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Chapter 4
How to Model and Enumerate
Geographically Correlated Failure
Events in Communication Networks

Balázs Vass, János Tapolcai, David Hay, Jorik Oostenbrink,
and Fernando Kuipers

Abstract Several works shed light on the vulnerability of networks against regional
failures, which are failures of multiple pieces of equipment in a geographical region
as a result of a natural or human-made disaster. This chapter overviews how this infor-
mation can be added to the existing network protocols through defining shared risk
link groups (SRLGs) and probabilistic SRLGs (PSRLGs). The output of this chapter
can be the input of later chapters to design and operate the networks to enhance
the preparedness against disasters and regional failures in general. In particular, we
are focusing on the state-of-the-art algorithmic approaches for generating lists of
(P)SRLGs of the communication networks protecting different sets of disasters.

4.1 Introduction

The Internet is a critical infrastructure. Due to the importance of telecommunication
services, improving the preparedness of networks to regional failures is becoming
a key issue [4, 5, 8–10, 12, 13, 20–22, 27, 41]. The majority of severe network
outages happen because of a disaster (such as an earthquake, hurricane, tsunami,
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tornado) taking down a lot of (or all) equipment in a given geographical area. Such
failures are called regional failures. Many studies have touched on the problem of
how to prepare networks to survive regional failures, where the first solutions have
assumed that fibres in the same duct or within 50km of every network node fail
simultaneously (namely, in a single regional failure) [18, 43]. These solutions were
further improved by examining the historical data of different type of disasters (e.g.
seismic hazard maps for earthquakes) and identifying the hotspots of the disasters
[5, 10, 12, 20, 21, 27]. The weak point of these approaches is that, during network
equipment deployment, many of the risks are considered and compensated (e.g. an
earthquake-proof infrastructure in areas with larger seismic intensity), implying that
the historical data does not represent the current deployments and therefore, not the
current risks. Thus, it may be more realistic to assume that any physically close-
by equipment has a higher chance to fail simultaneously. More recent studies are
purely devoted to this particular problem and adapt combinatorial geometric-based
approaches to capture all of the regional failures and represent them in a compact way
[2, 7, 22, 30, 31, 34, 37], where the major challenge is that regional failures can have
arbitrary locations, shapes, sizes, effects, etc. This chapter is devoted to overview of
the state of the art and suggests unified definitions, notions and terminology.

The output of the approaches discussed in this chapter can serve as the input of the
network design and management tools. Currently, network recovery mechanisms are
implemented to protect a small set of pre-defined failure scenarios. Each recovery
plan corresponds to the failure of some equipment. Informally speaking, when a link
fails, the network has a ready-to-use plan on how to recover itself. Technically, a set
of so-called shared risk link groups (SRLGs) are defined by the network operators,
where each SRLG is a set of links whose joint failure recovery mechanism should
be prepared for. In this chapter, we are purely focusing on how to define SRLGs
that cover all types of disasters, as recovery mechanisms for a specific SRLG are
discussed in later chapters. We will also address refinements of the SRLG model
defined in the next section.

4.2 Notions Related to Vulnerable Regions

When several network elements may fail together as a result of a single event,
they are often characterized by shared risk groups (SRGs). Each SRG has a cor-
responding failure event (or events); when such an event occurs, all elements in the
SRG fail together. Specifically, the communication network is modelled as a graph
G = 〈V, E〉, whose vertices are routers, PoPs,1 optical cross-connects (OXC) and
users, while the edges are communication links (mostly optical fibres). SRGs are
then defined as subgraphs 〈V ′, E ′〉, where V ′ ⊆ V and E ′ ⊆ E ′.

1A point of presence (PoP) is an artificial demarcation point or interface point between communi-
cating entities.
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In many cases, it is sufficient to consider only links in SRGs, and in this case,
these groups are called shared risk link groups (SRLGs). For example, an SRLG
may contain one edge (to capture a single-link failure) or all edges that touch one
vertex (to capture a single-node failure). SRLGsmay be more complex and represent
simultaneous failures of multiple network elements. In particular, in this chapter, we
focus on geographically correlated failures in which links within a specific region
fail together.

A set S of SRLGs can be used as an input to network design and network recov-
ery/protection mechanisms to ensure these mechanisms withstand the failures cor-
responding to these SRLGs. For example, to ensure connectivity between a specific
pair of nodes, protection mechanisms may construct two edge-disjoint paths when
S = {{e}|e ∈ E}, two node-disjoint paths when S = {{(u, v) ∈ E}|v ∈ V } or two
paths that do not traverse the same geographical region when S corresponds to all
sets of links that are physically close by.

The following definition captures the notion of SRLG introduced by regional
failures, such as a natural disaster or an attack. For ease of presentation, we will call
these failure events disasters, regardless of their cause.

Definition 4.1 (SRLG) A set of links S ⊆ E is an SRLG if we may assume there
will be a disaster that can cause all edges in S to fail together. If the disaster can be
characterized by a bounded geographical area in the two-dimensional plane D ⊂ R

2,
and S is the set of edges that intersect with D, then S is called the regional SRLG
that represents D and is denoted by S = SRLG(D). If D is a circular disc, we call
SRLG(D) a circular SRLG.

Circular SRLGs, which are the most common in the literature, can also be char-
acterized by the failure epicentre p ∈ R

2 and the failure radius r ∈ R. In this case,
S = {e ∈ E |d(e, p) ≤ r}, where d(e, p) is the Euclidean distance between edge e
and point p.

The likelihood of a disaster occurring is not the same at all points of the plane.
For example, earthquakes are more likely to occur in rupture zones than in other
places, and regions with lower altitude are more likely to suffer from floods. Thus,
the probability of an event to occur is important. This probability is sometimes given
in the form of an epicentre distribution map, which gives for each location p ∈ R

2,
the probability that a disaster happened with epicentre p. Moreover, the size (or
radius) of the disaster can also be a random variable (e.g. earthquakes with a larger
magnitude are less likely to happen than earthquakes with smaller magnitude, even
if their epicentres are the same). Thus, it is customary to consider a setD of disasters
D ⊆ R

2 (that can be of infinite size) and attach a probabilistic measure to this set. For
simplicity, let us assume that D is finite, and let pD = Pr[disaster D ∈ D occurs].2
We note that an SRLG S can represent more than one disaster in D; thus, we denote
by the support(S) = {D ∈ D|S = SRLG(D)}.

2For infinite sets, one can use discretization and consider only finite number of sets, albeit with
a small error.
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Definitions 4.2–4.5 capture the probabilistic nature of disasters and their effect
on SRLGs. An FP (Definition4.2) tells the probability that the failed link set will be
exactly S, while a CFP (Definition4.3) tells the probability that at least S will fail:

Definition 4.2 (FP) Given a set D of disasters D ⊆ R
2, a probability pD for each

disaster in D and a link set S ⊆ E , the Link Failure State Probability (FP) of S is
FP(S) = ∑

D∈support(S) pD . We note that if a disaster in support(S) actually occurs,

then all links in S fail (with probability 1).

