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Abstract
Continual learning faces a problem, known as plas-
ticity loss, where models gradually lose the abil-
ity to adapt to new tasks. We investigate Contin-
ual Backpropagation (CBP) – a method that tack-
les plasticity loss by constantly resetting a small
fraction of low-utility neurons. We find that re-
setting neurons in deeper layers gives increasingly
worse performance, with exclusively first-layer re-
sets achieving performance very close to regular
CBP. We confirm this phenomenon holds across
different models. Additionally, we find an under-
lying reason for this phenomenon: first-layer resets
prevent continual growth in weight magnitudes,
which is crucial for maintaining plasticity, while
not resetting the first layer results in strong weight
growth. Additionally, we find that CBP fails under
models based on non-ReLU activations, which is a
novel result.1

1 Introduction
Neural networks perform well in static domain settings,
where the data distribution remains fixed across training and
evaluation. However, in continual learning scenarios—where
the data distribution changes over time—models suffer sub-
stantial performance degradation [1–3]. This degradation is
primarily related to two core challenges: catastrophic forget-
ting, a rapid loss of knowledge about previously learned tasks
[2], and plasticity loss, a gradual reduction in a model’s ca-
pacity to learn new information as training progresses [1, 3].
We depict an instance of plasticity loss in Figure 1. While
catastrophic forgetting has been widely studied in the litera-
ture, plasticity loss remains comparatively underexplored, de-
spite being core to continual adaptation [1].

Many already existing Machine Learning (ML) methods
can be used to mitigate the plasticity problem, such as L2

regularization or the Shrink-and-Perturb method [3]. In our

0 200 400 600 800 1000
Task Index

10
20
30
40
50
60
70
80

M
ea

n 
Ta

sk
 A

cc
ur

ac
y 

(%
)

Task Accuracy for Continual Permuted MNIST

Learning rate = 0.001
Learning rate = 0.005
Learning rate = 0.01

Figure 1: An example of plasticity loss. A model is trained
consecutively on different datasets (tasks) of similar com-
plexity, using regular backpropagation. It can be observed
that as the model is trained, its accuracy on the current task
keeps decreasing due to plasticity loss.

1The data and code are available at https://github.com/
augustinasjucas/first-layer-cbp/.

work, we investigate a novel method, introduced by Dohare
et al. – Continual Backpropagation (CBP) – a simple yet ef-
fective version of stochastic gradient descent (SGD) that peri-
odically resets low-utility neurons across the whole network.
Our goal is to develop a better understanding of CBP, in par-
ticular, from a layerwise perspective. We aim to examine at
which layers of the model CBP is most effective, as well as
the underlying reasons for that, thus uncovering new insights
into how continual learning dynamics vary across the depth
of a neural network.

Our contributions are the following:
1. We observe that during CBP, resetting neurons in earlier

layers leads to increasingly better performance. The ear-
lier a layer is, the more plasticity a neural network can
retain by resetting that layer.

2. We show that during CBP, continually resetting neurons
only in the first hidden layer achieves nearly the same
performance as resetting neurons in all layers. We call
this the first layer phenomenon.

3. We show that the first layer phenomenon can be ex-
plained through the lens of a model’s weight magni-
tudes. In particular, replacement in the first layer is nec-
essary and sufficient to prevent the model’s weights (in
all layers) from continually increasing, which is neces-
sary for maintaining plasticity.

4. We propose a lightweight variant of Continual Back-
propagation that performs resets exclusively in the first
layer – such a method is more efficient and results in
very similar performance.

5. We find an underlying flaw in Continual Backpropaga-
tion: the training algorithm does not reduce plasticity
loss for models which use non-ReLU activation func-
tions.

2 Background and Related Work
Continual learning (CL) refers to a model’s capacity to learn
from a data stream whose distribution changes over time, thus
avoiding infeasible or expensive retraining from scratch. This
capability is critical in reinforcement learning, where agents
must adapt to non-stationary environments while retaining
previously acquired policies [4] and in robotics, for achiev-
ing lifelong autonomy and incremental skill acquisition [5].
A notorious challenge in the field of CL is catastrophic for-
getting – the tendency of models to lose previously learned
knowledge when learning new information. For this problem,
the ML community has developed solutions such as Elastic
Weight Consolidation [6], replay-based methods like Gradi-
ent Episodic Memory [7], and others.

However, continually trained neural networks also suffer
from another serious issue – a gradual loss of plasticity, in
which the ability to learn new information diminishes with
each successive task. This decline is observed in supervised
settings in the form of a training slowdown after several hun-
dred tasks [3], and in deep RL agents, as an increased number
of collapsed activations and vanishing gradients over time [4].
Several hypotheses have been proposed to explain plasticity
decline. Lyle et al. claim that inappropriate loss functions
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can make the optimization landscape less smooth [8], thus
reducing learning capacity. Other work attributes plasticity
reduction to a loss of curvature in the loss landscape during
continual training [9]. Additional studies report an increase
in dormant neurons, which do not change much over time and
also do not contribute meaningfully to performance as train-
ing progresses [4, 10].

Even though the dynamics behind plasticity loss are not
fully understood, a variety of methods for its mitigation ex-
ist. In supervised settings, a common approach is Shrink-and-
Perturb, which applies L2 regularization around the initial
weights and periodically perturbs the parameters to prevent
converging into regions that slow down learning [3]. Another
method, used in reinforcement learning, is related to using
Concatenated ReLU (CReLU) activation functions, which
expand feature maps to reactivate dormant units, improving
adaptability in non-stationary environments [4]. Other tech-
niques include parameter regularization, feature rank regular-
ization, and alternative activation functions [11]. In our work,
we focus on Dohare et al.’s method, which introduces Contin-
ual Backpropagation to address this issue [3, 12].

Dohare et al. observe that plasticity is linked to the weight
values being close to the network’s initial weight distribution,
which typically supports rapid learning and stability [3]. As
continual training progresses, many neurons drift away from
their initial values, with some becoming dormant. To address
both of these problems, the authors propose Continual Back-
propagation, where a small fraction of the least useful neu-
rons (identified by a layerwise contribution utility score) are
reinitialized at each step. This targeted reinitialization main-
tains high learning rates across thousands of tasks, matching
the performance of freshly initialized models [3]. However,
their work does not include a detailed analysis of the algo-
rithm’s internal workings, a gap we aim to address in part in
our work.

In both Dohare et al.’s work and most related literature,
plasticity is evaluated and investigated at the entire network
level [1, 3]. It remains relatively unexplored how important
different parts of the network are to the plasticity performance
even though some work on this topic exists [13–15]. In this
paper, we address this gap by analyzing the effects of differ-
entiating the replacement rates per layer in the CBP setting,
thus being able to observe what layers have the largest impact
on performance and other metrics.

3 Method
In this section, we present our approach for investigating the
layerwise dynamics of Continual Backpropagation. The first
subsection presents a modification of CBP that enables our
analysis, along with a step-by-step pipeline for training mod-
els and collecting the core data. The second subsection de-
scribes all metrics tracked during the training process.

3.1 Layerwise Replacement Analysis
It is well known in the literature that earlier layers of neural
networks tend to perform lower-level, concrete feature extrac-
tion, while deeper layers extract and represent increasingly
general and abstract features [16]. Additionally, feature rep-
resentations learned by deeper layers are directly dependent

on those learned in previous layers. Motivated by this asym-
metric dependence in the network’s hierarchy, we investigate
how reinitialising neurons at different depths affects CBP al-
gorithm performance, since the impact may vary by layer
depth. Therefore, we modify the CBP algorithm to accommo-
date layerwise replacement rates, as described in Algorithm
1, which enables selective neuron replacement within specific
layers.

