
Delft Center for Systems and Control

Canonical MMPS realisations
using finest-base-region parti-
tioning

F.T. Gallagher

M
as

te
ro

fS
cie

nc
e

Th
es

is

Canonical MMPS realisations using
finest-base-region partitioning

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

F.T. Gallagher

February 22, 2023

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.

Delft University of Technology
Department of

Delft Center for Systems and Control (DCSC)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis

entitled
Canonical MMPS realisations using finest-base-region partitioning

by
F.T. Gallagher

in partial fulfillment of the requirements for the degree of
Master of Science Systems and Control

Dated: February 22, 2023

Supervisor(s):
dr.ir. A.J.J van den Boom

Reader(s):

Abstract

In this thesis a novel method for the realisation of Max-Min-Plus-Scaling (MMPS) functions
is presented. It has previously been shown that continuous piecewise affine (PWA) functions,
conjunctive MMPS functions (also lattices- or min-max functions) and kripfganz MMPS func-
tions (difference between two convex functions) can each describe the same function. Each
form has its own specific use cases and benefits and thus it may be desired to rewrite a specific
function described in one form, into another. Current techniques are input dependent and
not available for each combination, while some techniques blow the number of parameters.
The technique presented in this thesis however is input and output independent and rigid in
its construction. It fills up the gaps where some realisation were not possible yet, it generates
a rigid and predictable output.

The necessary and sufficient conditions for the existence of each form are proposed. Addi-
tionally, it is explained how redundant terms may be removed in order to ensure a minimal
representation. An algorithm is given for the decomposition and for the construction of each
canonical form and supported with some worked examples. The decomposition provides the
tools to efficiently map between different descriptions.

Master of Science Thesis F.T. Gallagher

Table of Contents

1 Introduction 1
1-1 Background . 1
1-2 Motivation and major work . 2
1-3 Organization . 2

2 MMPS functions and Continuous PWA functions 3
2-1 Continuous Piecewise Affine functions . 3

2-1-1 Working with continuous PWA functions 5
2-1-2 Applications of PWA functions . 5

2-2 Max-min-plus-scaling functions . 6
2-2-1 Conjunctive & disjunctive MMPS functions 7
2-2-2 Kripfganz MMPS functions . 10
2-2-3 Equivalence MMPS functions & continuous PWA functions 11
2-2-4 Applications of MMPS functions . 12

2-3 Summary . 12

3 Transformations between MMPS functions and continuous PWA functions 14
3-1 Transformations between MMPS (canonical) forms 15

3-1-1 General MMPS form to conjunctive MMPS form 15
3-1-2 Conjunctive MMPS form to (Convex) Kripfganz MMPS form 16
3-1-3 Conjunctive MMPS form to disjunctive MMPS form (and vice versa) . . 18
3-1-4 Convex Kripfganz MMPS form to Concave Kripfganz MMPS form (and

vice versa) . 18
3-2 Transformation between canonical MMPS functions and continuous PWA functions 19

3-2-1 Continuous PWA to Conjunctive MMPS form 19
3-2-2 Continuous PWA to Kripfganz MMPS form 22

Master of Science Thesis F.T. Gallagher

Table of Contents iii

3-3 Minimal representations and uniqueness of MMPS canonical forms & continuous
PWA functions . 24
3-3-1 Conjunctive MMPS canonical functions 24
3-3-2 Kripfganz (MMPS canonical) functions 24
3-3-3 Continuous PWA functions . 25

3-4 Summary . 25

4 Finest Base Regions 26
4-1 Definition . 28
4-2 Parameter matrix . 30

4-2-1 Parameter matrix of continuous PWA functions 31
4-2-2 Parameter matrix of conjunctive MMPS functions 31
4-2-3 Parameter matrix of Kripfganz MMPS functions 32
4-2-4 Parameter matrix of general MMPS functions 33
4-2-5 Redundancy in the parameter matrix . 33

4-3 Ordered lattice representation . 34
4-3-1 Modified structure matrix . 34
4-3-2 Finding the active function using ordered lattices 35
4-3-3 Adjacent regions from ordered lattices 36
4-3-4 Convex Folds from ordered lattices . 37
4-3-5 Finest base regions from ordered lattices 38
4-3-6 PWA regions from ordered lattice sets 39

4-4 Continuous PWA function realisation from FBR regions 39
4-4-1 Finding the active function . 40

4-5 Canonical MMPS function realisation from FBR regions 40
4-5-1 Conjunctive MMPS realisation from FBR regions 41
4-5-2 Kripfganz realisation from FBR regions 42

4-6 Total number of FBR regions . 42
4-6-1 Total number of intersection . 43
4-6-2 Upper-bound on number of FBR regions 43
4-6-3 Lower bound on number of FBR regions 44

4-7 Example: demonstration of a continuous PWA realisation using FBR regions . . 45
4-8 Summary . 48

5 Finest Base Region Computation 49
5-1 Preliminaries . 49

5-1-1 Computing an interior point of a convex polytope 49
5-1-2 Polytopes with an empty interior . 50

5-2 Method 1 - FBR partition using hyperplane arrangements 51
5-2-1 FBR region construction . 52

5-3 Method 2 - FBR partition using ordered lattices 55

Master of Science Thesis F.T. Gallagher

Table of Contents iv

5-3-1 FBR region construction . 55
5-4 Method 3 - FBR partition using domain cutting 57

5-4-1 FBR region construction . 57
5-5 Example of method 1, 2 & 3 . 58
5-6 Analysis of the FBR algorithms . 60

5-6-1 Storage requirements . 60
5-6-2 Time complexity . 61

5-7 Results - Performance comparison . 62

6 Discussion 64
6-1 Realisation of canonical MMPS functions and continuous PWA functions 64
6-2 FBR partitioning algorithms . 65

7 Conclusion 66

8 Summary & recommendations for future research 67
8-1 Topics for future research . 68

A MMPS algebraic rules 69
A-1 Algebraic rules . 69
A-2 Conjunctive rewriting . 70

B Convex Polytopes 72
B-1 Theory on Polyhedra . 72

B-1-1 Polyhedral sets . 72
B-2 Hyperplane arrangements . 73

C Algorithms 74

Glossary 111
List of Acronyms . 111
List of Symbols . 111

Master of Science Thesis F.T. Gallagher

Chapter 1

Introduction

1-1 Background

Piecewise Affine (PWA) function is a nonlinear function with affine components defined on
polyhedral regions. Continuous PWA functions can be found in a variety of fields and ap-
plications such as control systems, optimization, robotics and machine learning to name a
few. It is a very intuitive method for approximating nonlinear functions (and systems), but
is also an excellent tool to model hybrid systems. Generally the steps to solve the continuous
PWA function is to identify which polyhedral region is active and then use the corresponding
affine function. Interestingly, although continuous PWA functions are defined as multiple
individual affine sections, there exist analytical expressions for continuous PWA functions.
These functions are called Max-Min-Plus-Scaling (MMPS) functions.
MMPS functions follow a recursive grammar where they are constructed using the opera-
tions maximization, minimization, addition and scalar multiplication. The MMPS frame-
work an extremely useful in various fields and problems such as explicit Model Predictive
Control (MPC), dynamic programming, modelling of Discrete Event Systems (DES), DC
programming, neural networks, parametric linear programs [14, 26, 32, 7, 22] to just name a
few. The MMPS framework can be used to model discrete phenomena such as concurrency,
synchronisation and event triggered systems.
The equivalence between MMPS functions and continuous PWA functions has been exploited
in multiple fields, mostly motivated by the fact that the solution of an MMPS function is
much easier to obtain than it is for a continuous PWA function. For example the control law
of an implicit MPC is usually obtained as a continuous PWA controller. MPC is a powerful
framework, but generally constrained by the online computational complexity. The control
law can then be written as an MMPS expression creating is much more feasible control law
[28]. In the field of hybrid systems the equivalence between continuous PWA and MMPS
classes, including three other classes (Mixed Logical Dynamical (MLD) systems, Extended
Linear Complementarity (ELC) systems and Linear Complementarity (LC) systems) was
established in [13]. It was postulated that the equivalences can be used to transfer established
knowledge between the classes, thus gaining knowledge of each individual class.

Master of Science Thesis F.T. Gallagher

1-2 Motivation and major work 2

There are multiple methods available in literature that can transform a continuous PWA
function into a MMPS function. Either the continuous PWA function is decomposed into two
maximization (convex) functions, or as the minimization of multiple maximization terms.
However the existing methods, do not cover all possible transformations and usually the
methods are for specific transformation. The goal of this thesis is to bridge all transformations
using a universal method.

1-2 Motivation and major work

Motivated by the importance of being able to transform between the continuous PWA and
MMPS classes, the topic of this thesis are the methods for these transformations. The main
research goals of this thesis are:

• How can we transform any MMPS function into a continuous PWA function and vice
versa?

• How would we implement such a method in an algorithm?

In other words, can we find a "universal method" that can transform any type of expression into
another? And how would this be implemented in an algorithm? The major work of this thesis
answer both of these questions. A partitioning method based on hyperplane arrangements
lies at the heart of this method. Three algorithms are presented that can compute this
partitioning. The structure of this thesis is given in the next section.

1-3 Organization

The first two chapters of this thesis are a review of existing research on continuous PWA
functions and MMPS functions. In Chapter 2 an introduction to continuous PWA functions
and MMPS functions is given. The core concepts, use cases and subclasses are discussed.
Emphasis is put on the section of canonical MMPS functions as this is the main topic of this
thesis. In Chapter 3 the techniques for transforming continuous PWA functions and MMPS
functions into one another that can currently be found in existing literature is presented and
discussed.
The main contribution of this thesis can be found in Chapters 4 and 5, where a novel method
for transforming between continuous PWA functions and MMPS functions is presented. In
Chapter 4, a domain partitioning method based hyper-plane arrangements is introduced,
which forms the basis of the method. In Chapter 5 three algorithms for the realisation of
the partitioning is discussed. The three algorithms are analysed for their performance and
compared to each other. Examples are given for the partitioning method and each algorithm.
In Chapter 6 the new partition and algorithm are discussed. In Chapter 7 conclusions are
drawn and a final section for possible future work related to MMPS and this thesis is presented.
A Matlab based MMPS toolbox has been created in the making of this thesis. Documentation
can be found in Appendix C. The reader is referred to the appendix for MMPS algebraic rules
in Appendix A, Polyhedral Theory in Appendix B and Matlab source code for the algorithms
and toolbox in Appendix C.

Master of Science Thesis F.T. Gallagher

Chapter 2

MMPS functions and Continuous
PWA functions

In this first chapter we will review the concepts of continuous Piecewise Affine (PWA) func-
tions and Max-Min-Plus-Scaling (MMPS) functions. This includes their definition, canonical
forms (MMPS), the equivalence between the functions and their applications. We will start
with continuous PWA functions as these are the most intuitive. From there we will bridge
over to MMPS functions and the equivalences.

2-1 Continuous Piecewise Affine functions

A piecewise affine (PWA) function is a function that is defined by multiple affine segments,
each with its own slope and intercept. The function can be thought of as being constructed
by gluing together these linear segments at certain points.
Generally Piecewise affine functions are a composition of affine functions on a polyhedral
partition given by

f(x) = fi(x) := αi(x) + βi, x ∈ Ωi (2-1)

where fi : Ωi → R with Ωi ⊆ Rn is called the local function on the convex polyhedral
region Ωi. The regions form a partition of the convex polyhedral set Ω := dom(f), i.e.
int(Ωi) ∩ int(Ωj) = ∅ for all i ̸= j and

⋃nr
i=1 Ωi = Ω, where nr is the total number of regions.

An important class of PWA functions are those that are continuous on their domain. A
continuous PWA function is a PWA function in which the different affine segments are joined
together in such a way that there are no jumps or discontinuities at the transitions. In other
words, the function is defined and continuous over the entire domain. Continuous PWA
functions are defined as:

Definition 2-1.1. [6] Continuous piecewise-affine function. A function f : Ω → R, with
Ω ⊆ Rn, is said to be a continuous piecewise-affine (PWA) function if and only if the following
conditions hold:

Master of Science Thesis F.T. Gallagher

2-1 Continuous Piecewise Affine functions 4

1. The domain space Ω can be divided into a finite number of regions which are expressed
as convex polyhedra as, Ω =

⋃N
i=1 Ωi, Ωi ̸= ∅, where N is the total number of regions.

The polyhedra are closed and have non-overlapping interiors, i.e. int(Ωi) ∩ int(Ωj) =
∅, ∀i, j ∈ {1, ..., N}, i ̸= j. The boundries of each polyhedra region are of (n −
1)−dimensional hyperplane.

2. For each region Ωi, f can be expressed as:

f(x) = ℓloc(i)(x) := αT
(i)x+ β(i), ∀x ∈ Ωi (2-2)

where we refer to ℓloc(i) : Ωi → R as the local function, with α(i) ∈ Rn and β(i) ∈ R

3. f is continuous on any boundary between two adjacent regions

Note that the local affine function ℓloc(i) may be the same for different regions, i.e.

ℓloc(i)(x) = ℓloc(j)(x), ∀x ∈ Ω (2-3)

or simply

loc(i) = loc(j) (2-4)

Suppose there are M distinct affine functions, i.e., loc(i) ∈ {1, ...,M}, ∀i ∈ {1, ..., N}, we
have M ≤ N .

Example 1. Let us demonstrate a continuous PWA function with an example. Consider a
1-dimensional continuous PWA function with 5 local affine functions, defined over the interval
[0, 5]:

fpwa(x) =



ℓ1(x) = 0.5x+ 0.5 x ∈ Ω1

ℓ2(x) = 2x− 1 x ∈ Ω2

ℓ3(x) = 2 x ∈ Ω3

ℓ4(x) = −2x+ 9 x ∈ Ω4

ℓ5(x) = −0.5x+ 3 x ∈ Ω5

(2-5)

with the regions Ωi:

Ω1 = [0.0, 1.0],Ω2 = [1.0, 1.5],Ω3 = [1.5, 3.5],Ω4 = [3.5, 4.0],Ω5 = [4.0, 5.0]

The function produces the following plot:

Master of Science Thesis F.T. Gallagher

2-1 Continuous Piecewise Affine functions 5

Figure 2-1: Plot of example 1, a 1-dimensional continuous PWA function. The
function is defined over the interval [0,5]. There are 5 regions where a specific affine
function is active.

2-1-1 Working with continuous PWA functions

Continuous PWA functions are defined by a set of affine functions and a convex polytope over
which a certain affine function is active. Thus we need to store three types of information:
the unique affine functions, the regions and which affine function is active over which region.

For a continuous PWA function in Rn with NΩ regions described in H-representation the
storage requirements for the regions are NΩ number of matrices of size NHi × n and where
NHi are the number of hyperplanes that defines the region NΩi . For the unique affine functions
Naff in Rn can be stored into a Naff × n matrix. There are different techniques to keep track
which function is active over which region. For example one can store the active function
inside a cell along side the region, or an index pointing to the matrix with unique affine
functions can instead be stored with the region.

The MPT-toolbox [16] uses (nested) cells to store vectors and matrices. For the purpose of
this paper, the MPT-toolbox is used to store and work with continuous PWA functions.

2-1-2 Applications of PWA functions

PWA functions are very intuitive and conceptually easy to understand. PWA functions can
therefor be a powerful tool to approximate nonlinear functions. The key advantage of PWA
functions is that they are relatively simple to work with and can provide a good approximation
of more complex nonlinear functions [12, 14, 33, 28, 3]. One of the uses of PWA functions

Master of Science Thesis F.T. Gallagher

2-2 Max-min-plus-scaling functions 6

is in the field of control systems. PWA models can be used to approximate the behavior of
nonlinear systems, making them an excellent choice for control design [12, 15, 3]. This is done
by partitioning the state space of the system into a number of regions, and then approximating
the dynamics of the system within each region by a linear function. The resulting model is
then a piecewise affine function, with each linear function corresponding to a different region
of the state space.

Another application of PWA functions is in the field of machine learning, specifically in the
context of neural networks [20]. It’s known that neural networks are universal approximators,
meaning they can approximate any function given enough hidden neurons, but when it comes
to large-scale datasets and high-dimensional inputs, it’s computationally infeasible[20].

In general, PWA functions are useful in any context where the goal is to approximate a
complex nonlinear function with a simpler, piecewise affine function. They can provide a
good trade-off between complexity and accuracy and are widely used in many fields such as
optimization, machine learning, control systems, computer vision and more [20, 12, 3, 2].

2-2 Max-min-plus-scaling functions

With the introduction of PWA functions a jump is made to another type of functions, namely
max-min-plus-scaling functions. As will be shown, continuous PWA functions and MMPS
functions are canonically identical, i.e. each continuous PWA function has a MMPS function
with the same output behaviour. More specifically, MMPS functions can be seen as an
analytical expression of a continuous PWA function.

The max-min-plus-scaling framework may be viewed as a general description for functions
using the operations maximization, minimization, addition and scaling. The term was first
introduced in [8]. First define the following ⊤ = ∞, ε = −∞, R⊤ = R∪{∞}, Rε = R∪{−∞}
and Rc = R∪ {∞} ∪ {−∞}. Furthermore 0 · ε = 0 and 0 · ⊤ = 0 and ⊤ + ε = 0. Then let the
set R be any of three sets R⊤, Rc or Rε. Then a MMPS function is defined as follows:

Definition 2-2.1. [8] (Max-min-plus-scaling function): A max-min-plus-scaling (MMPS)
function f : Rn → R is defined by the recursive grammar

f(x) := xi|α| max
(
fk(x), fl(x)

)
| min

(
fk(x), fl(x)

)
|fk(x) + fl(x)|βfk(x) (2-6)

With i ∈ {1, 2, ..., n}, α ∈ R, β ∈ R and where fk and fl are again MMPS functions over the
set R. The symbol | stands for "or" and max and min are performed entry-wise.

For vector-valued MMPS functions f : Rn → Rm the above statements hold componentwise.

A MMPS function as defined above in Definition 2-2.1 can be considered in general form
when the recursion does appear in a specific order. There are however two forms with specific
recursion that can be considered canonical, i.e. any MMPS function using a specific recursion
can be rewritten into these canonical form. The form are called:

• Conjunctive & disjunctive MMPS functions - This canonical form uses a single
minimization and single maximization (and vice versa) in consecutive order, over a set
of affine functions.

Master of Science Thesis F.T. Gallagher

2-2 Max-min-plus-scaling functions 7

• Convex & concave Kripfganz MMPS functions - This canonical form consists of
the difference of two convex or maximization functions (or two concave or minimization
functions) of a set of affine functions.

2-2-1 Conjunctive & disjunctive MMPS functions

Conjunctive and disjunctive MMPS functions are functions that perform the operations min-
imization and maximization (or maximization and minimization) in consecutive order, of a
set of affine functions.
Definition 2-2.2. [7](Conjunctive & disjunctive MMPS function) A scalar-valued MMPS
function f : Rn → R is called a conjunctive MMPS function if it can be written in the form:

f(x) = min
i=1,...,K

max
j=1,...,ni

(αT
(i,j)x+ β(i,j)) (2-7)

or into the disjunctive canonical form, for f : Rn → R, f(x) = maxi=1,...,L minj=1,...,mi(γT
(i.j)x+

δ(i.j)) for some integers K, L, n1, ..., nK , m1, ...,mL, vectors α(i,j), γ(i,j) and real numbers
β(i,j), δ(i,j). For vector-valued MMPS functions the above statements hold componentwise.
(Or alternatively, αi,j are matrices, and βi,j are vectors).

In literature these type of functions can also be found under the name min-max and max-min
functions or lattice representation. The latter is usually used in the context of continuous
piecewise affine functions which will be discussed in the forth coming section. For the rest of
this thesis, the use of conjunctive MMPS functions is used unless specifically clarified.
It is shown that any MMPS function from Definition 2-2.1 can be written into the conjunctive
or disjunctive MMPS form:
Theorem 2-2.1. [7] Any MMPS function f : Rn → R can be rewritten into the conjunctive
or disjunctive MMPS form.

Proof. [7, 29] Consider the two affine functions fk and fl, then the functions that result from
applying the basic constructors of an MMPS function (a list with properties of the max, min,
+ and scaling operations in the MMPS framework are provided in Appendix A) are in min-
max MMPS form. Then a recursive argument can be used that consists in showing that if
the basic constructors of an MMPS function are applied to two (or more) MMPS functions in
min-max MMPS form, then the result can again be transformed into min-max MMPS form.
Let two MMPS functions f and g be in min-max canonical form : f = min(max(f1, f2) max(f3, f4))
and g = min(max(g1, g2) max(g3, g4)). Now it can be shown that max(f, g), min(f, g), f + g
and βf with β ∈ R can again be written in min-max MMPS form:

max(f, g) = max[min(max(f1, f2),max(f3, f4)),min(max(g1, g2),max(g3, g4))]
= max[max(min(f1, f3),min(f1, f4),min(f2, f3),min(f2, f4),

max(min(g1, g3),min(g1, g4),min(g2, g3),min(g2, g4)]
= max(min(f1, f3),min(f1, f4),min(f2, f3),min(f2, f4),

min(g1, g3),min(g1, g4),min(g2, g3),min(g2, g4))
= min(max(f1, f1, f2, f2, g1, g1, g2, g2),max(f1, f1, f2, f2, g1, g1, g2, g4), ...

max(f3, f4, f3, f4, g3, g4, g3, g4))

Master of Science Thesis F.T. Gallagher

2-2 Max-min-plus-scaling functions 8

min(f, g) = min[min(max(f1, f2),max(f3, f4)),min(max(g1, g2),max(g3, g4))]
= min(max(f1, f2),max(f3, f4),max(g1, g2),max(g3, g4))

f + g = min(max(f1, f2),max(f3, f4)) + min(max(g1, g2),max(g3, g4))
= min(max(f1, f2) + max(g1, g2)),max(f1, f2) + max(g3, g4),

max(f3, f4) + max(g1, g2)),max(f3, f4) + max(g3, g4))
= min(max(f1 + g1, f1 + g2, f2 + g1, f2 + g2),max(f1 + g3, f1 + g4, f2 + g3, f2 + g4)

max(f3 + g1, f4 + g1, f4 + g1, f4 + g2),max(f3 + g3, f3 + g4, f4 + g3, f4 + g4))

βf = βmin(max(f1, f2),max(f3, f4))
= min(max(βf1, βf2),max(βf3, βf4)) ifβ ≤ 0
= −|β| min(max(f1, f2),max(f3, f4))
= − min(max(|β|f1, |β|f2),max(|β|f3, |β|f4))
= max(− max(|β|f1, |β|f2),− max(|β|f3, |β|f4))
= max(min(−|β|f1,−|β|f2),min(−|β|f3,−|β|f4))
= max(min(βf1, βf2),min(βf3, βf4))
= min(max(βf1, βf3),max(βf1, βf4),max(βf2, βf3),max(βf2, βf4))

Concluding that the conjunctive MMPS form is indeed a canonical form within the MMPS
framework.

Lattice Representations Another representation of conjunctive & disjunctive MMPS func-
tions can be found in literature under the name lattice representation (of piecewise affine
functions) [11, 26, 32]. Here conjunctive & disjunctive MMPS functions are represented using
sets, rather than matrices:

f(x) = min
i=1,...,M

{
max
j∈Ii

{ℓj(x)}
}
, ∀x ∈ f : Rn (2-8)

or f = maxi=1,...,M2

{
minj∈Īi

{ℓj}
}

in which ℓj is an affine function, M and M2 are integers
and Ii and Īi are index sets. The sets and parameters of the affine functions are usually stored
in a structure matrix ψ and parameter matrix ϕ [31]. The lattice representation may then
also be written as:

f(x|ψ, ϕ) = min
i=1,...,M

{
max

j=1,...,M
ψij=1

{l(x|ϕj)}
}
, ∀x ∈ R (2-9)

Where ϕ = [ϕ1, ..., ϕM]T is the M × (n+ 1) parameter matrix, and ψ = [ψij] a M ×M zero-
one matrix [31]. The parameters of the affine functions l(x) are exactly the row vectors of ϕ.
Hence the matrix ϕ is called the parameter matrix. The elements of the structure matrix ψ
can be either a numerical one or zero:

ψij =
{

1, if j ∈ Ii

0, otherwise
(2-10)

Master of Science Thesis F.T. Gallagher

2-2 Max-min-plus-scaling functions 9

Uniqueness of the conjunctive MMPS form It is important to note that the conjunctive
form is not unique, i.e. there are different constructions of the matrices α(i,j) and β(i,j), or
the index sets Ii that have the same input-output behaviour. In the next section the topic of
irredundant form will be discussed, where the function is described using the least amount of
parameters.
Example 2. Consider a 1-dimensional disjunctive MMPS function given by:

f(x) = max
(

min(0.5x+ 0.5,−0.5x+ 3),min(2x− 1, 2,−2x+ 9)
)

(2-11)

The α and β matrices from Definition 2-2.1 are:

α1 =


0.5
ϵ
ϵ
ϵ

−0.5

 , α2 =


ϵ
2
0

−2
ϵ

 , β1 =


0.5
ϵ
ϵ
ϵ
3

 , β2 =


ϵ

−1
2
9
ϵ


The function can also be represented with a structure matrix ψ and parameter matrix ϕ
according to the lattice representation:

ϕ =


0.5 0.5
2 −1
0 2

−2 9
−0.5 3

 , ψ =


1 0
0 1
0 1
0 1
1 0


Each producing the same plot:

Figure 2-2: Function plot of Example 2

Master of Science Thesis F.T. Gallagher

2-2 Max-min-plus-scaling functions 10

2-2-2 Kripfganz MMPS functions

Kripfganz functions are function that are composed of the difference of two convex functions,
or likewise, two concave functions. Kripfganz functions first appeared in [19], where it was
shown that any continuous PWA function can be written as the difference of two convex PWA
functions:

Lemma 2-2.2. Every continuous PWA function f : Ω → R defined over a convex polyhedral
partition of Ω ⊆ Rn with full dimensional elements Ωk can be written as the difference of two
convex PWA functions g(x) and h(x) i.e.

f(x) = g(x) − h(x) (2-12)

Here the functions g(x) and h(x) are again continuous PWA functions according to Definition
2-1.1. However because g(x) and h(x) are both convex functions, they can be rewritten into
the MMPS-framework according to Definition 2-2.1 as two maximization functions:

Definition 2-2.3. (Kripfganz MMPS functions [19, 29]) A scalar-valued MMPS function
f : Rn → R is called a Kripfganz MMPS functions if it can be written in the form:

f(x) = max
i=1,...,M

(µT1,ix+ ν1,i) − max
j=1,...,K

(µT2,ix+ ν2,i), ∀x ∈ Rn (2-13)

Like conjunctive & disjunctive MMPS functions, the kripfganz MMPS function may also be
written using index sets:

f = max
i∈Ij

{ℓj} − max
i∈Ik

{ℓk}, ∀x ∈ Rn (2-14)

in which ℓi and ℓj are affine functions and Ij index sets.

Uniqueness of the kripfganz MMPS form Both the convex decomposition as well as the
parameters of the two convex functions are not necessarily unique. The forthcoming section
is dedicated to the uniqueness of the partition.

