3 + L2(µ1 ⊗ µ2 ⊗ Ir+l)z2 + L1(µ1 ⊗ Ir+l)z1

Now we can see how the time varying behaviour is build up, so we can define Pj|k

Pj|k = µk ⊗ . . .⊗ µk+j−1 ⊗ Ir+l

With these definitions x1 simplifies to

x1 = φ3,1x4 + L3P3|1z3 + L2P2|1z2 + L1P1|1z1

= φ3,1x4 + L1P1|1z1 + L2P2|1z2 + L3P3|1z3

= φ3,1x4 +
[
L1P1|1 L2P2|1 L3P3|1

] z1
z2
z3


= φ3,1x4 +

[
L1 L2 L3

] P1|1 0 0
0 P2|1 0
0 0 P3|1

z1
z2
z3



And lastly we define Kp and Np
k as

Kp =
[
L1, . . . , Lp

]
, Np

k =


P1|k 0

P2|k
. . .

0 Pp|k


such that we find a general definition for x1 and xk

x1 = φ3,1x4 +K3N3
1 z̄3

1

xk = φp,kxk+p +KpNp
k z̄p

k
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B. Open-loop LPV-NC-PBSID derivation

Derivation of the LPV-AC-PBSID

To describe the improper systems the following system description is used taken from (Verhaegen, 1996).

xc
k+1 = Akxc

k + Bc
kuk (Causal)

Ekxac
k+1 = xac

k − Bac
k uk (Anti-Causal)

yk =
[
Cc Cac] [ xc

k
xac

k

]
+ Duk + ek

(28)

where xc
k ∈ Rnc, xac

k ∈ Rnac, uk ∈ Rr, ek ∈ Rl and yk ∈ Rl are the states, input, white noise and output. The
matrices Ak ∈ Rnc×nc, Ek ∈ Rnac×nac, Bc

k ∈ Rnc×r, Bac
k ∈ Rnac×r, Cc ∈ Rl×nc , Cac ∈ Rl×nac and D ∈ Rl×r are the

system, input, output and feed through matrices. The time-varying matrices are dependent in an affine way with m
local models.

Ek =
m

∑
i=1

µ
(i)
k E(i)

µk =
[
1 µ

(2)
k . . . µ

(m)
k

]T

In this section only the derivation of the anti-causal part will be shown, closely following the steps made in (van
Wingerden and Verhaegen, 2009). The derivation of the causal part is not shown because is follows very similar
steps to the anti-causal part and is already done in (van Wingerden and Verhaegen, 2009). From now on only the
anti-causal part will be looked at and the "ac" script will be dropped for clarity, so n = nac and xk = xac

k .

The anti-causal part can be rewritten in the following way.

Ek+1xk+1 = xk − Bkuk

⇒ xk = Ek+1xk+1 + Bkuk

yk = Cxk + Duk + ek

(29)

It is important to know that the matrix Ek is possibly singular and in some cases nilpotent. A nilpotent matrix has
all eigenvalues = 0 and Eh

k = 0 were h is an integer which is h ≤ n, the order of the matrix.

Assumptions and notations

First the transition matrix is defined, which is slightly different from the one used in the original LPV-PBSID.

φ f ,k = Ek+1Ek+2 . . . Ek+ f (30)

We define a future window f and the following stacked input vector

ū f
k =

 uk
...

uk+ f−1


We assume that the state sequence

X =
[
xk, . . . , xN− f

]
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is full rank. Notice how the anti-causal system sequence is again slightly different from the one used in the causal
estimate of the LPV-PBSID. The matrix:

Γ f =


C(E(1)) f−1

...
CE(1)

C

 (31)

is the extended observability matrix of the first local model and has full rank.

Factorization

Here we will define the factorization of the time-varying extended controllability matrix, K̄ f
k , in the unknown state

matrices and the know scheduling sequence.

Define K f : We start by defining K f , the extended controllability. This matrix can be seen as the time-invariant
controllability matrix of the LPV system or as the matrix containing all used combinations of affine matrices. We
define the matrix with all possible combinations

Lj =
[

E(1)Lj−1, . . . , E(m)Lj−1

]
,

with

L1 =
[

B(1), . . . , B(m)
]

and Lj ∈ Rn×rmj
.