Definition 4.3 (CFP) Given a setD of disasters D ⊆ R
2, a probability pD for each

disaster inD and a link set S ⊆ E , theCumulativeLinkFailureProbability (CFP)of S
isCFP(S) = ∑

T⊇S

∑
D∈support(T ) pD .Wenote that if a disaster in

⋃
T⊇S support(T)

occurs, then all links in S fail (with probability 1).

In a sense, FPs are like probability density functions (PDFs), while CFPs are like
their cumulative distribution functions (CDFs).

Sometimes it is imperative to investigate situations in which disasters do not
necessarily cause the failure of the links even if they traverse the disaster area.
These events are called disasters with probabilistic outcome (Definition4.4). While
these behaviours can be described with lists of FPs or CFPs, two-stage PSRLGs
(Definition4.5) offer an alternative way of encoding the effect of the disasters.

Definition 4.4 (Disaster with probabilistic outcome) Given a disaster D with prob-
abilistic outcome, each e ∈ SRLG(D) is attached a failure probability pe,D which
is the probability that link e fails had disaster D occurred (for each e /∈ D has
p(e, D) = 0).

Definition 4.5 (Two-stage PSRLG) Given a set D of disasters D ⊆ R
2 with prob-

abilistic outcome, a probability pD for each disaster in D and a link set S =
{e1, e2, . . . e|S|} ⊆ E , the two-stage probabilistic SRLG of S is (S, pS; p1, . . . , p|S|),
where pS is the probability that S will be hit by the next disaster D, and pi is
the probability that link ei is hit by D if it hits S. They can be calculated as
pS = ∑

D∈support(S) pD , and pi = 1
pS

∑
D∈support(S) pD pei ,D .

If in case of each two-stage PSRLG S, links being part of S fail with the same
probability, S is called a homogeneous two-stage PSRLG, or else it is a heterogeneous
two-stage PSRLG.

Collectively, we call FPs, CFPs and two-stage PSRLGs as probabilistic SRLGs
(PSRLGs). Figure4.1 depicts the connections between these notions.

We can convert a heterogeneous two-stage PSRLG into a list of FPs as follows.
For an arbitrary heterogeneous PSRLG (S, pS; p1, . . . , p|S|), the probability pP of
failing exactly a nonempty set P ⊆ S is pS

∏
e∈P pi . This way one can store every

non-empty set P ⊆ S with probability pP in a list of FPs. In case of a list of hetero-
geneous two-stage PSRGs, probabilities pP add up. A list of homogeneous PSRLG
can be transformed similarly.

Tables4.1 and 4.2 give an overview of the works presented in this chapter. Papers
offering lists of SRLGs and PSRLGs translate the composed geometric problem of
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CFP FP

heterog. two-stage PSRLG

homog. two-stage PSRLG

FP(S) = CFP(S)− ∑
T�S

FP(T )

CFP(S) = ∑T⊇S FP(T )

list of FPs

pi = p

p= 1

Fig. 4.1 Relation of probabilistic SRLGs (PSRLGs) (two-stage PSRLGs, FPs and CFPs): an FP
is a homogeneous two-stage PSRLG with p = 1, which is a heterogeneous two-stage PSRLG with
pi = p. In addition, a heterogeneous two-stage PSRLG can be represented by a list of FPs, and
lists CFPs and FPs are also easily interchangeable by definition

protecting telecommunication networks against regional failures to purely combina-
torial and probabilistic problems, respectively.3

In the following, we present works showing that the composed geometric prob-
lem of protecting telecommunication networks against regional failures translates to
combinatorial problems via generating (P)SRLGs. Then, one can use a variety of
known tools to handle the translated combinatorial problems.

4.3 Calculating Lists of SRLGs

4.3.1 General Practices for SRLG Enumeration

Prior to presenting concrete algorithms for SRLG enumeration, we discuss the most
important issues of the field.

As the size of SRLG list S determines the run-time and complexity of the mech-
anisms that use it, an important goal is to keep S as small as possible. For example,
when two sets S1, S2 are inS and S1 ⊆ S2, it is sufficient to include only S2 inS; omit-
ting S1 from S usually does not affect the outcome of the underlying mechanisms.4

This is due to the monotonicity (of network design/recovery mechanisms):

Definition 4.6 (Monotonicity of mechanism) A mechanism is monotone if for any
S1, S2 such that S1 ⊆ S2, the actions themechanism takes in response to S1 is a subset
of the actions it takes in response to S2.

Moreover, some works use over-approximation to reduce the size of S:

3Some papers like [6, 20, 40, 42, 43] are loosely related to the regional (P)SRLG generating
problem, however, our goal is presenting the most relevant works in this field.
A list of (P)SRLGs can be used as a pre-computed input for various problems [3, 11, 14, 17].
4This is true for communication networks but not for networks in which there is no monotonicity
in failures.
When attaching probability to the SRLGs, this no longer holds.
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Table 4.2 Papers enumerating regional PSRLGs

Paper Current chapter Goal Correlated link
failures inside the
disaster

Natural
disaster/attack

Oostenbrink et al.
[23]

Section4.4.1.1 FP list (✓) –

Tapolcai et al.
[31]

Section4.4.1.2 CFP list ✓ Natural disaster

Valentini et al.
[36]

Section4.4.1.3 FP list + CFP list ✓ Natural disaster
(earthquake)

Agarwal et al.
[1, 2]

Section4.4.2 Most vulnerable
point

✗ Attack

Definition 4.7 (Over-approximation) S ′ over-approximates S is for every S ∈ S
there exists S′ ∈ S ′ such that S ⊆ S′. This relationship is denoted with S ′ 
 S.

As an over-approximation, instead of including two sets S1, S2, one can include
a single set S1 ∪ S2 (this is especially appealing if S1 ∩ S2 is of non-negligible size);
such over-approximation, however, can degrade the outcome of the underlyingmech-
anisms. For example, if a big over-approximation is plugged into network protection
mechanism (e.g. one that computes secondary paths that are SRLG-disjoint from the
primary paths), this will cause a performance degradation (namely, longer secondary
paths). Thus, one need to keep the degree of over-approximation low:

Definition 4.8 (SRLG of a disaster D with respect to over-approximate set S ′)
SRLGS ′(D) is a minimal size set S′ ∈ S such that SRLG(D) ⊆ S′.5

Definition 4.9 (Degree of over-approximation) SRLG list S ′ (α, β)-over-
approximates a set of disastersD if |SRLGS ′(D)| ≤ α|SRLG(D)| + β for all D ∈ D.

Keeping low 1) the degree of over-approximation and 2) the number of listed
SRLGs are two conflicting objectives. As the best practices for SRLG enumeration
vary in function of the problem input, we will present a range of algorithms proposed
for calculating SRLGs. For every geometric over-approximation of the disasters, one
can give very badly behaving input networks (meaning arbitrarily high degrees of
over-approximation), but many of these inputs are not realistic (e.g. if two links are
very close, probably they share the same duct, etc.). The presented algorithms are
conservative both with the number of listed SRLGs and with the degree of over-
approximation in case of different classes of realistic inputs.

For regional SRLGs, over-approximation is achieved by taking a larger failure
region. Themost common practice is to take a simpler shape that completely contains
the original failure region, e.g. circular discs (Sects. 4.3.2.2–4.3.2.3, 4.3.4.2), or fixed
shape bounded by segments and arcs (Sects. 4.3.2.4, 4.3.3).

