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1
INTRODUCTION

Patients that are limited to spending most of their time lying in bed are prone to skin breakdown as a conse-
quence of moisture development between the skin and mattress. This wetness results from transpiration or
urine. Due to wetting of the skin, the mechanical properties of the skin change and the friction between the
skin and the mattress increases. This increase implies that the shear forces at the interface between the skin
and mattress increase when a patient is moved or relocated on bed for daily care. This mechanism increases
the likelihood of the development of a superficial pressure ulcer.

In this research, we will analyze, use and improve the phenomenological model developed by Gefen ([1],
[2]) for the simulation of micro-climate factors. This model contains an interaction between the amount of
transpiration, the ambient temperature, the increase of humidity and the increase in the skin-support con-
tact pressure. Furthermore, we will analyze and use a finite-element model for the mechanical support and
equilibrium of tissue interacting with the mattress where the skin and subcutaneous tissue are incorporated.
This interaction poses a contact problem where the surface of contact between the skin and mattress has to
be determined. In this work, we will focus on the combination of the two models, where we aim at predict-
ing the likelihood of the development of a superficial pressure ulcer in the course of time upon moving the
patient over the surface of the mattress. This is done by using the finite-element method over the domain
containing the tissue as well as the mattress. As an output parameter the shear stress will be important to
estimate the time at which skin break-down (failure) occurs. Since the mechanical properties of skin change
with local humidity, the skin will deteriorate in the course of time due to the build-up of moisture levels.
In this MSc-thesis, we aim at a coupling of the micro-climate factors to the mechanical equilibrium which
consists of a contact problem.

The basics of this thesis lie in the two articles

• "How do microclimate factors affect the risk for superficial pressure ulcers: A mathematical modeling
study" by Amit Gefen [1], and

• "Modeling the effects of moisture-related skin-support friction on the risk for superficial pressure ulcers
during patient repositioning in bed" by Eliav Shaked and Amit Gefen [2].

These articles both describe a mathematical model regarding pressure ulcers in bed-bound patients. The
first one assesses a patients risk of getting a pressure ulcer. Here a pressure ulcer is said to develop when the
strength of the skin is smaller than the stress obtained by the movement. The second article describes a way
of calculating the shear stress of the skin during movement using the finite element method.

The goal of the thesis can be summarized as follows:

To create a combined model from the two models created by Amit Gefen, in which a patients risk of
pressure ulcers can be assessed when considering not only the contact between the body and the bed,
but also including the effects of microclimate factors.

1
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1.1. PRESSURE ULCERS
A pressure ulcer is a special type of wound, caused by the appliance of stress on the skin. The official definition
of a pressure ulcer is given by the European Pressure Ulcer Advisory Panel and says the following.

"A pressure ulcer is localized injury to the skin and/or underlying tissue usually over a bony
prominence, as a result of pressure, or pressure in combination with shear. A number of con-
tributing or confounding factors are also associated with pressure ulcers; the significance of these
factors is yet to be elucidated." – http://www.epuap.org

Such a pressure ulcer can occur after a large pressure has been applied to the skin for a short period
of time, or when a small pressure is applied for a long period of time. Pressure ulcers, also referred to as
"bedsores" or "pressure sores", usually occur at bony prominences, which are the parts of the body that are
usually in direct contact with the underlying surface such as a mattress. Examples of the most common
locations are the shoulders and the shoulder blades, back of the head, heel, spine and tail bone.

The "European Pressure Ulcer Advisory Panel" (EPUAP) is a panel created to "support all European coun-
tries in their efforts to prevent and treat pressure ulcers". The overall mission of this panel is to

" provide the relief of persons suffering from or at risk of pressure ulcers, in particular through
research and the education of the public and by influencing pressure ulcer policy in all Euro-
pean countries towards an adequate patient centered and cost effective pressure ulcer care." –
http://www.epuap.org [3]

In order to improve the communication between the different countries regarding pressure ulcers, the
EPUAP has created a "Quick Reference Guide" which has been translated into many different languages. In
this reference guide guidelines are given that describe how a patients risk of pressure ulcers can be deter-
mined, and which factors should be taken into account. In this guide, the different types of pressure ulcers
are also divided into four different categories. The categories and their (shortened) explanations are given
below. The full explanation can be found on the EPUAP website [3].

Category/Stage I: Non-blanchable erythema Intact skin with non-blanchable redness of a localized area
usually over a bony prominence. Darkly pigmented skin may not have visible blanching; its color may
differ from the surrounding area. The area may be painful, firm, soft, warmer or cooler as compared to
adjacent tissue. Category I may be difficult to detect in individuals with dark skin tones. May indicate
“at risk” persons.

Category/Stage II: Partial thickness Partial thickness loss of dermis presenting as a shallow open ulcer with
a red pink wound bed, without slough. May also present as an intact or open/ruptured serum-filled
blister. Presents as a shiny or dry shallow ulcer without slough or bruising where bruising indicates
deep tissue injury.

Category/Stage III: Full thickness skin loss Full thickness tissue loss. Subcutaneous fat may be visible but
bone, tendon or muscle are not exposed. Slough may be present but does not obscure the depth of
tissue loss. May include undermining and tunneling.The depth of a Category/Stage III pressure ulcer
varies by anatomical location.

Category/Stage IV: Full thickness tissue loss Full thickness tissue loss with exposed bone, tendon or muscle.
Slough or eschar may be present. Often includes undermining and tunneling.The depth of a Catego-
ry/Stage IV pressure ulcer varies by anatomical location.

As can be seen in the definitions above, these different grades indicate the severity of the injury. In this
thesis the main focus will lie on superficial pressure ulcers. According to Gefen ([1, 2]) these superficial ulcers
correspond to the pressure ulcers from Grade I and Grade II.

As mentioned in the definition of pressure ulcers, many different factors influence a patients risk at the
injuries. These factors include among others the age of the patient, whether or not the patient is healthy, the
wetness of the skin and the stiffness of the skin. Many of these factors are related, for example a patient who
has diabetes often has a stiffer skin.
A lot of research has been done and is being done to investigate these factors and decrease patients risk at
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pressure ulcers. The models that are described in the articles that will be used in this thesis investigate the
relation between the wetness of the skin (microclimate factors) and the risk of pressure ulcers. In the articles
it is described that the temperature in the room has effect on the moisture level of the skin which has effect
on the stiffness of the skin, hence again the factors are related.

1.1.1. SKIN BREAKDOWN
To minimize a patients risk at pressure ulcers it is important to know when pressure ulcers develop. A very
simple way of looking at the development of these wounds is to look at it as the skin "failing" or breaking
down. There are multiple theories on the failing of materials, depending on the types of these materials.

A solid material is called ductile when it has the ability to deform under tensile stress, for example when
sliding along a different plane. Criteria used to predict the failure of these materials are also known as yield
criteria. These criteria can be seen as defining the limit of elasticity in a material after which plastic defor-
mation will occur. This means that some of the deformations will remain when the material is unloaded.
The yield criteria try to ascertain the yield point at which the elastic region, in which unloading the material
means the deformations are completely reversed, changes into the plastic region. Note that despite the quick
transition from elastic to plastic behavior, in reality there is no distinct yield point due to continuity ([4]).

Figure 1.1: Schematic representation of a stress-strain diagram for many metals and non-metals. The transition from elastic to plastic
behavior is fast but continuous and can therefore not truly be given by a single yield point. Source: [4]

Note that even though the definition of the yield point does not include actual failing of the material, it
is the point at which permanent deformation occurs. In the context of the human body this will therefore be
used as the failing point.

Below two of the most common yield criteria will be discussed ([5], [6]).

Maximum shear stress theory Also known as the Tresca yield criterion. This theory states that the material
yields when the maximum shear stress τ exceeds the shear yield strength τy . For the principal stresses
ordered as σ1 ≥ σ2 ≥ σ3 the maximum shear stress is given equal to 1

2 (σ1 −σ3) (see Sections 2.1.5 and
2.1.6). The yield point can hence be determined by solving equation (1.1):

τ= 1

2
(σ1 −σ3) = τy . (1.1)

Maximum distortion energy criterion Also known as the von Mises Criterion. This criterion states that fail-
ure occurs when the von Mises stress squared σv exceeds the yield strength σy squared. Determining
the yield point can be done by solving equation (1.2) where σ1, σ2 and σ3 are the principal stresses, i.e.

σ2
v = 1

2
[(σ1 −σ2)2 + (σ1 −σ3)2 + (σ2 −σ3)2] =σ2

y . (1.2)

In this thesis the Maximum shear stress theory shall be used as this theory is also described by Gefen in
[1]. In the article Gefen uses this theory to determine the critical time point for skin breakdown t∗ which is in
fact the time when the yield point is reached (see Figure 1.2). In Section 4.1.1 a more detailed explanation of
the use of the Maximum shear stress theory in this thesis is given.
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Figure 1.2: Skin break down will occur when the shear stress applied on the skin exceeds the shear strength of the skin. Source: [1]

1.2. PREVIOUS RESEARCH
This section will discuss the article on the effects of microclimate factors on the development of pressure
ulcers written by Gefen [1] and the research that was done in the beginning of this thesis regarding the most
suitable software.

1.2.1. THE EFFECTS OF THE MICRO CLIMATE
The paper by Amit Gefen [1] reviews a mathematical model which describes the effect of microclimate factors
on the development of pressure ulcers.
In this section the assumptions, calculations and results of this article will be discussed.

In the article the risk of superficial pressure ulcers (SPUs) is being examined. Here superficial pressure
ulcers will mean "skin damage associated with sustained mechanical loading".
The research described in the article continues on the idea that thermodynamic conditions within and around
the skin tissue (i.e. the skin being wet) influences the risk of a patient getting a SPU. The term microclimate
is used here to describe factors like the local temperature and moisture conditions of the skin. The area of
interest will be the parts of the human body that are considered the weight-bearing regions ([7]1). Previous
papers described the effect of surface temperature, humidity, moisture and air movement as risk factors on
the patients susceptibility. All these papers however, were based on purely experimental research. The article
written by Gefen creates a mathematical model to prove that the microclimate factors are indeed risk factors.

In Figure 1.3 the part of the human body that is considered is shown. This region of interest (ROI) is "a
small region of contact between the skin and a support (e.g. mattress or cushion), possibly with a covering
sheet, some clothing or stocking in-between the skin and support".

Figure 1.3: The model will consider a small weight-bearing part of the human body. Source: [1]

1Referred to by Gefen in [1].
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Perspiration The first step that is taken in the article is to assume the expression of the perspiration accu-
mulated over a certain time period within the available space.
The following denotations are used.

Notation Factor

∆V volume of perspiration

t time

V available space between the skin and the contact materials at the ROI

Ṡ rate of production of perspiration by the sweat glands contained on the ROI

Ḋ rate of drainage of perspiration out of the ROI via the contact materials

Ė rate of evaporation of perspiration.

With the factors above, the accumulated perspiration over time t within V is assumed to be

∆V (t )

V
=

t∫
0

(Ṡ − Ė − Ḋ)d t (1.3)

Now the rate of production of perspiration can be assumed to start with an ambient temperature Ta (tem-
perature within the ROI) of 30◦C. It can also be assumed that the production is proportional to the tempera-
ture gradient Ta −30◦C. Using this Ṡ can be formulated as

Ṡ =α Ta −30◦C

T max
a −T min

s
. (1.4)

Here α is a dimensionless proportionality constant, T max
a is the maximal ambient temperature and is equal

to 40◦C and T min
s is the minimal skin temperature, equal to 30◦C.

In a similar way the evaporation rate is formulated.

Ė =β Ta −Ts

T max
a −T min

s
(1−RH) (1.5)

Here β is another dimensionless proportionality constant, Ts is the skin temperature and RH is the relative
humidity at the liquid free-space of the ROI. In the article a more detailed definition is given.

"The RH is defined as the ratio between the amount of water vapor at the ROI and the maximum
amount of water vapor that the ROI can hold, and hence, the RH ranges between 0 and 1." - Amit
Gefen, [1]

With this definition it can be noted that RH = 1− ∆V (t )
V . In the paper, however, Gefen mentions but does not

use this definition; RH is simply assumed constant2.
Lastly an expression for the drainage of perspiration Ḋ is given. This is simply given as a single dimen-

sionless effective permeability coefficient
Ḋ = γ. (1.6)

This constant weighs together the contributions of permeabilities of all contact materials. If for instance
γ= 0, there is no drainage of perspiration at all.

To establish a model that is, mathematically speaking, simple enough to solve, the assumption is made
that the ambient temperature, skin temperature and relative humidity do not change in time, and thus are
independent of t . With these assumptions and using equations (1.4), (1.5) and (1.6) equation (1.3) becomes

2Note that when RH = 1− ∆V (t )
V would be used equation (1.5) would simplify to

Ė =β Ta −Ts

T max
a −T min

s

∆V (t )

V

and equation (1.3) could be solved exact.
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∆V (t )

V
=

[
α

Ta −30◦C

T max
a −T min

s
+β Ta −Ts

T max
a −T min

s
(1−RH)+γ

]
· t , (1.7)

with t such that 0 ≤∆V (t )/V ≤ 1.

The coefficient of friction Another factor in the model described in the article is the coefficient of friction
(COF) between the skin and a contacting covering sheet or clothing. This coefficient strongly depends on the
volume of perspiration accumulated over the skin.
For instance, for the contact between dry skin and common hospital textiles the COF is equal to approxi-
mately 0.4. For contact between wet skin and the same textiles the COF will increase to approximately 0.9.
Using this, an expression for the COF (denoted as µ) between the skin and the covering sheet or clothing in
the ROI is described for the model;

µ= 0.5
∆V (t )

V
+0.4. (1.8)

This equation shows that the accumulation of perspiration on the skin will consequently increase the shear
forces f between the skin and the contact materials over time.
For the shear forces f it holds that f = µN where N is the body weight force applied perpendicularly to the
skin-support or skin-clothing contact area at the weight-bearing region. This body weight force N is assumed
to be constant over time since the patient is not moving. Despite this fact, µ does increase with time as can be
obtained from equation (1.8). As a consequence the shear stress between the skin and the contact materials
will increase over time, as the amount of perspiration increases. This shear stress τ is equal to the shear force
normalized by the contact area A which gives τ = µN /A. Because the pressure P delivered to the skin from
the support surface at the skin-support or clothing-support region of contact is given as P = N /A the shear
stress can be written in terms of this pressure, that is τ=µP . Substituting the expression of the COF (equation
(1.8) into this relationship the following equation holds for the ROI.

τ=
(
0.5
∆V (t )

V
+0.4

)
·P (1.9)

Here the pressure P depends on the stiffness of the support, and will increase as the stiffness of the support
increases ([8]3). Since τ is linearly proportional to P , the same dependency on the stiffness of the support will
hold.

Skin Breakdown When the shear stress applies on the skin (given by equation (1.9)) exceeds the shear
strength of the skin, skin break down will occur (Figure 1.4). It was shown before that the shear stress will
increase over time as perspiration accumulates. The shear strength of the skin will however decline. A refer-
ence is given to ([9]) regarding the fact that the shear strength reduces "by a factor 5 for a completely hydrated
skin with respect to dry skin." Using this an expression of the shear strength of the skin τs

w is given.

τs
w =

(
1−0.8

∆V (t )

V

)
τs

0 (1.10)

Here τs
0 is the shear strength of dry skin.

Since the skin breaks down when the shear stress applied on the skin exceeds the shear strength of the
skin, the next step is to find the time t∗ for which the shear stress is equal to the shear strength of the skin,
hence where τ= τs

w . This equality yields

t∗ = τs
0 −0.4P

(0.5P +0.8τs
0)

{
[α−β(1−RH)]Ta+β(1−RH)Ts−α·30◦C

T max
a −T min

s
−γ

} (1.11)

With this equation it is possible to examine the effect of the different factors on this critical time t∗.

3Referred to by Gefen in [1].
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Figure 1.4: Skin break down will occur when the shear stress applied on the skin exceeds the shear strength of the skin. Source: [1]

CALCULATIONS

In the article, the effect of the microclimate factors Ta , RH and Ts as well as interacting factors P and per-
meability γ on the critical time for skin breakdown is examined. In order to study the effects of these factors
on the critical time, several plots were made in which the factors were given various values. In every plot, the
critical time (t∗) is plotted against the skin temperature (Ts ) and one of the other factors is being varied. In
Table 1.1 the values for all parameters are given. Note that whenever one of the factors is being varied, the
others are equal to the values given in this table [1].
The Matlab code used to repeat the calculations can be found in Appendix (C.1).

Table 1.1: These parameter values are used in the plots shown in Figure 1.5 .

Parameters τs
0 P α β γ Ta RH

Value 70 kPa 7 kPa 2 1 0.1 35◦C 0.5

RESULTS

In the article the results are given using the plots shown in Figure 1.5. It can be seen in the figures that all the
factors which have been examined do have effect on the critical time.
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Figure 1.5: The calculated dimensionless critical times for skin breakdown versus the skin temperature (Ts ) for different values of (a)
the microclimate parameters of ambient temperature (Ta ) (left panel) and relative humidity (RH) (right panel), and (b) the interact-
ing parameters of pressure delivered from the support (P ) (left panel) and permeability to perspiration (γ) of the materials contact-
ing the skin or being in close proximity to the skin (right panel). The following values were assigned to the model variables in these
simulations:τs

0 = 70 kPa, P = 7 kPa∗, α = 2, β = 1, and γ = 0.13, Ta = 35◦C∗ and RH = 0.53. ∗ denotes; where not altered as detailed in
the specific panel. Source: [1]

1.2.2. CHOOSING A SOFTWARE PACKAGE
In this thesis the goal is to combine the two models regarding pressure ulcers created by Gefen ([1], [2]). As
one of the models uses the finite element method to solve the problem, a suitable software package had to
be found. This software needs to be widely accessible and easy to change, that is, it should be possible to add
features such as the effect of microclimate factors. The second model of Gefen originally was implemented
using software called Adina ([10]), hence the first software we checked was Adina.

ADINA - FINITE ELEMENT ANALYSIS SOFTWARE

The software package called Adina ([10]) allows the user to model 2D problems which are solved using Finite
Element Methods. It has a graphic interface hence the user does not need any programming skills.
To be able to fully use the software it needs to be purchased. A free trial version can be obtained4 but when
using this version the number of nodes is limited to 900.
As the software is not open source the user does not have the opportunity to obtain details regarding the cal-
culations from the code. Using Adina the user is obligated to buy the full version, but even when purchased
is limited to working with 2D problems in a graphic interface, unable to combine the model with other math-
ematical models. Due to these limitations we decided to look at other software packages and discard the use
of Adina.

FEBIO

FEBio ([11]) is software constructed to solve medical problems using a Finite Element Analysis. The software
is open source and is created by the University of Utah using C++. The software is originally constructed
together with two other programs; PreView ([12]) and PostView ([13]).

PreView Also constructed by the University of Utah, PreView is the original predecessor of FEBio. Quite
similar to Adina, the problem can be modeled using a graphical interface. Opposite to Adina, FEBio is only
capable to solve problems in 3D.

4The trial version can be downloaded at http://www.adina.com/n900.shtml.



1.2. PREVIOUS RESEARCH 9

(a) Opening Adina the user is presented with many
options.

(b) When building a model in the trial version the
user is limited to 900 nodes.

Figure 1.6: The software package Adina.

In PreView the user has to implement the geometries, boundary conditions, types of contact and so on.
Since PreView can only build basic geometries it is possible to import more advanced geometries built using
other software. Besides information regarding the problem, various details about solving the problem can be
defined in PreView. Examples of these details are the maximum number of retries for each time step and the
solution method.
Once the model is complete a FEBIO (.feb) file is made, which can be run using FEBio.

(a) The basic screen of PreView. (b) Simple geometries can be created in PreView.

Figure 1.7: The predecessor PreView.

FEBio Once the .feb file has been generated the user can run this file in FEBio which solves the modeled
problem. On Windows the program can be run directly from PreView, from a command prompt or from the
Programs Menu. In running FEBio the user will see a command prompt on the screen which shows the details
of every time step (see Figure 1.8). When finished solving the problem FEBio will simply stop and the output
will be saved in several files.

Figure 1.8: FEBio while solving a problem.
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PostView Once the problem is solved using FEBio, the output can be viewed in the post processor PostView.
In this program the user can view different outputs such as the stresses, strains and deformations of the bod-
ies at every time step. Similar to Adina, the package consisting of FEBio, PreView and PostView is very graphic.

(a) Showing the stress results using PostView. (b) Showing results for a specific element using
PostView

Figure 1.9: PostView can be used to view many different outputs.

The user can implement the model by choosing the correct settings. As the package exists of three different
programs, the user also has the opportunity to choose a different method for creating the .feb file. The user
for example can write the file manually using the XML language. This opportunity is very convenient because
it means we could use a mathematical program such as Matlab to write the .feb file and to add the effects of
micro-climate factors such as sweat.
Another advantage of FEBio is that the software is open source, it is therefore possible to view and even
change the source code.

