
Delft University of Technology

MSc Applied Mathematics

MASTER THESIS

Enriching Financial Datasets with Generative
Adversarial Networks

by
Fernando de Meer Pardo

4696700

July 2019

Supervisor: Cornelis W. Oosterlee
Company Supervisor: Rafael Cobo López

Acknowledgements

A Óscar, por ser mi pilar y mi guía.
A mi madre y a mi padre, por toda una vida de amor.
A Javi y a Leire, por ser mis compañeros de viaje.

Thanks to my supervisor Kees Osterlee, for patiently guiding me through the Thesis process, for being a great
teacher and for giving me a chance.

Thanks to all the friends I made at TU Delft, my classmates from the Financial Engineering specialization,
the people from Force Elektro and the Spartan Workout, for making me feel loved and at home in Delft.

Thanks to all the people at ETS Asset Management Factory, for believing in me and welcoming me with open
arms.

1

Abstract

The scarcity of historical financial data has been a huge hindrance for the development of algorithmic
trading models ever since the first models were devised. Most financial models assume as hypothesis a series
of characteristics regarding the nature of financial time series and seek extracting information about the
state of the market through calibration. Through backtesting, a large number of these models are seen not
to perform and are thus discarded. The remaining well-performing models however, are highly vulnerable
to overfitting. Financial time series are complex by nature and their behaviour changes over time, so this
concern is well founded.

In addition to the problem of overfitting, available data is far too scarce for most machine learning ap-
plications and impossibly scarce for advanced approaches such as reinforcement learning, which has heavily
impaired the application of these novel techniques in financial settings.

This is where data generation comes into play. Generative Adversarial Networks, GANs, are a type
of neural network architecture that focuses on sample generation. Through adversarial training, the GAN
can learn the underlying structure of the input data and become able to generate samples very similar to
those of the data distribution. This is specially useful in the case of high-dimensional objects, in which the
dimensions are heavily inter-dependent, such as images, music and in our case financial time series.

In this work we want to explore the generating capabilities of GANs applied to financial time series and
investigate whether or not we can generate realistic financial scenarios.

Keywords : Generative Adversarial Networks, WGAN-GP, Relativistic GAN, Data Augmentation,
Overfitting, Time Series generation, Time Series Classification, Financial Machine Learning.

2

Contents
1 Introduction 6

1.1 Research Questions . 6
1.2 Contributions . 6
1.3 Thesis Structure . 7

2 Background 8
2.1 Basic concepts about neural networks . 8

2.1.1 Parameter Optimization . 9
2.1.2 Error Backpropagation . 10
2.1.3 Optimizers . 12
2.1.4 ReLU and LeakyReLU . 13
2.1.5 Batch Normalization . 13
2.1.6 Discrete Convolutions . 14
2.1.7 Convolutional Neural Networks . 15

2.2 Time Series Classifiers . 16
2.2.1 ResNet . 16

3 Generative Adversarial Networks 17
3.0.1 Introduction to Generative Modelling . 17
3.0.2 The GAN framework . 17
3.0.3 GAN Training . 18
3.0.4 Non-convergence in GANs . 19
3.0.5 Theoretical Analysis of GAN Training . 20

3.1 Advanced GANs Setups . 26
3.1.1 Wasserstein GAN . 26
3.1.2 Wasserstein GAN with Gradient Penalty term . 27
3.1.3 Relativistic Standard GAN . 28
3.1.4 Relativistic Average GAN . 30
3.1.5 Conditional GAN . 31

3.2 Experiments Setup . 32

4 Experiments 34
4.1 SP500 Stocks Generation with WGAN-GP . 34

4.1.1 Statistical Analysis of Synthetic Series . 35
4.2 VIX Scenarios with Conditional WGAN-GP . 36
4.3 VIX and SP500 Scenarios . 39
4.4 "Train on Synthetic, Test on Real Data" . 44

4.4.1 VIX Scenarios with Conditional WGAN-GP Evaluation 44
4.4.2 VIX and SP500 Scenarios Evaluation . 45

5 Conclusions 47

6 Further Research 48

A Experiments on Synthetic Datasets 49
A.1 WGAN-GP on sine curves . 49
A.2 Relativistic Average GAN on sine curves . 49
A.3 WGAN-GP on Heston Paths . 50

B Loss/Accuracy Plots for the ResNet Experiments 51
B.1 VIX Scenarios with Conditional WGAN-GP Evaluation . 51
B.2 VIX and SP500 Scenarios with WGAN-GP and RaGAN Evaluation 51

3

List of Figures
1 Fully Connected Neural Network Diagram . 9
2 Illustration of the calculation of δj for hidden unit j . 11
3 ReLU plot . 13
4 LeakyReLU plot . 13
5 Illustration of a discrete convolution . 15
6 Illustration of a transposed convolution . 15
7 ResNet architecture . 16
8 Density Estimation Example . 17
9 Generative Model Concept . 17
10 Generative Model Diagram . 18
11 Mode Collapse Illustration . 20
12 Jensen Shannon Divergence Illustration . 21
13 Density Ratio Estimation . 22
14 Manifold Overlap Illustration . 23
15 Vanishing Gradient Experiment . 23
16 Earth Mover Distance graphic . 25
17 Wasserstein Distance Example . 25
18 Expected discriminator output . 28
19 Conditional GAN Diagram . 32
20 Historical returns of two components of the SP500 . 35
21 Synthetic returns of two components of the SP500 . 35
22 Kurtosis boxplot of real and synthetic series . 36
23 Skewness boxplot of real and synthetic series . 36
24 Monthly Returns correlations of real and synthetic series . 36
25 Average of the correlation coefficients between returns of consecutive days 36
26 Average of the correlation coefficients between absolute returns of consecutive days 37
27 VIX daily closing prices for the period 02/01/2004-04/04/2019 37
28 Synthetic VIX samples . 38
29 Relationship between the VIX and the SP500 . 40
30 Synthetic VIX samples conditioned on the SP500 . 41
31 Synthetic VIX samples conditioned on the SP500 . 43
32 Loss/Accuracy plots of the original training set . 44
33 Loss/Accuracy plots of the enlarged training set . 45
34 Loss/Accuracy plots of the original training set . 45
35 Loss/Accuracy plots of the synthetic training set . 46
36 Samples of Pdata . 49
37 Sample of Pmodel . 49
38 Sample of Pmodel . 50
39 Comparison of the original and synthetic Implied Volatility Smiles. 50
40 Loss/Accuracy plots on the original training set . 51
41 Loss/Accuracy plots on the enlarged training set . 51
42 Loss/Accuracy plots on the original training set . 52
43 Loss/Accuracy plots on the enlarged training set . 52

4

Notation
Throughout the Thesis we will use the following notation for the expectations:

1. Ex∼P data denotes expectation taken over true data samples.

2. Ez∼Pz denotes expectation taken over noise inputs. Equivalently, Ex∼Pmodel denotes expectation taken
over fake data samples, that is, noise inputs transformed by the generator network.

5

1 Introduction
Generating data structures with similar characteristics to those of a given dataset is a process that involves
primarily two tasks, feature-extraction and feature-reproduction. These two tasks are fully automated through
Generative Adversarial Networks, GANs for short [14].

The main application in which GANs have been proven to work well has been image generation, in which
starting with simple MNIST numbers and going all the way to bedroom pictures [39] and celebrity photos
[7, 23], many advancements have been developed to generate synthetic samples. Having a way to artificially
create complex and rich artificial datasets can be a very useful tool when training other kinds of models, albeit
because the original data is scarce, protected by privacy regulations or simply too expensive to recollect.

GAN’s success with images has been theorized to be due to the strong spatial relationships of the inputs
(meaning pixel values in photographs) and an easy measure of performance, simple visual inspection.

Applying GANs to time series data has also been explored, because of the lack of access to medical data
due to privacy regulations in the case of [10], and similarly with banking data in [42]. The main challenge data
generation faces is the possible lack of structure in the input data, but in our case, financial time series have
been recognized to share some common traits, such as having heavy tails in the distribution of returns, volatility
clustering, mean reversion and momentum (see [6, 31]) so we are not completely hopeless.

Our aim is having GANs that can reflect all the characteristics of financial time series we are able to calculate
as well as the characteristics we may be unaware of, as GANs learn the underlying structure of our data, rather
than just a set of features. If we are able to achieve this, the synthetic datasets we create could be used for
a variety of purposes including model training, model selection, option pricing (in lieu of classical stochastic
models) etc.

1.1 Research Questions
Having stated our aim we define the following research questions:

• Can we generate realistic synthetic financial time series using GANs?

• How can we evaluate the quality of our generated series/ performance of our model?

• How can we use our synthetic series? Can we train models on them?

1.2 Contributions
In this work we carry out the following:

First we implement Wasserstein’s GAN [3] with Gradient Penalty [16] adapted to 1-dimensional time series;
we carry out a sanity check with artificial data (sine curves) to test the model robustness. Once the sanity check
is passed we apply our algorithm to return series of components of the SP500 for a fixed period and check the
quality of our generated samples by comparing statistics.

Second, we induce variability on our dataset by taking rolling windows of our series. We verify the effective-
ness of our methodology by producing new scenarios of a second dataset, the daily prices CBOE VIX Index. As
the VIX is a mean-reverting index, we modify our Wasserstein GAN in order to work in a conditional setting [34].

Third, we discuss the challenges behind generating diverse multi-dimensional scenarios and propose a Rel-
ativistic Average GAN [22] employed in a conditional setting as a solution. Once again we test it on artificial
data (sine curves for consistency) and on a real case, producing joint scenarios of the VIX and the SP500.

Fourth, we show an example of usage of synthetic data, we train our model on a supervised Time Series
Classification task [21], identifying trends in financial time series. We first do it the classic way, dividing historic
data on train and test sets and later we enrich our train set with synthetic series (created with the same train
set) and check for performance improvements in the test set, this is known as the “Train on Synthetic, test on

6

Real Data” approach [10]. We carry out this experiment with the VIX index data.

1.3 Thesis Structure
In Chapter 2 we detail the mathematical foundations of our models. Section 2.1 presents an introduction to
basic neural networks concepts, section 3 introduces the field of generative modelling and the basic concepts
of Generative Adversarial Networks, section 3.1 analyzes recent advances on the understanding of GANs and
some advanced setups derived from them. In Chapter 4 the experiments carried out in this work are described,
sections 4.4.1 and 4.4.2 discuss the evaluations of our results. Chapter 5 summarizes our work and presents
conclusions and Chapter 6 discusses possible further research directions and topics.

7

2 Background
In this chapter we start by giving a brief introduction to neural networks and some related concepts. Then
we introduce deep generative models with a focus on GANs, going over how they function and how they are
constructed. Finally we conclude with the technical details of the GAN versions we employ, explaining the
breakthroughs that led to their development and their justification and usefulness in our work.

2.1 Basic concepts about neural networks
Linear models for regression are based on linear combinations of fixed nonlinear basis functions φj(x) and take
the form

y(x,w) = h

 M∑
j=1

wjφj(x)

 , (1)

where h(·) is a nonlinear activation function in the case of classification and is the identity in the case of
regression. Neural Networks are an extension of this concept which make the basis functions φj(x) depend on
parameters and then to allow these parameters to be adjusted, along with the coefficients {wj}, during training.

This leads to the basic neural network model, made of fully connected layers, which can be described as a series
of functional transformations. First we construct M linear combinations of the input variables x1, ..., xD in the
form

aj =

D∑
i=1

w
(1)
ji xi + w

(1)
j0 , (2)

where j = 1, ...,M ,and the superscript (1) indicates that the corresponding parameters are in the first ‘layer’ of
the network. We shall refer to the parameters w(1)

ji as weights and the parameters w(1)
j0 as biases. The quantities

aj are known as activations. Each of the aj ’s is then transformed using a differentiable, nonlinear activation
function h(·) to give

zj = h (aj) . (3)

These quantities correspond to the outputs of the basis functions in (1) that, in the context of neural networks,
are called hidden units. The zj will play the role of inputs of the following layer of the networks, just as the xi,
i = 1, ...D did before. The nonlinear functions h(·) are generally chosen to be sigmoidal functions, such as the
logistic sigmoid or the tanh function. In our case, due to their popularity and widespread use in GAN models
for Image Generation we will mostly use the ReLU activation function, a choice we will explain later.

We can combine these various stages to give the overall network function that, for sigmoidal output unit
activation functions, takes the form

yk(x,w) = σ

 M∑
j=1

w
(2)
kj h

(
D∑
i=1

w
(1)
ji xi + w

(1)
j0

)
+ w

(2)
k0

 , (4)

where the σ represents the sigmoid function and the set of all weight and bias parameters have been grouped
together into a vector w. Thus the neural network model is simply a nonlinear function from a set of input
variables {xi} to a set of output variables {yk} controlled by a vector w of adjustable parameters.

This function can be represented in the form of a network diagram as shown in Figure 1.

8

Figure 1: Fully Connected Neural Network Diagram

The process of evaluating (4) can be interpreted as a forward propagation of information through the network.
The approximation properties of feed-forward networks have been widely studied ([11], [19]) and found to be
very general. Neural networks are therefore said to be universal approximators. For example, a two-layer
network with linear outputs can uniformly approximate any continuous function on a compact input domain
to arbitrary accuracy provided the network has a sufficiently large number of hidden units. Although such
theorems are reassuring, the key problem is how to find suitable parameter values w given a set of training
data.