With these variables the extended controllability matrix can be defined

K f =
[
L1, . . . , L f

]
, ∈ Rn×q̃

with q̃ = r ∑
f
j=1 mj. Notice how K f is build op from 1 to f instead of f to 1 as was in the causal case.

Define Pf |k: Next we define the known time-varying part, this gives weight to the combinations of state matrices.

Pf |k = µk+1 ⊗ µk+2 ⊗ . . .⊗ µk+ f−1(⊗µk+ f−1 ⊗ Iinputs)

P1|k = µk ⊗ Iinputs
(32)

with Pf |k ∈ Rm f r×r

Define N f
k : Now we can define the matrix which gives the correct weigths to the different combinations made in

K f

N f
k =


P1|k 0

P2|k
. . .

0 Pf |k


with N f

k ∈ Rq̃× f r such that.

K̄ f
k = K f N f

k
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B. OPEN-LOOP LPV-NC-PBSID DERIVATION

Proof The proof can be found in the Appendix. It will show the computations that will lead to these results.

Open-loop identification

Now we can do an open-loop identification of the system, the first objective is to reconstruct the state xk:

xk = φ f ,kxk+ f +K f N f
k ū f

k

if f is chosen big enough such that φ f ,k ≈ 0 or in the case of the nilpotent matrix we can guarantee φ f ,k = 0 given
f ≥ h. Now we have a definition which approximates the state

xk ≈ K f N f
k ū f

k (33)

In the case of a nilpotent Ek we can guarantee xk = K f N f
k ū f

k . With a definition of the state the input-output
behaviour can be approximated.

yk ≈ CK f N f
k ū f

k + Duk + ek (34)

Now we define the stacked matrices

U =
[
u1, . . . , uN− f+1

]
, (35)

Y =
[
y1, . . . , yN− f+1

]
, (36)

Z =
[

N f
1 ū f

1 , . . . , N f
N− f+1ū f

N− f+1

]
, (37)

Notice how Y starts at the first sample and ends at yN− f+1, this is because f future values of the input are required
to estimate the output. If [ZT , UT ]T has full row rank, the matrices CK f and D can be estimated by solving the
following minimization problem

min
C,K f ,D

||Y− CK f Z− DU||2F (38)

Observability matrix times controllability matrix

Now we can construct the approximation of the product of the extended observability matrix and controllability
matrix. Because of the slightly different notations this will become a lower-block triangular matrix instead of an
upper-block triangular in the causal case. This is important because it will provide the possibility to combine the
product of the controllability and extended observability matrix in one matrix for the causal and anti-causal case.
Unfortunately this is only possible in the LTI case because then Zc = Zac. The extended observability matrix times
the controllability matrix looks like.

Γ fK f =


C(E(1)) f−1

...
CE(1)

C

 [L1, . . . , L f
]

≈


C(E(1)) f−1L1 0 0

...
. . .

CE(1)L1 . . . CE(1)L f−1 0
CL1 . . . CL f−1 CL f


(39)
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B. OPEN-LOOP LPV-NC-PBSID DERIVATION

The zeros appear if we chose f big enough such that φ f ,k ≈ 0 and in the case that Ek is nilpotent we can guarantee
this block triangular matrix.

Using the following relations

CK f =
[
CL1, . . . , CL f

]
, (40)

CL f =
[
CE(1)L f−1, . . . , CE(m)L f−1

]
(41)

and the estimate of CK f from the minimization problem we can construct Γ fK f . With this we can construct
Γ fK f Z which is by definition Γ f X. Now assuming both X and Γ f have full rank and f is big enough to satisfy our
assumption φ f ,k ≈ 0. We can estimate the state sequence using the Singular Value Decomposition (SVD).

Γ̂ fK f Z =
[
U U⊥

] [Σn 0
0 Σ

] [
V

V⊥

]
(42)

where Σn is the diagonal corresponding to the n largest singular values and V corresponds to the row space of
those singular values. With this the estimate of the state is given by:

X̂ = ΣnV (43)

With the state found (28) can be used to estimate the unknown system matrices.

