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ABSTRACT
Ambiguity resolution plays a critical role in fast and high-precision applications of the Global Navigation Satellite System
(GNSS). The parameter estimation of high-precision GNSS can benefit from ambiguity resolution when its success rate is very
close to 1 (e.g., larger than 0.995); otherwise it is better, in order to avoid a substantial probability of incorrect resolution, to
ignore the integer property of the ambiguity, and use the float solution. Nonetheless, model validation and fault detection can
still benefit from the integer property of the ambiguity with relatively low ambiguity resolution success rates (e.g. between 0.8
and 0.995) by applying the ambiguity-resolved (AR) detector test statistic based on the ambiguity-resolved residual. Due to the
integer property of the resolved (so-called fixed) ambiguity estimator, the distribution of the ambiguity-resolved residual cannot
be evaluated analytically. Consequently, the critical value of the AR detector has to be obtained numerically via Monte Carlo
simulation of the quantile. Due to the inherent uncertainty in the Monte Carlo simulation process, the implementation of the
AR detector also needs to evaluate the uncertainty associated with the simulated critical value. If the simulation uncertainty is
large, the actual significance level of the detector may deviate significantly from the target value. In this study, we first describe
the process of simulating the samples of the AR test statistic and obtaining the AR critical value for a given significance level
through Monte Carlo simulation of the quantile. A histogram of the AR test statistic samples will be shown as an example
to illustrate the irregular shape of the distribution of this test statistic. Furthermore, we introduce three methods that can be
used to evaluate the uncertainty of the simulated critical value: 1) variance based on the asymptotic normality of the Monte
Carlo quantile estimator, 2) confidence interval based on a distribution-free approach, and 3) variance obtained numerically by
repeating the simulation. We conduct experiments to compare the above three methods in terms of the consistency between the
simulation uncertainties reported by these methods. It will also be shown how the uncertainty of the critical value simulation
is affected by the specified significance level. Moreover, we provide the uncertainties of the critical value simulations for nine
observation models with various numbers of simulation samples and significance levels, offering insights into the number of
samples that should be used for simulating the ARD critical value with the desired uncertainty when applying the AR detector.

I. INTRODUCTION
Model validation is important for GNSS data processing since observables may contain unmodeled effects and cause the assumed
model to be misspecified, such as atmosphere delays and outliers due to multipath. If they remain unnoticed, the estimated
parameters can be biased (Teunissen, 2017a). The first step of the model validation is typically the detection based on an overall
model test (Baarda, 1968; Kok, 1984; Teunissen, 2000). Whether the assumed model is proper to use can be determined based
on the detection outcome.
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The GNSS mixed integer model recovers the integer property of the ambiguity vector and thus contains both real- and integer-
valued unknowns (Leick et al., 2015; Teunissen and Montenbruck, 2017). The current detection methods for the GNSS
mixed-integer model are based on the float or known ambiguity (Teunissen, 2024). In the ambiguity-float (AF) case, the test
statistic is computed with the AF residual. The integer property of the ambiguity is ignored and does not contribute to the model
validation. The ambiguity-known (AK) detector can be applied only when the ambiguity vector is given instead of estimated.
In most applications, the ambiguity vector is resolved when the success rate is close to 1 (e.g., > 0.995) and consequently
assumed to be a known vector. This approach is different from applying the AK detector. Ambiguity-resolved detection
theory (Teunissen, 2024) has recently been developed for the GNSS mixed-integer model validation. Compared with the AF
detector, the AR detector utilizes the integer property of the ambiguity vector and can provide higher detection power than the
AF detector even if the ambiguity resolution success rate is not close to 1 (Yin et al., 2024). Compared with the currently used
detection methods with the resolved ambiguity vector, it does not assume the ambiguity vector to be known and releases the
high success rate requirement for ambiguity resolution.

