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HIGHLIGHTS
» Emerging phenomena in ML challenge current theoretical frameworks.
« Grokking: sudden learning surge after stagnation or decline.
« Insights via norm- and stability-based generalization bounds.
« Theories reconciled with practice through concrete examples.
ARTICLE INFO ABSTRACT
Keywords: In recent years, Artificial Intelligence, particularly Machine Learning, has achieved remarkable success in solving
Machine learning complex problems. However, this progress has also revealed the emergence of unexpected, poorly understood,
Deep kl‘?ﬂming and elusive phenomena that characterize the behavior of machine intelligence and learning processes. These
Grokking

phenomena often challenge researchers to interpret them within the boundaries of existing Machine Learning
theoretical frameworks, thereby motivating the development of new and more comprehensive theoretical foun-
dations. One such phenomenon, known as grokking, refers to the sudden and substantial improvement in a model’s
performance following a prolonged period of stagnant or even regressive learning. In this paper, we argue that
it is possible to provide insights into grokking by leveraging the existing theoretical foundations of Machine
Learning, in particular concepts from Statistical Learning Theory, such as norm-based and stability-based gen-
eralization bounds. We further show how these theories can help reconcile the phenomenon of grokking with
established principles of learning and generalization. Furthermore, we demonstrate the practical applicability of
these insights through concrete examples.

Statistical learning theory
Norm-based generalization bounds
Stability-based generalization bounds
Empirical evidence

1. Introduction Nevertheless, all these systems rely on a common underlying princi-
ple: transforming a problem into a series of prediction tasks. In certain
domains, this formulation becomes very explicit, for instance, in pro-
tein folding, the task consists of predicting a protein’s three-dimensional
structure from its amino acid sequence [2]. In other domains, the predic-
tive framing is more subtle. For example, in text generation, the model
predicts the next word (or, more precisely, the next token) [5], while in
image generation, such as with diffusion models, the task involves pre-
dicting how to iteratively denoise an image to recover a coherent visual
representation [6].

Despite significant advancements in our ability to learn predictive
models from data, we are increasingly witnessing the emergence of

In recent years, Artificial Intelligence (AI), particularly Machine
Learning (ML), has profoundly transformed society, industry, and sci-
ence. Al systems have demonstrated remarkable capabilities across a
wide spectrum of domains: from solving well-defined challenges such
as mastering board games [1] and predicting protein structures [2],
to enabling broad, open-ended tasks like multimodal conversational
agents [3]. More recently, the emergence of agentic Al systems [4],
capable of autonomously pursuing complex goals, has highlighted the
accelerating potential of this technology. The capabilities of this new
generation of intelligent machines increasingly appear boundless.
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$\hat {f} = \mathscr {A}_{\mathcal {H}}(\mathcal {D}_n) \in \mathcal {F}$


$\hat {f}$


$\mathbb {P}\{Y \mid X \}$


\begin {align}\mathsf {L}(\hat {f}) = \mathbb {E}_Z \{\ell (\hat {f}, Z) \},\label {autoeq:1}\end {align}


$\ell : \mathcal {F} \times \mathcal {Z} \rightarrow [0,1]$


$\mathsf {L}(\hat {f})$


\begin {align}\hat {\mathsf {L}}(\hat {f}) = \hat {\mathsf {L}}_{\text {emp}}(\hat {f}) = \frac {1}{n} \sum _{Z \in \mathcal {D}_n} \ell (\hat {f}, Z).\label {autoeq:2}\end {align}


\begin {align}f^* = \arg \min _{\mathcal {M}} \mathsf {L}(f),\label {autoeq:3}\end {align}


$\mathcal {M}$


$\mathsf {L}(f)$


$\mathscr {A}_{\mathcal {H}}$


\begin {align}\label {eq:1} \hat {f} = \mathscr {A}_{\mathcal {H}}(\mathcal {D}_n) = \arg \tilde {\min }_{f \in \mathcal {F}} \hat {\mathsf {L}}(f).\end {align}


$\mathcal {F} \subset \mathcal {M}$


$\hat {\mathsf {L}}(f)$


$\mathsf {L}(f)$


$\mathcal {F}$


$\hat {\mathsf {L}}(f)$


$\tilde {\min }$


\begin {align}\mathsf {L}_{\text {loo}}(\hat {f}) = \frac {1}{n} \sum _{Z \in \mathcal {D}_n} \ell (\mathscr {A}_{\mathcal {H}}(\mathcal {D}_n \setminus Z), Z),\label {autoeq:4}\end {align}
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$\mathscr {A}_{\mathcal {H}}$


$f$
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$\mathcal {F}$


$\hat {\mathsf {L}}(f)$


$\mathcal {F}$


$r: \mathcal {X} \rightarrow \mathbb {R}^d$


$t: \mathbb {R}^d \rightarrow \mathcal {Y}$


$\tau $


$\rho $


\begin {align}\label {eq:learning} \hat {\tau }, \hat {\rho } = \arg \tilde {\min }_{\tau ,\rho \in \mathcal {F}} \tilde {\mathsf {C}}(\tau ,\rho ),\end {align}


$\mathcal {F}$


$\tilde {\mathsf {C}}(\tau , \rho )$


$\tilde {\min }$


$\mathscr {A}_{\mathcal {H}}$


\begin {align}\label {eq:bound:1} \mathbb {P} \{ \mathsf {L}(\hat {f}) \leq \hat {\mathsf {L}}_{*}(\hat {f}) + \mathsf {M}(\mathscr {A}_{\mathcal {H}}) + \Delta (n,\delta ) \} \geq 1 -\delta ,\end {align}


$\hat {f}$


$\mathsf {L}_{*}$


$* \in \{\hat {\mathsf {L}}_{\text {emp}}, \hat {\mathsf {L}}_{\text {loo}} \}$


$\mathsf {M}(\mathscr {A}_{\mathcal {H}})$
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$\Delta (n, \delta )$


$n$


$\delta $


$n$


$\delta $


$\mathcal {F}$
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$\mathcal {F}$


$f$


$\mathscr {A}_{\mathcal {H}}$


$\mathcal {Y} \subseteq \mathbb {R}^p$


$\mathcal {Y} \subseteq {\{0,1\}}^p$


\begin {align}f(X) = t_{\tau }(r_{\rho }(X)) = W r(X),\label {autoeq:5}\end {align}


$\tau = W \in \mathbb {R}^{p \times d}$


$t_{\tau }$


$r(X)$


$r(X)$


$\rho $


\begin {align}\label {eq:learning:1} \tilde {\mathsf {C}}(\tau ) = \tilde {\mathsf {L}}(W) + \tilde {\mathsf {R}}(W),\end {align}


$\tilde {\mathsf {L}}(W)$


$\hat {\mathsf {L}}(f)$


$\tilde {\mathsf {R}}(W)$


$W$


$\tilde {\mathsf {R}}(W)$


$\tilde {\min }$


$\tilde {\mathsf {C}}(\tau )$


$\tilde {\mathsf {C}}(\tau )$


$L$


\begin {align}f = t_{\tau } \circ r_{\rho }, \quad t_{\tau } = \bigcirc _{i = 1}^{L^t} t^{(i)}_{\tau ^{(i)}}, \quad r_{\rho } = \bigcirc _{i = 1}^{L^r} r^{(i)}_{\rho ^{(i)}},\label {autoeq:6}\end {align}