Example 3. Consider the following 1-dimensional kripfganz MMPS function with constrains
0 ≤ x ≤ 5:

f(x) = max(−1.5x+ 2, 8,−1.5x+ 9.5) − max(2x− 1, 6,−2x+ 9)

with the two convex parts g(x) = max(−1.5x + 2, 8,−1.5x + 9.5) and h(x) = max(2x −
1, 6,−2x+ 9). This produces the following plot for f(x), g(x) and −h(x):

Master of Science Thesis F.T. Gallagher

2-2 Max-min-plus-scaling functions 11

Figure 2-3: Function plot of Example 3

2-2-3 Equivalence MMPS functions & continuous PWA functions

It is demonstrated in [10, 21, 32] that any continuous PWA function can be expressed by a
min-max or max-min composition of its affine components, i.e. the conjunctive MMPS form:

Theorem 2-2.3. [10, 21, 32] If f is a continuous piecewise affine function of the form given
in Definition 2-1.1, then there exist index sets I1, ..., Il ⊆ {1, ..., N} such that

f(x) = min
i=1,...,l

max
j∈Ii

(αT
(i)x+ β(i)), ∀x ∈ Rn (2-15)

In [26] formal proofs are given demonstrating that any continuous PWA can be described by
Equation 2-15, which are then called lattice PWA representations. From the definition of the
canonical forms the following can be concluded:

Lemma 2-2.4. [29, 27] Any MMPS function is also a continuous PWA function

Well-defined When MMPS functions that are defined over a convex polyhedral Ω ⊆ Rn,
then the relation is well-posed. MMPS function however can also be defined over R⊤, Rε
and Rc. In this case the Minkowski cone may be used to map the function to the real space,
R → R. In this thesis we consider any MMPS function defined over Rn as well-defined .

Master of Science Thesis F.T. Gallagher

2-3 Summary 12

Example 4. (Example 1 continued) Let us consider again the previous examples. Be re-
minded that we had the following functions: The continuous PWA function in Example 1:

fpwa(x) =



ℓ1(x) = 0.5x+ 0.5 x ∈ [0.0, 1.0]
ℓ2(x) = 2x− 1 x ∈ [1.0, 1.5]
ℓ3(x) = 2 x ∈ [1.5, 3.5]
ℓ4(x) = −2x+ 9 x ∈ [3.5, 4.0]
ℓ5(x) = −0.5x+ 3 x ∈ [4.0, 5.0]

The equivalent conjunctive MMPS function from Example 2:

fcd(x) = max
(

min(0.5x+ 0.5,−0.5x+ 3),min(2x− 1, 2,−2x+ 9)
)

And the equivalent kripfganz MMPS function from Example 3:

fkg(x) = max(−1.5x+ 2, 8,−1.5x+ 9.5) − max(2x− 1, 6,−2x+ 9)

By now it should have been noticed that each example produces the same output.

2-2-4 Applications of MMPS functions

The canonical MMPS representations are an extremely useful in various fields and problems
such as explicit MPC, dynamic programming, modelling of DES, DC programming, neural
networks, parametric linear programs [15, 29, 35, 7, 24] to just name a few. The MMPS
framework can be used to model discrete phenomena such as concurrency, synchronisation
and event triggered systems.

In many cases this is the case where the problem is described as a continuous PWA function.
For example, the control law in explicit MPC is obtained by solving a finite-horizon open-
loop optimal control problem at each sampling instant. At the next time instant, this is
repeated where the horizon is shifted one step. This optimization relies on a model of the
system (hence the name Model Predictive Control) and can take constraints on the input and
output. A continuous PWA control law arises in the case these constraints are affine. As a
result the control law can be taken offline and the online computation can be reduced to an
online evaluation. MMPS canonical forms are an excellent tool to represent the control law
as an analytical form, rather than an look-up table [31].

2-3 Summary

Continuous PWA function is a function that is defined by multiple affine segments, each with
its own slope and intercept. The function can be thought of as being constructed by gluing
together these linear segments at certain points. Generally Piecewise affine functions are
a composition of affine functions defined over polyhedral regions. PWA functions are very
intuitive and conceptually easy to understand. PWA functions can therefor be a powerful
tool to approximate nonlinear functions. The key advantage of PWA functions is that they

Master of Science Thesis F.T. Gallagher

2-3 Summary 13

are relatively simple to work with and can provide a good approximation of more complex
nonlinear functions.

An MMPS expression uses a recursive grammar to construct functions composed of the op-
erations maximization, minimization, scalar multiplication and addition. Two important
canonical MMPS function are those that can be described as the minimization of multiple
maximization terms, so called conjunctive MMPS functions, and those that can be described
as the difference between two maximization (convex) parts. (Canonical) MMPS functions are
not necessarily unique nor irredundant. The MMPS framework is an excellent tool to model
hybrid systems and discrete event systems, or to construct efficient optimization problems.

Continuous PWA functions and MMPS functions are equivalent. Both canonical MMPS forms
can be viewed as an analytical expression of continuous PWA functions. Solving a (canonical)
MMPS function is computationally more efficient than that of a continuous PWA function.

Master of Science Thesis F.T. Gallagher

Chapter 3

Transformations between MMPS
functions and continuous PWA

functions

In this chapter we look into transforming one MMPS form into another, as well as transforming
continuous PWA functions into MMPS (canonical) functions and vice versa. Because each
form has its own advantage, it is of great value to be able to transform one form into another.

There does not exist a general strategy in current literature to map one form into another.
Moreover, not all transformation can be found in literature. The following transformations
can be found:

• 3-1-1 General MMPS to conjunctive MMPS form

• 3-2-1 Continuous PWA to conjunctive MMPS form.

• 3-2-2 Continuous PWA to Convex Kripfganz MMPS form

• 3-1-2 Conjunctive MMPS form to Convex Kripfganz MMPS form

• 3-1-3 Conjunctive MMPS form to disjunctive MMPS form (and vice versa)

• 3-1-4 Convex Kripfganz MMPS form to Concave Kripfganz MMPS form (and vice versa)

Methods for mapping between continuous PWA and canonical MMPS functions rely on algo-
rithms strategically partitioning the domain and collecting index sets, whereas the methods
for mapping between canonical MMPS functions rely on algebraic properties of the max and
min properties, and the reordering of terms. Each transformation will now be reviewed in the
next sections.

Master of Science Thesis F.T. Gallagher

3-1 Transformations between MMPS (canonical) forms 15

cPWAConj

Kripf

gMMPS

3-1-2

3-2-1

3-1-1
∗

∗
3-1-2

3-1-3

3-1-4

Figure 3-1: Connections between MMPS canonical forms. The numbers indicate existing tech-
niques for mapping one form to another. Dashed lines indicate the lack of any methods that can
may be found in current existing literature.

3-1 Transformations between MMPS (canonical) forms

3-1-1 General MMPS form to conjunctive MMPS form

We first start with the idea of having a MMPS function in general form, and finding a
canonical MMPS function. With ’general form’, we talk about any MMPS function (following
the recursive grammar from Definition 2-2.1) that is not in any of the canonical forms.

The algebraic rules for the MMPS framework (i.e. the operations maximization, minimization,
addition and scaling) can be used to transform each part of the MMPS framework into the
conjunctive function. Expressing any MMPS function into the conjunctive form follows from
the set of rules from the work of [7]. These rules are constructive and following these rules
transforms a general MMPS function into a conjunctive (and likewise disjunctive) MMPS
function algorithmic.

Example 5. Consider the following MMPS function in general form:

f(x) = min(ℓ1, ℓ2) − 2 max
(

min(ℓ3, ℓ4), ℓ5
)

first we rewrite the left and right term in conjunctive form:

min(ℓ1, ℓ2) = min
(

max(ℓ1),max(ℓ2)
)

and the right term:

−2 max
(

min(ℓ3, ℓ4), ℓ5
)

= −2 min
(

max(ℓ3, ℓ5),max(ℓ4, ℓ5)
)

= min
(

max(−2ℓ3,−2ℓ4),max(−2ℓ3,−2ℓ5),
max(−2ℓ4,−2ℓ5),max(−2ℓ5)

)
Master of Science Thesis F.T. Gallagher

3-1 Transformations between MMPS (canonical) forms 16

Now we combine the left and rigt side to a single conjunctive expression:

f(x) = min
(

max(ℓ1),max(ℓ2)
)
+

min
(

max(−2ℓ3,−2ℓ4),max(−2ℓ3,−2ℓ5),
max(−2ℓ4,−2ℓ5),max(−2ℓ5)

)
= min(

max(ℓ1 − 2ℓ3, ℓ1 − 2ℓ4),
max(ℓ1 − 2ℓ3, ℓ1 − 2ℓ5),
max(ℓ1 − 2ℓ4, ℓ1 − 2ℓ5),
max(ℓ1 − 2ℓ5),
max(ℓ2 − 2ℓ3, ℓ2 − 2ℓ4),
max(ℓ2 − 2ℓ3, ℓ2 − 2ℓ5),
max(ℓ2 − 2ℓ4, ℓ2 − 2ℓ5),
max(ℓ2 − 2ℓ5)

)

3-1-2 Conjunctive MMPS form to (Convex) Kripfganz MMPS form

In [30] a method for transforming a conjunctive MMPS form into a convex Kripfganz MMPS
form was given. The general idea is to construct the left side convex function g(x) by taking
the sum of all maximization terms using combinatorics, and then to build h(x) by solving
h(x) = g(x) − f(x) and again using a combinatorics approach:

proposition 3-1.1. [30, 29] The function f(x) = mini=1,...,K maxj∈ni

(
αT

(i,j)x+ β(i,j)
)

where
αT

(i,j)x + β(i,j) is affine in x, can be written as a difference of two convex functions, i.e.
f(x) = g(x) − h(x).

Proof. [29, 30] First define:

gi = max
j∈(1,...,ni)

(
αT

(i,j)x+ β(i,j)
)

(3-1)

Then the following can be derived:

min
i∈(1,...,K)

gi −
∑

t∈(1,...,K)
gt = min

i∈(1,...,K)

(
gi −

∑
t∈(1,...,K)

gt
)

(3-2)

= min
i∈(1,...,K)

(
−

∑
t∈(1,...,K)/i

gt
)

(3-3)

= − max
i∈(1,...,K)

(∑
t∈(1,...,K)/i

gt
)

(3-4)

(3-5)

thus
f(x) = min

1=1,...,K
gi =

∑
t∈(1,...,K)

gt − max
i∈(1,...,K)

(∑
t∈(1,...,K)/i

gt
)

(3-6)

Master of Science Thesis F.T. Gallagher

3-1 Transformations between MMPS (canonical) forms 17

Then it follows f(x) = g(x) − h(x) where g(x) and h(x) are defined as:

g(x) =
∑

t∈(1,...,K)
gt

=
∑

t∈(1,...,K)
max
j∈ni

(
αT

(t,j)x+ β(t,j)
)

h(x) = max
i∈(1,...,K)

(∑
t∈(1,...,K)/i

gt
)

= max
i∈(1,...,K)

(∑
t∈(1,...,K)/i

(αT
(t,j)x+ β(t,j))

)

Example 6. Let us consider the following conjunctive MMPS function, with affine functions
ℓi, i = 1, ..., 6, expressed in sets:

f(x) = min
(

max(ℓ1, ℓ5),max(ℓ2, ℓ3, ℓ4),max(ℓ6)
)

(3-7)

We first find the convex function g(x) by summing over the maximization terms:

g(x) =
∑

max(ℓ1, ℓ5),max(ℓ2, ℓ3, ℓ4),max(ℓ6)
= max(ℓ1, ℓ5) + max(ℓ2, ℓ3, ℓ4) + max(ℓ6)

Note that we can further expand the last line using combinatorics, but we will save that for
the last step to maintain a better overview and understanding of the algorithmic process.
Now let us rewrite f(x) by changing the outer minimization operation as a maximization:

f(x) = min
(

max(ℓ1, ℓ5),max(ℓ2, ℓ3, ℓ4),max(ℓ6)
)

= − max
(

− max(ℓ1, ℓ5),− max(ℓ2, ℓ3, ℓ4),− max(ℓ6)
)

Then we find the convex function h(x), by solving h(x) = g(x) − f(x), for the g(x) and
rewritten f(x):

h(x) = g(x) − f(x)
= max(ℓ1, ℓ5) + max(ℓ2, ℓ3, ℓ4) + max(ℓ6)

+ max
(

− max(ℓ1, ℓ5),− max(ℓ2, ℓ3, ℓ4),− max(ℓ6)
)

= max
(

max(ℓ1, ℓ5) + max(ℓ2, ℓ3, ℓ4) + max(ℓ6) − max(ℓ1, ℓ5),
max(ℓ1, ℓ5) + max(ℓ2, ℓ3, ℓ4) + max(ℓ6) − max(ℓ2, ℓ3, ℓ4),
max(ℓ1, ℓ5) + max(ℓ2, ℓ3, ℓ4) + max(ℓ6) − max(ℓ6))

= max
(

max(ℓ2, ℓ3, ℓ4) + max(ℓ6),
max(ℓ1, ℓ5) + max(ℓ6),
max(ℓ1, ℓ5) + max(ℓ2, ℓ3, ℓ4))

Master of Science Thesis F.T. Gallagher

3-1 Transformations between MMPS (canonical) forms 18

Finally we can expand the nested maximization terms to get the full expression. :

h(x) = max
(

ℓ2 + ℓ6, ℓ3 + ℓ6, ℓ4 + ℓ6,

ℓ1 + ℓ6, ℓ5 + ℓ6

ℓ1 + ℓ2, ℓ1 + ℓ3, ℓ1 + ℓ4, ℓ5 + ℓ2, ℓ5 + ℓ3, ℓ5 + ℓ4)
3-1-3 Conjunctive MMPS form to disjunctive MMPS form (and vice versa)

Mapping between the conjunctive and disjunctive form is easily verifiable given the properties
of the max and min operators [7]:

min(max(α, β),max(γ, δ)) = max(min(α, γ),min(α, δ),min(β, γ),min(β, δ))
max(min(α, β),min(γ, δ)) = min(max(α, γ),max(α, δ),max(β, γ),max(β, δ))

Example 7. Let us again consider the conjunctive MMPS function, with affine functions ℓi,
i = 1, ..., 6, expressed in sets:

f(x) = min
(

max(ℓ1, ℓ5),max(ℓ2, ℓ3, ℓ4),max(ℓ6)
)

(3-8)

Then using the approach from above and combinatorics we get the following disjunctive
MMPS function:

f(x) = max
(

min(ℓ1, ℓ2, ℓ6),min(ℓ1, ℓ3, ℓ6),min(ℓ1, ℓ4, ℓ6),
min(ℓ5, ℓ2, ℓ6),min(ℓ5, ℓ3, ℓ6),min(ℓ5, ℓ4, ℓ6))

3-1-4 Convex Kripfganz MMPS form to Concave Kripfganz MMPS form (and
vice versa)

The Kripfganz MMPS form is generally noted as the difference between two convex functions,
i.e. using maximization. Through the relation between the operators maximization and
minimization, the (convex) Kripfganz MMPS form may also be written as the difference
between two concave functions, or using minimization[7]:

max(α, β) = − min(−α,−β) (3-9)
min(α, β) = − max(−α,−β) (3-10)

Example 8. Consider the following kripfganz MMPS function:

f(x) = max(ℓ1, ℓ2, ℓ3) − max(ℓ4, ℓ5, ℓ6)
= min(−ℓ4,−ℓ5,−ℓ6) − min(−ℓ1,−ℓ2,−ℓ3)

Master of Science Thesis F.T. Gallagher

3-2 Transformation between canonical MMPS functions and continuous PWA functions 19

3-2 Transformation between canonical MMPS functions and con-
tinuous PWA functions

3-2-1 Continuous PWA to Conjunctive MMPS form

There are several methods to create the conjunctive MMPS function from a continuous PWA
function, but these methods use the principle of finding sets where specific affine functions
are larger or equal to the active function. In other words the structure matrix ψ can be
constructing in the following way:

ϕij =
{

1 if ℓi(x) ≥ ℓj(x)
0 else

with i ≥ 1, the number of regions, and 1 ≤ j ≤ Naff, the number of unique affine functions.
However there are different choices over which regions should be looped. In [31, 26] the
strategy is to loop over the original partition of the continuous PWA function. In [35] and
in [34] the base region partition and convex projection region partition is suggested which
in turn create both different sets, but also give different results when redundancy removal
techniques are deployed. We discuss each method briefly.

Standard method In [26, 31] the following method is used to create the conjunctive MMPS
form:

Lemma 3-2.1. Assume that Ωi,Ωj are two n-dimensional convex polytopes, where ℓi(x), ℓj(x)
are their local affine functions with i, j ∈ {1, ..., Naff}. Then the structure matrix ψ =
[ψij]Naff×Naff can be calculated as follows:

ϕij =
{

1 if ℓi(vk) ≥ ℓj(vk), 1 ≤ k ≤ Ki

0 if ℓi(vk) < ℓj(vk), k{1, ...,Ki}
(3-11)

where vk are the vertices of Ωi with 1 ≤ k ≤ Ki and Ki ∈ Z+ is the number of vertices of Ωi

Proof. [31] Since Ωi is an n-dimensional polytope, it can be described by its vertices vi, ..., vKi

Ωi =
{
x ∈ Rn|x =

Ki∑
k=1

λkvk, 0 ≤ λk ≤ 1,
Ki∑
k=1

λk = 1
}

(3-12)

Then for any x ∈ Ωi we have

ℓi(x) = ℓi

(
Ki∑
k=1

λkvk

)
=

Ki∑
k=1

λkℓi(vk)

ℓj(x) = ℓj

(
Ki∑
k=1

λkvk

)
=

Ki∑
k=1

λkℓj(vk)

Master of Science Thesis F.T. Gallagher

3-2 Transformation between canonical MMPS functions and continuous PWA functions 20

if ℓi(vk) ≥ ℓj(vk), ∀1 ≤ k ≤ Ki, then ℓi(x) ≥ ℓj(x) holds for all x ∈ Ωi. It follows that
ψij = 1.

Similarly, if there exists any k ∈ {1, ...,Ki} such that ℓi(vk) < ℓj(vk), then ℓi(x) and ℓj(x) will
intersect together with an (n − 1)−dimensional hyperplane as the common boundary. This
implies that ψij = 0.

Using the same procedure stated above, all the elements in the structure matrix ψ can be
calculated, and this completes the proof.

Base Region Realisation In [19, 35, 26] a method for mapping the continuous PWA function
to the conjunctive (and disjunctive) form was given. The method is based on the fact that
for every continuous PWA its full lattice representation can be generated by partitioning the
domain into subsequent sub-regions in which the active affine function is a solution of the
minimization of a set of affine functions as described in [26]. The partition is performed
such that in each new region the local function does not intersect with any of the functions.
Formally the partition is defined as:

Considering each subregion Ωi(i = 1, ..., N̂), then Ωi can be further partitioned into base
regions Di,t with t = 1, ...,mi, to make sure that no other affine function intersects with
ℓloc(i)(x) = αT

(i)x+ β(i) at some point in the interior of Di,t, i.e.

(x|ℓj(x) = ℓloc(i)(x), j ̸= loc(i)) ∩ int(Di,t) = ∅ (3-13)

This partitioning is defined according to the lemma [35]:

Theorem 3-2.2. (Base Region) [35] For any i ∈ (1, ..., N̄), there is a partition of the subregion
Ωi, where

Ωi = ∪mi
t=1Di,t (3-14)

such that the following holds:

1. The set int(Di,t) is nonempty

2. For each Di,t we have

I≥,i,t ∪ I≤,i,t = (1, ..,M)
with, I≥,i,t = (j|ℓj(x) ≥ ℓloc(i)(x), ∀x ∈ Di,t)
and, I≤,i,t = (j|ℓj(x) ≤ ℓloc(i)(x), ∀x ∈ Di,t)

3. For all i, j ∈ (1, ..., N̄), t̄ ∈ (1, ...,mi), t̂ ∈ (1, ...,mj , t̄ ̸= t̂) or i ̸= j

int(Di,t̄) ∩ int(Di,t̂) = ∅ (3-15)

This partitioning creates the base regions D1,1, ...,D1,m1 , ...,DN̂,1, ...,DN̂,mN̂
. Finally these

are renumbered as: D1, ...,DN where N = m1 + ...+mN̂ . Now three types of index sets are
introduced. Before this a distinction is made between the local function before and after the
secondary partition: denote the active affine function in base region Di as ℓact(i) given by:

ℓact(i) = ℓloc(i), if Di ⊆ Ωj (3-16)

Master of Science Thesis F.T. Gallagher

3-2 Transformation between canonical MMPS functions and continuous PWA functions 21

Then define the following two index sets:

I≥,i = (j|ℓj(x) ≥ ℓact(i), ∀x ∈ Di)
I≤,i = (j|ℓj(x) ≤ ℓact(i), ∀x ∈ Di)

And let the third index set A(ℓi) be such that for each index k ∈ A(ℓi), ℓi is the active
affine function in Dk, i.e. f(x) = ℓi(x), ∀x ∈ Dk. In the base region Di for an affine function
ℓj with j ̸= act(i), either j ∈ I≥,i or j ∈ I≤,i. Then we have:

ℓj(x) > ℓact(i)(x), ∀x ∈ int(Di), ∀j ∈ I≥,i (3-17)

and
ℓj(x) < ℓact(i)(x), ∀x ∈ int(Di), ∀j ∈ I≤,i (3-18)

The following conclusion can now be made for which the proof can be found in [35]:

proposition 3-2.3. Let f be a 1-dimensional continuous PWA function as defined in defini-
tion 2-1.1, i.e. n = 1, then ∀i, k ∈ (1, ..., N) we have

min
j∈I≥,k

(ℓj(x)) ≤ min
j∈I≥,i

(ℓj(x)), ∀x ∈ Di (3-19)

Based on the proposition the full lattice representation is given[35]:

Theorem 3-2.4. Full lattice representation. Let f be a continuous PWA function as defined
in definition 2-1.1. Then f can be represented as:

f(x) = fBR(x) = min
i=1,...,N

(max
j∈I≥,i

(ℓj(x))), ∀x ∈ D (3-20)

Convex Projection Region Realisation This realisation is described and proven in [34].
Where base region realisation can be computationally demanding, the convex projection
region realisation is relatively computationally efficient. Generally the number of convex
projection regions is much smaller than that of base regions.

The algorithm essentially projects the continuous PWA function onto a plane. Secondly it
checks every region for convexity. If a projected region is convex, it will be considered a convex
projection region. If it is not convex, the region is partitioned by extending the adjacent affine
element. This partitions the non convex projection region in multiple regions that are convex.

Below are the conditions and definitions reviewed as detailed in [34], however its proof is
omitted.

Definition 3-2.1. [34] (Convex projection region): Assume Ω =
⋃N̄
i=1 Ωi, the regions Ωi are

convex projection regions if,

1. Each Ωi is a convex polyhedra

2. The boundaries of each Ωi are (n− 1)-dimensional hyperplanes

Master of Science Thesis F.T. Gallagher

3-2 Transformation between canonical MMPS functions and continuous PWA functions 22

3. Each pair of int(Ωi) and int(Ωj) are disjoint, i.e.

int(Ωi) ∩ int(Ωj) = ∅, ∀i, j ∈ (1, ..., N̄), i ̸= j (3-21)

where int(Ωi) denotes the interior of Ωi

4. For each Ωi, f equals a local affine function ℓloc(i)(x)

It is noted that convex projection regions can be seen as convex polyhedral regions, as poly-
hedral regions in Definition 2-1.1 may be nonconvex.

Representation in R

Lemma 3-2.5. For continuous PWA functions f(x) defined in Definition 2-1.1, if the domain
Ω ⊂ R, we have:

min
j∈J≥,k

(ℓj(x)) ≤ f(x), ∀x ∈ Ω (3-22)

for any k ∈ (1, ..., N̄), in which the index set J≥,k is defined as:

J≥,k = (j ∈ (1, ...,M)|ℓj(x) ≥ ℓloc(k)(x), ∀x ∈ Ωk) (3-23)

Representation in Rn

Theorem 3-2.6. For continuous PWA functions f(x) defined in Definition 2-1.1, the follow-
ing holds:

f(x) = fCPR(x) = max
k=1,...,N̄

min
j∈J≥,k

(ℓj(x)), ∀x ∈ Ω (3-24)

in which the index set J≥,k is defined as previously. And the function fCPR(x) is called the
CPR lattice representation of f(x).

Note that through duality the same holds for the conjunctive case. For a full proof the reader
is referred to [34]. Compared with base regions, convex projection regions satisfy one less
condition. Hence a base region is also a convex region, but a convex projection region may
not be a base region.

3-2-2 Continuous PWA to Kripfganz MMPS form

The problem of finding a Kripfganz MMPS form given a continuous PWA function can be
found in literature as convex decomposition of PWA functions. There are two methods avail-
able from existing literature:

1. Decomposition via folds

2. Optimization-based decomposition

Master of Science Thesis F.T. Gallagher

3-2 Transformation between canonical MMPS functions and continuous PWA functions 23

Decomposition via convex folds [19] The decomposition in [19] is based on the collection
of all convex folds of f(x) and to use them in such a way to construct g(x). Let

I := ((i, j) ∈ N × N| dim(Ωi ∩ Ωj) = n− 1, i < j) (3-25)

be the set if tuples (i, j) indicating that the regions Ωi and Ωj are neighbors, i.e. they intersect
along one hyperplane. Further, let:

V := ((i, j) ∈ I|αT
(i)x+ β(i) > αT

(j)x+ β(j), x ∈ Ωi \ Ωj) (3-26)

denote the subset of I that collects facets on which f features a convex fold. Then:

g(x) :=
∑

(i,j)∈V

max(αT
(i)x+ β(i), α

T
(j)x+ β(j)) (3-27)

is obviously a convex function since the maximum of affine functions is convex and since
sums preserve convexity. Note that every summand max(αT

(i)x+ β(i), α
T
(j)x+ β(j)) refers to a

convex PWA function with two segments implicitly defined on the two halfspaces αT
(i)x+β(i) ≥

αT
(j)x+ β(j) and αT

(i)x+ β(i) ≤ αT
(j)x+ β(j) respectively. Interestingly, the function:

h(x) := g(x) − f(x) (3-28)

is convex likewise [19], which completes the convex decomposition. In the last step, when
computing h(x) the number of partitions of the domain space may increase [24]. This may
be seen as a disadvantage as it increases the storage requirements.

Optimization-based decomposition [15] In [15] a method for convex decomposition based
on an optimization approach is presented. A benefit compared to the decomposition through
convex folds is the fact this method preserves the original partition of the domain space,
i.e. the functions f, g and h will all be affine on each polyhedron Ωi. Moreover, the user has
control over certain features of g and h by means of a cost-function. Now let the corresponding
affine segments g(x) = kT

(i)x+ c(i) and h(x) = ℓT(i)x+ d(i), then the decomposition requires:

α(i) = ki − ℓi

β(i) = ci − di
(3-29)

for all i ∈ (1, ..., N̂). Enforcing convexity of g and h, for every (i, j) ∈ I consider the inequality
constraints

kT
(i)x+ c(i) ≥ kT

(j)x+ c(j)

ℓT(i)x+ d(i) ≥ ℓT(j)x+ d(j)

∀x ∈ Ωi and

kT
(i)x+ c(i) ≤ kT

(j)x+ c(j)

ℓT(i)x+ d(i) ≤ ℓT(j)x+ d(j)

∀x ∈ Ωj . Then assuming half-space representations of the subsets Ω(i) are at hand, i.e.,
Ω(i) = (x ∈ Rn|Vix ≤ wi), the inequality constraints can be efficiently verified using Farka’s

Master of Science Thesis F.T. Gallagher

3-3 Minimal representations and uniqueness of MMPS canonical forms & continuous PWA functions 24

lemma. The inequality conditions are satisfied if and only if there exist (Lagrange multipliers)
λij , µij , λji and µji of appropriate dimensions such that

0 ≤ λij , V T
i λij = (kj − ki)T, wT

i λij ≤ ci − cj

0 ≤ µij , V T
i µij = (ℓj − ℓi)T, wT

i µij ≤ di − dj

0 ≤ λji, V T
j λji = (ki − kj)T, wT

j λji ≤ cj − ci

0 ≤ µji, V T
j µji = (ℓi − ℓj)T, wT

j µji ≤ dj − di

(3-30)

Then any feasible solution to 3-29 and 3-30 provides a valid decomposition of f into two convex
PWA functions. Additionally the feasibility problem can be extended by a user-defined cost
function or additional constraints in order to promote certain features of g and h. A major
drawback however is the requirement of regulating the partition of (Ωi) (see [15]), which is
often not fulfilled even for simple partitions [24].