Since there is no closed-form expression for the distribution of the AR test statistic, the AR critical value should be obtained
numerically using Monte Carlo simulation (Teunissen, 2024). Due to the inherent uncertainty in the Monte Carlo simulation
process, the implementation of the AR detector also needs to evaluate the uncertainty associated with the simulated critical value.
If the simulation uncertainty is large, the actual significance level of the detector may deviate significantly from the target value.
This contribution focuses on two topics regarding the implementation of the AR detector: how to evaluate the uncertainty of the
simulated AR critical value and how many samples are required for the simulation to obtain a certain simulation uncertainty.

Three methods are described for the first topic: 1) variance based on the asymptotic normality of the Monte Carlo quantile
estimator, 2) confidence interval based on a distribution-free approach, and 3) variance obtained numerically by repeating the
simulation. We then use experiments to check the consistency between the three methods. To address the second topic, we
formulate nine observation models with different dimensions of ambiguity vectors and ambiguity resolution success rates. For
each model, we simulate the critical values for different significance levels with varying numbers of samples and evaluate the
uncertainty of the simulations. The experiments provide insights into the number of samples that should be used to simulate
the AR critical value when implementing the AR detector.

This contribution is organized as follows. In section II, we review the detection theory for the GNSS mixed-integer model and
introduce how to simulate the AR critical value with an example. In section III, we describe three methods to evaluate the
uncertainty of the simulated AR critical value. The three methods are compared in the first experiment in section IV. In the
second experiment in section IV, we employ nine observation models and evaluate the uncertainty of the simulation for different
significance levels with different numbers of samples. Finally, the summary and conclusions are provided in section V.

II. MIXED-INTEGER MODEL VALIDATION
In this section, we first review the misspecification detection theory for the GNSS mixed-integer model. Then, we introduce
how the critical value of the AR detector can be simulated with Monte Carlo simulation.

1. Detection theory
The (linearized) GNSS mixed integer observation model can be written as (Leick et al., 2015; Teunissen and Montenbruck,
2017),

H0 : E{y} = Aa+Bb, D{y} = Qyy, (1)

where H0 refers to the null-hypothesis; y ∼ Nm(E{y}, Qyy) is the m-vector that contains the carrier phase and pseudorange
observables which are assumed to be normally distributed; underscore ’·’ denotes a random vector or variable; a ∈ Zn contains
the unknown carrier phase ambiguities and b ∈ Rp contains real-valued unknowns; [A,B]m×(n+p) is the design matrix of full
column rank;

Two detectors currently used for detecting the misspecification in the model (1) are the ambiguity-float (AF) and ambiguity-
known (AK) detectors (Teunissen, 2024). The AF detector employs the ambiguity-float residual where the integer property of
the ambiguity is not considered,

ê = P⊥
[A,B]y, (2)

where P⊥
M = I −M(MTQ−1

yy M)−1MTQ−1
yy is an orthogonal projector that projects onto the orthogonal complement of the

range space of the given matrix M .

The AK detector utilizes the ambiguity-known residual where the ambiguity is a known integer vector and is removed from the
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unknown vector,
ê(a) = P⊥

B (y −Aa). (3)
It should be noted that the AK detector can hardly be applied in practice because the ambiguity is typically estimated instead of
deterministically known.

When ambiguity resolution is conducted, by replacing the known a in (3) with the resolved integer ambiguity vector, denoted
as ǎ, we obtain the ambiguity-resolved residual,

ě = ê(ǎ) = P⊥
B (y −Aǎ). (4)

The resolved integer ambiguity ǎ is obtained in two steps. In the first step, the integer property of the ambiguity vector is
ignored, and the so-called float estimator â and its variance-covariance (vc) matrix Qââ is computed as

â =
(
ĀTQ−1

yy Ā
)−1

ĀTQ−1
yy y, Ā = P⊥

BA,

Qââ =
(
ĀTQ−1

yy Ā
)−1

.
(5)