2.1.1 Parameter Optimization

So far, we have viewed neural networks as a general class of parametric nonlinear functions from a vector x
of input variables to a vector y of output variables. Given a training set comprising a set of input vectors{
x(n)

}
, where n = 1, ..., N , together with a corresponding set of target vectors

{
t(n)

}
, a simple approach to the

problem of determining the network parameters w is to either minimize a sum-of-squares error function if we
are performing a regression task,

E(w) =
1

2

N∑
n=1

∥∥∥y (x(n),w
)
− t(n)

∥∥∥2

, (5)

or a binary cross-entropy function if we are performing classification.

E(w) = −
N∑
n=1

{
t(n) lny(n) +

(
1− t(n)

)
ln
(

1− y(n)
)}

. (6)

First note that if we make a small step in weight space from w to w+ δw then the change in the error function
is δE ' δwT∇E(w), where the vector ∇E(w) points in the direction of greatest rate of increase of the error
function. Because the error E(w) is a smooth continuous function of w, its smallest value will occur at a point
in weight space such that the gradient of the error function vanishes, so that

∇E(w) = 0, (7)

as otherwise we could make a small step in the direction of −∇E(w) and thereby further reduce the error.
Our goal is to find a vector w such that E(w) takes its smallest value. However, the error function typically

9

has a highly nonlinear dependence on the weights and bias parameters, and so there will be many points in
weight space at which the gradient vanishes (or is numerically very small). A minimum that corresponds to the
smallest value of the error function for any weight vector is said to be a global minimum. Any other minima
corresponding to higher values of the error function are said to be local minima.

For a successful application of neural networks, it may not be necessary to find the global minimum (and in
general it will not be known whether the global minimum has been found) but it may be necessary to compare
several local minima in order to find a sufficiently good solution.

Because there is clearly no hope of finding an analytical solution to the equation ∇E(w) = 0 we resort to
iterative numerical procedures. The optimization of continuous nonlinear functions is a widely studied problem
and there exists an extensive literature on how to solve it efficiently. Most techniques involve choosing some
initial value w(0) for the weight vector and then moving through weight space in a succession of steps of the
form

w(τ+1) = w(τ) + ∆w(τ), (8)

where τ labels the iteration step. Different algorithms involve different choices for the weight vector update
∆w(τ). Many algorithms make use of gradient information and therefore require that, after each update,
the value of ∇E(w) is evaluated at the new weight vector w(τ+1). The simplest approach to using gradient
information is to choose the weight update to take a small step in the direction of the negative gradient, so that

w(τ+1) = w(τ) − η∇E
(
w(τ)

)
, (9)

where the parameter η > 0 is known as the learning rate. After each such update, the gradient is re-evaluated
for the new weight vector and the process is repeated.

2.1.2 Error Backpropagation

We now derive the backpropagation algorithm for a general network having arbitrary feed-forward topology,
arbitrary differentiable nonlinear activation functions, and a differentiable error function. Many error functions
of practical interest, comprise a sum or an average of terms, one for each data point in the training set, so that

E(w) =

N∑
n=1

En(w). (10)

Here we shall consider the problem of evaluating ∇E(n)(w) for one such term in the error function.
In a general feed-forward network, each unit computes a weighted sum of its inputs of the form

aj =
∑
i

wjizi, (11)

where zi is the activation of a unit, or input, that sends a connection to unit j, and wji is the weight associated
with that connection. The sum in (11) is transformed by a nonlinear activation function h(·) to give the
activation zj of unit j in the form

zj = h (aj) . (12)

Note that one or more of the variables zi in the sum in (11) could be an input, and similarly, the unit j in
(12) could be an output. For each pattern in the training set, we shall suppose that we have supplied the
corresponding input vector to the network and calculated the activations of all of the hidden and output units
in the network by successive application of (11) and (12). As already mentioned, this process is often called
forward propagation because it can be regarded as a forward flow of information through the network. Now
consider the evaluation of the derivative of En with respect to a weight wji. The outputs of the various units
will depend on the particular input data point. First we note that En depends on the weight wji only via the
summed input aj to unit j. We can therefore apply the chain rule for partial derivatives to give

∂En
∂wji

=
∂En
∂aj

∂aj
∂wji

. (13)

We now introduce a useful notation
δj ≡

∂En
∂aj

, (14)

where the δ’s are often referred to as errors for reasons we shall see shortly. Using (11), we can write

∂aj
∂wji

= zi. (15)

10

Substituting (14) and (15) into (13), we then obtain

∂En
∂wji

= δjzi. (16)

Equation (16) tells us that the required derivative is obtained simply by multiplying the value of δ for the unit
at the output end of the weight by the value of z for the unit at the input end of the weight. Thus, in order
to evaluate the derivatives, we need only to calculate the value of δj for each hidden and output unit in the
network, and then apply (16). For the output units, we have, in the case of a sum-of-squares error function

δk = yk − tk. (17)

This δk will depend upon the error function but can be analytically calculated. To evaluate the δ′s for hidden
units, we again make use of the chain rule for partial derivatives,

δj ≡
∂En
∂aj

=
∑
k

∂En
∂ak

∂ak
∂aj

, (18)

where the sum runs over all units k to which unit j sends connections. The arrangement of units and weights
is illustrated in Figure 2. If we now substitute the definition of δ given by (14) into (18), and make use of (11)

Figure 2: Illustration of the calculation of δj for hidden unit j
For hidden unit j δj is calculated by backpropagation of the δ’s from those units k to which unit j sends connections.
The blue arrow denotes the direction of information flow during forward propagation, and the red arrows indicate the
backward propagation of error information.

and (12), we obtain the following backpropagation formula

δj = h′ (aj)
∑
k

wkjδk, (19)

which tells us that the value of δ for a particular hidden unit can be obtained by propagating the δ′s backwards
from units higher up in the network, as illustrated in Figure 2. Because we already know the values of the δ’s
for the output units, it follows that by recursively applying (19) we can evaluate the δ’s for all of the hidden
units in a feed-forward network, regardless of its topology. The backpropagation procedure can therefore be
summarized as follows.

1. Apply an input vector xn to the network and forward propagate through the network using (11) and (12)
to find the activations of all the hidden and output units;

2. Evaluate the δk for all the output units using (17);

3. Backpropagate the δ’s using (19) to obtain δj for each hidden unit in the network;

4. Use (16) to evaluate the required derivatives.

11

2.1.3 Optimizers

In a practical setting, weight updates aren’t carried out with classic gradient descent, as in (9). Instead,
optimizers that use gradient information such as ADAM [25] or RMSProp [44] are employed, as they speed up
training considerably.

1. RMSProp is an unpublished, adaptive learning rate method proposed by Geoff Hinton in Lecture 6e of
his Coursera Class [44]. It is an adaptation of another optimizer, AdaGrad [8]. AdaGrad is an adaptive
optimization algorithm. It adapts the learning rate to the parameters, performing smaller updates (i.e.
low learning rates) for parameters associated with frequently occurring features, and larger updates (i.e.
high learning rates) for parameters associated with infrequent features. Let

{
x(1),x(2), ...,x(M)

}
be a

batch of m samples with corresponding target variables
{
y(1),y(2), ...,y(M)

}
, let a neural network with

weights w = {wt,j} be represented as f
(
x(i);w

)
, then the Adagrad updates are described as follows:

• Let gt,j = 1
M∇wt,j

∑
iE
(
f
(
x(i);w

)
,y(i)

)
,

• wt+1,j = wt,j − η√
Gt,jj+ε

· gt,j .

Where E is the network error function, Gt ∈ Rd×d = {Gt,jj} is a diagonal matrix where each diagonal
element j, is the sum of the squares of the gradients w.r.t. wt,j up to time step t (Gt,jj =

∑
s≤t (gs,j)

2),
while ε is a smoothing term that avoids division by zero (usually on the order of 10−8). One of Adagrad’s
main benefits is that it eliminates the need to manually tune the learning rate. A value of η = 0.01 is
usually chosen. Adagrad’s main weakness is its accumulation of the squared gradients in the denomi-
nator: Since every added term is positive, the accumulated sum keeps growing during training. This in
turn causes the learning rate to shrink and eventually become infinitesimally small, at which point the
algorithm is no longer able to acquire additional knowledge.

Instead of inefficiently storing all previous squared gradients, the sum of gradients is recursively defined
as a decaying average of all past squared gradients. The running average in a RMSProp update RA

[
g2
]
t

at time step t then depends only on the previous average and the current gradient:

• RA
[
g2
]
t

= 0.9RA
[
g2
]
t−1

+ 0.1g2
t

• wt+1 = wt − η√
RA[g2]t+ε

gt

A good default value for the learning rate is η = 0.00001

2. Adaptive Moment Estimation (Adam) is another method that computes adaptive learning rates for each
parameter. In addition to storing an exponentially decaying average of past squared gradients like RM-
SProp, Adam also keeps an exponentially decaying average of past gradients mt. It computes the decaying
averages of past and past squared gradients as follows:

• mt = β1zt−1 + (1− β1)gt,

• vt = β2vt−1 + (1− β2)g2
t .

mt and vt are estimates of the first moment (the mean) and the second moment (the uncentered variance)
of the gradients respectively, hence the name of the method. As mt and vt are initialized as vectors of 0’s,
the authors of Adam observe that they are biased towards zero, especially during the initial time steps,
and especially when the decay rates are small (i.e. β1 and β2 are close to 1.)
They counteract these biases by computing bias-corrected first and second moment estimates:

• m̂t = zt
1−βt1

,

• v̂t = vt
1−βt2

.

This yields the Adam update rule:

• wt+1 = wt − η√
v̂t+ε

ẑt

All the coding of backpropagation, the optimizers and all the necessary procedures involved in constructing,
training and testing neural networks can be easily used with the help of auto-differentiation libraries such as
Tensorflow [1] (or a higher level API such as Keras [5]) or Pytorch [37].

12

2.1.4 ReLU and LeakyReLU

ReLU is an acronym for Rectified Linear Unit, and is a type of activation function. Mathematically, it is defined
as y = max(0, x). See Figure 3 for a plot of the function.

Figure 3: ReLU plot

The ReLU activation function was proposed by Nair and Hinton 2010 (see [35]), and ever since, has been
widely used in deep learning applications, with state-of-the-art results. It offers better performance and gen-
eralization in deep learning compared to the sigmoid and tanh activation functions [49], in addition to being
faster to compute.

The ReLU however does have a significant limitation. It may cause some gradients to vanish because of the
flat slope of its negative side, which leads to some neurons having no gradient, causing the weight updates not
to activate in future data points, thereby hindering learning as inactive neurons give zero activation [26]. To
resolve the dead neuron issues, the leaky ReLU was proposed.

Defined as fα(x) =

{
x if x > 0
αx otherwise leaky ReLUs allow a small, positive gradient when the unit is not

active, facilitating training and the propagation of information through the network. See Figure 4 for a plot of
the function.

Figure 4: LeakyReLU plot

2.1.5 Batch Normalization

Training Deep Neural Networks is complicated by the fact that the distribution of each layer’s inputs changes
during training, as the parameters of the previous layers change. This slows down the training by requiring
lower learning rates and careful parameter initialization.

13

This phenomenon is known as Internal Covariance Shift (see [20]), and can be addressed by normalizing
layer inputs.

Note that simply normalizing each input of a layer may change what the layer can represent. For instance,
normalizing the inputs of a sigmoid would constrain them to the linear regime of the nonlinearity. To address
this, Batch Normalization is designed so that the transformation inserted in the network can represent the iden-
tity transform. To accomplish this, for each activation xk a pair of parameters γk, βk, which scale and shift the
normalized value are learned. The process carried out in each Batch Normalization (BN) layer is detailed in
Algorithm 1.

Input: Hidden Layer Outputs {x1 . . . xm}
Parameters to be learned: γ, β
Output: Normalized Inputs for the next layer, {yi = BNγ,β (xi)}
µB ← 1

m

∑m
i=1 xi

σ2
B ← 1

m

∑m
i=1 (xi − µB)

2

x̂i ← xi−µB√
σ2
B+ε

yi ← γx̂i + β ≡ BNγ,β (xi)
Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch

These parameters are learned along with the original model parameters through gradient descent, and re-
store the representation power of the network. Indeed, by setting γk =

√
Var [xk] and βk = E [xk] , we could

recover the original activations, if that were the optimal thing to do.

Each normalized activation x̂k can be viewed as an input to a sub-network composed of the linear transform
yk = γkx̂k + βk , followed by the other layers of the original network. As all these sub-networks of the Batch
Normalization layers have fixed means and variances, the introduction of normalized inputs accelerates the
training of the sub-network and, consequently, the network as a whole.

2.1.6 Discrete Convolutions

Neural Networks can be generalized from the simple structure described in Section 2.1 and described as a
series of affine transformations and other differentiable operations. In an affine transformation a vector is
received as input and is multiplied with a matrix to produce an output (to which a bias vector is usually
added before passing the result through an activation function). Images, sound clips and in our case financial
time series have an intrinsic structure. In the case of time series, the temporal dimension is the most crucial
piece of information that should be captured by the network. This is where discrete convolutions come into play.

A discrete convolution is a linear transformation that preserves this notion of ordering. It is sparse (only a
few input units contribute to a given output unit) and reuses parameters (the same weights are applied to mul-
tiple locations in the input). A discrete convolution operator can be visualized as a kernel of learned weights w
sliding across an input feature map being multiplied element-wise (or more formally, performing the Hadamard
product, see Figure 5 for an illustration) but it actually is a sparse matrix with components determined by the
kernel values.