Algorithm 1 Layerwise-adjusted CBP algorithm for an MLP
with L hidden layers. The algorithm is based on [12], with
modifications to the Set and the inner for loop steps.

Set: step-size α, replacement rate ρ, a set of layers
S = {l1, l2, ..., lk} decay rate η, and maturity threshold m.
Initialize: Initialize the weights w0, . . . , wL. Let wl be sampled
from a distribution dl
Initialize: Utilities u1, . . . , uL, average feature activation
f1, . . . , ft, and ages a1, . . . , aL to 0
for each input xt do

Forward pass: pass input through the network, get the pre-
diction ŷt

Evaluate: Receive loss l(xt, ŷt)
Backward pass: update the weights using stochastic gradient

descent
for layer l in S do

Update age: al += 1
Update feature utility: Using Equations 4, 5, and 6 from

[12].
Find eligible features: Features with age more than m
Features to replace: nl∗ρ of eligible features with small-

est utility, let their indices be r
Initialize input weights: Reset the input weights wl−1[r]

using samples from dl
Initialize output weights: Set wl[r] to zero
Initialize utility, feature activation, and age:

Set ul,r,t, fl,r,t, and al,r,t to 0
end for

end for

We further propose a pipeline for investigating layerwise
CBP replacement rates. This pipeline consists of 3 actionable
steps.

Step 1: Experiment Specification
The first step of investigating the layerwise dynamics of Con-
tinual Backpropagation is specifying the broad experimental
settings which will be investigated. This primarily requires
selecting several dataset-model pairs for further investigation.

Step 2: Hyperparameter Search
The second step involves performing a hyperparameter search
to identify optimal configurations for the regular CBP algo-
rithm and baseline methods across all experimental settings
defined in the previous step. We use both unregularized and
L2-regularized backpropagation as baseline algorithms, ab-
breviated as BP and L2 throughout this paper.

To be precise, for every experimental setting, this step
requires finding the optimal replacement rate and learning
rate configuration for regular CBP (denote as replCBP and
lrCBP ), the optimal weight decay and learning rate config-
uration for the L2 baseline, and the optimal learning rate for



BP. Hyperparameters are compared using the mean online ac-
curacy/error over the last 15% of data points.

Step 3: Running Modifications of CBP
After completing a hyperparameter search for the baselines,
the final step is to run the experiments using different versions
of CBP. These versions differ only in the choice of the set S,
which indicates the layers where CBP replacement should be
applied (see Algorithm 1). We list the specific CBP variants
to be run, by describing the sets S used in each case, that is,
which layers are selected for replacement:

• The sets {1}, {2}, ..., {L}: for every layer, only it gets
replaced.

• The set {2, 3, . . . , L}: all layers except the first get re-
placed.

• The set {1, 2, . . . , L}: all layers get replaced, equivalent
to regular CBP.

• The set ∅: no layers get replaced, equivalent to regular
backpropagation.

All CBP variants are executed for each experimental configu-
ration from Step 1, tracking the metrics defined in Section 3.2.
To reduce computational expenses, additional hyperparame-
ter searches are not performed for these CBP variations. In-
stead, we reuse the optimal replacement rate replCBP and
learning rate lrCBP . Following this step, the collected metric
data allows us to perform ad-hoc analysis.

3.2 Metrics
During training, we monitor numerous metrics for individual
layers and across the entire network to answer questions and
test hypotheses. These tracked metrics include:

• Global performance. The online accuracy/error is
tracked as training progresses, as is done in the original
work by Dohare et. al [3].

• Weight Norm Statistics. The L1 norm for each layer’s
flattened weight matrix over time is tracked, as well as
that of the whole network.

• Dead Neuron Counts. The fraction of neurons that out-
put 0 activation across a large sample of the training
dataset is measured. Such a neuron is considered dead,
since the derivative of the loss with respect to the outgo-
ing weights of a neuron that outputs an activation a are
proportional to that activation a. Thus, if a is 0, the gra-
dients of the outgoing weights of the neuron are killed
and the neuron stops adapting. This number is tracked
for every layer separately.

• Feature Ranks. When a task changes, a large batch of
samples from the next task is sampled, passed through
the model, and activation maps for every layer are com-
puted. Then, for each layer, the effective rank of the
subspace spanned by the features of that layer is com-
puted.

• Utility Scores. During training, the mean utility scores
are tracked for every layer, defined by Dohare et al. [3]
as:

ul[i] = η × ul[i] + (1− η)× |hl,i| ×
nl+1∑
k=1

|wl,i,k| (1)

i.e., for every layer l, the following is tracked:

ul =
1

nl

nl∑
i=1

ul[i] (2)

Here η denotes an exponentially moving average coeffi-
cient, hl,i denotes activation value of neuron i in layer
l, and wl,i,k denotes the weight value of the weight be-
tween layer l and l + 1 between neurons i and k.

• Curvature of the Loss Landscape. The effective rank
of the network’s approximate Hessian is tracked, as de-
fined by Lewandowski et al. [17], who attribute plastic-
ity loss to a reduction of directions of curvature in the
loss landscape.

• Probing accuracies. We present a method we use in
parallel of feature ranks, to quantify how useful the fea-
tures learned by the intermediate layers in a network are.
After every task, the network is frozen and a linear clas-
sifier is attached at each hidden layer. Then, each linear
classifier is trained separately on the next task’s data,
until convergence. The training set accuracies are re-
ported for each layer.
Using this layerwise data, we can quantify how useful
the intermediate features learned in the current task are
for the next task. Higher accuracies indicate that the
learned features contain some useful information for the
subsequent task, while low feature utility suggests less
usefulness and may indicate that larger weight changes
will be needed when learning the next task.

4 Experimental Setup and Results
To investigate the layerwise effects of CBP, we use a cus-
tomised Continual Permuted MNIST experimental setting,
following Dohare et al. [3, 12]. We first describe the exact
experimental setup and explain how we apply the investiga-
tion protocol from Section 3.1. We then present our analysis
of the results and describe follow-up experiments that provide
deeper insights.

We also aimed to perform this analysis for another experi-
mental setting used by Dohare et al. [3, 12], but we were un-
able to obtain meaningful results with a deeper model. These
results are described in Appendix A.

4.1 Experimental Setting
Dataset and Base Model
We construct a continually changing data distribution using
the Permuted MNIST dataset, similar to what was done by
Dohare et al. [12]. In particular, we take the MNIST dataset,
sample T random pixel permutations and construct T tasks,
each being a version of the MNIST dataset with the pixels
permuted using that task’s permutation. An example of this
procedure being done for a single digit is depicted in Fig-
ure 2. Additionally, due to computational constraints, we



subsample every task to be 6 times smaller than the original
MNIST dataset, therefore every task contains exactly 10000
samples. By default, we use T = 1100 for full experiments
and T = 600 for hyperparameter search.

Original Task 1 Task 2 Task 1099 Task 1100

Figure 2: A single sample from MNIST, changing across
multiple Continual Permuted MNIST tasks.

As for the neural network to train, while we vary the model
across different experiment settings (described later), we set
the base neural network to be a deeper, 5-hidden-layer MLP
(Multi Layer Perceptron) with 100 neurons in every hidden
layer and ReLU activations. We use only 100 hidden lay-
ers, since such a configuration saves computation time signif-
icantly.

