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Abstract
Recommender systems personalize content by pre-
dicting user preferences, but this often results in
unequal treatment of users and items—for example,
some users may receive lower-quality recommenda-
tions, while niche items remain underexposed. Al-
though fairness-enhancing interventions exist, they
can obscure the extent to which disparities stem
from model architecture alone. This study inves-
tigates how collaborative filtering architectures af-
fect both accuracy and fairness. We evaluate six
models, including two non-personalized baselines,
across two public datasets using a unified pipeline
without fairness-specific interventions. Our results
reveal a general trade-off: models with higher ac-
curacy often exhibit greater fairness disparities, par-
ticularly on the user side. For example, LightGCN
combines strong accuracy with relatively high item-
side fairness, while SLIMElastic ranks high in
accuracy but worsens unfairness. However, this
trade-off is not uniform across datasets; NeuMF de-
grades notably on sparser data. These findings
demonstrate that model architecture alone can shape
fairness–accuracy trade-offs, highlighting the im-
portance of considering dataset characteristics and
model design when selecting or developing recom-
mender systems.

1 Introduction
Recommender systems shape user experiences on platforms
like Netflix, Spotify, and Amazon by suggesting what to watch,
listen to, or buy next. Among various approaches, collabora-
tive filtering (CF) is widely used, leveraging historical user–
item interactions to generate personalized recommendations.
CF models—such as matrix factorization, neural networks,
and graph-based architectures—achieve strong performance
on ranking metrics like NDCG and Recall [1].

While CF models excel at optimizing accuracy, they have
also raised growing concerns around fairness. Unfairness can
arise from imbalanced data, biased model assumptions, or an
overemphasis on accuracy during training. These issues affect
both users and items, as real-world systems often reproduce or
amplify societal biases [2, 3, 4]. This can lead to lower-quality
recommendations for certain users and reduced visibility for
less popular items.

Empirical studies have shown that recommendation accu-
racy often varies across both user demographics (e.g., age,
gender, location) and behavioral characteristics (e.g., activity
level or preference for niche content), with users from ma-
jority groups typically receiving more relevant suggestions
than those from minority or less represented groups [5]. On
the item side, less popular or niche items frequently suffer
from reduced exposure and lower ranking quality—a phe-
nomenon known as popularity bias. These disparities have
been observed across both traditional collaborative filtering
methods [5] and modern deep learning-based recommendation
models [6].

To mitigate these issues, various fairness-enhancing inter-
ventions have been proposed, including re-ranking, regular-
ization, and adversarial training [7, 8, 9, 10, 11]. While often
effective, such methods increase model complexity and make
it difficult to assess the fairness properties intrinsic to the
model architecture. In addition, many existing studies focus
on isolated models or lack controlled experimental settings,
limiting the generalizability of their findings.

Recent surveys emphasize the need for standardized bench-
marks that assess fairness without modifying model architec-
tures [12]. Without such baselines, it is difficult to isolate
model-specific effects from variations in datasets, preprocess-
ing, or evaluation—hindering reproducibility and fair compar-
ison across studies.

To address this, we conduct a unified evaluation of six col-
laborative filtering models using a consistent and controlled
experimental framework to assess both accuracy and group
fairness across two widely used benchmark datasets: Movie-
Lens 1M and Book-Crossing. By deliberately excluding fair-
ness interventions and debiasing techniques, we aim to isolate
the effects of model architecture on fairness outcomes and
explore their trade-offs with accuracy.

We investigate the following research questions:

• RQ1: How do different collaborative filtering models
perform in terms of accuracy, user fairness, and item
fairness?

• RQ2: What trade-offs arise between accuracy and fair-
ness across different models?

• RQ3: How do dataset characteristics—such as inter-
action sparsity, item popularity bias, and user activity
imbalance—impact fairness–accuracy trade-offs in col-
laborative filtering models?

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the fairness concepts relevant to this study.
Section 3 details the methodology, including datasets, models,
and the evaluation setup. Section 4 presents the empirical
results, followed by a discussion of broader implications and
limitations in Section 5. Section 6 addresses ethical consid-
erations and reproducibility. Finally, Section 7 concludes the
paper and outlines directions for future research.

2 Background
Fairness in recommender systems involves both theoretical
principles and practical challenges. We adopt the framework
of Wang et al. [12], which distinguishes between formal fair-
ness definitions and orthogonal classification dimensions. For
comprehensive coverage, we refer readers to their survey and
summarize only the aspects relevant to our analysis.

2.1 Fairness Definitions
Fairness is commonly categorized into two types: process
fairness, which addresses the integrity of data collection and
model training, and outcome fairness, which concerns the
fairness of recommendation outputs and their impact on users
and items.

According to Wang et al. [12], outcome fairness can be
further analyzed along two dimensions: target and concept.



Target Defines the entity to which fairness is applied. Indi-
vidual fairness ensures that similar users or items receive sim-
ilar recommendations [13], while group fairness promotes eq-
uitable outcomes across groups defined by sensitive attributes
such as gender, age, or item popularity.