3-3 Minimal representations and uniqueness of MMPS canonical
forms & continuous PWA functions

A MMPS canonical form, both conjunctive and kripfganz canonical forms, is not unique
and redundant parameters may exist in the expression. For continuous PWA functions the
domain over which they are defined may be partitioned into different regions, not necessarily
the regions over which each affine function is active.

3-3-1 Conjunctive MMPS canonical functions

Conjunctive MMPS canonical function may have redundant parameters. Redundant pa-
rameters such as recurring sets are trivially redundant, however there are also less obvious
redundant parameters.

In [31] However, the simplification lemmas have limitations and the result cannot guaranteed
to be irredundant. In [33] an alternative method was proposed based on base regions, includ-
ing necessary and sufficient conditions for irredundancy and the algorithm for obtaining an
irredundant lattice PWA representation. In [34] a method based on convex projection regions
was proposed to achieve a better performing algorithm. Interestingly, these algorithms pro-
duce different minimal representations. Irredudant representations are therefor not unique.

3-3-2 Kripfganz (MMPS canonical) functions

Kripfganz functions in MMPS form (two maximization functions) can have redundant param-
eters as recurring parameters and parameters that are never active. Recurring parameters are
easily identified and removed. When the kripfganz function is in MMPS form and thus there
is to direct region information, the (always) inactive functions are not directly identified.

Furthermore the decomposition itself is not unique. Both decomposition methods discussed in
the previous section produce different results. Existing literature currently does not provide
the sufficient conditions to show the minimal regions both functions produce.

Master of Science Thesis F.T. Gallagher

3-4 Summary 25

3-3-3 Continuous PWA functions

The domain over which the Continuous PWA function is defined can be partitioned into
different regions, namely regions, base regions. The minimum number of regions can be
found by creating pairs of adjacent regions, checking whether both regions share the same
active function and join the regions if this is the case.

The regions themselves can be represented as hyperplanes or vertices, or H-representation and
v-representation respectively. More on the description of regions and polyhedral theory can
be found in Appendix B. The number of hyperplanes or vertices used to describe a region is
not necessarily minimal. (Non trivial) redundant hyperplanes may be found by solving linear
program [16].

3-4 Summary

Continuous PWA functions and general-, conjunctive- and Kripfganz MMPS functions can
be written into one another.

Continuous PWA functions can be decomposed into two convex functions to create kripfganz
MMPS functions. The first convex function can be made by finding all convex folds over
the whole domain and summing them. The second convex function can then be found by
subtracting the original function from the first convex function. Alternatively one can take
an optimization approach such that one has more control of the parameters of the convex
functions. However the latter produces many more terms.

Continuous PWA functions can also be transformed into conjunctive MMPS functions by
finding the correct sets. These sets are generally constructed by looping over all regions and
finding those functions that are larger or equal to the affine function. However, depending on
the regions one can get different results. By using different domain partitions and techniques
to remove redundancy the resulting conjunctive MMPS function can produce different results.

Transformations between MMPS classes rely mostly on using MMPS algebraic rules. This
way we can transform conjunctive MMPS functions into kripfganz functions and vice versa,
we can transform general MMPS functions into conjunctive MMPS functions. The canonical
duals are also rewritten into each other using the algebraic rules, i.e. the conjunctive and
disjuctive MMPS forms and convex and concave Kripfganz MMPS forms. The biggest hurdle
using these methods are the exploding terms as a result of the combinatorics used in the
transformations.

Each transformation uses their own specific algorithm, the MMPS transformations produce
exploding terms and transformation into continuous PWA form are not readily available.

Master of Science Thesis F.T. Gallagher

Chapter 4

Finest Base Regions

In this chapter we presents a method to partition the domain space of any kind of Max-
Min-Plus-Scaling (MMPS) function or continuous Piecewise Affine (PWA) function. The
resulting partitioning can then be used as a tool to (re-)construct any type of canonical
MMPS function or continuous PWA function. The new partitioning creates regions which
are then called Finest Base Region (FBR).

The new partition adds new content to the current MMPS literature, namely:

• The FBR partition forms the basis to construct continuous PWA functions from any
MMPS functions

• The FBR partition forms the basis for universal methods to construct one canonical
form into another

• The FBR partition is a useful tool to study MMPS functions in better detail.

The partitioning method is based on hyperplane arrangement theory, and uses only the pa-
rameter matrix of the original function (or list of unique affine functions) to construct its
regions. It will be shown that we can find this parameter matrix for any MMPS function
using basic algebraic rules. The key idea is that this partition can be made with only the
information of the unique affine functions: as long we can acquire all (unique) affine functions
the FBR partition can be made. The procedure can be seen in Figure 4-1.

Master of Science Thesis F.T. Gallagher

27

f(x)∗

cPWA

ϕ Conj

Kripf

FBR1 2

5

4

3

START

Figure 4-1: The procedure for using the FBR partition to create either a continuous PWA
function or a conjunctive- or Kripfganz MMPS function from either a continuous PWA function
or a general-, conjunctive-, kripfganz MMPS function. We start with a function f(x)∗ which can
be any of the four form. At step 1, we collect all the affine functions inside the parameter matrix
ϕ. At step 2, the FBR partition is made, creating polyhedral regions. From there we can take
step 3, which finds the active function per region to create a continuous PWA function. Instead
step 4 involves around finding the correct sets for the conjunctive MMPS function. Step 5 finds
a convex decomposition given the parameter matrix and FBR regions.

The FBR partition allows us to construct continuous PWA functions from MMPS functions
directly, filling in the gaps from Figure 3-1, and updating the techniques to Figure 4-2. The
FBR partition is can be performed using any canonical MMPS function and thus may be seen
as a ’universal’ tool for the realisation of any form.

cPWAConj

Kripf

gMMPS

FBR
3-1-2

FBR

3-2-1

3-1-1
FBR

∗
3-1-2

3-1-3

3-1-4

Figure 4-2: Connections between MMPS canonical forms. The numbers indicate existing tech-
niques for mapping one form to another. Dashed lines indicate the lack of any methods that can
may be found in current existing literature.

In the first part of this chapter an example of the FBR partition and Ordered Lattice (OL)
representation is given to give a first impression and motivation for both proposals. After

Master of Science Thesis F.T. Gallagher

4-1 Definition 28

the example some prerequisites about polyhedral theory are presented to accompany the
algorithms later on.
In the second and third part of this chapter the FBR partitioning and OL realisation is
discussed in further detail. This includes the reasoning behind the partitioning, what a FBR
region is, how a FBR partitioning can be realized and algorithms including a complexity
analysis of the partitioning. The ordered lattice representation is also further discussed in
detail, including its realisation and how one can realize any canonical MMPS form from the
OL representation.

4-1 Definition

FBR regions can be thought of as the image of the projection of all intersections between the
unique affine functions. Consider a function f(x) : Rn → R. Let ℓi(x) and ℓj(x) be two non
parallel affine functions where for some x, f(x) = ℓi(x) and for some other x, f(x) = ℓj(x).
Then the intersection of ℓi(x) and ℓj(x) is the hyperspace Hij :

Hij := ℓi(x) − ℓj(x) = 0

The domain space is divided into two regions by the hyperspace Hij . Performing this pro-
cedure for each pair of affine functions will then split the domain into what would be left a
FBR partitioning.
FBR regions are regions where no two affine functions intersect with one another in the interior
of that FBR region, and where the boundaries of each FBR region are uniquely defined by
the intersections of pairs of affine functions.
Finest base regions will be defined accordingly:

Definition 4-1.1. (Finest Base Region): Assume Ω =
⋃NΦ
i=1 Φi the regions Φi are FBR regions

if

1. Each Φi is a convex polyhedron.

2. The boundaries of each Φi are (n− 1)-dimensional hyper-planes.

3. Each pair of int(Φi) and int(Φi) are disjoint, i.e.

int(Φi) ∩ int(Φj) = ∅, ∀i, j ∈ {1, ..., NΦ}, i ̸= j (4-1)

where int(Φi) denotes the interior of Φi

4. The intersection

{x|ℓj(x) = ℓi(x), j = 1, ..., NΦ, j ̸= i} ∩ int(Φi) (4-2)

is empty for all i ∈ {1, ..., NΦ}

Base regions, denoted by D, as described in Chapter 3, are similar; every base region is
constructed such that the local (or active) function of that region does not intersect with any
of the other affine functions within the interior. In other words, every FBR region is also a
base region, but not every base region is a FBR region.

Master of Science Thesis F.T. Gallagher

4-1 Definition 29

Example 9. [34] Now let us demonstrate the FBR partitioning with an example. Consider
a 2-dimensional conjunctive MMPS function with Naff = 3 unique affine functions, with
constraints 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1:

f(x) = min
(

max(8x1 − 5x2 − 1,−5x1 + 8x2 − 1),
max(0)

)

Which generates the following output:

Figure 4-3: Plot of Example 9. A 2-dimensional conjunctive MMPS function.

Clearly the function has the unique affine functions ℓ1(x), ℓ2(x), ℓ3(x), with:

ℓ1(x) = 8x1 − 5x2 − 1
ℓ2(x) = −5x1 + 8x2 − 1
ℓ3(x) = 0

The half-spaces are defined as the intersections between the affine functions of f(x):

H1 := ℓ1(x) ∩ ℓ2(x) := x1 − x2 = 0
H2 := ℓ1(x) ∩ ℓ3(x) := 8x1 − 5x2 = 1
H3 := ℓ2(x) ∩ ℓ3(x) := −5x1 + 8x2 = 1

We can now plot same function but with each half-space partitioning the domain:

Master of Science Thesis F.T. Gallagher

4-2 Parameter matrix 30

Figure 4-4: A projection of Example 9 with
the hyperspaces partitioning the domain.

Figure 4-5: A plot of Example 9 with the
hyperspaces partitioning the domain.

Finest Base Regions Plotting the hyperspaces reveals the FBR regions. Each FBR region
can be constructed using every unique half-space: The partition is performed according to
Definition 4-1.1. The FBR regions can then be expressed as convex polyhedra using the
half-spaces, and the domain bounds. This gives us the following regions:

Φ1 : −8x1 + 5x2 ≤ −1,−x1 + x2 ≤ 0, x2 ≤ 1
Φ2 : x1 − x2 ≤ 0,−5x1 + 8x2 ≤ 1, x1 ≤ 1
Φ3 : 8x1 − 5x2 ≤ 1, 5x1 − 8x2 ≤ −1,−x1 ≤ 0, x2 ≤ 1
Φ4 : −5x1 + 8x2 ≤ 1, x1 − x2 ≤ 0,−x1 ≤ 0
Φ5 : −x1 + x2 ≤ 0, 8x1 − 5x2 ≤ 1,−x2 ≤ 0
Φ6 : −8x1 + 5x2 ≤ −1,−5x1 + 8x2 ≤ 1, x1 ≤ 1,−x2 ≤ 0

or alternatively in matrix notation:

Φ1 :

−8 5
−1 1
0 1

(x1
x2

)
≤

−1
0
1

 ,Φ2 :

 1 −1
−5 8
1 0

(x1
x2

)
≤

0
1
1

 ,Φ3 :


8 −5
5 −8

−1 0
0 1


(
x1
x2

)
≤


1

−1
0
1

 ,

Φ4 :

−5 8
1 −1

−1 0

(x1
x2

)
≤

1
0
0

 ,Φ5 :

−1 1
8 −5
0 −1

(x1
x2

)
≤

0
1
0

 ,Φ6 :


−8 5
−5 8
1 0
0 −1


(
x1
x2

)
≤


−1
1
1
0

 ,

4-2 Parameter matrix

The FBR region partitioning assumes the parameter matrix ϕ (holding the parameters of all
unique affine functions) to be available. Computing the parameter matrix is straightforward
for the case of continuous PWA functions and conjunctive MMPS functions, and slightly less
straightforward for kripfganz MMPS functions and general MMPS functions. Each case is
discussed in the sections below

Master of Science Thesis F.T. Gallagher

4-2 Parameter matrix 31

4-2-1 Parameter matrix of continuous PWA functions

For continuous PWA functions the rows i of the parameter matrix ϕ correspond to the pa-
rameters of the affine function ℓi(x):

ϕi =
(
αi βi

)
(4-3)

The procedure is straight forward, as each affine function is explicitly listed in the function
itself. By looping over all regions the affine functions can be stored in a parameter matrix.
Recurring affine functions would be simply skipped before copying over, or remove afterwards.

Example 10. (Example 1 continued) Consider our previous 1-dimensional example again:

f(x) =



ℓ1(x) = 0.5x+ 0.5 x ∈ [0.0, 1.0]
ℓ2(x) = 2x− 1 x ∈ [1.0, 1.5]
ℓ3(x) = 2 x ∈ [1.5, 3.5]
ℓ4(x) = −2x+ 9 x ∈ [3.5, 4.0]
ℓ5(x) = −0.5x+ 3 x ∈ [4.0, 5.0]

(4-4)

It should be straight forward that this gives us the following parameter matrix:

ϕ =
(

0.5 2 0 −2 −0.5
0.5 −1 2 9 3

)T

4-2-2 Parameter matrix of conjunctive MMPS functions

For the conjunctive MMPS form the procedure of finding the parameter matrix is again
straight forward. If the function is expressed in sets (a structure matrix ψ and parameter
matrix ϕ)the parameter matrix is part of the expression. If instead the function is expressed
as a 3-dimensional matrix αij and βij the procedure then would be to loop over each matrix
and store each affine function:

ϕi =
(
αij βij

)
(4-5)

Each recurring affine function (in the following matrix) would be simply skipped before copy-
ing over, or remove in a step afterwards.

Example 11. (Example 9 continued) Consider the following 2-dimensional disjunctive MMPS
function:

f(x) = max
(

min(8x1 − 5x2 − 1,−5x1 + 8x2 − 1),
min(−5x1 + 8x2 − 1),
min(8x1 − 5x2 − 1, 0))

Where the α and β matrices are:

α1 =

 8 −5
−5 8
ϵ ϵ

 , α2 =

 ϵ ϵ
−5 8
ϵ ϵ

 , α3 =

8 −5
ϵ ϵ
0 0


Master of Science Thesis F.T. Gallagher

4-2 Parameter matrix 32

β1 =

−1
−1
ϵ

 , β2 =

 ϵ
−1
ϵ

 , β3 =

−1
ϵ
0


It should be clear that the parameter matrix is given by:

ϕ =

 8 −5 −1
−5 8 −1
0 0 0


Note that the recurring affine parts in the second and third sets (after already being included
in parameter matrix) are not added again (or instead be removed after included each row).

4-2-3 Parameter matrix of Kripfganz MMPS functions

Extracting the unique affine functions from a kripfganz MMPS form requires some simple
processing. Be reminded that the kripfganz form can be expressed as either the difference
of two (convex) continuous PWA functions or the difference of two maximization (or mini-
mization) functions. By using the algebraic rules for MMPS functions and finding all possible
unique affine functions using combinatorics, the parameter matrix can be found.

Using algebraic rules As a general method one can find every possible combination between
the affine functions of the two convex parts and compute the difference to acquire the set of
unique affine functions. Suppose we have the convex functions g(x) and h(x) with each contain
Ng and Nh number of unique affine function, and let these affine functions be contained inside
their respective parameter matrices ϕg and ϕh, then the parameter matrix of the function
f(x) is given by:

ϕi = ϕg,j − ϕh,k

for j ∈ {1, ..., Ng} and k ∈ {1, ..., Nh}. The resulting parameter matrix ϕ will then be of size
(NgNh) × (n+ 1).

Example 12. (Example 1 continued) Consider the 1-dimensional kripfganz MMPS function:

f(x) = max(1.5x+ 2, 8,−1.5x+ 9.5) − max(2x− 1, 6,−2x+ 9)

Then the parameter matrix can be found by considering all possible combinations between
the parameter of g(x) and h(x). We have the following combination for f(x):

f(x) =



(1.5x+ 2) − (2x− 1)
(1.5x+ 2) − (6)
(1.5x+ 2) − (−2x+ 9)
(8) − (2x− 1)
(8) − (6)
(8) − (−2x+ 9)
(−1.5x+ 9.5) − (2x− 1)
(−1.5x+ 9.5) − (6)
(−1.5x+ 9.5) − (−2x+ 9)

=



−0.5x+ 3
1.5x− 4
3.5x− 7
−2x+ 9
2
2x− 1
−3.5x+ 10.5
−1.5x+ 15.5
0.5x+ 0.5

Master of Science Thesis F.T. Gallagher

4-2 Parameter matrix 33

Which gives the parameter matrix:

ϕ =
(

−0.5 1.5 3.5 −2 0 2 −3.5 −1.5 0.5
3 −4 −7 9 2 −1 10.5 3.5 0.5

)T

4-2-4 Parameter matrix of general MMPS functions

To acquire the parameter matrix from a general MMPS function there are at least two methods
we may try. First by using the algebraic rules for MMPS functions, and following a similar
procedure as explained for kripfganz functions.

Method using algebraic rules The general MMPS function is recursively defined, using
the operation maximization, minimization, addition and scalar multiplication. By finding all
the possible combination between the maximization and minimization terms, and then by
following the operations addition and scalar multiplication, each possible affine function can
be found.

Example 13. Consider the following 1-dimensional general MMPS function in general form:

f(x) = min(8x+ 6, 1) − 2 max(min(2x+ 1,−2x+ 1),−2x)

First we can find the parameter matrix by computing each possible outcome. This can be
demonstrated by replacing the minimization and maximization operations with an logical
"or". Then we get the following possible combination for f(x):

f(x) =



(8x+ 6) − 2(2x+ 1)
(8x+ 6) − 2(−2x+ 1)
(8x+ 6) − 2(−2x)
(1) − 2(2x+ 1)
(1) − 2(−2x+ 1)
(1) − 2(−2x)

=



4x+ 4
12x+ 4
12x+ 6
−4x− 1
4x− 1
−4x+ 1

This would then create the following parameter matrix:

ϕ =
(

4 12 12 −4 4 −4
4 4 6 −1 −1 1

)T

4-2-5 Redundancy in the parameter matrix

For each of the four cases the resulting matrix could have repeating repeated affine functions
(identical rows). It should be trivial these rows can easily be removed with a single line of
code.

However in the case for MMPS functions, there may exist redundant rows, i.e. affine functions
that are never active. Moreover, the procedures used for finding the parameter matrix of the

Master of Science Thesis F.T. Gallagher

4-3 Ordered lattice representation 34

kripfganz and general MMPS functions create redundant rows. Because (we assume) there is
no knowledge of the regions or active functions, it is not trivial to find these redundant rows.
One strategy to find the redundant rows could be to use the conjunctive form as an interme-
diate step and by rewriting the kripfganz or general form as a conjunctive form. From the
conjunctive form, the problem can be reduced to finding an irredundant H-representation for
each of the sets as regions.
Removing the redundant rows is not a necessary step. In fact, after the partition has been
made, identifying the redundant parameter becomes trivial. A consequence of including
redundant rows in the parameter matrix, and therefor also the partition is that the resulting
partition will be finer, i.e. there will be more regions created. For larger problems this quickly
becomes unacceptable.

4-3 Ordered lattice representation

This section is an explorative study on the ordering of the affine functions inside a FBR re-
gion. The ordered lattice representation is proposed as a novel representation for the canonical
MMPS forms. The ordered lattice representation can be viewed as an extension of the con-
junctive MMPS form; as in the conjunctive form the sets are constructed as lattices of the
affine function, with the addition of also storing the arrangement of the affine functions.
From the ordered lattice representation the continuous PWA function and canonical MMPS
functions can be easily realised.
We explore some of the properties which may be considered important within the scope of
this thesis. Some techniques are presented to find specific relations between OL sets and
bridge the gap between OL sets and polyhedral regions. The following topics are discussed:

• Finest base regions from ordered lattices

• Adjacent regions from ordered lattices

• Convex folds from ordered lattices

• PWA domain regions from ordered lattices

Example 14. (Example 9 continued) Let us first demonstrate the idea of an ordered lattice
set with an example. Consider the 2-dimensional example again. We plot each function over
the entire domain to get a better view of the ordering of each affine functions.
Now for each FBR region we would like to find the ordering of each affine function. After
carefully looking at each region we can see that the affine functions ℓ1(x), ℓ2(x), ℓ3(x) are
ordered in the following way for each fbr region: Φ1 := ℓ2 ≥ ℓ1 ≥ ℓ3, Φ2 := ℓ1 ≥ ℓ2 ≥ ℓ3,
Φ3 := ℓ3 ≥ ℓ1 ≥ ℓ2, Φ4 := ℓ3 ≥ ℓ2 ≥ ℓ1, Φ5 := ℓ2 ≥ ℓ3 ≥ ℓ1, Φ6 := ℓ1 ≥ ℓ3 ≥ ℓ2

4-3-1 Modified structure matrix

The general idea is to extend the structure matrix such that the ordering can be stored. One
method would be to store the unique affine functions inside a modified structure matrix γ of
size Naff ×NΦ.

Master of Science Thesis F.T. Gallagher

4-3 Ordered lattice representation 35

Figure 4-6: Front view of the plot of Ex-
ample 9 with each affine function spanning
the entire domain.

Figure 4-7: Rear view of the plot of Exam-
ple 9 with each affine function spanning the
entire domain.

The indices would represent the rows from the matrix that stores the unique affine functions,
the component would be an integer k where k ∈ {1, ..., Naff}. Here the value of k would
represent the relative position inside the lattice between the affine functions.
Let the modified structure matrix be defined as follows:

γij = k, (4-6)

With i, k ∈ {1, ..., Naff}, j ∈ {1, ..., NΦ}. The value k is determined by the relative magnitude
of each i-th affine function. The largest affine function has the value k = 1, the smallest
affine function k = Naff, and all other possible values of k for the other affine functions. The
ordered lattices can be constructed as using permutations:

Definition 4-3.1. [9] Permutations. Suppose that a set has n elements. Suppose that an
experiment consists of selecting k of the elements one at a time without replacement. Let
each outcome consist of the k elements in the order selected. Each such outcome is called
a permutation of n elements taken k at a time. We denote the number of distinct such
permutations by the symbol Pn,k.

Theorem 4-3.1. [9] Permutations. The number of permutations of n elements taken k at a
time is Pn,k = n(n− 1) · · · (n− k + 1).

Each column j of the modified structure matrix is then one permutation of the affine functions.

Example 15. (Example 9 continued) Consider again our previous example. The structure
matrix would then be written as follows:

γ =

2 1 3 3 2 1
1 2 1 2 3 3
3 3 2 1 1 2


4-3-2 Finding the active function using ordered lattices

With an ordered lattice it is easy to find the active function in the case of the conjunctive
MMPS form. For each ordered lattice γi the conjunctive function can be evaluated to find

Master of Science Thesis F.T. Gallagher

4-3 Ordered lattice representation 36

the active function. In other words, the solution of each maximization and minimization
operation from the conjunctive MMPS form can be found in the ordered lattice set. Let
ℓk(x) and ℓl(x) be two affine functions from some collection of affine functions. Then given
a column i of an ordered lattice representation, the solution of the operations maximization
and minimization are:

max(ℓk, ℓl) = min(γik, γil) (4-7)
min(ℓk, ℓl) = max(γik, γil) (4-8)

if the ordered lattice set is in ascending order.

Example 16. (Example 2 continued) First we repeat the conjunctive MMPS function:

f(x) = max
(

min(ℓ1(x), ℓ2(x)),
min(ℓ2(x))
min(ℓ1(x), ℓ3(x))

)

Now let us analyse the following ordered lattice set: γ6 =
(
1 3 2

)T
. First we can solve the

inner maximization terms:

min
γ6

(ℓ1(x), ℓ2(x))) = ℓ2(x)

min
γ6

(ℓ2(x))) = ℓ2(x)

min
γ6

(ℓ1(x), ℓ3(x))) = ℓ3(x)

Then we can solve the outer minimization:

max
γ6

(ℓ2(x), ℓ3(x))) = ℓ3(x)

We can verify from the plot that the active function in the FBR region Φ6 is indeed ℓ3(x).
Now we can perform this procedure for each column and get to following active functions:
ℓ1(x), ℓ2(x), ℓ3(x), ℓ3(x), ℓ3(x), ℓ3(x), for regions Φ1-Φ6 respectively.

4-3-3 Adjacent regions from ordered lattices

How would we know when two regions are adjacent to each other? First two regions will be
considered adjacent when they are separated by a hyperplane of order n− 1 with n the order
of the function f . One strategy would be to find all pairs where the order or arrangement of
the OL set are identical except where two values are switches. Thus two ordered lattice sets
γi and γj are adjacent when they are equal, except for the rows m,n:

γi,m = γj,n

γi,n = γj,m

For m,n ∈ {1, ..., Naff}.

Master of Science Thesis F.T. Gallagher

4-3 Ordered lattice representation 37

Example 17. (Example 9 continued) Consider the following two sets from example 2:

γ1 =

1
2
3

 , γ6 =

1
3
2

 (4-9)

The two are identical with the exception that the last two values are switched. Thus this
would conclude the sets are the representation of two regions that are adjacent. Following
the same procedure gives the following pairs of adjacent regions:1 2

2 1
3 3

 ,
2 3

1 1
3 2

 ,
1 1

2 3
3 2

 ,
2 1

3 3
1 2

 ,
3 2

2 3
1 1

 ,
3 3

1 2
2 1



4-3-4 Convex Folds from ordered lattices

Adjacent regions described as ordered lattice sets can be identified using the method described
above. Now a method is proposed how any two regions may be a convex fold. We assume
knowledge of the active functions for two adjacent regions is present. First let all the affine
functions be given in the parameter matrix ϕ. Then let i be the index position of affine
functions in the parameter matrix, i.e. ℓi(x) corresponds to the parameters from the i-th row
of ϕ.

Now let the two ordered lattice sets be adjacent as a result of the m and n rows being switched,
i.e. γi,m = γj,n and γj,m = γi,n. Then the fold is convex if:

γi,m < γi,n, if ℓi(x) = ℓm(x)

and concave if
γi,m > γi,n, if ℓi(x) = ℓm(x)

The two adjacent regions are neither convex nor concave (i.e. they have the same active
function) when:

ℓi(x) = ℓj(x)

Example 18. (Example 9 continued) We can analyse each pair of adjacent region and notice
the following sets are convex: 2 3

1 1
3 2

 ,
1 1

2 3
3 2


And the concave folds: 1 2

2 1
3 3


Master of Science Thesis F.T. Gallagher

4-3 Ordered lattice representation 38

4-3-5 Finest base regions from ordered lattices

Ordered lattices in themselves may be considered FBR regions given the definition. However
we now discuss how an ordered lattice set may be rewritten as a polytope in H-representation.
First note that each pair of rows form an inequality representing a hyperspace. Suppose we
have rows i and j and the value of their respective modified structure matrix is ki, kj and
ki < kj . Then the hyperspace Hij of this pair is given by:

Hij := ℓi(x) ≤ ℓj(x)
:= (αi − αj)x ≤ βj − βi

Then by considering all combinations between the affine functions from the modified structure
matrix, the resulting region will be a FBR region:

Φ := ℓi(x) − ℓj(x) ≤ 0, if ℓi(x) ≤ ℓj(x), ∀i, j ∈ {1, ..., Naff} (4-10)

This brings us to the following lemma:

Lemma 4-3.2. An ordered lattice set and finest base region are equivalent.

Although we have previously established the theory on the upper and lower bound of the
FBR regions, the ordered lattice can be used to produce an answer to this question as well.
The number of ordered lattice sets follows from the definition of permutation:

NOL = Naff(Naff − 1)(Naff − 2)...(Naff −Naff + 1)
= Naff!

By the equivalence between FBR regions and ordered lattices, we can conclude the number
of FBR regions can also be found by the number of ordered lattices. Note that this is still an
upper-bound.