$L = L^t + L^r$


$\tau = \{\tau ^{(1)},\ldots , \tau ^{(L^t)}\}$
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$L^t$


$L^r$


$X$


$W$


$B$


\begin {align}W X + B.\label {autoeq:7}\end {align}


$X$


$K$


\begin {align}\sum _{j \in \mathcal {J}} K_j \cdot X_{i + j},\label {autoeq:8}\end {align}


$\mathcal {J}$


$Q$


$K$


$V$


\begin {align}\mathtt {Attention}(Q, K, V) = \mathtt {softmax} \left ( \frac {Q K^\top }{\sqrt {d_k}} \right ) V,\label {autoeq:9}\end {align}


$d_k$


\begin {align}\mathtt {head}_i = \mathtt {Attention}(Q W_i^Q, K W_i^K, V W_i^V),\label {autoeq:11}\end {align}
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$\mathcal {F}$


\begin {align}\label {eq:learning:2} \tilde {\mathsf {C}}(\breve {\tau }, \breve {\rho }) = \tilde {\mathsf {L}}(\breve {\tau }, \breve {\rho }) + \tilde {\mathsf {R}}(\breve {\tau }, \breve {\rho }),\end {align}
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\begin {align}\hat {\mathsf {RC}}(\mathcal {F}) = \mathbb {E}_{\sigma _1,\ldots , \sigma _n} \left [ \sup _{f \in \mathcal {F}} \frac {1}{n} \sum _{i=1}^n \sigma _i \ell (f,Z_i) \right ],\label {autoeq:12}\end {align}


$\{\sigma _1,\ldots , \sigma _n \}$
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$c$


\begin {align}\mathsf {M}(\mathscr {A}_{\mathcal {H}}) \leq c \hat {\mathsf {RC}}(\mathcal {F}).\label {autoeq:13}\end {align}


$\mathcal {F}$


$\mathsf {CN}(\epsilon , \mathcal {F})$
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$\mathcal {F}$


$c$


\begin {align}\hat {\mathsf {RC}}(\mathcal {F}) \leq c \inf _{\alpha \geq 0} \left ( \alpha + \int _{\alpha }^{\infty } \sqrt {\frac {\log (\mathsf {CN}(\epsilon , \mathcal {F}))}{n}} d\epsilon \right ).\label {autoeq:14}\end {align}


$\mathsf {M}(\mathscr {A}_{\mathcal {H}})$


$\mathcal {F}$


\begin {align}\mathsf {M}(\mathscr {A}_{\mathcal {H}}) \leq \mathsf {N}(\hat {\tau }, \hat {\rho }),\label {autoeq:15}\end {align}
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\begin {align}\mathsf {M}(\mathscr {A}_{\mathcal {H}}) \leq c \beta ,\label {autoeq:16}\end {align}


$\beta $


\begin {align}& \mathbb {E}_{\mathcal {D}_n,Z'} \left | \ell \left (\mathscr {A}_{\mathcal {H}}(\mathcal {D}_n), Z_i\right ) - \ell \left (\mathscr {A}_{\mathcal {H}}(\mathcal {D}_n \setminus Z_i \cup Z' ), Z_i \right ) \right | \leq \beta ,\label {autoeq:17}\\ & \mathbb {E}_{\mathcal {D}_n,Z'} \left | \ell \left (\mathscr {A}_{\mathcal {H}}(\mathcal {D}_n), Z'\right ) - \ell \left (\mathscr {A}_{\mathcal {H}}(\mathcal {D}_n \setminus Z_i ), Z' \right ) \right | \leq \beta , \label {eq:hypothesisstability_loo}\end {align}
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\begin {align}& \beta \propto \mathbb {E}_{\mathcal {D}_n,Z'} \mathtt {d}\left (\mathscr {A}_{\mathcal {H}}(\mathcal {D}_n)(X_i), \mathscr {A}_{\mathcal {H}}(\mathcal {D}_n \setminus Z_i \cup Z')(X_i)\right ),\label {autoeq:18}\\ & \beta \propto \mathbb {E}_{\mathcal {D}_n,Z'} \mathtt {d}\left (\mathscr {A}_{\mathcal {H}}(\mathcal {D}_n)(X'), \mathscr {A}_{\mathcal {H}}(\mathcal {D}_n \setminus Z_i)(X')\right ). \label {eq:hypothesisstability_loo_effe}\end {align}


\begin {align}& \beta \propto \mathbb {E}_{\mathcal {D}_n,Z'} \mathtt {d}\left (\mathscr {A}_{\mathcal {H}}(\mathcal {D}_n)(X_i), \mathscr {A}_{\mathcal {H}}(\mathcal {D}_n \setminus Z_i \cup Z')(X_i)\right ),\label {autoeq:18}\\ & \beta \propto \mathbb {E}_{\mathcal {D}_n,Z'} \mathtt {d}\left (\mathscr {A}_{\mathcal {H}}(\mathcal {D}_n)(X'), \mathscr {A}_{\mathcal {H}}(\mathcal {D}_n \setminus Z_i)(X')\right ). \label {eq:hypothesisstability_loo_effe}\end {align}
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$p = 1$


\begin {align}\hat {f}(X) = \hat {\boldsymbol {w}}^T r(X),\label {autoeq:19}\end {align}


$\hat {\boldsymbol {w}} \in \mathbb {R}^p$


\begin {align}\label {eq:normbound:shallow:1} \mathtt {N}(\hat {\boldsymbol {w}}) \propto \| \hat {\boldsymbol {w}} \|_2,\end {align}


$\| \cdot \|_2$
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\begin {align}\tilde {\mathtt {R}}(\boldsymbol {w}) = \| M (\hat {\boldsymbol {w}} - \boldsymbol {c}) \|,\label {autoeq:20}\end {align}


$M \in \mathbb {R}^{p \times p}$
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\begin {align}\label {eq:normbound:shallow:2} \mathtt {N}(\hat {\boldsymbol {w}}) \propto \| M (\hat {\boldsymbol {w}} - \boldsymbol {c}) \|.\end {align}
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\begin {align}\label {eq:normbound:deep:mlp} \mathtt {N}(\hat {W}_1, \ldots , \hat {W}_L) \propto \prod _{i = 1}^L \| \hat {W}_i \|_2 \sqrt {\sum _{i = 1}^L \frac {\| \hat {W}_i \|_F^2}{\| \hat {W}_i \|_2^2}}.\end {align}
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\begin {align}\label {eq:funct:task_rep} f(X) = t_{\tau }(r_{\rho }(X)),\end {align}


$r_{\rho }(X) \in \mathbb {R}^{d}$


\begin {align}\hat {\beta } \propto \mathsf {Cond}\left ( \left [ \begin {array}{c} r^T(X_1)\\ \vdots \\ r^T(X_n)\\ \end {array} \right ] {\left [ \begin {array}{c} r^T(X_1)\\ \vdots \\ r^T(X_n)\\ \end {array} \right ]}^T \right ),\label {eq:cond}\end {align}