Reproducing Core Results
Having changed the experimental setting to a smaller dataset
and a smaller (yet deeper) model, we first show that the core
results from the original paper [3] are still obtained for the
base network. In particular, we care about three training algo-
rithms, as described in Section 3.1: regular CBP, BP and L2,
hence we perform an initial hyperparameter search to find the
optimal settings for each algorithm. For BP the optimal learn-
ing rate is chosen from the set LR = {0.01, 0.003, 0.001};
for CBP the optimal learning rate and replacement rate com-
bination is chosen with learning rate selected from LR and
the replacement rate from {10−5, 10−4, 10−3}; for L2 the
optimal learning rate and weight decay combination is cho-
sen with the learning rate selected from LR and weight decay
from {10−4, 10−3, 10−2}. The performances are compared
by selecting the best accuracy for the last 15% of tasks. Also,
all experiments are run with 4 random seeds. The best version
for each algorithm is depicted in Figure 3. It can be seen that
even with the very best versions of each algorithm, Continual
Backprop, as expected, outperforms BP and L2, by not los-
ing accuracy over multiple tasks, while L2 and BP algorithms
both decrease in accuracy over time. Hence, we get the ex-
pected results and conclude that our base setting is valid.

Model Configurations
After verifying that the base network setting is valid, we begin
applying our investigative method described in Section 3.1.
The protocol’s first step requires defining the experimental
settings. To ensure any results obtained will generalise across
various neural network architectures, we investigate layer-
wise dynamics across different model sizes and types. There-
fore, we examine:

• Varying model width. Keeping the base neural network
(5 hidden layer MLP, ReLU activation 100 neurons per
hidden layer), we only vary the widths of all layers, try-
ing out the following widths: {20, 50, 100, 150, 200}.
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Figure 3: A figure comparing the accuracy evolution of the
best-performing version of all 3 training algorithms on the
base neural network (defined in Section 4.1) after hyperpa-
rameter search. The shaded regions denote a single standard
deviation across 4 different runs of the same experiment.

• Varying model depth. Keeping the base neural net-
work, we vary the depth of the model, trying out a model
with 2, 5 and 8 hidden layers.

• Varying model shape. Keeping the same activation
function (ReLU), we make the model deeper and shal-
lower, but keep the number of parameters almost equal,
hence trying out three options:

– 2 hidden layers, 86 neurons per layer, inducing
120.7k parameters.

– 5 hidden layers, 100 neurons per layer, inducing
119.9k parameters.

– 8 hidden layers, 129 neurons per layer, inducing
119.3k parameters.

• Varying activation function. Keeping the base neural
network, we vary the activation function between ReLU,
hyperbolic tangent (Tanh), and Scaled Exponential Lin-
ear Unit (SELU).

As a result, a total of (5 + 3 + 3 + 3) − 3 = 11 sepa-
rate experimental settings are obtained. The 3 is subtracted,
since all 4 experiment types share a single experimental set-
ting (i.e., a neural network configuration) – the base setting,
described previously in Dataset and Base Model subsection.

For all 11 of these models, the optimal hyperparameters
for regular CBP, BP and L2 algorithms are found, as de-
scribed in Step 2 of our protocol (Section 3.1). Due to limited
computational resources, the experiments were run for 600
tasks for the hyperparameter search. The sets of hyperparam-
eters which were tried are provided in Appendix C, where all
attempted hyperparameters are depicted in Table 4 and the
found optimal hyperparameters are shown in Table 3.

Note that for running the experiments, we used CPU
nodes at the Delft University of Technology DelftBlue high-
performance cluster [18], as well as DAIC cluster [19].

4.2 Layerwise Replacement Results

After finding the optimal hyperparameters, modified versions
of CBP with various layerwise replacement rate distributions
are run for all 11 models, as defined in Section 3.1, Step 3.
The core results are presented below.



Table 1: The effects of varying replacement rates by layer on
different neural networks. Every row corresponds to a par-
ticular network defined in Section 4.1, under Model Config-
urations. Every column corresponds to a different version of
CBP that the neural network was trained on. All numeric val-
ues depict accuracies in percentages, hence higher is better.
The accuracies correspond to an average online accuracy of
the last 15% of tasks, averaged over 3 runs. For the errors,
we show a single standard deviation. We underline the best
mean accuracies for every row, not including the All Layers
column, to indicate which layer is best for replacement.

Baseline Replacing Individual Layers

All Layers Layer 1 Layer 2 Layer 3 Last Layer
Varying Widths
Width 20 79.2 ± 0.1 76.1 ± 0.2 59.5 ± 1.3 58.2 ± 0.6 59.1 ± 0.9
Width 50 82.3 ± 0.1 80.7 ± 0.2 56.1 ± 2.3 60.2 ± 1.0 52.4 ± 2.3
Width 100 84.6 ± 0.0 83.2 ± 0.1 71.0 ± 0.5 67.6 ± 0.4 61.0 ± 1.0
Width 150 85.5 ± 0.0 84.2 ± 0.0 75.2 ± 0.1 71.1 ± 0.3 66.6 ± 0.3
Width 200 86.0 ± 0.0 84.8 ± 0.0 77.7 ± 0.3 74.0 ± 0.2 69.9 ± 0.4

Varying Activation Functions
ReLU 84.6 ± 0.0 83.2 ± 0.1 71.0 ± 0.5 67.6 ± 0.4 61.0 ± 1.0
SELU 76.2 ± 0.1 76.3 ± 0.1 76.2 ± 0.1 76.6 ± 0.2 76.5 ± 0.1
Tanh 69.2 ± 0.3 69.1 ± 0.5 69.1 ± 0.1 69.0 ± 0.5 68.6 ± 0.3

Varying Depths
Depth 2 87.0 ± 0.0 86.8 ± 0.1 81.9 ± 0.0 - 81.9 ± 0.0
Depth 5 84.6 ± 0.0 83.2 ± 0.1 71.0 ± 0.5 67.6 ± 0.4 61.0 ± 1.0
Depth 8 82.9 ± 0.0 82.5 ± 0.1 71.7 ± 0.2 67.6 ± 0.8 65.5 ± 0.2

Varying Depths, Same Number of Parameters
Depth 2 87.3 ± 0.0 87.1 ± 0.1 82.7 ± 0.0 - 82.7 ± 0.0
Depth 5 84.6 ± 0.0 83.2 ± 0.1 71.0 ± 0.5 67.6 ± 0.4 61.0 ± 1.0
Depth 8 82.3 ± 0.1 82.2 ± 0.1 70.1 ± 0.5 65.7 ± 0.2 64.3 ± 0.6

Benefits of Layer Replacement Decrease with Depth

A key result emerges when each layer is replaced separately.
Across all experimental settings, we find that the deeper a
layer is, the less performance benefit is obtained by re-
placing neurons only in it. This result is shown in Table 1,
where only a certain layer is replaced for each experimen-
tal setting. Consequently, the table demonstrates that in al-
most all experimental settings, replacing the first layer results
in the highest accuracy. Furthermore, these accuracies are
compared against full-replacement CBP (i.e., regular CBP)
to show that replacing only the first layer already achieves
surprisingly close performance.

In Figure 4, this exact result is shown in detail for a sin-
gle model to provide intuition on how the online accuracies
diverge during training when individual layers are replaced.
Effectively, the figure corresponds to a single line in Table 2.
When replacing only the first layer, performance decline is
not only small but also very slow, especially compared to
replacements in deeper layers. Additionally, exclusive first-
layer replacement results in performance very close to L2

regularisation and comparable to full CBP. From now on, we
refer to the property that replacing only the first layer gives
especially close results to regular CBP as the first layer phe-
nomenon.
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Figure 4: The effects of varying replacement rates by layer
on the base neural network: an MLP with 5 hidden layers,
100 neurons each, with ReLU activation function, trained on
Continual Permuted MNIST. The shaded areas correspond to
a single standard deviation across 3 runs of the same experi-
ment.