Discrete Convolutions can be cleverly inverted to perform "Deconvolutions" or rather, Transposed Convo-
lutions. The need for transposed convolutions generally arises from the desire to use a transformation going
in the opposite direction of a normal convolution, i.e., from something that has the shape of the output of
some convolution to something that has the shape of its input while maintaining a connectivity pattern that is
compatible with the said convolution. Transposed convolutions work by swapping the forward and backward
passes of a convolution. One way to put it is to note that the kernel defines a convolution, but whether it’s
a direct convolution or a transposed convolution is determined by how the forward and backward passes are
computed. See Figure 6 for an illustration. For more details on Convolutions, see [9].

14

Figure 5: Illustration of a discrete convolution
The light blue grid is called the input feature map. To keep the drawing simple, a single input feature map is represented,
but it is not uncommon to have multiple feature maps stacked one onto another. A kernel (shaded area) of values slides
across the input feature map. At each location, the product between each element of the kernel and the input element
it overlaps is computed and the results are summed up to obtain the output in the current location. The procedure can
be repeated using different kernels to form as many output feature maps as desired. The final outputs of this procedure
are called output feature maps (green grid).

Figure 6: Illustration of a transposed convolution
The transpose of convolving a 3 × 3 kernel over a 5 × 5 input using full padding and unit strides.

2.1.7 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class of neural networks in which a series of successive convolutions
and transposed convolutions are carried out in order to map inputs to outputs. Using Convolutions as the layer
operations implicitly gives the Neural Network a series of interesting properties:

• Weight Sharing and Translation Invariance: In Convolutional Neural Networks, as the same kernel is

15

used for all neurons in each layer, all neurons of the same layer share the kernel weights and biases. This
greatly decreases the amount of weights to be learned, speeding up training. At the same time it induces
a translation invariance property, allowing the network to detect patterns regardless of their location in
the input sample.

• Local connectivity: CNNs enforce a local connectivity pattern between neurons of adjacent layers by
applying successive convolutions. This allows for spatial information to be learned by the networks, as
the successive convolutions lead to non-linear filters being applied to the input samples.

They have been widely studied in their applications regarding image-related problems [39]. CNNs have been
successful in identifying faces, objects and traffic signs, powering vision in robots and self-driving cars among
others.

In this work we use Convolutional Networks to process time series data and capture their geometric and
time-dependent properties.

2.2 Time Series Classifiers
One good example of a Convolutional Neural Network is the following.

2.2.1 ResNet

Presented in [47], the ResNet (Residual Network) architecture is a special type of neural network designed
for Time Series Classification (TSC). The main characteristic of ResNets is the shortcut residual connection
between consecutive convolutional layers. Actually, the difference with the usual convolutions, is that a linear
shortcut is added to link the output of a residual block to its input thus enabling the flow of the gradient directly
through these connections. This makes training a Deep Neural Network much easier by reducing the vanishing
gradient effect [17].
The network is composed of three residual blocks followed by a Global Average Pooling layer and a final softmax
classiffier, whose number of neurons is equal to the number of classes in a dataset. Each residual block is first
composed of three convolutions whose output is added to the residual block’s input and then fed to the next
layer. The number of filters for all convolutions is fixed to 64, with the ReLU activation function that is preceded
by a batch normalization operation. In each residual block, the filter’s length is set to 8, 5 and 3, respectively,
for the first, second and third convolution. The structure is illustrated in Figure 7.

Figure 7: ResNet architecture

In a thorough empirical comparison of many TSC models (see [21]) the ResNet was found to be the best
performer in a wide variety of datasets. This is the reason why we choose it to answer the third of our Research
Questions 1.1. We will detail in the upcoming section how to improve the base results achieved by the ResNet
in financial real-world dataset by creating new scenarios with WGAN-GP and RaGAN.

16

3 Generative Adversarial Networks
3.0.1 Introduction to Generative Modelling

A generative adversarial network is an example of a generative model. The term refers to any model that takes
a training set, consisting of samples drawn from a distribution Pdata, and learns to represent an estimate of that
distribution somehow. The result is a probability distribution Pmodel.

Figure 8: Density Estimation Example
Some generative models perform density estimation. These models take a training set of examples drawn from an
unknown data-generating distribution pdata and return an estimate of that distribution. The estimate pmodel can be
evaluated for a particular value of x to obtain an estimate p model (x) of the true density p data (x). This figure illustrates
the process for a collection of samples of one-dimensional data and a Gaussian model.

Figure 9: Generative Model Concept
Some generative models are able to generate samples from the model distribution. In this illustration of the process, we
show samples from the ImageNet ([41]) dataset. An ideal generative model would be able to train on examples as shown
on the left and then create more examples from the same distribution as shown on the right. At present, generative
models are not yet advanced enough to do this correctly for ImageNet, so for demonstration purposes this figure uses
actual ImageNet data to illustrate what an ideal generative model would produce.

In some cases, the model estimates Pmodel explicitly, as shown in Figure 8 . In other cases, the model is only
able to generate samples from Pmodel, as shown in Figure 9. Some models are able to do both. GANs focus
primarily on sample generation, though it is possible to design GANs that can do both. For more information
on other kinds of generative models, see [12].

3.0.2 The GAN framework

The basic idea of GANs is to set up a game between two players. One of them is called the generator. The gener-
ator creates samples that are intended to come from the same distribution as the training data. The other player
is the discriminator. The discriminator examines samples to determine whether they are real or fake. The dis-
criminator learns using traditional supervised learning techniques, dividing inputs into two classes (real or fake).

Imagine we want to have a model that can generate images of realistic hand-written numbers, as in the
MNIST [27] dataset. The generator would start by producing blurry images that the discriminator would easily
classify as fake. Through training however, the generator would slowly learn how to make realistic hand-written
numbers that can fool the discriminator. The process is illustrated in Figure 10.

The two players in the game are represented by two functions, each of which is differentiable both with
respect to its inputs and with respect to its parameters. The discriminator is a function D that takes x as input

17

and uses w(D) (the discriminator network weights) as parameters. The generator is defined by a function G
that takes z (usually a random normal noise vector) as input and uses w(G) (the generator network weights) as
parameters.

Figure 10: Generative Model Diagram

Both players have loss functions that are defined in terms of both players’ parameters. The discriminator
aims to minimize L(D)

(
w(D),w(G)

)
and must do so while controlling only w(D). The generator aims to mini-

mize L(G)
(
w(D),w(G)

)
and must do so while controlling only w(G). Because each player’s cost depends on the

other player’s parameters, but each player cannot control the other player’s parameters, this scenario is most
straightforward to describe as a game rather than as an optimization problem.

The solution to an optimization problem is a (local) minimum, a point in parameter space where all neigh-
boring points have greater or equal cost. The solution to a game is a Nash equilibrium. Here, we use the
terminology of local differential Nash equilibria (see, [40]). In this context, a Nash equilibrium is a tuple(
w(D),w(G)

)
that is a local minimum of L(D) w.r.t w(D) and a local minimum of L(G) w.r.t w(G).

The GAN Generator

The generator is simply a differentiable function G. When its input z is sampled from some simple prior
distribution Pz, (normally an easy-to-sample distribution such as N (0, 1)), G(z) yields a fake data sample x,
implicitly drawn from Pmodel. Typically, a deep neural network is used to represent G. There are very few
restrictions on the design of the generator network. If we want Pmodel to have full support on the x space we
need the dimension of G(z) to be at least as large as the dimension of x, and G must be differentiable, but these
are the only requirements.

The GAN Discriminator

Similarly, the GAN discriminator is a differentiable functionD, whose goal is to classify the real and fake samples
accurately. It is also typically represented by a deep neural network D and there are very few restrictions on
its construction. It must only take real and fake samples as input and output a score D(x) ∈ [0, 1] and be
differentiable.

3.0.3 GAN Training

The GAN training process consists of iterative Stochastic Gradient Descent updates. On each step, two mini-
batches are sampled: a minibatch of x values from the dataset and a minibatch of z values drawn from Pz.
Then, two gradient steps are made: one updating w(D) to reduce L(D) and one updating w(G) to reduce L(G).
In both cases, it is possible to use the gradient-based optimization algorithm of choice (such as Adam or RM-
SProp, see Section 2.1.3). Running more steps of one player than the other, as in training the discriminator for
5 batches for every update of the generator, is also a possibility and is used in many GAN versions, see [3].

GAN Discriminator Loss Function

All standard GAN setups use the same cost for the discriminator, L(D). They differ only in terms of the cost
used for the generator, L(G).

18

The cost used for the discriminator is:

L(D)
(
w(D),w(G)

)
= −Ex∼P data logD(x)− Ez∼Pz log(1−D(G(z))). (20)

This is just the standard cross-entropy cost that is minimized when training a standard binary classifier with
a sigmoid output. The only difference is that the classifier is trained on two minibatches of data; one coming
from the dataset, where the label is 1 for all examples, and one coming from the generator, where the label is
0 for all examples.

GAN Generator Loss Function

So far we have specified the loss function for only the discriminator. A complete specification of the GAN setup
requires that we specify a loss function also for the generator.

The simplest GAN version is a zero-sum game, in which the sum of all player’s losses is always zero. In this
version of the GAN,

L(G) = −L(D). (21)

Initially suggested in [14], this setup has been shown to be very unstable (see [2]), GANs training is particularly
complex and prone to failure. In the following sections we will detail some of the pitfalls that can lead to an
unsuccessful training of GANs as well as the changes carried out to solve them. These changes imply modifying
the loss functions as we will see in the upcoming sections.

3.0.4 Non-convergence in GANs

Most deep models are trained using an optimization algorithm that seeks a low value of a loss function. While
many problems can interfere with optimization, optimization algorithms usually make reliable downhill progress.
GANs however, require finding the equilibrium to a game with two players. Even if each player successfully
moves downhill on that player’s update, the same update might move the other player uphill. Sometimes the
two players eventually reach an equilibrium, but in other scenarios they repeatedly undo each others’ progress
without arriving anywhere useful.

Simultaneous gradient descent converges for some games but not all of them. In the case of the minimax
GAN game, [13] showed that simultaneous gradient descent converges if the updates are made in function space.
In practice, the updates are made in parameter space, so the convexity properties that the proof relies on do not
apply. Currently, there is neither a theoretical argument that GAN games should converge when the updates are
made to parameters of deep neural networks, nor a theoretical argument that the games should not converge.
Probably the most common form of harmful non-convergence encountered in the GAN game is mode collapse.

Mode Collapse

Mode collapse, also known as the Helvetica scenario, is a phenomenon that arises when training results in
failure. It may manifest as a generator that maps several or even all input z values to the same output point
or output region, or as a generator that misses certain regions of the target distribution Pdata. Mode collapse
may even appear in a cyclical manner, as illustrated in Figure 11.

Intuitively, mode collapse is declared for a target distribution Pdata if Pmodel assigns a significantly smaller
probability density in regions surrounding a particular subset of modes of Pdata. The main challenge behind
this definition is that involves finding the modes of a high-dimensional distribution. Given that there is no
standard partition of the space Pdata lies in, that may be used to define the nodes and that heuristic partitions
are typically computationally intractable in high dimensions, this geometric definition of mode collapse becomes
intractable for most datasets. The authors of [28] however, established the following analytical definition:

Definition 3.1. A target distribution Pdata and a model distribution Pmodel produced by a generator G exhibit
(ε, δ)-mode collapse for some 0 ≤ ε < δ ≤ 1 if there exists a set S ⊆ X such that Pdata(S) ≥ δ and Pmodel(S) ≤ ε.

Intuitively, larger δ and smaller ε indicate more severe mode collapse. Mode collapse problem is probably
among the most important issues with GANs that researchers have attempted to address in the recent years.

19

Figure 11: Mode Collapse Illustration
An illustration of the mode collapse problem on a two-dimensional toy dataset. In the top row, we see the target
distribution Pdata that the model should learn. It is a mixture of Gaussians in a two-dimensional space. In the lower
row, we see a series of different distributions learned over time as the GAN is trained. Rather than converging to a
distribution containing all of the modes in the training set, the generator only ever produces a single mode at a time,
cycling between different modes as the discriminator learns to reject each one. Images from [33].

3.0.5 Theoretical Analysis of GAN Training

Definition 3.2 (Kullback-Leibler Divergence). Let P and Q be distributions of two different absolutely con-
tinuous random variables with probability densities p and q. Then their Kullback-Leibler (KL) divergence is
defined to be:

DKL(P‖Q) =

∫ ∞
−∞

p(x) log

(
p(x)

q(x)

)
dx. (22)

Regarding GANs, DKL(Pdata‖Pmodel) has the good property that it has a unique minimum at pmodel = pdata,
and it doesn’t require knowledge of the unknown pdata to estimate it (only samples). However, it is interesting
to see how this divergence is not symmetrical between Pdata and Pmodel:

• If pdata(x) > pmodel(x), then x is a point with higher probability of coming from the data than being a
generated sample. This is the core of the phenomenon commonly described as ‘mode dropping’: when
there are large regions with high values of pdata , but small or zero values in pmodel. It is important to
note that when pdata(x) > 0 but pmodel(x) → 0, the integrand inside the KL grows quickly to infinity,
meaning that this loss function assigns an extremely high loss to a generator’s distribution not covering
parts of the data.