Example 19. (Example 9 continued) Consider a single column of the structure matrix in
the example, column γ3 =

(
2 1 3

)
. We can then construct the FBR region Φ3

Φ3 :

ℓ2 − ℓ1
ℓ2 − ℓ3
ℓ1 − ℓ3

(x1
x2

)
≤ 0

=

−13 13
−5 8
8 −5

(x1
x2

)
≤

0
1
1


Each column represents a unique finest base region, which we then construct:

Φ1 :

ℓ1 − ℓ2
ℓ1 − ℓ3
ℓ2 − ℓ3

(x1
x2

)
≤ 0,Φ2 :

ℓ1 − ℓ3
ℓ1 − ℓ2
ℓ3 − ℓ3

(x1
x2

)
≤ 0,Φ3 :

ℓ2 − ℓ1
ℓ2 − ℓ3
ℓ1 − ℓ3

(x1
x2

)
≤ 0,

Φ4 :

ℓ2 − ℓ3
ℓ2 − ℓ1
ℓ1 − ℓ3

(x1
x2

)
≤ 0,Φ5 :

ℓ3 − ℓ1
ℓ3 − ℓ2
ℓ1 − ℓ2

(x1
x2

)
≤ 0,Φ6 :

ℓ3 − ℓ2
ℓ3 − ℓ1
ℓ2 − ℓ1

(x1
x2

)
≤ 0

Master of Science Thesis F.T. Gallagher

4-4 Continuous PWA function realisation from FBR regions 39

Rewriting the above inequalities into normal form we get the regions:

Φ1 :

13 −13
8 −5

−5 8

(x1
x2

)
≤

0
1
1

 ,Φ2 :

−8 5
13 −13
5 −8

(x1
x2

)
≤

 1
0

−1

 ,Φ3 :

−13 13
−5 8
8 −5

(x1
x2

)
≤

0
1
1

 ,
Φ4 :

 −5 8
−13 13
−8 5

(x1
x2

)
≤

 1
0

−1

 ,Φ5 :

−8 5
−5 8
13 −13

(x1
x2

)
≤

−1
−1
0

 ,Φ6 :

 5 −8
−8 −5
−13 13

(x1
x2

)
≤

−1
−1
0



4-3-6 PWA regions from ordered lattice sets

Consider again two adjacent regions which are identified by the rows m,n. When both regions
share the same active function the regions can be united. Note that some regions may share
the same active function, but are not necessarily adjacent. Only when both conditions are
met may the regions be united. Multiple adjacent regions can be united.

Example 20. (Example 9 continued). The modified structure matrix was given by:

γ =

2 1 3 3 2 1
1 2 1 2 3 3
3 3 2 1 1 2

 (4-11)

For which the pairs of adjacent regions we found (γ1, γ2), (γ2, γ3), (γ3, γ4), (γ4, γ5), (γ5, γ6),
(γ6, γ1) and the active functions being ℓγ1 = ℓ1, ℓγ2 = ℓ2, ℓγ3 = ℓ3, ℓγ4 = ℓ3, ℓγ5 = ℓ3, ℓγ6 = ℓ3.
Then we can see that the pairs (γ3, γ4), (γ4, γ5), (γ5, γ6), share the same local affine function.
Which we can thus merge. This gives us the following continuous PWA regions:

Ω1 = Φ1 =

2
1
3

 ,
 0

−1
1


Ω2 = Φ2 =

1
2
3

 ,
−1

0
1


Ω3 = Φ3 ∪ Φ4 ∪ Φ5 ∪ Φ6 =

3 3 2 1
1 2 3 3
2 1 1 2

 ,
 1 2 1 −1

−1 1 2 1
0 0 0 0



4-4 Continuous PWA function realisation from FBR regions

To maintain a better overview, the techniques for realising the partition into FBR regions will
have a dedicated chapter, Chapter 5. It will be demonstrated first how the FBR regions can
be exploited to construct the continuous PWA function. In the next chapter three different
methods will be presented for the realisation of FBR regions and analysed in their complexity.

For the realisation of a continuous PWA function the following three assumptions are made:

• The FBR partition in H-representation is available.

Master of Science Thesis F.T. Gallagher

4-5 Canonical MMPS function realisation from FBR regions 40

• The original function, which can be a general-, conjunctive-, kripfganz MMPS function
or a continuous PWA function, is available for evaluation.

The realisation also relies on having two secondary sources of information:

• The parameter matrix ϕ.

• An interior point for the FBR region. That is, a point that lies within the interior of a
FBR regions, and not on it’s boundary.

The methods for obtaining the parameter matrix has been discussed in the previous section.
The interior point is used to evaluate the original function. Finding an interior point that is
guaranteed to be within the FBR region is not trivial. It is also a step used by the algorithms
to compute the FBR regions. It is therefor assumed this information is available. The methods
used to calculate an interior point is discussed in Chapter 5.

4-4-1 Finding the active function

A continuous PWA function can be easily constructed by realising that each FBR region
already is a continuous PWA region and only the active function would need to be found
for the corresponding FBR region. First let the original function, in any MMPS form or
continuous PWA form, be given by f(x) : Ω → Rn where Ω represent a convex polyhedral
over which the function is defined. Then let the continuous PWA function be defined as:

fcpwa(x) = fi(x) := αi(x) + βi, x ∈ Φi (4-12)

Where Ω =
⋃NΦ
i=1 Φi and where fi : Φi → R is called the local function on the FBR region Φi.

Finding the active function can be achieved by having some point inside the interior of the
FBR region and evaluate the ’original’ function f(x) and the parameter matrix ϕ at this
point. Because there are no intersecting affine functions inside the FBR region each affine
function, or row of the parameter matrix, evaluates uniquely at this point, which can then be
compared against the original function. If these two values are equal, the active function for
the FBR region has been found. Let ℓact,Φi be the active function for FBR region Φi, xcc,i a
point within the interior of the FBR region, f(x) the original function and ϕ the parameter
matrix. Then we find the active function ℓact,Φi as the row from ϕ(xcc,i), which equals the
original function f(xcc,i):

ℓact,Φi(x) = ϕj , if f(xcc,i) = ϕj(xcc,i) (4-13)

The resulting continuous PWA function is clearly not in minimal form and the strategies
discussed in Chapter 3 can be used to find a minimal form of the PWA function.

4-5 Canonical MMPS function realisation from FBR regions

For the realisation of the two canonical MMPS we again make the same assumptions as for the
case for continuous PWA functions, i.e. we have the FBR partition in H-representation, the
original function, the parameter matrix and an interior point for each FBR region available.

Master of Science Thesis F.T. Gallagher

4-5 Canonical MMPS function realisation from FBR regions 41

The procedure’s to realise the canonical MMPS form from FBR regions closely follow the
procedures from Chapter 3. In fact, the FBR partitioning has essentially created a continuous
PWA function and we may deploy any of the procedures from Chapter 3. There are some
small intermediate steps which will be discussed in the next two sections:

4-5-1 Conjunctive MMPS realisation from FBR regions

The conjunctive MMPS function can be realized using a similar approach as described in [35]
and likewise in section 3-2-1. Be reminded that finding a conjunctive MMPS form revolves
around finding the correct sets, or more specifically, the correct columns of the structure
matrix ψ. For more information on the structure matrix, please refer to Chapter 2.

The strategies for the computation of the structure matrix in Chapter 3 essentially all use
the same technique, but over a different domain partitioning. Each column of the structure
matrix is made by finding all affine functions that are larger or equal to the active affine
function for each region. In this case the regions are FBR regions. To find which affine
functions are larger or equal to the active function, and interior point is used to evaluate all
affine functions and the original function. Because of the way FBR regions are defined we are
guaranteed to find a unique ordering inside the FBR regions.

Creating the structure matrix For each FBR region an interior point is assumed to be
available. The interior point is then used to evaluate each affine function and original function
for each region. This has the purpose to find the active function and each affine function
smaller than the active function. This procedure creates index sets for each FBR region
which are the index sets that describe the conjunctive function as described in Section 2-2-1.
If the disjunctive function is requested, instead each affine function larger than the active
function is collected.

First we assume the parameter matrix ϕ to be available. Be reminded that ϕ is a Naff ×(n+1)
matrix, with n the dimension of f(x) and Naff the number of unique affine functions. Then
we evaluate the original function and each affine function from the parameter matrix at the
interior point. Then for each FBR regions Φi, with i ∈ {1, ..., NΦ} and NΦ the total number
of FBR regions, we find the active function ℓact,Φi as the row from ϕ(xcc,i), which equals the
original function f(xcc,i):

ℓact,Φi(x) = ϕj , if f(xcc,i) = ϕj(xcc,i) (4-14)

Where j ∈ {1, ..., Naff}. Then selecting all rows that are equal or larger than the active
function, and give their position a numerical 1:

ψij =
{

1, if ϕj(xcc,i) ≥ ℓact,Φi(x)
0, else

(4-15)

for each FBR region Φi. Similarly a dual structure matrix for the disjunctive MMPS form
ψ̂ij is defined by

ψ̂ij =
{

1, if ϕj(xcc,i) ≤ ℓact,Φi(x)
0, else

(4-16)

Master of Science Thesis F.T. Gallagher

4-6 Total number of FBR regions 42

4-5-2 Kripfganz realisation from FBR regions

For the realisation of a kripfganz MMPS function, we again refer to the methods from Chapter
3. The goal is to create a function in the form:

f(x) = g(x) − h(x) (4-17)

where g(x) and h(x) are two maximization (convex) functions or two minimization (concave)
functions. Note that we had the following methods:

• Convex Folds

• Conjunctive MMPS realisation

Each of these methods can be deployed to the FBR partitioning. Again we assume the
following: we have the FBR partition in H-representation, the original function, the parameter
matrix and an interior point for each FBR region available.

Convex folds One strategy would be to borrow the technique used in [19] as described in
Section 3-2-2, by collecting the convex folds, or pairs of FBR regions that are convex, as basis
for the construction of g(x), with:

g(x) =
∑

gt (4-18)

To find the convex function h(x), one would then simply solve h(x) = g(x) − f(x). However
this procedure needs to be done for each FBR region to find h(x). To do this we may again
use an interior point to evaluate the function accordingly. For each FBR region each convex
fold gt(x) is evaluated to find the active function. Then for that specific FBR region h(x) can
be constructed by summing the corresponding functions and subtracting the active function.

Conjunctive MMPS realisation Alternatively we can construct the kripfganz MMPS func-
tion by going to the conjunctive MMPS form as an intermediate step and then following the
procedure described in Chapter 3. To find the conjunctive MMPS form from a FBR partition
we follow the procedure described above.

4-6 Total number of FBR regions

One of the questions we would like to answer is how many FBR regions would be generated fol-
lowing the partition. That is When n-dimensional space is partitioned by NH hyperplanes (i.e.,
sub-spaces of dimension n−1), how many distinct m-dimensional sub-spaces are created?. To
find an answer to this question we make use of the study of hyperplane arrangements. As will
be discussed, the answer to this question is straightforward for the upper-bound. However,
for the lower-bound (some regions do not exist as a consequence of parallel and intersecting
hyperplanes), the answer becomes much harder. The information necessary for the use of the
FBR partition is reviewed in the following section.

Master of Science Thesis F.T. Gallagher

4-6 Total number of FBR regions 43

4-6-1 Total number of intersection

First we consider the number of hyperplanes, or intersection that exist as a result of two
intersecting affine functions. Thus for a set of affine functions where each two affine functions
create a hyperplane, we are looking for all combinations between them. Combination are
defined as follows:

Definition 4-6.1. [9] Combinations. Consider a set with n elements. Each subset of size k
chosen from this set is called combination of n elements taken k at a time. We denote the
number of distinct such combinations by the symbol Cn,k

Theorem 4-6.1. [9] Combinations. The number of distinct subsets of size k that can be
chosen from a set of size n is

Cn,k =
(
n
k

)
= n!
k!(n− k)! (4-19)

Now in the case of hyperplane arrangements we know that each half-space only produces
two hyper-planes; one hyper-plane to describe each side of the half-space. Therefor we have
k = 2. Now for any given set of Naff affine functions we set n = Naff. We can now simplify
the possible combinations to

NH =
(
Naff

2

)

= Naff!
2!(Naff − 2)!

= Naff(Naff − 1)(Naff − 2)!
2!(Naff − 2)!

= Naff(Naff − 1)
2

Now that we know the number of hyperplanes, we can find an answer to how many regions
are created by them.

4-6-2 Upper-bound on number of FBR regions

It is well known that NH hyperplanes in the n-dimensional space Rn, will divide Rn into a
maximum number of regions according to the following theorem:

Theorem 4-6.2. (L. Schläfli [23]) Let A be a collection of NH hyperplanes in the affine space
Rn. Then the corresponding number of regions Nn

Φ satisfies the following inequality:

Nn
Φ ≤

(
NH
0

)
+
(
NH
1

)
+ · · · +

(
NH
n

)

=
n∑
i=0

(
NH
i

)

Master of Science Thesis F.T. Gallagher

4-6 Total number of FBR regions 44

Note that where
(p
q

)
= 0 if q > p. This theorem has been proven using a so called "Sweep"

approach in [1, 5], or by a "Pascal triangle" method in [17, 37]. Note that this is for the
case where the domain is with Rn and the domain is not bounded. The number of bounded
regions (closed from all sided) is given by

Nn
Φ =

(
NH − 1
n

)
(4-20)

This upper limit on the number of FBR regions assumes the hyper-planes are in general
position: there are no identical and parallel hyperplanes and no more than 2 hyperplanes
share the same intersection. Finding the lower bound in R2 is fairly simple and intuitive. For
the general case where Rn with n > 2 the problem becomes much harder.

4-6-3 Lower bound on number of FBR regions

Theorem 4-6.3. (Roberts’ formula [22]) Let A be a collection of d lines ℓ1, ..., ℓd in the plane
R2. Then the corresponding number of regions is given by:

NΦ = 1 +NH +
(
NH
2

)
−

k∑
i=1

nk

(
k − 1

2

)
−

p∑
j=1

(
ℓj
2

)
(4-21)

where nk is the number of k-fold intersection points in A for k ≥ 3 and there are p families
of parallel lines, containing respectively ℓ1, ..., ℓd lines with ℓj ≥ 2

It reads as: "the number of regions formed by n lines in general position" minus "the number
of regions lost because of the multiple points" minus "the number of regions lost because of
the parallels."

In higher dimensions, i.e. Rn with n > 3, the problem of finding a lower bound by considering
parallel hyper-planes and more than two hyper-planes that share an intersection, becomes
much harder.

Theorem 4-6.4. Zaslavsky’s Theorem [36]: The number of regions into which space is split
by the arrangement A can be found by adding together the absolute values of the Möbius
function values given to the corresponding (semi-)lattice.

Given a vector space V and an arrangement A on V , the number of regions the vector space
V is split into by A (denoted N(A)), can be expressed as follows:

N(A) =
∑

x∈L(A)
(−1)r(x)µ(0, x) (4-22)

The answer to this question is not of particular importance for the understanding of the
algorithm, and we therefor consider the answer to this question outside of scope of this thesis.

Master of Science Thesis F.T. Gallagher

4-7 Example: demonstration of a continuous PWA realisation using FBR regions 45

4-7 Example: demonstration of a continuous PWA realisation us-
ing FBR regions

Two examples will be given that demonstrates the realisation of a continuous PWA func-
tion from a general MMPS function and a conjunctive MMPS function. First a simple 1-
dimensional example and a 2-dimensional example.

Conjunctive MMPS function

Consider again the 1-dimensional conjunctive MMPS from Example 2:

fcd(x) = max
(

min(0.5x+ 0.5,−0.5x+ 3),min(2x− 1, 2,−2x+ 9)
)

(4-23)

The parameter matrix ϕ is clearly given by

ϕ =
(

0.5 2 0 −2 −0.5
0.5 −1 2 9 3

)T

Figure 4-8: The plot from the 1-
dimensional conjunctive example.

Figure 4-9: The same plot from the 1-
dimensional conjunctive example, but with
a FBR partition

Finest Base Region Partitioning From the parameter matrix we can find the total number
of FBR regions. We have Naff = 5 total of unique affine functions. Then the total number of
hyperplanes NH is given by:

NH = Naff(Naff − 1)
2

= 5(5 − 1)
2 = 10

Master of Science Thesis F.T. Gallagher

4-7 Example: demonstration of a continuous PWA realisation using FBR regions 46

For a n = 1-dimensional problem, being divided by NH = 10 hyperplanes. However when
looking at the graph, we notice two hyperplanes to be equal. Thus giving us NH = 9 unique
hyperplanes. We thus expect a total number of FBR regions NΦ to be:

NΦ =
(
NH
0

)
+
(
NH
1

)
= 1 +NH

= 1 + 9 = 10

Now by analysing the graph, the FBR regions can be identified. In H-representation the FBR
regions are given by:

Φ1 =
(

−1 0
1 1

)
,Φ2 =

(
−1 1
1 1.5

)
,Φ3 =

(
−1 1.5
1 1.6

)
,Φ4 =

(
−1 1.6
1 2

)
,Φ5 =

(
−1 2
1 2.5

)
,

Φ6 =
(

−1 2.5
1 3

)
,Φ7 =

(
−1 3
1 3.4

)
,Φ8 =

(
−1 3.4
1 3.5

)
,Φ9 =

(
−1 3.5
1 4

)
,Φ10 =

(
−1 4
1 5

)

Interior points Now we can compute a set of interior points. For this we will use the
Chebycenter. This returns the following points:

xcc =
(
0.5 1.25 1.56 1.8 2.25 2.75 3.2 3.45 3.75 4.5

)
Continuous PWA realisation from FBR regions Now for each point xcc we can evaluate
the original function f(x) and each affine functions from the parameter matrix:

f(xcc) =
(
0.75 1.5 2 2 2 2 2 2 1.5 0.75

)

ϕ(xcc) =


0.75 1.125 1.28 1.4 1.625 1.875 2.1 2.225 2.375 2.75

0 1.5 2.12 2.6 3.5 4.5 5.4 5.9 6.5 8
2 2 2 2 2 2 2 2 2 2
8 6.5 5.88 5.4 4.5 3.5 2.6 2.1 1.5 0

2.75 2.375 2.22 2.1 1.875 1.625 1.4 1.275 1.125 0.75


Finally we can identify the active function where fi(xcc) = ϕi,j(xcc) for i ∈ {1, ..., 5}, j ∈
{1, ..., 10} Now we can rebuild the continuous PWA function:

f(x) =



ℓ1(x) = 0.5x+ 0.5 x ∈ Φ1

ℓ2(x) = 2x− 1 x ∈ Φ2

ℓ3(x) = 2 x ∈ Φ3

ℓ3(x) = 2 x ∈ Φ4

ℓ3(x) = 2 x ∈ Φ5

ℓ3(x) = 2 x ∈ Φ6

ℓ3(x) = 2 x ∈ Φ7

ℓ3(x) = 2 x ∈ Φ8

ℓ4(x) = −2x+ 9 x ∈ Φ9

ℓ5(x) = −0.5x+ 3 x ∈ Φ10

(4-24)

Master of Science Thesis F.T. Gallagher

4-7 Example: demonstration of a continuous PWA realisation using FBR regions 47

It is easy to verify that the regions Φ3, ...,Φ7 have the same active function ℓ3(x). We can
join the neiboring regions which share a same active function. This then gives us:

f(x) =



ℓ1(x) = 0.5x+ 0.5 x ∈ Φ1

ℓ2(x) = 2x− 1 x ∈ Φ2

ℓ3(x) = 2 x ∈ Φ3 ∪ Φ4 ∪ Φ5 ∪ Φ6 ∪ Φ7 ∪ Φ8

ℓ4(x) = −2x+ 9 x ∈ Φ9

ℓ5(x) = −0.5x+ 3 x ∈ Φ10

(4-25)

Conjunctive MMPS function in 2-dimensions

Consider the 2-dimensional conjunctive MMPS function from Example 9. Remember that
we have previously computed the parameter matrix and FBR regions. From the parameter
matrix we can find the total number of FBR regions. We have Naff = 3 total of unique affine
functions. Then the total number of hyperplanes NH is given by:

NH = Naff(Naff − 1)
2

= 3(3 − 1)
2 = 3

Which we can verify by the previous results. The same can be done for the number of FBR
regions. We thus expect a total number of FBR regions NΦ to be:

NΦ =
(
NH
0

)
+
(
NH
1

)
+
(
NH
2

)
−
(

2
2

)

= 1 +NH + NH(NH − 1)
2 − 2(2 − 1)

2
= 1 + 3 + 3 − 1 = 6

And indeed we found a total of NΦ = 6 FBR regions. To find the active functions we can
analyse the ordered lattices instead as previously shown. Then for each FBR region we get
the following active functions:

ℓΦ1 := ℓ1(x), ℓΦ2 := ℓ2(x), ℓΦ3 := ℓ3(x)
ℓΦ4 := ℓ3(x), ℓΦ5 := ℓ3(x), ℓΦ6 := ℓ3(x)

where ℓΦi indicates the active function for the FBR region Φi. The continuous PWA function
would then be:

fcpwa(x) =



ℓ1(x) = 8x1 − 5x2 − 1 x ∈ Φ1

ℓ2(x) = −5x1 + 8x2 − 1 x ∈ Φ2

ℓ3(x) = 0 x ∈ Φ3

ℓ3(x) = 0 x ∈ Φ4

ℓ3(x) = 0 x ∈ Φ5

ℓ3(x) = 0 x ∈ Φ6

(4-26)

Master of Science Thesis F.T. Gallagher

4-8 Summary 48

It should be obvious that the resulting continuous PWA has FBR regions with equivalent
active functions that could be combined into one region.

fcpwa(x) =


ℓ1(x) = 8x1 − 5x2 − 1 x ∈ Φ1

ℓ2(x) = −5x1 + 8x2 − 1 x ∈ Φ2

ℓ3(x) = 0 x ∈ Φ3 ∪ Φ4 ∪ Φ5 ∪ Φ6

(4-27)

4-8 Summary

In this chapter the concept of FBR regions (FBR regions) as a method to construct continuous
PWA functions from MMPS functions was realised. FBR regions can be thought of as the
projection of all intersections between the unique affine functions. The resulting grid is a
partition of the domain over which the original function was defined.

The main benefit of this partition is that it can be performed using only information of the
parameter matrix, or the unique affine functions, of the original function. Meaning the FBR
partition can be used create a map of regions from any type of MMPS function.

Together with the parameter matrix, an interior point for each FBR region and the original
function, a continuous PWA function can be constructed. General MMPS functions, con-
junctive MMPS functions and Kripfganz MMPS functions can be rewritten in continuous
PWA functions using the FBR partitioning. The resulting continuous PWA function is in a
redundant form and as an additional step neighbouring FBR regions may be joined which
share the same active function.

In the next chapter, three methods for the actual partitioning into FBR regions are discussed.
The goal is to create an algorithm which accepts only a parameter matrix which then create
the FBR regions.

Master of Science Thesis F.T. Gallagher

Chapter 5

Finest Base Region Computation

In this chapter three algorithms are presented that can partition any Max-Min-Plus-Scaling
(MMPS) function or continuous Piecewise Affine (PWA) function into a finest base regions.
In the first algorithm an approach of hyperplane arrangements is used. The algorithm creates
each Finest Base Region (FBR) region using all possible hyperplanes arrangements. In the
second algorithm the property of lattices is exploited to create the FBR regions. Finally an
algorithm that iteratively cuts the domain into finer regions for every added hyperplane.

5-1 Preliminaries

Polyhedral sets and their manipulation are an integral part of the algorithms. The funda-
mentals on polyhedral theory can be found in Appendix B. Two topics on polyhedral sets are
used by each algorithm:

• Identifying empty regions (defined as polytopes)

• Finding an interior points regions

Before discussing the algorithms, two topics are treated.

5-1-1 Computing an interior point of a convex polytope

The algorithms use the calculation of an (arbitrary) interior point of a convex set. Under
the assumption that the convex set is given in (non-minimal) H-representation the following
methods are generally used for the calculation of an interior point:

• Analytical center

• Chebychev center

Master of Science Thesis F.T. Gallagher

5-1 Preliminaries 50

• Methods for V-represented sets

The first three methods evolve around solving a specific linear program. There is some (minor)
performance differences, but are generally solved in polynomial time.

Analytical center The analytic center[4] of a set of m inequalities is defined as an optimal
point for the (convex) problem

min −
m∑
i=1

log(bi − a⊤
i x), for i = {1, ...,m} (5-1)

The objective function can be found in literature as the logarithmic barrier.

Chebyshev center Secondly, we may find the Chebyshev center for each region. Computa-
tion of the Chebyshev center corresponds to inscribing the largest ball inside a polyhedron[4].
The Chebyshev center of a closed bounded set is the set of solutions of the problem. The
Chebyshev center and radius can be computed by solving the following linear program [16]:

max r (5-2)
s.t. a⊤

i xc + ||ai||2r ≤ bi, i = 1, ...,m (5-3)
Aexc = be (5-4)

where ai is the i-th row of the inequality matrix A in Axc ≤ b and ||ai||2 is the 2-norm of
that row.

Vertex description Alternatively, there exists the option to find the corresponding v-description
(given a convex set in the h-description). This can also be found in literature as vertex enumer-
ation. Then the available tools that use the v-description can instead be used. The existence
of a total polynomial time vertex enumeration algorithm for polytopes remains unresolved
[18]. Therefor this option is not considered viable throughout the rest of this thesis.

5-1-2 Polytopes with an empty interior

In the algorithms following this section one of the challenges is to identify empty or infeasible
sets. Within the scope of the algorithm with "empty" we mean situation where the solutions
of a set of inequalities lie within at least Rn−1. Any solutions that only lie on a facet or
vertices, i.e. the solutions lie within Rm where m < n− 1, then we consider the set empty, or
invalid to be a finest base region.
The reason for this convention is that if a projection becomes of a smaller order than n− 1,
is does not necessarily indicate an "empty region". For example in the case of f : R2 → R
where a region becomes a line, or a point.
To find a certificate of emptiness or feasibility we may use two approaches:

• Farka’s lemma

• Chebshev center

• Hyperplane testing

Master of Science Thesis F.T. Gallagher

5-2 Method 1 - FBR partition using hyperplane arrangements 51

Farka’s lemma It is well know in the study of polyhedral sets that Farka’s Lemma can give
a certificate of feasibility of a set. Farka’s lemma is stated as follows:

Lemma 5-1.1. Farka’s lemma - Let A ∈ Rm×n and b ∈ Rm. Then exactly one of the
following two assertions is true:

1. There exists an x ∈ Rn such that Ax = b and x ≥ 0

2. There exists an y ∈ Rm such that A⊤y ≥ 0 and b⊤y < 0

Chebycenter Alternatively, we may find the Chebyshev center for each region:

Definition 5-1.1. Chebyshev center - Computation of the Chebyshev center corresponds to
inscribing the largest ball inside a polyhedron. The Chebyshev center of a closed bounded
set is the set of solutions of the problem.

By finding the radius of the inscribed ball we can check if the region is empty or not: if the
radius is greater than 0 we know the region is not empty; otherwise the region is empty.

The Chebyshev center and radius can be computed by solving the following linear program
[16]:

max r (5-5)
s.t. a⊤

i xc + ||ai||2r ≤ bi, i = 1, ...,m (5-6)
Aexc = be (5-7)

where ai is the i-th row of the inequality matrix A in Axc ≤ b and ||ai||2 is the 2-norm of
that row.

5-2 Method 1 - FBR partition using hyperplane arrangements

The following algorithm is an initial attempt at acquiring the finest base region partition.
In the first part of the algorithm, a continuous PWA function is partitioned into finest base
regions.

In the first attempt to create a finest base region partition, the combinatorics of all inter-
sections between the pairs of unique affine functions (of which the original function consists
of), is performed to acquire all hyperspaces. Each region can then be constructed using again
combinatorics of all possible hyperplane arrangements. This method creates multiple empty
regions which would need to be identified and removed.