Concept Captures the underlying fairness objective. Con-
sistent fairness requires similar inputs to yield similar outputs.
Calibrated fairness ensures alignment between recommen-
dations and true relevance. Counterfactual fairness assesses
stability under hypothetical changes to sensitive attributes.
Other notions, including envy-freeness, Rawlsian maximin,
and maximin-share fairness, are derived from fair division and
welfare economics [12].

2.2 Classification Dimensions
In addition to formal fairness definitions, Wang et al. [12]
propose three orthogonal dimensions to systematically classify
fairness considerations in recommender systems: subject,
granularity, and optimization objective.

Subject The subject dimension identifies the entity to which
fairness is applied—users, items, or both. User fairness as-
sesses whether individuals or user groups receive comparable
recommendation quality, using metrics such as accuracy, di-
versity, or explainability [5, 14]. Item fairness evaluates the
equitable treatment of items, focusing on aspects like expo-
sure and prediction error [13]. Joint fairness considers fairness
from both perspectives simultaneously, ensuring that neither
users nor items are disproportionately disadvantaged.

Granularity The granularity dimension concerns the level
at which fairness is assessed. Single-instance fairness eval-
uates fairness at the level of individual recommendation de-
cisions. In contrast, amortized fairness examines fairness
over aggregated distributions—across users, items, or interac-
tions—capturing persistent or systemic disparities.

Optimization Objective The optimization objective dimen-
sion reflects the way fairness is incorporated into system be-
havior. Treatment fairness emphasizes the equitable allocation
of exposure, ranking opportunities, or recommendation slots
across groups. Impact fairness, on the other hand, focuses
on long-term or downstream outcomes, such as engagement
levels, satisfaction, or economic benefit.

2.3 Scope of This Work
This study is situated within the space of group-based out-
come fairness, with a specific emphasis on consistent fair-
ness evaluated at the amortized level. Our analysis targets
treatment fairness, without applying any fairness-enhancing
interventions such as re-ranking, regularization, or adversarial
training.

3 Methodology
This section presents the methodology used in this study, cov-
ering the selected datasets, the set of collaborative filtering
models evaluated, and the experimental setup.

Table 1: Statistics of preprocessed datasets. ML-1M requires
no filtering. "Inter." = Interactions. Interaction stats (last two
rows) are shown as Average / Median / Standard Deviation of
interactions per user and item.

Dataset #Users #Items #Inter. Sparsity

ML-1M 6,040 3,706 1,000,209 95.52%
BX 6,851 9,085 115,219 99.81%

Inter. Stats Per User Per Item

ML-1M 166 / 96 / 193 270 / 124 / 384
BX 17 / 9 / 38 13 / 8 / 16

3.1 Datasets

We conduct our experiments on two widely used benchmark
datasets: MovieLens 1M (ML-1M) and Book-Crossing (BX).
As shown in Table 1 and Figure 1, the datasets differ along
several key dimensions relevant to our analysis, including
metadata availability, interaction sparsity, distributional char-
acteristics, and rating behavior.

Metadata availability informs our group definitions, as dis-
cussed in Section 3.2. ML-1M provides rich user-side meta-
data, including age, gender, occupation, and ZIP code, as well
as item-level genre annotations. In contrast, BX offers limited
and occasionally noisy user information (age and location),
but includes more item metadata, such as author and publisher.

The datasets also differ in their interaction distribution char-
acteristics. ML-1M is relatively dense: users engage with
an average of 166 items, and items receive around 270 in-
teractions. While it supports a wide range of user and item
engagement levels, it exhibits a pronounced item popularity
bias, where a small fraction of items accounts for the majority
of interactions. In contrast, BX is considerably sparser, with
users interacting with only 17 items on average and items re-
ceiving just 13. It displays a stronger user activity imbalance,
characterized by a long-tailed distribution in which most users
contribute very few interactions, and a small number of highly
active users dominate the activity volume.

The rating distributions further underscore these differences.
ML-1M uses a 1–5 scale that is relatively balanced, with a
mode of 4, a mean of 3.58, and a standard deviation of 1.12—
indicating a mild skew toward higher ratings. BX, by contrast,
uses a 1–10 scale but shows a notable skew toward high ratings,
with a mode of 8, a mean of 7.81, and a standard deviation of
1.78.

Prior to model training, we apply a consistent set of pre-
processing steps to both datasets. First, we convert them
into RecBole’s atomic format, which tokenizes user, item,
and interaction IDs. For BX, we remove interactions with
a rating of 0, as these represent implicit feedback; no such
filtering is needed for ML-1M. We then apply a 5-core fil-
ter to BX, retaining only users and items with at least five
interactions—ML-1M already meets this criterion. Finally, to
enable top-N recommendation, we binarize the ratings: in-
teractions above a threshold are treated as positive, using a
threshold of 3 for ML-1M and 7 for BX..