• If pdata(x) < pmodel(x), then x has low probability of being a data point, but high probability of being
generated by the model. This is the case when we see the generator outputting a sample that doesn’t
look real. In this case, when pdata → 0 and pmodel(x) > 0, we see that the value inside the KL goes to 0,
meaning that this loss function will pay an extremely low cost for generating fake looking samples.

Definition 3.3 (Jensen-Shannon Divergence). Let P and Q be distributions of two different absolutely contin-
uous random variables with probability densities p and q. Then their Jensen-Shannon (JS) divergence is defined
to be:

DJS(p‖q) =
1

2
DKL

(
p‖p+ q

2

)
+

1

2
DKL

(
q‖p+ q

2

)
. (23)

The Jensen-Shannon divergence is clearly symmetric and is connected to GAN training as we will see. For an
illustration of these two divergences see Figure 12.

Remember how the loss functions of the discriminator and the generator are defined in (20) and (21)
respectively. When combining both functions, D and G are playing a minimax game in which we optimize
the following loss function:

min
G

max
D

L(D,G) = Ex∼Pdata(x)[logD(x)] + Ez∼Pz(z)[log(1−D(G(z)))]

= Ex∼Pdata(x)[logD(x)] + Ex∼Pmodel(x)[log(1−D(x)].
(24)

Note that Ex∼Pdata(x)[logD(x)] has no impact on G during gradient descent updates (i.e. G is not influenced
by real data).

20

Figure 12: Jensen Shannon Divergence Illustration
Given two Gaussian distributions, p with mean=0 and std=1 and q with mean=1 and std=1. The average of two
distributions is labelled as m = (p+ q)/2. KL divergence DKL is asymmetric but JS divergence DJS is symmetric.

Let’s now examine what is the optimal value for D:

L(G,D) =

∫
x

(pdata(x) log(D(x)) + pmodel(x) log(1−D(x))) dx. (25)

Let us label
x̃ = D(x), A = pdata(x), B = pmodel(x). (26)

Then the integrand becomes
f̄(x̃) = A log x̃ +B log(1− x̃),

df̄(x̃)

dx̃
= A

1

x̃
−B 1

1− x̃

=

(
A

x̃
− B

1− x̃

)
=
A− (A+B)x̃

x̃(1− x̃)
.

(27)

Thus, setting df̄(x̃)
dx̃ = 0 we get the best value of the discriminator:

D∗(x) = x̃∗ =
A

A+B
=

pdata(x)

pdata(x) + pmodel(x)
∈ [0, 1]. (28)

Once the generator is trained to its optimal value, pmodel gets very close to pdata. When pmodel = pdata, D
∗(x)

becomes 1/2. This is illustrated in Figure 13.

When both G and D are at their optimal values, we have pmodel = pdata, D∗(x) = 1/2 and the loss function
becomes:

L (G∗, D∗) =

∫
x

(pdata(x) log (D∗(x)) + pmodel(x) log (1−D∗(x))) dx

= log
1

2

∫
x

pdata(x)dx + log
1

2

∫
x

pmodel(x)dx

= −2 log 2.

(29)

21

Figure 13: Density Ratio Estimation
In this example, we assume that both z and x are one dimensional for simplicity. The mapping from z to x (shown by
the black arrows) is non-uniform so that p model (x) (shown by the green curve) is greater in places where z values are
brought together more densely. The discriminator (dashed blue line) estimates the ratio between the data density (black
dots) and the sum of the data and model densities. Wherever the output of the discriminator is large, the model density
is too low, and wherever the output of the discriminator is small, the model density is too high. The generator can learn
to produce a better model density by following the discriminator uphill; each G(z) value should move slightly in the
direction that increases D(G(z)). Figure reproduced from [13].

If we calculate the JS divergence for Pmodel and Pdata we have that

DJS (Pdata‖Pmodel) =
1

2
DKL

(
pdata‖

pdata + pmodel
2

)
+

1

2
DKL

(
pmodel‖

pdata + pmodel
2

)
=

1

2

(
log 2 +

∫
x

pdata(x) log
pdata(x)

pdata(x) + pmodel(x)
dx

)
+

1

2

(
log 2 +

∫
x

pmodel(x) log
pmodel(x)

pdata(x) + pmodel(x)
dx

)
=

1

2
(log 4 + L (G,D∗)) .

(30)

Thus,

L (G,D∗) = 2DJS (Pdata‖Pmodel)− 2 log 2. (31)

Essentially, the loss function of a GAN quantifies the similarity between the generative data distribution Pmodel
and the real sample distribution Pdata by the JS divergence when the discriminator is optimal. The best G∗
that replicates the real data distribution leads to the minimum L (G∗, D∗) = −2 log 2 which is aligned with the
equations above.

However, in practice, if we just train D till convergence, its error will go to 0, pointing to the fact that
the JS divergence between them has reached its maximum (it is easy to see that 0 ≤ DJS(p‖q) ≤ ln(2)).
The only way this can happen is if the distributions are not continuous (meaning their densities are not ab-
solutely continuous functions), or they have disjoint supports. One possible cause for the distributions not to
be continuous is if their supports lie on low-dimensional manifolds. There is strong empirical and theoretical
evidence to believe that Pdata is indeed concentrated on a low dimensional manifold for many datasets (see [36]).

Arjovsky and Bottou (2017) discussed the problem of the supports of pdata and pmodel lying on low-
dimensional manifolds and how it contributes to the instability of GAN training thoroughly in [2]. Because
both pdata and pmodel rest in low-dimensional manifolds, they are almost certainly disjoint (see Fig 14). When
they have disjoint supports, we are always capable of finding a perfect discriminator that separates real and
fake samples 100% correctly.

22

Figure 14: Manifold Overlap Illustration
Low dimensional manifolds in high dimensional spaces can hardly have overlaps. (Left) Two lines in a three-dimensional
space. (Right) Two surfaces in a three-dimension space.

When the discriminator is perfect, we are guaranteed to have D(x) = 1,∀x ∈ Pdata and D(x) = 0,∀x ∈
Pmodel. Therefore the loss function L falls to zero and we end up with no gradient to update the loss during
learning iterations. Fig 15 demonstrates an experiment where when the discriminator gets better, the gradient
vanishes fast.

Figure 15: Vanishing Gradient Experiment
First, a DCGAN is trained for 1, 10 and 25 epochs. Then, with the generator fixed, a discriminator is trained from
scratch and measure the gradients with the original loss function. We see the gradient norms decay quickly (in log scale),
in the best case 5 orders of magnitude after 4000 discriminator iterations. (Image source: [2])

As a result, training a GAN faces a dilemma:

• If the discriminator behaves badly, the generator does not have accurate feedback and the loss function
cannot represent the reality.

• If the discriminator converges well, the gradient of the loss function drops down to close to zero and the
learning becomes very slow or even jammed.

This dilemma makes GAN training very much involved.

23

Wasserstein’s distance

Definition 3.4. Let X be a compact metric set. Let Prob(X) denote the space of probability measures defined
on x. The Earth-Mover (EM) distance or Wasserstein-1 is then defined as

W (Pr,Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ [‖x− y‖], (32)

where Π (Pr,Pg) denotes the set of all joint distributions γ(x, y) whose marginals are respectively Pr and Pg,
and || · || is a metric.

Intuitively, W (Pr,Pg) indicates how much "mass" must be transported from x to y in order to transform
the distributions Pr into the distribution Pg, thinking of the distributions as "piles of earth".

Let µ(x) and ν(x) be two probability distributions on X , suppose we want to move the mass of µ(x) so that
it has the shape of ν(x). Suppose that there is a given cost function

c(x, y) 7→ [0,∞),

that gives the cost of transporting a unit mass from the point x to the point y. A transport plan to move µ
into ν can be described by a function γ(x, y) which gives the amount of mass to move from x to y. In order to
be a transport plan, this function must satisfy∫

γ (x′, x) dx′ = ν(x),∫
γ (x, x′) dx′ = µ(x).

This is equivalent to γ(x, y) being a joint probability distribution with marginals µ and ν. The total cost of
a transport plan γ(x, y) will then be∫∫

c(x, y)γ(x, y)dxdy =

∫
c(x, y)dγ(x, y). (33)

As γ is not unique, there must be an infimum to the set of the costs of all transport plans (since all costs
are positives). Let Γ be the set of all transport plans (which is the set of all joint probability distributions with
marginals µ and ν as mentioned), then the cost of the optimal plan is

C = inf
γ∈Γ(µ,ν)

∫
c(x, y)dγ(x, y). (34)

If the function c(x, y) is simply the distance between the two points, then the optimal cost is identical to
the definition of the Wasserstein-1 distance.

Let us first look at a simple case where the probability domain is discrete. For example, suppose we have
two distributions P and Q, each having four piles of earth and both have ten shovelfuls of earth in total. The
numbers of shovelfuls in each earth pile are assigned as follows:

P1 = 3, P2 = 2, P3 = 1, P4 = 4
Q1 = 1, Q2 = 2, Q3 = 4, Q4 = 3.

In order to change P to resemble Q, as illustrated in Fig 16 (taken from [48]) , we:

• First move 2 shovelfuls from P1 to P2 => (P1, Q1) match up.
• Then move 2 shovelfuls from P2 to P3 => (P2, Q2) match up.
• Finally move 1 shovelfuls from Q3 to Q4 => (P3, Q3) and (P4, Q4) match up.

If we label the cost to make Pi and Qi match as δi, we would have δi+1 = δi + Pi −Qi and in the example:

δ0 = 0,

δ1 = 0 + 3− 1 = 2,

δ2 = 2 + 2− 2 = 2,

δ3 = 2 + 1− 4 = −1,

δ4 = −1 + 4− 3 = 0.

24

Figure 16: Earth Mover Distance graphic

Finally, the Earth Mover’s distance is W =
∑
|δi| = 5.

Even when two distributions are located in lower-dimensional manifolds without overlaps, the Wasserstein
distance can provide a meaningful and smooth representation of the distance in-between. The authors of [3]
exemplified the idea with a simple example.

Example 3.1. Suppose we have two probability distributions, P and Q (see Figure 17):

∀(x, y) ∈ P, x = 0 and y ∼ U(0, 1),
∀(x, y) ∈ Q, x = θ, 0 ≤ θ ≤ 1 and y ∼ U(0, 1)

.

Figure 17: Wasserstein Distance Example
There is no overlap between P and Q when θ 6= 0

When θ 6= 0; we find the following,

DKL(P‖Q) =
∑

x=0,y−U(0,1)

1 · log
1

0
= +∞,

DKL(Q‖P) =
∑

x=0,y−U(0,1)

1 · log
1

0
= +∞,

DJS(P,Q) =
1

2

 ∑
x=0,y∼U(0,1)

1 · log
1

1/2
+

∑
x=0,y−U(0,1)

1 · log
1

1/2

 = log 2,

W (P,Q) = |θ|.

25

But when θ = 0, the two distributions fully overlap:

DKL(P‖Q) = DKL(Q‖P) = DJS(P,Q) = 0,
W (P,Q) = 0 = |θ|.

DKL gives us infinity when two distributions are disjoint. The value ofDJS has a sudden jump, not differentiable
at θ = 0. Only the Wasserstein’s metric provides a smooth measure (because it induces a weaker topology
between distributions defined on X), which would allow for a stable learning process using gradient descent.
This is why having a GAN with a loss function that approximates the Wasserstein distance is desirable, as the
gradients given by the original loss, which approximates the DJS , are unstable in practice. In the following
Section we go over the necessary modifications to the GAN setup so that the discriminator approximates the
Wasserstein distance.

3.1 Advanced GANs Setups
3.1.1 Wasserstein GAN

It is intractable to exhaust all the possible joint distributions in Π (Pdata,Pmodel) to compute inf γ∼Π(pdata,pmodel)

in (32), thus the authors in [3] proposed a transformation of the formula based on the Kantorovich-Rubinstein
duality (see [38]) to:

W (Pdata,Pmodel) =
1

K
sup

‖f‖L≤K

(
Ex∼Pdata [f(x)]− Ex∼Pmodel [f(x)]

)
. (35)

The function f in the new form of the Wasserstein metric is demanded to satisfy ‖f‖L ≤ K, meaning it should
be K-Lipschitz continuous.

A real-valued function f : R→ R is called K-Lipschitz continuous if there exists a real constant K ≥ 0 such
that, for all x1, x2 ∈ R

|f (x1)− f (x2)| ≤ K |x1 − x2| . (36)

Here K is known as the Lipschitz constant for function f(.). Functions that are everywhere continuously
differentiable are Lipschitz continuous, because the derivative, estimated as |f(x1)−f(x2)|

|x1−x2| , has bounds. However,
a Lipschitz continuous function may not be everywhere differentiable, such as f(x) = |x|.

Suppose this function f comes from a family of K-Lipschitz continuous functions, {fw}w∈W , parameterized
by w. In the modified Wasserstein-GAN, the "discriminator" model is used to learn w to find a good fw and the
loss function for both networks is configured as measuring the Wasserstein distance between Pdata and Pmodel.

L (Pdata,Pmodel) = W (pdata, pmodel) = max
w∈W

Ex∼pdata [fw(x)]− Ez∼pdata(z) [fw (Gθ(z))] . (37)

Thus the “discriminator” does not distinguish the fake samples from the real ones anymore. Instead, it is
trained, along with the generator, to learn a K-Lipschitz continuous function to help compute the Wasserstein
distance. The discriminator aims to maximize the loss function above, and hence approximates the maximum
maxw∈w, the generator on the other hand tries to minimize it by modifying the fake data distribution. As the
loss function decreases in the training, the Wasserstein distance gets smaller and the generator model’s output
grows closer to the real data distribution.