In the second step, the float ambiguity can be resolved to an integer vector, denoted as ǎ, with an integer estimator. Although
there are different classes of estimators to resolve the ambiguity (Teunissen, 2017b), we restrict ourselves to the class of
integer estimator in this research (Teunissen, 1999b), which resolves the float ambiguities to an integer vector. In this class
of estimators, the integer least-squares (ILS) estimator has the highest success rate of resolving the float ambiguity to the
correct integer (Teunissen, 1999a) and thus provides the performance closest to the ambiguity-known case. Therefore, this
contribution will focus on the critical value of the AR detector using the ILS estimator to resolve the ambiguity. The LAMBDA
method (Teunissen, 1995) is used to obtain the ILS solution efficiently, which conducts the integer search with the decorrelation-
transformed ambiguity vector ẑ and its vc-matrix Qẑẑ ,

ẑ = ZT â, Qẑẑ = ZTQââZ, (6)

where ZT is an admissible ambiguity decorrelation transformation matrix. The probability of resolving the float ambiguity to
the correct integer is known as the success rate, which also provides a scalar measure of the precision of the float ambiguity
estimator. The success rate of the ILS estimator can not be computed analytically but can be approximated by the integer
bootstrapping (IB) success rate with the decorrelated ambiguity (Teunissen, 1998) since it is easy-to-compute and provides a
tight lower bound (Teunissen, 1999a; Verhagen, 2003).

P (žIB = ZTa) =

n∏
i=1

[
2Φ

(
1

2σẑi|1,··· ,n−1

)
− 1

]
, (7)

where a is the correct but unknown ambiguity, n is the dimension of the ambiguity vector; Φ(x) =
∫ x

−∞
1√
2π

exp{− 1
2v

2}dv is
the cumulative distribution function (CDF) of the standard normal distribution; the conditional standard deviations σẑi|1,··· ,n−1

are the square roots of the diagonal values of the D matrix, provided by the triangular factorization Qẑẑ = LDLT .

Based on the three types of residuals, the test statistics of the three detectors can be formulated. The AF and AK detectors test
statistics, and their distributions under the null-hypothesis H0 are given as,

AF: ∥ê∥2Qyy
∼ χ2 (r, 0) ,

AK: ∥ê(a)∥2Qyy
∼ χ2 (r(a), 0) ,

(8)

where r is the redundancy of the model with the unknown ambiguities and r(a) is the redundancy of the model when the
ambiguities are known, i.e., ambiguities are excluded from the unknown vector.

The AR test statistic can be written as (Teunissen, 2024)

∥ê(ǎ)∥2Qyy
= ∥ê∥2Qyy

+ ∥ϵ̌∥2Qââ
, (9)

where ϵ̌ = â− ǎ is the ambiguity residual with the probability density function under the assumed model (1) (Teunissen, 2002)

fϵ̌(x) =

∑
z∈Zn exp{− 1

2∥x+ z∥2Qaa
}√

|2πQââ|
s0(x), (10)
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where s0(x) is the indicator function of the integer estimators’ pull-in region centered at the origin (Teunissen, 2017b).

With the corresponding test statistics, the three detectors then read

AF: Reject H0 if ∥ê∥2Qyy
> χ2

α (r, 0)

AK: Reject H0 if ∥ê(a)∥2Qyy
> χ2

α (r(a), 0)

AR: Reject H0 if ∥ê∥2Qyy
+ ∥ϵ̌∥2Qââ

> κα

(11)

where α is the user-specified significance level, and κα is the AR critical value, which can not be obtained analytically due to
the unknown distribution of the AR test statistic; the method to obtain κα will be introduced in the following subsection.

2. ARD critical value simulation
The critical value of the AR detector can be obtained through Monte Carlo quantile simulation (Serfling, 1980, p.74) since there
is no closed-form expression for its distribution f∥ě∥2

Qyy
(x). Assuming we use N samples in Monte Carlo simulation, the AR

critical value can be obtained as follows:

(i) Obtain N samples of ∥ê∥2Qyy
according to the distribution χ2 (r, 0), ∥ê∥2Qyy,1

, . . . , ∥ê∥2Qyy,i
, . . . , ∥ê∥2Qyy,N

.

(ii) Generate float ambiguity samples â1, . . . , âi, . . . , âN , that follow the normal distribution Nn(0, Qââ) and conduct am-
biguity resolution with the LAMBDA method (Teunissen, 1995) to resolve the float ambiguity samples. Then we get
samples of the resolved ambiguity, ǎ1, . . . , ǎi, . . . , ǎN .