(a) User (top) and item (bottom) interaction counts in ML-1M and
BX. Y-axis is log-scaled.

(b) Rating distributions in ML-1M and BX.

Figure 1: Interaction and rating statistics for ML-1M and
Book-Crossing. (a) shows the long-tail distributions in user
activity and item popularity; (b) illustrates rating skew and
scale differences across datasets.

3.2 Group Assignment
To evaluate group-level fairness, we assign users and items
to predefined groups based solely on the training set to pre-
vent label leakage. Table 2 summarizes group definitions and
distributions across datasets.

Users are grouped by both demographic and behavioral at-
tributes. For ML-1M, demographic groups include gender and
age (consolidated from seven to four bins). Behavioral group-
ings are based on implicit feedback. Activity groups—COLD,
MODERATE, and ACTIVE—are determined using the 25th and
75th percentiles of total interactions. Popularity preference
groups are based on the share of interactions with HEAD items:
BESTSELLER-oriented (top 20%), DIVERSE (middle 60%),
and NICHE-oriented (bottom 20%).

Items are grouped by popularity based on cumulative inter-
action mass. The top 20% of interactions define the HEAD, the
next 60% the MID-TAIL, and the bottom 20% the LONG-TAIL.

Although BX offers more item-side metadata, these at-
tributes primarily reflect provider-related characteristics (e.g.,
author, publisher) rather than item content. As such, they are
more relevant to provider fairness than to item-level fairness,
and are not used in this analysis.

3.3 Collaborative Filtering Models
Collaborative filtering (CF) methods are commonly classified
into memory-based and model-based approaches. Memory-

Table 2: Group sizes for users and items in ML-1M and Book-
Crossing.

Group Dimension Category ML-1M BX

Age
0–24 1325 –
25–34 2096 –
35–44 1193 –
45+ 1426 –

Gender FEMALE 1709 –
MALE 4331 –

Popularity Preference
BESTSELLER – 1370
DIVERSE – 4111
NICHE – 1370

Activity
COLD 1522 2097
MODERATE 3007 3022
ACTIVE 1511 1732

(Item) Popularity
HEAD 112 291
MID-TAIL 1068 4611
LONG-TAIL 2503 4181

based methods compute similarities between users or items
directly from the interaction matrix. In contrast, model-based
methods learn latent user and item representations by optimiz-
ing task-specific objectives.

This study focuses exclusively on model-based approaches,
which span several model families, including matrix factoriza-
tion, clustering-based, neural, and graph-based models [15].

These models differ not only in how they represent user–
item interactions but also in how they are trained. Depending
on the formulation, training objectives can be either point-
wise, where models predict binary labels or explicit scores,
or pairwise, where the goal is to rank observed items above
unobserved ones for each user.

To cover diverse modeling paradigms and training strategies,
we evaluate four representative model-based collaborative fil-
tering algorithms alongside two non-personalized baselines:

• Pop (Non-personalized): Recommends the most fre-
quently interacted-with items in the training set, regard-
less of individual user preferences.

• Random (Non-personalized): Recommends items uni-
formly at random, serving as a trivial baseline with no
personalization or learned structure.

• BPR (Matrix Factorization, Pairwise): Learns latent user
and item embeddings by optimizing a pairwise ranking
loss over implicit feedback [16].

• LightGCN (Graph-based, Pairwise): Propagates user–
item embeddings through simplified graph convolutions,
removing feature transformations and nonlinear activa-
tions to retain pure neighborhood aggregation [17]. .

• SLIMElastic (Linear Models, Pointwise): Learns
a sparse item–item similarity matrix W via ℓ1/ℓ2-
regularized linear regression on binary feedback [18].

• NeuMF (Neural, Pointwise): Combines GMF and MLP
to capture linear and nonlinear user–item interactions,
optimized with binary cross-entropy [19].



Table 3: Evaluation metrics used in this study. Arrows (↑, ↓)
indicate whether higher or lower values are preferred.

Metric Interpretation

Accuracy
Recall@K ↑ Share of relevant items retrieved in top-K
Precision@K ↑ Share of top-K items that are relevant
NDCG@K ↑ Position-aware gain for relevant items
MAP@K ↑ Mean of average precision scores
Hit@K ↑ Fraction of users with at least one hit

Item Fairness
IC@K ↑ Share of unique items recommended
Entropy@K ↓ Inconsistency of item exposure
Gini@K ↓ Inequality in item exposure concentration
AvgPop@K ↓ Average popularity of recommended items
Tail%@K ↑ Share of long-tail items in recommendations
Head%@K ↓ Share of head items in recommendations

User Fairness
MAD@K ↓ Median deviation of group-level accuracy
STD@K ↓ Standard deviation of group-level accuracy

AvgPop = Average Popularity, IC = Item Coverage, Gini =
Gini Index; Tail%@K and Head%@K are based on cumulative
interaction mass: bottom 20% (tail), top 20% (head).