5If there are more than one equal-size sets that satisfy the condition, one is chosen arbitrarily.
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Dealing with circular SRLGs are in fact over-approximations of regional SRLGs.
Notice, for example, that one can over-approximate disasters contained by a circu-
lar disc with a certain radius r , with disasters of radius r ′ > r (namely, assuming
all disasters cause larger damage). If such an over-approximation is plugged into
network protection mechanism (e.g. one that computes secondary paths that are
SRLG-disjoint from the primary paths), this will cause a performance degradation.

Another very common practice is to assume that in the investigated time period,
there will be at most one disaster. If one can enumerate the set S of SRLGs
of single disasters, it is straightforward to compute SRLGs of multiple disaster
events. For example, if two disaster can happen simultaneously, one might look at
S ′ = {S1 ∪ S2|S1, S2 ∈ S}. Thus, we will concentrate on enumerating the SRLGs of
single disaster events.

Lastly, we note that although many of the presented methods are designed to
handle links which are considered as line segments (or geodesics) between their
endpoints, these results can be extended to a more general setting, where the links
are polygonal chains (or series of geodesics) at the price of a polynomial increase in
run-time.6

4.3.2 Precise Polynomial Algorithms Enumerating SRLGs

4.3.2.1 SRLG Lists Induced by Hop Count

The current best practice to increase the resilience of the networks against disasters
is to ensure that the primary and backup paths assigned to a connection are node dis-
joint. Compared to edge-disjointness, in this way, operators ensure that the distance
between the nodes of the primary and backup paths (except at the terminal nodes) are
in at least 1-hop distance from each other. The intuitive reasoning is that a link in a
backbone network is typically a few hundred kilometres long, while natural disasters
are never larger than a few hundred kilometres.

Let Mh denote the set of link sets ensuring a distance of h hops. For each node v,
Mh=1 is containing the set of links incident to v. As an exception, let us list the single
link failures in Mh=0, as this SRLG list ensures link-disjoint routing. For higher
values of h, Mh can be defined as follows. To ensure an odd number of hops, for
every node v, Mh=2k−1 contains the edges of a tree of shortest paths to v from the
nodes not further from v than k hops. Similarly, for every link e = {u, v}, Mh=2k

contains the edges of a tree of shortest paths to e from the nodes not further from u
or v than k hops. We can conclude that the number of SRLGs in Mh is low |Mh=2k |
being |E | and |Mh=2k+1| being |V |.

Figure4.2 depicts the average number of links contained bySRLGs inMh . Clearly,
this average is 1 for h = 0 and is equal for the average nodal degree for h = 1.

6Polygonal chains can be dismantled to a set of line segments; the method can be applied, and then,
the sets of line segments can be joined.
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Fig. 4.2 Average number of links contained in the SRLGs of Mh in case of physical backbone
topologies of [24]

According to simulation results, for bigger values of h, the average seems to grow
slightly superlinearly before the growth slows down to plateau at |V | − 1.

Clearly, Mh can be computed in low-polynomial time of n. To generate Fig. 4.2,
we generated Mh for h ∈ {0, . . . , 12} for all the networks on the figure in less than
17 seconds on a commodity laptop, using a code written in Python3, not optimized
for speed.

4.3.2.2 SRLG Lists of Disasters Represented by Circular Discs
Containing k Nodes

As mentioned before, the current best practice is to ensure that the primary and
backup paths assigned to a connection are node disjoint. When ensuring a 1-hop
distance, the root of the outages is usually because a disaster simultaneously hitting:
(1) close nodes: when two nodes are placed close to each other; for example, in
highly populated areas. (2) parallel links: when two links are placed close to each
other because of some geographic reasons.

Unfortunately, handling the geometric information with the network topology
is not part of the current best practice. Furthermore, the Internet service providers
usually hire the links as a service from an independent company, called the physical
infrastructure provider, and thus, operators have no information about the route of
the links or the physical coordinates of the intermediate routing nodes.

In [38], a limited geometric information failure model is defined, which is based
on the following assumptions:

1. The network is a geometric graph G = 〈V, E〉 embedded in a 2D plane.
2. The exact route of the conduits of the network links are not known but contained

by a polygonal region.
3. The shape of the regional failure is assumed to be a circular disc with an arbitrary

radius and centre position.
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Fig. 4.3 Illustration of an
apple with k = 2. Apple
Au,v
k consists of specific

ordered lists of links and
nodes which can be hit by a
disc from Cu,v

k . For more
details, please check [38]

u

v

w−

c(x−)
w+

c(x+)

n1

n2

n3 n4

e1
e2

e3
e4

xmax
xmin

4. It focuses on regional link k-node failures, which are caused by disasters that hit
k nodes for k ∈ {0, |V | − 2}.
Paper [38] presents a low-polynomial algorithm for determining the set Mk of

maximal regional link k-node failures. The proposed method is based on a set of
(computational) geometric considerations. The key observation is that for any ele-
ment of Mk , there exists a circular disc-shaped disaster having k nodes in the interior
which has (1) two nodes on its boundary, or else (2) only one node u on its bound-
ary and having an infinite radius. This allows us to enumerate all possible maximal
failures using a sweep surface method as follows.

Let {u, v} ⊆ V be two nodes for which the set Cu,v
k of circles which have k nodes

in its interior and u and v on its boundary is not empty. These {u, v} pairs are part of
the set Ek of k-Delaunay edges, and their set can be determined in low-polynomial
time [28, Thm. 2.4]. In [38], data structure apple Au,v

k is defined, which contains
ordered lists of links and nodes which can be hit by a circle from Cu,v

k . Suppose u and
v are positioned as in Fig. 4.3. With the help of Au,v

k , one can sweep through circles
of Cu,v

k ordered by the abscissas of their centre points allowing to collect the set Mu,v
k

of maximal hit link sets by discs from Cu,v
k . Then, the globally maximal elements of

all lists Mu,v
k are collected in M2

k .
In the second case, the set of maximal failures M1 from Mk for which exist a half-

plane going through a node and hitting them can be calculated similarly via turning
a half-plane around every node while checking the set of hit links and the number
of hit nodes. Finally, Mk can be obtained by collecting the maximal elements of M1

k
and M2

k .
The process is sketched in Fig. 4.4. The complexity of the algorithm is low-

polynomial and squared in the number of nodes n [38, Thm. 3, Cor. 25]. Besides
theoretical upper bounds, simulation results show that the number of maximal fail-
ures is approximately 1.2n and 2.2n for k = 0 and k = 1, respectively (Fig. 4.5).
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Fig. 4.4 Sketch of algorithm from [38] for enumerating set Mk of maximal link sets which can be
hit by a circular disc hitting k nodes

Fig. 4.5 The edge density, number and size of SRLGs for each network and k = {0, . . . , 5} in case
of polygonal chain links
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4.3.2.3 Circular SRLG Lists of Disasters with Radius r

If the physical positions of the network elements are known, a fast systematic
approach to generate the list Mr of maximal SRLGs that represent circular discs
of a given radius r is clearly desired.7

Paper [30] presents a low-polynomial algorithm for computing Mr when links are
considered as line segments (and the network is embedded in the plane). It shows
that the number of elements of Mr is linear in the number of nodes in the network
n, and its calculation can be done in a squared complexity of n (Theorem 6 of [30]).
Simulations indicate that this list has a size of ≈ 1.2n in practice (see Fig. 4.7).