$\mathsf {Cond}$


$\mathcal {Y} = \{\pm 1\}$


$\mathcal {X} = \mathbb {R}^2$


$f(X) = \boldsymbol {w}^\top X$


$\boldsymbol {w} \in \mathbb {R}^2$


$= 0.02$


$\ell (f,Z) = \mathbbm {e}^{-Y f(X)}$


$\alpha =~3$


\begin {align}& \mathtt {N}( \hat {W}^F, \hat {W}^Q_{i,b}, \hat {W}^K_{i,b}, \hat {W}^V_{i,b}, \hat {W}^O_{b}, \hat {W}^F_{1,b}, \hat {W}^F_{2,b}, i \in \mathcal {L}^{H_b},b \in \mathcal {L}^T ) \nonumber \\ & \propto \| \hat {W}^F \|_F \prod _{b \in \mathcal {L}^T} \max _{i \in \mathcal {L}^H} \left [ \max \left \{ \begin {array}{l} \| \hat {W}^Q_{i,b} \|_F,\\[4pt] \| \hat {W}^K_{i,b} \|_F,\\[4pt] \| \hat {W}^V_{i,b} \|_F,\\[4pt] \| \hat {W}^O_{b} \|_F \end {array} \right \} \right ] \| \hat {W}^F_{1,b} \|_F \| \hat {W}^F_{2,b} \|_F .\label {eq:normbound:deep:tnn:final}\end {align}


\begin {align}\mathtt {MultiHead}(Q, K, V) = \mathtt {Concat}(\mathtt {head}_1, \dots , \mathtt {head}_h) W^O,\label {autoeq:10}\end {align}
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unexpected, poorly understood, and elusive phenomena that character-
ize the behavior of machine intelligence and learning processes. These
include catastrophic forgetting [7-111, where models lose previously ac-
quired knowledge when exposed to new data during fine-tuning; mode
collapse [12-15], where generative models fail to capture the full diver-
sity of the underlying data distribution; shortcut learning [16-18], where
models rely on superficial correlations rather than learning deeper in-
sights; spurious correlations [19-21], where models learn associations
that do not generalize due to non-causal statistical dependencies in the
data; double descent [22-28], where performance initially improves dur-
ing learning, then temporarily deteriorates before improving again; be-
nign overfitting [29-35], where models overfit the training data without
harming or even improving generalization; over-parameterization [24,
36-38], where model performance continues to improve despite exces-
sive complexity; physical implausibility [39-41], where models generate
accurate predictions without capturing the underlying physics; bias am-
plification [42-44], where models reinforce historical societal biases
present in the data; adversarial vulnerability [42,45,46], where mod-
els are highly susceptible to targeted manipulations of input data; lack
of explainability [42,47-50], where model decisions and internals re-
main opaque and difficult to interpret; and privacy violations [42,51,52],
where models may inadvertently leak sensitive information from the
training data. These phenomena represent some of the most pressing
and complex challenges facing modern ML systems. Moreover, there is
a significant interplay between these issues [13,21,24,42,53-56].

In this work, we explore the phenomenon of grokking, where during
learning, following a prolonged phase of stagnation or even regression,
a model suddenly experiences a rapid and substantial improvement in
task performance [57]. This abrupt shift resembles the moment when a
person achieves a breakthrough in understanding after struggling with a
concept. What makes grokking particularly fascinating is its divergence
from the traditional expectations of statistical learning, which gener-
ally follows a pattern of steady, incremental progress [58-63]. Instead,
grokking suggests a dynamic in which models may initially show little or
no improvement, or even a decline in performance, before unexpectedly
surging in capability.

Originally observed in supervised ML on algorithmic datasets [57,
641, this phenomenon has since been identified in real-world data [65-
671 and other learning contexts [68,69]. This unpredictability has posed
significant challenges for researchers attempting to explain grokking
within existing ML theoretical frameworks, spurring the search for more
sophisticated interpretations and explanations [70-76].

These phenomena often challenge researchers to gain insights into
them within the boundaries of existing Statistical Learning Theories
(SLTs), thereby motivating the development of new and more compre-
hensive theoretical foundations in Machine Learning. SLT enables the
study of the generalization abilities of predictive models. Current SLT
frameworks can be broadly categorized into six main families [60,63].
When the space of functions can be explicitly or implicitly defined [77],
complexity-based theories are applicable. These include the Vapnik-
Chervonenkis theory [61] and Rademacher complexity theory [78].
From these, norm-based generalization bounds are derived [79-81],
which account for fully connected networks [78,79,82-90], convolu-
tional networks [80,91-94], and attention-based networks [81,95-98].
When the learning algorithm tends to significantly compress the original
dataset, compression-based theories become more suitable. Examples in-
clude the compression bound [99] and the minimum description length
principle [100]. If the function space cannot be explicitly defined or
the algorithm does not compress the data, algorithmic stability theory
becomes relevant. This encompasses notions such as uniform stabil-
ity and hypothesis stability [101,102]. When dealing with randomized
models, PAC-Bayes theory offers a powerful analytical tool [103]. In
scenarios where the algorithms themselves are randomized, differen-
tial privacy theory can be employed to derive generalization guar-
antees [104]. Finally, when learning algorithms are adaptive, only
information-theoretic approaches are suitable for analysis [63].
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In this paper, we argue that grokking can be interpreted within
the existing theoretical foundations of ML by leveraging concepts from
SLT, specifically norm-based and stability-based generalization bounds.
We provide insights into how these frameworks can help reconcile
grokking with established principles of learning and generalization.
Furthermore, we demonstrate the practical relevance of these insights
through concrete examples.

The remainder of the paper is organized as follows. Section 2 in-
troduces the preliminary concepts necessary to understand our work.
Section 3 presents the proposed theoretical analysis. Section 4 pro-
vides the empirical evidence supporting our theoretical findings. Finally,
Section 5 concludes the paper.

2. Preliminaries

Let us consider the supervised learning setting [58,59]. Given a
random observation X € X, the objective is to estimate the correspond-
ing output Y € Y. Observations are drawn according to an unknown
distribution u over the space Z = X x Y. To approximate the condi-
tional distribution P{Y | X}, we aim to select a function f : X - Y
from a (possibly unknown) set of candidate functions 7. This is accom-
plished through a learning algorithm ¢/, : Z" — F, parameterized
by a set of hyperparameters H. Given a labeled dataset of n samples,
D, = {X.Y).....(X,.Y)} ={Z,.....Z,} € 2", drawn i.i.d. from p,
the algorithm outputs a hypothesis f = 93(D,) € F. The generalization
error of £, which quantifies its performance in approximating P{Y | X},
is defined as

L) =Ez{¢(f. D)}, e}

where ¢ : FxZ — [0, 1] is a loss function that evaluates the accuracy of
the prediction on individual data points. Since the true generalization
error L(f) is unknown, it is commonly approximated by the empirical
error, defined as

L) = Lamp(F) = 2 3 €0, 2), @

ZeD,

Ideally, a learning algorithm should return the so-called oracle
predictor, defined as

f* = argminL(f), 3)

which minimizes the generalization error over the space of all possi-
ble models M, i.e., the set of all measurable functions. However, since
the true risk L(f) is unknown, we rely on the algorithm ¢/, which
effectively performs the following procedure:

f = oy(D,) = argmin ;e L(f). 4

In other words, we restrict our attention to a subset ¥ ¢ M, use L(f)
as an empirical estimator of the true risk L(f), and aim to find the func-
tion in F that minimizes [(f) through a practical (possibly approximate)
procedure, denoted by min. An alternative to the empirical error as a
performance estimator is the leave-one-out error

LoolF) =+ B Ely(D,\ 2),2) ®)

ZeD,

which computes the average prediction error on individual samples from
D,, each of which is excluded once during training. The hypothesis
class F is determined by the choice of algorithm </, and its associated
hyperparameters. This includes the functional form of f (e.g., linear,
tree-based, ensemble-based, convolutional, or attention-based), as well
as implicit or explicit regularization mechanisms (e.g., weight norms,
dropout, early stopping, or over-parameterization), and the correspond-
ing regularization strength [24,58,59]. The notation min highlights that,
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given F and L(f), exactly minimizing the empirical risk over 7 may be
computationally infeasible. Therefore, in practice, we resort to approx-
imate optimization procedures (e.g., gradient-based methods or greedy
algorithms) to solve this minimization problem [58,59].