It is not trivial to maintain the K-Lipschitz continuity of fw during the training, but [3] proposes a simple
solution, after every gradient update, clip the weights w to a small window, such as [−0.01, 0.01], resulting
in a compact parameter space W and thus fw obtains its lower and upper bounds to preserve the Lipschitz
continuity. The procedure is summarized in Algorithm 2.

26

Input: Learning rate η, clipping parameter c, batch size m, number of iterations of the critic per
generator iteration ncritic

w0 initial critic parameters, θ0 initial generator parameters.
begin

while θ has not converged do
for t = 0, ..., n critic do

Sample
{
x(i)
}m
i=1
∼ Pr a batch from the real data.

Sample
{
z(i)
}m
i=1
∼ Pz a batch of noise inputs.

gw ← ∇w

[
1
m

∑m
i=1 fw

(
x(i)
)
− 1

m

∑m
i=1 fw

(
gθ
(
z(i)
))]

w← w + α · RMSProp (w, gw)
w← clip(w,−c, c)

end
Sample

{
z(i)
}m
i=1
∼ Pz a batch of noise inputs.

gθ ← −∇θ 1
m

∑m
i=1 fw

(
gθ
(
z(i)
))

θ ← θ − α · RMSProp (θ, gθ)
end

end
Algorithm 2: WGAN algorithm, as presented in [3]

Compared to the original GAN algorithm, the WGAN undertakes the following changes:

• After every gradient update on the discriminator network, clamp the weights to a small fixed range, [−c, c].

• Uses a new loss function derived from the Wasserstein distance. The “discriminator” model does distinguish
fake samples from real ones anymore, but estimates the Wasserstein metric between real and generated
data distributions.

• Empirically the authors recommended the RMSProp optimizer on the discriminator, rather than a mo-
mentum based optimizer such as Adam, which could cause instability in the model training (although this
is not theoretically justified) .

However, as the authors point out: “Weight clipping is a clearly terrible way to enforce a Lipschitz constraint. If
the clipping parameter is large, then it can take a long time for any weights to reach their limit, thereby making
it harder to train the critic till optimality. If the clipping is small, this can easily lead to vanishing gradients
when the number of layers is big, or batch normalization is not used (such as in RNNs) . . . and we stuck with
weight clipping due to its simplicity and already good performance”.

To sum up, clipping is simple but it introduces some problems. The model may still produce poor quality
samples and not converge, in particular when the hyper-parameter c is not tuned correctly. The weight clipping
behaves as a weight regulation. It reduces the capacity of the model f and limits the capability to model
complex functions. This is improved upon with the method below.

3.1.2 Wasserstein GAN with Gradient Penalty term

Proposed in [16], this version of Wasserstein’s GAN uses a gradient penalty term instead of the weight clipping
to enforce the Lipschitz constraint. This is because a differentiable function f is 1-Lipschtiz if and only if it
has gradients with norm at most 1 almost everywhere. In order to circumvent tractability issues, the authors
enforce a soft version of the constraint with a penalty on the gradient norm for random samples, x̂ ∼ Px̂. The
new objective becomes:

L = Ex∼pdata [fw(x)]− E∼pdata(z) [fw (Gθ(z))] + λ E
x̂∼Px̂

[
(‖∇x̂D(x̂)‖2 − 1)

2
]
. (38)

Where the first two terms correspond to the original Wasserstein loss and the last one to the gradient penalty
term.
The authors implicitly define Px̂ sampling uniformly along straight lines between pairs of points sampled from
the data distribution Pr and the generator distribution Pg. This is justified in the paper, along with setting a
value of λ = 10 and advising against batch normalization (simply normalizing the outputs of the hidden layers
in the network) in the discriminator network.

27

WGAN-GP had been observed to present the best convergence behavior out of all the variants of WGAN
at the time the original paper was published, and it accounts for 200+ citations. As explained however in [22],
WGAN-GP is part of the Integral Probability metrics (IPM)-based GANs family and although effective and
robust, it is a very computationally expensive algorithm.

3.1.3 Relativistic Standard GAN

In this section we use the following notation:

• D(x) = sigmoid(C(x)) is the discriminator output, where C(x) is the non-transformed discriminator
output (which we call critic as in [3])

• We refer to a loss function as saturating if, when real and fake data are perfectly classified, the loss has
zero gradient. Equation (21) is one example of a saturating loss.

• We also refer to the standard GAN setup presented with loss functions as in (21) and (20) as SGAN.

Definition 3.5 (Integral probability metrics). IPMs are statistical divergences represented mathematically as:

IPMF (P‖Q) = sup
C∈F

(
Ex∼P[C(x)]− Ex∼Q[C(x)]

)
, (39)

where F is a class of real-valued functions. It can be observed that both discriminator and generator loss
functions are unbounded and would diverge to −∞ if optimized directly. However, IPMs assume that the
discriminator is of a certain class of functions F so that it does not grow too quickly which prevents the loss
functions from diverging. Each IPM applies a different constraint to the discriminator (e.g., WGAN assumes a
K-Lipschitz D(x), WGAN-GP assumes that D(x) has a gradient norm equal to 1 around real and fake data).

Jolicoeur-Martineau in [22] proposed one of the most insightful changes to the GAN procedure made to date.
The paper argues that training the generator should not only increase the probability that fake data is real but
also decrease the probability that real data is real. In other words, the key missing property of the Standard
GAN is that the probability of real data being real D(xreal) should decrease as the probability of fake data
being real D(xfake) increases. It supports this reasoning with the three following arguments:

1. Prior knowledge argument: During training, the discriminator is trained in order to accurately clas-
sify samples as real or fake. A powerful enough generator would fool the discriminator into classifying all
samples as real, but this behavior is illogical considering the a priori knowledge that half of the samples in
the mini-batch are fake. If the discriminator perceives all samples shown as equally real, it should assume
that each sample has probability 1

2 of being real. However, in SGAN and other non-IPM-based GANs,
the generator is simply trained so that the discriminator output of fake data is close to 1.
Assuming that the generator is trained with a strong learning rate or for many iterations; in addition to
both real and fake samples being classified as real, fake samples may appear to be more realistic than real
samples, i.e., C (xfake) > C (xreal) for most xreal and xfake. In that case, considering that half of the
samples are fake, the discriminator should assign a higher probability of being fake to real samples rather
than classify all samples as real.

Figure 18: Expected discriminator output
Expected discriminator output of the real and fake data for the a) direct minimization of the Jensen–Shannon divergence,
b) actual training of the generator to minimize its loss function, and c) ideal training of the generator to minimize its
loss function (lines are dotted when they cross beyond the equilibrium to signify that this may or may not be necessary).
Image from [22].

28

In summary, by not decreasing D (xreal) as D (xfake) increases, SGAN completely ignores the a priori
knowledge that half of the mini-batch samples are fake. Unless one makes the task of the discriminator
more difficult (using regularization or lower learning rates), the discriminator does not make reasonable
predictions. On the other hand, IPM-based GANs implicitly account for the fact that some of the samples
must be fake because they compare how realistic real data is compared to fake data. This provides an
intuitive argument to why the discriminator in SGAN (and GANs in general) should depend on both real
and fake data.

2. Divergence minimization argument: As we have already seen in SGAN, we have that the optimal
discriminator loss function is equal to the Jensen–Shannon divergence (see, (31)). Assuming an optimal
discriminator, if the JSD is minimized (JSD(Pdata‖Pmodel) = 0) then D (xreal) = D (xfake) = 1

2 for all
xreal ∈ Pdata and xfake ∈ Pmodel and if it is maximized (JSD(Pdata‖Pmodel) = log(2)), then D (xreal) =
1, D (xfake) = 0 for all xreal ∈ Pdata and xfake ∈ Pmodel.
Thus, if we were directly minimizing the divergence from maximum to minimum, we would expectD (xreal)
to smoothly decrease from 1 to 0,5 for most xreal and D (xfake) to smoothly increase from 0 to 0,5 for most
xfake (Figure 18a) However, when minimizing the saturating loss in SGAN, we only increaseD (xfake) , we
do not decrease D (xreal) (Figure 18b). Furthermore, we bring D (xfake) closer to 1 rather than 0,5. This
means that SGAN dynamics are very different from the minimization of the JSD. To bring SGAN closer
to divergence minimization, training the generator should not only increase D (xfake) but also decrease
D (xreal) (Figure 18c).

3. Gradient argument: This last argument is based on the analysis of the gradients for both SGAN and
IPM-based GANs. It can be shown that the gradients of the discriminator and generator in non-saturating
SGANs are, respectively:

∇wLGAND = −Exr∼Pdata [(1−D (xr))∇wC (xr)] + Exf∼Qθ [D (xf)∇wC (xf)] , (40)

∇θLGANG = −Ez∼Pz [(1−D(G(z)))∇xC(G(z))JθG(z)] , (41)

where w and θ are the discriminator and generator weights respectively and J is the Jacobian.
It can also be shown that the gradients of the discriminator and generator in IPM-based GANs are,
respectively:

∇wLIPMD = −Exr∼Pdata [∇wC (xr)] + Exf∼Qθ [∇wC (xf)] , (42)

∇θLIPMG = −Ez∼Pz [∇xC(G(z))JθG(z)] , (43)

where C(x) ∈ F (the class of functions assigned by the IPM).
From these equations, it can be observed that the SGAN would share the same gradient as IPM-based
GANs given that:

(a) D (xr) = 0, D (xf) = 1 in the discriminator step of SGAN;

(b) D (xf) = 0 in the generator step of SGAN;

(c) C(x) ∈ F .

Assuming that the discriminator and generator are trained to optimality in each step and that it is possible
to perfectly distinguish real from the fake data (strong assumption, but generally true early in the training
stage); we have that D (xr) = 1, D (xf) = 0 in the generator step and that D (xr) = 1, D (xf) = 1 in the
discriminator step for most xr and xf (Figure 18b). Thus, the only missing assumption is that D (xr) = 0
in the discriminator step.

This means that an SGAN could be equivalent to the IPM-based GANs, in certain situations, if the gener-
ator could indirectly influence D (xr). Considering that IPM-based GANs are generally more stable than
SGAN, it would be reasonable to expect that making an SGAN closer resemble the IPM-based GANs
could improve its stability.

In IPMs, both real and fake data equally contribute to the gradient of the discriminator’s loss function.
However, in SGAN, if the discriminator reaches optimality, the gradient completely ignores real data.
This means that if D (xr) does not indirectly change when training the discriminator to reduce D (xf)
(which might happen if real and fake data have different supports or if D has a very large capacity), the

29

discriminator will stop learning what it means for data to be "real" and training will focus entirely on
fake data. In which case, fake samples will not become more realistic and training will get stuck. On
the other hand, if D (xr) always decreases when D (xf) increases, real data will always be incorporated
in the gradient of the discriminator loss function. The author of [22] also supports this argument with
experimental evidence.

The modifications needed to make a discriminator relativistic (i.e., having the output of D depend on
both real and fake data) is to sample from real/fake data pairs x̃ = (xr,xf) and define it as D(x̃) =
sigmoid (C (xr)− C (xf))

In the paper the author argues that we can interpret this modification in the following way: the discrimi-
nator estimates the probability that the given real data is more realistic than randomly sampled
fake data.

Similarly, we can define Drev(x̃) = sigmoid (C (xf)− C (xr)) as the probability that the given fake data is
more realistic than a randomly sampled real data. An interesting property of this discriminator is that we do
not need to include Drev in the loss function through log (1−Drev(x̃)), because we have that 1 − Drev(x̃) =
1− sigmoid (C (xf)− C (xr)) = sigmoid (C (xr)− C (xf)) = D(x̃); thus, log(D(x̃)) = log (1−Drev(x̃)).

The discriminator and generator (non-saturating) loss functions of the Relativistic Standard GAN (RSGAN)
can be written as:

LRSGAND = −E(xr,xf)∼(Pdata,Pmodel) [log (sigmoid (C (xr)− C (xf)))] , (44)

LRSGANG = −E(xr,xf)∼(Pdata,Pmodel) [log (sigmoid (C (xf)− C (xr)))] . (45)

More generally, relativistic GANs (with symmetric loss functions, the formulation can be made more general)
can be formulated as

LRGAN∗D = E(xr,xf)∼(Pdata,Pmodel) [f1 (C (xr)− C (xf))] , (46)

and
LRGAN∗G = E(xr,xf)∼(Pdata,Pmodel) [f1 (C (xf)− C (xr))] . (47)

Algorithm 3 shows how to train RGANs of this form.