(iii) Compute samples of the ARD test statistic with

∥ě∥2Qyy,i = ∥âi − ǎi∥2Qââ
+ ∥ê∥2Qyy,i.

(iv) Finally, sort the samples ∥ě∥2Qyy,i
in ascending order, the [(1−α)N ]-th ordered sample is taken as the critical value, with

[·] the rounding operator.

Following are several remarks on the simulation procedures. The distribution of ϵ̌ will not change if â is shifted by an integer
vector. Therefore, we can shift the mean of the float ambiguities to zero in step (ii). Because of the independence between
ê and ϵ̌, we can generate samples of ∥ê∥2Qyy

and ∥ϵ̌∥2Qââ
independently and then obtain samples of ∥ě∥2Qyy

. The LAMBDA
method is used in step (ii) because we are interested in the critical value of the AR detector using the ILS estimator to resolve
the ambiguity.

Fig.1 shows normalized histograms of samples generated in the simulation procedure and compares the distributions of the
three test statistics. This example is created with a single-epoch short baseline double-differenced single-frequency model with
7 GPS satellites. The redundancy r = 3, number of ambiguities n = 6, and ambiguity-known redundancy r(a) = 9. The
ILS success rate is around 84%. N = 107 samples are generated in the simulation, and the histograms are normalized to
provide the probability density. In Fig.1(a), we observe the chi-squared distributed samples of ∥ê∥2Qyy

in blue. The red curve
is the distribution of ∥â − a∥2Qââ

with the known ambiguity. The histogram of ∥ϵ̌∥2Qââ
samples in green is different from the

red curve, showing that the resolved ambiguity should not be assumed to be a known vector when applying the AR detector.
Fig.1(b) compares the distributions of the three test statistics. The distribution of the AR test statistics lies between the AF and
AK distributions. According to (10), the ambiguity residual is bounded inside the ambiguity pull-in region s0. Therefore, its
distribution is also bounded with zero probability density for the large values. As a result, the AR distribution is pushed towards
the left compared with the AK distribution.

III. UNCERTAINTY OF SIMULATED AR CRITICAL VALUE
The critical value κα of the AR detector fulfills ∫ κα

−∞
f∥ě∥2

Qyy
(x)dx = 1− α, (12)

which is the (1 − α)-th quantile of the CDF of ∥ě∥2Qyy
. As is described in subsection II.2, it is simulated by taking the

[(1−α)N ]-th ordered sample of the AR test statistic, denoted as κ̂α, which is an order statistic from the distribution f∥ě∥2
Qyy

(x).
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Figure 1: (a) Normalized histograms of samples of ∥ê∥2Qyy
in blue and ∥ϵ̌∥2Qââ

in green (b) Distributions of the AF test statistic in blue, AR
test statistic in green, and AK test statistic in red. AR critical values for α = 0.1% and 5% are shown in dashed lines in green

Before describing three methods to evaluate the uncertainty of the simulated AR critical value κ̂α, we introduce the distribution
of order statistics, the theoretical foundation to quantify simulation uncertainty.

1. Order statistics
Order statistics (Serfling, 1980, p.87) are the ordered i.i.d. (independent and identically distributed) samples following a certain
PDF f(x) (the corresponding CDF is F (x)). N i.i.d. ordered samples x(k) ∼ f(x) can be written as,

x(1) ≤ x(2) ≤ · · · ≤ x(k) ≤ · · · ≤ x(N). (13)

According to this definition, the simulated AR critical value κ̂α is the [(1−α)N ]-th order statistic fromN samples of f∥ě∥2
Qyy

(x).