LPV-AC-PBSID Algorithm The algorithm can be summarized to the following steps:

1. Build Z, Y and U using ((35)-(37)).

2. Solve the minimization problem given in (38).

3. Use relations (40)-(41) and Z to construct Γ fK f Z.

4. Use SVD to find an estimate of X

5. With the state estimate we can find the system matrices using (29)

Combining both approaches the open-loop LPV-NC-PBSID

Combining both algorithms leads to solving the following minimization problem.

min
C,K f ,D

||Y−
[
Cc Cac] [K f

c 0
0 K f

ac

] [
Zc

Zac

]
− DU||2F (44)

We finally find
[
CcK f

c CacK f
ac D

]
Which can be used in the algorithm described above to find the states of the

causal and anti-causal system and estimate their system matrices.
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C. Simulation Study
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D. SIMULATION AND ERROR ANALYSIS B1 DATA

D. Simulation and Error analysis B1 data

In this appendix the simulation of Section III is adapted to mimic the B1 experiment. This is done to gain
more insight in where the problem lies with the B1 experiment. Besides simulating the system some data of the
experiment is pre filtered to compensate for errors in the frequency domain. It will be shown that the simulation
results support the conclusions drawn in the discussion of the B1 data section and that pre filtering to compensate
for errors in the frequency domain will decrease the quality of the estimate for both the LPV and LTI method.

Simulating the B1 experiment

Below the simulation used to test the LPV-NC-PBSID algorithm is adapted to mimic the B1 experiment. This is
done by using the disturbance signal and scheduling variable that were used for the B1 experiment.

Model and Analysis The model of Figure 1 was used in combination with the inputs and scheduling variables of
the participants. The simulation was run 129 times and for each simulation the multisine input from the experiment
was used for xper (see Figure 1. For the identification, the xankle and Tmeasure were used as input and output
respectively. As scheduling variable the chirp signal from the B1 experiment was used, an example can be seen
in Figure 18. The SV was scaled between 0 and 1 such that K(t) = 100 + 50 ∗ chirp(t). The simulation data was
decimated from 2.5kHz to 100Hz before being used for identification. The LPV algorithm assumed that Ak,Ek,Bc

k
and Bac

k were time-varying. A past and future window of pc = fac = 2 and an order selection of nc = 2 and nac = 2
gave the best results. The quality of the estimation was quantified by looking at the Variance Accounted For (VAF).
The disturbance was the same as was used in the simulation of Section III.
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Figure 18: The trajectory the participant had to follow (the scheduling
variable)
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Figure 19: Historgram of the scheduling variable

Results The VAF was calculated for each experiment with the noisy and true signal, these are displayed in Figure
20. The LPV method had two outliers both, at 0%. The average and standard deviation have been calculated
without the two outliers and are shown in Table 5.

Discussion This simulation can be seen as a B1 experiment where the participants perfectly followed the
instructions, the machine was perfect and the underlying system was time-varying. The simulation results show
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LPV No Noise LTI No Noise LPV Noise LTI Noise
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Boxplot VAF LPV and LTI NC-PBSID

Figure 20: Boxplot of all the calculated VAF’s with two outliers for the LPV method on top of each other at 0%

With True With Noise
LPV 99.5(0.3)% 76.4(1.8)%
LTI 99.4(0.3)% 76.2(1.8)%

Table 5: The average VAF and standard deviation without the two outliers.

the same problems as the B1 experiment results. The LTI and LPV method provide similair results. Therefore, it
can confidantly be stated that the problem of the B1 protocol lies with its disturbance design.

From Figure 19 it can be seen that most time is spend at the edges of the scheduling variable which indicates that a
LTI system should not be able to estimate the system. The fact that most time is spend in the two extreme regions
further shows that the LTI content is dominant in this experiment.

Errors in frequency domain

An advantage of estimating improper or not strictly proper systems is that they weigh frequencies differently than
strictly proper systems, which weigh low frequencies more heavily. To show what this means a slight detour in LTI
system theory is made.

Theory When the LTI equivalent of equation (14) is written and it is assumed that f has been chosen sufficiently
big that φ f ,k = 0. The equivalence to the vector-ARX(VARX) model structure can be seen as follows:

yk = CK f z̄ f
k + Duk + ek

⇒ A(q)yk = B(q)uk + ek

⇒ yk =
B(q)
A(q)

uk +
1

A(q)
ek

⇒ yk = W0(q)uk + L0(q)ek.