To be more precise with the theoretical results, Corollary 4 of [30] tells that the
number of SRLGs in Mr is at most proportional to the product of 1) the number
of nodes n plus the number of link intersections x and 2) in the cardinality ρr

of the biggest link set contained. The computing time needed is O
(
(n + x)2ρ5

r

)

[30, Thm. 6]. We note that x is 0 or a small number, and according to simulation
results, ρr increases linearly with r , suggesting an O(n2r5) run-time for r > 0.

Algorithm 4.1 Sketch of algorithm proposed in [30]
Require: Graph G = 〈V, E〉 embedded in plane, radius r
Ensure: List Mr of maximal SRLGs of disasters being circular discs with radius r
1: M ′

r := ∅
2: Calculate X := {points of edge crossings}
3: for w ∈ V ∪ X do
4: Determine Ew := {edges not further from w than 3r}
5: for e1, e2 ∈ Ew do
6: Calculate circles ci described in Fig. 4.6a
7: end for
8: for e ∈ Ew do
9: Calculate circles c j described in Fig. 4.6b with w as point
10: Calculate circles ck described in Fig. 4.6c
11: end for
12: Refresh8 M ′

r with link sets hit by circles ci , c j , ck (1 circle at a time)
13: end for
14: return M ′

r as Mr

In the followings, we give an overview of the proposed algorithm (Algorithm
4.1),8 which relies on a series of geometric considerations. The most important
one is Theorem 1 of [30], which leverages that the link sets possibly hit by any of

7Reference [18] offers a mistaken heuristic for computing Mr . It claims the disc failures having
nodes of the network as their centre point represent the worst case of failures of radius r , which
is clearly not the case. Consider, e.g. a network being an equilateral triangle with side length 3,
and r = 1; here, Mr consists of a single SRLG containing all the 3 links instead of the 3 link-pairs
claimed by [18].
8Refreshing in Algorithm 4.1 means that M ′ is the set of maximal failures among which are already
checked, and if f is maximal amongst them, it is added to M ′ and all f ’s subsets are eliminated
from M ′; or if f is not maximal inM ′, nothing happens.
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Fig. 4.6 Disc failures
examined
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e

(a) ∀e ∈ E and ∀ f ∈ E
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e

(b) ∀e ∈ E and ∀v ∈V

e

(c) ∀e ∈ E

the infinite number of possible disaster locations can be determined via checking
the effect of a quadratic number of discs on the network edges. In particular, for a
positive real r and a non-empty set of edges H which is hit by a circular disc of radius
r , there exists a disc c of radius r which hits the edges of H such that at least one
of the following holds (see Fig. 4.6 for illustrations): (a) there are two non-parallel
links in H such that c intersects both of them in a single point. These two points are
different. (b) There are two links in H such that c intersects both of them in a single
point. These two points are different, and one of them is an endpoint of its interval.
(c) Disc c touches the line of a link e ∈ H at an endpoint of e.

Intuitively, there is no reason for checking for the circles described in Fig. 4.6
in case of two network elements which are much further apart than the disaster
radius r . Indeed, one can build up the solution of the global problem based on some
local calculations, as follows. Let X be the set of link intersection points. After
determining X , one has to collect edges not further from w than 3r into a set Ew, for
all w ∈ V ∪ X , then determine the maximal failures of sets Ew and finally, get the
result by collecting the maximal elements of the resulting lists.

With the help of some additional computational geometric ideas, for determining
Mr , one could achieve a near-linear computing complexity in the number of nodes
n [29].9

4.3.2.4 Circular SRLG Lists of Disasters with Radius r on a Sphere

The Earth is not flat, as its shape (geoid) is much more like a sphere. With this in
mind, we can deduce that when studying spread-out networks (e.g. the optic fibre
network of the USA), in order to reach a higher precision, one should consider that
networks are embedded on a spherical surface instead of the much more common
planar embedding. Note that [39] found that the spherical counterpart of Mr denoted
Ms

r andM
p
r = Mr can be different even in the case of a network having a geographical

extension of 100 km.
More precisely, [39] took network AboveNet [32] and its shrunk instances,

where AboveNet/c means that AboveNet was rotated such that the average
lat and lon coordinates to be both 0; then, each coordinate was divided by c.

9Under certain conditions, the complexity of the algorithm presented in [29] is optimal.
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Fig. 4.7 Simulation results for determining list Mr of maximal SRLGs of disasters being circular
discs with radius r

As a similarity measure, M(r) := |Mp
r �Ms

r |/(|Mp
r | + |Ms

r |) ∈ [0, 1] (the ratio of
SRLGs, which are present in only one of Mp

r and Ms
r ) was used : ifM(r) is close to

1, it means the two lists are very different, while if it is close to 0, it means there are
few differences. Radius r = 8 was set to be a bit larger than the half of the diameter
of the current network; r = 0 was set to be a small radius; the rest of the r values
were linearly interpolated.

Figure4.8 shows that while in case of AboveNet,Mp
r andMs

r are almost entirely
different for many values of r , the tendency is that M(r) decreases as the physical
size of the network decreases, which nicely fits the intuition. Surprisingly, M(r) is
not 0 for every range r even for AboveNet/300, which equals to the case when the
approximative network diameter is 104km, AboveNet/400 (having a diameter of
approx. 74 km) being the most spread out instance where Mp

r and Ms
r are the same

for all investigated r ranges.
As a rule of thumb, it can be said that the difference between the planar and

spherical representation of the network can result in different SRLG lists even in
case of networks having a geographic extension as small as 100km.
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Regarding to calculating list Ms
r of maximal SRLGs of disasters represented as

circular discs with radius r on a sphere, basically, the same ideas could be repeated
on the sphere as we saw earlier. While considering a more general model, where
links of networks are represented as polygonal chains consisting of at most γ line
segments between their endpoints (where γ is a parameter), paper [39] presents
an approach similar to the one seen in Sect. 4.3.2.3 for determining Ms

r . However,
as it only aims to present that ‘planar’ approaches can be repeated on the sphere, it
provides amoderately sophisticated algorithm and complexity bound on determining
Ms

r . For the sake of complexity analysis, an additional parameter λ is defined, which
is the maximal length of the list of suspected maximal failures M while collecting
the maximal failures.

According toCor. 9 of [39], if both x andλ isO(n), andγ is boundedby a constant,
the list Ms

r of maximal link sets which can be hit by a circular disc on the sphere can
be computed in O(n4ρr ). Simulation results show that ρr is proportional to 2r

diam in
the interval (0, diam/2], where diam is the geometric diameter of the network. This
means an O(n4 r

diam ) total running time in practice.