The exact CDF of the k-th sample x(k), P (x(k) ≤ x), can be derived in two steps. First, it can be split as

P
[
x(k) ≤ x

]
=

N−1∑
i=k

P
[
x(i) ≤ x < x(i+1)

]
+ P

[
x(N) ≤ x

]
. (14)

Then, the individual probabilities in (14) can be obtained based on the Binomial distribution with i successes in N independent
Bernoulli trials with success probability F (x),

P
[
x(i) ≤ x < x(i+1)

]
=

(
N

i

)
[F (x)]

i
[1− F (x)]

N−i (15)

Finally, the CDF of x(k) can be obtained by substituting (15) into (14),

P
[
x(k) ≤ x

]
=

N∑
i=k

(
N

i

)
[F (x)]

i
[1− F (x)]

N−i
,−∞ < x < ∞ (16)

The PDF of the order statistic x(k) can be derived by differentiating the CDF (Casella and Berger, 2002, p.229),

fx(k)(x) =
N !

(k − 1)!(N − k)!
f(x) [F (x)]

k−1
[1− F (x)]

N−k
. (17)
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In a special case, when x(k) ∼ U(0, 1), with U(0, 1) the standard uniform distribution, i.e., f(x) = 1, F (x) = x,

fx(k)(x) =
N !

(k − 1)!(N − k)!
xk−1 (1− x)

N−k
, 0 < x < 1. (18)

Thus, the k-th order statistic from U(0, 1) has a beta distribution beta(k,N − k + 1). It will be shown later that although we
do not have the closed-form expression of f∥ě∥2

Qyy
(x), we can still obtain a confidence interval of the critical value simulation

based on (18).

2. Method-I: asymptotic approach based on order statistics
The asymptotic normality of the simulated AR critical value κ̂α is written as (Serfling, 1980, p.77)

κ̂α ∼ AN

κα, σ2
κ̂ =

1

N
· α(1− α)

f2
∥ě∥2

Qyy

(κα)

 (19)

where AN refers to an asymptotic normal distribution. When the number of samples in the simulation approaches infinity, κ̂α

will follow a normal distribution with κα mean and variance equals σ2
κ̂ in (19). Therefore, κ̂α is a consistent estimate of κα and

its variance can be approximated with σ2
κ̂.

In practice, f2
∥ě∥2

Qyy

(κα) is unknown. It can be estimated from the samples by the probability density at κ̂α. After that, a
confidence interval can be obtained based on the above asymptotic variance.

Eq. (19) shows that the variance of the simulation is proportional to α(1 − α) and inversely proportional to the number of
samples N and the probability density at the critical value. Table 1 shows an example to compare the uncertainty of the AR
critical value simulation for different significance levels. The observation model in this example is the same as that used for
Fig.1. When the significance level increases from 0.1% to 5%, α(1 − α) increases from around 0.001 to 0.0475, while the
probability density at the critical value also increases significantly, as is shown in the table and Fig.1(b). As a result, the standard
deviation of the simulated critical value decreases from 0.0208 to 0.0034. With the same observation model and the number of
samples, the critical value for α = 5% can be simulated more precisely than that of α = 0.1%.

α = 0.1% α = 0.5% α = 1% α = 5%
κ̂α 23.625 20.166 18.641 14.971

α(1− α) 0.0010 0.0050 0.0099 0.0475
f∥ě∥2

Qyy
(κα) 0.0005 0.0024 0.0046 0.0203
σκ̂ 0.0208 0.0094 0.0068 0.0034

Table 1: Uncertainty of AR critical value simulation for different significance levels for N = 107

3. Method-II: distribution-free confidence interval
Method-I is based on the asymptotic distribution and the probability density f∥ě∥2

Qyy
(κα). Method-II can obtain a confidence

interval without the information of the underlying distribution (Serfling, 1980, p.102).

Assume we have N i.i.d. ordered samples follow f∥ě∥2
Qyy

(x), and the (1− α)-th quantile κ̂α = x(k). The probability that the
correct but unknown critical value κα lies in the interval

[
x(i), x(j)

]
is

P
[
x(i) < κα < x(j)

]
∗
=P

[
F (x(i)) < F (κα) < F (x(j))

]
∗∗
≈P

[
F̂ (x(i)) < F (x(k)) < F̂ (x(j))

]
=P

[
i/N < F (x(k)) < j/N

] (20)

* CDF of the AR critical value ∥ě∥2Qyy
is written as F (x) for simplification, which is monotonically increasing.