A more elaborate explanation can be found in (Van Der Veen et al., 2013). Now the input output behaviour is
captured in a higher order VARX model which is equivalent to the state space predictor model; the LTI version of
equation (2) (see example 10.11 (Verhaegen, Michel; Verdult, 2007)). Given the estimates of the system W(q, θ), L(q, θ)
where θ are the parameters, equation (27) can be given in the frequency domain:

min
θ

1
4π

∫ π

−π

|W0(ejω)−W(ejω, θ)|2Φu(ω) + Φe(ω)]

|L(ejω, θ)|2
dω.
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This is the well known formula 8.66 from Ljung (1998), with Φu(ω) and Φe(ω) as the spectral density of the input
and noise respectively. From formula 8.66 it can be seen that some frequencies of the estimated model, W(ejω, θ),
will add more weight than others. For example, if a strictly proper system is estimated the low frequencies will
weigh heavier than the high frequencies. In other words |W0(ej0)−W(ej0, θ)|2 > |W0(ej∞)−W(ej∞, θ)|2.

Because the NC-PBSID either estimates proper (not strictly proper) or improper systems different behaviour will
occur. Proper systems will not infinitely amplify high frequencies like improper systems. In other words, a proper
system can either have:

|W0(ej0)−W(ej0, θ)|2 > |W0(ej∞)−W(ej∞, θ)|2 or

|W0(ej0)−W(ej0, θ)|2 < |W0(ej∞)−W(ej∞, θ)|2.

An example of |W0(ej0)−W(ej0, θ)|2 < |W0(ej∞)−W(ej∞, θ)|2 can be seen in Figure 9. The order of the poles and
zeros determines the weight of the frequencies. Where the proper system in Figure 9 first has two zeros and then
two poles another proper system could have two poles and then the two zeros. This would change what frequencies
weigh heavier. In contrast to improper systems which will always have a heavier weight on the high frequencies
because for an improper system |W(ej∞, θ)| = ∞.

The noise filter L(ejω, θ) influences the frequency weighing as well. Because the human interjects low frequency
noise, L(ejω, θ), can be seen as a low-pass filter. Therefore 1/|L(ejω, θ)| will increase the weight of the high
frequencies.

One could conclude from this that if a pre-filter was added to the data, such that all frequencies would get equal
weighting in the minimization problem, the LPV method would perform better. The LPV method would perform
better because the time-varying part is present in the low frequency range which would then be as important as the
time-invariant high frequency part. However, the following paragraph will show that this is not the case.

Analysis Now a closer look will be taken at the frequency error of the B1 experiment. The input and output
data will get an extra filter besides the bandpass filter. The input and output will be pre-filtered with a 2nd order
butterworth filter with a cutoff frequency of 6,8 and 10Hz before being used for the estimation of the system.
After the system is estimated the output will be predicted using the non-pre-filtered input and compared to the
non-pre-filtered output. In Figure 21 and 22 the frequency content of the error y− ŷ from the first trial of the first
participant is given and in Table 6 the VAF of each prediction is given.
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Figure 21: The prediction error in the frequency domain
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ŷ
))

The frequency content of the error with different 2nd order butter

6Hz
8Hz
10Hz
No-fil

Figure 22: Error in frequency domain with multiple fitlers. Notice
how filtering increases the error in at the high frequencies

36



D. SIMULATION AND ERROR ANALYSIS B1 DATA

No filter 12Hz 10Hz 8Hz 6Hz
LPV 78% 71% 70% 70% 69%
LTI 77% 70% 68% 68% 68%

Table 6: VAF of participant 1 applying different prefilters besides the bandpass filter.

In Figure 21 it can be seen that the bulk of the frequency content of the error is in the low frequencies as was
expected. Subsequently, low-pass filters were added to decrease the weight of the high frequencies. In Figure 22 it
can be seen that this does indeed increase the error on the high frequencies. However, Table 6 shows that the VAF
of the LPV and LTI method are not diverging from each other. By equalizing the weights, the error of the high
frequency content went up but the error on the low frequencies did not decrease. One would expect the error in the
low frequencies to decrease because they are given more weight by the pre-filtering. The most likely explanation
why this does not happen is that the method is not fitting the noise at those frequencies and therefore the error
does not decrease. Because the VAF’s do not diverge and because of the presence of low frequency noise, weighting
of the frequencies did not have the desired effect of extracting the time-varying behaviour.