4.3.2.5 SRLG Lists of Disaster Sets

In Sects. 4.3.2.1–4.3.2.4, we investigated the possibilities of SLRG list enumeration
when the concrete disaster zones are not known, and thus, they are over-approximated
with circular discs. In reality, the affected region greatly depends on the properties of
the disaster, as well as those of the surrounding area. For example, the region affected
by an earthquake depends on the earthquake’s magnitude, as well as the properties
of the rocks and sediments that the earthquake waves travel through. Thus, it makes
sense to base the SLRGs on a variety of possible failure shapes.

If we do know the set D of representative disasters (along with the physical
embedding of the network G), the SRLG enumerating process becomes trivial:

1. ∀D ∈ D, compute SRLG(D) and collect these link sets in list FD
2. return the maximal elements of FD as a list MD.
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Note that a detailed knowledge on the nature of possible events taking down some
elements of the network in a regionmight allow us to refine the definition of a disaster
(in Definition4.1) to leverage our additional insights on the failure schemes (e.g. in
case of a flood, optical cables traversing the river on the body of a bridge might fail,
while aerial cables may remain operational).10 With all this, if, for each disaster D,
computing SRLG(D) can be done in polynomial time, the above-mentioned method
returns MD in polynomial time.

Solutions presented in Sects. 4.3.2.1 and 4.3.2.5 can be viewed as the no and
full information versions of the (non-probabilistic) SRLG enumerating problem,
respectively. We could see that these cases can be handled algorithmically easily. In
Sects. 4.3.2.2–4.3.2.4, we tackled the same problem in case of different qualities of
knowledge on the physical embedding of the network.

4.3.3 Approximate Polynomial Algorithms Listing SRLGs

We could see in Sect. 4.3.2.3 a part of a sophisticated theory and relatively complex
algorithms which have to be built to be able to provide an algorithm for determining
just a single kind of regional SRLG list. This raises the question if one could approach
the problembetter or at leastmore general. Aswewill see in this section, the answer is
yes. In a sense, one of the aims of paper [39] is to show thatwhile there is a struggle for
fast algorithms determining basically any kind of SRLG list precisely, with relatively
low effort, one can design discretized approaches which can make small mistakes
but which might be permissible given the uncertainty in the failure modelling and
the network data. We note that in [38], links are represented as polygonal chains (or
chains of geodesics) between their endpoints, allowing to represent real topologies
accurately.

For a point P (in the plane or on the sphere) and node v ∈ V , let the node-distance
couple be [v, d(v, P)], where d(v, P) is the distance of v to P . Let v(P) be the list
of node-distance pairs of all nodes v ∈ V . We define e(P) to be the list of edge-
distance pairs defined similarly. It can be proved that for a given point P , v(P)

can be computed in O(n) and e(P) in O(n + x) (where x is the number of edge
crossings).

The plan is to determine these lists for enough points which are also placed
well enough to be able to determine the maximal SRLG lists based on these node-
distance and edge-distance lists. Let P denote the set of points P for which we want
to construct v(P) and e(P).

Let us restrict ourselves to planar geometry for a moment. Intuitively, we can cal-
culate Mr by including the grid points of a sufficiently fine grid (let us say containing
1 km × 1 km2) in P . On a sphere, we should choose a similar nice covering.

10Probabilistic refinements are presented in Sect. 4.3.4.1.
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Algorithm 4.2 Approximate algorithm for determining the maximal r -range SRLG
lists
Require: G = 〈V, E〉, r , P , geometry type g, coordinates of nodes and polylines of edges
Ensure: Mg

r
1: M ′g

r := ∅
2: for P ∈ P do
3: determine e(P)hit
4: if e(P)hit �= ∅ then
5: refresh11 M ′g

r with e(P)hit
6: end if
7: end for
8: return M ′g

r as Mg
r

Algoirthm4.211 is an example discretized algorithm for determining Mg
r (where

‘g’ stands for geometry type,Mg
r beingMs

r orM
p
r = Mr , if the geometrical represen-

tation is planar or spherical, respectively) for circular discs, which has a complexity
of O(|P|n r

diam ) under some practical assumptions, and it has a low-polynomial com-
plexity indifferent of the nature of the problem input [39, Thm. 11, Cor. 13]. We can
see that although Algoirthm4.2 is much simpler to implement, it is competitive with
much more complex precise Algorithm4.1 in terms of asymptotic run-time.

Regarding to its accuracy, (1) let dP be the maximal distance of any geometric
location from the (closed) convex hull of the geometric embedding of graph G to the
closest point of setP , i.e. dP := maxt∈conv(G) minp∈P dist(p, t), and (2) let us denote
the relationship of two (link) sets E1 and E2 by E1 
 E2 (E1 over-approximates E2)
if and only if for all e2 ∈ E2, there exists an e1 ∈ E1, such that e1 ⊇ e2 (e1 over-
approximates e2), conform with Definition4.7. Using these notations, Mg

r 
 Hg
r 


Mg
r−dP

, where Hg
r is the output of Algorithm4.2 [38, Thm. 11]. Based on this, if

one wants to protect disasters caused by discs with radius r , it is only needed to
run Algorithm 4.2 initializing the radius as r + dP . Furthermore, by choosing P
such that dP to be small, one can avoid enumerating overprotective SRLGs, more
precisely, limdP→0 H

g
r = Mg

r , for any fixed network.12

Considering non-circular SRLGs, engineering fast precise algorithms for deter-
mining SRLG lists for arbitrary disaster shape instead of a circle is not trivial,13

but approximate algorithms similar to the one described for determining Mg
r can

be easily designed. In short, while the disc is invariant to rotation, the only addi-
tional hardness here is that the different orientations of the fixed shape should be
also considered. In other words, one should check the links hit by the shape at every
centre point and every orientation. Discretizing the possible orientations of the shape
can be handled just as discretizing the places of centre points. Based on this idea,

11Similarly to the precise algorithms, refreshing in Algorithm 4.2 means that Mg
r is the set of

maximal failures among which are already checked, and if e(P)hit is maximal amongst them, it is
added to Mg

r and all e(P)hit’s subsets are eliminated from Mg
r ; or ife(P)hit is not maximal in M ′,

nothing happens.
12In other words, the degree of over-approximation (Definition4.9) tends to (1, 0) as dP → 0.
13Reference [35] tackles a similar problem.
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[39, Alg. 4.] approximately calculates the list Mshape of maximal failures which can
be caused by a disaster shape in O(a|P|n r

diam ) under some practical assumptions,
where a is the number of orientations of the shape which are considered. Its com-
plexity is low-polynomial indifferent of the problem input, and, in limit, the output
is precisely Mshape, both in the plane and on the sphere [39, Thm. 15, Cor. 17].

4.3.4 More SRLG Enumerating Approaches

4.3.4.1 SRLGs of Spatially-Close Fibres

Paper [16] proposed to call a pair of fibres spatially-close if their distance is at most
r ′, i.e. they can be covered with a circular disc of radius r ′

2 . They propose to define
SRLGs as sets of fibreswhere any pair of fibres are spatially-close; in otherwords, any
pair of fibres can be covered with a circular disc of radius r ′

2 . See Fig. 4.9 highlighting
the difference between this model and the one shown in Sect. 4.3.4.1. The intuition
is that r ′ is a small parameter representing those fibres that are close together having
a higher probability of failing simultaneously due to regional failures. The high-level
idea is to provide an approach that generates SRLGs, not considering failure shapes,
but simply considers a threshold r ′: any fibre pairs with a separation distance smaller
or equal to r ′ are considered spatially-close.