MATLAB

The goal in this thesis is to combine two mathematical models. Working with mathematical models the most
common first computational environment to use is Matlab. Since Matlab allows the user to implement math-
ematical models in which functions can be called, Matlab is very suitable to model the micro-climate factors
for a bedbound patient. However, since Matlab itself does not have a Finite Element Solver for large prob-
lems, this solver would have to be implemented separately which would be very time consuming.
As FEBio is a Finite Element solver in which Bio-mechanical problems can be solved and Matlab is a program
in which the micro-climate factors can be modeled, it would be very convenient if we could combine these
two programs.

THE GIBBON TOOLBOX

When further investigating the possibilities of FEBio combined with Matlab, we came across the Gibbon Tool-
box ([14]). This is a set of Matlab codes in which a problem is modeled, a FEBio file is created, FEBio is called
to solve the problem, and which then shows the user specified output. Basically this toolbox allows the user
to replace PreView (and PostView) with Matlab, but still use FEBio to actually solve the problem.

THE FINAL SOFTWARE CHOICE

Using the information described above a final choice for the software was made. Instead of choosing a single
program the choice was made to use the combination of Matlab, the Gibbon Toolbox and FEBio. Using Matlab
and the Gibbon Toolbox a .feb file will be generated in which the problem including the micro-climate factors
will be described. When completely defined, the model will then be solved using FEBio. Once solved, the
results will be viewed using either Matlab, PostView or a combination. A schematic overview of this can be
seen in Figure 1.10.
Note that this section does not cover all possible software packages. Other programs, such as Abaqus ([15])

have not been considered in the choice because they are quite similar to FEBio and Adina.
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Figure 1.10: A schematic overview of the chosen software. The logos were retrieved from [14], [11]and [13]

1.3. OUTLINE OF THIS THESIS
This document is organized in the following chapters:

• Chapter 2 describes the mathematical model that is solved in this thesis. In the final sections the im-
plementation of the model in the software is discussed.

• Chapter 3 gives the details on the numerical method that is used to solve the problem.

• Chapter 4 is subdivided into three sections, each discussing the results obtained with a part of the
model. The first section discusses the basic model, the second section discusses the results of the
model in which microclimate factors are included. The last section discusses the final model which
is enhanced with the improvements discussed in Chapter 2.4.3.

• Chapter 5 includes the conclusions, remarks and ideas concerning future research.

• Appendix A gives additional information regarding stress and strain, as well as some information re-
garding constitutive laws such as Hooke’s Law.

• Appendix B provides additional information on contact mechanics. Different solving methods are de-
scribed.

• Appendix C contains the Matlab code of the final model.

• Appendix D contains the FEBio file of the final model.





2
MATHEMATICAL MODEL

In this chapter the mathematical model will be discussed. The first section will contain the necessary def-
initions regarding stress and deformation. In the second section (Section 2.2) the problem will be given in
mathematical equations. The section will start with discussing the basic principles of mechanics, after which
the actual problem will be derived. Section 2.3 will then elaborate on the mathematical model by includ-
ing the contact information. Lastly, Section 2.4 explains the model as it is constructed using the software. It
should be noted that Sections 2.2 and 2.3 give the mathematical problem as implemented in FEBio, whereas
Section 2.4 only provides the details that are needed to solve the model.

2.1. DEFORMATION AND STRESS
In contact between solids and the deformation of solids the concepts of elasticity, stress and strain are very
important. In the subject of pressure ulcers, stress especially is important. In this section mostly deformation
and stress will be discussed. More information on elasticity, stress and strain is provided in Appendix A. The
knowledge used in this section and its subsections is acquired a.o. from the books Theory of Elasticity, by
S. Timoshenko and J.N. Goodier [16], Nonlinear Continuum Mechanics for Finite Element Analysis by Javier
Bonet and Richard D. Wood [17], and Introduction to Finite Element Analysis Using MATLAB rand Abaqus
by Amar Khennane, chapter 5 [18]. More information on stress and strain can be found in Appendix A.

2.1.1. THE DEFORMATION GRADIENT
When considering a deforming body one has a reference configuration (the undeformed body) and a current
configuration (the deformed body). During the deformation many quantities can change such as the area of
a part of the body, the volume, and even the density. This is illustrated in Figure 2.1.

To be able to link the quantities of the reference configuration to the quantities of the current deformation
(or even during the deformation) the deformation gradient F is introduced. This tensor makes it possible to
describe the relative spatial position of of two neighboring particles after deformation in terms of their relative
material position before deformation.

When the motion of the deformable body at time t is described by a mapping x = φ(X, t ) between the
initial positions denoted by X and the current positions denoted by x, the deformation gradient is defined as

F = ∂φ

∂X
=∇φ. (2.1)

Note that hereφ is a vector and hence F is a matrix.
This definition is derived from the following idea. Consider a material particle P in the reference config-

uration and a material particle Q1 in the neighborhood of P . The position of Q1 relative to P is given by the
elemental vector dX1.

dX1 = XQ1 −XP (2.2)

After the body is deformed, both Q1 and P will have deformed to spatial positions given by

xp = φ(XP , t ) (2.3a)

xq1 = φ(XQ1 , t ). (2.3b)

13
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Figure 2.1: Many quantities change in the deformation of a body. Source: [17]

Applying the deformation and using equation (2.2) the elemental vector becomes

dx1 = xq1 −xp =φ(XP +dX1, t )−φ(XP , t ). (2.4)

Using the definition of F and assuming ‖dX1‖ to be sufficiently small, this can be rewritten as

dx1 = FdX1. (2.5)

Note that the motion of the deformable body can also be expressed as

x = x(X, t ). (2.6)

In this case the deformation gradient is given by

F = ∂x

∂X
. (2.7)

When considering only a single elemental material vector dX, the corresponding vector dx in the deformed
(spatial) configuration is given by

dx = FdX. (2.8)

The inverse of the deformation gradient can be used to express the reference position of a particle in terms of
the position in the current configuration. The inverse is given by

F−1 = ∂X

∂x
=∇φ−1. (2.9)

CHANGE IN VOLUME

The deformation gradient can be used to express many quantities, among which is the change in volume
when a body deforms [17]. Consider an infinitesimal vector element in the material (reference) configuration
defined by the following three edges (see Figure 2.2).

dX1 = d X1E1 (2.10a)

dX2 = d X2E2 (2.10b)

dX3 = d X3E3 (2.10c)

Here E1, E2 and E3 are the orthogonal unit vectors which means that the edges of the volume element are
parallel to the Cartesian axes.
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Figure 2.2: The volume change of an element caused by the deformation of a body. Source: [17]

The elemental material volume is obviously given by

dV = d X1d X2d X3. (2.11)

The deformed volume can be derived by first considering the spatial vectors that define the element in the
spatial configuration.

dx1 = FdX1 = ∂φ

∂X1
d X1 (2.12a)

dx2 = FdX2 = ∂φ

∂X2
d X2 (2.12b)

dx3 = FdX3 = ∂φ

∂X3
d X3 (2.12c)

Using these elemental vectors the deformed volume is given by

d v = |dx1 · (dx2 ×dx3)|
= | ∂φ

∂X1
· (
∂φ

∂X2
× ∂φ

∂X3
)d X1d X2d X3| (2.13)

It can be noted that the triple product in equation (2.13) is the determinant of the deformation gradient F.
Using this the volume change caused by deformation can be expressed using the Jacobian J .

d v = JdV , J = detF (2.14)

This expression will be used later on in this section.

2.1.2. PUSH FORWARD AND PULL BACK
In the previous section the deformation gradient is introduced as the relationship between the undeformed
(material) and deformed (spatial) quantities. Many studies in literature however, use the concepts of push
forward and pull back to express these relationships.

Push forward is used to express the spatial form in terms of the material form. For example, the elemental
vector dx is the push forward equivalent of the material vector dX, which is expressed as

dx =φ∗ [dX] = FdX. (2.15)
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Pull back is used to express the material form in terms of the spatial form. Taking the same example, the
material vector dX is the pull back equivalent of the spatial vector dx, expressed as

dX =φ−1
∗ [dx] = F−1dX. (2.16)

Note thatφ∗ denotes an operation, which is evaluated differently for different operands [] [17].

2.1.3. THE STRESS TENSOR
If one applies pressure or other external forces on the outside of an object and this object is being restrained
against rigid body movement, this pressure will be noted inside the object as internal forces are induced.
These internal forces have a certain intensity, i.e. a certain amount of force per unit area of the surface on
which they act. This intensity of the internal forces is called stress. The dimension of stress is pressure, hence
it is mostly measured in terms of pascal (Pa).

THE CAUCHY STRESS TENSOR

The traction vector When considering a deformable body in its current position one can study the forces
applied by one part of the body (R1) on the remaining part of the body (R2). This is illustrated in Figure 2.3.

Figure 2.3: The traction vector on an element of area ∆a in a deformable body. Source: [17]

Now consider the element of area ∆a to normal n in the neighborhood of spatial point p as shown in
Figure 2.3. Suppose the resultant force on this area is equal to ∆p, then the traction t vector corresponding to
the normal n at p is defined as [17]

t(n) = lim
∆a→0

∆p

∆a
. (2.17)

The above relation between t and n should satisfy Newton’s third law which states that
"when one body exerts a force on a second body, the second body simultaneously exerts a force equal in magni-
tude and opposite in direction on the first body."
In terms of the traction vector t this means that

t(−n) =−t(n). (2.18)

One can express the three traction vectors associated with the three Cartesian directions e1, e2 and e3 in
a component form, in which the first notion of a stress tensor appears (see Figure 2.4).

t(e1) =σ11e1 +σ21e2 +σ31e3 (2.19a)

t(e2) =σ12e1 +σ22e2 +σ32e3 (2.19b)

t(e3) =σ13e1 +σ23e2 +σ33e3 (2.19c)

A relationship has now been given between the traction vector t corresponding to the Cartesian direc-
tions ei and the components σi j . However, a more general relationship between the the traction vector t
corresponding to a general direction n and the components σi j is desired. In order to obtain such a relation-
ship it is sufficient to study the translational equilibrium of elemental tetrahedron as shown in Figure 2.5.
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Figure 2.4: It is possible to express the traction vectors in a component form, introducing the notion of a stress tensor. Source: [17]

Figure 2.5: Considering the translational equilibrium of an elemental tetrahedron one can obtain a relationship between the traction
vector t corresponding to a general direction n and the components σi j . Source: [17]

Taking f to be the force per unit volume acting on the body at point p, the equilibrium of the tetrahedron
is given as

t(n)d a +
3∑

i=1
t(−ei )d ai + fd v = 0. (2.20)

In this equation d ai = (n ·ei )d a is the projection of the area d a onto the plane orthogonal to the Cartesian
direction i and d v is the volume of the tetrahedron. This expression can be rewritten by dividing the equation
by d a, using Newton’s third law and equations (2.19a)–(2.19c) and noting that d v/d a → 0.

t(n) = −
3∑

j=1
t(−e j )

d a j

d a
− f

d v

d a

=
3∑

j=1
t(e j )(n ·e j )

=
3∑

i , j=1
σi j (e) (2.21)
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Using the tensor product (e j ·n)ei can be rewritten as (ei ⊗e j )n. Substituting this into equation 2.21 gives

t(n) =
3∑

i , j=1
σi j (e)

=
3∑

i , j=1
σi j (ei ⊗e j )n)

=
[

3∑
i , j=1

σi j (ei ⊗e j )

]
n. (2.22)

With this the Cauchy stress tensor σ is identified which relates the normal vector n to the traction vector t
as

t(n) =σn; σ=
3∑

i , j=1
σi j (ei ⊗e j ). (2.23)

The Cauchy stress tensor In the previous paragraph the Cauchy stress tensor has been defined. When
considering such a stress tensor, it is usually resolved into two components: a normal stress which is perpen-
dicular to the area one looks at, and a shearing stress which acts in the plane of this area. To denote these
components of the Cauchy stress, the symbols σ and τ are often used. Here σ denotes the normal stresses
and τ denotes the shearing stresses.
To indicate the direction of the plane on which the stress is acting, subscripts to the components x, y and z
are used. This means that when working in the Euclidean space the normal stresses are denoted by σx , σy

and σz . The subscript x for example indicates that the stress is acting on a plane normal to the x-axis. It is
agreed to take the normal stress positive when it produces tension and negative in the case it produces com-
pression.
The shearing stresses are denoted by τx y , τxz , τy x , τy z , τzx and τz y or simply by σx y , σxz σy x , σy z , σzx and
σz y . Here τi j =σi j . Note that the shearing stresses have two subscripts each. The first letter in the subscript
indicates the direction of the normal to the plane under consideration. The second letter is then indicating
the direction of the component of the stress. For example, considering the sides of a cube perpendicular to
the z-axis, the component in the x-direction will be denoted by τzx .
In the paragraph above it becomes clear that stress has three symbols to describe the normal stresses (σx , σy

and σz ) and six symbols to describe the shearing stresses (τx y , τxz , τy x , τy z , τzx and τz y ).
Dividing the area one is looking at into very small elements, one can deduce that the shearing stress can be
described using three symbols instead of one. This deduction can be done considering the equilibrium of the
small elements. The following symmetry relations will be found:

τx y = τy x τxz = τzx τy z = τz y

σx y =σy x σxz =σzx σy z =σz y
. (2.24)

Using these equations one finds that there are six components of stress, σx , σy , σz , τx y = τy x , τxz = τzx

and τy z = τz y , at every point in the object.
These stress components are sometimes denoted in matrix style, which gives us the stress matrix

σ=
 σx τx y τxz

τy x σy τy z

τzx τz y σz

 .

Using (2.24) it can be seen that the matrix above is symmetric. Sometimes in engineering a vector notation
is used. In that case the stress is denoted as

~σ=



σx

σy

σz

τx y

τy z

τxz


=



σxx

σy y

σzz

σx y

σy z

σxz


=



σ11

σ22

σ33

σ12

σ23

σ13


.
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THE PIOLA-KIRCHHOFF STRESS TENSOR

While the Cauchy stress tensor is the most used form of the stress tensor, it is sometimes necessary to use
another form. The Cauchy stress tensor is sometimes called the true stress because it is a true measure of
the force per unit area in the current, deformed, configuration [19]. When working with large deformations
however, there is a clear distinction between the current configuration which is the deformed configuration
and a reference or undeformed configuration. In this case different ways of defining the action of surfaces
need to be defined. One of these methods is using the Piola-Kirchhoff stress tensor instead of the Cauchy
stress.

The first Piola-Kirchhoff stress tensor Consider both an undeformed (reference) and a deformed config-
uration of a material as well as a vector element of surface in the reference configuration NdS. Here N is the
unit normal on the area and dS is the area of the element. Now during the deformation the particles that
make up the area will move, eventually occupying an element defined as nd s in the deformed configuration,
where n is the normal and d s the area of this new element. By the definition of the Cauchy stress the force∆p
acting on the surface element in the deformed configuration is equal to

∆p =σnd s. (2.25)

Using this idea the first Piola-Kirchhoff stress tensor P is defined by

∆p = PNdS. (2.26)

This first Piola-Kirchhoff stress tensor (or PK1 stress) relates the force acting in the deformed and current
configuration to the surface element in the undeformed reference configuration.

Similar to the (Cauchy) traction vector used in Section 2.1.3 a PK1 traction vector T exists for which holds
that

T = PN T = ∆p

dS
. (2.27)

Note that unlike the Cauchy traction the PK1 traction is a fictitious quantity. Where the Cauchy traction
is the actual physical force per area on the element in the current configuration, the PK1 traction is the force
acting on an element in the current configuration divided by the area of the corresponding element in the
reference configuration.

The relation between the Cauchy and the first Piola-Kirchoff stresses In some situations one would like
to switch from the Piola-Kirchhoff stress to the Cauchy stress or vice versa. In order to do this the relation
between the Cauchy stresses and PK1 stresses shall be discussed.
From the definitions given above it follows that

σnd s = PNdS. (2.28)

We can now apply Nanson’s formula, which gives the relation between areas in the current configuration
and areas in the reference configuration as

nd s = JF−T NdS, (2.29)

where d s is the area in the current configuration and dS the area in the reference configuration.

Using this formula the relation between the Cauchy and PK1 stresses can be easily obtained from 2.28.

The relation between the Cauchy and PK1 stresses

P = JσF−T (2.30a)

σ= J−1PFT (2.30b)
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The second Piola-Kirchhoff stress tensor A second Piola-Kirchhoff stress tensor S is defined as [19]

S = JF−1σF−T , (2.31)

where J is still the determinant of F. For brevity this tensor shall be called the PK2 stress. It can be interpreted
as follows. Consider the force vector∆p in the current configuration and find the corresponding vector in the
undeformed body using ∆̄p = F−1∆p. The PK2 stress can be seen as this fictitious force ∆̄p divided by the area
element in the reference configuration [19].

Even though the stress is a fictitious quantity, it is used as a measure of the forces in the material. This is
done for three reasons.

1. The PK2 stress is symmetric:
S = ST . (2.32)

This can be checked by looking at the definition:(
F−1σF−T )T = (

σF−T )T (
F−1)T

(2.33a)

= F−1σT F−T (2.33b)

= F−1σF−T , (2.33c)

where the last step holds due to the symmetry of σ.

2. The second reason the PK2 stress is used is that in combination with the Euler-Lagrange strain E (see
Section 2.1.4) the Virtual Work equation in material form can be defined (see Section 2.2.2).

3. The PK2 stress is parameterized by material coordinates only, which means that it is a material tensor
field. This is similar to the Cauchy stress being a spatial tensor field.

Note that the PK1 stress and PK2 stress are related as follows.

The relation between the PK1 and PK2 stresses

P = FS (2.34a)

S = F−1P (2.34b)

2.1.4. THE STRAIN TENSOR
Besides inducing internal forces when one applies pressure or other external forces on the outside of an object
while this object is being restrained against rigid body movement, material points inside the body can be
displaced. When this displacement causes the distance between two points in the body to change one speaks
of straining. In other words, strain is the change in a dimension divided by the original dimension; when
working in R1, strain is the displacement of a point per unit length. In this section the strain tensors in both
material form and spatial form shall be given. Additional information on the strain can be found in Appendix
A.

THE CAUCHY-GREEN TENSORS

Consider once again two elemental vectors dX1 and dX2 in the reference configuration, which change to dx1

and dx2 in deformation. By the definition of the deformation gradient F the following expression can be
formed

dx1 ·dx2 = FdX1 ·FdX2 (2.35a)

= dX1 ·FT FdX2 (2.35b)

= dX1 ·CdX2. (2.35c)

The tensor C introduced in 2.35c is known as the right Cauchy-Green deformation tensor [17] and defined as

C = FT F. (2.36)
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As C operates on the material vectors dX1 and dX2, C is called a material tensor quantity.
Similarly it is possible to express the spatial vectors dx1 and dx2 in terms of the material vectors dX1 and

dX2 using the deformation gradient.

dX1 ·dX2 = F−1dx1 ·F−1dx2 (2.37a)

= dx1 ·F−T F−1dx2 (2.37b)

= dx1 ·
(
FFT )−1

dx2 (2.37c)

= dx1 ·b−1 dx2. (2.37d)

This way the left Cauchy-Green deformation tensor also known as the Finger tensor b is defined as [17]

b = FFT . (2.38)

As b−1 operates on the spatial vectors dx1 and dx2, the tensor b is called a spatial tensor quantity.
Note that the Cauchy-Green tensors provide information on the change in angle between the two vectors

and the stretch of the line elements.
From the right Cauchy-Green tensor the Eulerian or spatial elasticity tensor c can be obtained using the

concept of push forward [17].

c= J−1φ∗ [C] ; c=
3∑

i , j ,k,l=1
I ,J ,K ,L=1

J−1Fi I F j J FkK FlLC I JK Lei ⊗e j ⊗ek ⊗el (2.39)

THE GREEN STRAIN TENSOR

A general measure of deformation is the change in the scalar product of two elemental vectors. Using the
definitions given above, this change can now be found in terms of the Cauchy-Green tensor.

1

2
(dx1 ·dx2 −dX1 ·dX2) = 1

2
(dX1 ·CdX2 −dX1 ·dX2) (2.40a)

= dX1 ·
(

1

2
(C− I)

)
dX2 (2.40b)

= dX1 ·EdX2 (2.40c)

Here the Green strain tensor E, also known as the Lagrangian strain tensor is defined by

E = 1

2
(C− I) , (2.41)

where C is the right Cauchy-Green deformation tensor and I is the identity matrix.
Note that the Green strain tensor directly gives information on the change in the scalar product of two

elemental vectors.

THE ALMANSI STRAIN TENSOR

Similar to the Green strain tensor a strain tensor exists which provides information in terms of the spatial
element vectors. The change in scalar product is now expressed as

1

2
(dx1 ·dx2 −dx1 ·dx2) = 1

2

(
dx1 ·dx2 −dx1 ·b−1dx2

)
(2.42a)

= dx1 ·
(

1

2
(I−b−1)

)
dx2 (2.42b)

= dx1 ·edx2. (2.42c)

Here e is called the Almansi strain tensor or the Eulerian strain tensor defined by

e = 1

2
(I−b−1). (2.43)

This strain tensor also provides direct information on the change in the scalar product of two elemental vec-
tors.