Typically, the model is expressed in the form

SX) =1.(r (X)), (6)

where r : X — R? is a representation function, t : RY - Y is a task-
specific function, and 7 and p denote their respective parameters. This
decomposition allows us to rewrite Problem (4) as

2, p = argmin, ,erC(z, ), @

where F denotes the (possibly implicit) parameter search space [58,59],
C(z, p) is a practical objective function that incorporates the empirical
error, or a convex or differentiable surrogate thereof, potentially aug-
mented with regularization terms, and we optimize this using a practical
algorithm denoted by min [58,59]. For further details, please refer to
Section 2.1.

Note that, in the absence of side information, the no-free-lunch
theorem [105] states that it is impossible to identify the best learn-
ing algorithm ¢/, a priori. As a result, the only practical strategy is to
define a set of candidate algorithms and search for the most suitable
one. This search can be carried out using simple grid search or more so-
phisticated techniques [106-111], guided by theoretical guarantees or
empirical performance metrics [60,109]. While the gold standard in this
setting is to employ resampling methods [60], these approaches are not
without limitations, such as overfitting and overvalidation [112,113].
Moreover, they offer little insight into the underlying learning process.
For this reason, theoretical tools are necessary to analyze and under-
stand the learning behavior of a given algorithm [60,63]. One common
approach is to derive bounds on the generalization ability of the learned
model [60,63]. In fact, in the setting we just described, it can be shown
that

P{L(/) < L.(F) + M(y) + A(n, 6)} > 1 =6, ®)

indicating that the generalization error of f is bounded by an empiri-
cal estimate, denoted L, with %€ {Cepp. Lo}, along with two additional
terms. The term M(gf,) reflects the complexity or risk introduced by
the choice of algorithm and its hyperparameters. This quantity tends
to increase when the algorithm overfits the data, prioritizing memoriza-
tion over generalization. The second term,! denoted A(n, §), captures the
confidence level of the bound and depends on the sample size n and a
user-defined confidence parameter 6. It increases as n decreases or as
stronger guarantees (smaller §) are desired. Statistical Learning Theory
(SLT) proposes six major families of techniques to derive bounds of the
form of Eq. (8) [60,63]:

Complexity-based approaches (e.g., Vapnik-Chervonenkis the-
ory [61], Rademacher complexity [78], and norm-based
generalization bounds [79-81]) are applicable when F is explicitly
or implicitly defined [77].

Compression-based approaches (e.g., compression bounds [99] and
the Minimum Description Length principle [100]) are useful when
the algorithm o/, effectively compresses the training dataset D,,.
Stability-based approaches (e.g., uniform stability and hypothesis sta-
bility [101,102]) are relevant when F is not explicitly defined or the
algorithm does not perform data compression.

PAC-Bayes theory is suited for randomized predictors f [103].
Differential privacy-based approaches provide generalization guaran-
tees for randomized algorithms that preserve privacy [104].
Information-theoretic approaches are applicable when ;, is adap-
tive [63].

We will not delve into this term, as it is independent of /;,.
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In this work, we focus on norm-based and stability-based approaches, as
they are broadly applicable and rely on relatively mild assumptions. In
particular, they are well-suited for analyzing the most commonly used
algorithms, which, according to the discussion in Section 2.1, naturally
satisfy their foundational hypotheses. For further details, see Section 2.2.

2.1. Learning algorithms

Let us consider the general case where Y C R? or Y C {0, 1}”. In this
section, we recall a simple yet general framework that captures both
shallow and deep ML algorithms.

For shallow ML models [58], the model can be expressed as

FX) =1.(r, (X)) = Wr(X), 9

where © = W € R, so that ¢, denotes a linear transformation, and
r(X) is a fixed feature representation. This representation may be ob-
tained either explicitly (e.g., through manual feature engineering [114])
or implicitly (e.g., via kernel methods [115]). Importantly, +(X) does not
depend on learnable parameters p. The learning objective is then defined
as

C(r) = LW) + RW), (10)

where [(W) is a convex (or at least differentiable) surrogate of the em-
pirical loss L(f), and R(W) is a regularization term, typically involving
a norm of W [58]. In some cases, R(W) also accounts for additional
quantities that allow addressing more complex challenges, such as trust-
worthiness [116]. As for the min operator, when C(z) is convex, the
main concern is computational efficiency or convergence speed. When
C(z) is only differentiable, gradient-based methods are employed [58].
This simple formulation encompasses a wide range of classical ML mod-
els [58], including Ridge Regression, Support Vector Machines, and
Random Forests.

In the case of deep ML models [59], the model can be expressed as
a composition of functions called layers L, which we formalize as
1= Ol @

i=1' )

— ol O
o = Ot i an

[ =t.or >
where L = L' + L', ¢ = {z®, ... .z} and p = {pD, ..., pL"}. The
first L' layers are the task-specific layers, while the last L" layers are
the representation layers. There are multiple types of layers. Some are
learnable (parametrized), such as:

« Fully Connected: This layer operates on vectors. Given an input vector
X, a learnable matrix W, and a learnable bias vector B, the output
is computed as:

WX + B. 12)

This extends shallow ML by learning complex mappings through
compositions of linear transformations.

Convolutional: This layer operates on structured data (e.g., images,
sequences, or graphs). Given an input tensor X and a learnable kernel
K, the output is computed via a sliding window operation:

YK Xy a13)

jedJ

where J denotes the receptive field of the convolution. This allows
the model to learn local patterns and translation-invariant features.
Attention: Attention layer computes a weighted sum of values based
on the similarity between queries and keys. Given query Q, key K,
and value V matrices, the attention mechanism is defined as:

.
Attention(Q, K, V) = softmax ( ?/K_ > v, 14
dy
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where d; is the dimensionality of the keys. Multi-head attention
extends the attention mechanism by computing multiple atten-
tion outputs in parallel (called heads), each with different learned
projections. Formally:

MultiHead(Q, K, V') = Concat(heady, ... ,headh)WO, (15)
where each head is computed as

head; = Attention(QW, %, KWK v W), (16)
and W©°, WiQ, WK, WY are learnable projection matrices.

Other layers are non-learnable, such as activation functions (e.g., linear,
ReLU, and softmax), residual connections, max pooling, batch nor-
malization, and dropout [59]. Nevertheless, these non-learnable layers
implicitly influence the behavior of the learnable ones, thereby con-
tributing indirectly to the overall function class 7 [59]. The learning
objective is then defined as

C, p) = L, p) + R, ), a7

where ¥ and j denote either a subset or the entirety of the parame-
ters 7 and p, depending on whether the network is being fully trained,
undergoing transfer learning, or fine-tuned [59]. L(%, 5) is a differen-
tiable surrogate of the empirical loss L(f) [59]. Finally, R(%, ), unlike
in shallow ML, is not an explicit regularization term (which is typ-
ically embedded in the model structure, e.g., via dropout, or in the
optimization algorithm min). Instead, it often addresses more complex
challenges, such as trustworthiness [59,116]. As for the min operator,
gradient-based methods such as Stochastic Gradient Descent or ADAM
are employed [59].