Input: Number of D iterations nD (nD = 1 unless we want to train D to optimality), batch size m, loss
function f1 from equation (46)

while θ has not converged do
for t = 1, . . . , nD do

Sample
{
x(i)
}m
i=1
∼ Pdata

Sample
{
z(i)
}m
i=1
∼ Pz

Update w using SGD by ascending with ∇w 1
m

∑m
i=1

[
f
(
Cw
(
x(i)
)
− Cw

(
Gθ
(
z(i)
)))]

end
Sample

{
x(i)
}m
i=1
∼ Pdata

Sample
{
z(i)
}m
i=1
∼ Pz

Update θ using SGD by ascending with ∇θ 1
m

∑m
i=1

[
f
(
Cw
(
Gθ
(
z(i)
))
− Cw

(
x(i)
))]

end
Algorithm 3: Training Algorithm for non-saturating RGANs with symmetric loss functions

3.1.4 Relativistic Average GAN

In [22] Jolicoeur-Martineau argues that although the relative discriminator provides the missing property that
we want in GANs (i.e., G influencing D (xr)) its interpretation is different from the standard discriminator.
Rather than measuring “the probability that the input data is real”, it now measures “the probability that the
input data is more realistic than randomly sampled data of the opposing type (fake if the input is real or real if
the input is fake)”. To make the relativistic discriminator act more globally, the author proposes the Relativistic
average Discriminator (RaD), which compares the critic of the input data to the average critic of samples of
the opposite type. The discriminator loss function for this approach can be formulated as:

LRaSGAN
D = −Exr∼Pdata

[
log
(
D (xr)

)]
− Exf∼Pmodel

[
log
(
1−D (xf)

)]
, (48)

30

where
D(x) =

{
sigmoid

(
C(x)− Exf∼PmodelC (xf)

)
, if x is real,

sigmoid (C(x)− Exr∼PdataC (xr)), if x is fake. (49)

RaD has a more similar interpretation to the standard discriminator than the relativistic discriminator. With
RaD, the discriminator estimates the probability that the given real data is more realistic than
fake data, on average. This approach is also favored because it has O(m) complexity, unlike other approaches
explored in [22]. Algorithm 4 shows how to train GANS in this specific setup.

Input: Number of D iterations nD (nD = 1 unless we want to train D to optimality), batch size m, loss
function f1 from equation (46)

while θ has not converged do
for t = 1, . . . , nD do

Sample
{
x(i)
}m
i=1
∼ Pdata

Sample
{
z(i)
}m
i=1
∼ Pz

Let Cw (xr) = 1
m

∑m
i=1 Cw

(
x(i)
)

Let Cw (xf) = 1
m

∑m
i=1 Cw

(
Gθ
(
z(i)
))

Update w using SGD by ascending with
∇w 1

m

∑m
i=1

[
f1

(
Cw
(
x(i)
)
− Cw (xf)

)
+ f1

(
Cw
(
Gθ
(
z(i)
))
− Cw (xr)

)]
end
Sample

{
x(i)
}m
i=1
∼ Pdata

Sample
{
z(i)
}m
i=1
∼ Pz

Let Cw (xr) = 1
m

∑m
i=1 Cw

(
x(i)
)

Let Cw (xf) = 1
m

∑m
i=1 Cw

(
Gθ
(
z(i)
))

Update θ using SGD by ascending with
∇θ 1

m

∑m
i=1

[
f1

(
Cw
(
Gθ
(
z(i)
))
− Cw (xr)

)
+ f2

(
Cw
(
x(i)
)
− Cw (xf)

)]
end

Algorithm 4: Training Algorithm for non-saturating RaGANs with symmetric loss functions

3.1.5 Conditional GAN

In all GAN setups described so far, the input to the generator is always defined as
{
z(i)
}m
i=1
∼ Pz (Pz being an

easy-to-sample distribution such as N (0, 1)) per batch where m is the batch size. This way, we simply ask a
well-trained G to generate a random sample from Pdata. It is possible however to condition this generation on
additional information that is also added as an input to G. An illustration of this setup can be seen in Figure
19. In the conditional setup, training is conducted in the same way, only adding the conditional information as

input to both G and D as part of each sample. There are few restrictions on the way this conditional information
may be added as input to the networks. It may be through concatenation to the noise input as in [34], as input
to a hidden layer, as in [24], etc. This can be visualized in Figure 19.

In many papers, Conditional GANs have been proven to be more robust and able to produce better quality
samples than classical GANs. Conditional information is very diverse, it can be in the form of a class as in [15]. It
can be a corrupted image in order to perform reconstruction as in [29] or it can be as a base photo to "beautify"
it, as in [7]. In our case as we will detail in an upcoming section we will teach our GAN to generate different
dimensions of a time series by conditioning on one dimension, which we will call the "principal" dimension.

31

Figure 19: Conditional GAN Diagram
In this diagram, the conditional information is supplied to both networks by concatenation with the inputs of each
network.

3.2 Experiments Setup
In this section we give a summary of some of the architectural choices and training settings that we will use
in the Experiments section. The architectures listed perform well on the experiments of Appendix A but fail
in real datasets. For the experiments on real datasets we have chosen more complex setups which shall remain
undisclosed due to confidentiality issues. For inquiries, please contact ETS Asset Management Factory. All
models are implemented in Keras (see [5]).

WGAN-GP Architecture
In Tables 1 and 2 the architectures used with the WGAN-GP setup are detailed. For training we use RMSPROP
with η = 0.00005 as the optimizer.

Relativistic Average GAN Architecture
In Tables 3 and 4 the architectures used with the Relativistic Average GAN setup are detailed. For training we
use Adam with η = 0.0002, β1 = 0.5, beta2 = 0.999 as the optimizer.

32

https://www.etsfactory.com/contact.aspx

Layer Layer Type Parameters Output Shape
1 Input Noise Input (None, 50)
2 Dense Units=100, BN,LeakyReLu(0.2) (None, 100)
3 Expand Dim — (None, 100,1)
4 Conv1D Filters = 32, kernel size= 3, padding =’same’ BN,LeakyReLu(0.2) (None, 100,32)
5 Upsampling1D — (None, 200,32)
6 Conv1D Filters = 32, kernel size= 3, padding =’same’ BN,LeakyReLu(0.2) (None, 200,32)
7 Upsampling1D — (None, 400,32)
8 Conv1D Filters = 32, kernel size= 3, padding =’same’ BN,LeakyReLu(0.2) (None, 400,32)
9 Upsampling1D — (None, 800,32)
10 Conv1D Filters = 1, kernel size= 3, padding =’same’ BN,LeakyReLu(0.2) (None, 800,1)
11 Squeeze Dim — (None, 800)
12 Dense Units=100, BN,LeakyReLu(0.2) (None, 100)

Table 1: WGAN-GP Generator Architecture

Layer Layer Type Parameters Output Shape
1 Input — (None, 100)
2 Expand Dim — (None, 100,1)
3 Conv1D Filters = 32, kernel size= 3, padding =’same’ BN,LeakyReLu(0.2) (None, 100,32)
4 Maxpooling Pool size = 2 (None, 50,32)
5 Conv1D Filters = 32, kernel size= 3, padding =’same’ BN,LeakyReLu(0.2) (None, 50,32)
6 Maxpooling Pool size = 2 (None, 25,32)
7 Conv1D Filters = 32, kernel size= 3, padding =’same’ BN,LeakyReLu(0.2) (None, 25,32)
8 Maxpooling — (None, 25,32)
9 Flatten — (None, 800)
10 Dense Units = 50, LeakyReLu(0.2) (None, 50)
11 Dense Units=15, LeakyReLu(0.2) (None, 15)
12 Dense Units=1, LeakyReLu(0.2) (None, 1)

Table 2: WGAN- GP Critic Architecture

Layer Layer Type Parameters Output Shape
1 Input "Base" Series Input (None, 100)
2 Expand Dim — (None, 1,100)
3 Input Noise Input (None, 100)
4 Expand Dim — (None, 1,100)
5 Concatenate — (None, 2,100)
6 Expand Dim — (None, 2,100,1)
7 Conv2D Filters = 512, kernel size= (2,5), padding =’same’ BN,LeakyReLu(0.2) (None,2,100,512)
8 Conv2D Filters = 256, kernel size= (2,5), padding =’same’ BN,LeakyReLu(0.2) (None,2,100,256)
9 Conv2D Filters = 128, kernel size= (2,5), padding =’same’ BN,LeakyReLu(0.2) (None,2,100,128)
10 Conv2D Filters = 64, kernel size= (2,5), padding =’same’ BN,LeakyReLu(0.2) (None,2,100,64)
11 Conv2D Filters = 32, kernel size= (2,5), padding =’same’ BN,LeakyReLu(0.2) (None,2,100,32)
12 Conv2D Filters = 16, kernel size= (2,5), padding =’same’ BN,LeakyReLu(0.2) (None,2,100,16)
13 Conv2D Filters = 8, kernel size= (2,5), padding =’same’ BN,LeakyReLu(0.2) (None,2,100,8)
14 Conv2D Filters = 4, kernel size= (3,3), padding =’same’ BN,LeakyReLu(0.2) (None,2,100,4)
15 Conv2D Filters = 2, kernel size= (3,3), padding =’same’ BN,LeakyReLu(0.2) (None,2,100,2)
16 Conv2D Filters = 1, kernel size= (2,1), padding =’valid’ BN,LeakyReLu(0.2) (None,1,100,1)
17 Squeeze Dim — (None, 1,100)
18 Squeeze Dim — (None,100)

Table 3: Relativistic Average GAN Generator Architecture

33

Layer Layer Type Parameters Output Shape
1 Input "Base" Series Input (None, 100)
2 Input "Associated" Series Input (None, 100)
3 Concatenate — (None, 200)
4 Expand Dim — (None, 200,1)
5 Conv1D Filters = 64, kernel size= 3, padding =’same’,LeakyReLu(0.2) (None, 200,64)
6 Conv1D Filters = 64, kernel size= 3, padding =’same’,LeakyReLu(0.2) (None, 200,64)
7 Conv1D Filters = 64, kernel size= 3, padding =’same’,LeakyReLu(0.2) (None, 200,64)
8 Conv1D Filters = 64, kernel size= 3, padding =’same’,LeakyReLu(0.2) (None, 200,64)
9 Conv1D Filters = 32, kernel size= 3, padding =’same’,LeakyReLu(0.2) (None, 200,32)
10 Conv1D Filters = 32, kernel size= 3, padding =’same’,LeakyReLu(0.2) (None, 200,32)
11 Conv1D Filters = 32, kernel size= 3, padding =’same’,LeakyReLu(0.2) (None, 200,32)
12 Conv1D Filters = 32, kernel size= 3, padding =’same’,LeakyReLu(0.2) (None, 200,32)
13 Dense Units = 100, LeakyReLu(0.2) (None, 100)
14 Dense Units=50, LeakyReLu(0.2) (None, 50)
15 Dense Units=1, LeakyReLu(0.2) (None, 1)

Table 4: Relativistic Average GAN Critic Architecture

4 Experiments
In this chapter we carry out experiments with financial datasets of our interest. We want to verify whether or
not the WGAN-GP (3.1.2) and the RaGAN (3.1.4) can capture the structure of financial time series and pro-
duce diverse scenarios. Evaluation of our procedures is however complex, there is no clear consensus on the way
to quantitatively score samples. GANs are harder to evaluate than other generative models because it can be
difficult to estimate the likelihood for GANs as they do not provide an explicit representation of Pmodel. Many
of the difficulties with evaluating generative models are described in [43] and [30], [4] focus on GANs in particular.

In spite of these hardships, in our first experiment we will first measure quality by showing a series of
distributional and time series statistics in order to illustrate how similar the real and synthetic samples are.
In our second and third experiments, we will choose to carry out the "Train on Synthetic, Test on real Data"
approach, detailed in Section 4.4, to quantify the quality of our models. Additional experiments on synthetic
datasets can be seen in Appendix A.

4.1 SP500 Stocks Generation with WGAN-GP
The first dataset of our interest consists of the daily returns of a set of 330 stocks belonging to the SP500 for a
period of 4106 days from 3/1/2000 to 29/4/2016. Some samples of the dataset are presented in Figure 20.

We train our WGAN-GP with networks designed to process 1-dimensional time series and then require the
generator to sample 330 new synthetic samples from Pmodel. Two samples are pictured in Figure 21

34

Figure 20: Historical returns of two components of the SP500

Figure 21: Synthetic returns of two components of the SP500

The synthetic samples are similar to those of Pdata, we can see volatility clustering being reproduced as well
as the same order of trends/macro states. A quantitative measure of "sample quality" is however not clearly
defined as we have already mentioned. This is why in the following subsection we are going to give a summary
of the statistics concerning the distribution of synthetic returns as well as some time-dependent properties, in
order to see how similar they are to those of the real returns.

4.1.1 Statistical Analysis of Synthetic Series

Figures 22, 23, 24, 25, 26 illustrate the computed statistics of synthetic data samples. We observe that the
WGAN-GP captures the structure of the original series, and we could enlarge the dataset this way. We however
aim to simulate “novel” financial scenarios and the WGAN-GP logically mimics the structure of the only scenario
we have shown it, namely the US economy between 2000-2016.

This is why, in our next experiment, we modify the dataset before feeding it to the WGAN-GP. By using
rolling windows of the series, we make Pdata more diverse, so that the WGAN-GP may learn that for a given
period, the series of interest may behave in different ways.

35

Figure 22: Kurtosis boxplot of real and syn-
thetic series
The kurtosis is defined as the fourth standarized
moment

E[(X−µ)4]
(E[(X−µ)2])2

Figure 23: Skewness boxplot of real and syn-
thetic series
The skewness is defined as the third standarized
moment

E[(X−µ)3]

(E[(X−µ)2])3/2

Figure 24: Monthly Returns correlations of real and synthetic series
We calculate the monthly returns of each series and then calculate the correlation coefficient corr(X,Y) = cov(X,Y)

σXσY
=

E[(X−µX)(Y−µY)]
σXσY

for each of the 330 series of each dataset.