Note that the Green strain tensor and the Almansi strain tensor can be expressed in one another using the
push forward and pull back concept as follows:

E =φ−1
∗ [e] = FT eF Pull back, (2.44a)

e =φ∗ [E] = F−T eF−1 Push forward. (2.44b)
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2.1.5. THE PRINCIPAL STRESSES
A very common way of working with the stress of a body is to consider the principal stresses. These stresses
are equal to the Cauchy stresses when the basis is changed in such a way that the shear stresses become equal
to zero. This is done as follows [18].
Suppose the basis that is used is given by (~e1,~e2,~e3) and the stress vector is given by ~T = σ~n. Now suppose
that for this basis the stress vector on the cutting plane P (n) is not parallel to the normal ~n (see Figure 2.6).
The goal is to find a cutting plane P (~n′) for which ~T =σ~n′ =λ~n′ with λ a scalar and ~n′ is parallel to ~T . Taking
this plane together with two other planes which are mutually perpendicular will form a basis of the tensor,
better known as the principal basis. Note that this basis is made of the principal directions of the stress tensor
which, due to the symmetry of σ, are the orthonormal eigenvectors of σ.

Figure 2.6: When the stress tensor is considered in a basis in which the stress in parallel to the normal one obtains the principal stresses.
Source: [18]

In the principal basis the stress tensor reduces to its diagonal form and is given as

σ=
 σ1 0 0

0 σ2 0
0 0 σ3

 (2.45)

Here σ1, σ2 and σ3 are the principal stresses. Note that these stresses are the roots of the characteristic equa-
tion of the stress tensor σ given by

σ=
 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 . (2.46)

The roots can be calculated by solving∣∣∣∣∣∣
σ11 −λ σ12 σ13

σ21 σ22 −λ σ23

σ31 σ32 σ33 −λ

∣∣∣∣∣∣= 0. (2.47)

which obtains the characteristic equation

λ3 − I1λ
2 + I2λ− I3 = 0, (2.48)

where Ii are the stress invariants.

I1 =σ11 +σ22 +σ33 (2.49a)

= trσ

I2 =σ11σ22 +σ22σ33 +σ11σ33 −σ2
12 −σ2

23 −σ2
31 (2.49b)

= 1

2

[
tr(σ)2 − tr(σ2)

]= 1

2

(
σi iσ j j −σi jσ j i

)
I3 =σ11σ22σ33 +2σ12σ23σ31 −σ2

12σ33 −σ2
23σ11 −σ2

31σ22 (2.49c)

= det(σ)
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Note that due to the symmetry of the Cauchy stress tensor there are three real roots λi for the charac-
teristic equations. These roots are the principal stresses, which are often ordered as σ1 ≥ σ2 ≥ σ3, using
equations (2.49a)–(2.49c).

σ1 = max(λ1,λ2,λ3) (2.50a)

σ2 = I1 −σ1 −σ3 (2.50b)

σ3 = min(λ1,λ2,λ3) (2.50c)

The stress invariants Ii can also be given in terms of the principal stresses:

I1 =σ1 +σ2 +σ3, (2.51a)

I2 =σ1σ2 +σ2σ3 +σ3σ1, (2.51b)

I3 =σ1σ2σ3. (2.51c)

The principal stresses and directions do not depend on the chosen axes to describe the stress as they are
properties of the stress tensor. The stress invariants I1, I2 and I3 are invariant under coordinate transforma-
tion [19].

2.1.6. THE MAXIMUM SHEAR STRESS
In Section 2.1.3 the shear stress τ has been defined. A common measure when working with shear stresses is
the maximum shear stress τmax. As the stresses depend on the basis in which they are considered it is clear
that on a certain plane the stresses will be maximal.
The maximum shear stress is given in terms of the principal stresses (σ1 ≥σ2 ≥σ3) as

τmax = 1

2
(σ1 −σ3). (2.52)
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2.2. PROBLEM DEFINITION
The issue that is being considered is the problem of a bedbound patient who has a risk of the development
of pressure ulcers. From the moment the patient lies in the bed the skin will experience a certain stress level.
If the skin of the patient is exposed during a longer period of time, the stress level can increase which will
weaken the skin. When a patient is then being moved across the bed by a caretaker, the skin can break down.
Following the method described by Gefen and Shaked in [2], the following problem will be implemented.

• A human body is at rest on a mattress. Shaked and Gefen worked with a 2D model in which the body
was modeled by a circle and the mattress by a rectangle. As FEBio uses 3D models the body shall now
be modeled as a sphere and the mattress will be represented by a box.

• Due to gravity the body immerses into the mattress which will cause both the human skin and the
mattress to deform.

• After a while a caregiver will move the body 10cm across the mattress (horizontal sliding) and 1cm
towards the mattress. This latter movement is due to the additional loading the caregiver applies to
reposition the patient.

This section contains information on the exact problem which FEBio solves, i.e. the problem described
above written in mathematical equations. The general problem given by the equations of motion shall be
given in Section 2.2.1. This will be followed by a derivation of the weak form (Section 2.2.2) after which the
finite element method which is implemented in FEBio (Sections 3.2 and 3.4) shall be discussed. Both sections
closely follow the derivations given in [17], as this is the literature work on which the implementation in FEBio
is based.
In Section 2.3 it will be described how FEBio deals with contact problems. The information in this section is
gained from [20]. Additional information on contact mechanics is given in Appendix B.

2.2.1. THE PROBLEM
As FEBio is a program in which many various problems can be implemented, different starting points are
used for several types of problems. In this thesis only the case of solid materials shall be considered.

In general when looking at solid materials a good place to start mathematically is with the basic principles
from mechanics. These principles can be Newton’s Laws, or the equivalent set of dynamics laws Euler’s Laws.
In this thesis we will start from Euler’s Laws to derive the Equations of motion, specifically Euler’s first Law:
the Principle of Linear Momentum.

A distinction will be made between two types of descriptions [17].

The material description is also known as the Lagrangian description. In this description the variation of a
quantity such as the material density ρ over the body is described with respect to the original (or initial)
coordinate X used to label a material particle in the continuum at time t = 0 as

ρ = ρ(X, t ).

Here a change in time t means that the same material particle X has a different density ρ, hence interest
is focused on the material particle X .

The spatial description is also known as the Eulerian description. In this description the quantities will be
described with respect to the position in the current configuration x, currently occupied by a material
particle in the continuum at time t . For instance, the material density ρ will be described as

ρ = ρ(x, t ).

A change in time t implies that a different density is observed at the same spatial position x, now prob-
ably occupied by a different particle. Interest is focused on a spatial position x.

The implementation in FEBio uses the spatial description, however, the material description is used to
simplify certain derivations.

THE PRINCIPLE OF LINEAR MOMENTUM

In the Principle of Linear Momentum the momentum of an object is defined as a measure of an objects
tendency to keep moving once it is set in motion.
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Spatial form In the spatial form the linear momentum p is equal to the product of the body’s mass and its
velocity.

p = mv (2.53)

When considering the change in an objects momentum over time one obtains

ṗ = dp

d t
= d(mv)

d t
= m

dv

d t
= ma. (2.54)

Here we used that the mass of the body is constant in time, hence dm
d t = 0. Equation (2.54) can be rewritten

using Newton’s second law which states that F = ma. This gives

F = d

d t
(mv) (2.55)

which is known as the principle of linear momentum, or the balance of linear momentum. Looking at the
equation it states that the rate of change of the momentum is equal to the applied force. When the applied
forces are equal to zero (there are no forces applied to the system) this law is called the law of conservation of
(linear) momentum. In this case the total momentum of the system remains constant.

The principles as they are given above are applied to a particle and therefore should be expanded to hold
for a continuum. We shall do this by considering a material volume v in the current configuration. Given this
finite portion has a spatial mass density ρ(x, t ) and a spatial velocity field v(x, t ) the total linear momentum
of this mass is given as

L(t ) =
∫

v
ρ(x, t )v(x, t )d v. (2.56)

Considering the rate of change of the momentum the principle of linear momentum states that

L̇(t ) = d

d t

∫
v
ρ(x, t )v(x, t )d v = F(t ), (2.57)

where F(t ) is the resultant of the forces acting on the finite portion. Note that we are working with material
volume, which contains the same particles of matter at all times. The amount of space occupied by these
particles may change over time.

The above equation includes a derivative of an integral, which we would like to rewrite. This can be done
by using the law of mass conservation, which states that for a density ρ and v the velocity of the element

∂ρ

∂t
+∇· (ρv) = 0. (2.58)

Using this we can obtain the following for F a property per unit mass and V a material volume, where the first
equality is known as Reynolds’ transport theorem for a material element.

d

d t

(∫
V
ρF dV

)
=

∫
V

∂ρF

∂t
dV +

∫
S
ρF (v ·n) dS

=
∫

V

(
∂ρ

∂t
F +ρ ∂F

∂t
+∇· (ρvF )

)
dV

=
∫

V

(
F

[
∂ρ

∂t
+∇· (ρv)

]
+ρ

[
∂F

∂t
+v ·∇F

])
dV

=
∫

V
ρ

[
∂F

∂t
+v ·∇F

]
dV

=
∫

V
ρ

DF

Dt
dV

Here DF
Dt is the material derivative of the property F , given by

DF

Dt
= ∂F

∂t
+v ·∇F. (2.59)
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It can be found that the material derivative of the velocity v itself is equal to the acceleration.

Dv

Dt
= ∂v

∂t
+v ·∇v

= ∂v

∂t
+ vx

∂v

∂x
+ vy

∂v

∂y
+ vz

∂v

∂

= d

d t
v(t , x, y, z)

= v̇.

We obtain

L̇(t ) =
∫

v
ρ(x, t )v̇(x, t )d v = F(t ). (2.60)

We can further rewrite this linear momentum principle by evaluating the resultant force F(t ) acting on the
body. This force exists of the surface tractions t acting over the surface elements and the body forces b which
act on the volume elements. Using this the resultant force can be written as

F(t ) =
∫

s
td s +

∫
v

bd v. (2.61)

Substituting this into equation (2.60) we can express

The Principle of the Linear Momentum in the spatial form as∫
v
ρ(x, t )v̇(x, t )d v =

∫
s

td s +
∫

v
bd v. (2.62)

Material form The linear momentum of a mass element in material form is given by ρ0VdV , where V is the
same velocity as v which is used in the spatial form. The only difference is that now the velocity is expressed
in the material coordinates X and ρd v = ρ0dV . Similar to the spatial form, the total linear momentum can be
given as an integral over the volume V in the reference configuration:

L(t ) =
∫

V
ρ0(X)V(X, t ) dV. (2.63)

Using this and the law of mass conservation the principle of linear momentum is now given by

L̇(t ) = d

d t

∫
V
ρ0(X)V(X, t ) dV =

∫
V
ρ0

dV

d t
dV = F(t ). (2.64)

The forces F are the external forces acting on the current configuration, which means that we have to work
with the first Piola-Kirchhoff stress, since this stress measures the actual force in the current configuration,
however per unit surface area in the reference configuration. With this stress the surface force acting on the
surface element d s in the current configuration can be given using the first Piola-Kirchhoff traction vector
T as dfsur f = td s = TdS, where t is the Cauchy traction vector. Similarly the body force can be given by the
reference body force B, which is the actual body force acting on the current configuration per unit volume in
the reference configuration. One obtains dfbod y = bd v = BdV .
Using these two definitions the resultant force is

F(t ) =
∫

S
T dS +

∫
V

B dV. (2.65)

After substituting this into equation (2.64) we obtain

The Principle of the Linear Momentum in the material form∫
V
ρ0

dV

d t
dV =

∫
S

T dS +
∫

V
B dV. (2.66)
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THE EQUATIONS OF MOTION

Spatial form From the Principle of Linear Momentum we can derive the equations of motion, which de-
scribe the problem that needs to be solved in FEBio. To do this we shall start by rewriting the integral over the
surface ∫

s
td s.

Cauchy’s Law states that there exists a Cauchy stress tensor σ that relates the normal vector n to the traction
vector t as [17]

t =σn. (2.67)

Applying this law to the integral over the surface gives us∫
s

td s =
∫

s
σn d s. (2.68)

The divergence theorem, also known as Gauss’ Theorem, states that the volume integral of the divergence
of any continuously differentiable vector A is the closed surface integral of the outward normal component
of A [21] Ñ

R

∇·A dV =
Ó

S
A · n̂ dS. (2.69)

Since the Cauchy stress tensorσ is continuously differentiable this theorem can be applied to the integral
in 2.68. ∫

s
σn d s =

∫
v
∇·σd v (2.70)

Note that in literature both t = σn and t = nσ are used. These are both correct, since the stress tensor σ is
symmetric (σ=σT ).

The Principle of Linear Momentum (equation (2.62)) can therefore be written as∫
v
∇·σ+b d v =

∫
v
ρv̇ d v. (2.71)

Now the equations of motion are equal to

Equations of Motion in the spatial form:

∇·σ+b = ρdv

d t
(2.72)

Material Form Similar to the Cauchy stresses in the spatial form, there exists a Piola-Kirchhoff stress tensor
P for which T = PN. Together with the divergence theorem this can be used to rewrite the principle of linear
momentum given in equation (2.66). We obtain∫

V
[di vP+B] dV =

∫
V
ρ0

dV

d t
dV. (2.73)

Now the equations of motion are equal to

Equations of Motion in the material form:

di vP+B = ρ0
dV

d t
(2.74)

2.2.2. THE WEAK FORMULATION
In the previous section the problem for solid materials is described using the equations of motions. When
solving this problem using the Finite Element Method we start by converting the strong form (equations of
motion and boundary conditions) into the weak form which is known as the principle of virtual work.
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SPATIAL FORM

Starting with the equations of motion in the spatial form (equation (2.72)) the weak form is derived by multi-
plying the equation by a test function δv which represents a virtual velocity and integrate over the volume v .
By doing so we obtain ∫

v
δv(∇·σ+b) dV =

∫
v
δv(ρ

dv

d t
) dV. (2.75)

The above equation can be rewritten using the fact that (σ=σT ) and the identity

∇(AT ·b) = b · (∇· A)+ A : (∇b),

or, in a different order,
b · (∇· A) =∇(AT ·b)− A : (∇b).

We obtain ∫
v
δv(∇·σ) d v =

∫
v
∇· (σ ·δv) d v −

∫
v
σ : (∇δv) d v, (2.76)

from which follows that ∫
v
δv(ρ

dv

d t
) d v =

∫
v

[∇· (σ ·δv)−σ : (∇δv)+δv ·b] d v. (2.77)

Here the divergence theorem (equation (2.69)) can be applied followed by Cauchy’s law (equation (2.67)).∫
v
δv(ρ

dv

d t
) d v =

∫
∂v

[(σ ·δv) ·n] d a −
∫

v
σ : (∇δv) d v +

∫
v

[δv ·b] d v

=
∫
∂v

(t ·δv) d a −
∫

v
σ : (∇δv) d v +

∫
v

[δv ·b] d v, (2.78)

where we used that
(σ ·δv) ·n ≡σi j∂v j ni = ∂v jσ j i ni ≡ δv · (σ ·n) = δv · t = t ·δv.

Changing the order of these integrals we obtain:

−
∫

v
δv(ρ

dv

d t
) d v =

∫
v
σ : (∇δv) d v −

∫
v

[b ·δv] d v −
∫
∂v

(t ·δv) d a. (2.79)

FEBio allows the user to choose between quasi-static and a dynamic analysis, where the quasi-static anal-
ysis is the default setting. In the quasi-static analysis the inertial effects, given by the ρ-term, are ignored and
an equilibrium solution is sought. This means that they work with the equations of equilibrium in which the
acceleration dv

d t is taken equal to zero and hence∫
v
σ : (∇δv) d v −

∫
v

[b ·δv] d v −
∫
∂v

(t ·δv) d a = 0. (2.80)

Note that this equation includes the expression ∇δv. As δv is an arbitrary virtual velocity, the gradient of
this velocity is by definition the virtual velocity gradient δl, defined as

δl =∇δv = ∂δv

∂x
=


∂δvx
∂x

∂δvx
∂y

∂δvx
∂z

∂δvy

∂x
∂δvy

∂y
∂δvy

∂z
∂δvz
∂x

∂δvz
∂y

∂δvz
∂z

 . (2.81)

Using this, equation (2.80) becomes∫
v
σ : δl d v −

∫
v

[b ·δv] d v −
∫
∂v

(t ·δv) d a = 0. (2.82)

As a final step the virtual velocity gradient is expressed in terms of the symmetric virtual rate of deforma-
tion δd and the antisymmetric virtual spin tensor δw as

δl = δd+δw, (2.83)
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where

δd = 1

2
(δl+δlT ),and (2.84a)

δw = 1

2
(δl−δlT ). (2.84b)

Assuming the rotational motion of the particles is equal to zero, the spatial virtual work equation can be
formulated using spatial quantities only.

The spatial virtual work equation:

δW =
∫

v
σ : δd d v −

∫
v

b ·δv d v −
∫
∂v

t ·δv d a = 0. (2.85)

MATERIAL FORM

The virtual work equation in material form can be derived in two different ways. First of all, it can be derived
directly from the equations of motion. Secondly it is possible to derive the material form from the spatial
form. In this section the entire virtual work equation shall be derived from the equations of motion, after
which only a part of the virtual work equation shall be derived from the spatial form. Even though the results
are the same the latter way is used later on in the Newton Raphson Method and is therefore shown here.

Derivation from the equations of motion Starting with the equations of motion in material form (equation
(2.74)) the derivation of the Principle of Virtual Work in material form is quite similar to the derivation of the
spatial form.

di vP+B = ρ0
dV

d t
(2.86)

The first step is to multiply both sides by a test function δV and to take the integral over the volume V .∫
V
δV (di vP+B) dV =

∫
V
δV

(
ρ0

dV

d t

)
dV. (2.87)

Note that unlike the Cauchy stress tensor σ, the PK1 stress tensor P is not symmetric. Using

b · (∇· A) =∇(AT ·b)− A : (∇b),

one therefore obtains ∫
V
δV (∇·P) dV =

∫
V
∇· (PT ·δV

)
dV −

∫
V

P : (∇δV) d v. (2.88)

Substituting this into equation (2.87) gives∫
V
δV(ρ0

dV

d t
) dV =

∫
V

[∇· (PT ·δV)−P : (∇δV)+δV ·B
]

dV. (2.89)

Here the divergence theorem (equation (2.69)) can be applied after which one can use that PN = T.∫
V
δV(ρ0

dV

d t
) dV =

∫
∂V

[
PT ·δV) ·N

]
d A−

∫
V

P : (∇δV) dV +
∫

V
[δV ·B] dV

=
∫
∂V

[δV ·P) ·N] d A−
∫

V
P : (∇δV) dV +

∫
V

[δV ·B] dV

=
∫
∂V

[T ·δV] d A−
∫

V
P : (∇δV) dV +

∫
V

[δV ·B] dV (2.90)

Changing the order of these integrals, gives

−
∫

V
δV(ρ0

dV

d t
) dV =

∫
V

P : (∇δV) dV −
∫

V
[B ·δV] dV −

∫
∂V

(T ·δV) d A. (2.91)

Similar to the spatial case the acceleration dV
d t is taken equal to zero because the inertial effects are ignored

and an equilibrium solution is sought, which gives
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The material virtual work equation:

δW =
∫

V
P : (∇δV) dV −

∫
V

[B ·δV] dV −
∫
∂V

(T ·δV) d A = 0. (2.92)

Derivation from the spatial form The second way of determining the material form of the virtual work
equation is through the spatial form. Here only a part of the equation shall be derived, as this is the only part
that is needed. We start with the following expression in the spatial form [17]:∫

v
σ : δd d v. (2.93)

In this derivation the virtual work shall be expressed using the second Piola-Kirchhoff stress tensor S and the
time derivative of the Green strain tensor E.

First of all the time derivative of the Langangian strain tensor will be considered. This tensor Ė is known
as the material strain rate tensor [17]. Here E = 1

2 (C− I) is the Lagrangian strain tensor. The derivative is now
obtained by

Ė = 1

2
Ċ = 1

2

(
ḞT F+FT Ḟ

)
. (2.94)

Here C = FT F is the right Cauchy-Green deformation tensor as defined in equation (2.36).