2.2. Generalization bounds

The generalization bound in Eq. (8) [60,63] provides a probabilistic
guarantee that the true risk L(f) of a learned model £ is not much larger
than its empirical estimator L, (f), plus a complexity or risk term M(s;,)
and a confidence term A(n,§) that depends on the sample size n and
confidence 6.

The term M(&/;,) captures the properties of the learning algorithm
g/y, operating over the possibly unknown class of functions ¥, and
controlling this term is essential for achieving good generalization.
Two classical approaches to upper bounding M(¢/y) in the family of
complexity-based methods are Rademacher Complexity (RC) [78] and
Covering Numbers (CN) [117]. The RC ﬁn(}’) is defined as

n
RC(F)=E,, , supl
T fer n 2

o, Z(f, Zi)] , (18)
1

where {c|,...,0,} are ii.d. Rademacher variables taking values in
{—1,+1} with uniform probability. The RC measures the ability of the
hypothesis class to fit random noise and thus serves as a data-dependent
complexity measure. Then, for a universal constant ¢, we have

M(st3;) < cRC(F). (19)

Note that more advanced approaches, such as Local RC [118], exist,
but these are beyond the scope of this paper. Alternatively, Covering
Numbers (CN) provide a combinatorial method to quantify the richness
of F. Given a metric, the CN with respect to this metric CN(e, F) is
the minimal number of balls of radius ¢ needed to cover F. Localized
versions also exist [119]. Dudley’s entropy integral and chaining tech-
niques [120] allow bounding RC in terms of these CN. For a universal
constant ¢, we have

o s (o0 [T\ D). ©0)

This connection enables bounding M(¢/;,) using empirical entropy con-
ditions of the hypothesis class. However, both RC and CN require explicit
knowledge of F in order to be computed.
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Rather than directly characterizing the function space, an upper
bound on the RC or CN can be provided by leveraging the norm of
the model’s weights [79-81]. This method is highly versatile, allowing
for the derivation of bounds not only for shallow models but also for
deep architectures, including fully connected, convolutional-based, and
attention-based neural networks. By considering weight norms, we can
derive generalization bounds for a broad range of ML models, irrespec-
tive of their depth or architecture, as long as the weight norms can be
effectively controlled. Formally, it can be shown that

M(efy) < N(E, §), @21

where N is a function of the norm of the parameters r and p. Note
that N also depends on the number of samples n, but for the pur-
poses of this paper, this dependency is not fundamental, as in the case
of grokking, where the dataset is kept fixed. The literature contains
numerous works that explore this approach for fully connected net-
works [78,79,82-90], convolutional-based networks [80,91-94], and
attention-based networks [81,95-98].

Algorithmic Stability has many variants [60,101,101,102,121-126],
e.g., uniform stability, Hypothesis Stability (HS), cross-validation or
leave-one-out stability, error stability, and pointwise HS. Nevertheless,
HS has emerged as the most powerful and insightful for understand-
ing intricate behaviors in learning models [24,102,127,128]. Although
HS generally induces looser bounds compared to uniform stability [101,
121,122], it can be estimated directly from the data and strongly de-
pends on the properties of the underlying learning algorithm [24,101,
122,124,126]. HS theory can be used to derive a bound of the form in
Eq. (8), implying that for a universal constant c:

M() < P, (22)
where f can be defined in two distinct ways [101,129,130]:

Ep, 2

¢ (D). Z,) = € (D, 2,021, Z,)| < B, (23)

Ep, 2 |¢ (44D, Z') = £ (st (D,\ 2. Z')| < . (24)
where Z' is an example drawn from . If ¢ is Lipschitz continuous with
respect to a distance metricd : Y x Y — R, one can write [127]:

B Ep A (el (D)X, (D, \ Z; U Z')(X)) s (25)
B Ep 7d (e (D)X, 3D, \ Z)(X")). (26)

These forms of HS can be estimated in a fully unsupervised manner
once the models are trained. This feature is especially helpful when as-
sessing the stability not only of the final end-to-end model but also of
various intermediate representation layers in deep architectures. In prac-
tice, one can estimate these quantities via resampling techniques (e.g.,
Bootstrap [131] or Bag of Little Bootstrap [132] to reduce computational
overhead) or via theoretical approaches [24,122], obtaining an estimate
f. Moreover, in specific settings, it is possible to derive bounds (rather
than direct estimates) for HS [24,126].

3. Theoretical analysis

In this work, we investigate the phenomenon of grokking. When mod-
els are trained with gradient descent based methods on Problem (7),
whether in the shallow case (Eq. 10) or the deep case (Eq. 17), they
may display a prolonged phase of stagnation or even a decline in per-
formance, followed by a sudden and substantial improvement in task
accuracy as the number of training iterations increases [57]. What makes
grokking particularly intriguing is its deviation from the classical ex-
pectations of statistical learning, which typically assume a pattern of
steady, incremental improvement [58-63]. Instead, grokking reveals
a dynamic where models may initially show little to no progress or
even deteriorating performance before unexpectedly achieving high
generalization.
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In this section, we argue that grokking can be interpreted within
the established theoretical framework of ML by drawing on concepts
from SLT, specifically norm-based (Section 3.1) and stability-based
(Section 3.2) generalization bounds. In particular, we offer insights into
how these theoretical tools can help reconcile grokking with classical
learning principles. Our core idea is straightforward: rather than solely
focusing on training and validation/test errors, one should analyze the
generalization bound of Eq. (8), and in particular the quantity M(</}),
which may provide valuable information about the internal dynamics of
the learning process. However, estimating M(</;,) for real-world, complex
architectures remains a significant challenge. Therefore, in Sections 3.1
and 3.2, we discuss how recent advances in norm- and stability-based
analysis can be used to approximate M(#/}) effectively.

3.1. Norm-based analysis

In this section, we present the state-of-the-art norm-based general-
ization bounds for various classes of shallow and deep ML models. It
is important to note that these bounds have evolved over time: early
bounds were often loose and uninformative, while more recent ones
provide meaningful and tight analyses [78-98].

For shallow ML models, let us consider the simplified case where
p = 1, which can be extended to more complex scenarios. In this case,
the learned model, found by solving Problem (7), takes the form

fX) =" rX), 27)

where @ € R?. Under mild assumptions [133], such as the smoothness
of the loss function, it can be shown [78] that

N@) o [|@]],, 28)
where || - ||, denotes the Euclidean norm. Note that the dependency
from other quantities depending on the data or the Lipschitz constant
of the loss function, is not taken into account, as in grokking these are
assumed to be fixed. Note also that the distribution of the data is im-
plicitly captured by /, since the solution @ to Problem (7) is obtained
via minimization over the dataset. However, a limitation of the bound
in Eq. (28) is that it only accounts for the functional form of the model,
without considering the specific regularization employed by the learn-
ing algorithm (see Eq. (10)). For instance, in most common shallow ML
algorithms [123,133], regularization takes the form

Rw) = |M@ - o), (29)
for some matrix M € RP*?, vector ¢ € R?, and a norm ||-||. In this setting,
it can be proven [133] that

N@) o [|[M (@ — o)||. (30)

This refined bound takes into account both the structure of the model
and the associated regularization, and represents one of the tightest
analyses available in this setting.