In [16], three spatially-close fibre problems are considered: (1) finding all pairs
of spatially-close fibre segments, (2) finding all spatially-close intervals of fibre to
a set of other fibres and (3) grouping spatially-close fibres into SRLGs.

Fibres are modelled as non-straight concatenations of fibre segments of irregular
lengths. Each of these fibre segments is a straight line connecting two fibre points
of known geodetic coordinates (latitude and longitude). For easier calculations, the
coordinates are projected to two-dimensional Cartesian coordinates, embedding the
fibres into the 2-D plane.

Problem 4.1 (Detection of Spatially-Close Fibre Segments (DSCFS) [16]) Given
a set E of fibres and a distance r ′. Each fibre e ∈ E is associated with a set Te of Te
fibre segments. Each fibre segment t ∈ Te is associatedwith two fibre points (ut1, vt1)
and (ut2, vt2). Find all fibre segment pairs of different fibres that have a minimum
separation distance of at most r ′.

(a) There are 3 SRLGs, each is a pair of links (b) There is a single SRLG with three links

Fig. 4.9 Example of SRLG according to a Definition4.1 and b Sect. 4.3.4.1
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Clearly, the DSCFS problem is solvable in polynomial time, as the naive approach
(computing the separation distance of all fibre segments) has a time complexity of
O(|E |2T 2), where T is the maximum number of fibre segments per fibre. In practice,
the run-time can be reduced significantly by storing each segment in an R-tree14 [16].

The probability that two spatially-close fibres fail simultaneously depends on the
length of the interval(s) of the fibres that are close together.

Problem 4.2 (Intervals to a Set of Spatially-Close Fibres (ISSCF) Problem [16])
Given a fibre ei , a set Y of Y fibres and a distance r ′. Each fibre ei or e j ∈ Y is
associated with a set Ti/T j of Ti/Tj fibre segments. Each fibre segment t ∈ Ti/T j is
associated with two fibre points (ut1, vt1) and (ut2, vt2). Find the intervals of fibre ei
that have a minimum separation distance of at most r ′ to any fibre e j ∈ Y .

This problem can be solved in O(YT 2) time, where T is the maximum number of
fibre segments per fibre, by first finding all fibre segments of Y that are spatially-close
to ei and then computing the spatially-close intervals to these segments by solving
sets of quadratic equations (see Alg. 3 in [16]).

Finally, if a set of fibres are grouped into an SRLG if every pair of fibres is
spatially-close to each other:

Problem 4.3 (Grouping of Spatially-CloseFibres (GSCF)Problem [16])Given a set
F of F spatially-close fibre pairs. Group all fibres that are spatially-close to each
other, such that the number of distinct SRLGs is minimized.

In other words, we want to find all maximal SRLGs, where a maximal SRLG is a set
of fibres that are spatially close to every other fibre in the set and which is not a subset
of any other SRLG.

In [16], a heuristic algorithm was given that first transforms it to the Maximal
Clique Enumeration (MCE) problem. Second, a variant of the Bron–Kerbosch algo-
rithm [33] to find all maximal cliques is used to find all maximal SRLGs. Note that
MCE is an NP-hard problem in general.

4.3.4.2 A Single Worst SRLG in Case of a Fixed Metric

Reference [22] presents three flavours of problems for finding a most vulnerable
place of the network in case of multiple network vulnerability measures.15 The first
problem assumes that the network is bipartite in the topological and geographic sense
and that the cuts are vertical line segments. In the latter two problems network, links
can be in almost arbitrary locations on the plane. In one of the problems, the disaster
shapes are line segments in any direction. In the other, the disasters are circular discs

14An R-tree is an efficient tree data structure for storing spatial objects. Objects are grouped based
on their minimum bounding rectangle.
15The investigated measures are: (1) the total expected capacity of the intersected links, (2) the
fraction of pairs of nodes that remain connected, (3) the maximum flow between a given pair of
nodes, (4) the average value of maximum flow between all pairs of nodes.
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with a given range. To solve the problem instances, in [22], both MILP formulations
and polynomial algorithms are given.

We say that a vulnerabilitymetricμ ismonotone, if, according toμ, for any link set
E1 ⊆ E2, the failure of E2 is worse than the failure of E1. We note that in the natural
condition when the vulnerability metric or a protection mechanism is monotone (cf.
Definition 4.6), the worst SRLG will be part of the set of exclusion-wise maximal
SRLGs fulfilling a given criteria c (e.g. SRLGs that can be hit by line segments in
any direction, circular discs with a given range or by a disaster from a disaster set
D), which can be determined using the techniques depicted in Sects. 4.3.2 and 4.3.3
and 4.5 (which uses PSRLGs as an intermediate step). Thus, a worst SRLG can be
found according to Algorithm4.316:

Algorithm 4.3 Worst SRLG of a vulnerability metric or protection mechanism
Require: graph G = 〈V, E〉, criteria c, monotone vulnerability metric or protection mechanism μ

Ensure: worst SRLG S according to μ fulfilling criteria c.
1: Calculate SRLG list Mc of maximal SRLGs fulfilling criteria c (e.g. as in Sects. 4.3.2, 4.3.3 or

4.5)
2: Compute the value μ(S) for each S ∈ Mc
3: return an S ∈ Mc for which μ(S) is worst

4.4 Calculating Lists of PSRLGs

4.4.1 Computing Lists of FPs and CFPs

4.4.1.1 Computing FPs From Disaster Sets

Most algorithms for analysing the vulnerability of networks to disasters, or for creat-
ing regional (P)SRLG lists, assume the regional failure takes afixed shape everywhere
in the network area. In reality, the affected region greatly depends on the properties
of the disaster, as well as those of the surrounding area.

Oostenbrink and Kuipers [23] proposes computing the vulnerability of a network
to a set of representative disasters D (each of any shape), instead of to a fixed
disaster shape. Each disaster D ∈ D is assigned a disaster area D ⊆ R

2, and an
occurrence probability pD .17 As the probability of simultaneous disasters is low
(ignoring strongly correlated events such as aftershocks, which can be combined
into a single composite disaster), it is assumed exactly one disaster will occur, i.e.∑

D∈D pD = 1. Furthermore, it is assumed that if a disaster D occurs, all links

16Algorithm4.3 is polynomial assuming the SRLG enumeration and calculating the metric value
runs in polynomial time.
17In contrast, Sect. 4.3.2.5 depicts the non-probabilistic version of this regional failure model.
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intersecting its disaster area will fail. A disaster D can take any shape and does not
have to be connected, as long as it is possible to compute if a line segment intersects
it.

A representative disaster set D can be obtained in a variety of ways, preferably
in collaboration with experts (e.g. seismologists). For example, one can use a tool
to randomly generate sets of possible disasters, use the last N historical disasters or
construct a set of custom disaster scenarios. The concept of a set of representative
disasters is similar to that of the stochastic event set used in Cat modelling, for which
a large number of models exist. In all cases, it is necessary to convert hazard intensity
values such as ground motions to a binary area D using some threshold function.
[23] gives an example of converting earthquake scenarios to a disaster set D.