The material strain rate tensor gives the current rate of change of the scalar product of two elemental
vectors in terms of the initial elemental vectors as

d

d t
(dx1 ·dx2) = 2dX1 · ĖdX2. (2.95)

The rate of change of the scalar product can also be expressed in terms of dx1 and dx2 as

1

2

d

d t
(dx1 ·dx2) = dX1 · ĖdX2

= F−1dx1 · ĖF−1dx2

= dx1 ·
(
F−T ĖF−1)dx2. (2.96)

In this equation the rate of deformation tensor d is introduced which is defined as

d = F−T ĖF−1. (2.97)

Another way of defining the rate of deformation tensor is by using the velocity gradient l. This gradient is
defined as

l = ∂v(x, t )

∂x
=∇v, (2.98)

where v(x, t ) is the velocity as a function of the spatial coordinates. Another way of defining l is by

l = ḞF−1. (2.99)

With these definitions of the velocity gradient the rate of deformation tensor can be given by

d = 1

2
(l+ lT ). (2.100)

Note that the material strain rate tensor and the rate of deformation tensor can be expressed in one an-
other using the push forward and pull back concept as follows:

Ė =Ψ−1
∗ [d] = FT dF Pull back, (2.101a)

d =Ψ∗
[
Ė
]= F−T ĖF−1 Push forward. (2.101b)
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Using these new definitions, the virtual work equation can be rewritten into the material form [17].∫
v
σ : δd d v =

∫
V

Jσ :
(
F−TδĖF−1) dV (2.102a)

=
∫

V
tr

(
F−1 JσF−TδĖ

)
dV (2.102b)

=
∫

V
S : δĖ dV (2.102c)

Note that this part is equal to the part
∫

V P : (∇δV) dV in equation (2.92).
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2.3. INCLUDING THE CONTACT DEFINITIONS
One of the most difficult parts of solving the model is the contact between the skin and the mattress. As
further explained in Appendix B, the biggest problem is the number of unknowns. As one cannot predict the
movement and deformation of both bodies, the contact area between the bodies is also unknown.
FEBio includes many options regarding contact and coupling. These different options are further explained in
Section 2.4.1. In this model the contact is between two deformable bodies which will also be the contact type
that will be described in this section. This section will start with a definition of the two body contact problem
(Section 2.3.1), after which it will be included in the equations of motion (Section 2.3.3). As the contact will
also be solved using the Newton-Raphson method the equations of motion including the contribution of the
contact tractions will be converted to the virtual work equation (Section 2.3.4).
The definitions and derivations in this section closely follow the information given in [20], as this is the book
that was used for the implementation in FEBio.

2.3.1. THE TWO BODY CONTACT PROBLEM
Before discussing the problem some notation shall be introduced [20]. The two bodies that are considered
in the reference configuration are denoted by Ω(i ) ⊂ R3 for i = 1,2. The bodies are put in motion, described
by ϕ(i ) which will cause them to come into contact. Points within the first body Ω̄(1) are denoted by X in the
reference configuration and x in the current configuration. Points in the second body Ω̄(2) are denoted by
Y and y respectively. The boundary of each body in the reference configuration is denoted as ∂Ω(i ) and is
subdivided into three regions Γ(i )

c , Γ(i )
σ and Γ(i )

u , such that

Γ(i )
c ∪Γ(i )

σ ∪Γ(i )
u = ∂Ω(i ), and Γ(i )

c ∩Γ(i )
σ = Γ(i )

c ∪Γ(i )
u = Γ(i )

u ∪Γ(i )
σ =;. (2.103)

The three regions are defined as follows:

• Γ(i )
c is the part of the boundary that is in contact with the other body,

• Γ(i )
σ is the part of the boundary where tractions are applied, and

• Γ(i )
u is the part of the boundary where the solution (the displacement ū(i )) is prescribed.

Figure 2.7: The basic notation used in the two body contact problem. Source: [20].

In the current configuration the counterpart of the contact boundary is designated as γ(i )
c = ϕ(i )

t

(
Γ(i )

c

)
,

i = 1,2. An overview of the notation is given in Figure 2.7.
Recall from Section 2.2.1 that the equations of motion in the material form are given by equation (2.74)

where P is the first Piola-Kirchhoff stress, B the prescribed body force, ρ0 the reference density and dV
d t the

material acceleration field:

di vP+B = ρ0
dV

d t
. (2.104)

As this equation must hold for each body separately, the equation can be written for body i as

di vP(i ) +B(i ) = ρ(i )
0 A(i ), where A(i ) = dV(i )

d t
. (2.105)
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Similarly in the spatial form:

∇·σ(i ) +b(i ) = ρ(i )a(i ), where a(i ) = dv(i )

d t
. (2.106)

The corresponding initial and boundary conditions are given by

P(i )N(i ) = T̄(i ) in Γ(i )
σ , for all t , (2.107a)

ϕ(i ) = ϕ̄(i ) in Γ(i )
u , for all t , (2.107b)

ϕ̇(i )
∣∣∣

t=0
= V(i )

0 in Ω̄(i ), (2.107c)

ϕ(i )
∣∣∣

t=0
= I (the identity mapping) in Ω̄(i ). (2.107d)

Here N(i ) is the outward normal to ∂Ω(i ) in the reference configuration, T̄(i ) is the specified traction field on
Γ(i )
σ , ϕ̄(i ) is the specified displacement field on Γ(i )

u and V(i )
0 is the specified initial velocity field for body i .

The final element that needs to be introduced before introducing the contact element in the equation of
motion are the contact conditions describing the response on Γ(1)

c (or Γ(2)
c ). The first step in introducing these

conditions is terming the two bodies.

1. The first body has the surface that will be used to parametrize the contact. The positions of points
belonging to this surface will be monitored with respect to the location of the second surface. This
surface is termed the slave or contactor surface.

2. The surface of the second body is termed the master or target surface.

In this section the first body shall be parametrized, that is Γ(1)
c is the slave surface, and Γ(2)

c is the master
surface.

Now for a given point X on the slave reference contact surface Γ(1)
c , there is a point Ȳ(X) on the master

contact surface (Γ(2)
c ) that is ’closest’ to point X. This point Ȳ(X) is defined according to the following closest

point projection:

Ȳ(X) = arg min
Y∈Γ(2)

c

∥∥∥ϕ(1)
t (X)−ϕ(2)

t (Y)
∥∥∥ . (2.108)

With this definition of the closest point, the gap function g (X, t ) can be written as

g (X, t ) =−v
(
ϕ(1)

t (X)−ϕ(2)
t (Ȳ(X))

)
, (2.109)

where v is the outward unit normal to γ(2)
ct

at ȳ =ϕ(2)
t (Ȳ). Note that when g > 0 it means that X has penetrated

body 2, which is not allowed when dealing with contact. From this the contact constraint condition can be
derived as being

g (X, t ) ≤ 0. (2.110)

2.3.2. INCLUDING FRICTION IN THE PROBLEM
Now that the contact problem has been described, the effects of friction can be included. Since the contact
is described from the position of points X ∈ Γ(1)

c opposing the surface Γ(2)
c , the goal is to write the frictional

governing equations in a similar way. For this some new notation needs to be introduced. The notation starts
with assuming that Γ(2)

c can be described as

Γ(2)
c =Ψ(2)

0 (A (2)), and γ(2)
c =Ψ(2)

t (A (2)), (2.111)

where A (2) ⊂R2 is a parametrization of the contact surface, see Figure 2.8.
This parametrization A (2) and the mappingsΨ(2)

0 andΨ(2)
t are assumed to be smooth for simplicity [20].

Typical points of A (2) will be denoted by ξ. The point of A (2) corresponding to Ȳ(X, t ) will be denoted by
ξ̄(X, t ).
It is convenient to define bases associated with each point X, which are advected with X as it moves. These
bases shall be called the slip advected bases. The first one that will be defined is one in the reference configu-
ration of the sliding surface (Γ(2)

c ). The second is defined in the current configuration (γ(2)
c ).

Tα :=Ψ(2)
0,α(ξ̄(X, t )), and τα :=Ψ(2)

t ,α(ξ̄(X, t )), α= 1, . . .nsd −1. (2.112)
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Figure 2.8: Schematic of the parametrization of a contact surface. Source: [20].

Here nsd is the number of spatial dimensions. Note that Tα and τα are always associated with a material
point X and are evaluated according to its current (closest point) projection to Γ(2)

c , parametrized by ξ̄(X, t ).
When characterizing potential frictional response the most important variable is the relative velocity between
X and its opposing point Ȳ(X, t ). This relative velocity can be expressed both in the spatial configuration and
the reference configuration, by an appeal to the slip advected bases introduced in equation (2.112). We con-
sider the time derivative of the relative position vector between x =ϕ(1)(X) and its contact point ȳ =ϕ(2)(Ȳ(X))
during perfect sliding (when g = ġ = 0) and the two points remain coincident in space [20].

0 = d

d t

[
ϕ(1)(X, t )−ϕ(2)(Ȳ(X, t ), t )

]
= V(1)(X, t )−V(2)(Ȳ(X, t ), t )−F(2)

t (Ψ(2)
0 (ξ̄(X, t )))

d

d t
[Ȳ(X, t )] (2.113)

Here F(2)
t is the deformation gradient of body (2) at time t . From this equation it follows that the relative

velocity may be represented in terms of vectors in the tangent spaces Γ(2)
c and γ(2)

c while sliding is occurring.
The spatial relative velocity υT and the convective relative velocity νT are defined as

υT := F(2)
t

(
Ψ(2)

0 (ξ̄(X, t ))
) d

d t
[Ȳ(X, t )], (2.114a)

= V(1)(X, t )−V(2)(Ȳ(X, t ), t ) by equation (2.113), and

νT := d

d t
[Ȳ(X, t )], (2.114b)

= ˙̄ξα(X, t )Tα as the point in A (2) corresponding toȲ(X, t ) is denoted by ξ̄(X, t ).

It can be shown that νT is the pull back of υT byϕ(2)
t and since

τα = F(2)
t Tα, (2.115)

it follows that
υT = ˙̄ξα(X, t )τα. (2.116)

It can be derived ([20]) that the ˙̄ξα are the components of the convected relative velocity V T with respect
to the Tα basis, and are likewise the components of the spatial relative velocity υT with respect to theτα basis.

More generally, the components ˙̄ξα(X, t ) of υT and νT in their respective basis can be interpreted using
the closest point projection given in equation (2.108). This can even be done for the case where g 6= 0. It can
be noted that since the projection of x =ϕ(1)

t (X) onto γ(2)
ct

is normal to γ(2)
ct

at ȳ =ϕ(2)
t (Ȳ(X)), we can write [20]

τα ·
[
ϕ(1)

t (X, t )−ϕ(2)
t (Ȳ(X, t ), t )

]
= 0, α= 1,2. (2.117)

Taking the material time derivative of this expression yields

0 =
[

V(1)(X)−V(2)(Ȳ(X))−τγ ˙̄ξγ
]
·τα− gν ·

[
V(2)

,α (Ȳ(X))+ϕ(2)
t ,αβ(ξ̄)˙̄ξβ

]
. (2.118)
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This can be rewritten as

Aαβ
˙̄ξβ = [

V(1)(X)−V(2)(Ȳ(X))
]
τα− gν · [V(2)

,α (Ȳ(X))
]

, (2.119)

where the quantity Aαβ is defined as

Aαβ := mαβ+ gκαβ. (2.120)

In this equation καβ := ν ·ϕ(2)
t ,αβ(Ȳ) denotes the components of the surface curvature at ξ̄ [20], and mαβ :=

τα ·τβ refers to the components of the metric tensor.

In the case of perfect sliding, i.e. when g = 0, equation (2.119) simplifies to

˙̄ξα = [
V(1)(X)−V(2)(Ȳ(X))

]
τα. (2.121)

Here τα = mαβτβ represents the dual basis to τβ.

It can be obtained that in the case of perfect sliding the ˙̄ξα represent the projection of the relative material
velocity V(1)(X)−V(2)(Ȳ(X)) into the (spatial) tangent plane atϕ(2)

t (Ȳ(X)).

To formulate the frictional model a distinction shall be made between two frameworks: the spatial kine-
matic frame and the convected kinematic frame.

Starting with the spatial kinematic frame, the spatial relative velocity υT will be used in the equations.
Note that even though the quantity is associated with the material point X, it is a vector resolved in terms of
spatial bases τα. Considering the Piola-Kirchhoff contact traction T(X, t ), one finds that this vector can also
be written in terms of spatial bases. Recall that the Piola traction is defined as

T(X, t ) := P(X, t )N(X), (2.122)

where P is the first Piola-Kirchhoff stress and N the outward surface normal in the initial configuration.
A frictional traction vector can be defined by resolving the Piola traction T(X, t ) in terms of the spatial basis to
obtain the (spatial) frictional traction tT :

tT (X, t ) :=−T(X, t )+ tN (X, t )ν, (2.123)

where tN is the contact pressure, which is positive if it is compressive, and ν is the outward normal to γ(2)
c at

ϕ(2)
t (Ȳ(X, t )). The minus sign ensures that tT physically represents the frictional traction exerted by X on the

surface Γ(2)
c .

Considering the convected kinematic frame allows for the frictional traction to be defined in the con-
vected basis. The convected frictional traction T T (X, t ) is defined as the pull back of tT induced byϕ(2)

t :

T T (X, t ) := F(2)T

t (Ȳ(X, t ))tT (X, t )

= tTα (X, t )Tα. (2.124)

In this equation the last line holds due to the fact that Tα = F(2)T

t τα.

COULOMB FRICTION

With the two frameworks defined above we can now turn to friction. FEBio supports contact with Coulomb
friction, which is the most common form of friction (see Appendix B.2.4). The friction will be formulated
within both frameworks. The Coulomb law for large sliding problems shall be given in the unregularized
form, which is not differentiable at the origin and allows for description of perfect sticking behavior [20].
The Coulomb law states that the frictional traction force tT should always be smaller than or equal to the
contact pressure tN multiplied by a coefficient of friction µ:

‖tT ‖ ≤µtN . (2.125)
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In the spatial slip advected frame the Coulomb law can be expressed as

g ≤ 0

tN ≥ 0

tN g = 0

Ψ(tT ,tN ) := ‖tT ‖−µtN ≤ 0, (2.126)

υb
T = γ̇

tT

‖tT ‖
,

γ̇ ≥ 0,

γ̇Ψ = 0.

Here υb
T = mαβ

˙̄ξβτα, with mαβ = τα ·τβ as before, and ‖(•)‖ indicating the Euclidean norm of the vector (•).
The indicesα,β,γ, . . . run between 1 and nsd −1. Equation (2.126) can be written in components (with respect
to the τα basis) as

g ≤ 0

tN ≥ 0

tN g = 0

Ψ(tT ,tN ) := [tTαmαβtTβ ]1/2 −µtN ≤ 0, (2.127)

mαβ
˙̄ξβτα = γ̇

tTα

[tTβmβγtTγ ]1/2
,

γ̇ ≥ 0,

γ̇Ψ = 0.

In the convective slip advected frame the Coulomb law can be written as

g ≤ 0

tN ≥ 0

tN g = 0

Ψ(T T ,tN ) := ‖T T ‖−µtN ≤ 0, (2.128)

V b
T = γ̇

T T

‖T T ‖
,

γ̇ ≥ 0,

γ̇Ψ = 0.

With respect to the Tα basis this can be written in components as

g ≤ 0

tN ≥ 0

tN g = 0

Ψ(tT ,tN ) := [tTαMαβtTβ ]1/2 −µtN ≤ 0, (2.129)

Mαβ
˙̄ξβτα = γ̇

tTα

[tTβMβγtTγ ]1/2
,

γ̇ ≥ 0,

γ̇Ψ = 0.

Here Mαβ = Tα ·Tβ is the material metric. Note that though the expressions given in (2.127) and (2.129)

are very similar, they are not entirely identical. Where the spatial description uses spatial metrics mαβ to
compute lengths, the convective frame uses reference metrics Mαβ for this. This results in a spatial traction
tT in the spatial frame which satisfies Coulombs law, while in the convective frame T T is forced to satisfy this
law. When the deformation of Γ(2)

c is small however, these differences vanish.
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2.3.3. INCLUDING THE CONTACT IN THE EQUATIONS OF MOTION
With the definitions given in the previous section, the total problem including the contact constraints is given
by [20]:

di vP(i ) +B(i ) = ρ(i )
0 A(i ), where A(i ) = dV(i )

d t
. (2.130)

The corresponding initial boundary conditions are given by

P(i )N(i ) = T̄(i ) in Γ(i )
σ , for all t (2.131a)

ϕ(i ) = ϕ̄(i ) in Γ(i )
u , for all t (2.131b)

ϕ̇(i )
∣∣∣

t=0
= V(i )

0 in Ω̄(i ) (2.131c)

ϕ(i )
∣∣∣

t=0
= I (the identity mapping) in Ω̄(i ) (2.131d)

Note that thus far the problem is stated the same as the problem without contact. Now the additional infor-
mation that needs to be incorporated into the problem are the contact conditions. For all X ∈ Γ(1)

c , decom-
posing the Piola-Kirchhoff traction at X as T =−tTατ

α+ tNν), the contact conditions are

tN ≥ 0 (2.132a)

g ≤ 0 (2.132b)

tN g = 0, (2.132c)

where the frictional tractions are given in either the spatial slip advected frame or the convective slip advected
frame:

• The spatial, slip advected frame:

Ψ(tT ,tN ) := [tTαmαβtTβ ]1/2 −µtN ≤ 0,

mαβ
˙̄ξβτα = γ̇

tTα

[tTβmβγtTγ ]1/2
,

γ̇ ≥ 0,

γ̇Ψ = 0.

• The convective, slip advected frame:

Ψ(tT ,tN ) := [tTαMαβtTβ ]1/2 −µtN ≤ 0,

Mαβ
˙̄ξβτα = γ̇

tTα

[tTβMβγtTγ ]1/2
,

γ̇ ≥ 0,

γ̇Ψ = 0.

2.3.4. THE WEAK FORM INCLUDING THE CONTACT TRACTIONS
In Section 2.2.2 the virtual work equation in material form is given as

δW (Ψ,δv) =
∫

V
P : (∇δv) dV −

∫
V

[B ·δv] dV −
∫
∂V

(T ·δv) d A = 0. (2.133)

Here P is the PK1 stress, B the body force and T the surface traction.
In the two body contact problem including friction this weak form shall only change slightly.

First of all, the above equation must hold for each body (i ), i = 1,2. Secondly, the equation will be in terms of
the motion of body (i )ϕ(i ) and a weighting (test) functionω(i ), where

ϕ : Ω̄(1) ∪ Ω̄(2) →R3,
ω : Ω̄(1) ∪ Ω̄(2) →R3.

(2.134)

Thirdly, the integral over the surface (∂V ) describing the surface tractions can be written as the integral over
the part of the surface where tractions are present (Γ(i )

σ ). Last of all, an additional term appears in the virtual
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work equation, describing the contact problem. This term will be an integral over the part of the surface
where the body is in contact with the other body (Γ(i )

c ). With these changes, the virtual work equation for
each body can be written as

δW (i )(ϕ(i ),ω(i )) =
∫
Ω(i )

∇ω(i ) : P(i ) dΩ−
∫
Ω(i )

ω(i ) ·B(i ) dΩ−
∫
Γ(i )
σ

ω(i ) ·T(i ) dΓ−
∫
Γ(i )

c

ω(i ) ·T(i ) dΓ= 0. (2.135)

As this equation must hold for each body the total virtual work equation for the two body contact problem
can be expressed as the summation over the bodies.

δW (ϕ,ω) :=
2∑

i=1
δW (i )(ϕ(i ),ω(i ))

=
2∑

i=1

{∫
Ω(i )

∇ω(i ) : P(i ) dΩ−
∫
Ω(i )

ω(i ) ·B(i ) dΩ−
∫
Γ(i )
σ

ω(i ) ·T(i ) dΓ

}
︸ ︷︷ ︸

δW i nt ,ext (ϕ,ω)

−
2∑

i=1

∫
Γ(i )

c

ω(i ) ·T(i ) dΓ︸ ︷︷ ︸
δW c (ϕ,ω)

= 0. (2.136)

Note that δW i nt ,ext (ϕ,ω) denotes the internal and external virtual work that has been discussed before.
δW c (ϕ,ω) denotes the contact virtual work, and is also known as the contact integral. In short equation
(2.136) can be written as

δW (ϕ,ω) = δW i nt ,ext (ϕ,ω)+δW c (ϕ,ω) = 0. (2.137)

Note that the contact integral includes two integrals, one over each contact surface. This expression can
be converted to an expression including only one integral using the assumption made earlier that all contact
quantities are parametrized by X ∈ Γ(1)

c . The conversion can be achieved by enforcing linear momentum
across the contact interface [20]. This is done by requiring that the differential contact force induced on body
(2) at Ȳ be equal and opposite to that produced on body (1) at X, that is

t(2)
t (Ȳ(X))dΓ(2)

c = t(1)
t (X)dΓ(1)

c . (2.138)

Using this the contact integral can be given as

δW c (ϕ,ω) =−
∫
Γ(1)

c

t(1)
t (X)

[
ω(1)(X)−ω(2)(Ȳ(X))

]
dΓ. (2.139)

This can be simplified using the linearized variation of the gap function δg and the linearized variation of ξ̄.