CBP Does Not Work on Non-ReLU Activations
Inspecting Table 1, the SELU and Tanh rows appear to be
outliers compared to other models within the table as these
two variations perform significantly worse in terms of accu-
racy even with regular, full-replacement CBP. We investigate
this phenomenon further, comparing regular CBP to regular
BP and the L2 baseline. The results are depicted in Figure 5,
showing that the performance of CBP on non-ReLU neural
networks is identical to the performace of regular backpropa-
gation, hence indicating that CBP only works on ReLU acti-
vations. Note that this is a novel result, as the original work
by Dohare et al. [3] only investigates different activations
on the previously described Bit-Flipping problem, which we
have shown to be unreliable for different experimental setups
in Appendix A.
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Figure 5: Online accuracy training curves for models with
varying activation functions, comparing 3 training algo-
rithms: CBP, BP and L2. We observe that Continual Back-
prop only works with ReLU-based MLPs. Shaded areas indi-
cate a single standard deviation over 3 runs.

4.3 Exploring the First Layer Phenomenon
In light of the results seen in the previous section, we focus on
understanding the first layer phenomenon in a general setting.



Investigative Setup
To further investigate the first layer phenomenon, we design
a more targeted experiment using four versions of CBP that
contrast the first layer’s contribution against the rest of the
network. Therefore, we consider replacing:

1. All Layers: regular CBP, where all layers are replaced.

2. Layer 1: a version of CBP, where only the first layer is
replaced.

3. Layers 2-L: a version of CBP where all layers are re-
placed except the first.

4. No Layers: a version of CBP, where no layers are re-
placed, so exactly equivalent to regular BP.

This experimental design allows the first layer’s individual
effect to be directly tested against the combined effect of all
other layers, determining whether the first layer alone drives
the observed phenomenon. And surprisingly, the accuracy re-
sults in Table 2 confirm the first-layer phenomenon even more
strongly: replacing only the first layer significantly outper-
forms replacing all other layers combined. Note that SELU
and Tanh variations are excluded from the table, since CBP
does not work with these activation functions. This result es-
tablishes the first-layer phenomenon in its purest form, as the
first layer appears to be more important than all other layers
combined.

Having confirmed this phenomenon under such pure con-
ditions, the metric data collected during these experiments is
analysed to understand the mechanisms that make the first
layer so important for CBP.

Table 2: Performances of 4 different versions of CBP on dif-
ferent neural networks. Every row corresponds to a different
neural network. The numeric values depict average online ac-
curacies over the last 15% of tasks.

Layers Replaced

All Layers Layer 1 Layers 2-L No Layers
Varying Widths
Width 20 79.2 ± 0.1 76.1 ± 0.2 62.9 ± 0.7 58.4 ± 1.0
Width 50 82.3 ± 0.1 80.7 ± 0.2 72.6 ± 0.1 45.3 ± 1.1
Width 100 84.6 ± 0.0 83.2 ± 0.1 78.3 ± 0.1 56.2 ± 0.8
Width 150 85.5 ± 0.0 84.2 ± 0.0 80.9 ± 0.0 61.0 ± 0.3
Width 200 86.0 ± 0.0 84.8 ± 0.0 82.3 ± 0.1 66.2 ± 0.2

Varying Depths
Depth 2 87.0 ± 0.0 86.8 ± 0.1 82.0 ± 0.0 75.1 ± 0.4
Depth 5 84.6 ± 0.0 83.2 ± 0.1 78.3 ± 0.1 56.2 ± 0.8
Depth 8 82.9 ± 0.0 82.5 ± 0.1 75.5 ± 0.1 65.3 ± 0.5

Varying Depths, Same Number of Parameters
Depth 2 87.3 ± 0.0 87.1 ± 0.1 82.6 ± 0.0 76.6 ± 0.2
Depth 5 84.6 ± 0.0 83.2 ± 0.1 78.3 ± 0.1 56.2 ± 0.8
Depth 8 82.3 ± 0.1 82.2 ± 0.1 74.2 ± 0.1 63.1 ± 0.6

Primary Cause: CBP Regularises Weight Magnitudes
To understand the underlying cause of the first layer phe-
nomenon, we test various hypotheses with respect to metrics
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Figure 6: Results of training the base model (defined in Sec-
tion 4.1) with 4 versions of CBP: 1. all layers are replaced,
2. only the first layer is replaced, 3. all except the first are
replaced, or 4. no layers are replaced (BP). Subplot a shows
how the average online training accuracies evolve over train-
ing. b depicts how the cumulative total magnitude of the
whole model changes as training progresses. c shows the lay-
erwise weight magnitudes for the 4 versions of CBP, at the
end of training. Each bar in plot c represents the mean mag-
nitude for some layer for the last 15% of the tasks, averaged
over 3 runs. All experiments were run with 3 seeds; a single
standard deviation is depicted as error.

such as the curvature of the loss space, feature ranks and utili-
ties, the number of dead neurons, weight magnitudes and oth-
ers. Most of these hypotheses proved false. For instance, no
correlation is found between metrics that approximate fea-
ture usefulness (such as feature ranks or probing accuracies
introduced in Section 3.2) and the performance results ob-
tained in Table 2. In fact, for the vast majority of metrics,
the CBP variant which replaces layers 2-L performs moder-
ately to significantly better than the first-layer version of CBP,
even though the actual accuracy differences strongly favour
the first-layer replacement version of CBP. These failed re-
sults are described in detail in Appendix B, while only the
results that do explain the phenomenon are presented here.

It is well known within CL literature that if a model’s
weights are not regularised while training, its weight magni-
tudes tend to increase as it gets trained on new tasks [20, 21].
And a model with inflated weight magnitudes tends to adapt
more slowly to new tasks [21]. A potential reason for that, is
that for increased weights, the gradient updates need to move
the weights more to adjust to new tasks, therefore adaptation
slows down. As a result, not allowing weight magnitudes to
grow while continually training is necessary for maintaining
plasticity. This is well justified by how much more slowly a
model loses plasticity when simple L2 regularisation is intro-
duced, compared to regular backpropagation (e.g., see Fig-
ure 3).

A natural side effect of regular CBP is that it tends to act
as a regularizer for weight magnitudes. This happens because
CBP continually either resets certain weights to 0, or resam-
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Figure 7: Results of training a variation of the base model (model defined in Section 4.1, only with 784 hidden neurons in every
layer), with 4 versions of CBP: 1. all layers are replaced, 2. only the first layer is replaced, 3. all except the first are replaced, or
4. no layers are replaced (BP). Subplot a shows how the average online training accuracies evolve over training. b depicts how
the cumulative total magnitude of the whole model changes as training progresses. c shows the layerwise weight magnitudes
for the 4 versions of CBP, at the end of training. Each bar in plot c represents the mean magnitude for some layer for the last
15% of the tasks, averaged over 3 runs. All experiments were run with 3 seeds; a single standard deviation is depicted as error.

ples them from a 0-meaned distribution, hence reducing the
total weight size. Conversely, if a layer and its immediate
neighbours are not regularised, CBP does not directly pro-
vide a clear regularisation effect, as no weights for that layer
are regularised. Therefore, rather expectedly, we find that re-
placing all layers except the first results in a stable weight
magnitude increase over time, mainly driven by the weight
magnitude increase in the first layer. However, surprisingly,
we show the inverse is also true – replacing neurons only
in the first layer stabilises weight magnitudes in all lay-
ers, which we suspect is the core reason behind the first layer
phenomenon.

We depict the results described in the previous paragraph
in Figure 6, for the base model. Part a of the figure depicts
the differences in accuracy for all 4 versions of CBP, again
showing that first-layer CBP performs better than 2-L layer
CBP. Furthermore, part b depicts how the weight magnitudes
increase significantly over time for the 2-L version of CBP,
while staying relatively constant for the layer 1 version of
CBP, which is a significant result. Finally, the reason be-
hind this fact is directly motivated by analysing the layerwise
weight magnitudes (part c of Figure 6) – it can be seen that
the first layer’s weight magnitudes dominate the weight dis-
tribution. Hence, controlling the first layer’s magnitudes is
key, which is exactly what layer 1 version of CBP does, and
the 2-L layer CBP fails to accomplish, as seen in part c.