** F (x(i)) is approximated by F̂ (x(i)) obtained from samples, which equals i/N . κα is replaced by its simulation x(k).
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Since x(k) is a sample that follows the CDF F (x), F (x(k)) follows the standard uniform distribution U(0, 1), and it can be
interpreted as the k-th order statistic inN samples followingU(0, 1). Therefore, according to (18),F (x(k)) ∼ beta(k,N−k+1).

The last step is to choose proper indexes i and j to obtain the confidence interval. For example, for a confidence interval of
probability p, i and j can be chosen according to P

[
F (x(k)) < i/N

]
≈ (1−p)/2 and P

[
F (x(k)) > j/N

]
≈ (1−p)/2. Then,

i and j can be computed with the inverse of the beta CDF.

4. Method-III: repeating simulation
The uncertainty can also be evaluated empirically by repeating the simulation multiple times and computing the empirical
variance. The number of repetitions Nr can be 50 and 100 (Morio and Balesdent, 2015; El Masri et al., 2021). Assume we use
N samples to simulate the AR critical value and repeat the simulation for Nr times.

• At each time, N samples are used for simulation, and the simulated critical value is denoted as κ̂i
α, i = 1, . . . , Nr.

• The empirical variance of κ̂α simulated with N samples can then be computed as the variance of the repetitions κ̂i
α.

Method III requires more computational effort than methods I and II since the simulation should be run for Nr times. It is still
a very useful method because methods I and II may provide unreliable uncertainty when the number of samples is small. The
asymptotic normality (19) used in method I holds only if the number of samples N is infinity, which is impossible in practice.
Moreover, it is based on the probability density at the critical value approximated from the samples. Eq (19) can be a good
approximation only when N is very large. The confidence interval obtained with method II is based on the simulated CDF
F̂ and the simulated critical value κ̂α = x(k); thus, the probability inside this confidence interval is not exactly equal to the
probability p. Method III can provide reliable uncertainty for the simulation even with small numbers of samples if the number
of repetitions Nr is large enough, e.g., 50 and 100.

IV. EXPERIMENT
1. Compare three methods for uncertainty evaluation
To compare the uncertainty of the simulated AR critical value obtained from the three methods, we generate confidence
intervals using the variances computed with method I and method III by assuming the simulated critical value follows a normal
distribution, which can then be compared with the confidence interval obtained with method II.

Fig.2 (left) compares the 99% confidence interval obtained with the three methods with a single-frequency GPS model, the
same model used for the example in Fig.1. Fig.2 (right) compares the 99% confidence interval with a short-baseline double-
differenced dual-frequency GPS model with 9 GPS satellites. The redundancy r = 13, number of ambiguities n = 16, and
ambiguity-known redundancy r(a) = 29. The ILS success rate is around 99%. The AR critical values for four significance
levels are simulated with 106 samples and the ILS estimator. The reference AR critical values shown by horizontal lines in
red are simulated with N = 5 × 107 samples. The asterisks in the middle give the simulated critical value, and the error bar
provides the 99% confidence interval. It is shown in Fig.2 that the confidence intervals created with the three methods have
similar ranges in both the single-frequency and dual-frequency experiments. The reference critical values are covered in all the
99% confidence intervals.

Figure 2: Compare 99% confidence intervals obtained with three methods. Left figure is based on a single-frequency GPS model and right
figure is based on a dual-frequency GPS model. The critical values for four significance levels are simulated with N = 106 samples, and the

reference critical values shown in red are simulated with N = 5× 107 samples.
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Fig.3 shows the confidence intervals obtained with smaller numbers of samples. Fig.3 (left) uses N = 105 samples and Fig.3
(right) uses N = 5 × 105 samples to simulate the critical values. This example is based on the same singe-frequency model
as that of Fig.2 (left). The confidence intervals in Fig.3 (left) can be different from each other, especially for α = 0.1% and
α = 0.5%. The confidence intervals in Fig.3 (right) are more consistent because more samples are used. As we discussed
in section III.4, method III can be used for simulations with small numbers of samples, in which case methods I and II are
unreliable. Fig.3 shows that with N = 105 samples, methods I and II can not be used for α = 0.1% and α = 0.5%. For
N = 5× 105 samples, they are acceptable for all the significance levels we tested.