3.4 Evaluation Metrics

We assess model performance along three dimensions: ac-
curacy, item fairness, and user fairness. Accuracy metrics
evaluate the relevance and ranking quality of top-K recom-
mendations. Item fairness metrics capture the diversity and
balance of item exposure. User fairness metrics quantify dis-
parities in recommendation quality across user groups based
on demographic or behavioral attributes. Arrows (↑, ↓) in-
dicate whether higher or lower values are preferred. Table 3
summarizes the full set of evaluation metrics used in this study.

3.5 Training and Evaluation

All models are trained and evaluated using the RecBole frame-
work [20]. User–item interactions are split into training, vali-
dation, and test sets using an 8:1:1 ratio with grouped by user,
ensuring each user appears in all three splits. Training data
is shuffled at the start of each epoch. Adam optimizer with a
fixed evaluation batch size of 4096 is used for all models.

For models trained with pairwise objectives, we adopt a stan-
dard uniform negative sampling strategy, where one negative
item is randomly sampled per positive interaction. Although
NeuMF is inherently a pointwise binary classification model,
we apply the same negative sampling strategy to align with cur-
rent best practices in implicit feedback settings, where relying
on static labels alone is insufficient for effective training.

Model evaluation follows a full-ranking protocol: for each
user, the model ranks the ground-truth item against all unob-
served items. This protocol is applied consistently to both
validation and test sets. Top-K performance is reported at
K=10, with all metrics averaged over users. Evaluation met-
rics are described in Section 3.4.

3.6 Hyperparameter Settings
All models are tuned using W&B Sweeps with Hyperband-
based Bayesian optimization, targeting validation NDCG@10 as
the objective. Each trial is early-stopped after 10 consecutive
iterations without improvement. The best configuration is
selected based on the highest validation NDCG@10.

A shared hyperparameter search space is used for all models
except SLIMElastic, including learning rate ({1e-4, 3e-4,
5e-4, 1e-3}), L2 regularization weight ({1e-5, 5e-5,
1e-4, 3e-4, 1e-3}), embedding dimension ({64, 128,
256}), and batch size ({512, 1024, 2048}).
SLIMElastic is tuned over alpha ({0.1, 0.2, 0.4,

0.6}) and ℓ1 ratio ({0.001, 0.01, 0.1, 0.2, 0.4}).
LightGCN additionally searches over the number of graph
convolution layers ({1, 2, 3, 4, 5}). NeuMF is tuned for
dropout rate ({0.1, 0.2, 0.3}), MF/MLP embedding sizes
({8, 16, 32}), and MLP hidden layers ({[64, 32], [64,
32, 16]}).

4 Empirical Results
This section presents the empirical findings from experiments
conducted on the ML-1M and Book-Crossing (BX) datasets,
addressing the research questions outlined earlier.

4.1 Accuracy and Fairness Across Models (RQ1)
Accuracy Performance
Model accuracy rankings remain consistent across all evalua-
tion metrics and both datasets, despite an expected decline in
absolute scores on the sparser BX dataset (Tables 4 and 5).

The baselines behave as expected: Pop achieves moderate
accuracy by exploiting popularity bias, while Random per-
forms the poorest due to its uniform exposure strategy.

Among model-based models, SLIMElastic consistently
achieves the highest accuracy across all five metrics and both
datasets. LightGCN consistently ranks second in accuracy,
followed by BPR, which delivers moderate but stable perfor-
mance. NeuMF performs weakest among personalized models,
especially on BX, where its neural architecture appears less
robust under high sparsity.

Notably, the performance gap between models is more pro-
nounced on BX, which is likely due to the amplifying effect
of data sparsity on architectural differences.

Item-side Fairness Performance
Item-side fairness rankings vary more across models than
accuracy rankings (Tables 4 and 5).

As expected, the baselines show contrasting behavior: Pop
heavily concentrates exposure on head items, resulting in low
exposure of long-tail items and high inequality of item expo-
sure. Random, by contrast, achieves maximal coverage and the
lowest disparity.

Among model-based models, LightGCN demonstrates the
strongest item-side fairness on both datasets, outperforming
others across all metrics. In contrast, SLIMElastic ranks
lowest in item-side fairness on ML-1M. Despite moderate
gains in long-tail exposure (Tail%) and average popularity
(AvgPop) on BX, the model still suffers from limited item
coverage and high exposure inequality.



Table 4: Top-10 ranking accuracy and item-side fairness comparison on the ML-1M dataset. Metrics marked ↑ are better when
higher; ↓ when lower. Best and worst (excluding baselines) are in bold and underlined, respectively.