δW c (ϕ,ω) =−
∫
Γ(1)

c

[tNν− tTατ
α] · [ω(1)(X)−ω(2)(Ȳ(X))

]
dΓ

δW c (ϕ,ω) =
∫
Γ(1)

c

[
tNtδg + tTαtδξ̄

α
]

dΓ, (2.140)

where

δg =−ν · [ω(1)(X)−ω(2)(Ȳ(X))
]

, and (2.141)

δξ̄
α =τα · [ω(1)(X)−ω(2)(Ȳ(X))

]
(when g = 0). (2.142)
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2.4. CONSTRUCTING THE MODEL USING THE GIBBON TOOLBOX AND FEBIO

2.4.1. THE BASIC MODEL
In this section an overview of the different components of the model is given. This will be done in a setup
similar to the general FEBio file.

THE UNITS

FEBio allows the user to choose its own set of units. It is up to the user to verify if the set is indeed consistent.
Before discussing the entire model an overview will therefore be given of used units.

Table 2.1: The used units.

Units

Time seconds s

Length millimeter mm

Mass kilogram kg

Density mass per unit volume kg/mm3

Force millinewton kg·mm/s2, mN

Stress Kilo Pascal mN/mm2, kPa

GENERAL INFORMATION

Before defining the actual problem, some general information has to provided in the .feb file. Details like the
type of problem and the name of the problem have to be given here.

FEBio allows the user to choose from five different problem modules, which define the type of analysis
that FEBio performs. The module types will be briefly discussed below [22].

Solid The solid type deals with structural mechanics problems. The user has the choice between a quasi-
static analysis and a dynamic analysis.

Biphasic The biphasic module type allows the user to solve problems in which fluids flow. One can choose
to use a steady-state analysis or a transient analysis.

Solute This type is very similar to the biphasic analysis but also includes problems that include solute trans-
port. Similar to the biphasic problem the user can choose between a steady-state analysis or a transient
analysis.

Multiphasic Even more elaborate is the multiphasic type in which the user can analyse problems including
chemical reactions.

Heat The heat type can be used to solve heat transfer problems. Again one has the option to choose for a
steady-state analysis or a transient analysis.

In the descriptions above one can see that besides the modules the user can also choose between some
analysis types. In the solid type, which is the module that is used in this project, one can choose between a
quasi-static analysis and a dynamic analysis. The difference between these two analysis types is that in the
quasi-static analysis the inertial effects are ignored and an equilibrium solution is sought. In a dynamic anal-
ysis the inertial effects are included. Note that even though the quasi-static analysis looks for an equilibrium
solution, it is still possible to simulate time dependent effects.
In this project the Solid module with a quasi-static analysis has been used.

Besides the analysis type the user also needs to specify some control information such as the initial step
size d t for the Newton method and total number of time steps. As the method does not always converge for
large step sizes the user needs to specify the minimum step size that the program can use and the number of
retries that it is allowed to use. As the problem is solved using BFGS (see Section 3.4.1) the user can specify the
maximum number of stiffness updates. Many of these control parameters have a default value which means
that the user is not obliged to define them. When not defined the program will automatically use the default
values. Which values do need to be given can be found in the user manual of FEBio [22].
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GEOMETRY AND MESH

When starting to build the model using the Gibbon Toolbox and FEBio the first thing that was noted was that
this model would have to be in 3D instead of 2D. In this model the body is therefore modeled by a sphere
instead of a circle and the bed is modeled as a box. To represent the different skin layers (i.e. skin and sub-
cutaneous tissue) multiple spheres were modeled within each other. The mattress and the human body are
implemented separately, positioned to make sure they only touch each other in a single point.

The dimensions of the model During the project two different sized models have been used. Details re-
garding these two models are given in Table 2.2. In working with the models the sizes of the spheres were
sometimes altered to see the effect on the stress levels. Table 2.2 however gives the general dimensions.

Table 2.2: Dimensions of the two basic models.

Model A (small) Model B (big)

Width mattress 12 mm 400 mm

Thickness mattress 12 mm 400 mm

Height mattress 6 mm 50 mm

Inner radius subcutaneous tissue 2 mm 163 mm

Outer radius subcutaneous tissue 4 mm 178 mm

Inner radius skin 4 mm 178 mm

Outer radius skin 6 mm 180 mm

To give a better idea regarding the geometry of the model, both models A and B are shown in Figure 2.9.
One can see that both models are currently hollow and the body only exists of skin and subcutaneous tissue.

(a) The geometry of model A (b) Cut-view of model A (c) The geometry of model B (d) Cut-view of model B

Figure 2.9: The geometry and cut-view overviews of the basic models.

Meshing the geometry Working in Matlab there are multiple ways of implementing the geometry and mesh.
The first option is to model a sphere and a box and then use some software to mesh the volumes. This soft-
ware could for instance be TetGen ([23]). Another option is to immediately mesh the bodies while creating
them. In implementing the model the latter option was used. This was done using a function from the Gib-
bon Toolbox in Matlab [14]. Multiple functions are available, depending on the type of elements the user
wants. In this model we use 8-node hexahedral elements (hex8).
While creating the mattress, the box is immediately subdivided into elements. When defining the size of the
box the user also has to define the number of elements that should fill each dimension. This can be done
in different ways. The first possibility is simply stating the number of elements that have to be in the width,
thickness and height. Another possibility is stating the size of the elements and defining the number of ele-
ments by checking how many elements of that size can fit in the box. Of course when doing so the number of
elements need to be rounded. In the code below the latter option is shown.
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1 %% Creating the box ( mattress )
sampleWidth=400; %width of the mattress
sampleThickness =400; %thickness of the mattress
sampleHeight =50; %height of the mattress
pointSpacing =40.3;% s i z e of the elements

6

%the number of elements in the width of the box
numElementsWidth=round ( sampleWidth/ pointSpacing ) ;
%the number of elements in the thickness of the box
numElementsThickness=round ( sampleThickness/ pointSpacing ) ;

11 %the number of elements in the height of the box
numElementsHeight=round ( sampleHeight/ pointSpacing ) ;

Meshing the spheres is done rather similarly. The user starts with defining the inner and outer radius of
the first sphere. This is the inner sphere, which represents the subcutaneous tissue. Immediately the user can
define whether or not the sphere should be hollow or not. If it is hollow the sphere with the inner radius will
be left empty. If not, the inner sphere and the mantel around the sphere will be united into one sphere. When
defining the dimensions of the inner sphere the user also has to specify the number of elements that should
be in the core, and the number of elements that should be in the mantel. These numbers are then used to
construct the actual sphere. Given the number of elements that the user has specified to be in the core, a
cube is constructed in which each dimension exists of the specified number of elements. This cube is then
changed into a sphere. Note that the number of elements specified to be in the core is not the actual number
of elements in the core.
Once the core is constructed the mantel is constructed upon this sphere. The user has specified the number
of elements that the mantel should contain and the thickness of the mantel. On every element of the outer
face of the core a new element is build, of which the thickness is equal to the thickness of the mantel divided
by the number of elements in the mantel. Again the number that is specified is not equal to the actual number
of elements in the mantel.

%% Creating the f i r s t sphere ( Subcutaneous t i s s u e )
sphereRadius =178; %What i s the outer radius of the f i r s t sphere

3 sphereRadiusInner =163; %What i s the inner radius of the f i r s t sphere

% How many elements should each dimension of the cube contain ?
cPar . numElementsCore=10;
% In how many elements should the thickness of the mantel be divided ?

8 cPar . numElementsMantel=3;
% 1 means the sphere i s hollow ; 0 means the core w i l l be f i l l e d .
cPar . Totaq =1;
%Creating sphere
[ meshStruct ]=hexMeshSphere ( cPar ) ;

When this is done only the first sphere has been constructed (the subcutaneous tissue). For the second sphere
(the skin), another mantel will be constructed around the subcutaneous tissue. Here again the user needs to
specify the thickness of the mantel and the number of elements in the mantel, after which the mantel is
constructed in the same way as described above.
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BOUNDARY CONDITIONS AND LOADS

In the model there are two different types of boundary conditions that can be used. The first one is the fixed
boundary condition, in which the movement of the boundary is set to zero in a certain direction. The second
type is the prescribed boundary condition. Another possibility to make the body move is by using a body
force such as gravity.

Fixed boundary conditions In the fixed boundary conditions the movement of a surface in a certain direc-
tion is set equal to zero. In the model we set the movement of the bottom of the mattress in all directions
equal to zero. Besides that, the body existing of the spheres is not allowed to move in the y-direction. When
only considering the downward motion we also fix the bodies in the x-direction.

Prescribed boundary conditions and body forces Using a prescribed boundary condition one can order
a certain surface to move in a prescribed direction. In doing this both the direction and the magnitude of
the movement has to be given. When using a body force such as gravity the user only has to specify the
acceleration (so force per unit mass). In the case of gravity the acceleration is equal to 9.81 N/kg. As the unit
for the force used in this project is mN, the acceleration will need to be equal to 9.81·103mN/kg.
In this project both prescribed boundary conditions and body forces have been used to model the downward
movement of the patient. Despite using gravity is more realistic, it makes the problem harder to solve. While
using prescribed movement is easier to solve the effect of the boundary condition strongly depends on the
surface it is linked to. For instance, forcing the outer surface of the skin to move down for a millimeter is
very different from forcing the inner surface of the subcutaneous tissue to move down one millimeter. This
difference can be clearly seen in Figure 2.10.

(a) The inner sphere has moved 1 mm. (b) The outer sphere has moved 1 mm.

Figure 2.10: Using a prescribed boundary condition to simulate the downward motion gives different results when applied to different
surfaces. The colours indicate the amount the body has moved.

It is clear that applying the boundary condition to the inner sphere results in a more deformed body, while
applying it to the outer sphere results in a more deformed mattress.
Besides the downward motion of the body a sidewards movement of sliding across the mattress has also been
included in this project. For this the prescribed boundary condition is used, applied to the inner sphere.

Loadcurves in FEBio As mentioned before the user can specify the direction and magnitude of the move-
ment when using a prescribed boundary condition and the magnitude when using a body force. These ac-
tions can be even further controlled by adding a loadcurve to the movements. This allows the user to deter-
mine how fast the body should move. The loadcurve simply states how much the body should have moved at a
certain time point. For example one could give a boundary condition the loadcurve [0 0; 1 0.5; 2 1]
and the value (magnitude) 10mm. This means that when the time starts (t = 0) the body should not have
moved (u = 0). Then at the first time step the body should have moved halfway (u = 5) and at the second time
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step (t = 2) the body should have moved 10mm. It is also possible to have loadcurves such as sin(t ).
Besides loads and boundary conditions the loadcurves can also be used for many other properties.

THE MATERIALS

FEBio offers many different materials that can be used to model the problem. These materials are subdivided
into eight different groups.

1. Elastic solids

2. Viscoelastic solids

3. Multigeneration solids

4. Biphasic materials

5. Triphasic and Multiphasic materials

6. Chemical reactions

7. Rigid bodies

In this thesis only materials from the elastic solids group have been used. As was done in the article of
Gefen [2] the mattress, subcutaneous tissue and the skin have been modeled using isotropic elastic materials.
To use this material in FEBio the user only has to specify the Young’s modulus and the Poisson’s ratio. An
optional parameter is the density of the material. If not specified FEBio will take this value equal to 1. In the
project the following values were used.

Table 2.3: The isotropic elastic materials are completely specified by the Young’s modulus, the Poisson’s ratio and the density.

The mattress The subcutaneous tissue The skin

Young’s modulus E (kPa) 10 2 15.2

Poisson’s ratio ν (-) 0.3 0.48 0.49

Density ρ (kg/mm3) 30e-9 971e-9 1100e-9

For each material FEBio has implemented its own constitutive equations describing the relation between
the Cauchy stress and strain tensors. When working with isotropic elastic materials the constitutive equations
are given by Hooke’s Law, which is explained in Appendix A.3.

CONTACT

The most important components of this model is the contact between the human body and the mattress. This
contact can be easily modeled in FEBio as they have many different options for contact problems. Similar to
the materials, the different contact interfaces are divided into multiple groups.

1. Sliding interfaces

2. Biphasic contact

3. Biphasic-Solute and Multiphasic contact

4. Rigid Wall interfaces

5. Tied interfaces

6. Tied Biphasic interfaces

7. Rigid interfaces

8. Rigid joints

In the contact between a human body and a mattress we are dealing with two deformable bodies. In this
thesis we are only interested in the sliding interfaces.
Within the group of sliding interfaces FEBio has defined six options depending on what the user wants.
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sliding with gaps is the original implementation of sliding contact in FEBio. The contact problem is posed
as a nonlinear constrained optimization problem. It uses nodal integration to integrate the contact
equations.

facet-to-facet sliding is identical to sliding with gaps but uses a more accurate integration rule; the Gaussian
quadrature. This sliding interface often converges when the above method does not.

sliding-tension-compression can be used to model problems in which separation of the contact surfaces
along the direction normal to the interface needs to be prevented while still allowing tangential sliding.

sliding2 is similar to facet-to-facet sliding but is different in the linearization of the contact forces. This
results in different stiffness matrices. As the formulation in this method is non-symmetric it will require
more memory and running time. It also supports biphasic contact.

sliding3 is similar to sliding2 but also supports biphasic-solute contact.

sliding-multiphasic is again similar to sliding3 but supports multiphasic contact.

In this thesis only the sliding with gaps interface and the facet-to-facet sliding interface have been used.
For both interfaces the user needs to specify certain information, starting with the contact surfaces of the
problems. Each contact problem has a master surface and a slave surface. As stated in the user manual of
FEBio:

"The slave surface is the surface over which the contact equations are integrated and on which
the tractions are calculated. The master surface is used to measure the gap function and to define
the necessary kinematic quantities such as surface normals and tangents." – user manual FEBio
[22]

As one can imagine, using this definition means that the result can depend on the users choice of master and
slave surface. When such problems occur FEBio offers an option that swaps the master and slave surfaces
during the analysis.

Once the surfaces are defined, some properties regarding the contact need to be defined such as the
penalty factor which is used to help the program enforce the contact constraints. When not defined by the
user FEBio will take the default settings that are given in the user manual [22].

Currently sliding with gaps is the only contact in FEBio which supports friction between the two bodies.
As friction is a very big part of the stress of the human body this is the main sliding interface that shall be
used.

DIVIDING THE MODEL INTO STEPS

To further enhance the model FEBio has the option to let the user add time steps. The user can define bound-
ary conditions and contact interfaces which will only hold during a specific step or during the whole analysis.
In this project at least two steps are needed.

1. In the first step the patient lies down on the bed, hence the sphere will move towards the bed. This can
be implemented using a prescribed boundary condition or a body force.

2. In the second step the patient is being moved across the bed due to a prescribed boundary condition.
During this step, right before the patient is being moved across the bed the patient will move even
further down towards the bed. This is caused by the extra weight of the caretaker.

2.4.2. ADDING THE MICROCLIMATE FACTORS TO THE BASIC MODEL
In Section 1.2.1 a mathematical model describing the effects of microclimate factors on the risk of pressure
ulcers is described. To implement this model, multiple aspects need to be noted.

• The model looks at the effect of microclimate factors when the patient does not move.

• In this model only a downward force is present, not a sidewards.

• Both the coefficient of friction between the body and bed and the strength of the skin change due to
the microclimate factors.
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• The model starts from a point where the temperature in the region of interest has stabilized.

To use the same assumptions as the mathematical model of Gefen, the new model will consist of three
steps. First of all there will be a time step describing the downward motion, in which the body comes in
contact with the mattress. At the end of this first step we assume that the temperature in the region of interest
has stabilized and the body is at rest. In the second step the effects of the microclimate factors will be included
into the model. This will be done by changing the coefficient of friction between the skin and the mattress
and the strength of the skin. At the end of the second step the skin will be assumed weakest. The third step
which can then be taken is the movement across the bed. Since the skin is weak at this point one will assume
the stress in this step to be very high.

Step 1 Step 1 is mostly what has been shown before. A body force is applied which causes the human body
represented by the sphere to move downwards towards the bed. Once in contact with the bed both the
body and the mattress will deform.

Step 2 This step represents the effects of the microclimate factors. In this time the friction between the skin
and the bed will change. Changing this in time is done by adding a load curve as explained in Section
2.4.1, which basically means that instead of a constant the coefficient of friction will now be time de-
pendent. The loadcurve is equal to the function given in equation (1.8). Note that to be able to use
this function the production of perspiration also needs to be calculated. The perspiration factor ∆V (t )

V
is calculated using equation (1.7):

∆V (t )

V
=

[
α

Ta −30◦C

T max
a −T min

s
+β Ta −Ts

T max
a −T min

s
(1−RH)+γ

]
· t , (2.143)

with t such that 0 ≤∆V (t )/V ≤ 1. Table 2.4 shows the values that are used in this calculation.

Table 2.4: The parameter values that are used in the calculation of the perspiration factor.

Parameters Ta Ts T max
a T min

s α β γ RH

Value 35◦C 30◦C 40◦C 30◦C 2 1 0.1 0.5

The strength of the skin as a function of the time is calculated as given in equation (1.10):

τs
w =

(
1−0.8

∆V (t )

V

)
τs

0, (2.144)

with
τs

0 = 70kPa.

Instead of calculating the shear stress of the skin using equation (1.9) the stress will be calculated using
the Finite Element Method in FEBio.

Step 3 This final step is the step in which the body will be moved across the bed.

2.4.3. FURTHER IMPROVING THE MODEL

ADDING WEIGHT TO THE MODEL

The model that has been constructed thus far only exists of a hollow sphere made up of skin and subcuta-
neous tissue. The stress levels that can be reached using this model are obviously not very close to the stress
levels of the skin of an actual patient. To obtain results which are closer to reality more weight was therefore
added to the model by simply filling (most of) the hole in the middle. Two methods can be used to achieve
this.

1. The size of the hollow sphere inside the model is reduced, hence the inner radius of the sphere repre-
senting the subcutaneous tissue will be made smaller.

2. An additional sphere is added within the other spheres, representing either muscle or bone.
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(a) Adding a new sphere in the center of the model. (b) Reducing the size of the hollow sphere in the center.

Figure 2.11: Two methods are used to add weight to the model

The two methods are illustrated on the small model (model A) in Figure 2.11.
When adding a new sphere to the core of the model it can represent either muscle or bone. When model-

ing bone a rigid sphere can be used. When modeling muscle a special muscle material implemented in FEBio
can be used.

HEAT EQUATION TO OBTAIN A VALUE FOR THE SKIN TEMPERATURE

In the article on how microclimate factors affect the risk of pressure ulcers written by Gefen [1], one of the
factors that is taken into account is the temperature of the skin Tski n or Ts . In the article the temperature gets
varied between 30 and 33 degrees Celsius as the time it takes for the stress level of the skin to reach a certain
value is plotted against the skin temperature (see Figure 1.5). As the temperature of the skin is one of the
variables in the formula of the strength of the skin and the formula giving the coefficient of friction a value
has to be chosen to use in the model. In the previous section the chosen temperature was 30◦C. Note that
this value was chosen without any particular reason other than that the article mentioned the temperature
would be in the range from 30◦C to 33◦C. To find a more accurate value of the temperature, or at least a more
reasoned value, a simplified heat equation was solved for this problem.

The general heat equation that was considered for this problem is given by equation (2.145) ([21]).

cρ
∂T

∂t
= ∂

∂x

(
K0

∂T

∂x

)
+Q (2.145)

The different variables which occur in this equation are explained in Table 2.5.
For simplicity it is assumed that there is no heat source present, which results in Q = 0.
As the goal is to ascertain a value for the skin temperature a model needs to be created including boundary

conditions and initial values. A small rod is being considered, taken from the sphere representing the body.
This is illustrated in Figure 2.12.

The following two assumptions are made which will lead to the boundary conditions.

1. The temperature at the core of the body is a constant TA .

2. At the other end of the rod the skin is in contact with the air. At the skin there will therefore be a process
of heat transfer called convection. The temperature of the skin will therefore depend on the surround-
ing temperature and the heat transfer coefficient H which is the proportionality constant describing
the amount of heat transfer.
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Table 2.5: The variables in the heat equation

Symbol Explanation

T (x, t ) The temperature at time t and position x.

c(x) The specific heat. This quantity specifies the amount of heat energy

that needs to be supplied to a unit mass of a substance to raise its

temperature one unit.

ρ(x) The mass density; the mass per unit volume

K0 The thermal conductivity. It measures the ability of a material to conduct heat.

A lower value of K0 corresponds to a poorer conductor of heat energy.

Q(x, t ) Denotes the heat source. It gives the heat energy per unit volume generated per unit time.

Figure 2.12: The heat equation is solved along a simple rod taken from the simplified geometry of the actual problem.

With the above two assumptions the following boundary conditions are determined.