The algorithm takes as input either a continuous PWA or any MMPS function, and the domain
over which the function is defined as hyperplanes. The algorithm outputs an continuous PWA
function partitioned into FBR regions. The complete algorithm is structured as follows in
pseudocode:

Master of Science Thesis F.T. Gallagher

5-2 Method 1 - FBR partition using hyperplane arrangements 52

Algorithm 1 Method 1 - FBR partition using hyperplane arrangements
1: Input: [ϕ, bounds]
2: Output: [Φ]
3: H = CNaff,2(ϕ) ▷ Collect all NH hyper-spaces
4: Φ̂ = CNaff,2(H−/+) ▷ Construct every i-th FBR region
5: for i = 1 : 2NH do
6: if Φ̂(i) is not empty then
7: Φ(j) = Φ̂(i) ▷ Save region
8: else
9: Region is empty, do nothing

10: end if
11: end for

5-2-1 FBR region construction

The first attempt to construct all finest base regions is based on combinatorics. The use of
combinatorics is two fold:

• Half-space realisation

• Hyper-plane arrangement for region construction

In step one the intersect of each unique pair of affine functions (of n-order) can be found.
The intersect is represented as a (n − 1)-order half-space. Doing so for each possible pair of
affine functions, returns all (n − 1)-order half-spaces. Each half-space divides the space into
two region which are both represented as a hyper-plane. Suppose this returns N -number of
half-spaces, then we can construct each finest base region using N -number of hyper-planes. In
step two, using combinatorics, every possible arrangement of the (n − 1)-order hyper-planes
is constructed to return every finest base region. Note that this step also generates invalid or
empty regions.

Half-space realisation using combinatorics We can find all half-spaces by finding every
unique pair of affine functions. The half-space can be found by solving for the pair of inter-
secting affine functions i and j:

α(i)x + β(i) = α(j)x + β(j) (5-8)

with i, j ∈ {1, ..., NΦ}, i ̸= j. Then every possible hyper-planes are:

(α(i) − α(j))x ≤ β(j) − β(i)

(α(i) − α(j))x ≥ β(j) − β(i)

The number of hyper-spaces that can be found are dependent on the number of functions
f(i) that are parallel to each other. Consider the case where each function fi is unique and
not parallel, then the number of intersections L described as hyper-spaces are all the possible

Master of Science Thesis F.T. Gallagher

5-2 Method 1 - FBR partition using hyperplane arrangements 53

combinations of pairs, where it is subject to the commutative property and thus can be found
by classical combinations.

Now in the case of hyperplane arrangements we know that each half-space only produces
two hyper-planes; one hyper-plane to describe each side of the half-space. Therefor we have
k = 2. Now for any given set of Naff affine functions we set n = Naff. We can now simplify
the possible combinations to

NH =
(
n

k

)
=
(
Naff

2

)
= Naff!

2!(Naff − 2)! (5-9)

= Naff(Naff − 1)(Naff − 2)!
2!(Naff − 2)! (5-10)

= Naff(Naff − 1)
2 (5-11)

Finally, using the combinations described above we would find all possible half-spaces and
collect them in a single matrix A and b in central form:

H : Ax = b (5-12)

Where A and b are given for each row k by

Ak = αi − αj

bk = βi − βj

with ANH×2 and bNH×1, for all combinations of i, j ∈ {1, ..., NΦ̂}, i ̸= j and k ∈ {1, ..., NH}.
Furthermore we get both hyper-plane matrices:

H− : A−x ≤ b−

H+ : A+x ≥ b+

With A− = A, b− = b and A− = −A+, b− = −b+

Hyper-plane arrangements using combinatorics Next we can find every possible hyper-
plane arrangement using a naive approach. The general idea is that each unique region
can be constructed using every possible combination of hyper-planes. This generates both
valid regions with redundant hyper-planes (non minimal form) and invalid or empty regions.
However it does guarantee the creation of each region. Therefor the strategy is to initially
create every region and include an additional step to identify and remove each empty region
and optionally include a third step to find a minimal representation of the valid regions.

Consider a continuous PWA function of n-dimension with Naff affine functions and no parallel
functions. Then the number of hyper-spaces are NH and the number of hyper-planes are 2NH .
For each hyper-space only one hyper-plane can be active per region as any combination of
two hyper-planes from the same hyper-space results in an empty region. Therefor each region
can be described using a set of NH hyper-planes. This set can be constructed using any

Master of Science Thesis F.T. Gallagher

5-2 Method 1 - FBR partition using hyperplane arrangements 54

combination of hyper-planes. Let the total number of possible hyper-plane arrangement be
denoted by NΦ̂ then we find

NΦ̂ = 2NH (5-13)

where NH are the number of hyper-spaces. By adding the expression for the number of
hyperplanes we can express the total number of initialised regions in terms of affine functions:

NΦ̂ = 2NH (5-14)

= 2
1
2Naff(Naff−1) (5-15)

Note that NΦ̂ is independent of the dimension n of the cPWA function and only dependent
on that of the number of non parallel affine functions N −K. Let each resulting region be Φ̂i

for i ∈ {1, ..., NΦ̂} that is defined by

Φ̂i :=



H−
1 ∨H+

1
H−

1 ∨H−
2

...
H−
NΦ̂

∨H+
NΦ̂

(5-16)

where ∨, stands for the logical operator "or". This method also generates empty sets and
thus an additional step is included to remove these.

Removing empty sets

The above described step generates combinations of hyper-planes, which result in empty sets.
We may use one of the approaches described in the preliminaries to identify empty sets and
remove them from the partition.

Master of Science Thesis F.T. Gallagher

5-3 Method 2 - FBR partition using ordered lattices 55

5-3 Method 2 - FBR partition using ordered lattices

In the next algorithm we perform an modification to algorithm 1 to reduce the number of
empty sets that are created.

One may realise that it is not necessary to compute the hyper-spaces, but directly create
the region using hyper-planes. Instead of using combinatorics, hyper-spaces and hyper-plane
arrangements, we can create all possible regions by realising that each affine function occurs
in a unique arrangement and that this arrangement can be written as inequalities which define
that particular region.

The reason this is an improvement lies in the fact that this method of region constructing
results in less empty sets that the method proposed previously. The complete algorithm is
structured as follows in pseudocode:

Algorithm 2 Method 2 - FBR partition using lattices
1: Input: [ϕ, bounds]
2: Output: [Φ]
3: I = PNaff ▷ Create all possible orders using combinatorics
4: Φ̂ = CI,2 ▷ Create region using all combinations of orders
5: for i = 1 : Naff! do
6: if Φ̂i is not empty then
7: Φj = Φ̂i ▷ Save region
8: else
9: Region is empty, do nothing

10: end if
11: end for

5-3-1 FBR region construction

Given a set of Naff unique affine functions, all possible arrangements are the permutations
of Naff. An arranged set is in fact a set of inqualities as it lists each function equal or
smaller (or larger if in descending order) than the order: Suppose we have a ordered lattice
set {ℓ1(x), ℓ3(x), ℓ2(x), ℓ4(x)}, in ascending order. Then the region in which this order is
contained can be described by the inequalities ℓ1 ≤ ℓ3, ℓ1 ≤ ℓ2, ℓ1 ≤ ℓ4, ℓ3 ≤ ℓ2, ℓ3 ≤ ℓ4,
ℓ2 ≤ ℓ4. The region would thus be given by the set of inequalities:

H :=



ℓ1 − ℓ3
ℓ1 − ℓ2
ℓ1 − ℓ4
ℓ3 − ℓ2
ℓ3 − ℓ4
ℓ2 − ℓ4


≤ 0

All possible arrangements of the affine functions are then given by the permutations of the
vector [1 2 · · · Naff]. Using the permutations described previously we would find all possible

Master of Science Thesis F.T. Gallagher

5-3 Method 2 - FBR partition using ordered lattices 56

arrangements which give an upper bound to the total number of FBR regions NΦ̂. According
to the definition of permutations the total number of arrangements would then be:

NΦ̂ = Naff! (5-17)

Let each arrangement γi of the set {1, 2, ..., Naff} be given by:

γi = PNaff,Naff,i (5-18)

With PNaff,Naff,i being the i-th permutation. For each permutation the region is constructed
using the combinations of that particular arrangement. Consequently each region is described
using a total of NH hyperplanes, where:

NH =
(
Naff

2

)
= Naff(Naff − 1)

2 (5-19)

For a region Φ̂i given in central form as:

Φ̂i : Aix ≤ bi (5-20)

The matrix Ai and vector bi for each arrangement γi are then:

Ai = αj − αk

bi = βk − βj

with ANH×n and bNH×1, for all combinations of j, k ∈ {1, ..., NΦ̂}, i ̸= j and i ∈ {1, ..., NH}.

Empty sets

Again this method creates empty regions as the result of parallel and intersecting affine
functions. Some of these empty or infeasible regions can be identified in their arrangements
before constructing the regions and thus lowering the storage complexity as well as the time
complexity of not having to solve a linear program.

Master of Science Thesis F.T. Gallagher

5-4 Method 3 - FBR partition using domain cutting 57

5-4 Method 3 - FBR partition using domain cutting

The third method takes a more iterative approach compared to the previous two. The general
idea is to start with the domain in which f(x) is contained and cut the domain in half for
each half-space that is the result of an intersection between two affine functions. In the next
loop the now two regions are again cut with the hyperspaces as a result of the third affine
function with the two previous affine functions. In other words, cutting the domain becomes
increasingly complex where the domain is cut where the next affine function intersects with all
previous affine functions, over every region. The complete algorithm is structured as follows
in pseudocode:

Algorithm 3 Method 3 - FBR partition using domain cutting
1: Input: [ϕ, bounds]
2: Output: [Φ]
3: Initialize domain Φ (bounds)
4: for i = 1 : Naff − 1 do
5: c = ϕ(1 : i, :) ▷ All current i affine functions
6: d = ϕ(i+ 1, :) ▷ Next i+ 1 affine function
7: for j = 1 : i do
8: for k = 1 : NΦ do
9: if hyper-space ∩ R then

10: Φi+1 = Φ+
i , Φi+2 = Φ−

i ▷ Create partition
11: else
12: Otherwise jump to next loop
13: end if
14: end for
15: end for
16: end for

5-4-1 FBR region construction

The algorithm loops over the affine functions and checks for each region and each new hy-
perplane if a cut is made. If it does create a cut the partition is updated and the outer most
loop starts with the next affine function.

Consider the initial conditions. The domain consists of one region defined by the bounds on
the the function:

Φinit := Aboundsx ≤ bbounds (5-21)

Then for the first pair of affine functions the hyperspace is configured:

H := ℓ1 − ℓ2 = 0 (5-22)

If H crosses the interior of Φinit, i.e., H ∩ Φinit ̸= ∅ then Φinit is partitioned into either side
of the hyperspace H. The resulting two regions are then given by:

Φ1 := Φinit ∪H+, Φ2 := Φinit ∪H− (5-23)

Master of Science Thesis F.T. Gallagher

5-5 Example of method 1, 2 & 3 58

In the following loops the next affine function is used to compute the hyper-spaces with all of
the previous looped affine functions. Then each region in Φ is checked for each hyper-space
if it is being cut. Thus for each new loop i we have the set of hyper-spaces:

Hi :=


ℓ1 − ℓi
ℓ2 − ℓi

...
ℓi−1 − ℓi

 = 0 (5-24)

Which are checked for each region Φk where

Φ =
v⋃
k=1

Φk (5-25)

with v ≤ 2i−1. These are two nested loops inside loop i. Thus for each new hyperspace Hj

(loop j) with j = {1, 2, ..., i} each region Φk (loop k) with k = {1, 2, ..., NΦ} is tested for being
cut. Each time the region Φk is cut the domain is updated to:

Φk = Φk ∪H+
j , Φk+1 = Φk ∪H−

j , (5-26)

Tests for being cut

During the partitioning each combination of the hyperspace Hj and region Φk is being tested
for cutting. One obvious method is to test if either one of the sets Φk ∩ H+

j or Φk ∩ H−
j

is empty, using the results of Farka’s lemma and a linear program as described previously.
However it is also possible to eliminate the need for a linear program when the hyper-space is
identical to any of the hyper-planes that the region is composed of. Then only a simple test
if H+

j or H−
j equals any of the hyper-planes in region Φk is enough to determine if the cut is

made or not.

5-5 Example of method 1, 2 & 3

Example 21. Let us consider the continuous PWA function from example 2:

f(x) =


ℓ1(x) = 8x1 − 5x2 − 1 x ∈ Ω1

ℓ2(x) = −5x1 + 8x2 − 1 x ∈ Ω2

ℓ3(x) = 0 x ∈ Ω3 ∪ Ω4

(5-27)

The parameter matrix ϕ and hyperplanes H are given by

ϕ =

 8 −5 1
−5 8 1
0 0 0

 , H :=

13 −13
8 −5

−5 8

(x1
x2

)
=

0
1
1


Master of Science Thesis F.T. Gallagher

5-5 Example of method 1, 2 & 3 59

FBR region construction using hyperplane arrangements (Method 1) All combination of
the hyperspaces creates the following regions:

Φ̂1 :

13 −13
8 −5

−5 8

(x1
x2

)
≤

0
1
1

 , Φ̂2 :

13 −13
−8 5
−5 8

(x1
x2

)
≤

 0
−1
1

 , Φ̂3 :

13 −13
8 −5
5 −8

(x1
x2

)
≤

 0
1

−1

 ,
Φ̂4 :

−13 13
8 −5

−5 8

(x1
x2

)
≤

0
1
1

 , Φ̂5 :

−13 13
−8 5
−5 8

(x1
x2

)
≤

 0
−1
1

 , Φ̂6 :

−13 13
8 −5
5 −8

(x1
x2

)
≤

 0
1

−1

 ,
Φ̂7 :

13 −13
−8 5
5 −8

(x1
x2

)
≤

 0
−1
−1

 , Φ̂8 :

−13 13
−8 5
5 −8

(x1
x2

)
≤

 0
−1
−1



FBR region construction using ordered sets (Method 2) We construct the ordered-matrix
directly by considering each possible arrangement (in ascending order) that may occur within
the domain:

γ =

1 1 2 2 3 3
2 3 1 3 1 2
3 2 3 1 2 1

 (5-28)

Each column represents a unique finest base region, which we then construct:

Φ̂1 :

ℓ1 − ℓ2
ℓ1 − ℓ3
ℓ2 − ℓ3

(x1
x2

)
≤ 0, Φ̂2 :

ℓ1 − ℓ3
ℓ1 − ℓ2
ℓ3 − ℓ3

(x1
x2

)
≤ 0, Φ̂3 :

ℓ2 − ℓ1
ℓ2 − ℓ3
ℓ1 − ℓ3

(x1
x2

)
≤ 0,

Φ̂4 :

ℓ2 − ℓ3
ℓ2 − ℓ1
ℓ1 − ℓ3

(x1
x2

)
≤ 0, Φ̂5 :

ℓ3 − ℓ1
ℓ3 − ℓ2
ℓ1 − ℓ2

(x1
x2

)
≤ 0, Φ̂6 :

ℓ3 − ℓ2
ℓ3 − ℓ1
ℓ2 − ℓ1

(x1
x2

)
≤ 0

Rewriting the above inequalities into normal form we get the regions:

Φ̂1 :

13 −13
8 −5

−5 8

(x1
x2

)
≤

0
1
1

 , Φ̂2 :

−8 5
13 −13
5 −8

(x1
x2

)
≤

 1
0

−1

 , Φ̂3 :

−13 13
−5 8
8 −5

(x1
x2

)
≤

0
1
1

 ,
Φ̂4 :

 −5 8
−13 13
−8 5

(x1
x2

)
≤

 1
0

−1

 , Φ̂5 :

−8 5
−5 8
13 −13

(x1
x2

)
≤

−1
−1
0

 , Φ̂6 :

 5 −8
−8 −5
−13 13

(x1
x2

)
≤

−1
−1
0



FBR region construction using ordered sets (Method 3) Cutting the domain in a loop
gives us the following FBR regions:

Φ1 :

13 −13
8 −5

−5 8

(x1
x2

)
≤

0
1
1

 ,Φ2 :

−8 5
13 −13
5 −8

(x1
x2

)
≤

 1
0

−1

 ,Φ3 :

−13 13
−5 8
8 −5

(x1
x2

)
≤

0
1
1

 ,
Φ4 :

 −5 8
−13 13
−8 5

(x1
x2

)
≤

 1
0

−1

 ,Φ5 :

−8 5
−5 8
13 −13

(x1
x2

)
≤

−1
−1
0

 ,Φ6 :

 5 −8
−8 −5
−13 13

(x1
x2

)
≤

−1
−1
0


Master of Science Thesis F.T. Gallagher

5-6 Analysis of the FBR algorithms 60

5-6 Analysis of the FBR algorithms

The three algorithms are analysed based on their storage requirements and time complexity.
The storage requirements are mostly determined by the number of hyperplanes each (ini-
tialised) FBR region. In addition, the algorithms store each unique affine function. However,
the number of hyperplanes quickly exceeds the number of unique affine functions as the prob-
lem becomes more complex and may be neglected in the analysis. The time complexity for
the algorithm to finish the partitioning and have no redundant or non existing regions.

5-6-1 Storage requirements

Method 1 In the first method each possible FBR region is initialised using hyperplane
arrangements. Initially for a set of Naff unique affine functions the algorithm needs to store
Naff(n+ 1) real numbers, inside the parameter matrix ϕ. For each initialised FBR region Φ̂i

with i ∈ {1, ..., NΦ̂} a total number of NH hyperplanes of dimension (n− 1) are stored, where
NH is given by 5-9 and the total number of initialised FBR regions NΦ̂, given in 5-13. Then
the storage requirements of algorithm 1 is:

#real numbers := (n+ 1)Naff︸ ︷︷ ︸
ϕ

+ (n+ 1)NHNΦ̂︸ ︷︷ ︸
Φ̂

= (n+ 1)Naff + (n+ 1)Naff(Naff − 1)
2 2

Naff(Naff−1)
2

= (n+ 1)Naff + 1
2(n+ 1)Naff(Naff − 1)2

1
2Naff(Naff−1)

For larger problems with Naff > 5 the first term may be neglected, giving:

#real numbers ≈ 1
2(n+ 1)Naff(Naff − 1)2

1
2Naff(Naff−1) (5-29)

After these regions are initialised, the algorithm filters out each empty region. When the
algorithm is complete the upperbound for the storage requirements is determined by the
total number of FBR regions:

#real numbers := (n+ 1)Naff︸ ︷︷ ︸
ϕ

+ (n+ 1)NHNΦ̂︸ ︷︷ ︸
Φ

= (n+ 1)Naff + (n+ 1)Naff(Naff − 1)
2 Naff!

≈ 1
2(n+ 1)Naff(Naff − 1)Naff!

Note that this results from replacing NΦ̂ with NΦ.

Method 2 The second method initialises each possible FBR region by considering the or-
dered lattices. Then the storage requirements of algorithm 2 is:

#real numbers := (n+ 1)Naff︸ ︷︷ ︸
ϕ

+ (n+ 1)NHNΦ̂︸ ︷︷ ︸
Φ̂

= (n+ 1)Naff + (n+ 1)Naff(Naff − 1)
2 Naff!

Master of Science Thesis F.T. Gallagher

5-6 Analysis of the FBR algorithms 61

And where for larger problems with Naff > 5 the first term may be neglected, giving the
storage requirements as:

#real numbers :≈ 1
2(n+ 1)Naff(Naff − 1)Naff! (5-30)

After these regions are initialised, the algorithm filters out each empty region. The upper-
bound of the storage requirements equal that of the initialised storage requirements. The
lower-bound depends on the number of intersecting and parallel hyperplanes as. An exact
answer to this question lies outside of the scope of this thesis.

Method 3 The approach of method 3 is to construct the regions by checking if newly
added affine functions cause the domain to be partitioned. The regions are constructed using
hyperplanes only when this partitioning happens. Its is expected that in general this leads to
less hyperplanes than the the naive approach of building the regions using a combinatorics
approach. Thus:

#real numbers ≤ (n+ 1)Naff + (n+ 1)NHNΦ̂

= (n+ 1)Naff + (n+ 1)Naff(Naff − 1)
2 Naff!

5-6-2 Time complexity

Method 1 The algorithm checks every initially created set, or Φ̂, for its existence or empti-
ness by solving a linear program. The time complexity can thus be expressed by the total
number of linear programs that need to be solved by the algorithm or:

#linear programs := #initialized sets (5-31)

The number of initialized sets NΦ̂ can be expressed as the unique number of affine function:

NΦ̂ = 2NH

= 2
1
2Naff(Naff−1)

Therefor a worse case total of 2
1
2Naff(Naff−1) linear programs need to be solved. The worse-case

time complexity of the first method is thus:

O
(

· 2
1
2Naff(Naff−1)L

)
(5-32)

with Naff the distinct number of affine functions, and in which L is the bit length of the input
data of the LP problem.

Method 2 In method 2, the algorithm checks every initially created set, or Φ̂, for its ex-
istence or emptiness by solving a linear program (based on one of the methods described
in previously). The time complexity can thus be expressed by the total number of linear
programs that need to be solved by the algorithm or:

#linear programs := #initialized sets

Master of Science Thesis F.T. Gallagher

5-7 Results - Performance comparison 62

The number of initialized sets NΦ̂ can be expressed in the unique number of affine function.
The worst case scenario for this methods, the number of initialised regions is equal to the
upperbound of finest base regions. The algorithm checks every region for emptiness. Therefor
a worse case total of Naff! linear programs need to be solved. The worse-case time complexity
then is given by:

O
(
LNaff!

)
(5-33)

Method 3 The algorithm has three nested loops i, j and k, where i = {1, 2, ..., Naff − 1},
j = {1, 2, ..., i} and k = {1, 2, ..., NΦ}. The upperbound for NΦ is:

NΦ = (i− 1)(i− 2)
2 (5-34)

The worst-case total number of loops is thus:

O
(
L
Naff∑
i=1

i

2(i− 1)(i− 2)
)

(5-35)

And thus a worst-case total of
∑Naff
i=1

i
2(i − 1)(i − 2) linear programs need to be solved. Any

hyper-planes that coincide with one another however can be removed from the evaluation.

5-7 Results - Performance comparison

To benchmark the different algorithm fairly sets of increasingly complex hyperplanes are con-
structed using randomly generated sets. The algorithms are tested in Rn for n = 3, 4, 5, 6, 7,
for an increasing number of affine functions. When the runtime of a particular method ex-
ceeded 120s, the operation was cancelled as well as any subsequent tests. To validate each
region the chebyshev method was used. Further more in the first experiment the algorithms
use only the chebyshev method to filter out empty sets. In the second experiment the "opti-
mized" algorithms are used as described in the sections previously.

The experiments where conducted with Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz 2.59
GHz. The code was written in matlab and is attached to the appendix. For the measurement
of the cpu time the build in matlab tool "tic toc" was used.

Master of Science Thesis F.T. Gallagher

5-7 Results - Performance comparison 63

R3 R4 R5

Alg Naff NΦ cpu (s) Naff NΦ cpu (s) Naff NΦ cpu (s)
M1 0.046493 0.036888 0.011701
M2 3 6 0.022745 3 6 0.024951 3 6 0.013951
M3 0.027385 0.041231 0.033310
M1 0.141130 0.125962 0.059710
M2 4 18 0.023852 4 24 0.023485 4 24 0.023561
M3 0.072739 0.081061 0.087351
M1 1.078261 1.123901 0.969331
M2 5 46 0.127073 5 96 0.118510 5 120 0.126312
M3 0.268093 0.483023 0.539911
M1 33.523213 38.133172 34.328601
M2 6 101 0.728852 6 326 0.824096 6 594 0.761949
M3 0.852704 2.689630 3.619389
M1 ∼ ∼ ∼
M2 7 192 5.437076 7 932 5.704437 7 2532 6.594432
M3 2.554187 9.922502 25.189844
M1 ∼ ∼
M2 8 304 42.571758 8 2297 45.642199
M3 5.384373 35.972784
M1 ∼ ∼
M2 9 536 ∼ 9 5111 ∼
M3 13.167 117.095308
M1 ∼
M2 10 901 ∼
M3 29.493
M1 ∼
M2 11 1341 ∼
M3 49.661

Table 5-1: CPU time for the finest base region partition for different configuration. Processor:
Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz 2.59 GHz.

Master of Science Thesis F.T. Gallagher

Chapter 6

Discussion

In this chapter the FBR regions as a method for the realisation of continuous PWA functions
and canonical MMPS functions is discussed. This includes discussion of the FBR regions
themselves, the parameter matrix, the ordered lattices and the three algorithms for the com-
putation.

6-1 Realisation of canonical MMPS functions and continuous PWA
functions

FBR regions can be computed from the parameter matrix only. Thus only information of the
unique affine functions is necessary. Within an FBR regions the ordering of the affine functions
is fixed and therefor the ordered lattice can describe a FBR region. The upperbound of FBR
regions that are computed are determined by the total number of unique affine functions.
This total number of FBR regions NΦ is given by NΦ =

∑n
i=0

(Naff
i

)
where n is the dimension,

Naff the total number of unique affine functions and
(Naff
n

)
the combinations. The partitioning

is thus highly complex as a result of the combinatorial complexity or combinatorial explosion.
To put this into perspective: for a problem in R2 with Naff = 5 the number of FBR regions
is NΦ = 10. For a problem with Naff = 20 the number of FBR regions is NΦ = 211.

Parameter matrix The parameter matrix can be easily obtained from continuous PWA
functions and conjunctive MMPS functions. This is because the unique affine functions are
embedded in the parameters of both forms. The operations addition and scalar multiplication
are not present in the expression which do not change any of the parameters.

Kripfganz MMPS functions and general MMPS functions do use the operations addition
and scalar multiplication (the latter only for general MMPS functions) in the expression and
therefor information of the unique affine functions is not directly present in the expression. By
using combinatorics of the expression and parameters, the parameter matrix can be obtained.
Likewise, both can also be rewritten into conjunctive form from which the unique affine

Master of Science Thesis F.T. Gallagher

6-2 FBR partitioning algorithms 65

functions can be obtained. This procedure however can produce redundant affine functions,
i.e. affine functions that may never be active.

Redundancy in the parameter matrix will produce a larger number of Finest Base Region
(FBR) regions. These regions can still be used for the realisation of the different forms.
However the number of regions explodes with the number of affine functions and therefor it
can be necessary to remove the redundancy.

6-2 FBR partitioning algorithms

Three algorithms have been proposed for the computation of the FBR regions. Each method
uses the parameter matrix as only input. Finest base regions are the result of each affine
element intersecting with one another. The relation between the number of affine function
and the number of finest base regions is therefor exponential in nature. This simple result
already reveals the computational burden of realising the partition being heavy to say the
least. Accepting the fact that the partition will already be exponential in nature, the best the
algorithm can do is be as close to the lower bound of computed regions as well as describing
the regions using the least amount of hyperplanes.

Method 1 uses the arrangements of all possible hyperplanes to construct each region. The
hyperspaces are first initialized by considering all pairs of affine functions. Then each region
is constructed using all possible combinations of the hyperplanes. Thus a total of N̂Φ =
2

1
2Naff(Naff−1) regions are initialised, each described by NH,Φi = Naff(Naff−1)

2 hyperplanes. This
method produces more than the upperbound of possible FBR regions. The first method thus
creates a total of at least:

empty sets ≥ 2
1
2Naff(Naff−1) −Naff! (6-1)

Method 2 exploits the ordered lattices for the computation of FBR regions. Each region
is initialised using the possible arrangements of the affine functions, rather than the hyper-
planes. The number of initialised empty sets is determined only by the properties of the affine
functions that may have intersecting and parallel hyperplanes. The ordered lattices are each
permutation of the affine functions. Therefor a total of N̂Φ = Naff! regions are initialised,
each described by NH,Φi = Naff(Naff−1)

2 hyperplanes.