Note that if the disaster locations and shapes are both finite discrete random values
(e.g. a division of the plane into grid points), we can generate a finite disaster set
D of all possible disasters by simply adding each possible combination of disaster
location and shape to D.

Let a failure state s be defined as a set s ⊆ E , where e ∈ s if and only if e has
failed. Now, the failure set S(D) of links that are affected by disaster D is the set
of links that intersect D. Note that this definition of S(D) is equivalent to that of
a regional SLRG, SRLG(D).

Let S be the random value indicating the failure state after the disaster. Given
a disaster set D, we can obtain the distribution of S as follows [23]:

1. ∀D ∈ D, compute S(D)

2. ∀s ∈ S[D] (the image of S), store
S−1(s) = {D ∈ D|S(D) = s}

3. ∀s ∈ S, FP(s) = P(S = s) = ∑

D∈S−1(s)
pD.

We now have each possible failures state, as well at its occurrence probability. That
is, we have the complete list of FPs, based on the disaster set D.

4.4.1.2 Calculating Lists of CFPs Based on Correlated Link Failures

Astudy dealingwith the probabilities of correlated link failures is [31], whichmodels
the regional failures as having a random epicentre and a random size (described with
a size parameter s in [0, 1]). Two assumptions are made: (1) in the investigated time
period, there is at most one disaster and (2) for every possible failure epicentre and
failure sizes s1 < s2, the region destroyed by disaster with size s1 is totally contained
by the region hit by the one with size s2.

Figure4.10 briefly depicts the model. It shows an example network and the cor-
responding failure probabilities. Suppose we need to establish a high-availability
connection from the top node through the working path of link b and protection path
a − e. The unavailability of the working path can be computed as CFP(b) = 0.0055,
and for the protection path, it is CFP(a) + CFP(e) − CFP(a, e) = 0.00986. In the
traditional approach, the two paths are assumed to fail independently; thus, the total
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Input:

100km

a b

cd

e

f

Network:
Failure model: Type: tornado earthquake EMP . . .
Model parameters:
pd : the probability of a disaster of type d in the given area and time period;
h(p): quantitative hazard map of the area, that is the probability density function of the
location of the disaster epicentre (e.g. uniform distribution on a bounded area on 2);
r(p,s): the shape function of the disaster depending on epicentre p and size s returning
the damaged zone of the disaster (e.g. a circular disk centered on p with radius s);
Regional failure model:
Hazard epicentre: random variable on 2 with probability density h().
Relative size: random variable uniform distribution on [0,1]. Each link fails having a

point in the disaster area defined by shape function r(), the rest remain intact.

×r(p,1)

Output:

CFP(a) =.0055 CFP(b) =.0055 CFP(c) =.005 CFP(d) =.005 CFP(e) =.005 CFP( f ) =.005

CFP(a,b) =.00068 CFP(b,e) =.00064 CFP(a,e) =.00064 CFP(c,e) =.00056

CFP(d,e) =.00056 CFP(d, f ) =.00056 CFP(c, f ) =.00056 CFP(c,b) =.00052

CFP(a,d) =.00052 CFP(a,e,d) =.00031 CFP(b,e,c) =.00031 CFP(a,b,e) =0

Fig. 4.10 An illustration of the CFP problem inputs and outputs

connection availability is estimated as 1 − 0.0055 · 0.00986 = 0.999945, i.e. four
nines. However, considering the joint failure probabilities of the links (provided in the
example), the total connection availability should be 1 − CFP(a, b) − CFP(b, e) +
CFP(a, b, e) = 0.9987, i.e. not even three nines, which is a significant difference.

Now, an implementation strategy follows which uses discrete functions instead of
continuous ones. The problem is discretized by defining a sufficiently fine resolution,
say 1km and placing a grid of 1km × 1km squares over the plane to assume that the
disaster regions r(p, s) and hit link sets R(p, s) are ‘almost identical’18 for every size
s and disaster centre point p inside each grid cell c. This way the whole integration
problem translates to a summation. The inputs are defined over the grid, and the
Euclidean plane is considered as a Cartesian coordinate system.

Let r denote the absolute maximum range of a disaster in km. Let (xmin, ymin) be
the bottom left corner and (xmax, ymax) the top right corner of a rectangular area in
which the network lies. It is sufficient to process each c in the rectangle of bottom left
corner (xmin − r, ymin − r) and top right corner (xmax + r, ymax + r), and we denote
by ci, j the grid cell in the i-th column and j th row. In this range, for each ci, j , we
will consider the probability hi, j of the next disaster having epicentre p in the cell
ci, j . (i.e. hi, j = ∫

p∈ci, j h(p)dp, where h(p) is the probability density function of the
disaster epicentre).

To build up the list of CFPs, an associative array CFP[ ] is used, which can be
addressed by a set of links {e1, e2, . . . , ek} and returns its cumulative failure proba-
bility. For this, in the pre-computation process, we have to extract the contribution
of ci, j to the cumulative failure probability of every subset S of links. We do this by

18In particular, wemay assume that the probability f (e, p) that link e fails if a disasterwith epicentre
p happens is independent of p as long as it is in c. We denote this common value by f (e, c).
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working with the list Si, j = (e1, e2, . . . , ek) (where ei is the i th closest link to cell
ci, j ) and increments the CFP values accordingly, i.e. CFP[{e1}]+ = hi, j · f (e1, ci, j ),
CFP[{e2}]+ = hi, j · f (e2, ci, j ), CFP[{e1, e2}]+ = hi, j · f (e2, ci, j ), etc.

For the probability CFP(S) of failing at least the set S of links, we need to look up
S in CFP. If not found, then CFP(S) = 0. The query time of sets can be reduced to a
constant with very high probability (with the help of hashing). Using self-balancing
binary trees, the worst-case query time is always O(ρ log((n + x)ρ)), where ρ is
the maximum number of links hit by a disaster.

The drawback of the CFP list is that it has an �(2ρ) space complexity, which
makes it inefficient for bigger network densities. With this in mind, one can build up
also a list of FPs representing the same disasters, which will be significantly shorter,
but some pre-computations will be needed to determine CFP(S).

4.4.1.3 CFPs and FPs from Historical Earthquake Data

Intuitively, the models presented in Sects. 4.4.1.1 and 4.4.1.2 are somewhat related.
In fact, both models could be used for computing lists of FPs and CFPs. In [36],
an approach for determining the list of CFPs and FPs based on the available historical
earthquake data is presented. This approach can be viewed as a special case of both
models presented in Sects. 4.4.1.1 and 4.4.1.2.

Namely, the next possible earthquake has a random epicentre taken from a set
of grid points over the evaluated area, and the disaster area has also a random
range (which is a function of the earthquake moment magnitude) taken from a dis-
cretized scale. This results in a set of disaster scenarios with some probabilities as in
Sect. 4.4.1.1 and also can be viewed as a discrete version of themodel in Sect. 4.4.1.2.

Simulation results of [36] show that the graph of f (x) = ‘the probability of the
xth most probable (C)FP’ follows an exponential distribution in case of FPs and fits
the power law in case of CFPs. In other words, if one stores only (C)FPs having a
probability higher than a threshold T , lowering T by several orders of magnitude
does not cause a severe increase in the number of listed FPs, but the size of the CFP
list explodes.