T (0, t ) = TA A prescribed temperature (2.146a)

−K0(L)
∂T

∂x
(L, t ) = H [T (L, t )−TB (t )] Newton’s law of cooling (2.146b)

One final assumption that is made is that the boundary conditions are time independent (steady). The
equilibrium or steady-state solution of the problem is the solution in which the temperature distribution does
not depend on the time. This means that T (x, t ) = T (x) and hence ∂T

∂t = 0. Searching for this solution the heat
equation becomes

∂

∂x

(
K0

∂T

∂x

)
= 0 (2.147)

All the information given above leaves the following problem to be solved. As the solution is assumed to
be time independent there is no need to use partial derivatives.

d

d x

(
K0

dT

d x

)
= 0 (2.148a)

T (0, t ) = TA (2.148b)

−K0(L)
dT

d x
(L, t ) = H [T (L, t )−TB (t )] (2.148c)

Note that the skin temperature Ts is given by T (L, t ) and hence the above problem needs to be solved for
T (L, t ).
Integrating equation (2.148a) twice and substituting the boundary conditions gives

T (L, t ) = HLTB (t )+K0TA

K0 +HL
. (2.149)
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To actually determine the skin temperature the values of the variables in equation (2.149) needs to be ac-
quired.
It is assumed that the temperature of the core of the body is equal to 37◦C. As is done in the article on mi-
croclimate factors [1] the temperature of the air close to the body will be taken equal to TB = 35◦C. The value
of the thermal conductivity is retrieved from the website It’is for health [24]. On this website many tissue
properties are given for many different tissues among which the skin. The thermal conductivity of the skin is
given to be K0 = 0.37 W/m/◦C.
The heat transfer coefficient H that will be used here is the heat transfer coefficient of the skin. In the article
Convective and radiative heat transfer coefficients for individual human body segments [25] the convective
heat transfer coefficient is given for different body parts. As the model that is created in this thesis would most
likely resemble the heel of a foot the value that is chosen here is the value given for the foot. The article then
offers a value for a standing person and for a seated person. In this case the value for the standing person was
chosen, however this is not done for any particular reason. The value is given to be H = 5.1W /m2K .

The used values are summarized in Table 2.6.

Table 2.6: The values in the heat equation

Variable TA TB K0 H L

Value 310.15◦K 308.15◦K 0.37W /m/◦C 5.1W /m2/◦K 0.180m

Note that the unit of K0 is W /m/◦C, which depends on ◦C while the rest of the variables use the tem-
perature in ◦K. However, as the thermal conductivity is given in W /m per ◦C, it depends on the change in
temperature instead of the temperature itself. As the change in temperature is the same in ◦C as it is in ◦K,
the difference in units does not matter in this case.

Taking the values given in the table the skin temperature is obtained as

Ts = T (L, t ) = 308.7245◦K ≈ 35.57◦C. (2.150)

It is clear that this value is not the same as the 30◦C that was used before, and it is not even in the range of
30−33◦C.

Note that the heat equation that was solved here is a very simple equation, applied to a very simple model.
Besides this, we also solved the steady state problem, which in real life will not actually occur. Another point
that should be noted is that the values of the heat transfer rate and the heat conductivity might not be accu-
rate. There are many articles describing these values, and many different values are mentioned.

CHANGING THE YOUNG’S MODULUS OF THE SKIN

In adding microclimate factors to the model, two factors have actually been added. First of all the strength
of the skin is included in the model, which is time dependent. Secondly the coefficient of friction between
the skin and the mattress is made time dependent, such that the longer the patient is at rest in the bed the
more coefficient will increase. An element which is not included is the effect of the sweat on the skin itself.
As it is well known, the skin does actually change when exposed to fluids for a longer period of time (think for
instance of taking a bath during which the skin of your fingers get wrinkled).
In the model the change in the skin resulting from the sweating will be modeled by making the Young’s mod-
ulus of the skin E , which defines the elasticity of the skin, a time dependent factor. The method of changing
the Young’s modulus comes from the article describing the finite element method for the contact between
the human body and a mattress written by Gefen [2]. In this article it is stated that the Young’s modulus of the
skin depends on the age of the patient and whether or not the patient is healthy. In the article three different
values of the Young’s modulus are mentioned; 15.2, 50 and 100 kPa, in which the higher value corresponds to
a stiffer skin. As it is known that the skin becomes stiffer when exposed to water for a period of time, it is a
reasonable start to use these values. To ensure the elastic modulus changes through time, a loading curve is
linked to the value. A loading curve shall be attached corresponding to the values in Table 2.7.

Table 2.7: The loadcurve describing the Young’s modulus

Time t (s) 0 1 1.5 2
Young’s modulus E (kPa) 15.2 15.2 50 100



3
THE NUMERICAL METHOD: NEWTON

RAPHSON

The problem stated in Chapter 2 is solved in FEBio using a numerical method called the Newton-Raphson
Method, combined with the Finite Element Method. This chapter will discuss how exactly FEBio solves the
given problem and how the Newton-Rapshon method works.

3.1. THE GENERAL NEWTON-RAPHSON METHOD
One of the most common methods to solve nonlinear equations of the form F (x) = 0 is called the Newton-
Raphson method. This method, simply known as the Newton method, is an iterative method in which the
funtion is linearized using the (directional) derivative, after which the solution is approached by starting with
an initial guess x0 and then updating this guess. In other words, consider an initial guess x0 and a general
change or increment u for which hopefully x = x0 +u is a little closer to the real solution. To fully explain the
method we shall start of by explaining the problem when working with one degree of freedom. The informa-
tion in this section closely follows the derivation given in [17].

3.1.1. ONE DEGREE OF FREEDOM
Consider a one-degree-of-freedom nonlinear equation

f (x) = 0. (3.1)

The Newton method starts by making an initial guess of the solution x0. In the neighborhood of this guess
the function f (x) can be expressed using a Taylor’s series, giving the following.

f (x) = f (x0)+ d f

d x

∣∣∣∣
x0

(x −x0)+ 1

2

d 2 f

d x2 (x −x0)2 + . . . (3.2)

Defining u as the increment in x (u = (x − x0)) we can linearize the above equation by truncating the Taylor’s
expression and obtain

f (x) ≈ f (x0)+ d f

d x

∣∣∣∣
x0

u. (3.3)

Note that this is a linear function in u. The derivative in the above equation is more commonly expressed
as

D f (x0)[u] = d f

d x

∣∣∣∣
x0

u ≈ f (x0 +u)− f (x0), (3.4)

where D f (x0)[u] denotes a derivative of f at x0 operating on u.
As the goal is to solve f (x) = 0, the Newton-Raphson method requires f (xk +u) to converge to zero and

hence vanish. Using this the linear equation (3.3) becomes

f (xk )+D f (xk )[u] = 0. (3.5)

49
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Now realizing that u is defined as the increment in x, the new value xk+1 can be obtained by calculating u.
The Newton-Raphson method for problems with one degree of freedom can therefore be given as in equation
(3.6). This method is also illustrated in Figure 3.1.

u = [−D f (xk )
]−1 f (xk ) =

[
−d f

d x

∣∣∣∣
xk

]−1

f (xk ) : xk+1 = xk +u. (3.6)

Figure 3.1: Solving the one-degree-of-freedom nonlinear problem f (x) = 0 using Newton-Raphson. Source: [17].

3.1.2. THE GENERAL SOLUTION
Having looked at the simple one-degree-of-freedom case we shall now look at the more general problem with
more degrees of freedom.

Instead of solving f (x) = 0 we now want to solve

F (x) = 0 (3.7)

where the function F (x) can represent anything with multiple degrees of freedom. Think for instance of a
system of nonlinear (differential) equations. Note that the unknowns x could also be sets of functions, which
makes the problem even more complicated.

When starting to solve the problem given in equation (3.7) we again start with an initial guess x0. Taking
an increment u, a new x = x0 +u is generated which hopefully is closer to the actual solution.

In the problem with one-degree-of-freedom the function was expressed in the neighborhood of the guess
using a Taylor’s series. The difficult part in the current problem is expressing the derivative of F with respect
to x which could itself be a function. This difficulty is managed by introducing a single artificial parameter ε
with which a nonlinear function F in ε can be established as

F(ε) =F (x0 +εu). (3.8)

Note that F(ε) 6=F (x).
Having defined F(ε) we can express this function with a Taylor’s series about ε= 0, where x = x0. We obtain

F(ε) = F(0)+ dF

dε

∣∣∣∣
ε=0

ε+ 1

2

d 2F

dε2

∣∣∣∣
ε=0

ε2 + . . . . (3.9)

Using the definition of F(ε) this expression can be rewritten as an expression in F .

F (x0 +εu) =F (x0)+ ε
d

dε

∣∣∣∣
ε=0

F (x0 +εu)+ ε2

2

d 2

dε2

∣∣∣∣
ε=0

F (x0 +εu)+ . . . . (3.10)

Now it is possible for us to obtain the change in the nonlinear function F (x) by simply truncating this
Taylor’s series. We get
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F (x0 +εu)−F (x0) = ε
d

dε

∣∣∣∣
ε=0

F (x0 +εu). (3.11)

As we introduced ε as an artificial parameter we can now eliminate it from the equation. We can do this
by taking ε= 1 and thereby obtaining

F (x0 +εu)−F (x0) ≈ 1
d

dε

∣∣∣∣
ε=0

F (x0 +εu). (3.12)

It can now be observed that the right side of this equation is in fact the directional derivative of F (x) at
x0 in the direction of u. Using this and adding F (x0) to both sides of the equation we can rewrite equation
(3.12) as

F (x0 +εu) ≈F (x0)+DF (x0)[u]. (3.13)

As we want to solve F (x) = 0 we would like F (x0 +εu) to vanish, hence giving us

F (x0)+DF (x0)[u] = 0. (3.14)

The equation above is linear with respect to u, which means that we can now establish the general Newton-
Raphson method.

The Newton-Raphson method:

DF (xk )[u] =−F (xk ) : xk+1 = xk +u (3.15)
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3.2. APPLYING THE NEWTON-RAPHSON METHOD TO THE PROBLEM WITHOUT

CONTACT
The problem we want to solve using the Newton-Rapson method is the virtual work equation (2.85):

δW (φ,δv) =
∫

v
σ : δd d v −

∫
v

b ·δv d v −
∫
∂v

t ·δv d a = 0. (3.16)

Hereφ is the configuration and δv the virtual velocity.
Using the Newton-Raphson method the solution to equation (3.16) shall be found by iteratively solving

δW (φk ,δv)+DδW (φk ,δv)[u] = 0. (3.17)

Note that the trial solution will now be a trial configurationφk .
In order to solve the problem using this method, several steps have to be taken.

1. The virtual work equation needs to be linearized, i.e. the directional derivative of δW (φ,δv) needs to
be derived. This is done in Section 3.2.1.

2. The virtual work equation needs to be discretized. This is done in Section 3.2.2.

3. The linearized virtual work equation needs to be discretized, which is done in Section 3.2.3.

4. The Newton-Raphson scheme has to be formulated. This final step is shown in Section 3.2.4.

3.2.1. LINEARIZATION OF THE VIRTUAL WORK
The directional derivative that needs to be calculated in order to linearize is in fact the directional derivative
of the virtual work equation at a configurationφk in the direction of u. Simply put this means that the direc-
tional derivative DδW (φk ,δv)[u] is the change in δW caused by the changing of φk into φk +u. During this
change the virtual velocity δv has to remain constant.

Finding the directional derivative of the virtual work equation will be done in two parts, as the virtual
work equation can be divided into two components: the internal and external virtual work. Here

δWi nt (φ,δv) =
∫

v
σ : δd d v, (3.18a)

δWext (φ,δv) =
∫

v
b ·δv d v +

∫
∂v

t ·δv d a, (3.18b)

DδW (φk ,δv)[u] = DδWi nt (φk ,δv)[u]−DδWext (φk ,δv)[u]. (3.18c)

THE DIRECTIONAL DERIVATIVE OF THE INTERNAL VIRTUAL WORK

To determine the directional derivative of the internal virtual work equation we will use the material form of
the virtual work. We do this as it is more convenient due to the fact that the initial elemental volume dV is
constant during the linearization [17]. Once formulated, the directional derivative shall be transformed into
the spatial form.

In the material form the internal virtual work component is given by equation (2.92):

δWi nt (φ,δv) =
∫

V
P : (∇δV) dV , (3.19)

or, equally, by equation (2.102c):

δWi nt (φ,δv) =
∫

V
S : δĖ dV. (3.20)

In deriving the directional derivative the latter formulation shall be used.
Calculating the directional derivative we will use the product rule for the directional derivative which

states that if F (x) =F 1(x) ·F 2(x), then

DF (x0)[u] = DF 1(x0)[u] ·F 2(x0)+F 1(x0) ·DF 2(x0)[u]. (3.21)

Using this we obtain
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DδWi nt (φ,δv)[u] =
∫

V
D(δĖ : S)[u] dV (3.22)

=
∫

V
δĖ : DS[u] dV +

∫
V

S : DδĖ[u] dV. (3.23)

The first part that will be discussed is the directional derivative of S.
In order to obtain this directional derivative, a different definition of the stress must first be given. Working
with elastic materials, the constitutive behavior is only dependent on the current state of deformation. In
this conditions any stress measure at a particle X is the function of the current deformation gradient F corre-
sponding to this particle.
In this situation, elasticity can be expressed as

P = P(F(X),X). (3.24)

The direct dependency upon X allows for the possible inhomogeneity of the material.
A material is termed hyperelastic when the work done by the stresses during a deformation process is depen-
dent only on the initial state at time t0 and the final configuration at time t . The behavior of the material is
said to be path-independent in this case [17]. Working with path-independent behavior and noting that the
PK1 stress P is work conjugate with the rate f deformation gradient Ḟ, an elastic potential W per unit unde-
formed volume can be established as the work done by the stresses from the initial to the current position as
[17]

W (F(X),X) =
∫ t

t0

P(F(X),X)) : Ḟ d t , (3.25a)

Ẇ = P : Ḟ. (3.25b)

Assuming it is possible to construct W (F,X) defining a material [17], the rate of change of the potential can
alternatively be given as

Ẇ =
3∑

i ,J=1

∂W

∂Fi J
Ḟi J , (3.26)

from which is follows that the PK1 stress tensor can be written as

P(F(X),X) = ∂W (F(X),X)

∂F
. (3.27)

Since second-order tensors such as stress and strain that are used to describe the material behavior must be
objective, it follows that W must remain invariant when the current configuration undergoes a rigid body
rotation. This implies that W depends on F only via the stretch component U and is independent of the
rotation component R. Instead of expressing W as a function of U, the potential shall be given as a function
of the right Cauchy-Green deformation tensor C, which is defined as C = U2 = FT F. The potential is written
as

W (F(X),X) =W (C(X),X). (3.28)

It follows that

Ẇ = ∂W

∂C
: Ċ = 1

2
S : C (3.29a)

S(C(X),X) = 2
∂W

∂C
= ∂W

∂E
. (3.29b)

With the definition of the second Piola-Kirchhoff stress given in equation (3.29b) the directional derivative
can be obtained as

DS I J [u] = d

dε

∣∣∣∣
ε=0

S I J (EK L[φ+εu])

=
3∑

K ,L=1

∂S I J

∂EK L

d

dε

∣∣∣∣
ε=0

EK L[φ+εu]

=
3∑

K ,L=1

∂S I J

∂EK L
DEK L[u]. (3.30)
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More concisely:

DS[u] =C : DE[u], (3.31)

where C is the symmetric fourth-order tensor known as the Lagrangian or material elasticity tensor, defined
as [17]

C = ∂S

∂E
= 2

∂S

∂C
. (3.32)

Having obtained the directional derivative of the second Piola-Kirchhof stress tensor we can continue
deriving the directional derivative of the virtual work equation.
Substituting the directional derivative of S, given in equation (3.31), into equation (3.23) obtains

DδWi nt (φ,δv)[u] =
∫

V
δĖ : C : DE[u] dV +

∫
V

S : DδĖ[u] dV. (3.33)

It should be noted that the first integrand holds since the material elasticity tensor C is a fourth-order tensor.
By definition the double contraction of a fourth-order tensor with a second order tensor gives a second-order
tensor1 [17].

Starting with the expression DE[u] the definition E = 1
2

(
FT F− I

)
will be used. Applying the product rule

of the directional derivative it can be given as

DE[u] = 1

2

(
FT DF[u]+DFT [u]F

)
. (3.34)

It is clear that in order to obtain this directional derivative, the directional derivative of the deformation gra-
dient F has to be known. To get this derivative consider a small displacement u(x) from the deformed con-
figuration given by x =φt (X) =φ(X, t ). The directional derivative of F in the direction of u can be derived as
[17]

DF(φt )[u] = d

dε

∣∣∣∣
ε=0

F(φt +εu)

= d

dε

∣∣∣∣
ε=0

∂(φt +εu)

∂X

= d

dε

∣∣∣∣
ε=0

(
∂φt

∂X
+ εu

∂X

)
= ∂u

∂X
= (∇u)F. (3.35)

Using this, the Green strain can be linearized at the deformed configuration in the direction of u as

DE[u] = 1

2

(
FT DF[u]+DFT [u]F

)
= 1

2

(
FT ∇uF+FT (∇u)T F

)
= 1

2
FT (∇u+ (∇u)T )

F

= 1

2
FT εF. (3.36)

Here ε is the small strain tensor defined by

ε= 1

2

(∇u+ (∇u)T )
. (3.37)

1The double contraction of a fourth-order tensor C with a second-order tensor is defined as

C : (u⊗v) = (C v)u,

and hence yields a second-order tensor.
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The other directional derivative that needs to be formed is DδĖ[u]. For this the definition of Ė is used
together with the fact that δĖ is a function of δv and the configurationφ, which gives

δĖ = 1

2

(
δḞT F+FTδḞ

)
, (3.38)

where [17]

δḞ = ∂δv

∂X
=∇0δv. (3.39)

Note that the directional derivative of F in the direction of u , when u is given as a function of the initial
position of the body particles X, is given by

DF[u] = ∂u(X)

∂X
=∇0u, (3.40)

where ∇0 indicates the gradient with respect to the coordinates at the initial configuration.
Using this equation (3.38) becomes

DδĖ = 1

2

(
(∇0δv)T ∇0u+ (∇0u)T ∇0δv

)
. (3.41)

Since the virtual velocities ∂v are not a function of the configuration, the term ∇0δv remains constant. With
this observation and noting the symmetry of S, the linearized principle of virtual work in the material or
Lagrangian form can be given as

DδWi nt (φ,δv)[u] =
∫

V
∂Ė : C : DE[u] dV +

∫
V

S :
(
(∇0u)T ∇0δv

)
dV. (3.42)

Using the fact that δĖ can be expressed as DE[δv]2, equation (3.42) can be rewritten to the final symmetric
form [17]

DδWi nt (φ,δv)[u] =
∫

V
DE[∂v] : C : DE[u] dV +

∫
V

S :
(
(∇0u)T ∇0δv

)
dV. (3.43)

Equation (3.43) now gives the linearized internal virtual work in the material form. The next step is to
transform this back to the spatial form, which will lead to much simplification. The following relationships
shall be used to express the materially based quantities in terms of spatially based quantities.

DE[u] =φ−1
∗ [ε] = FT εF ε= 1

2

(∇u+ (∇u)T )
(3.44a)

DE[δv] =φ−1
∗ [δd] = FTδdF δd = 1

2

(∇δv+ (∇δv)T )
(3.44b)

Jσ=φ∗ [S] = FSFT (3.44c)

JdV = d v (3.44d)

Jc=φ∗ [C ] Jci j kl =
3∑

I ,J ,K ,L=1
Fi I F j J FkK FlLC I JK L (3.44e)

With these transformations the first integrand of equation (3.43) can be expressed in the spatial form as

DE[∂v] : C : DE[u] = δd : c : εd v, (3.45)

where c is the fourth-order spatial elasticity tensor.
In the second integrand the gradient ∇0 appears, which is the gradient with respect to the initial particle

coordinates. Using equation (3.35) these terms can be related to the spatial gradient.

∇0u = (∇u)F (3.46a)

∇0δv = (∇δv)F (3.46b)

2It is known that DE[u] = 1
2 FT [∇u+ (∇u)T ]F, and hence DE[δv] = 1

2 FT [∇δv+ (∇δv)T ]F. From the definition ∇δv = δl it follows that

DE[δv] = 1
2 FT [δl+ (δl)T ]F. Considering the definition Ė = FT dF, it is clear to see that δĖ = FT δdF. Using the definition of d = 1

2 (l+ lT ),

it is clear that δd = 1
2 (δl+δlT ). Substituting this into δĖ gives δĖ = FT ( 1

2 (δl+δlT ))F = 1
2 FT [δl+ (δl)T ]F, hence δĖ = DE[u].
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Using these expressions and the transformations given before the second integrand can be re-expressed
in a spatial framework as

S :
(
(∇0u)T ∇0δv

)=σ :
[
((∇u))T ∇δv

]
d v. (3.47)

Combining equations (3.45) and (3.47) now gives the linearized internal virtual work equation (3.43) as

The spatial or Eulerian linearized equilibrium equations

DδWi nt (φ,δv)[u] =
∫

v
δd : c : εd v +

∫
v
σ :

[
((∇u))T ∇δv

]
d v. (3.48)

A final observation that can be made regarding this equation is the fact that this linearized virtual work
equation is symmetric in δv and u, that is,

DδWi nt (φ,δv)[u] = DδWi nt (φ,u)[δv]. (3.49)

This symmetry is due to the identical functional relationship between δd and δv and ε and u and the symme-
try of c and σ. The symmetry of the directional derivative will result in a symmetric tangent stiffness matrix
in the discretization step.