Method 3 uses an iterative approach, first initializing the domain and making necessary cuts
for each new hyperplane, thus relaxes the issue of initialising a (very) large number of regions.
Furthermore each region is constructed with less hyperplanes as they are only added to the
region of a cut is made.

In both method 1 and method 2 the regions are described using a fixed number of hyperplanes:
NH = 1

2Naff(Naff − 1). However method three only adds necessary hyperplanes to make the
cut. The resulting regions are not in a irredundant description, however it will lower the
number of hyperplanes used to describe the FBR region.

Master of Science Thesis F.T. Gallagher

Chapter 7

Conclusion

The FBR region partitioning is a method for realising continuous PWA functions and canon-
ical MMPS functions from either continuous PWA functions, conjunctive MMPS functions,
kripfganz MMPS functions or general MMPS functions. The only requirement is knowledge
of the unique affine functions which can be found for each of the cases. The FBR partitioning
can be used for all problems in Rn with n > 1, and for any type of function to any type of
function.

At the point of writing this thesis and to the best knowledge of the author, the FBR method
is the first known strategy to transform any type of MMPS function into a continuous PWA
function. The FBR method is also the only known "universal" strategy that can be deployed
for the transformation between any two type of functions.

The practicality of the FBR method is limited as a result of the combinatorial nature of the
strategy. Combinatorial explosion happens by an increasing number of affine function and/or
dimension increase. Three algorithms have been proposed to perform the partition. Method
1 is based on hyperplane arrangements, or all the possible combinations of the hyperplanes.
Method 2 uses all the combinations of the affine functions instead. Finally method 3 cuts the
domain for each added hyperplane. Method 3 performs the best of all three methods.

Master of Science Thesis F.T. Gallagher

Chapter 8

Summary & recommendations for
future research

MMPS functions and continuous PWA functions are equivalent. While both functions span a
variety of fields and applications, each has their own advantage. MMPS functions can be seen
as an analytical description for continuous PWA functions, providing a much more efficient
tool for the evaluation of the function. However knowledge of specific regions is present in
continuous PWA functions and lost in MMPS functions. It is therefor of great value when
one can transform one form into another a tap into the benefits of the form for specific
applications.
There are multiple methods for transforming a continuous PWA into a (canonical) MMPS
function available in existing literature. However the transformation of MMPS functions into
continuous PWA function there is not. The FBR partitioning fills in the gaps in this research
field.
The FBR region partitioning is a method for realising continuous PWA functions and canon-
ical MMPS functions from either continuous PWA functions, conjunctive MMPS functions,
kripfganz MMPS functions or general MMPS functions. The only requirement is knowledge
of the unique affine functions which can be found for each of the cases. The FBR partitioning
can be used for all problems in Rn with n > 1, and for any type of function to any type of
function.
At the point of writing this thesis and to the best knowledge of the author, the FBR method
is the first known strategy to transform any type of MMPS function into a continuous PWA
function. The FBR method is also the only known "universal" strategy that can be deployed
for the transformation between any two type of functions.
The practicality of the FBR method is limited as a result of the combinatorial nature of the
strategy. Combinatorial explosion happens by an increasing number of affine function and/or
dimension increase. Three algorithms have been proposed to perform the partition. Method
1 is based on hyperplane arrangements, or all the possible combinations of the hyperplanes.
Method 2 uses all the combinations of the affine functions instead. Finally method 3 cuts the
domain for each added hyperplane. Method 3 performs the best of all three methods.

Master of Science Thesis F.T. Gallagher

8-1 Topics for future research 68

8-1 Topics for future research

• Efficient algorithm The FBR partitioning is only feasible for smaller problems. For
online transformations the FBR method is simply too complex. For offline transforma-
tions the FBR method becomes in feasible for problems Naff > 12 or n > 6.
Scenarios with unique affine functions exceeding the hundreds, or systems with many
states are not uncommon, where the FBR method would not be a feasible solution.
Given the benefits of the transformations is would be of great value if much more
capable method would exist for the realisation of continuous PWA functions from MMPS
functions.

• Research on ordered lattices The order of the affine functions uniquely define a
FBR region. It has been shown that considering the ordered lattice sets, it is possible
to directly transform to conjunctive MMPS functions, find adjacent regions, find convex
folds and transform into polyhedral regions.
It is possible the ordered lattices can be further exploited. It could be further researched
in relation with the kripfganz MMPS functions, and how the convex decomposition
performs with the FBR partitioning. It is also possible to only consider infeasible sets.
As the ordered lattice sets are simply permutations, there could be the possibility of
describing the function as the sets that do not exist as these are likely much smaller
than the number of existing regions. These sets could be established based on parallel
affine functions for example, where only one specific order between two functions exist.
The active function can also be easily retrieved from the ordered lattices if the original
function is in conjunctive MMPS form. It would be interesting to see if it is possible
to find the active function in the cases of kripfganz and general MMPS function, from
the ordered lattice sets. This could then be compared with the strategy of computing
an interior point and evaluating the function at this point.

• Improvement of the FBR algorithms The three FBR algorithms are first idea’s of
computing the FBR regions. The algorithms could possible be improved, or completely
different strategies may be used. Improvement could be made in the runtime, the total
number of initialised regions and the total number of hyperplane each region consists
of.

• Parameter matrix redundancy The redundancy in the parameter matrix is un-
wanted, especially given the combinatoric nature of the algorithms. Redundancy is
clearly visible for continuous PWA functions, but not necessarily for MMPS functions.
This thesis has briefly touched on the methods for removing redundancy, but this has
been far from thorough. It would be of great interest, both for the FBR regions, as well
as MMPS functions in general if we have the tools to remove the redundancy and have
knowledge of the unique affine functions.

• Expanding the MMPS toolbox A first attempt has been made to create an MMPS
toolbox with the idea to increase productivity while working with MMPS functions and
to combine current tools in one package. The toolbox still misses plenty of tools, and
the current code can be made much more accessible and fool proof.

Master of Science Thesis F.T. Gallagher

Appendix A

MMPS algebraic rules

A-1 Algebraic rules

Consider this sheet as a helpful reminder of the properties of the maximization and mini-
mization operators. These rules may be considered common knowledge, but taken from [7].
Given the arguments α, β, γ, δ and ρ ∈ R and ρ ≥ 0, then the following holds:

• Relation between operators maximization and minimization:

max(α, β) = − min(−α,−β) (A-1)
min(α, β) = − max(−α,−β) (A-2)

• Properties of addition (addition is distributive with respect to minimization and maxi-
mization):

min(α, β) + min(γ, δ) = min(α+ γ, α+ δ, β + γ, β + δ) (A-3)
max(α, β) + max(γ, δ) = max(α+ γ, α+ δ, β + γ, β + δ) (A-4)

• Properties of scaling

ρmax(α, β) = max(ρα, ρβ) (A-5)
ρmin(α, β) = min(ρα, ρβ) (A-6)

• Since minimization is distributive with respect to maximization and vice versa it follows:

min(max(α, β),max(γ, δ)) = max(min(α, γ),min(α, δ),min(β, γ),min(β, δ)) (A-7)
max(min(α, β),min(γ, δ)) = min(max(α, γ),max(α, δ),max(β, γ),max(β, δ)) (A-8)

Master of Science Thesis F.T. Gallagher

A-2 Conjunctive rewriting 70

A-2 Conjunctive rewriting

[7, 29] Consider the two affine functions fk and fl, then the functions that result from applying
the basic constructors of an MMPS function (a list with properties of the max, min, + and
scaling operations in the MMPS framework are provided in Appendix A.) are in conjunctive
MMPS form. Then a recursive argument can be used that consists in showing that if the
basic constructors of an MMPS function are applied to two (or more) MMPS functions in
min-max MMPS form, then the result can again be transformed into min-max MMPS form.

Let two MMPS functions f and g be in min-max canonical form : f = min(max(f1, f2) max(f3, f4))
and g = min(max(g1, g2) max(g3, g4)). Now it can be shown that max(f, g), min(f, g), f + g
and βf with β ∈ R can again be written in min-max MMPS form.

Maximization

max(f, g) = max[min(max(f1, f2),max(f3, f4)),min(max(g1, g2),max(g3, g4))]
= max[max(min(f1, f3),min(f1, f4),min(f2, f3),min(f2, f4),

max(min(g1, g3),min(g1, g4),min(g2, g3),min(g2, g4)]
= max(min(f1, f3),min(f1, f4),min(f2, f3),min(f2, f4),

min(g1, g3),min(g1, g4),min(g2, g3),min(g2, g4))
= min(max(f1, f1, f2, f2, g1, g1, g2, g2),max(f1, f1, f2, f2, g1, g1, g2, g4), ...

max(f3, f4, f3, f4, g3, g4, g3, g4))

Minimization

min(f, g) = min[min(max(f1, f2),max(f3, f4)),min(max(g1, g2),max(g3, g4))]
= min(max(f1, f2),max(f3, f4),max(g1, g2),max(g3, g4))

Addition

f + g = min(max(f1, f2),max(f3, f4)) + min(max(g1, g2),max(g3, g4))
= min(max(f1, f2) + max(g1, g2)),max(f1, f2) + max(g3, g4),

max(f3, f4) + max(g1, g2)),max(f3, f4) + max(g3, g4))
= min(max(f1 + g1, f1 + g2, f2 + g1, f2 + g2),max(f1 + g3, f1 + g4, f2 + g3, f2 + g4)

max(f3 + g1, f4 + g1, f4 + g1, f4 + g2),max(f3 + g3, f3 + g4, f4 + g3, f4 + g4))

Master of Science Thesis F.T. Gallagher

A-2 Conjunctive rewriting 71

Scalar multiplication

βf = βmin(max(f1, f2),max(f3, f4))
= min(max(βf1, βf2),max(βf3, βf4)) ifβ ≤ 0
= −|β| min(max(f1, f2),max(f3, f4))
= − min(max(|β|f1, |β|f2),max(|β|f3, |β|f4))
= max(− max(|β|f1, |β|f2),− max(|β|f3, |β|f4))
= max(min(−|β|f1,−|β|f2),min(−|β|f3,−|β|f4))
= max(min(βf1, βf2),min(βf3, βf4))
= min(max(βf1, βf3),max(βf1, βf4),max(βf2, βf3),max(βf2, βf4))

Concluding that the conjunctive MMPS form is indeed a canonical form within the MMPS
framework.

Master of Science Thesis F.T. Gallagher

Appendix B

Convex Polytopes

B-1 Theory on Polyhedra

B-1-1 Polyhedral sets

Let us first establish the following definitions[16]:

Definition B-1.1. [16] (Convex set): A set S ⊆ Rn is convex if the line segment connecting
any pair of points of S lies entirely in S, i.e. if for any s1, s2 ∈ S and any α with 0 ≤ α ≤ 1
we have αs1 + (1 − α)s2 ∈ S

Definition B-1.2. [16] (Polyhedron): A polyhedron is a convex set given as the intersection
of a finite number of hyper-planes and half-spaces or as a convex combination of a finite
number of vertices and rays.

Definition B-1.3. [16] (Polytope): A polytope is a bounded polyhedron.

From the above definitions it is clear that every polytope represents a convex, compact (i.e.,
bounded and closed) set. A polytope P ⊂ Rn, P = {x ∈ Rn|P xx ≤ P c} is said to be full
dimensional if ∀x ∈ Rn : P xx < P c. Furthermore, if ||(P x)i|| = 1, where (P x)i denotes i-th
row of a matrix P x, we say that the polytope P is normalized.

Definition B-1.4. [16] (H-representation): The polyhedron P is formed by the intersection
of m inequalities and me equalities, i.e.

P = {x ∈ Rn|Ax ≤ b, Aex = be} (B-1)

where A ∈ Rm×n, b ∈ Rm, Ae ∈ Rme×n, be ∈ Rme are the data representing the halfspaces
and hyperplanes respectively.

Definition B-1.5. [16] (V-representation): The polyhedron P is formed by a convex combi-
nation of nv vertices and nr rays, i.e.

P = {x ∈ Rn|x = λTV + γTR, γ ≥ 0, 1Tλ = 1} (B-2)

where V ∈ Rn×ne , R ∈ Rn×nr represent vertices and rays respectively.

Master of Science Thesis F.T. Gallagher

B-2 Hyperplane arrangements 73

Definition B-1.6. [16] (face): The linear inequality a′x ≤ b is called valid for a polyhedron
P if a′x ≤ b holds for all x ∈ P. A subset of a polyhedron is called a face of P if it is
represented as

F = P ∩ {x ∈ Rn|a′x = b} (B-3)

for some valid inequality a′x ≤ b. The faces of polyhedron P of dimension 0,1, (n − 2) and
(n− 1) are called vertices, edges, ridges and facets respectively.

A polytope P ⊂ Rn, P = {x ∈ Rn|P xx ≤ P c} is in a minimal representation if a removal of
any of the rows in P xx ≤ P c would change it.

B-2 Hyperplane arrangements

The topic of space divisions is well studied. For the use of the algorithm we are interested in the
number of regions that the partitioning will result in. First let the hyper-plane arrangement
be defined as described in [25]:

A finite hyperplane arrangement A is a finite set of affine hyperplanes in some vector space
V = Kn, where K is a field. Generally we take K = Rn. First define a linear hyperplane to
be an (n− 1)-dimensional subspace H of V , i.e.,

H = {v ∈ V : α · v = 0} (B-4)

where α is a fixed nonzero vector in V and α · v is the usual dot product:

(αi, ..., αn) · (vi, ..., vn) =
∑

αivi (B-5)

an affine hyperplane is a translate J of a linear hyperplane, i.e.

J = {v ∈ V : α · v = a} (B-6)

where α is a fixed nonzero vector in V and a ∈ K.

Master of Science Thesis F.T. Gallagher

Appendix C

Algorithms

fbr1

Purpose

Creates finest base regions for a set of affine functions

Synopsis

[Φ] = fbr1(ϕ,Ω)

Description

The function creates finest base regions from a set of affine functions. A finest base region is
defined such that no intersection between any two affine functions (from the input) lies within
the interior of the finest base region.

The algorithm uses combinatorics of the hyperspaces to construct each region in H-representation.
Empty and infeasible sets that are generated in this step are identified and removed using a
linear program.

See Also

Matlab implementation

1 function [Phi] = fbr1(phi ,Omega)
2 % initialize
3 Phi = [];
4

Master of Science Thesis F.T. Gallagher

75

5 % sizes
6 N_aff = height (phi); % Number of distinct affine

functions
7 N_H = N_aff *(N_aff -1) /2; % Number of hyper spaces
8
9 % Hyperspaces

10 in = nchoosek (1:1: N_aff ,2);
11 H = [phi(in (: ,1) ,1:end -1) -phi(in (: ,2) ,1:end -1) phi(in (: ,2) ,

end)-phi(in (: ,1) ,end)];
12
13 % 2^ N_H Phi_hat regions of size
14 k = dec2bin (0:2^ N_H -1) -'0' + dec2bin (0:2^ N_H -1) -'0' - 1;
15 k = k';
16
17 % Loop to collect all non empty polyhedra
18 for i = 1:2^ N_H
19 Ab = H.*k(:,i);
20 Phi_hat = Polyhedron ('A' ,[Ab (: ,1:end -1);Omega (: ,1:end -1)

],'b' ,[Ab(:, end);Omega (:, end)]);
21
22 %% (Step 1.4, Region Filtering) - Remove all empty

regions
23 tf = isEmpty (Phi_hat);
24 % Conditional to filter out epmty polyhedra :
25 % If chebycenter radius equals zero (or Inf somehow ?)
26 % we know the polyhedral is empty
27 if tf ==0
28 Phi = [Phi; Phi_hat];
29 else
30
31 end
32 end
33 end

Master of Science Thesis F.T. Gallagher

76

fbr2

Purpose

Creates finest base regions for a set of affine functions

Synopsis

[Φ] = fbr2(ϕ,Ω)

Description

The function creates finest base regions from a set of affine functions. A finest base region is
defined such that no intersection between any two affine functions (from the input) lies within
the interior of the finest base region.

The algorithm uses the permutations of the affine functions to initialise the regions. Empty
and infeasible regions that are generated in this step are identified and removed using a linear
program.

See Also

Matlab implementation

1 function [Phi] = fbr2(phi ,Omega)
2 % initialize
3 Phi = [];
4
5 % sizes
6 N_aff = height (phi);
7
8 % all orders
9 I = perms (1:1: N_aff);

10
11 % Loop to collect all non empty polyhedra
12 for i = 1: factorial (N_aff)
13 % Get hyperplanes from the ordered matrix column
14 H = nchoosek (I(i ,:) ,2);
15 A = phi(H(: ,1) ,:);
16 B = phi(H(: ,2) ,:);
17 % Create region from hyperplanes
18 Ab = [A(: ,1:end -1) -B(: ,1:end -1) B(:, end)-A(:, end)];
19 % Create MPT polyhedron object
20 Phi_hat = Polyhedron ('A' ,[Ab (: ,1:end -1);Omega (: ,1:end -1)

],'b' ,[Ab(:, end);Omega (:, end)]);

Master of Science Thesis F.T. Gallagher

77

21
22 tf = isEmpty (Phi_hat);
23 % Conditional to filter out epmty polyhedra :
24 % If chebycenter radius equals zero (or Inf somehow ?)
25 % we know the polyhedral is empty
26 if tf ==0
27 Phi = [Phi; Phi_hat];
28 else
29
30 end
31 end
32 end

Master of Science Thesis F.T. Gallagher

78

fbr3

Purpose

Creates finest base regions for a set of affine functions

Synopsis

[Φ] = fbr3(ϕ,Ω)

Description

The function creates finest base regions from a set of affine functions. A finest base region is
defined such that no intersection between any two affine functions (from the input) lies within
the interior of the finest base region. The algorithm uses combinatorics of the hyperspaces to
construct each region in H-representation. Empty and infeasible sets that are generated in
this step are identified and removed using a linear program.

See Also

Matlab implementation

1 function [Phi] = fbr3(phi ,Omega)
2
3 N_aff = height (phi);
4
5 % Initialize domain
6 Phi = Polyhedron ('A',Omega (: ,1:end -1) ,'b',Omega (:, end));
7
8 % Start loop (i) - Loops over all affine functions
9 for i = 1: N_aff -1

10 % (Step 1): collect all hyperplanes as a result from all
intersections with new function

11 c = phi (1:i ,:);
12 d = phi(i+1 ,:);
13
14 % Create all new hyperplanes (less than)
15 A_l = c(: ,1:end -1) - d(: ,1:end -1);
16 b_l = d(:, end) - c(:, end);
17
18 % Create all new hyperplane (greater than)
19 A_r = -A_l;
20 b_r = -b_l;
21

Master of Science Thesis F.T. Gallagher

79

22 % Step 2: For each new hyperplane loop the region it
lies on

23 for j = 1: height (c)
24 % for the (j)th intersection loop over every (k)

region to find the
25 % region it is contained
26
27 % (T) is a temporary variable to store the new

partitions . At the
28 % end of the (k) loop (and next (j)loop) R is set

equal to T,
29 % and T is reset.
30 T = [];
31
32 % (H) is a temporary variable to copy over all

hyperplanes present
33 % in (R)
34 H = [];
35 for jj = 1: length (Phi)
36 H = [H;Phi(jj).A Phi(jj).b];
37 end
38
39 %%% Check if hyperplane lies on any boundary of any

of the regions . Stop (j)loop if it is.
40 tfhl = sum(find(ismember (H,[A_l(j ,:) b_l(j ,:)]," rows

") ==1));
41 tfhr = sum(find(ismember (H,[A_r(j ,:) b_r(j ,:)]," rows

") ==1));
42 if tfhl >0 || tfhr >0
43 % DONT make cut , cut has already been made
44 % disp (" Already made a cut !")
45 else
46 % Make cut , for every region
47 for k = 1: length (Phi)
48 % Get current region
49 Ab = [Phi(k).A Phi(k).b];
50
51 % Create new region with cut and check if it

lies within the region
52 P_l = Polyhedron ('A' ,[Phi(k).A; A_l(j ,:)],'b

' ,[Phi(k).b;b_l(j ,:)]);
53 P_r = Polyhedron ('A' ,[Phi(k).A; A_r(j ,:)],'b

' ,[Phi(k).b;b_r(j ,:)]);
54
55 % Check if it cuts the region (same as

checking if either of the two results in
an empty set)

Master of Science Thesis F.T. Gallagher

80

56 tfl = isEmpty (P_l);
57 tfr = isEmpty (P_r);
58 if tfl ~= 1 && tfr ~= 1
59 % Region k is being cut. Remove region j

and add two new ones
60 T = [T;P_l];
61 T = [T;P_r];
62 else
63 T = [T;Phi(k)];
64 end
65 end
66 Phi = T;
67 end
68 end
69 end
70 end

Master of Science Thesis F.T. Gallagher

81

getAdjacent

Purpose

Finds any pair of adjacent regions

Synopsis

[ad] = getAdjacent(U)

Description

This algorithm loops over all regions of a continuous PWA function U . Two regions are
adjacent when the two regions meet at an hyperplane.

See Also

getConvex

Matlab implementation

1 function [ad]= getAdjacent (U)
2 N = nchoosek (1:1:U.Num ,2);
3 ad = {};
4 for i=1: height (N)
5 if U.Set(N(i ,1)). isAdjacent (U.Set(N(i ,2)))
6 j = height (ad)+1;
7 ad{j ,1} = U.Set(N(i ,1));
8 ad{j ,2} = U.Set(N(i ,2));
9 end

10 end
11 end

Master of Science Thesis F.T. Gallagher

82

getConvex

Purpose

Checks any two regions that are adjacent if they are convex or concave

Synopsis

[cv] = getConvex(adj)

Description

Checks any two regions that are adjacent if they are convex or concave

See Also

getAdjacent

Matlab implementation

1 function [cv]= getConvex (ad)
2 N_ad = height (ad);
3 cv = {};
4 for i = 1: N_ad
5 x1cc = ad{i ,1}. chebyCenter .x;
6 x2cc = ad{i ,2}. chebyCenter .x;
7
8 fx11 = ad{i ,1}. getFunction ('primal ').F*x1cc+ ad{i ,1}.

getFunction ('primal ').g;
9 fx12 = ad{i ,1}. getFunction ('primal ').F*x2cc+ ad{i ,1}.

getFunction ('primal ').g;
10
11 fx21 = ad{i ,2}. getFunction ('primal ').F*x1cc + ad{i ,2}.

getFunction ('primal ').g;
12 fx22 = ad{i ,2}. getFunction ('primal ').F*x2cc + ad{i ,2}.

getFunction ('primal ').g;
13 % Check slopes
14
15 if fx11 >= fx21 && fx22 >= fx12
16 % Yes its convex
17 j = height (cv)+1;
18 cv{j ,1} = ad{i ,1};
19 cv{j ,2} = ad{i ,2};
20 end

Master of Science Thesis F.T. Gallagher

83

21 end
22 end

Master of Science Thesis F.T. Gallagher

84

cpwa2mmpskg

Purpose

Computes the kripfganz MMPS function of a continuous PWA function

Synopsis

[mmpskg] = cpwa2mmpskg(U)

Description

A continuous PWA function can be decomposed into two convex functions, who’s difference
is again the original function. The algorithm follows the procedure from [19] where the first
convex part is constructed by summing all the convex folds. The second convex part is
constructed by subtracting the original function from the convex function.

See Also

cpwa2mmpscd

Matlab implementation

1 function [g,h] = cpwa2mmpskg (U)
2 % Get all pairs of adjacent matrixes
3 ad = getAdjacent (U);
4 % Check each set if it is convex
5 cv = getConvex (ad);
6 % Build G
7 % Partition
8 % Initialize domain
9 G = U. convexHull ;

10 % get all hyperplanes
11 A = []; b = []; T = [];
12 for i = 1: height (folds)
13 A(i ,:) = folds{i ,1}. getFunction ('primal ').F-folds{i ,2}.

getFunction ('primal ').F;
14 b(i ,:) = folds{i ,2}. getFunction ('primal ').g-folds{i ,1}.

getFunction ('primal ').g;
15
16 for j = 1: length (G)
17 % Create new region with cut and check if it lies

within the region
18 P_l = Polyhedron ('A' ,[G(j).A; A(i ,:)],'b',[G(j).b; b

(i ,:)]);

Master of Science Thesis F.T. Gallagher

85

19 P_r = Polyhedron ('A' ,[G(j).A; -A(i ,:)],'b' ,[G(j).b;
-b(i ,:)]);

20
21 % Check if it cuts the region (same as checking if

either of the two results in an empty set)
22 tfl = isEmptyCheby (P_l);
23 tfr = isEmptyCheby (P_r);
24 if tfl ~= 1 && tfr ~= 1
25 % Region k is being cut. Remove region j and add

two new ones
26 T = [T; P_l];
27 T = [T; P_r];
28 else
29 T = [T; G(j)];
30 end
31 end
32 G = T;
33 T = [];
34 end
35
36
37 % Functions
38 for i=1: height (G)
39 cc = G(i). chebyCenter .x;
40 for j=1: length (folds)
41 fun (1 ,1) = folds{j ,1}. getFunction ('primal ').F*cc +

folds{j ,1}. getFunction ('primal ').g;
42 fun (1 ,2) = folds{j ,2}. getFunction ('primal ').F*cc +

folds{j ,2}. getFunction ('primal ').g;
43 [~,I(j)] = max(fun);
44 a(j ,:) = [folds{j,I(j)}. getFunction ('primal ').F

folds{j,I(j)}. getFunction ('primal ').g];
45 end
46 g(i ,:) = sum(a);
47 f(i) = AffFunction (g(i ,1: end -1) , g(i,end));
48 G(i). addFunction (f(i),'primal ');
49 end
50 G = PolyUnion ('Set ', G, 'Bounded ', true , 'Connected ', true ,

'Overlaps ', false , 'Convex ', true);
51
52 % Build H
53 % Partition
54 % Initialize domain
55 H = U. convexHull ;
56
57 % get all hyperplanes
58 Ab = [];

Master of Science Thesis F.T. Gallagher

86

59 for i = 1:G.Num
60 Ab = [Ab;G.Set(i).H];
61 end
62
63 for i = 1:U.Num
64 Ab = [Ab;U.Set(i).H];
65 end
66
67 % Remove (some) redundant hyperplanes
68 Ab = unique (Ab ,'rows ');
69 A = Ab (: ,1:end -1); b = Ab(:, end); T = [];
70 for i = 1: height (Ab)
71 for j = 1: length (H)
72 % Create new region with cut and check if it lies

within the region
73 P_l = Polyhedron ('A' ,[H(j).A; A(i ,:)],'b' ,[H(j).b; b

(i ,:)]);
74 P_r = Polyhedron ('A' ,[H(j).A; -A(i ,:)],'b' ,[H(j).b;

-b(i ,:)]);
75 % Check if it cuts the region (same as checking if

either of the two results in an empty set)
76 tfl = isEmptyCheby (P_l);
77 tfr = isEmptyCheby (P_r);
78 if tfl ~= 1 && tfr ~= 1
79 % Region k is being cut. Remove region j and add

two new ones
80 T = [T; P_l];
81 T = [T; P_r];
82 else
83 T = [T; H(j)];
84 end
85 end
86 H = T;
87 T = [];
88 end
89
90 % Functions
91 for i=1: height (H)
92 cc = H(i). chebyCenter .x;
93 [~,~,Ig ,~] = G.feval(cc);
94 g(i ,:) = [G.Set(Ig). getFunction ('primal ').F G.Set(Ig).

getFunction ('primal ').g];
95 [~,~,If ,~] = U.feval(cc);
96 f(i ,:) = [U.Set(If). getFunction ('primal ').F U.Set(If).

getFunction ('primal ').g];
97 h(i ,:) = g(i ,:) - f(i ,:);
98 fun(i) = AffFunction (h(i ,1: end -1) , h(i,end));

Master of Science Thesis F.T. Gallagher

87

99 H(i). addFunction (fun(i),'primal ');
100 end
101 H = PolyUnion ('Set ', H, 'Bounded ', true , 'Connected ', true ,

'Overlaps ', false , 'Convex ', true);
102
103 % Collect all functions
104 for i = 1:G.Num
105 g(i ,:) = [G.Set(i). getFunction ('primal ').F G.Set(i).

getFunction ('primal ').g];
106 end
107 for i = 1:H.Num
108 h(i ,:) = [H.Set(i). getFunction ('primal ').F H.Set(i).

getFunction ('primal ').g];
109 end
110
111 g = unique (g,'rows ');
112 h = unique (h,'rows ');
113
114 end

Master of Science Thesis F.T. Gallagher

88

cpwa2mmpscd

Purpose

Computes the conjunctive MMPS function of a continuous PWA function

Synopsis

[mmpskg] = cpwa2mmpscd(U)

Description

A continuous PWA function can be transformed into a conjunctive MMPS function. The
algorithm follows the FBR partition to construct the sets for the conjunctive MMPS function
as described in this paper.