However, we also point out, that while all hidden layers of
the base model contain 100 neurons, the first layer’s weight
matrix contains 784 · 100 parameters, while the consecutive
layers all contain 100 ·100 parameters, hence the first layer is
≈ 8 times larger. To account for this potential bias, we addi-
tionally perform the same experiment with a different MLP,
which has the width of 784, hence making all hidden layers
the same size (784 · 784) and removing the potentially unfair
layer size bias. In doing so, we still find the same results,
although less extreme, which can be seen in the Figure 7.

5 Discussion
Our results show a direct relation between the depth of re-
placement in a neural network, and a performance increase.
Since we have empirically shown that replacement only in the
first layer results in comparable performance to regular CBP,

we propose a new, more efficient variant of CBP, which we
call CBP-1, which differs from CBP in the set of layers that
are replaced – CBP-1 only continually replaces the first layer
of a neural network.

An important question still remains: why does replacement
in the first layer stabilise weight magnitudes of deeper lay-
ers? While this requires deeper investigation, we hypothesise
that this effect stems from the randomness in earlier layers
effectively trickling down to deeper layers as the earlier ones
are replaced. This occurs because the more abstract features
learned in deeper layers of a neural network are directly de-
pendent on the concrete features learned earlier in the net-
work. Therefore, the randomness induced by replacing neu-
rons in the first layer may similarly affect later layers, result-
ing in a regularisation effect. However, this remains a hypoth-
esis requiring further investigation.

Furthermore, while our work mainly agrees with previous
literature, certain results could be seen as contradicting other
works. For instance, Lewandowski et al. claimed that a de-
crease in curvature in the loss landscape causes plasticity loss
[17], however, we did not find this to be the case, as it did not
correlate with plasticity performance (we describe this in Sec-
tion B.4). Additionally, Berariu et al. [15] found that com-
plete resets of the last layers tend to lead to a full regain in
plasticity performance, which may be seen as contradicting
our core finding that the first layers are optimal for replace-
ment. However, we consider soft replacements where we do
not replace the full layers from scratch, while also consider-
ing significantly longer task horizons compared to the men-
tioned work hence our findings may be tangential instead of
contradictory.

6 Conclusions
When neural networks are trained on continually changing
data distributions, they tend to suffer from the plasticity loss
problem, where a model gradually loses its capacity to learn
new information. In our work, we investigated the layerwise
dynamics of Continual Backprop (CBP) algorithm [3, 12],
which addresses this problem by gradually reinitialising cer-
tain weights of a neural network. We first examined which
layers are most important for maintaining plasticity. Through
experiments on the Continual Permuted MNIST dataset, we



showed two key results:

1. The deeper a layer is in the network, the less plasticity
performance is regained by resetting that layer.

2. Resetting only the first hidden layer achieves perfor-
mance very close to regular Continual Backprop.

The second finding led us to propose a more efficient ver-
sion of CBP, which we called CBP-1: a training algorithm
that performs Continual Backpropagation only on the first
layer of a neural network. This observation also raised an
important question: why does resetting just the first layer pro-
duce such strong results?

To investigate this question, we tracked several layerwise
metrics over time, including weight norm statistics, dead neu-
ron counts, feature space rank, and neuron utility scores. We
found that replacement only in the first layer stabilises the
overall weight norm of the entire network, while replacing
all layers except the first results in fast weight magnitude
increase as training progresses. Since gradually increasing
weight magnitudes are known to be linked to plasticity loss
[20, 21], we concluded that weight magnitude inflation pro-
vides a valid explanation for this phenomenon.

Finally, while obtaining results for different model types,
we discovered that regular CBP does not reduce plasticity loss
on models that use non-ReLU activation functions. This is a
new finding, as previous work only evaluated CBP on non-
ReLU models with a very simple dataset, which we showed
does not scale to larger settings. Our work used a more chal-
lenging, Permuted MNIST dataset to reach an opposite con-
clusion.

7 Future Work
As our compute resources were limited, we were unable to
test our hypotheses and validate the results on larger-scale
datasets and models. As a result, we had to stick with
the Continual Permuted MNIST dataset and a regular MLP
model, as that was the most appropriate experimental setting
which could still run on CPUs. As a result, a key point for
future work is reproducing our results on larger datasets and
models, for instance, using a large convolutional neural net-
work, trained on a realistic dataset, such as ImageNet.

Furthermore, even though we found the first layer phe-
nomenon to be directly related to an increase in weight mag-
nitudes, we were unable to figure out why the magnitudes
of deeper layers do not increase when training a model us-
ing CBP-1 algorithm. Our current hypothesis is that ran-
domness from early layer replacements propagates to deeper
layers, however, this requires theoretical or empirical valida-
tion. Hence, future work could look into exactly that – figure
out why full-network weight magnitudes remain stable under
CBP-1 algorithm.

Finally, the relationship between activation functions and
CBP effectiveness is another direction for future work. Our
finding that CBP fails on non-ReLU activations directly
shows that CBP acts differently for different activation func-
tions. Therefore, further research could investigate which
properties of activation functions make them compatible with
CBP to gain further insight into the inner workings of CBP, as

well as to find new algorithms that work across all activation
types.

8 Responsible Research
In this section, we discuss the ethical considerations and re-
producibility concerns of our work and provide a statement
on the use of Large Language Models.

8.1 Research Sensitivity
Our work focuses on non-applicative machine learning – it in-
vestigates mostly fundamental concepts in continual learning
instead of designing machine learning models for real-world
scenarios. Given this focus, it was sufficient for us to use sim-
plistic datasets, such as MNIST or the artificial Bit-Flipping
dataset, both containing no sensitive or personal information.
As a result, our work has few direct ethical concerns in terms
of data privacy, data sensitivity or direct misuse of our contri-
butions.

While our work does not raise direct ethical concerns, there
exist certain second-order considerations. For instance, con-
tinual learning research is related to reinforcement learning
(RL), since both fields deal with learning from non-stationary
data distributions [1]. And RL is used in many real-world
technologies, such as robotics, large language model training,
and autonomous vehicles, which have both benefits and risks.
Therefore, our contributions could indirectly influence appli-
cations with ethical implications, though these effects are out-
side our control.

Beyond these indirect ethical concerns, we also acknowl-
edge that directing research resources toward continual learn-
ing, rather than other areas, is an ethical choice on its own.
We justify our focus because continual learning is as an im-
portant and even growing building block of artificial intelli-
gence research. And artificial intelligence has been consis-
tently showing potential to solve humanity’s most pressing
problems, such as medical breakthroughs or poverty reduc-
tion. Therefore, our work contributes to a field with signifi-
cant potential for positive impact.

8.2 Reproducibility and Replicability
We attempt to present our work in a way that allows for
full replicability: all code is shared, data is made publicly
available, experiments are documented, and optimal hyper-
parameters are listed. However, despite our work likely being
fully replicable, it does have limitations with respect to repro-
ducibility. For instance, following the experimental imple-
mentation of Dohare et al. [12], we do not fix random seeds
across individual experimental runs, and instead rely on the
Central Limit Theorem to ensure that averages over multiple
runs result in sufficiently low standard deviations for our re-
sults. And although our experiments do demonstrate small
standard deviations across runs, indicating valid findings, this
approach leaves space for variations in results across different
runs. Therefore, we cannot claim that our work is completely
reproducible.