Next all three butterworth filters were applied to all the B1 experiment data. This resulted in 129 VAF’s for each
filter. The results are displayed in Figure 23, the mean and standard deviation can be found in Table 7
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Figure 23: The Boxplots containing the VAF of each filter for each experiment.

6Hz 8Hz 10Hz No Filter
LPV 43.1(27.7)% 63.0(21.0)% 71.2(10.6)% 74.1(9.2)%
LTI 50.1(18.5)% 65.7(11.5)% 70.1(9.9)% 73.1(9.14)%

Table 7: The average VAF and standard deviation for the VAF’s of each filter for both the LPV and LTI method.

Lastly, a Mann-Whitney test was applied to see if the filtering created any significant difference between the LPV or
LTI results. The Mann-Whitney test was used to see if each of the LPV-LTI groups differed from each other using a
5% significance. The 6Hz group did not significantly differ in the VAF the produced, p = 0.24, r = −0.10. The 8Hz
group did not significantly differ in the VAF the produced, p = 0.49, r = 0.06. The 10Hz group did not significantly
differ in the VAF the produced, p = 0.28, r = 0.09. The "No-filter" group did not significantly differ in the VAF the
produced, p = 0.34, r = 0.08.

With these results it can conclusively be stated that: even if all frequencies were weighed equally, it would not have
separated the LPV and LTI method. Another conclusion that can be drawn is that giving more equal weights to all
frequencies does not improve the VAF.
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Summary

In this Appendix two analysis have been done to further support the conclusions drawn from the results in the
main text. The simulation study of the B1 experiment confirms that the problem of the protocol is the perturbation
signal. The analysis of the error in the frequency domain confirmed that pre-filtering the data to equalize the error
in the frequency domain will not separate the LPV and LTI estimate.
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E. LTI mixed causal anti-causal state space to transfer function

In this appendix it will be shown how to analytically transform between the LTI mixed causal anti-causal state
space form and transfer function. This is mainly added for completion.

Continuous transform

First the transform is done in continuous time. If we have the following system

ẋc = Axc + Bcu,

Eẋac = xac − Bacu,

y = Ccxc + Cacxac + Du.

Next the Laplace transformation is applied to the system and get a definition of X(s) for both the causal and
anti-causal part and a continuous time transfer function can be made.

sX(s)c = AX(s)c + BcU(S)

EsX(s)ac = X(s)ac − BacU(S)

⇒
(Is− A)X(s)c = BcU(S)

(Es− I)X(s)ac = −BacU(S)

⇒
X(s)c = (Is− A)−1BcU(S)

X(s)ac = −(Es− I)−1BacU(S)

⇒ Y(s) = (Cc(Is− A)−1Bc − Cac(Es− I)−1Bac + D)U(s).

Discrete time

This straightforward derivation can be done as well for the continuous time case. If we have the following system

xc
k+1 = Axc

k + Bcuk,

Exac
k+1 = xac

k − Bacuk,

yk = Ccxc
k + Cacxac

k + Duk.

Next the Z-transform is applied such that the set of equations can be rewritten into a discrete time transfer function.

zX(z)c = AX(z)c + BcU(z,

EzX(z)ac = X(z)ac − BacU(z)

⇒
(zI − A)X(z)c = BcU(z)

(Ez− I)X(z)ac = −BacU(z)

⇒
X(z)c = (zI − A)−1BcU(z)

X(z)ac = −(Ez− I)−1BacU(z)

⇒ Y(z) = (Cc(zI − A)−1Bc − Cac(Ez− I)−1Bac + D)U(z).

This concludes the derivations.
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F. Figures C1 and B1 Study

In this Appendix figures that resulted from the analyses of the B1 and C1 study are shown.