See Also

cpwa2mmpscd

Matlab implementation

1 function [mmpscd] = cpwa2mmpscd (U)
2
3 %% Partition into fbr regions
4 [OL ,fbr] = fbr(U);
5
6 % ChebyCenter to generate a point inside each fbr region .
7 for i = 1: fbr.Num
8 % active function
9 a = [fbr.Set(i). getFunction ('primal ').F fbr.Set(i).

getFunction ('primal ').g];
10 active (:,i) = double (ismember (list ,a,'rows '));
11 % ordered lattice
12 cc(:,i) = fbr.Set(i). chebyCenter .x;
13
14 %% Evaluate all functions with input point
15 lp = list (: ,1:end -1)*cc(:,i) + list (:, end);
16 % Ordered index set
17 [~,Iv] = sort(lp ,'ascend ');
18 [~, ordered (:,i)] = sort(Iv);
19
20 end
21

Master of Science Thesis F.T. Gallagher

89

22 OL.list = list;
23 OL. ordered = ordered ;
24 OL. active = active ;
25
26 %% Ordered lattice to conjunctive lattices
27 for i = 1: width(OL. active)
28 ori_domin_index {i} = find(OL. active (:,i) ,1);
29 order_up_matrix (:,i) = double (OL. ordered (:,i) >=OL.

ordered (ori_domin_index {i},i));
30 order_down_matrix (:,i) = double (OL. ordered (:,i) <=OL.

ordered (ori_domin_index {i},i));
31 end
32
33 %% Lattice Object
34 %lat = lattice ();
35 lattice_fun . affine =OL.list ';
36 lattice_fun .Poly=fbr.Set;
37 lattice_fun . oriindex = ori_domin_index ;
38 lattice_fun . uporder = order_up_matrix ';
39 lattice_fun . downorder = order_down_matrix ';
40
41 %% Return fMMPScd object
42 phi = lat.affine ';
43 psiup = lat.uporder ';
44 bounds = pwa. convexHull .H;
45 type = 1;
46 % Creation fMMPScd object
47 mmpscd = fMMPScd (phi ,psiup ,bounds ,type);
48 end

Master of Science Thesis F.T. Gallagher

90

mmpscd2mmpskg

Purpose

Computes the kripganz MMPS function of a conjunctive MMPS function, using the method
described in [30]

Synopsis

[mmpskg] = mmpscd2mmpskg(fMMPScd)

Description

A conjunctive MMPS function can be decomposed into two convex functions. The resulting
function is called a kripfganz MMPS function. The method for transforming a conjunctive
MMPS function is based on the results from [30].

See Also

cpwa2mmpscd, cpwa2mmpskg

Matlab implementation

1 function [mmpskg] = mmpscd2mmpskg (mmpscd , method)
2
3 if strcmp (method ,'wang ')
4 %% Compute g
5 % Transform set matrix into set cells
6 [N_aff , N_sets] = size(mmpscd .Sets);
7 st = mmpscd .Sets '.*(1:1: N_aff);
8 % Fill cells
9 for i = 1: N_sets

10 I{i} = nonzeros (st(i ,:)) ';
11 end
12
13 % Get all combinations between the sets
14 setcombsg = combsets (I) ';
15 % Initialize matrices
16 [m,n] = size(setcombsg);
17 AB_g = mmpscd .Type*inf*ones(m, mmpscd .Dim + 1, N_sets);
18
19 % Get all combinations of matrices
20 for i = 1: N_sets
21 AB_g (:,:,i) = mmpscd . Functions (setcombsg (:,i) ,:);

Master of Science Thesis F.T. Gallagher

91

22 end
23
24 % Sum over dimension 3 to get g matrix
25 g = sum(AB_g ,3);
26
27 %% Compute h
28 setcombsh = [];
29 for i = 1: length (setcombsg)
30 setcombsh = [setcombsh ; nchoosek (setcombsg (i ,:) ,n -1)

];
31 end
32 % remove all recurring rows
33 setcombsh = unique (setcombsh ,'rows ');
34 % get sizes
35 [k,l] = size(setcombsh);
36 AB_h = mmpscd .Type*inf*ones(k, mmpscd .Dim + 1,l);
37
38 % Get all combinations of matrices
39 for i = 1:l
40 AB_h (:,:,i) = mmpscd . Functions (setcombsh (:,i) ,:);
41 end
42
43 % Sum over dimension 3 to get g matrix
44 h = sum(AB_h ,3);
45
46 %% Create fMMPSkg object
47 mmpskg = fMMPSkg (g,h);
48 end
49 end

Master of Science Thesis F.T. Gallagher

92

fMMPScd

Purpose

Conjunctive MMPS function object

Synopsis

[CD] = fMMPScd(Alpha, Beta, phi, psi)

Description

Class object to store conjunctive MMPS functions. Can be initialised using either alpha and
beta matrices, or via structure- and parameter matrices.

See Also

fMMPSkg, fMMPSg

Matlab implementation

1 classdef fMMPScd < handle
2
3 properties
4 % Conjunctive == 1, Disjunctive == -1
5 Type;
6 % Matrix form
7 Alpha;
8 Beta;
9 % Index Set form

10 phiMatrix ;
11 psi;
12 % Dimension
13 Dim;
14 % Domain
15 Domain ;
16 end
17
18 methods
19 function obj = fMMPScd (phi ,psi ,bounds ,type)
20 % Set/Index description
21 obj. phiMatrix = phi;
22 obj.psi = psi;
23 obj. Domain = bounds ;

Master of Science Thesis F.T. Gallagher

93

24 obj.Type = type;
25 [~,n] = size(phi);
26 obj.Dim = n - 1;
27 obj. computeAB ();
28 end
29
30 function obj = computeAB (obj)
31 [m,n] = size(obj.psi);
32 % Initialize matrices
33 A = obj.Type*inf*ones(m,obj.Dim ,n);
34 B = obj.Type*inf*ones(m,1,n);
35 st = obj.psi '.*(1:1: m);
36
37 % Fill matrices
38 for i = 1:n
39 I = nonzeros (st(i ,:));
40 A(I,:,i) = obj. phiMatrix (I ,1: obj.Dim);
41 B(I,:,i) = obj. phiMatrix (I,end);
42 end % end for
43
44 obj.Alpha = A;
45 obj.Beta = B;
46 end % end function
47
48 function f_x = feval(obj ,x)
49 % Evaluate each affine function
50 F_t = pagemtimes (obj.Alpha ,x) + obj.Beta;
51
52 % minimize
53 F_tmin = min(F_t ,[] ,1);
54
55 % maximize
56 F_tmax = max(F_tmin ,[] ,3);
57
58 % Output
59 f_x = F_tmax ;
60 end
61
62 function active = getActive (obj ,x)
63 fx = obj.feval(x);
64 F = obj. phiMatrix (: ,1: obj.Dim)*x + obj. phiMatrix (:,

end);
65 active = find(F==fx);
66 end
67
68 function plt = fplot(obj ,range ,h)
69 % 1D

Master of Science Thesis F.T. Gallagher

94

70 if height (range) == 1
71 x1 = range (1 ,1):h:range (1 ,2);
72 Fx = obj.feval(x1);
73 plt = plot(x1 ,Fx);
74 end % end if
75
76 % 2D
77 if height (range) == 2
78 x1 = range (1 ,1):h:range (1 ,2);
79 x2 = range (2 ,1):h:range (2 ,2);
80 [~,n] = size(x1);
81 for i = 1:n
82 x = [x1(i)*ones (1,n);x2];
83 % Evaluate at each point
84 Fx(i ,:) = obj.feval(x);
85 end % end for
86 plt = surf(x1 ,x2 ,Fx);
87 end % end if
88 end % end function
89
90 function obj = computeFBR (obj , method)
91 if strcmp (method ,'ol ')
92 fbr = fbr2(obj.phiMatrix ,obj. Domain);
93 elseif strcmp (method ,'full ')
94 fbr = fbr1(obj.phiMatrix ,obj. Domain);
95 else
96 fbr = fbr3(obj.phiMatrix ,obj. Domain);
97 end
98
99 obj.FBR = fbr;

100 end
101
102 function obj = reduce (obj)
103 obj.psi = unique (obj.psi '," rows ") ';
104 obj. computeAB ;
105 end
106
107 function r = cd2kg(obj , method)
108 r = mmpscd2mmpskg (obj , method);
109 end
110
111 function r = cd2cpwa (obj , method)
112 r = mmpscd2mmpskg (obj , method);
113 end
114
115 end
116 end

Master of Science Thesis F.T. Gallagher

95

fMMPSkg

Purpose

Kripfganz MMPS function object

Synopsis

[KG] = fMMPSkg(g,h)

Description

Class object to store kripfganz MMPS functions. Can be initialised using the parameter
matrices g and h.

See Also

fMMPScd, fMMPSg

Matlab implementation

1 classdef fMMPSkg
2 properties
3 % Convex == 1, Concave == -1
4 Type;
5 % g and h
6 g;
7 h;
8 % Functions
9 phiMatrix ;

10 % Dimension
11 Dim;
12 % Domain
13 Domain ;
14 end
15
16 methods
17 function obj = fMMPSkg (g,h)
18 % MMPSKG Construct an instance of this class
19 % Detailed explanation goes here
20 obj.g = g;
21 obj.h = h;
22
23 [m,n] = size(g);

Master of Science Thesis F.T. Gallagher

96

24 [k ,~] = size(h);
25 obj.Dim = n - 1;
26
27 cb = combvec (1:1:m ,1:1:k) ';
28 obj. phiMatrix = g(cb (: ,1) ,:) - h(cb (: ,2) ,:);
29 end
30
31 function f_x = feval(obj ,x)
32
33 % Two Maximizations
34 Fg = obj.g(: ,1:end -1)*x + obj.g(:, end);
35 Fh = obj.h(: ,1:end -1)*x + obj.h(:, end);
36
37 Fmax = max(Fg ,[] ,1) - max(Fh ,[] ,1);
38 % Output
39 f_x = Fmax;
40 end
41
42 function active = getActive (obj ,x)
43 fx = obj.feval(x);
44 F = obj. phiMatrix (: ,1: obj.Dim)*x + obj. phiMatrix (:,

end);
45 active = find(F==fx);
46 end
47
48 function plt = fplot(obj ,range ,h)
49 % 1D
50 if height (range) == 1
51 x1 = range (1 ,1):h:range (1 ,2);
52 Fx = obj.feval(x1);
53 plt = plot(x1 ,Fx);
54 end % end if
55
56 % 2D
57 if height (range) == 2
58 x1 = range (1 ,1):h:range (1 ,2);
59 x2 = range (2 ,1):h:range (2 ,2);
60 [~,n] = size(x1);
61 for i = 1:n
62 x = [x1(i)*ones (1,n);x2];
63 % Evaluate at each point
64 Fx(i ,:) = obj.feval(x);
65 end % end for
66 plt = surf(x1 ,x2 ,Fx);
67 end % end if
68 end % end function
69

Master of Science Thesis F.T. Gallagher

97

70 function plt = pplot(obj ,range ,h)
71 % 1D
72 if height (range) == 1
73
74 x1 = range (1 ,1):h:range (1 ,2);
75 Fx = obj.feval(x1);
76
77 Fg = max(obj.g(: ,1:end -1)*x1 + obj.g(:, end));
78 Fh = max(obj.h(: ,1:end -1)*x1 + obj.h(:, end));
79
80 plt = plot(x1 ,Fx ,x1 ,Fg ,x1 ,-Fh);
81 end % end if
82
83 % 2D
84 if height (range) == 2
85 x1 = range (1 ,1):h:range (1 ,2);
86 x2 = range (2 ,1):h:range (2 ,2);
87 [~,n] = size(x1);
88 for i = 1:n
89 x = [x1(i)*ones (1,n);x2];
90 % Evaluate at each point
91 Fx(i ,:) = obj.feval(x);
92 Fg(i ,:) = max(obj.g(: ,1:end -1)*x + obj.g(:,

end));
93 Fh(i ,:) = max(obj.h(: ,1:end -1)*x + obj.h(:,

end));
94 end % end for
95 plt = figure ;
96 surf(x1 ,x2 ,Fx); hold on;
97 surf(x1 ,x2 ,Fg);
98 surf(x1 ,x2 ,-Fh);
99 plt = plt;

100 end % end if
101 end % end function
102
103 end
104 end

Master of Science Thesis F.T. Gallagher

98

fMMPSg

Purpose

General MMPS function object

Synopsis

[G] = fMMPSg(p,s,beta,bounds)

Description

Class object to store general MMPS functions. Is initialised by a matrix holding the param-
eters for each affine function (p), a matrix holding each operator subjected to the respective
affine function (s), the scaling magnitudes (beta) and the domain (bounds)

See Also

fMMPSkg, fMMPScd

Matlab implementation

1 classdef fMMPSg < handle
2
3 properties
4 pMatrix ;
5 sMatrix ;
6 betaMatrix ;
7 bounds ;
8 phiMatrix ;
9 end

10
11 methods
12 function obj = fMMPSg (p,s,beta , bounds)
13 obj. pMatrix = p;
14 obj. sMatrix = s;
15 obj. betaMatrix = beta;
16 obj. bounds = bounds ;
17 end
18
19 % Evaluate the function
20 function f_x = feval(obj ,x)
21 f_x = obj. pMatrix (: ,1:end -1)*x + obj. pMatrix (:, end);
22 for i = 1: width(obj. sMatrix)

Master of Science Thesis F.T. Gallagher

99

23 mx = find(obj. sMatrix (:,i)==1); mn = find(obj.
sMatrix (:,i)==2);

24 sm = find(obj. sMatrix (:,i)==3); sc = find(obj.
sMatrix (:,i)==4);

25 if ~ isempty (mx)
26 f_x(mx ,:) = repmat (max(f_x(mx ,:)),length (mx

) ,1);
27 end
28 if ~ isempty (mn)
29 f_x(mn ,:) = repmat (min(f_x(mn ,:)),length (mn

) ,1);
30 end
31 if ~ isempty (sm)
32 f_x(sm ,:) = repmat (sum(f_x(sm ,:)),length (sm

) ,1);
33 end
34 if ~ isempty (sc)
35 f_x(sc ,:) = f_x(sc ,:) .* beta(sc ,i);
36 end
37 end
38 end
39
40 % Get the active function for a point x
41 function active = getActive (obj ,x)
42 fx = obj.feval(x);
43 F = obj. phiMatrix (: ,1: obj.Dim)*x + obj. phiMatrix (:,

end);
44 active = find(F==fx);
45 end
46
47 % Plot the function
48 function plt = fplot(obj ,range ,h)
49 % Ugly but working way of dealing with dimensions
50 % 1D
51 if height (range) == 1
52 x1 = range (1 ,1):h:range (1 ,2);
53 Fx = obj.feval(x1);
54 plt = plot(x1 ,Fx);
55 end % end if
56
57 % 2D
58 if height (range) == 2
59 x1 = range (1 ,1):h:range (1 ,2);
60 x2 = range (2 ,1):h:range (2 ,2);
61 [~,n] = size(x1);
62 for i = 1:n
63 x = [x1(i)*ones (1,n);x2];

Master of Science Thesis F.T. Gallagher

100

64 % Evaluate at each point
65 Fx(i ,:) = obj.feval(x);
66 end % end for
67 plt = surf(x1 ,x2 ,Fx);
68 end % end if
69 end
70
71 % getPhiMatrix - computes all possible affine function

outcomes
72 function obj = getPhiMatrix (obj)
73
74 % Copy over the structure matrix of the general MMPS

function
75 stemp = obj. sMatrix ;
76
77 % Copy over the parameter matrix of the general MMPS

function
78 for i = 1: height (p)
79 phi{i} = p(i ,:);
80 end
81
82 % Compute all possible outcomes .
83 % Four nested loops to check for each MMPS operation
84 for i = 1: width(stemp)
85
86 % Nested Loop 1 - Check for maximizations
87 mx = find(stemp (:,i)==1);
88 if ~ isempty (mx)
89 temp = [];
90 for j = 1: length (mx)
91 temp = [temp; phi{mx(j)}];
92 end
93
94 % Add the possibilities to a single cell and

purge the other cells
95 phi{mx (1)} = temp;
96 stemp(mx (2: end ,:) ,:) = [];
97 phi(mx (2: end ,:)) = [];
98 end
99

100 % Nested Loop 2 - Check for minimizations
101 mn = find(stemp (:,i)==2);
102 if ~ isempty (mn)
103 % Collect all possibilities
104 temp = [];
105 for j = 1: length (mn)
106 temp = [temp; phi{mn(j)}];

Master of Science Thesis F.T. Gallagher

101

107 end
108
109 % Add the possibilities to a single cell and

purge the other cells
110 phi{mn (1)} = temp;
111 stemp(mn (2: end ,:) ,:) = [];
112 phi(mn (2: end ,:)) = [];
113 end
114
115 % Nested Loop 3 - Check for summations
116 sm = find(stemp (:,i)==3);
117 if ~ isempty (sm)
118 temp = [];
119 for j = 1: length (sm)
120 temp{j} = 1:1: height (phi{sm(j)});
121 end
122 combs = combsets (temp);
123
124 temp2 = [];
125 for j = 1: width(combs)
126 temp3 = [];
127 for k = 1: height (combs)
128 temp3 = [temp3; phi{sm(k)}(combs(k

,:) ,:)];
129 end
130 temp2 = [temp2; sum(temp3 ,1)];
131 end
132
133 % Add the possibilities to a single cell and

purge the other cells
134 phi{sm (1)} = temp2;
135 stemp(sm (2: end ,:) ,:) = [];
136 phi(sm (2: end ,:)) = [];
137 end
138
139 % Nested Loop 4 - Check for scalar

multiplications
140 sc = find(stemp (:,i)==4);
141 if ~ isempty (sc)
142 for j = 1: length (sc)
143 phi{sc(j)} = phi{sc(j)}* beta(sc(j),i);
144 end
145 end
146 end
147
148 % Remove any recurring affine functions and store
149 obj. phiMatrix = unique (phi {1}, 'rows ');

Master of Science Thesis F.T. Gallagher

102

150 end
151 end
152 end

Master of Science Thesis F.T. Gallagher

103

loadExample

Purpose

Loading multiple examples

Synopsis

[U] = loadExample(’example#’)

Description

Helper function to load examples of continuous PWA functions that can then be used to
transform into MMPS objects. Both 1- and 2-dimensional examples.

See Also

fbr1, fbr2, fbr3

Matlab implementation

1 function [phi ,Omega , bounds] = loadExample (example)
2 % Check which example is requested
3 if strcmp (example ,'example1 ')
4 %% Example 1 - 2D - CPWA - Example from Jun Xu paper (

two sided pyramid)
5 name = " Example 1";
6 phi = [80 -50 -10; -50 80 -10;0 0 0; 0 0 0];
7 % Domain as hyperplanes
8 bounds = [-1 0 0;0 -1 0;1 0 1;0 1 1];
9 % Regions

10 Omega {1} = [-8 5 -1; 1 -1 0; 0 1 1;-1 0 0;0 -1 0;1 0 1;0
1 1];

11 Omega {2} = [-1 1 0; 5 -8 -1; 1 0 1;-1 0 0;0 -1 0;1 0 1;0
1 1];

12 Omega {3} = [-5 8 1; -1 1 0; 0 -1 0; 1 0 1;-1 0 0;0 -1
0;1 0 1;0 1 1];

13 Omega {4} = [8 -5 1; 1 -1 0; 0 1 1; -1 0 0;-1 0 0;0 -1
0;1 0 1;0 1 1];

14 elseif strcmp (example ,'example2 ')
15 %% Example 2 - 2D - CPWA - " Pyramid in desert "
16 name = " Example 2";
17 a = 5; b = 3; c = b/a;
18 % Continuous Piecewise Affine Function stored in alpha

and beta

Master of Science Thesis F.T. Gallagher

104

19 phi = [0 a b;a 0 b;0 -a b;-a 0 b;0 0 0;0 0 0;0 0 0;0 0
0];

20 % Domain as hyperplanes
21 bounds = [-1 0 1;0 -1 1;1 0 1;0 1 1];
22 % Regions
23 Omega {1} = [-1 1 0;1 1 0;0 -1 c;-1 0 1;0 -1 1;1 0 1;0 1

1];
24 Omega {2} = [1 -1 0;1 1 0;-1 0 c;-1 0 1;0 -1 1;1 0 1;0 1

1];
25 Omega {3} = [1 -1 0;-1 -1 0;0 1 c;-1 0 1;0 -1 1;1 0 1;0 1

1];
26 Omega {4} = [-1 1 0;-1 -1 0;1 0 c;-1 0 1;0 -1 1;1 0 1;0 1

1];
27 Omega {5} = [1 0 -c;1 -1 0;1 1 0;-1 0 1;0 -1 1;1 0 1;0 1

1];
28 Omega {6} = [-1 0 -c;-1 1 0;-1 -1 0;-1 0 1;0 -1 1;1 0 1;0

1 1];
29 Omega {7} = [0 -1 -c;1 -1 0;-1 -1 0;-1 0 1;0 -1 1;1 0 1;0

1 1];
30 Omega {8} = [0 1 -c;-1 1 0;1 1 0;-1 0 1;0 -1 1;1 0 1;0 1

1];
31 elseif strcmp (example ,'example3 ')
32 %% EXAMPLE 3 - 2D - CPWA - (tetrahedron) three sided

pyramid
33 name = " Example 3";
34 a = 50; b = 30; c = b/a;
35 % Continuous Piecewise Affine Function stored in alpha

and beta
36 phi = [a 0 b;0 -a b;-a a 0;0 0 0;0 0 0;0 0 0];
37 % Domain as hyperplanes
38 bounds = [-1 0 10;0 -1 10;1 0 10;0 1 10];
39 % Regions
40 Omega {1} = [1 -1 0;1 1 0;-1 0 c;2*a -a -b;-1 0 10;0 -1

10;1 0 10;0 1 10];
41 Omega {2} = [1 -1 0;-1 -1 0;0 1 c;a -2*a -b;-1 0 10;0 -1

10;1 0 10;0 1 10];
42 Omega {3} = [1 -1 0; -2*a a b;-a 2*a b;-1 0 10;0 -1 10;1 0

10;0 1 10];
43 Omega {4} = [-1 1 0;-1 0 10;0 -1 10;1 0 10;0 1 10];
44 Omega {5} = [1 0 -c;1 -1 0;1 1 0;-1 0 10;0 -1 10;1 0 10;0

1 10];
45 Omega {6} = [0 -1 -c;1 -1 0;-1 -1 0;-1 0 10;0 -1 10;1 0

10;0 1 10];
46 elseif strcmp (example ,'example4 ')
47 %% EXAMPLE 4 - 1D - CPWA - Jun Xu paper
48 name = " Example 4";

Master of Science Thesis F.T. Gallagher

105

49 % Continuous Piecewise Affine Function stored in alpha
and beta

50 phi = [0.5 0.5;2 -1;0 2;-2 9; -0.5 3];
51 % Domain as hyperplanes
52 bounds = [-1 0;1 5];
53 % Regions
54 Omega {1} = [-1 0;1 1;-1 0;1 5];
55 Omega {2} = [-1 -1;1 1.5; -1 0;1 5];
56 Omega {3} = [-1 -1.5;1 3.5; -1 0;1 5];
57 Omega {4} = [-1 -3.5;1 4;-1 0;1 5];
58 Omega {5} = [-1 -4;1 5;-1 0;1 5];
59 elseif strcmp (example ,'example5 ')
60 %% Example 5 - 2D - CPWA - Example from Hempel paper
61 name = " Example 5";
62 a = 1; b = -3; c = 1; d = 4;
63 % Continuous Piecewise Affine Function stored in alpha

and beta
64 phi = [0 0 -2;a 0 b;0 a b;-a 0 b;0 -a b;a 0 c;0 a c;-a 0

c;0 -a c;a 0 c;0 a c;-a 0 c;0 -a c];
65 % Domain as hyperplanes
66 bounds = [1 0 5;0 1 5;-1 0 5;0 -1 5];
67 % Regions
68 Omega {1} = [1 0 1;-1 0 1;0 1 1;0 -1 1;1 0 5;0 1 5;-1 0

5;0 -1 5];
69 Omega {2} = [-1 0 -1;-1 1 0;-1 -1 0;1 1 d;1 -1 d;1 0 5;0

1 5;-1 0 5;0 -1 5];
70 Omega {3} = [0 -1 -1;1 -1 0;-1 -1 0;1 1 d;-1 1 d;1 0 5;0

1 5;-1 0 5;0 -1 5];
71 Omega {4} = [1 0 -1;1 1 0;1 -1 0;-1 1 d;-1 -1 d;1 0 5;0 1

5;-1 0 5;0 -1 5];
72 Omega {5} = [0 1 -1;-1 1 0;1 1 0;-1 -1 d;1 -1 d;1 0 5;0 1

5;-1 0 5;0 -1 5];
73 Omega {6} = [1 0 0;-1 -1 0;1 -1 -d;1 0 5;0 1 5;-1 0 5;0

-1 5];
74 Omega {7} = [0 1 0;1 -1 0;1 1 -d;1 0 5;0 1 5;-1 0 5;0 -1

5];
75 Omega {8} = [-1 0 0;1 1 0;-1 1 -d;1 0 5;0 1 5;-1 0 5;0 -1

5];
76 Omega {9} = [0 -1 0;-1 1 0;-1 -1 -d;1 0 5;0 1 5;-1 0 5;0

-1 5];
77 Omega {10} = [1 0 0;-1 1 0;1 1 -d;1 0 5;0 1 5;-1 0 5;0 -1

5];
78 Omega {11} = [0 1 0;-1 -1 0;-1 1 -d;1 0 5;0 1 5;-1 0 5;0

-1 5];
79 Omega {12} = [-1 0 0;1 -1 0;-1 -1 -d;1 0 5;0 1 5;-1 0 5;0

-1 5];

Master of Science Thesis F.T. Gallagher

106

80 Omega {13} = [0 -1 0;1 1 0;1 -1 -d;1 0 5;0 1 5;-1 0 5;0
-1 5];

81 elseif strcmp (example ,'example6 ')
82 %% EXAMPLE 4 - 1D - CPWA - Jun Xu paper
83 name = " Example 6";
84 % Continuous Piecewise Affine Function stored in alpha

and beta
85 phi = [-2 5;0 2; -0.5 3.5];
86 % Domain as hyperplanes
87 bounds = [-1 0;1 4];
88 % Regions
89 Omega {1} = [-1 0;1 1.5; -1 0;1 4];
90 Omega {2} = [-1 -1.5;1 3;-1 0;1 4];
91 Omega {3} = [-1 -3;1 4;-1 0;1 4];
92
93 elseif strcmp (example ,'example7 ')
94 name = " Example 7";
95
96 p = [8 6;0 1;2 1;-2 1;-2 0];
97
98 s(1 ,:) = [0 0 2 3];
99 s(2 ,:) = [0 0 2 3];

100 s(3 ,:) = [2 1 4 3];
101 s(4 ,:) = [2 1 4 3];
102 s(5 ,:) = [0 1 4 3];
103
104 beta = [
105 0 0 0 0;
106 0 0 0 0;
107 0 0 -2 0;
108 0 0 -2 0;
109 0 0 -2 0;
110];
111
112 bounds = [-1 1;1 1];
113
114 f = fMMPSg (p,s,beta , bounds);
115 end
116 end

Master of Science Thesis F.T. Gallagher

Bibliography

[1] G.L. Alexanderson and John E. Wetzel. “Arrangements of planes in space”. In: Discrete
Mathematics 34.3 (1981), pp. 219–240. issn: 0012-365X. doi: https://doi.org/10.
1016/0012-365X(81)90002-9. url: https://www.sciencedirect.com/science/
article/pii/0012365X81900029.