8.3 Use of Large Language Models
We used Large Language Models (LLMs) for the following
tasks:



• Code Development: We used Github Copilot’s auto-
complete functionality for speeding up programming
tasks.

• Data Visualisations: We used ChatGPT and DeepSeek
to generate skeleton codes for data visualisation scripts
and LaTeX figures. After initial generation, the gen-
erated codes were always further modified manually to
match our exact requirements.

• Writing Assistance: Claude AI was used to provide
suggestions for text rephrasing and style improvements
during the paper writing process.

We provide prompts of our interactions with chatbots in
Appendix D.
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A Bit-Flipping Problem
This section describes our effort to perform a layerwise in-
vestigation on the Bit-Flipping problem, a toy experimental
setting introduced by Dohare et al. [12, 12]. Since the origi-
nal experiment uses only a single-hidden-layer MLP (Multi
Layer Perceptron), it does not allow performing layerwise
analysis. Therefore, adapting this setting for deeper architec-
tures while maintaining the core results shown by Dohare et
al. [12, 12] was necessary. Unfortunately, the setting did not
generalise to deeper models. The following subsections first
outline the experimental framework, then present the issues
that prevented the scaling to deeper networks.

A.1 Experimental Setting
Dataset. The Bit-Flipping dataset consists of a series of con-
secutive tasks, each task being a small dataset. A single task
consisting of T samples, where each sample is a pair (xt, yt),
such that xt ∈ {0, 1}m, the first f bits (xt)1:f are constant
for the same task, and the last m − f bits (xt)f :m are sam-
pled from U{0, 1} for every sample. Therefore, every task is
uniquely defined by the f bits (called flipping bits) that all its
samples have as the first f bits. The original work by Dohare
et al. [12] have m = 20, f = 15 and T = 104. Additionally,
for all samples, we have yt = F (xt), where F is a neural
network that is more complex than the one being trained on
the described dataset. In particular, we follow the original
work and set the target network to be a randomly initialised
single hidden layer MLP (Multi Layer Perceptron), with the
LTU (Linear Threshold Unit) activation function. The size
and complexity of the target network F is discussed in the
later paragraphs. The described dataset induces a regression
problem, therefore, the loss being used for training the learner
is regular MSE loss.

Making the model deeper. The original learner and tar-
get networks proposed by Dohare et al [12], are both single
hidden layer MLPs. However, a single-layer learner network
is suboptimal for investigating layerwise dynamics, as there
are not enough layers for investigation. Therefore, we opt
to make the learner network deeper, in particular, at least 4
hidden layers deep. However, making the model deeper was
proven to be non-trivial, as even basic results do not repro-
duce under slight deviations. In particular, for a meaningful
analysis, we aimed to identify a model–dataset configuration
that satisfies the following four properties:

1. The learner model is at least 4 hidden layers deep – a
sufficiently deep model is needed to investigate layer-
wise dynamics.

2. The error rates increase over time under regular Back-
propagation, indicating the dataset is complex enough to
see a plasticity decline.

3. The error rates under CBP remain relatively stable. If
this condition was not met, it would suggest that CBP

is ineffective in the given setting, thus making further
analysis uninformative.

4. Both standard backpropagation and the L2 baseline per-
form worse than the proposed variant of CBP. Similar to
the previous point, analysing CBP in a setting where it
is underperforming would not yield useful insights.

However, we were unable to find an experimental setting
where all 4 of these settings were met, potentially indicating
that the original dataset proposed by Dohare et al. was too
specific for small and shallow models.

A.2 Inconsistencies Within the Original Work
In attempting to scale up the experimental setting to work
on a deeper neural network, we found two large inconsisten-
cies between what was reported in the core paper we base our
work on [3], and the respective reported codebase.

Differing Utility Score Definitions
The publication that provides the codebase we base our work
on [3], defines contribution utility scores as shown in Equa-
tion 1. However, most experiments from the reported code-
base, use a different utility scoring equation, which in the
code is called adaptable utility. This equation likely comes
from an earlier work by Dohare et al., i.e., the Continual
Backprop paper [12], where they define utility as û:

yl,i =

∣∣∣hl,i − f̂l,i

∣∣∣×∑nl+1

k=1 |wl,i,k|∑nl−1

j=1 |wl−1,j,i|
(3)

ul[i] = η × ul[i] + (1− η)× yl,i (4)

ûl[i] =
ul[i]

1− ηal,i
. (5)

With f̂l,i denoting the running average of hidden activations
for neuron i at layer l; and al,i denoting the time since last
replacement of neuron i at layer l.

Through initial experimentation with both of these utility
score definitions, we did not find considerable differences in
performance between them. As a result, it was decided to use
the definition from Equation 1 since it matches the claim in
the core publication we base our work on [3].

Flipping One Bit vs. Flipping All Bits
As we describe in Section A.1, for any two consecutive tasks
in the Bit-Flipping dataset, their flipping bits differ by exactly
one bit. However, the codebase allows for another option –
one where the flipping bits are completely resampled from
U{0, 1} for every task, thus allowing any number of bit flips
for consecutive tasks. We refer to the original dataset ver-
sion as the flip-one dataset, and to the other dataset as flip-all.
Strangely, most of the experimental setups in the codebase
use the flip-all version instead of the flip-one, described in the
publication.

To confirm which version of the dataset was actually used
in the original paper, we ran the respective experiments of the
Bit-Flipping problem with both flip-one and flip-all datasets,
using regular backpropagation. Each experiment is run on a
ReLU-based model with 14 random seeds. As no plasticity-
preserving technique is used, we expect to observe errors
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Figure 8: Performance of a network trained using regu-
lar backpropagation on two versions of the Bit-Flipping
dataset. Lower is better. The curves are made up of bins of
size 40.000. Shaded areas denote a single standard deviation
over 14 runs.

steadily increase, as this was shown to happen in the original
work for the Bit-Flipping dataset [3, 12]. However, it can be
seen from Figure 8 that only one of the two datasets induced
stable plasticity loss – the flip-all version of the Bit-Flipping
dataset. This suggests that the flip-all version was used to
obtain results in the original work [3], contrary to what the
publication claims. As a result, it was decided to use the flip-
all version for further experiments.

A.3 Problems With Scaling Up the Model
The original Bit-Flipping experiment is based on a model
with 1 hidden layer. However, to investigate layerwise dy-
namics, it is first crucial to obtain a working setup which
reproduces the results from the original publications [3, 12]
with a deeper model. We aim for a model which is at least
4 hidden layers deep. However, after initial experimentation,
we found that trivially changing the learner model’s depth re-
sults in the dataset being so simple for the model that even
regular backpropagation does not lose plasticity.

As a result, we performed a hyperparameter search to find
a model-dataset setting which would satisfy the 4 conditions
outlined in Section A.1. Throughout this process, we tuned
the following hyperparameters:

• Learner model depths.

• Target model sizes.

• Activation types.

• Learning rates.

• Training algorithms (L2, Backprop and CBP).

• Weight decay values (L2) and replacement rates (CBP).

• Task sizes T .

• Total number of samples.

We do not describe the full process of tuning these param-
eters in order to obtain the 4 desirable conditions. However,
we show the results of the last iteration of the hyperparam-
eter search, after which it was decided to stop working on
this dataset. In this step, we used a neural network with 5
hidden layers, and had already found it to be beneficial to

set T = 2500, while using the flip-all version of the Bit-
Flipping dataset, the regular contribution utility score equa-
tion (see Equation 1) and a 500 neuron wide target network.
The goal of this iteration was to find the best hyperparame-
ters for ReLU, Sigmoid and Tanh activation functions. So we
swept over the following:

1. Activation functions. Considered ReLU, Sigmoid and
Tanh.

2. Training algorithms. Considered CBP, BP and L2.
3. Learning rates. For all algorithms, considered 0.005,

0.001, 0.0005, 0.0001.
4. Weight decay / Replacement rate. For L2 we consid-

ered weight lambdas of 10−4, 10−3, 10−2, and for CBP
we considered replacement rates of 10−4, 10−3, 10−2.