Figure 24: VAF for each experiment of B1 healthy elderly Figure 25: VAF for each experiment of C1 healthy elderly

Figure 26: VAF for each experiment of B1 stroke patients
group 1

Figure 27: VAF for each experiment of B1 stroke patients
group 2
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Figure 28: Box plot of B1 experiments for stroke patients
group 1

Figure 29: Box plot of B1 experiments for stroke patients
group 2

Figure 30: Box plot of C1 experiments for stroke patients
group 1

Figure 31: Box plot of C1 experiments for stroke patients
group 2
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Figure 32: Box plot of C1 experiments for healthy elderly
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G. Analytical Approach to Mass Spring Damper System Description

In this appendix it will analytically be shown that there is no one to one translation of the time varying mass spring
damper system in the form of a transfer function (TF) to an LPV state space (SS) description. Here an admittance
model is use to prove this claim.

The Derivation

First the time varying mass spring damper system which was used in Section 3 of the report is slightly rewritten.

H(s) =
1

Is2 + Bs + k1 + k2µ
→ 1/I

s2 + B
I s + k1+k2µ(t)

I

(45)

For LTI systems there exist certain standard descriptions to change TF’s into SS systems and back. This is done
because the state space description is not unique, these descriptions are called canonical forms. It will be assumed
that the LPV transfer function can be written into the observability canonical form with an affine dependency.

ẋ(t) =

[
0 − k1+k2µ

I
1 − B

I

]
x(t) +

[ 1
I
0

]
u(t)

=

([
0 − k1

I
1 − B

I

]
+ µ

[
0 − k2

I
0 0

])
x(t) +

[ 1
I
0

]
u(t)

ẋ(t) = A(µ)x(t) + Bu(t)

y(t) =
[
0 1

]
x(t) + 0u(t)

y(t) = Cx(t)

(46)

To prove this is state space model correctly represents H(s) we calculate H(s) from the found state space system.

H(s) = C(sI − A)−1B + D

=
[
0 1

] ([s 0
0 s

]
−
[

0 − k1+k2µ
I

1 − B
I

])−1 [ 1
I
0

]
+ 0

=
[
0 1

] ([ s k1+k2µ
I

−1 s + B
I

])−1 [ 1
I
0

]

=
1

s(s + B
I ) +

k1+k2µ
I

[
0 1

] [s + B
I − k1+k2µ

I
1 s

] [ 1
I
0

]
=

1

s2 + B
I s + k1+k2µ

I

[
1 s

] [ 1
I
0

]
=

1/I

s2 + B
I s + k1+k2µ

I

=
1

Is2 + Bs + k1 + k2µ
= H(s)

This shows that (46) is the correct state space representation of (45).

43



G. ANALYTICAL APPROACH TO MASS SPRING DAMPER SYSTEM DESCRIPTION

Discretize

To discretize the system the bilinear or Tustin approach is used. This approach has been taken from (Van Wingerden
2008, van Wingerden et al. 2010).

Ad(µ,
1
µ

, ...) =
(

I +
Ts

2
A(µ)

)(
I − Ts

2
A(µ)

)−1

Bd(µ,
1
µ

, ...) =
√

Ts

(
I − Ts

2
A(µ)

)−1
B

Cd(µ,
1
µ

, ...) =
√

TsC
(

I − Ts

2
A(µ)

)−1

Dd(µ,
1
µ

, ...) =
Ts

2
C
(

I − Ts

2
A(µ)

)−1
B + D

(47)

With the use of the symbolic toolbox of Matlab this leads to the following discrete state space system

Ad(µ1, µ2) =

[
4I − T2

s k1 + 2BTs −4Tsk1
4ITs 4I − T2

s k1 − 2BTs

]
µ1 +

[
−T2

s k2 −4Tsk2
0 −T2

s k2

]
µ2

Bd(µ1, µ2) =

[
2
√

Ts(2I+BTs)
I

2
√

TsTs

]
µ1 +

[
0
0

]
µ2

Cd(µ1, µ2) =
[
2I
√

TsTs 4I
√

Ts
]

µ1 +
[
0 0

]
µ2

Dd(µ1, µ2) = T2
s µ1 + 0µ2

µ1(µ) =
1

(4I + T2
s k1 + 2BTs) + T2

s k2µ

µ2(µ) = µ1µ =
µ

(4I + T2
s k1 + 2BTs) + T2

s k2µ

From this analytical expression it can be seen that all the system matrices are now dependent on some variant of
the original scheduling variable µ. The affine structure dependent on µ is lost but two new scheduling functions µ1
and µ2 are found which preserve the affine structure.