Figure 25: Average of the correlation coefficients between returns of consecutive days

4.2 VIX Scenarios with Conditional WGAN-GP
In order to illustrate the process of generating diverse financial scenarios with WGAN-GP, we choose another
dataset of interest, the daily closing prices of the Chicago Board of Options Exchange Volatility Index, com-

36

Figure 26: Average of the correlation coefficients between absolute returns of consecutive days

monly known as the VIX, for the period 02/01/2004-04/04/2019, pictured in Figure 27. We choose 02/01/2004
as the start of the dataset because it was when the VIX started with its current methodology.

As explained by the CBOE, intraday VIX values are based on snapshots of SPX option bid/ask quotes every
15 seconds and are intended to provide an indication of the fair market price of expected volatility at particular
points in time. There are many ways in which investors may choose to participate in the VIX such as VIX-based
options, futures or ETFs and it is considered one of the most important ways in which investors may interact
with market volatility. Because of this, the behaviour of the VIX has been widely studied, and many volatility
models have been proposed to model its dynamics.

Figure 27: VIX daily closing prices for the period 02/01/2004-04/04/2019

We now build the dataset of interest by taking segments of the closing prices for 1000 days, rolling for-
ward 100 days at a time, so that all series share 100 days with the previous and following series. From these
closing prices we calculate daily returns. In this way, we get a dataset consisting of snapshots with different
behaviours of the VIX over time. We employ our WGAN-GP in a conditional setup; the VIX tends to be
mean-reverting, hence the price level at which the series starts is important. If at the start of the series the
VIX is valued at 60 points, it is more likely to descend in the following days, given its past behaviour. In
order to make our WGAN-GP conditional, as explained in Section 3.1.5, we simply add to each series of re-
turns its starting level, and concatenate it along the noise vector as input to the generator and the discriminator.

After training, the model has to produce samples of Pmodel by sampling from a vector of 50 random instances
of Pz (N (0, 1) in our case) and by randomly sampling starting prices from the dataset. We get a series of returns
as the generator output and calculate prices evolving from the starting price, the resulting synthetic series can
be visualized in Figures 28a,28b, 28c and 28d. A video illustrating the outputs resulting from an interpolation
of the initial price from 60 to 10 and a fixed noise seed can be seen here.

37

https://vimeo.com/343395616

(a) Synthetic VIX sample No 1

(b) Synthetic VIX sample No 2

(c) Synthetic VIX sample No 3

(d) Synthetic VIX sample No 4

Figure 28: Synthetic VIX samples

38

The results are visually promising. We could again visualize some statistics about the synthetic series and
compare them to those of the original, but in this case the “stylized facts” of the VIX have not been as widely
studied as those of stock prices. Instead we will demonstrate their quality in Section 4.4.

4.3 VIX and SP500 Scenarios
Our last objective regarding generating synthetic data is the generation of diverse and multidimensional sce-
narios. One approach we could take would be repeating the steps of Section 4.2 with multidimensional-series,
modifying our networks so that they can handle matrix-shaped data. This approach resulted in mode collapse,
as the networks had to be scaled up significantly and thus made training very costly and unstable even with
WGAN-GP and Relativistic Average GAN.

In order to overcome this "curse of dimensionality" in the multidimensional case, we propose the following
generation procedure:

Given a multidimensional series, we carry out the following steps:

1. We first take rolling periods of the series as in Section 4.2. Then we choose one of the dimensions of the
series as the "principal" dimension and all the others as "secondary" dimensions.

2. We construct a dataset for each "secondary" dimension by taking the synchronous periods of the "prin-
cipal" and the corresponding "secondary" dimension.

3. We train a Relativistic Average GAN in a conditional setup by supplying the "principal" dimension as
conditional information to the generator and have it generate the "secondary" dimension. We then input
both series to the discriminator. This way the generator can learn what the "secondary" dimension
behaviour would be given a "principal" dimension.

4. We now train a WGAN-GP as in section 4.2 only on the "principal" dimension and generate scenarios
(i.e. samples of Pmodel) of the "principal" dimension.

5. Finally, for each sample of the "principal" dimension, we conditionally generate each of the "secondary"
dimensions with each of the trained Relativistic Average GANs by giving as input the "principal" dimen-
sion.

These steps can be summarized in the form of pseudocode in Algorithm 5.

Input: Multidimensional Time Series
Output: Synthetic Scenarios of the input Time Series
begin

Choose one dimension as "principal" dimension, the remaining will be the "secondary" dimensions.
foreach d in "secondary" dimensions do

1. Construct a dataset by taking synchronous rolling periods of the "principal" dimension and d.

2. Train a Relativistic Average GAN in a conditional setup conditioning on the "principal" dimension and
having the generator generate the corresponding d period.

end
Train a WGAN-GP as in section 4.2 on the "principal" dimension and generate samples from Pmodel
foreach Sample of Pmodel of the "principal" dimension do

foreach d in "secondary" dimensions do
Conditionally generate, with the previously trained Relativistic Average GAN on dimension d,
the corresponding the d period by conditioning on the synthetic "principal" dimension sample

end
end

end
Algorithm 5: Proposed Multidimensional Time Series Generation Procedure.

In order to illustrate our procedure we choose as a dataset a 2-dimensional time series composed of the VIX
and the SP500 indices. These two indices have a pronounced negative correlation. Whenever the SP500 has

39

Figure 29: Relationship between the VIX and the SP500

(a) Synthetic VIX sample conditioned on the SP500 No 1

a prolonged downwards period, the market volatility increases, so the VIX does as well. This is illustrated in
Figure 29.

We choose the daily returns of the SP500 as the "principal" series and the returns of the VIX as the
"secondary" series. We construct the dataset by taking rolling periods of 100 days advancing 100 days every
time, making pairs of "principal" series from the SP500 and "secondary" series from the VIX following Steps 1
and 2 of Algorithm 5. After having trained our Relativistic Average GAN as in Step 3 of Algorithm 5, we
can ask it to conditionally generate "secondary" series, by giving the "principal" series as inputs. We illustrate
the results in Figures 30a, 30b and 30c. The figures show the resulting normalized rolling series of prices given
the returns produced by the Relativistic Average GAN.

Following Step 4 of Algorithm 5, now we need to generate new "principal" series as in Section 4.2 . As in
Step 3 we have trained the Relativistic Average GANs on returns of both the SP500 and the VIX, along with
the SP500 returns we need to generate the starting point of the VIX for each SP500 "principal" series.

Finally following Step 5 of Algorithm 5, we conditionally generate the VIX returns, given our synthetic
SP500 series and the VIX starting point and calculate the rolling series of the VIX prices. The results can be
visualized in Figures 31a, 31b, 31c, 31d.

The generated samples clearly reflect the negative correlation present in the real data, but as we have already
mentioned, there is no clear consensus on the way to quantitatively evaluate GAN performance, see [30], [4] .
This is why in the next section we carry out one of the most popular evaluation techniques.

40

(b) Synthetic VIX sample conditioned on the SP500 No 2

(c) Synthetic VIX sample conditioned on the SP500 No 3

Figure 30: Synthetic VIX samples conditioned on the SP500

41

(a) Synthetic VIX and SP500 series No1

(b) Synthetic VIX and SP500 series No2

42

(c) Synthetic VIX and SP500 series No3

(d) Synthetic VIX and SP500 series No4

Figure 31: Synthetic VIX samples conditioned on the SP500

43

4.4 "Train on Synthetic, Test on Real Data"
Training neural networks on synthetic data is an active research field, in which much research has been done in
the case of images, given the success of image-generating GANs, see [45], [32]. A successful training on synthetic
data has been used in many cases as a measure of performance for GANs. If the GAN can generate data able
to train another model, then the synthetic data can be considered as coming from Pdata.

This approach was first proposed in the case of Time Series in [10]. It consists of performing supervised
training of a classifier on a synthetic dataset generated by the GAN and then testing the trained model on a
held-out set of real data. This evaluation metric is among the most popular, since it demonstrates that the
synthetic data produced by the GAN may be used in real applications.

4.4.1 VIX Scenarios with Conditional WGAN-GP Evaluation

In order to evaluate the quality of the series generated in Section 4.2, the supervised task we choose is forecasting
VIX movements with the ResNet from Section 2.2.1. The VIX tends to be mean-reverting and it stays in the
10-15 points range for long periods of time. Hence the options with strike prices in this range are very popular.
Knowing whether the VIX will be above or under 15 points say, a month ahead, could be very valuable infor-
mation. Given the last 30 prices of the VIX, can the ResNet predict at what level the VIX will be 20 trading
days from today?

First, we perform training in the classic way, splitting the dataset in a training set from 01/02/2004 to
10/20/2015 and a test set from 20/11/2015 to 04/04/2019. We split each dataset in periods of 30 days (non-
overlapping in the training set and overlapping in the test set) and then divide the samples in two classes:

1. Class 0: The VIX price 20 days ahead the last day of each period was below 15.

2. Class 1: The VIX price 20 days ahead the last day of each period was above 15.

We conduct training for 2000 iterations, the loss/accuracy plots can be seen in Figure 32. The accuracy
stabilizes close to 60% and the loss plot suggests some overfitting to the training data. These results are
coherent, financial data is ever-changing by nature, and for this reason, overfitting is to be expected.

Figure 32: Loss/Accuracy plots of the original training set

We now employ the “Train on Synthetic, test on Real Data” approach, by first generating VIX price series
(using only training data as input to the GAN) as in Section 4.2. Sampling subsequently from Pmodel we add
the samples to the training set and carry out the ResNet training as before.

We can see in Figure 33 that ResNet can be trained by synthetic data in a similar fashion as the real data,
passing the quality test. Not only that, the enlarged dataset allows the ResNet to reach a higher accuracy,
around 70%, on the test set. This tells us that our synthetic data is not only similar to the training
data that we used to generate it, but also more similar to the test data than the training data.
The synthetic samples produced by our GAN mitigate overfitting and make the model generalize better. This
behaviour is consistent among different training runs, see Appendix B.1.

44

Figure 33: Loss/Accuracy plots of the enlarged training set

Still, as evidenced by the plots, random sampling is as accurate as forecasting with the ResNet, so it would
not be a great rule to use as an investment strategy.

4.4.2 VIX and SP500 Scenarios Evaluation

In order to evaluate the quality of the series generated in Section 4.3 the supervised task we choose is forecasting
the SP500 movements with the ResNet from Section 2.2.1. Given the last 30 prices of the VIX and the last 30
returns of the SP500, can the ResNet predict the trend of the SP500 20 days ahead?

In order to perform this forecast we split the dataset in non-overlapping periods of 30 days and then divide
the samples in three classes:

1. Class 0: The SP500 loses more than 2.5% of its value on the following 20 days.

2. Class 1: The SP500 price stays within a 2.5% range on the following 20 days.

3. Class 2: The SP500 appreciates more than 2.5% of its value on the following 20 days.

We perform training in the classic way, splitting the dataset in a training set from 01/02/2004 to 10/20/2015
and a test set from 20/11/2015 to 04/04/2019. We conduct training for 2000 iterations, the loss/accuracy plots
can be seen in Figure 34.

Figure 34: Loss/Accuracy plots of the original training set

We now employ the “Train on Synthetic, Test on Real Data” approach, generating SP500 and VIX series
(using only training data as input to the GAN) following Algorithm 5. We add the samples to the training set
and carry out the ResNet training as before. The loss/accuracy plots can be seen in Figure 35.

In this experiment, our results are worse, as the ResNet does not reach the accuracy achieved by real data,
meaning that the synthetic data is not as similar to real data as in earlier experiments. Even though, the

45

Figure 35: Loss/Accuracy plots of the synthetic training set

samples produced by Algorithm 5 are visually coherent, they do not pass the “Train on Synthetic, Test on Real
Data” test. This behaviour is consistent among different training runs, see Appendix B.2.

46

5 Conclusions
In this work we explored the application of Generative Adversarial Networks to time series data, in order to
perform data augmentation of financial datasets.

We proposed first for the one-dimensional case the use of Wasserstein’s GAN with Gradient Penalty cou-
pled with 1-dimensional convolutional networks in order to work on time series data. We checked the relevant
statistics comparing the generated series to the original ones and then proposed taking a rolling window of the
original series in order to induce variability of scenarios.

We proposed a conditional implementation of the Relativistic Average GAN, in order to avoid mode col-
lapse in the multidimensional case. Our method involves first training a conditional Relativistic Average GAN
on pairs of "principal" and "secondary" series for each dimension, so that it learns the relationship between
dimensions of the time series, then generating a varied one-dimensional dataset with WGAN-GP and finally
obtaining the remaining dimensions by running one Relativistic Average GAN for each dimension.

In Section 4.4 we showed an approach to measuring the performance of the generation procedures. This
approach illustrated how synthetic data can help deep learning models mitigate overfitting and generalize
better. These results open up many research paths, given the flexibility of our procedures, possibly leading to
new applications of deep learning and reinforcement learning techniques in financial settings, as lack of training
data and overfitting have been two of the biggest concerns which have set back this kind of developments.

47

6 Further Research
Our work could be further extended by researching the following topics:

1. Improved Multidimensional Time Series Generation Procedure.

An improved procedure in the spirit of Algorithm 5, that could consistently pass the "Train on Synthetic,
Test on Real Data" approach test would be a big research milestone. Perhaps instead of conditionally
sampling the different dimensions as in our approach, simply building a network that could perform classic
generation as in Section 4.2 of multidimensional series while avoiding Mode Collapse.