Model Accuracy Item-side Fairness

Recall↑ Precision↑ NDCG↑ Hit↑ MAP↑ IC↑ Tail%↑ Head%↓ AvgPop↓ Gini↓ Entropy↓

Random 0.0030 0.0046 0.0051 0.0449 0.0017 99.97% 64.56% 2.85% 207.52 0.1453 0.0021

BPR 0.0725 0.0595 0.0771 0.4535 0.0318 33.29% 2.43% 63.09% 1380.23 0.9361 0.0043
LightGCN 0.0755 0.0608 0.0785 0.4634 0.0322 34.53% 2.44% 56.60% 1257.36 0.9248 0.0044
SLIMElastic 0.0922 0.0713 0.1017 0.5233 0.0462 14.21% 0.04% 85.10% 1689.52 0.9762 0.0086
NeuMF 0.0710 0.0580 0.0755 0.4492 0.0311 24.30% 1.01% 66.16% 1426.66 0.9534 0.0057

Pop 0.0463 0.0450 0.0565 0.3545 0.0229 0.26% 0.00% 100.0% 2257.20 0.9974 0.2303

Table 5: Top-10 accuracy and item-side fairness comparison on the BX dataset. Metrics marked ↑ are better when higher; ↓
when lower. Best and worst (excluding baselines) are in bold and underlined, respectively.

Model Accuracy Item-side Fairness

Recall↑ Precision↑ NDCG↑ Hit↑ MAP↑ IC↑ Tail%↑ Head%↓ AvgPop↓ Gini↓ Entropy↓

Random 0.0010 0.0002 0.0005 0.0016 0.0003 99.92% 46.35% 3.21% 10.094 0.2062 0.0010

BPR 0.0427 0.0058 0.0198 0.0559 0.0114 54.74% 4.35% 74.99% 95.481 0.9195 0.0012
LightGCN 0.0525 0.0072 0.0253 0.0699 0.0151 57.45% 7.23% 61.06% 73.204 0.8882 0.0013
SLIMElastic 0.0589 0.0087 0.0377 0.0840 0.0276 11.95% 4.62% 70.20% 84.459 0.9791 0.0049
NeuMF 0.0344 0.0050 0.0179 0.0486 0.0112 23.02% 1.63% 83.63% 111.49 0.9731 0.0025

Pop 0.0198 0.0031 0.0117 0.0309 0.0081 0.11% 0.00% 100.0% 165.90 0.9990 0.2303

Item fairness of NeuMF declines on BX, where it ranks
lowest in Tail% and AvgPop, indicating increased bias under
sparse and limited feedback. BPR maintains stable mid-tier
fairness across both datasets: it outperforms SLIMElastic on
ML-1M in terms of Tail% but falls slightly behind on BX in
balancing head and tail exposure.

User-side Fairness Performance
User-side fairness, reflected in group-level accuracy dispar-
ities, varies most across models (Figure 2). Disparities are
larger for behavioral groups (activity level and popularity pref-
erence) than for demographic groups like gender or age.

Baseline behavior aligns with expectations: Random yields
minimal group-level disparity, while Pop exhibits substantial
disparity, as its reliance on head items systematically favors
certain user groups over others.

Among personalized models, SLIMElastic demonstrates
the poorest user-side fairness across both datasets, showing the
largest disparities across activity groups. NeuMF and BPR dis-
play moderate levels of disparity, while LightGCN frequently
ranks as the second least fair model. On BX, its fairness gaps
are especially pronounced—likely due to the amplification of
behavioral biases through neighborhood aggregation under
data sparsity.

As shown in Figure 2, fairness rankings vary depending on
group type and metric. SLIMElastic shows the highest dis-
persion in Recall and MAP, whereas Random and Pop exhibit
the largest disparities in NDCG. Fairness rankings are gener-
ally more consistent on BX than on ML-1M. In particular,
disparities across popularity preference groups remain stable,
suggesting that item popularity exerts a strong and systematic
influence on user-side fairness in BX.

Table 6 reveals how models differ in treating user groups
across datasets. On ML-1M, male users consistently achieve
higher NDCG than female users, with variation by model. Simi-
larly, on BX, users preferring bestsellers perform best across
all models except Random, highlighting a popularity-driven
accuracy bias. In terms of user activity, active users gener-
ally receive better recommendation accuracy on both datasets.
However, LightGCN exhibits a slight preference for cold users
on ML-1M. SLIMElastic favors cold users on ML-1M but
active users on BX, whereas BPR shows the opposite pattern.
All other models show consistently higher performance for
active users across both datasets. Moderate users experience
the lowest performance on ML-1M, unlike on BX.

4.2 Trade-offs Between Accuracy and Fairness
(RQ2)

To address RQ2, we examine trade-offs between accuracy
and fairness across models. Figure 3 shows the relationship
between NDCG and item-side fairness metrics, while Figure 4
presents the corresponding user-side trade-offs.

A trade-off is evident across all model types. The base-
lines represent two extremes: Pop achieves moderate accuracy
but low fairness due to its popularity-driven design, whereas
Random ensures high fairness through uniform exposure at the
expense of accuracy.