THE DIRECTIONAL DERIVATIVE OF THE EXTERNAL VIRTUAL WORK

Now that the internal virtual work has been linearized the next step is to linearize the external virtual work.
Recall that the external virtual work is given by equation (3.18b):

δWext (φ,δv) =
∫

v
b ·δv d v +

∫
∂v

t ·δv d a. (3.50)

Note that there are contributions from body forces b and surface tractions t. In the linearization of the exter-
nal virtual work these two cases shall be considered separately, starting with the body forces.

The most common example of a body force, and also the type that is used in this project, is the gravity
loading b = ρg. Here ρ is the density and g is the acceleration due to gravity. By performing a pull back on the
body force component in equation (3.50), it is easy to show that the loading is not deformation-dependent,
which causes the directional derivative to vanish. To see this note that the current density ρ can be written in
terms of the initial density as ρ = ρ0/J [17]. Substituting this into equation (3.50) the first integrand becomes

δW b
ext (φ,δv) =

∫
v

ρ0

J
g ·δv d v =

∫
V
ρ0g ·δv dV. (3.51)

As none of the terms in this expression depend on the current configuration the linearization is superfluous;

DδW b
ext (φ,δv)[u] = 0. (3.52)

Considering the surface forces this section will only discuss the case of uniform normal pressure. Assum-
ing an applied uniform pressure p acting on a surface a having a pointwise normal n, the traction force can
be written as t = pn. The virtual work component becomes

δW p
ext (φ,δv) =

∫
a

pn ·δv d a. (3.53)

In this expression the magnitude of the area element and the orientation of the normal both depend on the
displacement. Any deformation therefore results in a change in the equilibrium condition and the emer-
gence of a stiffness term [17]. The expression needs to be linearized which will be done using an arbitrary
parametrization of the surface as shown in Figure 3.2.

In terms of the parametrization one can write the normal and area elements in terms of the tangent vec-
tors ∂x

∂ξ and ∂x
∂η .

n =
∂x
∂ξ × ∂x

∂η∥∥∥ ∂x
∂ξ × ∂x

∂η

∥∥∥ (3.54a)

d a =
∥∥∥∥∂x

∂ξ
× ∂x

∂η

∥∥∥∥dξdη (3.54b)
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Figure 3.2: The linearization of the external virtual work is done using an arbitrary parametrization of the surface. Source: [17].

With these expressions equation (3.53) can be expressed in the parameter plane as

δW p
ext (φ,δv) =

∫
Aξ

pδv ·
(
∂x

∂ξ
× ∂x

∂η

)
dξdη. (3.55)

Here only the vectors ∂x
∂ξ and ∂x

∂η are displacement-dependent. These terms linearize to ∂u
∂ξ and ∂u

∂η respectively.
Using this and using the product rule and the triple product, the linearized expression becomes

DδW p
ext (φ,δv)[u] =

∫
Aξ

p

[
∂x

∂ξ
·
(
∂u

∂η
×δv

)
− ∂x

∂η
·
(
∂u

∂ξ
×δv

)]
dξdη. (3.56)

Note that in this expression u and δv cannot be interchanged without altering the result, which means that
the expression is unsymmetric. This will in general yield an unsymmetric tangent matrix component.
It is however possible for the special but common case where the position of points along the boundary ∂a
is fixed or prescribed to obtain a symmetric matrix. This is possible since in this case equation (3.56) can be
rewritten using the triple product multiple times along with the following integration theorems.

∫
V
∇ f dV =

∫
∂V

f n d A (3.57a)∫
V
∇v dV =

∫
∂V

v⊗n d A (3.57b)∫
V
∇·v dV =

∫
∂V

v ·n d A (3.57c)∫
V
∇·S dV =

∫
∂V

Sn d A (3.57d)

Here V is a volume with boundary surface ∂V , n is the unit normal to this surface, f is a scalar field, v a tensor
field or a vector field and S a second-order tensor for which (S⊗n) : I = Sn. Furthermore ∇v denotes the
gradient and ∇·v denotes the divergence.



58 3. THE NUMERICAL METHOD: NEWTON RAPHSON

With these theorems and the triple product equation (3.56) can be rewritten as [17]

DδW p
ext (φ,δv)[u] =

∫
Aξ

p

[
∂x

∂ξ
·
(
∂u

∂η
×δv

)
− ∂x

∂η
·
(
∂u

∂ξ
×δv

)]
dξdη

=
∫

Aξ
p

[
∂u

∂η
·
(
δv× ∂x

∂ξ

)
− ∂u

∂ξ
·
(
δv× ∂x

∂η

)]
dξdη

=
∫

Aξ
p

[
∂

∂η

(
∂x

∂ξ
· (u×δv)

)
− ∂

∂ξ

(
∂x

∂η
· (u×δv)

)]
dξdη

−
∫

Aξ
p

[
∂x

∂ξ
·
(

u× ∂δv

∂η

)
− ∂x

∂η
·
(

u× ∂δv

∂ξ

)]
dξdη

=
∫

Aξ
p

[
∂x

∂ξ
·
(
∂δv

∂η
×u

)
− ∂x

∂η
·
(
∂δv

∂ξ
×u

)]
dξdη (3.58)

+
∮
∂Aξ

p(u×δv) ·
(
νη
∂x

∂ξ
−νξ

∂x

∂η

)
dl .

Here ν= [νξ,νη]T is the vector in the parameter plane normal to ∂Aξ.

In the special case in which the positions along ∂a are fixed or prescribed, both the iterative displacement
u and the virtual velocity δv are zero along ∂Aξ. In this case the second integral in equation (3.58) vanishes.

The final expression for the linearized external work used in FEBio anticipates closed boundary condi-
tions and is constructed by adding half equation (3.56) and (3.58) [17].

DδW p
ext (φ,δv)[u] = 1

2

∫
Aξ

p
∂x

∂ξ

[(
∂u

∂η
×δv

)
+

(
∂δv

∂η
×u

)]
dξdη (3.59)

−1

2

∫
Aξ

p
∂x

∂η

[(
∂u

∂ξ
×δv

)
+

(
∂δv

∂ξ
×u

)]
dξdη

It is easily seen that the discretization of this equation will lead to a symmetric component of the tangent
matrix.

3.2.2. DISCRETIZATION OF THE VIRTUAL WORK

The first step in solving the problem with the Newton-Raphson method was to linearize the virtual work
equation. Now that this is done the next step is to consider the entire problem in elements, that is, discretize
the virtual work.
Before actually discretizing the virtual work equation several definitions will be given.

GENERAL DISCRETIZATION

Figure 3.3 illustrates the discretization of a general geometry. As can be seen the discretization is done in the
initial configuration using isoparametric elements. With these elements the initial geometry can be interpo-
lated in terms of the particles Xa defining the initial position of the element nodes as

X =
n∑

a=1
Na(ξ1,ξ2,ξ3)Xa . (3.60)

Here Na(ξ1,ξ2,ξ3) are the standard shape functions and n denotes the number of nodes. Note that during
the deformation the nodes and elements are permanently attached to the material particles with which they
were initially associated [17]. With this definition, the motion is described in terms of the current position
xa(t ) of the nodal particles as

x =
n∑

a=1
Na xa(t ). (3.61)
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Figure 3.3: Discretization of a general geometry. Source: [17].

From this expression the real and virtual velocity interpolation can be obtained by differentiating with respect
to time:

v =
n∑

a=1
Na va , (3.62a)

δv =
n∑

a=1
Naδva . (3.62b)

Similarly the displacement u can be interpolated as

u =
n∑

a=1
Na ua . (3.63)

In order to interpolate the deformation gradient F over an element, equation (3.61) is differentiated with
respect to the initial coordinates, obtaining after some rewriting,

F =
n∑

a=1
xa ⊗∇0Na , (3.64)

where ∇0Na = ∂Na
∂X can be related to ∇ξNa = ∂Na

∂ξ using the chain rule and equation (3.60). This obtains

∂Na

∂X
=

(
∂X

∂ξ

)−T ∂Na

∂ξ
, (3.65a)

∂X

∂ξ
=

n∑
a=1

Xa ⊗∇ξNa . (3.65b)

These equations can also be written in matrix form, yielding

F =
 F11 F12 F 13

F21 F22 F23

F31 F32 F33

 ; Fi J =
n∑

a=1
xa,i

∂Na

∂X J
, (3.66)

and,

∂X

∂ξ
=


∂X1
∂ξ1

∂X1
∂ξ2

∂X1
∂ξ3

∂X2
∂ξ1

∂X2
∂ξ2

∂X2
∂ξ3

∂X3
∂ξ1

∂X3
∂ξ2

∂X3
∂ξ3

 ;
∂X I

∂ξα
=

n∑
a=1

Xa,I
∂Na

∂ξα
. (3.67)
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Using equation (3.64) other quantities such as the Cauchy-Green tensors can be obtained as,

C = FT F = ∑
a,b

(xa ·xb)∇0Na ⊗∇0Nb ; (3.68a)

C I J =
3∑

k=1
FkI Fk J , (3.68b)

b = FFT = ∑
a,b

(∇0Na ·∇0Nb)xa ⊗xb ; (3.68c)

bi j =
3∑

K=1
Fi K F j K . (3.68d)

The final quantities that shall be discretized here are the real and virtual rate of deformation and the linear
strain tensor. Recall that these quantities are defined as follows:

d = 1

2
(l+ lT ), (3.69a)

l =∇v, (3.69b)

ε= 1

2

(∇u+ (∇u)T )
. (3.69c)

Introducing equation (3.62a) and equation (3.62b) into the definitions given in equation (3.69a) and equa-
tion (3.69b) respectively, and introducing equation (3.63) into equation (3.69c) gives the discretized defini-
tions.

d = 1

2

n∑
a=1

(va ⊗∇Na +∇Na ⊗va) (3.70a)

δd = 1

2

n∑
a=1

(δva ⊗∇Na +∇Na ⊗δva) (3.70b)

ε= 1

2

n∑
a=1

(ua ⊗∇Na +∇Na ⊗ua) (3.70c)

Here ∇Na = ∂Na/∂x can be obtained from the derivations of the shape functions [17].

∂Na

∂x
=

(
∂x

∂ξ

)−T ∂Na

∂ξ
(3.71a)

∂x

∂ξ
=

n∑
a=1

xa ⊗∇ξNa (3.71b)

∂xi

∂ξα
=

n∑
a=1

xa,i ⊗ ∂Na

∂ξα
(3.71c)

DISCRETIZATION OF THE VIRTUAL WORK

Now that many quantities have been discretized the goal is to discretize the virtual work equation. Recall that
the virtual work equation is given by

δW (φ,δv) =
∫

v
σ : δd d v −

∫
v

b ·δv d v −
∫
∂v

t ·δv d a. (3.72)

We will consider the virtual work by looking at an element (e) and one of its nodes a. Instead of con-
sidering the whole virtual work only the contribution of the single virtual nodal velocity δva occuring at the
node a will be considered. Using the interpolations of δv and δd given in equations (equation (3.62b)) and
(equation (3.70b)) respectively, the contribution is given in equation (3.73). In the internal energy term the
symmetry of σ has been used to obtain this simplified form

δW (e)(φ, Naδva) =
∫

v (e)
σ : (δva ⊗∇Na) d v −

∫
v (e)

b · (Naδva) d v −
∫
∂v (e)

t · (Naδva) d a. (3.73)

This can be rewritten using the following properties of the tensor product (⊗), the trace (tr) and the double
product (:).
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By definition for two second-order tensors A and B, A : B = tr(AT B) = tr(BAT ) = tr(ABT ). The tensor product
of three vectors u, v and w is by definition (u⊗v)w = (w ·v)u. From this it follows that for a tensor S

S(u⊗v)w = S[(u⊗v)w] = Su(v ·w) = (Su⊗v)w.

The last property that is needed is the property of the trace, which states that

tr(u⊗v) =
n∑

i=1
(u⊗v)i i =

n∑
i=1

ui vi = u ·v.

Using these three properties it can be shown that

S : (u⊗v) = tr(ST (u⊗v)) = tr((u⊗v)ST ) = tr(u⊗Sv) = u ·Sv.

With this final property and the fact that the virtual nodal velocities do not depend on the intergration
equation (3.73) can be re-expressed as [17]

δW (e)(φ, Naδva) = δva

(∫
v (e)

σ∇Na d v −
∫

v (e)
Na b d v −

∫
∂v (e)

Na t d a

)
. (3.74)

Having this equation, it can be divided into two components; a term describing the internal equivalent
nodal forces T(e)

a and a term describing the external nodal forces F(e)
a . This obtains

δW (e)(φ, Naδva) = δva
(
T(e)

a −F(e)
a

)
(3.75a)

where,

T(e)
a =

∫
v (e)

σ∇Na d v ; T (e)
a,i =

3∑
j=1

σi j
∂Na

∂x j
, (3.75b)

F(e)
a =

∫
v (e)

Na b d v +
∫
∂v (e)

Na t d a. (3.75c)

Note that the Cauchy stress tensor σ depends on the materials and the corresponding constitutive equa-
tions.

Equation (3.75a) gives the contribution to the virtual work equation from a single element (e) attached to
node a. The contribution from all element e1 . . .ema containing node a, that is a ∈ e, is given as

δW (φ, Naδva) =
ma∑
e=1
a∈e

δW (e)(φ, Naδva) = δva · (Ta −Fa) , (3.76a)

with

Ta =
ma∑
e=1
a∈e

T(e)
a , (3.76b)

Fa =
ma∑
e=1
a∈e

F(e)
a . (3.76c)

Taking the summation over all the nodes N in the mesh the total contribution δW (φ,δv) is obtained.

δW (φ,δv) =
N∑

a=1
δW (e)(φ, Naδva) =

N∑
a=1

δva · (Ta −Fa) = 0. (3.77)

As this equation must hold for any arbitrary virtual nodal velocities, the discretized equilibrium equations
emerge as

Ra = Ta −Fa = 0, (3.78)



62 3. THE NUMERICAL METHOD: NEWTON RAPHSON

for the nodal residual force Ra . It can be seen that for this equation to be satisfied, the internal and equivalent
external forces need to be in equilibrium at each node a = 1, . . . , N . For convenience the above residual force
and the internal and external forces can be written as arrays, as,

T=


T1

T2
...

Tn

 ; F=


F1

F2
...

Fn

 ; R=


R1

R2
...

Rn

 . (3.79)

With these formulations and writing the virtual velocities in a vector as

δv=


δv1

δv2
...

δvn

 , (3.80)

The discretized virtual work equation (3.77) can be re-expressed as

δW (φ,δv) = δvT R= δvT (T−F) = 0. (3.81)

When noting that the internal equivalent forces are nonlinear functions of the current nodal positions xa

the complete nonlinear equilibrium equations can be assembled as

R(x) =T(x)−F(x) = 0, where x=


x1

x2
...

xn

 , (3.82)

where x is the array containing all nodal positions.

MATRIX NOTATION

A more common method of denoting the discretized equilibrium equations is using matrix formulations. To
do this the symmetric Cauchy stress and rate of deformation tensor are re-established as vectors including
six independent elements

σ=



σ11

σ22

σ33

σ12

σ13

σ23

 ; d=



d11

d22

d33

2d12

2d13

2d23

 . (3.83)

Note that the off-diagonal terms of the deformation tensor are doubled to ensure that dTσ gives the correct
internal energy ∫

v
σ : d d v =

∫
v

dTσd v. (3.84)

The rate of deformation d can be given as

d=
n∑

a=1
Ba va , where Ba =



∂Na
∂x1

0 0

0 ∂Na
∂x2

0

0 0 ∂Na
∂x3

∂Na
∂x2

∂Na
∂x1

0
∂Na
∂x3

0 ∂Na
∂x1

0 ∂Na
∂x3

∂Na
∂x2


. (3.85)
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With these definitions the discretized virtual work equation (3.72) can be written as

δW (φ, Naδva) =
∫

v (e)
(Baδva)Tσd v −

∫
v (e)

b · (Naδva) d v −
∫
∂v (e)

t · (Naδva) d a. (3.86)

With these notations the element equivalent nodal forces T(e)
a are expressed as

T(e)
a =

∫
v (e)

BT
aσd v. (3.87)

3.2.3. DISCRETIZATION OF THE LINEARIZED VIRTUAL WORK
Now that the virtual work equation is discretized the final step is to discretize the linearized virtual work. For
convenience the linearized virtual work shall again be split into the internal and external components.

DδW (φk ,δv)[u] = DδWi nt (φk ,δv)[u]−DδWext (φk ,δv)[u] (3.88)

The component describing the internal virtual work shall be subdivided even further into a constitutive
and initial stress component, as

DδWi nt (φ,δv)[u] = DδWc (φ,δv)[u]+DδWσ(φ,δv)[u]

=
∫

v
δd : c : εd v +

∫
v
σ :

[
((∇u))T ∇δv

]
d v. (3.89)

DISCRETIZATION OF THE CONSTITUTIVE COMPONENT OF THE INTERNAL WORK

The first component that will be discretized is the constitutive component of the internal work

DδWc (φ,δv)[u] =
∫

v
δd : c : εd v. (3.90)

To discretize this in matrix form the small strain vector ε is written in a similar way as the rate of deforma-
tion d in equation (3.85):

ε=



ε11

ε22

ε33

2ε12

2ε13

2ε23

 ; ε=
n∑

a=1
Ba va , where Ba =



∂Na
∂x1

0 0

0 ∂Na
∂x2

0

0 0 ∂Na
∂x3

∂Na
∂x2

∂Na
∂x1

0
∂Na
∂x3

0 ∂Na
∂x1

0 ∂Na
∂x3

∂Na
∂x2


. (3.91)

The spatial constitutive matrix D is constructed from the components of c such that δd : c : ε= δdT Dε. The
resulting symmetric matrix is [17]

D= 1

2



2c1111 2c1122 2c1133 c1112 +c1121 c1113 +c1131 c1123 +c1132

2c2222 2c2233 c2212 +c2221 c2213 +c2231 c2223 +c2232

2c3333 c3312 +c3321 c3313 +c3331 c3323 +c3332

c1212 +c1221 c1213 +c1231 c1223 +c1232

s ym. c1313 +c1331 c1323 +c1332

c2323 +c2332

 . (3.92)

With these the constitutive component of the linearized internal virtual work can be written as

DδWc (φ,δv)[u] =
∫

v
δd : c : εd v =

∫
v
δdT Dεd v. (3.93)

Substituting equations (3.85) and (3.91) the contribution of a single element (e) associated with the two nodes
a and b is obtained as

DδW (e)
c (φ, Naδva)[Nb u] =

∫
v (e)

BaδvT
a D(Bb ub) d v

= δva

(∫
v (e)

BT
a DBb d v

)
(3.94)

= δva K(e)
c,ab . (3.95)
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Here K(e)
c,ab is

The constitutive component of the tangent matrix relating node a to node b in element (e):

K(e)
c,ab =

∫
v (e)

BT
a DBb d v. (3.96)

DISCRETIZATION OF THE INITIAL COMPONENT OF THE INTERNAL WORK

The second term that shall be discretized is the initial component of the internal work, that is,

DδWσ(φ,δv)[u] =
∫

v
σ :

[
((∇u))T ∇δv

]
d v. (3.97)

To discretize this expression the gradients ∇u and ∇δv can be easily interpolated from equations (3.62b)
and (3.63).

∇δv =
n∑

a=1
δva ⊗∇Na (3.98a)

∇u =
n∑

b=1
ub ⊗∇Nb (3.98b)

Substituting these expressions into equation (3.97) and using the property S : (u⊗v) = u ·Sv for vectors u and
v, the contribution to the linearized virtual work of the initial stress component for element (e) linking nodes
a and b can be derived [17]:

DδWσ(φ, Naδv)[Nb ub] =
∫

v
σ :

[
((∇ub))T ∇δva

]
d v

=
∫

v (e)
σ : [(δva ·ub)∇Nb ⊗∇Na]d v

= (δva ·ub)
∫

v (e)
∇Na ·σ∇Nb d v. (3.99)

It can be noted that the final integral is a scalar, and that δva ·ub = δva · Iub . Using this the contribution
can be rewritten as

DδWσ(φ, Naδv)[Nb ub] = (δva ·ub)
∫

v (e)
∇Na ·σ∇Nb d v

= δva ·
(∫

v (e)
∇Na ·σ∇Nb I d v

)
ub

= δva ·K(e)
σ,ab ub .

Here K(e)
σ,ab is

The initial component of the tangent matrix relating node a to node b in element (e) (also known as
the initial stress matrix):

K(e)
σ,ab =

∫
v (e)

(∇Na ·σ∇Nb)I d v. (3.100)

DISCRETIZATION OF THE EXTERNAL WORK

The final component that needs to be discretized is the linearized external work component

DδW p
ext (φ,δv)[u] = 1

2

∫
Aξ

p
∂x

∂ξ

[(
∂u

∂η
×δv

)
+

(
∂δv

∂η
×u

)]
dξdη (3.101)

−1

2

∫
Aξ

p
∂x

∂η

[(
∂u

∂ξ
×δv

)
+

(
∂δv

∂ξ
×u

)]
dξdη.