Figure 3: Compare 99% confidence intervals obtained with three methods with single-frequency GPS observation model. N = 105

samples are used in left figure and N = 5× 105 samples are used in right figure. Reference critical values in red are simulated with
N = 5× 107 samples.

2. Simulation uncertainty and number of samples
We conduct experiments to investigate the relation between the number of samples and the uncertainty of the simulation, which
will provide insights into how many samples should be used to simulate the critical value when applying the AR detector.
The experiments in this subsection are based on nine single-epoch short-baseline double-differenced observation models with
ambiguity vectors of different dimensions and ambiguity resolution success rates. Details of these models can be found in
Table 2, including the dimension of the ambiguity vector n, ambiguity resolution success rate, number of satellites, and the AF
model redundancy r. We simulate critical values with these models for α = [0.1%, 0.5%, 1%, 5%] and numbers of samples
N = [104, 5× 104, 105, 5× 105, 106]. The 99% confidence intervals are formulated for all the simulations with the variances
obtained through method III by assuming that κ̂α follows a normal distribution. The AR critical values are simulated with the
ILS estimator to resolve the ambiguities.

Models Frequency n Success Rate #Satellites r
1 L1 6 83% 7 3
2 L1 6 88% 7 3
3 L1 7 93% 8 4
4 L1 8 99% 9 5
5 L1+L2 10 83% 6 7
6 L1+L2 10 89% 6 7
7 L1+L2 12 96% 7 9
8 L1+L2 12 99% 7 9
9 L1+L2+L5 15 99% 6 12

Table 2: Observation models for experiments

Fig.4 shows 99% confidence intervals of the AR critical values simulated with different numbers of samples N and significance
levels α. The dots in the middle give simulated critical values, and error bars provide 99% confidence intervals. Horizontal
lines give the corresponding reference critical values simulated with N = 5 × 107 samples. Confidence intervals are based
on the variances obtained by repeating the simulations for 50 times (Method III). Confidence intervals cover the corresponding
reference critical values in all the experiments, demonstrating that Method III provides a reliable variance for the critical value
simulation. For the same number of samples, the critical value for larger α can be simulated more precisely, which agrees with
what we discussed in Table 1. For the critical value of α = 0.1% (in blue), the confidence intervals are loose when N is smaller
than 5× 105, while for α = 5% (in green), the critical value can be simulated with good precision with 5× 104 samples.
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Figure 4: 99% confidence intervals of AR critical values simulated with N = [104, 5× 104, 105, 5× 105, 106] samples for different
significance levels, indicating by different colors. Dots in middle give simulated critical values, and error bars provide 99% confidence

intervals. Horizontal lines give corresponding references simulated with N = 5× 107 samples. Confidence intervals are obtained based on
repeating simulations 50 times (Method III).

Fig.4 provides the uncertainty of the simulated critical values κ̂α, but it does not show what will be the impact on the actual
significance level of the detection when κ̂α is used. In practice, a critical value is chosen to fulfill the user-specified significance
level. It is useful to obtain a confidence interval for the significance level provided by the simulated κ̂α because it can provide
uncertainty information in the domain of the significance level. The confidence interval in the domain of the significance level
is obtained as follows. According to,

P [CIL < κα < CIU ] = p (21)

with CIL and CIU the lower and upper bounds of the confidence interval and p the probability that the confidence interval
covers the true value, it can be written that

P [1− F (CIL) > 1− F (κα) > 1− F (CIU )] = P [αL > α > αU ] = p (22)

with F (x) the CDF of the critical value; αL and αU the significance levels corresponding to CIL and CIU . By obtaining αL

and αU , we formulate a confidence interval for the significance level corresponding to the simulated κ̂α.