[2] A. Bemporad, W.P.M.H. Heemels, and B. De Schutter. “On hybrid systems and closed-
loop MPC systems”. In: IEEE Transactions on Automatic Control 47.5 (2002), pp. 863–
869. doi: 10.1109/TAC.2002.1000287. url: https://www.scopus.com/inward/
record . uri ? eid = 2 - s2 . 0 - 0036576888 & doi = 10 . 1109 % 2fTAC . 2002 . 1000287 &
partnerID=40&md5=40731eec086ea01c500e9a947e1d73ad.

[3] A. Bemporad and M. Morari. “Control of systems integrating logic, dynamics, and
constraints”. In: Automatica 35.3 (1999), pp. 407–427. issn: 0005-1098. doi: https:
//doi.org/10.1016/S0005-1098(98)00178-2. url: https://www.sciencedirect.
com/science/article/pii/S0005109898001782.

[4] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization. Cam-
bridge university press, 2004.

[5] Robert Creighton Buck. “Partition of space”. In: The American Mathematical Monthly
50.9 (1943), pp. 541–544.

[6] L.O. Chua and A.C. Deng. “Canonical piecewise-linear representation”. In: IEEE Trans-
actions on Circuits and Systems 35.1 (1988), pp. 101–111. doi: 10.1109/31.1705.

[7] B. De Schutter and T.J.J. van den Boom. “MPC for continuous piecewise-affine sys-
tems”. In: Systems and Control Letters 52.3-4 (2004), pp. 179–192. doi: 10.1016/j.
sysconle.2003.11.010. url: https://www.scopus.com/inward/record.uri?eid=
2-s2.0-2642538423&doi=10.1016%2fj.sysconle.2003.11.010&partnerID=40&
md5=a90b3a6413c160051d18defd379d8aa8.

[8] B. De Schutter and T.J.J. van den Boom. “On model predictive control for max-min-
plus-scaling discrete event systems”. In: Technical Report Bds 00-04: Control Systems
Engineering, Faculty of Information Technology and Systems (2000).

Master of Science Thesis F.T. Gallagher

https://doi.org/https://doi.org/10.1016/0012-365X(81)90002-9
https://doi.org/https://doi.org/10.1016/0012-365X(81)90002-9
https://www.sciencedirect.com/science/article/pii/0012365X81900029
https://www.sciencedirect.com/science/article/pii/0012365X81900029
https://doi.org/10.1109/TAC.2002.1000287
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036576888&doi=10.1109%2fTAC.2002.1000287&partnerID=40&md5=40731eec086ea01c500e9a947e1d73ad
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036576888&doi=10.1109%2fTAC.2002.1000287&partnerID=40&md5=40731eec086ea01c500e9a947e1d73ad
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036576888&doi=10.1109%2fTAC.2002.1000287&partnerID=40&md5=40731eec086ea01c500e9a947e1d73ad
https://doi.org/https://doi.org/10.1016/S0005-1098(98)00178-2
https://doi.org/https://doi.org/10.1016/S0005-1098(98)00178-2
https://www.sciencedirect.com/science/article/pii/S0005109898001782
https://www.sciencedirect.com/science/article/pii/S0005109898001782
https://doi.org/10.1109/31.1705
https://doi.org/10.1016/j.sysconle.2003.11.010
https://doi.org/10.1016/j.sysconle.2003.11.010
https://www.scopus.com/inward/record.uri?eid=2-s2.0-2642538423&doi=10.1016%2fj.sysconle.2003.11.010&partnerID=40&md5=a90b3a6413c160051d18defd379d8aa8
https://www.scopus.com/inward/record.uri?eid=2-s2.0-2642538423&doi=10.1016%2fj.sysconle.2003.11.010&partnerID=40&md5=a90b3a6413c160051d18defd379d8aa8
https://www.scopus.com/inward/record.uri?eid=2-s2.0-2642538423&doi=10.1016%2fj.sysconle.2003.11.010&partnerID=40&md5=a90b3a6413c160051d18defd379d8aa8

BIBLIOGRAPHY 108

[9] Morris H DeGroot and Mark J Schervish. Probability and statistics. Pearson Education,
2012.

[10] V.V. Gorokhovik and O.I. Zorko. “Piecewise Affine Functions and Polyhedral Sets”.
In: Optimization 31.3 (1994), pp. 209–221. doi: 10.1080/02331939408844018. url:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0010761911&doi=10.
1080%2f02331939408844018&partnerID=40&md5=5fd6ea425cecc9bb994892c420fabd58.

[11] J. Gunawardena. “Min-max functions”. In: Discrete Event Dynamic Systems: Theory
and Applications 4.4 (1994), pp. 377–407. doi: 10.1007/BF01440235. url: https:
//www.scopus.com/inward/record.uri?eid=2-s2.0-0001192686&doi=10.1007%
2fBF01440235&partnerID=40&md5=0bdb3be9074fc6e62f34597d544d866e.

[12] W.P.M.H. Heemels, B. De Schutter, and A. Bemporad. “Equivalence of hybrid dy-
namical models”. In: Automatica 37.7 (2001), pp. 1085–1091. doi: 10.1016/S0005-
1098(01)00059-0. url: https://www.scopus.com/inward/record.uri?eid=2-
s2.0-0035400417&doi=10.1016%2fS0005-1098%2801%2900059-0&partnerID=40&
md5=6cfeca1fca13ab45088a72636c704b14.

[13] W.P.M.H. Heemels, J.M. Schumacher, and S. Weiland. “Linear complementarity sys-
tems”. In: SIAM Journal on Applied Mathematics 60.4 (2000), pp. 1234–1269. doi:
10.1137/S0036139997325199. url: https://www.scopus.com/inward/record.uri?
eid=2-s2.0-0033685377&doi=10.1137%2fS0036139997325199&partnerID=40&md5=
90f266d7e9fb1d91bfea425f73949d4b.

[14] A.B. Hempel, P.J. Goulart, and J. Lygeros. “Every continuous piecewise affine function
can be obtained by solving a parametric linear program”. In: 2013 European Control
Conference, ECC 2013 (2013), pp. 2657–2662. doi: 10.23919/ecc.2013.6669386. url:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84893295893&doi=10.
23919%2fecc.2013.6669386&partnerID=40&md5=ca46d1dad6b1c436fe4fe21fa2f72e25.

[15] A.B. Hempel, P.J. Goulart, and J. Lygeros. “Inverse Parametric Optimization With an
Application to Hybrid System Control”. In: IEEE Transactions on Automatic Control
60.4 (2015), pp. 1064–1069. doi: 10.1109/TAC.2014.2336992. url: https://www.
scopus.com/inward/record.uri?eid=2-s2.0-84926363945&doi=10.1109%2fTAC.
2014.2336992&partnerID=40&md5=9552b0b5f39453fe41905a2a964aac6a.

[16] Martin Herceg, Michal Kvasnica, Colin N Jones, and Manfred Morari. “Multi-parametric
toolbox 3.0”. In: 2013 European control conference (ECC). IEEE. 2013, pp. 502–510.

[17] Jeanne W. Kerr and John E. Wetzel. “Platonic Divisions of Space”. In: Mathematics
Magazine 51.4 (1978), pp. 229–234. doi: 10.1080/0025570X.1978.11976718. eprint:
https://doi.org/10.1080/0025570X.1978.11976718. url: https://doi.org/10.
1080/0025570X.1978.11976718.

[18] Leonid Khachiyan, Endre Boros, Konrad Borys, Vladimir Gurvich, and Khaled El-
bassioni. “Generating all vertices of a polyhedron is hard”. In: Twentieth Anniversary
Volume: Springer, 2009, pp. 1–17.

[19] A. Kripfganz and R. Schulze. “Piecewise affine functions as a difference of two convex
functions”. In: Optimization 18.1 (1987), pp. 23–29. doi: 10.1080/02331938708843210.
url: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84860675504&
doi=10.1080%2f02331938708843210&partnerID=40&md5=a08f87d6ef8fbd2976e99604ff818f39.

Master of Science Thesis F.T. Gallagher

https://doi.org/10.1080/02331939408844018
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0010761911&doi=10.1080%2f02331939408844018&partnerID=40&md5=5fd6ea425cecc9bb994892c420fabd58
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0010761911&doi=10.1080%2f02331939408844018&partnerID=40&md5=5fd6ea425cecc9bb994892c420fabd58
https://doi.org/10.1007/BF01440235
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0001192686&doi=10.1007%2fBF01440235&partnerID=40&md5=0bdb3be9074fc6e62f34597d544d866e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0001192686&doi=10.1007%2fBF01440235&partnerID=40&md5=0bdb3be9074fc6e62f34597d544d866e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0001192686&doi=10.1007%2fBF01440235&partnerID=40&md5=0bdb3be9074fc6e62f34597d544d866e
https://doi.org/10.1016/S0005-1098(01)00059-0
https://doi.org/10.1016/S0005-1098(01)00059-0
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035400417&doi=10.1016%2fS0005-1098%2801%2900059-0&partnerID=40&md5=6cfeca1fca13ab45088a72636c704b14
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035400417&doi=10.1016%2fS0005-1098%2801%2900059-0&partnerID=40&md5=6cfeca1fca13ab45088a72636c704b14
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035400417&doi=10.1016%2fS0005-1098%2801%2900059-0&partnerID=40&md5=6cfeca1fca13ab45088a72636c704b14
https://doi.org/10.1137/S0036139997325199
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033685377&doi=10.1137%2fS0036139997325199&partnerID=40&md5=90f266d7e9fb1d91bfea425f73949d4b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033685377&doi=10.1137%2fS0036139997325199&partnerID=40&md5=90f266d7e9fb1d91bfea425f73949d4b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033685377&doi=10.1137%2fS0036139997325199&partnerID=40&md5=90f266d7e9fb1d91bfea425f73949d4b
https://doi.org/10.23919/ecc.2013.6669386
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84893295893&doi=10.23919%2fecc.2013.6669386&partnerID=40&md5=ca46d1dad6b1c436fe4fe21fa2f72e25
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84893295893&doi=10.23919%2fecc.2013.6669386&partnerID=40&md5=ca46d1dad6b1c436fe4fe21fa2f72e25
https://doi.org/10.1109/TAC.2014.2336992
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84926363945&doi=10.1109%2fTAC.2014.2336992&partnerID=40&md5=9552b0b5f39453fe41905a2a964aac6a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84926363945&doi=10.1109%2fTAC.2014.2336992&partnerID=40&md5=9552b0b5f39453fe41905a2a964aac6a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84926363945&doi=10.1109%2fTAC.2014.2336992&partnerID=40&md5=9552b0b5f39453fe41905a2a964aac6a
https://doi.org/10.1080/0025570X.1978.11976718
https://doi.org/10.1080/0025570X.1978.11976718
https://doi.org/10.1080/0025570X.1978.11976718
https://doi.org/10.1080/0025570X.1978.11976718
https://doi.org/10.1080/02331938708843210
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84860675504&doi=10.1080%2f02331938708843210&partnerID=40&md5=a08f87d6ef8fbd2976e99604ff818f39
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84860675504&doi=10.1080%2f02331938708843210&partnerID=40&md5=a08f87d6ef8fbd2976e99604ff818f39

BIBLIOGRAPHY 109

[20] Guido Montúfar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. “On the num-
ber of linear regions of deep neural networks”. In: vol. 4. January. Cited by: 537. 2014,
pp. 2924–2932. url: https://www.scopus.com/inward/record.uri?eid=2-s2.0-
84930634427&partnerID=40&md5=a39f5440d237faa81163972a4ab1d349.

[21] S. Ovchinnikov. “Max-min representation of piecewise linear functions”. In: Beitrage
zur Algebra und Geometrie 43.1 (2002), pp. 297–302. url: https://www.scopus.com/
inward/record.uri?eid=2-s2.0-2642577838&partnerID=40&md5=94b36b210b43c7c573a7332799a52129.

[22] Samuel Roberts. “On the Figures formed by the Intercepts of a System of Straight Lines
in a, Plane, and on analogous relations in Space of Three Dimensions”. In: Proceedings
of the London Mathematical Society 1.1 (1887), pp. 405–422.

[23] L Schläfli. “Ueber das Verhalten linearer Kontinua zu einander”. In: Theorie der vielfachen
Kontinuität. Springer, 1901, pp. 29–38.

[24] N. Schlüter and M.S. Darup. “Novel convex decomposition of piecewise affine functions”.
In: arXiv preprint arXiv:2108.03950 (2021).

[25] Richard P Stanley et al. “An introduction to hyperplane arrangements”. In: Geometric
combinatorics 13.389-496 (2004), p. 24.

[26] J.M. Tarela and M.V. Martínez. “Region configurations for realizability of Lattice
Piecewise-Linear models”. In: Mathematical and Computer Modelling 30.11-12 (1999),
pp. 17–27. doi: 10.1016/S0895- 7177(99)00195- 8. url: https://www.scopus.
com / inward / record . uri ? eid = 2 - s2 . 0 - 0033486282 & doi = 10 . 1016 % 2fS0895 -
7177%2899%2900195-8&partnerID=40&md5=dfe50c0740908f7974a7bd9a907a314b.

[27] T.J.J. van den Boom and B. De Schutter. “Modelling and control of discrete event sys-
tems using switching max-plus-linear systems”. In: Control Engineering Practice 14.10
(2006), pp. 1199–1211. doi: 10.1016/j.conengprac.2006.02.006. url: https://www.
scopus.com/inward/record.uri?eid=2-s2.0-33744907504&doi=10.1016%2fj.
conengprac.2006.02.006&partnerID=40&md5=cd456581611bed820a30a82c06c20952.

[28] T.J.J. van den Boom and B. De Schutter. “Properties of MPC for max-plus-linear
systems”. In: European Journal of Control 8.5 (2002), pp. 453–462. doi: 10.3166/
ejc . 8 . 453 - 462. url: https : / / www . scopus . com / inward / record . uri ? eid =
2 - s2 . 0 - 1542332153 & doi = 10 . 3166 % 2fejc . 8 . 453 - 462 & partnerID = 40 & md5 =
dfbc9b51a980a091eb6659461ce4a924.

[29] T.J.J. van den Boom, B. De Schutter, and A. Gupta. “Max-Min-Plus-Scaling Discrete-
Event Systems: Modeling, Control and Scheduling”. In: Internal Report (2022).

[30] S. Wang. “General constructive representations for continuous piecewise-linear func-
tions”. In: IEEE Transactions on Circuits and Systems I: Regular Papers 51.9 (2004),
pp. 1889–1896. doi: 10.1109/TCSI.2004.834521. url: https://www.scopus.com/
inward/record.uri?eid=2-s2.0-4744368326&doi=10.1109%2fTCSI.2004.834521&
partnerID=40&md5=237f52c9270ff79598d01f2280c0ee0d.

[31] C. Wen, X. Ma, and B. Erik Ydstie. “Analytical expression of explicit MPC solution
via lattice piecewise-affine function”. In: Automatica 45.4 (2009), pp. 910–917. doi:
10.1016/j.automatica.2008.11.023. url: https://www.scopus.com/inward/
record.uri?eid=2-s2.0-61849134460&doi=10.1016%2fj.automatica.2008.11.
023&partnerID=40&md5=9c72d0db22414bf8503cb4a340e0893d.

Master of Science Thesis F.T. Gallagher

https://www.scopus.com/inward/record.uri?eid=2-s2.0-84930634427&partnerID=40&md5=a39f5440d237faa81163972a4ab1d349
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84930634427&partnerID=40&md5=a39f5440d237faa81163972a4ab1d349
https://www.scopus.com/inward/record.uri?eid=2-s2.0-2642577838&partnerID=40&md5=94b36b210b43c7c573a7332799a52129
https://www.scopus.com/inward/record.uri?eid=2-s2.0-2642577838&partnerID=40&md5=94b36b210b43c7c573a7332799a52129
https://doi.org/10.1016/S0895-7177(99)00195-8
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033486282&doi=10.1016%2fS0895-7177%2899%2900195-8&partnerID=40&md5=dfe50c0740908f7974a7bd9a907a314b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033486282&doi=10.1016%2fS0895-7177%2899%2900195-8&partnerID=40&md5=dfe50c0740908f7974a7bd9a907a314b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033486282&doi=10.1016%2fS0895-7177%2899%2900195-8&partnerID=40&md5=dfe50c0740908f7974a7bd9a907a314b
https://doi.org/10.1016/j.conengprac.2006.02.006
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33744907504&doi=10.1016%2fj.conengprac.2006.02.006&partnerID=40&md5=cd456581611bed820a30a82c06c20952
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33744907504&doi=10.1016%2fj.conengprac.2006.02.006&partnerID=40&md5=cd456581611bed820a30a82c06c20952
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33744907504&doi=10.1016%2fj.conengprac.2006.02.006&partnerID=40&md5=cd456581611bed820a30a82c06c20952
https://doi.org/10.3166/ejc.8.453-462
https://doi.org/10.3166/ejc.8.453-462
https://www.scopus.com/inward/record.uri?eid=2-s2.0-1542332153&doi=10.3166%2fejc.8.453-462&partnerID=40&md5=dfbc9b51a980a091eb6659461ce4a924
https://www.scopus.com/inward/record.uri?eid=2-s2.0-1542332153&doi=10.3166%2fejc.8.453-462&partnerID=40&md5=dfbc9b51a980a091eb6659461ce4a924
https://www.scopus.com/inward/record.uri?eid=2-s2.0-1542332153&doi=10.3166%2fejc.8.453-462&partnerID=40&md5=dfbc9b51a980a091eb6659461ce4a924
https://doi.org/10.1109/TCSI.2004.834521
https://www.scopus.com/inward/record.uri?eid=2-s2.0-4744368326&doi=10.1109%2fTCSI.2004.834521&partnerID=40&md5=237f52c9270ff79598d01f2280c0ee0d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-4744368326&doi=10.1109%2fTCSI.2004.834521&partnerID=40&md5=237f52c9270ff79598d01f2280c0ee0d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-4744368326&doi=10.1109%2fTCSI.2004.834521&partnerID=40&md5=237f52c9270ff79598d01f2280c0ee0d
https://doi.org/10.1016/j.automatica.2008.11.023
https://www.scopus.com/inward/record.uri?eid=2-s2.0-61849134460&doi=10.1016%2fj.automatica.2008.11.023&partnerID=40&md5=9c72d0db22414bf8503cb4a340e0893d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-61849134460&doi=10.1016%2fj.automatica.2008.11.023&partnerID=40&md5=9c72d0db22414bf8503cb4a340e0893d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-61849134460&doi=10.1016%2fj.automatica.2008.11.023&partnerID=40&md5=9c72d0db22414bf8503cb4a340e0893d

BIBLIOGRAPHY 110

[32] R.H. Wilkinson. “A Method of Generating Functions of Several Variables Using Analog
Diode Logic”. In: IEEE Transactions on Electronic Computers EC-12.2 (1963), pp. 112–
129. doi: 10.1109/PGEC.1963.263420. url: https://www.scopus.com/inward/
record . uri ? eid = 2 - s2 . 0 - 0009556152 & doi = 10 . 1109 % 2fPGEC . 1963 . 263420 &
partnerID=40&md5=514d0c283a7767d648e73cfa3d45e353.

[33] J. Xu, T.J.J. van den Boom, L. Busoniu, and B. De Schutter. “Model predictive control
for continuous piecewise affine systems using optimistic optimization”. In: Proceedings
of the American Control Conference 2016-July (2016), pp. 4482–4487. doi: 10.1109/
ACC.2016.7526058. url: https://www.scopus.com/inward/record.uri?eid=2-
s2 . 0 - 84992166027 & doi = 10 . 1109 % 2fACC . 2016 . 7526058 & partnerID = 40 & md5 =
e1b750c674128dba93dc08c89886a0af.

[34] J. Xu, T.J.J. van den Boom, and B. De Schutter. “Optimistic optimization for contin-
uous nonconvex piecewise affine functions”. In: Automatica 125 (2021). doi: 10.1016/
j.automatica.2020.109476. url: https://www.scopus.com/inward/record.
uri?eid=2- s2.0- 85099459512&doi=10.1016%2fj.automatica.2020.109476&
partnerID=40&md5=52300b4891c6dd6365ed877e72453186.

[35] J. Xu, T.J.J. van den Boom, B. De Schutter, and S. Wang. “Irredundant lattice repre-
sentations of continuous piecewise affine functions”. In: Automatica 70 (2016), pp. 109–
120. doi: 10.1016/j.automatica.2016.03.018. url: https://www.scopus.com/
inward/record.uri?eid=2-s2.0-84963684554&doi=10.1016%2fj.automatica.
2016.03.018&partnerID=40&md5=c7a07d0cac6b713c27f300959d52a75a.

[36] Thomas Zaslavsky. Facing up to arrangements: Face-count formulas for partitions of
space by hyperplanes: Face-count formulas for partitions of space by hyperplanes. Vol. 154.
American Mathematical Soc., 1975.

[37] Seth Zimmerman. “Slicing Space”. In: The College Mathematics Journal 32.2 (2001),
pp. 126–128. issn: 07468342, 19311346. url: http://www.jstor.org/stable/2687119
(visited on 10/06/2022).

Master of Science Thesis F.T. Gallagher

https://doi.org/10.1109/PGEC.1963.263420
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0009556152&doi=10.1109%2fPGEC.1963.263420&partnerID=40&md5=514d0c283a7767d648e73cfa3d45e353
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0009556152&doi=10.1109%2fPGEC.1963.263420&partnerID=40&md5=514d0c283a7767d648e73cfa3d45e353
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0009556152&doi=10.1109%2fPGEC.1963.263420&partnerID=40&md5=514d0c283a7767d648e73cfa3d45e353
https://doi.org/10.1109/ACC.2016.7526058
https://doi.org/10.1109/ACC.2016.7526058
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84992166027&doi=10.1109%2fACC.2016.7526058&partnerID=40&md5=e1b750c674128dba93dc08c89886a0af
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84992166027&doi=10.1109%2fACC.2016.7526058&partnerID=40&md5=e1b750c674128dba93dc08c89886a0af
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84992166027&doi=10.1109%2fACC.2016.7526058&partnerID=40&md5=e1b750c674128dba93dc08c89886a0af
https://doi.org/10.1016/j.automatica.2020.109476
https://doi.org/10.1016/j.automatica.2020.109476
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099459512&doi=10.1016%2fj.automatica.2020.109476&partnerID=40&md5=52300b4891c6dd6365ed877e72453186
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099459512&doi=10.1016%2fj.automatica.2020.109476&partnerID=40&md5=52300b4891c6dd6365ed877e72453186
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099459512&doi=10.1016%2fj.automatica.2020.109476&partnerID=40&md5=52300b4891c6dd6365ed877e72453186
https://doi.org/10.1016/j.automatica.2016.03.018
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84963684554&doi=10.1016%2fj.automatica.2016.03.018&partnerID=40&md5=c7a07d0cac6b713c27f300959d52a75a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84963684554&doi=10.1016%2fj.automatica.2016.03.018&partnerID=40&md5=c7a07d0cac6b713c27f300959d52a75a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84963684554&doi=10.1016%2fj.automatica.2016.03.018&partnerID=40&md5=c7a07d0cac6b713c27f300959d52a75a
http://www.jstor.org/stable/2687119

Glossary

List of Acronyms

MMPS Max-Min-Plus-Scaling
PWA Piecewise Affine
FBR Finest Base Region
MPC Model Predictive Control
LC Linear Complementarity
ELC Extended Linear Complementarity
MLD Mixed Logical Dynamical
DES Discrete Event Systems
OL Ordered Lattice

List of Symbols

Abbreviations
γ Modified structure matrix
R Set of real numbers
R⊤ Set of real numbers including ∞
Rε Set of real numbers including −∞
Rc Set of real numbers including −∞ and ∞
R Anyone of three sets R⊤, Rc or Rε
Ω Convex polyhedral domain
Φ Finest Base Region
ϕ Parameter matrix
ψ Structure matrix
H Hyperplane
N∗ Total number of the subscript object ∗

Master of Science Thesis F.T. Gallagher

	Front Matter
	Cover Page
	Title Page
	Signatures
	Table of Contents

	Main Matter
	Introduction
	Background
	Motivation and major work
	Organization

	MMPS functions and Continuous PWA functions
	Continuous Piecewise Affine functions
	Working with continuous PWA functions
	Applications of PWA functions

	Max-min-plus-scaling functions
	Conjunctive & disjunctive MMPS functions
	Kripfganz MMPS functions
	Equivalence MMPS functions & continuous PWA functions
	Applications of MMPS functions

	Summary

	Transformations between MMPS functions and continuous PWA functions
	Transformations between MMPS (canonical) forms
	General MMPS form to conjunctive MMPS form
	Conjunctive MMPS form to (Convex) Kripfganz MMPS form
	Conjunctive MMPS form to disjunctive MMPS form (and vice versa)
	Convex Kripfganz MMPS form to Concave Kripfganz MMPS form (and vice versa)

	Transformation between canonical MMPS functions and continuous PWA functions
	Continuous PWA to Conjunctive MMPS form
	Continuous PWA to Kripfganz MMPS form

	Minimal representations and uniqueness of MMPS canonical forms & continuous PWA functions
	Conjunctive MMPS canonical functions
	Kripfganz (MMPS canonical) functions
	Continuous PWA functions

	Summary

	Finest Base Regions
	Definition
	Parameter matrix
	Parameter matrix of continuous PWA functions
	Parameter matrix of conjunctive MMPS functions
	Parameter matrix of Kripfganz MMPS functions
	Parameter matrix of general MMPS functions
	Redundancy in the parameter matrix

	Ordered lattice representation
	Modified structure matrix
	Finding the active function using ordered lattices
	Adjacent regions from ordered lattices
	Convex Folds from ordered lattices
	Finest base regions from ordered lattices
	PWA regions from ordered lattice sets

	Continuous PWA function realisation from FBR regions
	Finding the active function

	Canonical MMPS function realisation from FBR regions
	Conjunctive MMPS realisation from FBR regions
	Kripfganz realisation from FBR regions

	Total number of FBR regions
	Total number of intersection
	Upper-bound on number of FBR regions
	Lower bound on number of FBR regions

	Example: demonstration of a continuous PWA realisation using FBR regions
	Summary

	Finest Base Region Computation
	Preliminaries
	Computing an interior point of a convex polytope
	Polytopes with an empty interior

	Method 1 - FBR partition using hyperplane arrangements
	FBR region construction

	Method 2 - FBR partition using ordered lattices
	FBR region construction

	Method 3 - FBR partition using domain cutting
	FBR region construction

	Example of method 1, 2 & 3
	Analysis of the FBR algorithms
	Storage requirements
	Time complexity

	Results - Performance comparison

	Discussion
	Realisation of canonical MMPS functions and continuous PWA functions
	FBR partitioning algorithms

	Conclusion
	Summary & recommendations for future research
	Topics for future research

	Appendices
	MMPS algebraic rules
	Algebraic rules
	Conjunctive rewriting

	Convex Polytopes
	Theory on Polyhedra
	Polyhedral sets

	Hyperplane arrangements

	Algorithms

	Back Matter
	Glossary
	List of Acronyms
	List of Symbols