Among personalized models, trade-offs are still present, but
some models offer a more favorable balance. SLIMElastic
achieves the highest accuracy but ranks lowest on both item-
and user-side fairness. In contrast, LightGCN strikes a more
favorable balance—ranking second in accuracy, leading in
item-side fairness, and performing moderately in user-side
fairness. This suggests that its simplified GCN architecture



Activity Age Gender
0.00

0.02

0.04

0.06

MAD of recall@10

Activity Age Gender
0.000

0.005

0.010

0.015

MAD of map@10

Activity Age Gender
0.000

0.005

0.010

0.015

MAD of ndcg@10

Activity Age Gender
0.00

0.02

0.04

0.06

STD of recall@10

Activity Age Gender
0.000

0.005

0.010

0.015

STD of map@10

Activity Age Gender
0.000

0.005

0.010

0.015

STD of ndcg@10

Random BPR SLIMElastic NeuMF LightGCN Pop

(a) ML-1M

Activity Pref.
0.00

0.01

0.02

0.03

MAD of recall@10

Activity Pref.
0.000

0.005

0.010

0.015
MAD of map@10

Activity Pref.
0.000

0.005

0.010

0.015

0.020
MAD of ndcg@10

Activity Pref.
0.00

0.01

0.02

0.03

STD of recall@10

Activity Pref.
0.000

0.005

0.010

0.015
STD of map@10

Activity Pref.
0.000

0.005

0.010

0.015

0.020
STD of ndcg@10

Random BPR SLIMElastic NeuMF LightGCN Pop

(b) BX

Figure 2: Dispersion of top-10 accuracy metrics across user groups for ML-1M and BX. MAD (top row) and STD (bottom row) by
group: Activity, Age, Gender (ML-1M); Activity, Preference (BX). Higher values indicate greater disparity.

Table 6: Group-wise NDCG@10 scores on ML-1M and BX, reported by Activity and Gender (ML-1M) and Activity and
Popularity Preference (BX). Best and worst group scores per model (where applicable) are in bold and underlined, respectively.

Model ML-1M BX
Cold Moderate Active Female Male Cold Moderate Active Niche Bestseller Diverse

Random 0.0016 0.0022 0.0075 0.0051 0.0053 0.0000 0.0009 0.0012 0.0000 0.0000 0.0011
BPR 0.0817 0.0719 0.0825 0.0742 0.0782 0.0206 0.0196 0.0193 0.0162 0.0282 0.0182
LightGCN 0.0848 0.0729 0.0834 0.0756 0.0797 0.0267 0.0249 0.0241 0.0186 0.0388 0.0230
SLIMElastic 0.1166 0.0965 0.0968 0.0963 0.1038 0.0340 0.0376 0.0424 0.0223 0.0610 0.0351
NeuMF 0.0805 0.0704 0.0807 0.0723 0.0768 0.0164 0.0174 0.0204 0.0125 0.0250 0.0173

Pop 0.0495 0.0496 0.0772 0.0460 0.0606 0.0106 0.0110 0.0143 0.0065 0.0169 0.0117

helps distribute exposure more equitably while maintaining
strong accuracy. BPR shows stable but unspecialized perfor-
mance across all metrics. Despite its expressive architecture,
NeuMF underperforms in both accuracy and item fairness, par-
ticularly on the sparse BX dataset.

Trade-offs between accuracy and fairness are observed on
both the item and user sides; however, the trade-off is less
pronounced on the item side than on the user side (Figures 3
and 4). LightGCN clearly achieves the best balance between
item-side accuracy and fairness across both datasets, whereas
no model demonstrates a similarly strong balance on the user
side—particularly in terms of Recall-based dispersion.

Notably, model complexity does not guarantee better accu-
racy or fairness. For example, the more complex NeuMF per-
forms worse than SLIMElastic in accuracy, while LightGCN
outperforms the simpler BPR. Moreover, item-side fairness
does not imply user-side fairness: LightGCN ranks highest in
item fairness but lower in user fairness, whereas NeuMF shows
the reverse pattern.

In summary, the accuracy–fairness trade-off persists.
SLIMElastic achieves the highest accuracy but performs
worst in fairness. In contrast, models like LightGCN strike
a more effective balance. Importantly, item- and user-side
fairness do not always align, and higher model complexity
does not guarantee fairer or more balanced outcomes.

4.3 Trade-offs Across Datasets (RQ3)
To address RQ3, we compare the accuracy, fairness, and trade-
off rankings of models across datasets with differing charac-
teristics, as detailed in Section 3.1, examining how variations
in data properties influence these relationships.

Accuracy rankings remain consistent across both datasets:
SLIMElastic outperforms all other models, followed by
LightGCN, while NeuMF yields the lowest accuracy among
personalized models. The baselines, Pop and Random, remain
the least effective throughout. Despite these stable rankings,
absolute accuracy declines noticeably on BX due to its higher
sparsity and fewer interactions per user and item.