Based on the confidence intervals shown in Fig.4, we conduct Monte Carlo simulations to obtain αL and αU that correspond
to the lower and upper bounds of the confidence intervals for κ̂α. Simulations are carried out with 5 × 107 samples, and the
uncertainty of the simulated αL and αU are not considered. The results, 99% confidence interval for the significance levels, are
shown in Fig.5. The dashed horizontal lines in red indicate ±10% ranges around the specified significance levels α. The error
bars give the confidence intervals, and the error bars’ colors indicate the corresponding number of samples in the simulation.

2171



The label of the horizontal axis gives the models used in the experiments.

Figure 5: Confidence intervals of significance level provided by κ̂α computed based on (22). The four subplots are for different significance
levels, error bars show confidence intervals, and colors indicate numbers of samples that correspond to simulations. Dashed horizontal lines

in red indicate ±10% ranges around specified significance levels α.

As is shown in Fig.5, for the same significance level and the number of samples, ranges of the confidence intervals for different
models are at a similar magnitude. The range of the confidence interval decreases with the increasing of the number of samples.
For α = 0.1%, N = 5× 105 samples (in green) are needed to ensure the simulated critical value provides a significance level
within the ±10% range around α = 0.1% (between red dashed lines). For α = 0.5%, simulations with 105 samples (in purple)
provide confidence intervals close to the ±10% range in most experiments. For α = 1%, simulations with N = 5 × 104

samples (in yellow) can provide a confidence interval close to the ±10% range, and N = 105 samples (in purple) can ensure
the confidence interval within the ±10% range in most experiments. For α = 5%, the critical value simulated with N = 104

samples (in blue) can provide a confidence interval slightly larger than the ±10% range. With N = 5×104 samples (in yellow),
the precision will be better, and the confidence intervals are much narrower than the ±10% range. Therefore, to make the
simulated AR critical value (with the ILS estimator) provide a significance level of approximately ±10% around the specified
one, the number of samples should be used for α = 0.1%, 0.5%, 1%, 5% are N = 5× 105, 105, 5× 104, 104, respectively.

V. SUMMARY AND CONCLUSIONS
In this contribution, we discussed several topics related to the implementation of the ambiguity-resolved (AR) detector. The
critical value of the AR detector should be obtained by Monte Carlo simulation. We introduced three methods to evaluate the
uncertainty of the simulated critical value, conducted experiments to compare these three methods, and provided insights into
the number of samples that should be used to simulate the AR critical value.

We first reviewed the detection theory for the GNSS mixed-integer observation model and introduced the procedure to simulate
the AR critical value using the Monte Carlo simulation. We exhibited the distributions and histograms related to the AR test
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statistic and showed that the resolved ambiguity should not be assumed as a known vector when applying the AR detector.

Then, we introduced how to evaluate the uncertainty of the simulated AR test statistic κα. We described the distribution of the
order statistic and three methods to obtain variances and confidence intervals of κα, including an asymptotic approach based
on order statistics, a distribution-free confidence interval, and obtaining the variance by repeating the simulation. Based on the
asymptotic normality of κα, we showed how the simulation uncertainty decreased with the significance level α increasing from
0.1% to 5%.

In the experiment part, we first compared the three methods to evaluate the uncertainty of κ̂α. We found that the three methods
were consistent when the number of samples N ≥ 5× 105 and were inconsistent for α = 0.1% and α = 0.5% when N = 105

because method I and method II could not provide precise approximations of the uncertainty when the numbers of samples
were small. For the simulations with small numbers of samples N , Method III can be used to evaluate the uncertainty, and it
requires heavy computation effort since the simulation needs to be repeated Nr times with N ×Nr samples used in total. After
that, we conducted numerical experiments to provide insights into the number of samples that should be used when applying
the AR detector with the ILS estimator. The experiments were carried out with nine double-differenced observation models
for α = [0.1%, 0.5%, 1%, 5%] with different numbers of samples. For the same significance level and the number of samples,
the ranges of confidence intervals for different models are at a similar magnitude. In order to simulate the AR critical value
that provides a significance level of approximately ±10% around the specified one, the number of samples should be used for
α = 0.1%, 0.5%, 1%, 5% are N = 5× 105, 105, 5× 104, 104, respectively.
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