4.4.2 Probabilistic Modelling of the Worst Place of a Disaster

Similarly to [22] (in Sect. 4.3.4.2), [2] aims to find the single worst place of a disaster
under a certain metric. While [22] models the disaster effect to be deterministic
(every network element which has an intersection with the disaster area fails with
probability 1), in [2], every link has a probability ∈ [0, 1] of failing in case of each
disaster place. However, an incompleteness of the paper is that, in case of a fixed
disaster, it considers that the affected links fail independently of each other.

To be more precise, the model of [2] is the following. They define a failure
probability distribution function f : Q × R

2 → R ≥ 0. Given a disaster location
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P ∈ R
2 and q ∈ Q, f (q, p) = fq(p) is the probability that q is affected by the

disaster at p. For a compound component π composed of a sequence of simple
components q1, . . . , qr , the probability of being damaged by a disaster at a location
p is denoted as fπ (p) and being defined to be the probability that at least one of its
simple component is damaged, i.e. fπ (p) = 1 − ∏

q∈π (1 − fq(p)).
For finding the most vulnerable point according to various metrics (expected

component damage, average two-terminal availability and expected maximum post-
attackflow), [2] presentsLasVegas andMonteCarlo algorithms. It also offers approx-
imate solutions to the problem of finding the worst arrangement of k simultaneous
disasters (attacks), which is a generalization of the NP-hard maximum set cover
problem [15].

4.4.3 On Two-Stage PSRLGs and Denomination Issues

The first paper considering probabilistic SRLGs was [19]. There, the structure which
in this chapter is called ‘two-stage PSRLG’ is named simply as ‘probabilistic SRLG’
(PSRLG). Since we felt that FPs and CFPs deserve to be called probabilistic SRLGs
at least as much as the structure defined in [19], we call these structures collectively
as PSRLGs and name the [19]-PSRLG as ’two-stage PSRLG’.

Due to this historical reason, we believe it worth presenting its model even though
[19] does not tackle the question of calculating PSRLGs (it only uses PSRLGs as
inputs for a diverse routing problem). Lee et al. [19] defines the two-stage PSRLGs
as follows. There is a set R of SRLG events that can incur link failures. Each SRLG
event r ∈ R occurs with probability πr , and once an SRLG event r occurs, link (i, j)
will fail independently of the other links with probability pri, j ∈ [0, 1]. Link (i, j)
is part of the resulting (two-stage) PSRLG if pri, j > 0. This definition from [19] is
slightly generalized in Definition4.5 while keeping the form of the data structure.

As Fig. 4.1 also suggests, using lists of two-stage PSRLGs, one could store the
same information more compactly as in lists of FPs or CFPs. However, there are
numerous open questions related to this field; as to the best of our knowledge, no
paper investigated how to enumerate in an efficient way lists of two-stage PSRLGs.

We believe that lists of FPs or CFPs are the right standard structures describing
the probabilistic effects of the disasters, and any other versions of PSRLGs may be
viewed as model-specific compact representations of these lists.
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4.5 Advanced: SRLG Lists Obtained from PSRLG Lists

It is a natural idea to list the (maximal) link sets which have a probability of failing
together higher than a given threshold T (like in [26]).19 Obviously, for this, as an
intermediate step, one has to generate a set of probabilistic SRLGs. More precisely,
CFP is the most useful structure in this context, since, by definition, for a link set S,
the cumulative failure probability CFP(S) is the probability that at least the links of
S will fail. The advantage of this approach is that SRLG lists can be generated based
on sophisticated objectives. Algorithm4.4 sketches this framework.

Algorithm 4.4 SRLG list obtained from CFP list
Require: graph G = 〈V, E〉, threshold T ∈ [0, 1], CFP model C (e.g. as in one of [23, 25, 26,

31]), additional parameters needed for C
Ensure: list MT of maximal link sets having a CFP at least T
1: Calculate list L of CFPs according to C
2: Collect CFPs of L with probability ≥ T in list FT
3: return list MT of maximal elements of FT

As a concrete example, [26] modifies the CFP enumerating model presented in
[31] (and Sect. 4.4.1.2) in order to take in count also the availabilities of the links.
Compared to [31], a link e with low availability makes CFPs it is involved in to have
higher probabilities, while reliable links decrease these probabilities. Figure4.11
shows the cardinality of the output MT and average length of SRLGs in MT in
function of threshold T and maximal disaster area R in case of backbone topology
16_optic_pan_eu [24]. Note that the unit of R is not a km, as the Euclidean
distances are altered during the CFP enumerating process, based on the availabilities.

Figure4.11 shows that a radius R≥80 (which roughly corresponds to the 20% of
the network diameter) or larger combined with a threshold T ≤0.001 yields a high
number of maximal probable failures. This translates to the fact that a bigger disaster
possibly hits a larger number of edges, and the failures above the small threshold
cannot be dominated by only a few sets from MT .20 Further observations of [26]
are that: (i) if R∈[0, 80], MT is likely to contain only a handful of most probable
SRLGs; (ii) similar R · T value indicates similar cardinality ofMT . For reasonable
disaster sizes, MT has a manageable size, with its cardinality being comparable with
the number of network elements. In addition, one can observe that the average size
of the SRLGs scales with the radius.

19In Sect. 4.4.1.2, we could see how CFPs (and thus all kind of PSRLGs) can be used for calculating
the availability of services. To leverage the probabilistic information stored in PSRLGs in case of
resilient routing, one needs to calculate a list of SRLGs based on a PSRLG input.
20Of course, in a non-practical extreme case of R being greater than half of the network diameter,
it is possible that MT = {E}, meaning |MT | = 1.
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Fig. 4.11 Cardinality of |MT | and avg. length of SRLGs in MT in function of probability threshold
T and maximum disaster radius R in case of backbone topology 16_optic_pan_eu [24]

4.6 A Mind Map of the Chapter

See Fig4.12.

Fig. 4.12 A mind map of the chapter. (C)FP() stores PSRLGs, while lists M∗ consist of SRLGs.
SRLGs are used, e.g. by resilient routing, while PSRLGs, e.g. in determining service availability
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4.7 Conclusions

In this chapter, we overviewed the state-of-the-art algorithms for enumerating
regional shared risk link groups (SRLGs) and regional probabilistic SRLGs (PSRLGs);
these structures are key in translating the composed geometric problem of protecting
telecommunication networks against regional failures to purely combinatorial and
probabilistic problems, respectively.We showed that the best technique to choose for
enumerating the vulnerable regions varies on (1) the available geometric information
on the network topology, (2) (probabilistic) information on the effects of possible
disasters in the network area and (3) the desired output structure (SRLG/PSRLG). In
the chapter, first, we presented a range of deterministic approaches for enumerating
maximal regional SRLGs under various conditions. Then, for regional PSRLG enu-
meration, we visited some models, which are easily tunable to the available knowl-
edge on the network topology and the disasters. Finally, as an advanced technique,
we described an SRLG enumerating approach, which uses an arbitrary probabilistic
model in an intermediate step.
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