5. Seeds. Every experimental setting was repeated 10
times.

We effectively took the cross product of the 5 items above,
hence resulting in over 800 experimental runs.

After obtaining the results, we chose the optimal hyperpa-
rameters for every activation function and training algorithm
pair, which are depicted in Figure 9. The figure directly shows
that in no single configuration all 4 necessary conditions are
fulfilled, as for instance, for ReLU, regular backpropagation
does not result in increasing errors, and for Sigmoid and Tanh
activations, CBP fails to outperform L2.
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Figure 9: Optimal training algorithms for every activation
function. Each line is chosen to be the best among varia-
tions of the same algorithm with different hyperparameters.
The shaded areas depict a single standard deviation across 10
runs. Lower is better.

B Explaining First Layer Phenomenon
There are multiple lenses that could potentially explain the
first-layer phenomenon. In this section, we present some ap-
proaches that failed. All figures in this section correspond to



training the base model (see Section 4.1) with CBP on Con-
tinual Permuted MNIST for 400 tasks, while tracking a metric
discussed in the respective subsection. The layerwise metrics
from the figures are computed by averaging values over the
particular layer and over the final 15% of tasks.

B.1 Dead Neurons
We initially hypothesised that the reason behind the first layer
phenomenon is that replacement in the first layer dispropor-
tionately decreases the number of dead neurons throughout
the whole model. However, we found that to be false. Exclu-
sive first-layer replacement results in a large number of dead
neurons. This is shown in Figure 10. Furthermore, the fig-
ure shows that replacing layers 2-L nearly solves the dead
neuron issue, and this outcome is incompatible with our core
performance result. It is incompatible becaus,e according to
the dead neuron metric, the 2-L CBP version should perform
very well, however we have shown that the exact opposite
happens (see Figure 6a).

L1L2L3L4L5 L1L2L3L4L5 L1L2L3L4L5 L1L2L3L4L5
Layer index

0

25

50

75

De
ad

 N
eu

ro
n 

Co
un

t Layerwise Distribution of Dead Neurons
Replacing all layers
Replacing layer 1
Replacing layers 2-6
No replacement

Figure 10: Distribution of dead neurons within the network
for different versions of CBP. Lower is better. Error bars cor-
respond to a single standard deviation across 3 runs.

B.2 Feature Ranks
Another hypothesis was that the randomness induced by first-
layer replacement results in more useful features for further
layers, as measured by the effective rank of the feature maps.
That was found to be false. Exclusive first-layer replacement
version of CBP results in lower feature ranks compared to
other methods which we know to perform worse. This result
is shown in Figure 11.
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Figure 11: Layerwise feature ranks for different versions of
CBP. Higher is better. Error bars correspond to a single stan-
dard deviation across 3 runs.

B.3 Feature Usefulness
After disproving the previous hypothesis, it was decided to
quantify the usefulness of features using a more sophisticated

metric than feature map ranks. Therefore, we attempted to
quantify the usefulness of features using the layer probing
metric described in Section 3.2. The results, shown in Fig-
ure 12, proved to be very similar to those of feature ranks,
again suggesting that the first layer phenomenon is not di-
rectly related to intermediate network activations.
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Figure 12: Layerwise probing accuracies for different ver-
sions of CBP. The exact way probing accuracies are calcu-
lated is described in Section 3.2. Higher is better. Error bars
correspond to a single standard deviation across 3 runs.

B.4 Curvature of the Loss Landscape
Lewandowski et al. [9] suggested that plasticity loss is caused
by a decrease in curvature of the loss space. Since the curva-
ture can be measured by approximating the rank of the Hes-
sian of a neural network [9], we tracked this metric to inves-
tigate if it could be causing plasticity decline. However, we
found this to not correlate with actual performance, as the
first-layer replacement version of CBP resulted in relatively
high loss of curvature, even though it achieves very high per-
formance. We depict the layerwise Hessian ranks for CBP
variants in Figure 13.
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Figure 13: Approximate ranks of the Hessian of a neural net-
work for different versions of CBP. Higher is better. Error
bars correspond to a single standard deviation across 3 runs.

C Hyperparameter Search
See Table 4 for all hyperparameters tried and Table 3 for the
best ones for every model.



D Use of Large Language Models
In this section, we provide examples of our chatbot usage for
code generation and text rewriting.

D.1 Text Rephrasing and Style Improvements
We used Claude AI for text rephrasing suggestions. Here
we do not paste the full prompts, since most of them include
entire paragraphs or subsections with the goal of informing
Claude of the broader context. Therefore, we trim most
prompts, indicating that with ”...” symbols, for the purposes
of readability.

Prompt 1
Smooth this out

To investigate the layerwise effects of CBP,
we ...

Prompt 2
Rephrase this text to make it smooth. Keep the
same style!

\section{Responsible Research}
In this section, we discuss the ethical
considerations, reproducibility concerns,
and transparency issues of ...

Prompt 3
nono, you are not keeping the same style. You
are changing some words for no reason. For
instance, I said "focuses" you say "centers
on"...
no need to change this. So KEEP MY STYLE
do not change words which do not need to be
changed.

Prompt 4
Rephrase to smooth:

In this section, we describe our attempts to
scale up...

Prompt 5
This is a conclusion of my paper. Please write
it in my style, just phrase it more smoothly.
But plz, dont add too fancy words and stuff

When neural networks are trained on
continually changing data...

We used this same format for multiple other section or
paragraph rewrites – basically asking Claude to smooth out
some text, while keeping the style the same. If Claude failed
to keep the style, we asked it again to do so. After obtaining
rewritten text, it was always edited to match our standards and
style.

D.2 Generating Scripts for Figures
We use Python’s matplotlib library for generating figures in
this paper, and LaTeX for writing the paper itself. Therefore,
we employed chatbots for generating entire Python scripts
(as well as parts of them) for rendering basic plots. After
initial generation, we would edit those scripts manually
to match the exact needs of the paper. Additionally, we
used Large Language Models for LaTeX code generation,
inputting certain LaTeX figure code and asking the model
to transform it to some other LaTeX figure. We now give
representative examples of different types of code generation
prompts.

Prompt 1. Generating a Python script for figure plotting.
I want to do ax.bar plot, where I plot
multiple bar sequences on the same plot, by
stacking the plots next to each other. I.e.,
say for x=2 value, I want to have n bars next
to each other with different colors. same for
x=3, etc

Prompt 2. Generating LaTeX code for a figure.
Take this:

\begin{block}{Experiment: Continual Permuted
MNIST}
\begin{figure}[htbp]

\centering
\includegraphics[width=0.95\textwidth]

... skipped multiple code lines
\end{block}

and turn into a two-part figure, where
these two figures are next to each other
horizontally

Prompt 3. Generating partial Python code for figure plotting.
sometimes matplotlib shows the y labels in
some simlified format, like 1.0, 2.0, ... with
a note that everything in the scale of, say,
1e7 next to the axis. How do I do this for
1e4?



Table 3: The found optimal hyperparemeters for each exper-
imental setting. Every row indicates a version of the model,
corresponding to an experimental setting. The columns of
that row show the best hyperparameter set for that particular
training algorithm.