Discussion

To accurately represent H(s) the discrete time LPV state space model will need all system matrices dependent on
some variation of the scheduling variable µ. What can be seen in the derivation is that the new scheduling variables
µ1 and µ2 are not only dependent on the scheduling variable but also on system parameters. So to perfectly
estimate the system the system parameters need to be know such that the correct scheduling functions can be used.
Since this is impossible, there will always be some difference between the simulated continuous time LTV transfer
function and estimated discrete time LPV state space model.
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H. MATLAB CODE IMPLEMENTATION

H. Matlab Code Implementation

Below the Mcode used to analyse the data is shown. This code would be inside one or multiple loops which loaded
the data that was going to be analysed. Here can be seen how Matlab functions as tfestimate.m and tfest.m are used.

1 %% Extract data
2 Time = OutputData.AchData(:,1);
3 Mpos = OutputData.AchData(:,8);
4 Mvel = OutputData.AchData(:,9);
5 Mtorque = OutputData.AchData(:,10);
6 MtorqComp = OutputData.AchData(:,11);
7

8 %% Filter to get the SV
9 [B,A] = butter(2,0.25/512);

10 TVtraj = filtfilt(B,A,Mtorque);
11

12 %% Decimate and detrend the data
13 fs = 1024;
14 Deci = 8; % Resulteerd in fs = 128
15 fnew = fs/Deci;
16

17 TimeD = downsample(Time,Deci);
18 MtorqueD = -1*decimate(detrend(Mtorque,'constant'),Deci);
19 MposD = decimate(detrend(Mpos,'constant'),Deci);
20 TrajTVD = decimate(TVtraj,Deci); % Is already detrended
21 MvelD = decimate(detrend(Mvel,'constant'),Deci);
22

23 %% Bandpass filter output data to only have involuntary torque
24 [Bh,Ah] = butter(6,[1.5/(fnew/2) 40/(fnew/2)]);
25 MtorqueDfil = filtfilt(Bh,Ah,MtorqueD);
26 MposDfil = filtfilt(Bh,Ah,MposD);
27 MvelDfil = filtfilt(Bh,Ah,MvelD);
28

29 %% Select ID data
30 %Select samples
31 if Time(end)<40
32 continue
33 end
34 if Time(end)>40
35 T0 = 5;
36 Tend = 35; % Select as much of the usable data as possible
37 end
38 if Time(end)>90
39 T0 = 10;
40 Tend = 70;
41 end
42

43 SamplesID = 1+T0*fnew:Tend*fnew;
44

45 nSV = 1; % Number of derivatives of the SV
46 Syn = 0; % Scale the SV y=1 n=0
47

48 %% Select data to ID
49 % In = [MposDfil(SamplesID).'; MvelDfil(SamplesID).'];
50 In = MposDfil(SamplesID).';
51 Out = MtorqueDfil(SamplesID).';
52 SV = TrajTVD(SamplesID).';
53 %SV_Scale_Derivs,m can calculate derivatives of the SV and scale them.
54 Use = SV_Scale_Derivs(SV,nSV,fnew,Syn,-1,1);
55 mu = [ones(1,length(SamplesID)); Use.'];
56

57 %% Do frequency estimation
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H. MATLAB CODE IMPLEMENTATION

58 dt = 1/1024;
59 [txy, f2] = tfestimate(-1*detrend(Mtorque,'constant')),Mpos,hanning(10/dt),5/dt,10/dt,1/dt);
60

61 FRdata = frd(txy(11:151),2*pi*f2(11:151));
62 Sysid = tfest(FRdata,2,0);
63

64 [mag,¬] = bode(Sysid,2*pi*f2);
65 Ytf = lsim(Sysid,Out,(0:length(Out)-1)*1/fnew);
66

67 figure
68 loglog(f2,abs(txy)); hold all
69 semilogx(f2,squeeze(mag))
70 xlabel('Frequency [Hz]')
71 ylabel('Magnitude [-]')
72 title('FRF of the measured position to measured torque with fit')
73 legend('FRF','2nd order fit')
74