For deep ML models, things can become significantly more complex.
Depending on the chosen architecture, we need to rely on more recent
and sophisticated results to obtain meaningful and tight generalization
bounds. Here, we consider three powerful and widely used architectures:

« Fully Connected Neural Network (FNN). We consider a composition
of L fully connected layers, each with weights W, for i € {1,..., L}
(bias terms are excluded), and Lipschitz activation functions [59].
In this setting, one of the most effective norm-based generalization
bounds is due to [85], which shows that

—
W11

)

=RAE

L
NV, W) o [T Wl GD
i=1

i

Here, ||-||, and ||-|| p denote the spectral norm and Frobenius norm, re-
spectively. Note also that the dependency on other parameters, such
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as the Lipschitz constant of the activation function or the dimension-
ality of the layers, is not taken into account, as in grokking these are
assumed to be fixed. Note also that, when performing fine tuning or
transfer learning, meaning we learn W, with i € {1,..., L} starting
from W[O with i € {1,..., L} we can further improve [85] the result
of Eq. (31)

L L 7 17012
N A W, — W22
Ny W) o [T 1WA | Y e

i=1 i=1

(32)

Several other bounds exist [78,79,82-90], but this result remains
among the most meaningful and tightest bounds currently avail-
able [80,81,85]. Nevertheless, in this setting, one can state that the
bounds of Egs. (31) and (32) roughly scale as

L
NOW W) o T Il 33)

i=1

Note also that this bound accounts for the addition of non-learnable
layers such as residual connections and batch normalization.
Convolutional Neural Network (CNN). We consider a classical archi-
tecture for CNNs, composed of learnable layers—namely, convolu-
tional and fully connected layers—interleaved with non-learnable
ones. For the convolutional layers, we consider the standard case
where, in layer /, there are k' kernels denoted by 12);‘6“"“"‘1), while
for the fully connected layers, the weight matrices are denoted
by W, (bias terms are excluded). We assume all activation func-
tions are Lipschitz continuous [59]. Convolutional layers (e.g., in
image processing tasks) can be equivalently represented as fully con-
nected layers via associated Toeplitz matrices Wy ,;. Consequently,
one might apply the result of Eq. (33) to derive a norm-based gen-
eralization bound. Nevertheless, as analyzed in [80], this approach
is suboptimal and typically leads to loose bounds. To address this,
it was shown that, for convolutional layers, the term ||WT,,|| F in
Eq. (33) can be replaced by max,¢(; 1 10|, resulting in signifi-
cantly sharper and more meaningful bounds. In conclusion, consider
a CNN with L layers, where the set of convolutional layers is denoted
by £€ c {1,..., L}, and the set of fully connected layers is given by
£F ={1,...,L}\ £C. Then, the norm-based complexity term can be
approximated as

N jece Wieer) & [T _max ity JT 191l €D

recc ke el

Note that, as with the FNN, there are additional dependencies that
we did not take into account, since in grokking these are assumed to
be fixed. Several other norm-based generalization bounds have been
proposed [80,91-94], yet this refinement remains among the most
interpretable and tightest currently available [80,81,85].
Transformer Neural Network (TNN). In a standard TNN, inputs are
first passed through a non-learnable embedding layer for both el-
ements and positions. These embeddings are then processed by a
sequence of LT transformer decoder blocks. Each block, indexed
by b € {1,...,LT} = LT, consists of three main components, each
followed by residual connections and layer normalization:

1. Multi-Head Attention, with parameters Vf/i%, I/f/ifb(, and Iff/ig,
where i € {1,...,h"} = £ and A’ is the number of attention
heads in block b. The output projection matrix is denoted by
e

2. Two-Layer FNN with a ReLU or GELU activation in between,
and parameters WlFb and Wz‘z

Finally, a fully connected output layer with parameters W is ap-
plied to generate the final output. In this setting, we can leverage
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the results from [85] and [81], which provide the tightest gener-
alization bounds currently available in the literature, to obtain the
following norm-based bound:

i/F 1579 1i/K 1i/V 14i/0 vi/F 1i/F ; H, T
NWE WL W W W W Wa i e LY b e L7)
7,0

W2l

A [ZZ3 P A A

s WP lp [T max fmaxy 5 WIS (35)

pert (€L W lle
W2

Note that, as with FNN and CNN, there are additional dependencies
that we did not take into account, since in grokking these are assumed
to be fixed. While several other norm-based bounds exist [81,95-98],
this result remains among the most meaningful and tightest available
to date [80,81,85].

The various norm-based generalization bounds reported in this
section correspond to the tightest results available in the literature—
namely, those that, all else being equal, yield the smallest values for the
different architectures. Their differences arise solely from their depen-
dence on the specific architecture under consideration; for any given
architecture, they represent the best bounds currently known. They are
not the theoretically minimal possible bounds, but rather the smallest
ones established so far, to the best of the authors’ knowledge.

To the best of our knowledge, no prior work has theoretically re-
lated these bounds to the grokking phenomenon. This is likely difficult,
or even impossible, because grokking is not consistently observed: it de-
pends on both the dataset and the model. In contrast, norm-based bounds
incorporate data dependence mostly through the empirical error, while
the complexity term (the norm-based component) is data-independent.
Although the weights implicitly encode some data dependence—being
obtained through minimization on the training set—the complexity term
itself does not explicitly account for it.

In our study, we instead show empirically that computing these theo-
retical quantities across training epochs provides insights into grokking
(see Section 4). Even in cases where the test error shows no improve-
ment, the norm-based complexity terms evolve during training and
steadily decrease, indicating that the model continues to learn—even
when this is not reflected in standard error metrics.

We also note that a theoretical investigation of the dynamics of norm-
based bounds across epochs is, to the best of the authors’ knowledge, not
available in the literature, as such an analysis lies beyond the scope of
norm-based bounds, which assume a fixed model. For this reason, in
Section 4, we report the empirical trends.

3.2. Stability analysis

In this section, we present the state-of-the-art hypothesis stability HS-
based generalization bounds for both shallow and deep machine learning
models . These bounds have undergone significant development over
time [24,60,101,102,121-126]. Initially, they were difficult to apply in
practice due to the challenge of estimating HS directly from data. More
recently, however, it has been demonstrated that HS can either be esti-
mated directly from data [24,122] or tightly bounded [24,126]. HS is
well suited for analyzing the properties of a learning algorithm, as it
is strongly influenced by both the data-generating distribution and the
fine-grained characteristics of the machine learning model. Unlike other
notions of stability, such as uniform stability, HS captures the average
behavior of the model over data and training, rather than its worst-case
behavior [24,60,101,102,121-126,133].

For both shallow and deep machine learning models, the HS coef-
ficient # can be directly estimated from data, provided that sufficient
computational power is available [24,122]. Indeed, computing § re-
quires multiple training iterations, which may be computationally pro-
hibitive if the dataset is large or the model is complex. In practice, § can
be estimated using resampling techniques—such as the Bootstrap [131]
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or the Bag of Little Bootstraps [132]—to reduce computational over-
head, or through theoretical approaches [24,122], yielding an estimate
. Note that theoretical approaches rely on certain assumptions, such as
the monotonic learning property [122]; however, this assumption can
often be easily satisfied in practice [134]. In practice, for shallow ma-
chine learning models, directly estimating f is typically both applicable
and effective [24,133].