2. Improved architectures and technical tricks for the Generator and Discriminator Networks.

In the GAN community, many papers focus solely on implementing new improved architectures for the
networks used as generator and discriminator and demonstrating the usefulness of certain techniques, such
as Batch Normalization, Residual Connections, in order to beat state-of-the-art FiD and Inception scores.
While some of these breakthroughs are universal to all GANs, they’re mostly focused on image generation
and time series data presents a completely different structure for which we think a lot could be researched.

3. Baseline Performance Metric.

Development of GANs for time series generation relies upon having a common baseline metric of success,
in the same way as the Fréchet Inception Distance and the Inception Score are used in Image Genera-
tion. Having a standard classifier such as the ResNet and taking AUC scores of a fixed hyperparameter
classification between real and synthetic data could be an approach.

4. Improved Time Series Classification and Prediction Deep Models.

While parallel to our research, having new time series specific models to justify the improvement of data
augmentation techniques would probably be a great incentive.

48

A Experiments on Synthetic Datasets

A.1 WGAN-GP on sine curves
In order to perform a sanity check of our generative models and assure their correct implementation, we tested
their performance on a simple dataset on which the expected behaviour is easily verified. The dataset we chose
is composed of sine curves with random period and amplitude, some samples of the dataset can be visualized
in Figure 36.

Figure 36: Samples of Pdata

We train our WGAN-GP of Section 3.1.2 on this dataset and then ask it to generate samples from Pmodel. The
results are visualized in Figure 37. The samples from Pmodel look similar to those of Pdata, some imperfections
are noticeable but they also have different periods and amplitudes as well as the oscillating behavior.

Figure 37: Sample of Pmodel

A.2 Relativistic Average GAN on sine curves
Similarly as in the previous section, we perform a sanity check with our implementation of the Relativistic
Average GAN in a conditional setup. We take the same dataset as in the previous section and construct
samples of "principal" and "secondary" curves by taking the sine curves and their additive inverse. We only
carry out the Steps 1-3 of Algorithm 5. After training the model, we generate samples from Pmodel, the results
can be visualized in Figure 38.

49

Figure 38: Sample of Pmodel

A.3 WGAN-GP on Heston Paths
In this experiment, our aim is to verify whether a GAN trained on series resulting of a Monte Carlo simulation of
the Heston Stochastic volatility model [18] can replicate the characteristic implied volatility smile of the Heston
model.

To do so, we follow Section 9.4.3 of [46] and perform the Almost Exact Simulation of the Heston model
(with the parameter set of Section 8.2.2 of [46]) in order to generate N=100.000 Heston paths.

We train a WGAN-GP on this dataset and generate 100.000 synthetic paths at different training stages.
The different implied volatility smiles calculated from the synthetic series at each training stage can be seen in
Figure 39. Table 5 shows the L1 distance of the synthetic implied volatility smiles and the original smile.

Figure 39: Comparison of the original and synthetic Implied Volatility Smiles.

The GAN has learned to produce paths that lead to implied volatility smiles similar to the original, but
the L1 distances don’t decrease as training advances. This is likely due to the fact that in this experiment, our
dataset is composed of samples that originate from an stochastic process, so it’s likely that the samples don’t

50

Iterations 25000 50000 100000
L1 distance 1.4873 4.3802 3.17425

Table 5: Distances between the original and synthetic implied volatility smiles

lie in a manifold in Pdata space, hence the GAN struggles to find the shared structure between samples.

B Loss/Accuracy Plots for the ResNet Experiments

B.1 VIX Scenarios with Conditional WGAN-GP Evaluation
Additional Loss/Accuracy plots of different training runs on the ResNet in the experiment of Section 4.4.1 are
found in Figures 40, 41.

Figure 40: Loss/Accuracy plots on the original training set

Figure 41: Loss/Accuracy plots on the enlarged training set

B.2 VIX and SP500 Scenarios with WGAN-GP and RaGAN Evaluation
Additional Loss/Accuracy plots of different training runs on the ResNet in the experiment of Section 4.4.2 are
found in Figures 42, 43.

51

Figure 42: Loss/Accuracy plots on the original training set

Figure 43: Loss/Accuracy plots on the enlarged training set

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fer-
nanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available from
tensorflow.org.

[2] Martín Arjovsky and Léon Bottou. Towards principled methods for training generative adversarial net-
works. CoRR, abs/1701.04862, 2017.

[3] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. arXiv e-prints, page
arXiv:1701.07875, Jan 2017.

[4] Ali Borji. Pros and Cons of GAN Evaluation Measures. arXiv e-prints, page arXiv:1802.03446, Feb 2018.

[5] François Chollet et al. Keras. https://keras.io, 2015.

[6] Laurie Davies and Walter Krämer. Stylized Facts and Simulating Long Range Financial Data. arXiv
e-prints, page arXiv:1612.05229, Dec 2016.

[7] Nir Diamant, Dean Zadok, Chaim Baskin, Eli Schwartz, and Alex M. Bronstein. Beholder-GAN: Gener-
ation and Beautification of Facial Images with Conditioning on Their Beauty Level. arXiv e-prints, page
arXiv:1902.02593, Feb 2019.

[8] John C. Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

52

https://keras.io

[9] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep learning. arXiv e-prints,
page arXiv:1603.07285, Mar 2016.

[10] Cristóbal Esteban, Stephanie L. Hyland, and Gunnar Rätsch. Real-valued (Medical) Time Series Genera-
tion with Recurrent Conditional GANs. arXiv e-prints, page arXiv:1706.02633, Jun 2017.

[11] Shintaro Funahashi, Charles Bruce, and P S Goldman-Rakic. Funahashi s, bruce cj, goldman-rakic ps.
mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. j neurophysiol 61: 331-
349. Journal of neurophysiology, 61:331–49, 03 1989.

[12] Ian Goodfellow. NIPS 2016 Tutorial: Generative Adversarial Networks. arXiv e-prints, page
arXiv:1701.00160, Dec 2016.

[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 27,
pages 2672–2680. Curran Associates, Inc., 2014.

[14] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative Adversarial Networks. arXiv e-prints, page arXiv:1406.2661,
Jun 2014.

[15] Guillermo L. Grinblat, Lucas C. Uzal, and Pablo M. Granitto. Class-Splitting Generative Adversarial
Networks. arXiv e-prints, page arXiv:1709.07359, Sep 2017.

[16] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville. Improved
Training of Wasserstein GANs. arXiv e-prints, page arXiv:1704.00028, Mar 2017.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image Recognition.
arXiv e-prints, page arXiv:1512.03385, Dec 2015.

[18] Steven L. Heston. A closed-form solution for options with stochastic volatility with applications to bond
and currency options. Review of Financial Studies, 6:327–343, 1993.

[19] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal
approximators. Neural Networks, 2(5):359 – 366, 1989.

[20] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift. arXiv e-prints, page arXiv:1502.03167, Feb 2015.

[21] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain Muller.
Deep learning for time series classification: a review. arXiv e-prints, page arXiv:1809.04356, Sep 2018.

[22] Alexia Jolicoeur-Martineau. The relativistic discriminator: a key element missing from standard GAN.
arXiv e-prints, page arXiv:1807.00734, Jul 2018.

[23] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive Growing of GANs for Improved
Quality, Stability, and Variation. arXiv e-prints, page arXiv:1710.10196, Oct 2017.

[24] Tero Karras, Samuli Laine, and Timo Aila. A Style-Based Generator Architecture for Generative Adver-
sarial Networks. arXiv e-prints, page arXiv:1812.04948, Dec 2018.

[25] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv e-prints, page
arXiv:1412.6980, Dec 2014.

[26] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444, 5 2015.

[27] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

[28] Zinan Lin, Ashish Khetan, Giulia Fanti, and Sewoong Oh. PacGAN: The power of two samples in generative
adversarial networks. arXiv e-prints, page arXiv:1712.04086, Dec 2017.

[29] Guilin Liu, Fitsum A. Reda, Kevin J. Shih, Ting-Chun Wang, Andrew Tao, and Bryan Catanzaro. Image
Inpainting for Irregular Holes Using Partial Convolutions. arXiv e-prints, page arXiv:1804.07723, Apr 2018.

53

[30] Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier Bousquet. Are GANs Created
Equal? A Large-Scale Study. arXiv e-prints, page arXiv:1711.10337, Nov 2017.

[31] Hans Malmsten and Timo Teräsvirta. Stylized facts of financial time series and three popular models of
volatility. SSE/EFI Working Paper Series in Economics and Finance, (503), Aug 2004.

[32] Nikolaus Mayer, Eddy Ilg, Philipp Fischer, Caner Hazirbas, Daniel Cremers, Alexey Dosovitskiy, and
Thomas Brox. What Makes Good Synthetic Training Data for Learning Disparity and Optical Flow
Estimation? arXiv e-prints, page arXiv:1801.06397, Jan 2018.

[33] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled Generative Adversarial Networks.
arXiv e-prints, page arXiv:1611.02163, Nov 2016.

[34] Mehdi Mirza and Simon Osindero. Conditional Generative Adversarial Nets. arXiv e-prints, page
arXiv:1411.1784, Nov 2014.

[35] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines vinod
nair. volume 27, pages 807–814, 06 2010.

[36] Hariharan Narayanan and Sanjoy Mitter. Sample complexity of testing the manifold hypothesis. In J. D.
Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors, Advances in Neural
Information Processing Systems 23, pages 1786–1794. Curran Associates, Inc., 2010.

[37] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. 2017.

[38] Svetlozar Rachev. Duality theorems for Kantorovich-Rubinstein and Wasserstein functionals. Instytut
Matematyczny Polskiej Akademi Nauk, 1990.

[39] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised Representation Learning with Deep Con-
volutional Generative Adversarial Networks. arXiv e-prints, page arXiv:1511.06434, Nov 2015.

[40] Lillian J. Ratliff, Samuel A. Burden, and S. Shankar Sastry. On the Characterization of Local Nash
Equilibria in Continuous Games. arXiv e-prints, page arXiv:1411.2168, Nov 2014.

[41] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large
Scale Visual Recognition Challenge. arXiv e-prints, page arXiv:1409.0575, Sep 2014.

[42] Luca Simonetto. Generating spiking time series with generative adversarial networks: an application on
banking transactions. Master’s thesis, University of Amsterdam, Sept 2018.

[43] Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of generative models.
arXiv e-prints, page arXiv:1511.01844, Nov 2015.

[44] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5—RmsProp: Divide the gradient by a running average
of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 2012.

[45] Jonathan Tremblay, Aayush Prakash, David Acuna, Mark Brophy, Varun Jampani, Cem Anil, Thang To,
Eric Cameracci, Shaad Boochoon, and Stan Birchfield. Training Deep Networks with Synthetic Data:
Bridging the Reality Gap by Domain Randomization. arXiv e-prints, page arXiv:1804.06516, Apr 2018.

[46] Cornelis W Oosterlee and Lech Grzelak. Mathematical Modeling and Computation in Finance: With
Exercises and Python and MATLAB Computer Codes. None, 12 2019.

[47] Zhiguang Wang, Weizhong Yan, and Tim Oates. Time Series Classification from Scratch with Deep Neural
Networks: A Strong Baseline. arXiv e-prints, page arXiv:1611.06455, Nov 2016.

[48] Lilian Weng. From gan to wgan. https://lilianweng.github.io/lil-log/2017/08/20/
from-GAN-to-WGAN.html#kullbackleibler-and-jensenshannon-divergence, 2019.

[49] Matthew Zeiler, Marc’Aurelio Ranzato, Rajat Monga, Mark Mao, Ke Yang, Quoc V. Le, Phuongtrang
Nguyen, Andrew Senior, Vincent Vanhoucke, Jeffrey Dean, and Geoffrey Hinton. On rectified linear units
for speech processing. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing,
pages 3517–3521, May 2013.

54

https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html#kullbackleibler-and-jensenshannon-divergence
https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html#kullbackleibler-and-jensenshannon-divergence

	Introduction
	Research Questions
	Contributions
	Thesis Structure

	Background
	Basic concepts about neural networks
	Parameter Optimization
	Error Backpropagation
	Optimizers
	ReLU and LeakyReLU
	Batch Normalization
	Discrete Convolutions
	Convolutional Neural Networks

	Time Series Classifiers
	ResNet

	Generative Adversarial Networks
	Introduction to Generative Modelling
	The GAN framework
	GAN Training
	Non-convergence in GANs
	Theoretical Analysis of GAN Training

	Advanced GANs Setups
	Wasserstein GAN
	Wasserstein GAN with Gradient Penalty term
	Relativistic Standard GAN
	Relativistic Average GAN
	Conditional GAN

	Experiments Setup

	Experiments
	SP500 Stocks Generation with WGAN-GP
	Statistical Analysis of Synthetic Series

	VIX Scenarios with Conditional WGAN-GP
	VIX and SP500 Scenarios
	"Train on Synthetic, Test on Real Data"
	VIX Scenarios with Conditional WGAN-GP Evaluation
	VIX and SP500 Scenarios Evaluation

	Conclusions
	Further Research
	Experiments on Synthetic Datasets
	WGAN-GP on sine curves
	Relativistic Average GAN on sine curves
	WGAN-GP on Heston Paths

	Loss/Accuracy Plots for the ResNet Experiments
	VIX Scenarios with Conditional WGAN-GP Evaluation
	VIX and SP500 Scenarios with WGAN-GP and RaGAN Evaluation