Setting BP CBP L2

Varying Widths
Width 20 Lr = 5 · 10−4 Lr = 1 · 10−3,

Repl = 1 · 10−3
Lr = 1 · 10−3,
Decay = 1 ·10−2

Width 50 Lr = 5 · 10−4 Lr = 5 · 10−3,
Repl = 1 · 10−4

Lr = 1 · 10−3,
Decay = 1 ·10−2

Width 100 Lr = 5 · 10−4 Lr = 5 · 10−3,
Repl = 1 · 10−4

Lr = 5 · 10−3,
Decay = 1 ·10−3

Width 150 Lr = 5 · 10−4 Lr = 5 · 10−3,
Repl = 1 · 10−4

Lr = 1 · 10−3,
Decay = 1 ·10−3

Width 200 Lr = 1 · 10−3 Lr = 5 · 10−3,
Repl = 1 · 10−4

Lr = 1 · 10−3,
Decay = 1 ·10−3

Varying Activation Functions
ReLU Lr = 5 · 10−4 Lr = 5 · 10−3,

Repl = 1 · 10−4
Lr = 5 · 10−3,
Decay = 1 ·10−3

SeLU Lr = 5 · 10−4 Lr = 5 · 10−4,
Repl = 1 · 10−4

Lr = 1 · 10−3,
Decay = 1 ·10−2

Tanh Lr = 5 · 10−4 Lr = 5 · 10−4,
Repl = 1 · 10−6

Lr = 5 · 10−3,
Decay = 1 ·10−2

Varying Depths
2 Layers Lr = 1 · 10−3 Lr = 5 · 10−3,

Repl = 1 · 10−4
Lr = 5 · 10−3,
Decay = 1 ·10−3

5 Layers Lr = 5 · 10−4 Lr = 5 · 10−3,
Repl = 1 · 10−4

Lr = 5 · 10−3,
Decay = 1 ·10−3

8 Layers Lr = 5 · 10−4 Lr = 1 · 10−3,
Repl = 1 · 10−4

Lr = 1 · 10−3,
Decay = 1 ·10−3

Varying Depth, Same Number of Parameters
2 Layers Lr = 1 · 10−3 Lr = 5 · 10−3,

Repl = 1 · 10−5
Lr = 5 · 10−3,
Decay = 1 ·10−3

5 Layers Lr = 5 · 10−4 Lr = 5 · 10−3,
Repl = 1 · 10−4

Lr = 5 · 10−3,
Decay = 1 ·10−3

8 Layers Lr = 5 · 10−4 Lr = 1 · 10−3,
Repl = 1 · 10−4

Lr = 1 · 10−3,
Decay = 1 ·10−3



Table 4: The list of all hyperparameters tried for layerwise experiments. In every cell, we investigate all combinations of the
provided hyperparameters.

Experiment
Setting

CBP BP L2

Varying Widths
Width =
20

Lr: 5 · 10−4, 10−3, 5 · 10−3, 10−2

Repl: 10−4, 10−3, 10−5
Lr: 5 · 10−4, 10−3, 5 ·
10−3, 10−2

Lr: 5 · 10−4, 10−3, 5 · 10−3, 10−2

Decay: 10−4, 10−3, 10−2

Width =
50

Lr: 5 · 10−4, 10−3, 5 · 10−3, 10−2

Repl: 10−4, 10−3, 10−5
Lr: 5 · 10−4, 10−3, 5 ·
10−3, 10−2

Lr: 5 · 10−4, 10−3, 5 · 10−3, 10−2

Decay: 10−4, 10−3, 10−2

Width =
100

Lr: 5 · 10−4, 10−3, 5 · 10−3, 10−2

Repl: 10−4, 10−3, 10−5
Lr: 5 · 10−4, 10−3, 5 ·
10−3, 10−2

Lr: 5 · 10−4, 10−3, 5 · 10−3, 10−2

Decay: 10−4, 10−3, 10−2

Width =
150

Lr: 5 · 10−4, 10−3, 5 · 10−3, 10−2

Repl: 10−4, 10−3, 10−5
Lr: 5 · 10−4, 10−3, 5 ·
10−3, 10−2

Lr: 5 · 10−4, 10−3, 5 · 10−3, 10−2

Decay: 10−4, 10−3, 10−2

Width =
200

Lr: 5 · 10−4, 10−3, 5 · 10−3, 10−2

Repl: 10−4, 10−3, 10−5
Lr: 5 · 10−4, 10−3, 5 ·
10−3, 10−2

Lr: 5 · 10−4, 10−3, 5 · 10−3, 10−2

Decay: 10−4, 10−3, 10−2

Varying Activation Functions
ReLU Lr: 5 · 10−4, 10−3, 5 · 10−3, 10−2

Repl: 10−4, 10−3, 10−5
Lr: 5 · 10−4, 10−3, 5 ·
10−3, 10−2

Lr: 5 · 10−4, 10−3, 5 · 10−3, 10−2

Decay: 10−4, 10−3, 10−2

SeLU Lr: 5 · 10−4, 10−3, 5 · 10−3, 10−2

Repl: 10−4, 10−3, 10−5, 10−6
Lr: 5 · 10−4, 10−3, 5 ·
10−3, 10−2

Lr: 5 · 10−4, 10−3, 5 · 10−3, 10−2

Decay: 10−4, 10−3, 10−2

Tanh Lr: 5 · 10−4, 10−3, 5 · 10−3, 10−2

Repl: 10−4, 5 · 10−4, 10−3, 5 · 10−3,
10−5, 10−6, 5 · 10−5

Lr: 5 · 10−4, 10−3, 5 ·
10−3, 10−2

Lr: 5 · 10−4, 10−3, 5 · 10−3, 10−2

Decay: 10−4, 10−3, 10−2

Varying Depths
2 Layers Lr: 5 · 10−4, 10−3, 5 · 10−3, 10−2

Repl: 10−4, 10−3, 10−5
Lr: 5 · 10−4, 10−3, 5 ·
10−3, 10−2

Lr: 5 · 10−4, 10−3, 5 · 10−3, 10−2

Decay: 10−4, 10−3, 10−2

5 Layers Lr: 5 · 10−4, 10−3, 5 · 10−3, 10−2

Repl: 10−4, 10−3, 10−5
Lr: 5 · 10−4, 10−3, 5 ·
10−3, 10−2

Lr: 5 · 10−4, 10−3, 5 · 10−3, 10−2

Decay: 10−4, 10−3, 10−2

8 Layers Lr: 5 · 10−4, 10−3, 5 · 10−3, 10−2

Repl: 10−4, 10−3, 10−5
Lr: 5 · 10−4, 10−3, 5 ·
10−3, 10−2

Lr: 5 · 10−4, 10−3, 5 · 10−3, 10−2

Decay: 10−4, 10−3, 10−2

Varying Depth, Same Number of Parameters
2 Layers Lr: 5 · 10−4, 10−3, 5 · 10−3, 10−2

Repl: 10−4, 10−3, 10−5
Lr: 5 · 10−4, 10−3, 5 ·
10−3, 10−2

Lr: 5 · 10−4, 10−3, 5 · 10−3, 10−2

Decay: 10−4, 10−3, 10−2

5 Layers Lr: 5 · 10−4, 10−3, 5 · 10−3, 10−2

Repl: 10−4, 10−3, 10−5
Lr: 5 · 10−4, 10−3, 5 ·
10−3, 10−2

Lr: 5 · 10−4, 10−3, 5 · 10−3, 10−2

Decay: 10−4, 10−3, 10−2

8 Layers Lr: 5 · 10−4, 10−3, 5 · 10−3, 10−2

Repl: 10−4, 10−3, 10−5
Lr: 5 · 10−4, 10−3, 5 ·
10−3, 10−2

Lr: 5 · 10−4, 10−3, 5 · 10−3, 10−2

Decay: 10−4, 10−3, 10−2
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