Item-side fairness generalizes moderately across datasets:
model rankings remain fairly consistent, with some dataset-
specific shifts. On ML-1M, rankings are stable across all
metrics, while on BX, they remain similar for most metrics but
diverge in Tail% and AvgPop, where NeuMF degrades sharply,
ranking last. In contrast, BPR and LightGCN show marked
improvements in item coverage (IC), increasing from 33–34%
on ML-1M to over 54–57% on BX. These shifts suggest that
certain models—possibly due to their pairwise learning—are
better equipped to sustain exposure diversity under sparsity.

User-side fairness shows greater sensitivity to dataset char-
acteristics than item-side fairness. In ML-1M, disparities are
most pronounced across activity groups, whereas in BX, they
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Figure 3: Accuracy–fairness trade-offs on the item side for (a) ML-1M and (b) BX. Each point represents a model’s NDCG@10
(x-axis) and item-side fairness score (y-axis).
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Figure 4: Accuracy–fairness trade-offs on the user side by
activity group, via STD of group-wise NDCG@10. Lower
values indicate more equal recommendation quality.

are largest across popularity preference groups. Models also
vary in which user groups they favor, and this preference shifts
across datasets—even within the same group type. For ex-
ample, SLIMElastic favors cold users in ML-1M but active
users in BX (Table 6). The magnitude of disparity further re-
flects these differences. As shown in Figure 2, SLIMElastic
and Random yield the widest group gaps in ML-1M, whereas
in BX, LightGCN and SLIMElastic exhibit the highest dis-
persion—most notably for LightGCN.

The accuracy–fairness trade-off persists across datasets,

though its magnitude varies. For item-side fairness, mod-
els exhibit similar trade-off patterns on ML-1M, clustering
closely (Figure 3). In contrast, BX displays greater dispersion,
revealing sharper differences in how models balance accuracy
and fairness under sparse conditions. The most notable differ-
ences appear in item coverage: on BX, pairwise models—BPR
and LightGCN—achieve nearly double the coverage of point-
wise models. LightGCN consistently achieves the best overall
balance across both datasets, with its advantage particularly
pronounced on BX.

For user fairness, the trade-off with accuracy is more
strongly linear on BX than on ML-1M—particularly with
respect to NDCG (Figure 4). This suggests that improving user
fairness under sparse and skewed conditions may demand
greater compromises in accuracy. Still, the general pattern
holds: higher accuracy often comes at the cost of increased
fairness disparity.

In summary, the fairness–accuracy trade-off is evident in
both item and user dimensions, but its severity and clarity vary
across datasets. Accuracy and item-side fairness generalize
more consistently, whereas user fairness is highly sensitive to
group definitions and data sparsity. On the sparser BX dataset,
models exhibit greater variation in how they balance accuracy
and fairness. LightGCN emerges as the most robust overall,
though achieving user-side fairness remains more challenging
across conditions.

5 Discussion
In this section, we reflect on the empirical findings, draw-
ing broader implications beyond results and addressing key
limitations and challenges encountered in this study.

Model Architecture and Fairness Dynamics The observed
differences in accuracy and fairness outcomes can be explained



by the inductive biases inherent in each model’s architecture.
SLIMElastic, with its pointwise regression objective and
reliance on sparse co-occurrence modeling, achieves consis-
tently high accuracy by reinforcing frequently co-rated item
pairs. However, this emphasis on popular co-occurrences re-
sults in skewed exposure patterns and significant disparities
across user groups. In contrast, LightGCN employs simpli-
fied graph convolutions, a form of neighborhood smoothing,
which improves item-side fairness by increasing exposure of
less popular items but may amplify behavioral biases, lead-
ing to increased user-side disparity. BPR, which optimizes
pairwise rankings, avoids explicit modeling of absolute pop-
ularity, resulting in balanced, moderate performance in both
accuracy and fairness. As noted in the previous section, both
BPR and LightGCN show more favorable treatment of inac-
tive users on the sparser BX dataset, which may be attributed
to their pairwise training objective. Pairwise models can be
fairer to sparse or low-activity users because they learn from
relative preferences, making them less dependent on the vol-
ume of user interactions. Finally, NeuMF, combining deep
neural components with a pointwise objective, struggles with
sparse data such as BX, showing accuracy decline and pro-
nounced bias toward head items due to difficulty diversifying
recommendations. This likely stems from its reliance on deep
parameterized components, which may require more inter-
actions per user and item to learn stable representations and
avoid overfitting to dominant patterns in sparse data.

Dataset and Group Imbalance Effects User fairness dis-
parities can also stem from imbalanced group sizes within the
training data. Since models are optimized to maximize overall
performance, larger or more active user groups can dominate
the training signal, inadvertently biasing model behavior or
amplifying existing model biases. For example, as noted in
Section 4, male users consistently achieve higher accuracy on
ML-1M, suggesting that observed unfairness may be driven
more by dataset imbalance than by model architecture. This
highlights the importance of accounting for dataset composi-
tion when interpreting fairness evaluations.