75 %% ID search
76 pend = 2;
77 r = 1; % #Input
78 l = 1; % #Output
79 m = nSV+1; % #Local Models
80 nac = 2; % ORder Causal
81 nc = 2; % Order A-Causal
82

83 [Ai,Ei,Bci,Baci,Cci,Caci,Di] = LPV_ACC_PBSID(In,Out,mu,pend,r,l,m,[0 0],[0 0],nc,nac);
84 [AiL,EiL,BcL,BacL,CcL,CacL,DiL] = LTI_ACC_PBSID(In,Out,pend,r,l,nac,nc);
85

86 %% Simulate and compare
87 f = 40;
88

89 [ysim, ¬,¬,¬,¬] = LPV_ACC_SIM(Ai,Ei,Bci,Baci,Cci,Caci,Di,In,mu,f,r,l,nc,nac);
90 [YL,¬,¬,¬,¬] = LTI_ACC_SIM(AiL,EiL,BcL,BacL,CcL,CacL,DiL,In,(0:length(In)-1)*1/fnew,f);
91

92 display('VAF for the data used for the identification')
93 All_That_VAF(count,:) = [vaf(Out(1:end-f),ysim) vaf(Out(1:end-f),YL) vaf(In,Ytf)]
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I. WRIST STUDY TABLES

I. Wrist Study Tables

T1 T2 T3 T4 T5 Mean(Std)

LPV 86 87 87 85 84 86(1)
LTI 94 94 96 96 96 95(1)
FRF 76 77 83 78 80 79(3)

Table 8: The VAF’s for each method and trial
of Participant 1 using Trial 1 as estimator

T1 T2 T3 T4 T5 Mean(Std)

LPV 89 90 91 88 88 89(1)
LTI 94 94 96 96 96 95(1)
FRF 76 77 83 78 80 79(3)

Table 9: The VAF’s for each method and trial
of Participant 1 using Trial 2 as estimator

T1 T2 T3 T4 T5 Mean(Std)

LPV 90 91 92 89 89 90(1)
LTI 94 94 96 96 96 95(1)
FRF 75 75 83 78 81 78(4)

Table 10: The VAF’s for each method and trial
of Participant 1 using Trial 3 as estimator

T1 T2 T3 T4 T5 Mean(Std)

LPV 90 91 92 90 90 91(1)
LTI 94 94 96 97 97 96(2)
FRF 68 68 78 80 81 75(6)

Table 11: The VAF’s for each method and trial
of Participant 1 using Trial 4 as estimator

T1 T2 T3 T4 T5 Mean(Std)

LPV 93 93 94 93 93 93(0)
LTI 94 94 96 96 97 95(1)
FRF 68 69 79 80 81 75(6)

Table 12: The VAF’s for each method and trial
of Participant 1 using Trial 5 as estimator

T1 T2 T3 T4 T5 Mean(Std)

LPV 94 96 96 95 95 95( 1)
LTI 98 96 96 98 98 97( 1)
FRF 65 30 35 66 76 54(21)

Table 13: The VAF’s for each method and trial
of Participant 2 using Trial 1 as estimator

T1 T2 T3 T4 T5 Mean(Std)

LPV 91 95 94 91 91 92( 2)
LTI 97 98 97 97 97 97( 0)
FRF 47 80 73 49 51 60(15)

Table 14: The VAF’s for each method and trial
of Participant 2 using Trial 2 as estimator

T1 T2 T3 T4 T5 Mean(Std)

LPV 94 97 96 95 95 95( 1)
LTI 97 97 97 97 97 97( 0)
FRF 45 78 72 48 50 59(15)

Table 15: The VAF’s for each method and trial
of Participant 2 using Trial 3 as estimator

T1 T2 T3 T4 T5 Mean(Std)

LPV 97 97 97 97 98 97( 0)
LTI 98 96 96 98 98 97( 1)
FRF 64 25 31 65 75 52(22)

Table 16: The VAF’s for each method and trial
of Participant 2 using Trial 4 as estimator

T1 T2 T3 T4 T5 Mean(Std)

LPV 97 97 97 97 97 97( 0)
LTI 98 96 96 98 98 97( 1)
FRF 56 0 3 59 72 38(34)

Table 17: The VAF’s for each method and trial
of Participant 2 using Trial 5 as estimator
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