For deep ML models, directly estimating # from data is generally
impractical, as the computational requirements quickly become pro-
hibitive. For this reason, one can instead resort to computing an upper
bound on p that is data-dependent [24,126,133]. When the model
f can be expressed as in Eq. (6), where r,(X) € R?, the following
proportionality holds:

(X)) (X))
§ « Cond : , (36)
X LX)
where Cond denotes the condition number, i.e., the ratio of the largest
to the smallest singular value.

Analogously to what has been done in the previous section for
norm-based bounds, in this section we report the tightest hypothesis-
stability-based generalization bounds available in the literature, re-
stricting ourselves to those that are computable and both data- and
algorithm-dependent, so as to extract the highest amount of information
from these theoretical quantities.

Unfortunately, computing hypothesis stability is a computationally
demanding process that can be performed only on limited datasets
and small models. For large datasets and/or large models, the only vi-
able solution is to bound it using highly informative upper bounds, as
previously discussed.

Note also that, in some cases, these bounds can be specialized only
when considering specific algorithms, but such specializations usually
require additional upper-bounding steps that increase the gap between
the quantity we would like to measure and the one we are actually able
to compute.

Grokking is not directly linked to stability unless one examines how
stability evolves across training epochs. Observing a decreasing trend
indicates that the algorithm continues to learn, even when this is not
reflected in traditional error metrics. This is precisely what we will
show in Section 4. A theoretical analysis of these trends does not cur-
rently exist in the literature, as it lies beyond the present capabilities of
hypothesis-stability bounds.

4. Empirical evidence

This section presents empirical evidence supporting the claim that
the theoretical analysis in Section 3 sometimes provides valuable in-
sights into the phenomenon of grokking, but at other times fails, leading
to a discussion of the reasons behind these failures. In particular,
Section 4.1 illustrates results for shallow learning on a toy example,
while Sections 4.2-4.4 present results for deep models, namely FNN,
CNN, and TNN, on more realistic tasks.

4.1. Grokking in shallow models

In this section, we present an example of grokking for shallow (linear)
models using a toy dataset.?

The TOY dataset illustrates the role of implicit bias as a possible
explanation for the phenomenon of grokking. Machine learning algo-
rithms are often designed with an inherent preference for certain classes
of solutions, typically favoring simpler or more regular ones. In some
cases, however, this bias is insufficient, and memorization becomes nec-
essary to achieve optimal performance. To demonstrate this, we consider

2 https://xanderdavies.com/writing/toy_grok/toy_grok.html.
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Fig. 1. Grokking in Shallow Model - Toy dataset.

a binary classification task on a dataset of two-dimensional points. A
linearly separable training set is first constructed, and a hard-margin
Support Vector Machine is applied to determine the maximum-margin
solution. This solution is then used to generate a test set of points
positioned near the decision boundary. Subsequently, central points
in the test set are removed, creating a situation in which test accu-
racy cannot improve unless the learned solution aligns closely with the
maximum-margin classifier. This dataset is depicted in Fig. 1.

For this dataset, the label space is given by Y = {+1} and the input
space by X = R%. We train a linear model of the form f(X) = w' X,
where the weight vector w € R? is optimized via empirical risk min-
imization using gradient descent (learning rate = 0.02) with the loss
function £(f, Z) = e Y/ X,

In Fig. 2, we report the training and test error percentages, the sta-
bility (see Section 3.2), and the norm of the weights (see Section 3.1
Eq. (28)) as functions of the number of optimization steps. In this case,
since the model is simple and computationally efficient, stability (Eq. 24)
is directly estimated from the data using both the misclassification loss
and the training loss [24,122]. As a consequence, stability depends on
the chosen perspective (e.g., misclassification or training loss), whereas
the norm of the weights does not.

As illustrated in Fig. 2 and anticipated in Section 3, stability does
not increase with the number of optimization steps. On the con-
trary, it decreases, which indicates potential improvements in test
error—improvements that are indeed observed. Notably, even when the
training curve appears to plateau, stability continues to decrease signifi-
cantly, suggesting enhanced generalization performance, as reflected in
the reduction of test error.

In contrast, Fig. 2 shows that the norm of the weights is not informa-
tive in this example: it increases with the number of optimization steps,
incorrectly suggesting a decrease in test error that does not occur. This
behavior is expected, since the best solution in this setting corresponds
to the hard-margin classifier, which is characterized by a large weight
magnitude. This highlights one of the main limitations of norm-based
bounds: they provide only upper bounds on the true complexity of the
model, and such bounds are not always tight [24,133].

4.2. Grokking in deep ML: FNN

In this section, we present an example of grokking in an FNN on
the MNIST dataset, taken from [66]. We rely on the implementa-
tion of [135], which also provides the corresponding code,® precisely
replicating the baseline version of Fig. 9 in [135].

In particular, Fig. 3 shows the counterpart of Fig. 2 in Section 4.1:
training and test loss, error percentage, stability (see Section 3.2
Eq. (36)), and the norm of the weights (see Section 3.1 Eq. (33)).

3 https://github.com/ironjr/grokfast.
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The FNN considered in this section is too complex and computation-
ally demanding to estimate stability directly from the data. Therefore,
we use the bound based on the condition number (see Section 3.2).
Consequently, both stability and the norm of the weights remain un-
changed whether we consider loss or error percentage.

From Fig. 3, it can be observed that both stability and the norm of
the weights provide insights into the behavior of the FFN: the larger
the number of optimization steps, the smaller their values, indicating
a possible trend of improvement in the generalization ability of the
model. This confirms the intuition behind the idea of using stability-
and norm-based bounds to gain insights into grokking. The model,
while still learning and not yet exhibiting any improvement in perfor-
mance, is in fact searching in the background for solutions that minimize
the complexity of the representations, thereby reducing both stability
and weight norm. For FNNs, previous works [66,135] have already
shown that the norm of the weights serves as an indicator of the back-
ground progress of the network toward grokking, since older norm-based
bounds were relatively tight. For CNNs and TNNs, instead, past bounds
were too loose, and it was necessary to wait for the newly developed
bounds described in Section 3.1 in order to provide meaningful insights.
The stability results are consistent with previous studies, further con-
firming the ability of stability-based analyses to yield insights into the
complex behavior of learning algorithms [24,133].

4.3. Grokking in deep ML: CNN

In this section, we present an example of grokking in a Graph
CNN on the QM9 dataset, taken from [66], which also provides the
corresponding code.* In particular, we replicate Fig. 5 of [66] with
a= 3.

In particular, Fig. 4 shows the counterpart of Fig. 3 in Section 4.2.
As the QM9 dataset is a regression problem rather than a classifica-
tion one, we report only the training and test loss (measured using the
mean squared error), the stability bound based on the condition number
(see Section 3.2 Eq. (36)), and the norm of the weights (see Section 3.1
Eq. (34)).

Fig. 4 shows a behavior consistent with that observed for FNNs in
Section 4.2. In this case, however, the insights provided by norm-based
bounds are made possible by recent advances in the theory of norm-
based bounds for sparse models (see Section 3.1).

4.4. Grokking in deep ML: TNN

In this section, we present an example of grokking in a TNN on the
MOD97 dataset, based on the seminal work of [57]. We use the im-
plementation provided in a public repository,® faithfully reproducing
Figs. 1 and 4 of [57].