Stability and Trade-Offs in User-Side Fairness User-side
fairness is notably less consistent and stable than item-side
fairness across datasets, metrics, and user group definitions.
Model fairness rankings vary depending on both the metric
and the group examined, with activity-based disparities dom-
inating on ML-1M and popularity preference driving larger
gaps on BX. Moreover, disparities computed using differ-
ent accuracy metrics can yield varying conclusions. For in-
stance, MAD may report low dispersion if only a subset of
groups receives similar scores, while STD can be inflated
by a few outlier groups even when most perform similarly.
While item-side fairness can sometimes improve alongside
accuracy, user-side fairness more often exhibits a negative
correlation—indicating a trade-off. This may reflect genuine
unfairness, where accuracy improvements disproportionately
benefit dominant groups, but it can also arise from the sen-
sitivity of dispersion metrics to group size and distribution,
as well as the global objectives used during model training.
These complexities underscore the importance of evaluating
fairness through multiple lenses and interpreting outcomes

with caution.

Hyperparameter Tuning and Its Impact Accuracy and
fairness outcomes are also influenced by hyperparameter tun-
ing. Variations in optimization targets (e.g., maximizing
Recall versus NDCG) and tuning effectiveness can cause some
models to benefit more than others, contributing to observed
performance differences. This underlines the need for con-
sistent, transparent, and fairness-aware tuning protocols in
recommender system evaluations.

Limitations and Directions for Future Work This study
does not incorporate statistical significance testing or confi-
dence intervals, which are important for robustly assessing sub-
tle fairness disparities that may be dataset-dependent. Future
work should apply statistical methods such as bootstrapped
confidence intervals or paired tests. Additionally, our evalua-
tion covers representative models and two datasets but does
not encompass the full range of fairness metrics, model types,
or application domains. Expanding to include more models,
diverse user attributes, and additional fairness notions—such
as individual or counterfactual fairness—would enhance un-
derstanding of fairness in recommendation systems.

6 Responsible Research

Ethical Considerations This study utilizes two publicly
available benchmark datasets—MovieLens 1M (ML-1M) and
Book-Crossing (BX)—both of which are anonymized and
widely adopted in academic research. No personally iden-
tifiable information (PII) beyond de-identified demographic
and content metadata is processed. Group definitions (e.g.,
age, gender, item popularity) are derived solely from these
available fields and employed strictly for aggregate fairness
evaluation, without any intent to reinforce sensitive or socially
constructed categories. We acknowledge that these datasets
may contain inherent biases; however, this reflects real-world
data conditions commonly encountered in practical systems.
Consequently, we interpret group-based disparities as indica-
tive of model behavior and the characteristics of the underlying
data, rather than as inherent attributes of individual users or
groups.

Reproducibility and Integrity All experiments were con-
ducted using RecBole with reproducibility=True and a
fixed random seed (42) to ensure deterministic behavior. We
extended RecBole to support group-based fairness evaluation
by reconstructing the data objects passed to a custom evalua-
tor, containing only the users belonging to each group rather
than the entire user set. Additionally, we implemented two
custom metrics—Head% and a cumulative-popularity–based
Tail%—while all other metrics are part of RecBole’s default
implementation. Key experimental settings, including ranking
mode, filtering thresholds, group definitions, and evaluation
metrics, are fixed as detailed in Section 3. Minor changes
in preprocessing (e.g., filtering criteria or group assignment
rules) or ranking strategy (e.g., full vs. sampled ranking) may
shift data distributions and affect fairness outcomes.



7 Conclusions and Future Work
This study examined how different collaborative filtering
model architectures behave in terms of accuracy, fairness, and
their trade-offs. We evaluated four personalized models and
two non-personalized baselines across two benchmark datasets
using a unified framework. By excluding fairness interven-
tions, we isolate architectural effects and reveal how models
balance accuracy and fairness under varying data conditions.

Our findings indicate a consistent trade-off: higher accuracy
often coincides with increased fairness disparities, particularly
on the user side. However, some models achieve a more
favorable balance. SLIMElastic, for example, delivered the
highest accuracy but exhibited substantial unfairness, while
LightGCN combined strong accuracy with better item-side
fairness.

Moreover, item-side fairness generalized more consistently
across metrics and datasets, whereas user-side fairness was
more sensitive to metric choice and dataset characteristics.
Notably, fairness in one dimension (e.g., items) does not imply
fairness in another (e.g., users), and greater model complexity
does not necessarily lead to more equitable outcomes.

Overall, the results reveal an inverse relationship between
accuracy and fairness, though its strength varies across models
and datasets. Since model architecture alone can influence
these trade-offs, understanding dataset characteristics and se-
lecting appropriate models is essential. Moreover, as item-side
and user-side fairness do not always align, both should be
jointly considered to support fairer recommender systems.

Future work could incorporate statistical significance test-
ing, broaden the architectural scope, refine group definitions,
and explore alternative user-side fairness metrics. Advanc-
ing toward individual-level fairness and integrating comple-
mentary notions—such as calibrated or counterfactual fair-
ness—may offer deeper insights into fairness dynamics in
recommendation.
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