In particular, Fig. 5 shows the counterpart of Fig. 3 in Section 4.2:
training and test loss, error percentage, the stability bound based on the
condition number (see Section 3.2 Eq. (36)), and the norm of the weights
(see Section 3.1 Eq. (35)).

Fig. 5 exhibits a behavior consistent with that observed for FNNs
(Section 4.2) and CNNs (Section 4.3). In this case as well, the applica-
bility of norm-based bounds is due to recent theoretical advances specif-
ically addressing transformer-based architectures (see Section 3.1).

4.5. Discussion

The four empirical studies in Sections 4.1-4.4 jointly probe the ex-
tent to which the theoretical framework of Section 3 sheds light on the
grokking phenomenon across different architectures, tasks, and types
of generalization bounds. Table 1 summarizes the main experimental
dimensions and their connection to the theory.

4 https://github.com/KindXiaoming/Omnigrok.
5 https://github.com/teddykoker/grokking.
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The shallow linear experiment in Section 4.1 provides a setting where
the theoretical notions of hypothesis stability and norm based complex-
ities can both be computed in a relatively direct way from the learned
classifier. Here, we estimate hypothesis stability empirically via leave-
one-out perturbations of the training set Eq. (24), and we measure the
Euclidean norm entering the shallow bound of Eq. (28). The results
clearly show that hypothesis stability decreases over time in parallel
with the improvement in test error, while the weight norm increases
and thus fails to track generalization. This is a concrete instance where
the hypothesis stability based view of Section 3.2 offers a faithful de-
scription of grokking, whereas the norm-based bounds of Section 3.1
are too loose to be predictive in practice. In contrast, the deep set-
tings (FNN, CNN, and TNN) in Sections 4.2-4.4 are characterized by
highly overparameterized models for which direct hypothesis stability
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estimation is computationally infeasible and naive norms are uninfor-
mative. In these cases we rely instead on (i) the condition-number-based
hypothesis stability bound of Eq. (36) and (ii) the architecture-specific
norm bounds of Egs. (33)-(35). Empirically, both quantities decrease
during the grokking phase, aligning well with the theoretical predic-
tion that improved hypothesis stability and reduced norm imply tighter
generalization bounds.

The TOY, MNIST, and MOD97 experiments (Sections 4.1, 4.2,
and 4.4) are binary or multi-class classification problems, whereas the
QM9 experiment in Section 4.3 is a regression task. In classification, we
can track both misclassification error and training loss, and—whenever
feasible—define hypothesis stability with respect to either loss function.
This is explicitly exploited in the shallow learning setting, where hypoth-
esis stability is estimated with respect to both the misclassification loss
and the exponential training loss, illustrating that hypothesis stability is
inherently loss-dependent. In the deep learning settings, however, hy-
pothesis stability is assessed only through the condition-number-based
upper bound of Eq. (36), which abstracts away this dependence and
yields a single complexity proxy that can be used across both classifi-
cation and regression. The QM9 regression experiment shows that the
same hypothesis stability and norm-based tools can still capture the
“background progress” toward grokking when one only observes a con-
tinuous loss (mean squared error). This supports the theoretical claim
that the framework of Section 3 applies beyond classification, as long as
the loss satisfies the regularity assumptions required in the derivation of
the bounds.

A central theme of Section 3.1 is that the tightness of norm-based
bounds strongly depends on the architecture. The shallow toy example
demonstrates a failure mode of classical norm bounds: the best so-
lution corresponds to a large-margin classifier with large norm, so

102, 1012

100
=
% =
& =
102! n
1074}
o T
Optimization Steps
(b) Loss and Stability
[ — | | ||
0 =
10 10°
2 g
1072
100
1074
107°
10! 10% 10° 10*

Optimization Steps

(d) Loss and Norm

—Train — Test — Stability —Norm ‘

Fig. 5. Grokking in Deep ML: TNN.



L. Oneto, S. Ridella, S. Minisi et al.

Neurocomputing 674 (2026) 132826

Table 1

Summary of the four empirical settings of Sections 4.1-4.4 and their relation to the theoretical framework.
Sec. Model Dataset & Task Hypothesis Stability Norm Insights
4.1 Linear (Shallow) TOY Classification Eq. (24) Eq. (28) Just Hypothesis Stability is informative
4.2 FNN MNIST Classification Eq. (36) Eq. (33) Both Hypothesis Stability and Norm are informative
4.3 (Graph) CNN QM9 Regression Eq. (36) Eq. (34) Both Hypothesis Stability and Norm are informative
4.4 TNN MOD?97 Classification  Eq. (36) Eq. (35) Both Hypothesis Stability and Norm are informative

that the upper bound in Eq. (28) fails to reflect the actual evolu-
tion of test error. In the FNN, CNN, and TNN experiments, by con-
trast, we employ recently developed norm bounds that are tailored to
fully-connected, sparse convolutional, and transformer architectures, re-
spectively (Egs. (33)—(35)). The empirical results show that these norms
systematically decrease during the grokking regime, in line with the
theoretical prediction that the learned representations are becoming
simpler in a way that is captured by the corresponding bounds. This
contrast between shallow and deep settings highlights that norm-based
analyses can be informative for grokking only when the bounds are
sufficiently adapted to the architecture under consideration.

Taken together, the four experiments illustrate that hypothesis
stability- and norm-based bounds offer complementary perspectives
on grokking. In all settings, a decrease in the hypothesis stability
proxy (empirical hypothesis stability for the shallow model, condition-
number-based bound for the deep models) accompanies the eventual
improvement in test performance, thereby supporting the theoretical
view of Section 3.2 that increased hypothesis stability is a key driver
of generalization. Norm-based bounds, on the other hand, are informa-
tive in the FNN, CNN, and TNN settings—where architecture-specific
bounds are available—but not in the shallow toy setting - where the
bound is too coarse. This systematic comparison clarifies when the
theoretical tools of Section 3 successfully anticipate grokking (deep ar-
chitectures with tailored bounds, both hypothesis stability and norm)
and when they fall short (shallow toy example, norm-based analysis),
thereby delineating the practical scope and limitations of the proposed
framework.

5. Conclusions

The phenomenon of grokking, a sudden leap in model performance
after an extended period of stagnation, challenges conventional ex-
pectations about how learning and generalization progress in machine
learning systems. While it may initially appear to be an anomaly, our
work demonstrates that grokking can, in fact, be reconciled with existing
principles from statistical learning theory.

By examining grokking through the lens of norm-based and stability-
based generalization bounds, we have shown that the theoretical tools
already developed within statistical learning theory provide valuable in-
sights into this behavior. In particular, we have argued that changes in
implicit regularization dynamics, stability properties of the training al-
gorithm, and the evolving geometry of the learned representations can
collectively explain the transition from poor to strong generalization
performance.

Our theoretical analysis was supported by empirical evidence illus-
trating how models may undergo structural shifts in norm and stability
metrics prior to grokking, even when surface-level performance metrics
remain flat or regress. These observations not only support our theoreti-
cal framing but also suggest that the onset of grokking may, in principle,
be anticipated or influenced.

Ultimately, this work contributes to the broader effort of understand-
ing the complex and sometimes counterintuitive behaviors of modern
machine learning systems. Rather than requiring a departure from
existing theory, we argue that grokking exemplifies the richness and flex-
ibility of statistical learning theory when applied thoughtfully. Future
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work should aim to further unify these theoretical perspectives and ex-
tend them to other emerging phenomena, fostering a deeper and more
predictive understanding of learning in highly expressive models.
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