3.2. APPLYING THE NEWTON-RAPHSON METHOD TO THE PROBLEM WITHOUT CONTACT 65

As mentioned in linearizing the external force component, the body forces are independent of the motion
and therefore do not contribute to the linearized external work. In the discretization of the linearized external
work (3.101) surface elements are therefore needed. In the isoparametric volume interpolation there is a
corresponding surface representation in terms of ξ and η [17].

x(ξ,η) =
n∑

a=1
Na xa (3.102)

Here n denotes the number of nodes on each surface element. Similarly

δv(ξ,η) =
n∑

a=1
Naδva , and (3.103a)

u(ξ,η) =
n∑

a=1
Na ua . (3.103b)

Substituting this into equation (3.101) the contribution to the linearized external virtual work from surface
element (e) associated with nodes a and b can be given as [17]

DδW p(e)
ext (φ, Naδva)[Nb ub] = (δva ×ub) · 1

2

∫
Aξ

p
∂x

∂ξ

(
∂Na

∂η
Nb −

∂Nb

∂η
Na

)
dξdη

−(δva ×ub) · 1

2

∫
Aξ

p
∂x

∂η

(
∂Na

∂ξ
Nb −

∂Nb

∂ξ
Na

)
dξdη

= (δva ×ub) ·kp,ab . (3.104)

Here kp,ab is the vector of stiffness coefficients, given by

kp,ab = 1

2

∫
Aξ

p
∂x

∂ξ

(
∂Na

∂η
Nb −

∂Nb

∂η
Na

)
dξdη− 1

2

∫
Aξ

p
∂x

∂η

(
∂Na

∂ξ
Nb −

∂Nb

∂ξ
Na

)
dξdη. (3.105)

The contribution to the linearized external work can be reinterpreted as

DδW p(e)
ext (φ, Naδva)[Nb ub] = δva ·K(e)

p,ab ub . (3.106)

Here K(e)
p,ab is

The external pressure component of the tangent matrix relating node a to node b in element (e):

K(e)
p,ab = εk(e)

p,ab ; [K(e)
p,ab]i j =

3∑
k=1

εi j k [k(e)
p,ab]k ; i , j = 1,2,3. (3.107)

Here εi j k =±1 or zero, depending on the parity of the i j k permutation.

THE TOTAL DISCRETIZED LINEARIZED VIRTUAL WORK EQUATION

In the previous sections the different components of the linearized virtual work equation have been dis-
cretized. The final step that needs to be taken is now to combine all of these components. This can be done
as follows

DδW (e)(φ, Naδva)[Nb ub] = δv ·K(e)
ab ub , (3.108a)

where

K(e)
ab = K(e)

c,ab +K(e)
σ,ab −K(e)

p,ab . (3.108b)

Here the entire linearized virtual work is discretized for element (e) linking nodes a and b in terms of the
substiffness matrix K(e)

ab .
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Note that this discretization only considers a single element. To assemble the total linearized virtual work
three steps have to be taken.

1. The contribution to a node a from node b associated with all elements (e) (1 to ma,b) containing nodes a
and b can be obtained using a summation over all these elements:

DδW (φ, Naδva)[Nb ub] =
ma,b∑
e=1

a,b∈e

DδW (e)(φ, Naδva)[Nb ub]. (3.109a)

2. The contribution to a node a from all nodes b = 1, . . . ,na which are connected to a can be obtained using a
summation over all the nodes b:

DδW (φ, Naδva)[u] =
na∑

b=1
DδW (φ, Naδva)[Nb ub]. (3.109b)

3. The total contribution can be obtained by summing over all elements a:

DδW (φ,δv)[u] =
n∑

a=1
DδW (φ, Naδva)[u]. (3.109c)

Expressing the virtual velocities δv and the nodal displacements u as

δv=


δv1

δv2
...

δvn

 ,and (3.110a)

u=


u1

u2
...

un

 , (3.110b)

and assembling the tangent stiffness matrix K using the nodal components as

K=


K11 K12 · · · K1n

K21 K22 · · · K2n
...

...
. . .

...
Kn1 Kn2 · · · Knn

 , (3.110c)

one obtains, in a different notation,

The total discretized linearized virtual work equation

DδW (φ,δv)[u] = δvT Ku. (3.111)

3.2.4. FORMULATING THE NEWTON-RAPHSON SCHEME
Recall that using the Newton-Raphson method the virtual work equation needs to be solved, which means
that equation (3.112) needs to be solved iteratively.

DδW (φk ,δv)[u] =−δW (φk ,δv) (3.112)
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In the previous sections the components in this equations were discretized, resulting in

δW (φ,δv) = δvT R, and DδW (φ,δv)[u] = δvT Ku. (3.113a)

Substituting this into equation (3.112) the Newton-Raphson equation for this problem is obtained

δvT Ku=−δvT R. (3.114)

As the virtual velocities δv are arbitrary, the discretized Newton-Raphson scheme becomes

K(xk ) ·u=−R(xk ), xk+1 = xk +u. (3.115)

When solving this using the Newton-Raphson method the stiffness matrix K and the residual vector R are
re-evaluated for each iteration k. The displacement increment u is then calculated by multiplying both sides
of the equation by the inverse of K.
The re-evaluating of the stiffness matrix and its inverse requires a lot of computation time and this process is
therefore, especially for large problems, expensive. A solution for this is the use of a Quasi-Newton method,
which is a method that does not re-evaluate the stiffness matrix at every step, but updates it instead (see
Section 3.4).
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3.3. APPLYING THE NEWTON-RAPHSON METHOD TO THE PROBLEM WITH CON-
TACT

3.3.1. LINEARIZING THE CONTACT INTEGRAL
To solve the two body contact problem using the Newton-Raphson method, the virtual work equation given
in equation (2.136) needs to be linearized, as the Newton-Raphson equation is

δW i nt ,ext (ϕk ,ω)+δW c (ϕk ,ω)+∆δW i nt ,ext (ϕk ,ω)+∆δW c (ϕk ,ω) = 0, (3.116)

where the directional derivative is denoted by∆ for brevity.
In the previous section the internal and external work have already been linearized, so in order to solve the
equation only the contact integral has yet to be linearized. This section will not discuss the entire lineariza-
tion, as the process is similar to the process used in Section 3.2.1.
The directional derivative that needs to be computed is

∆δW c (ϕ,ω) =∆
(∫
Γ(1)

c

[
tNtδg + tTαtδξ̄

α
]

dΓ

)
. (3.117)

As the integral is evaluated in the contact surface of the reference configuration (Γ(1)
c ), only the integrand

varies with the motion which means that the derivative can be moved inside the integral [20]:

∆δW c (ϕ,ω) =−
∫
Γ(1)

c

∆
[

tNδg + tTαtδξ̄
α
]

dΓ(1)
c . (3.118)

Starting with the normal contact terms, the directional derivative of tN can be computed as

∆tN = ∆
{
εN

〈
g
〉}

,

= εN
∂
〈

g
〉

∂g
∆g , (3.119)

= H(g )εN∆g .

Here εN > 0 is the normal penalty parameter, and the notation 〈•〉 is defined as:

〈x〉 :=
{

x if x ≥ 0,
0 if x < 0.

(3.120)

Furthermore, H(g ) is the Heaviside function, which is equal to 1 if g > 0 and equal to zero if g < 0.
It can also be derived that

∆g =−ν · [∆ϕ(1)(X)−∆ϕ(2)(Ȳ(X))
]

. (3.121)

To compute ∆(δg ), equation (2.141) is linearized. This obtains

∆(δg ) = g [ν ·ω(2)
,γ (Ȳ(X))+καγ(Ȳ(X))δξ̄

α
]mγβ[ν ·∆ϕ(2)

,β (Ȳ(X))+καβ(Ȳ(X))∆ξ̄
α

] (3.122)

+δξ̄βν · [∆ϕ(2)
,β (Ȳ(X))]+∆ξ̄βν · [ω(2)

,β (Ȳ(X))]+καβ(Ȳ(X))δξ̄
β
∆ξ̄

α
.

Here

Aαβ∆
˙̄ξβ = [

∆ϕ(1)(X)−∆ϕ(2)(Ȳ(X))
]
τα− gν · [∆ϕ(2)

,α (Ȳ(X))
]

, (3.123)

where the quantity Aαβ is defined as

Aαβ := mαβ+ gκαβ.

Using the above expressions the linearized contact integral is given by [20]

∆δW c (ϕ,ω) = ∆

(∫
Γ(1)

c

[
tNtδg + tTαtδξ̄

α
]

dΓ

)
=

∫
Γ(1)

c

[
∆(tNδg )+∆tTαδξ̄

α+ tTα∆(δξ̄
α

)
]

dΓ, (3.124)
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where

∆(tNδg ) = ∆(tN )δg + tN∆(δg )
= H(g )εNδg∆g

+tN

{
g [ν ·ω(2)

,γ (Ȳ(X))+καγ(Ȳ(X))δξ̄
α

]mγβ[ν ·∆ϕ(2)
,β (Ȳ(X))+καβ(Ȳ(X))∆ξ̄

α
]

+δξ̄βν · [∆ϕ(2)
,β (Ȳ(X))]+∆ξ̄βν · [ω(2)

,β (Ȳ(X))]

+ καβ(Ȳ(X))δξ̄
β
∆ξ̄

α
}

, (3.125)

and
Aαβ∆(δξ̄

β
) = −τα ·ω(2)

,β (Ȳ(X))∆ξ̄
β−τα ·∆ϕ(2)

t ,β(Ȳ(X))δξ̄
β

−
[
τα ·ϕ(2)

t ,βγ(Ȳ(X))+ gν ·ϕ(2)
t ,αβγ(Ȳ(X))

]
δξ̄

β
∆ξ̄

γ

−δξ̄βτβ ·
[
∆ϕ(2)

t ,α(Ȳ(X))+ϕ(2)
t ,αγ(Ȳ(X))∆ξ̄

γ
]

−∆ξ̄βτβ ·
[
ω(2)

,α (Ȳ(X))+ϕ(2)
t ,αγ(Ȳ(X))δξ̄

γ
]

−gν ·
[
ω(2)

,αβ(Ȳ(X))+∆ϕ(2)
t ,αβ(Ȳ(X))δξ̄

β
]

+[
ω(1)(X)−ω(2)(Ȳ(X))

] ·[∆ϕ(2)
t ,α(Ȳ(X))+ϕ(2)

t ,αγ(Ȳ(X))∆ξ̄
γ
]

+[
∆ϕ(1)(X)−∆ϕ(2)(Ȳ(X))

] ·[ω(2)
t ,α(Ȳ(X))+ϕ(2)

t ,αγ(Ȳ(X))∆ξ̄
γ
]

.

(3.126)

The quantity Aαβ is defined as before, as Aαβ := mαβ+ gκαβ and καβ is καβ :=ν ·ϕ(2)
t ,αβ(Ȳ(X)) [20].

3.3.2. DISCRETIZING THE CONTACT INTEGRAL
Solving the problem with the Finite Element Method needs for both the contact integral and the linearized
contact integral to be discretized. In this section the discretization of the contact integral will be given.
Recall that the contact integral is given as

δW c (ϕ,ω) =
∫
Γ(1)

c

[
tNtδg + tTαtδξ̄

α
]

dΓ, (3.127)

where

δg =−ν · [ω(1)(X)−ω(2)(Ȳ(X))
]

, and (3.128a)

δξ̄
α =τα · [ω(1)(X)−ω(2)(Ȳ(X))

]
(when g = 0). (3.128b)

When discretizing the contact integral the first step is the contact surface discretization. This step is very
important as all development of the contact depends only on the configurations and variations evaluated
on the contact surfaces, not on values in the interiors. Recall that in Section 2.3.2 A (2) was defined as a
parametrization of the contact surface of the second body, with typical points ξ ∈A (2):

Γ(2)
c =Ψ(2)

0 (A (2)), and γ(2)
c =Ψ(2)

t (A (2)). (3.129)

A similar relation will now be assumed between A (1) and Γ(1)
c , Ψ(1)

t , and the typical points in A (1) will be
denoted as η.
The discretization of the contact surfaceϕ(1) of the first body is given, with η ∈A (1)e

, as

ϕ(1)e
(η) =

nnes∑
a=1

Na(η)d(1)
a (t ), (3.130a)

where d(1)
a (t ) is a nodal value of ϕ(1), nnes is the number of nodes per element surface, and Na(η) denotes a

standard Lagrangian shape function. The interpolation ofω(1) can similarly be conceived as

ω(1)e
(η) =

nnes∑
a=1

Na(η)c(1)
a , (3.130b)

where c(1)
a is a nodal value ofω(1) which is independent of time. With these definitions one can also write

Xe (η) =
nnes∑
a=1

Na(η)Xa . (3.130c)



70 3. THE NUMERICAL METHOD: NEWTON RAPHSON

The above definitions can similarly be given for the contact surface of the second body, with ξ ∈A (2)e
:

ϕ(2)e
(ξ) =

nnes∑
b=1

Nb(ξ)d(2)
b (t ), (3.131a)

where d(2)
b (t ) is a nodal value ofϕ(2),

ω(2)e
(ξ) =

nnes∑
b=1

Nb(ξ)c(2)
b , (3.131b)

where c(2)
b is a nodal value ofω(2) which is again independent of time, and

Ye =
nnes∑
b=1

Nb(ξ)Xb . (3.131c)

With these discrete fields the contact integral can now be discretized. It is first noted that the integration
can be written as a sum over the nsel surface element areas

δW c (ϕ,ω) =
nsel∑
e=1

∫
Γ(1)e

c

[
tNδg + tTαδξ̄

α
]

dΓ. (3.132)

Using a quadrature rule3, the integration can be approximated using a quadrature rule

δW c (ϕ,ω) ≈
nsel∑
e=1

{
ni nt∑
k=1

W k j (ηk )
[

tN (ηk )δg (ηk )+ tTα (ηk )δξ̄
α

(ηk )
]}

, (3.133)

where ni nt is the number of integration points per element surface of Γ(1)
c . In this approximation W k is the

quadrature weight corresponding to local quadrature point k. The Jacobian of the transformation between
the parent and reference domains is denoted by j . The (local) parent coordinate of quadrature point k is

denoted by ηk ∈A (1)e
. Defining the vector δΨck

of nodal variations corresponding to quadrature point k and

the (local) contact force vector corresponding to quadrature point k fck
, equation 3.133 can be rewritten as

[20]

δW c (ϕ,ω) ≈
nsel∑
e=1

{
ni nt∑
k=1

W k j (ηk )δΨck · fck

}
. (3.134)

3.3.3. DISCRETIZING THE LINEARIZED CONTACT INTEGRAL
The discretization of the linearized contact integral can be derived in two ways. First of all the linearized
contact integral given in equation (3.124) can be derived directly. Secondly, the discretized contact integral
given in equation (3.134) can be linearized. Both ways result in the following discretized contact integral:

∆δW c (ϕ,ω) ≈
nsel∑
e=1

{
ni nt∑
k=1

W k j (ηk )
[
∆(tN (ηk )δg (ηk ))

+∆tTα (ηk )δξ̄
α

(ηk )+ tTα (ηk )∆(δξ̄
α

(ηk ))
]}

(3.135)

=
nsel∑
e=1

{
ni nt∑
k=1

W k j (ηk )δΨck ·kck
∆δΨck

}
,

where kck
is the local contact stiffness.

3In FEBio different quadrature rules are used dependent on the contact interface (see Section 2.4.1). In the sliding-with-gaps interface
for example, nodal integration is used, whereas the facet-to-facet interface uses Gaussian quadrature.
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3.4. QUASI-NEWTON METHODS WITH LINE SEARCH
As mentioned above, a quasi-Newton method is based on the Newton method, but only approximates or
updates the stiffness matrix K. Many possibilities for estimating this stiffness matrix exist, from calculating
the matrix only at the first step and then simply keeping it, to calculating it once every several steps. The
method that is used in FEBio is called the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. To improve
the model a little, a line search is added to the solution method.

3.4.1. THE QUASI-NEWTON METHOD IN FEBIO; BFGS
The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method does not re-evaluate the stiffness matrix K at every
iteration, it updates it. When updating it should satisfy the following equation

Kk dk = Gk , (3.136)

where dk = xk −xk−1 is a displacement increment and Gk =Rk−1 −Rk is an increment in the residual.

The first step in updating the stiffness matrix K is calculating a displacement increment which defines a
direction for the displacement increment that is actually used [26]

u =K−1
k−1Rk−1. (3.137)

With this the actual displacement increment is given by

xk = xk−1 + su. (3.138)

The scalar s is determined from a line search (see Section 3.4.2) and it is used to optimize the increment.
Once the displacement increment is known, the residual matrix Rk can be evaluated. With the equations
given above one can also evaluate dk and the residual increment Gk .

The BFGS method now uses the following steps to update the stiffness matrix.

1. The vectors v and w are calculated, which are given by

vk =−
(

dT
k Gk

dT
k Kk−1dk

) 1
2

Kk−1dk −Gk , and (3.139a)

wk = dk

dT
k Gk

. (3.139b)

Here Kk−1dk = sRk−1.

2. The vectors defined in the first step are used to form the n ×n matrix A

Ak = I+vk wT
k . (3.140)

3. In the final step the stiffness matrix is updated as

K−1
k = AT

k K−1
k−1Ak . (3.141)

A condition number c of the updating matrix A is defined in FEBio as

c =
(

dT
k Gk

dT
k Kk−1dk

) 1
2

. (3.142)

This number is used to decide whether or not the update should be performed. When the number ex-
ceeds a preset tolerance the update will not performed, as this update might be numerically dangerous.
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3.4.2. THE LINE SEARCH
In the BFGS-method a line search is used to optimize the displacement increment. The line search does not
affect the direction of the displacement increment, but it does control the magnitude of the increment using
the scalar s:

xk = xk−1 + su.

The value of s is usually chosen so that the residual force R(xk + su) at the end of the iteration is orthogonal
to u [26]:

R(s) = uT R(xk + su) = 0. (3.143)

It is often sufficient to obtain s such that

|R(s)| < ρ |R(0)| ,

where ρ = 0.9 is used in FEBio. Usually s = 1 satisfies this equation. When this is not the case, s is approxi-
mated using an approximation of R(s) in s. FEBio uses

R(s) ≈ (1− s)R(0)+R(1)s2 = 0, (3.144)

which yields

s = r

2
±

√( r

2

)2
− r , where r = R(0)

R(1)
. (3.145)

There are now multiple possibilities:

• r < 0: the square root is positive. This obtains

s1 = r

2
+

√( r

2

)2
− r .

• r > 0: the parameter s can be obtained using the value that minimizes the quadratic function, hence

s1 = r

2
.

The new value is entered into equation (3.144). If the equation is satisfied the parameter s is found. If not, a
new value is calculated using now R(s1) instead of R(1) [26]. This is repeated until a value for s is found for
which equation (3.144) is satisfied.
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RESULTS

4.1. THE OBJECTIVE
In this chapter the results obtained with the different models will be presented. The main goal of this project
is to see whether the stress exceeds the strength of the skin, which will cause skin breakdown. Before giving
the results this failure theory will therefore be repeated here. More objectives are explained in Section 4.1.2

4.1.1. SKIN FAILURE
In Section 1.2.1 it is stated by Gefen that skin breakdown will occur when the shear stress exceeds the shear
strength of the skin. This theory is commonly known as the maximum shear stress theory, which was briefly
described in Section 1.1.1.

Figure 4.1: Skin break down will occur when the shear stress applied on the skin exceeds the shear strength of the skin. Source: [1]

In the article on microclimate factors [1], both the stress and the strength of the skin are described as
functions of the perspiration. However, as mentioned in Section 2.4.2 in this project the stress is calculated
using the finite element method in FEbio.

One of the possibilities of FEBio is to save different types of output, such as the stress (both normal and
shear) of every element at every time step. Another possible output involves the eigenvalues of the stress
tensor of every element at every time step. However, to get information regarding the skin breakdown, we
need the maximum shear stress. This quantity cannot be chosen as an output in FEBio, which means it has
to be calculated using the definitions given in Sections 2.1.5 and 2.1.6. Here the stresses and the eigenvalues
are needed.

The quantities that will be compared here are
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1. The shear strength, defined in [1] as

τs
w =

(
1−0.8

∆V (t )

V

)
τs

0, (4.1)

where ∆V (t )
V is the volume of perspiration ∆V accumulated over a time period t within the available

space V between the skin and contacting materials and τs
0 is the shear strength of dry skin set equal to

70kPa.

2. The maximum shear stress, calculated from the Cauchy stresses obtained by FEBio. Using the defini-
tions of the principal stresses (σ1 ≥σ2 ≥σ3) the maximum shear stress is given as τ= 1

2 (σ1 −σ3).

4.1.2. OTHER OBJECTIVES
Apart from failure of the skin, there are many other quantities in the model that are of interest. Two of the
other topics that will be discussed in this chapter are given below.

1. The location of the maximum stress is very important in the discussion of pressure ulcers, since for
deep pressure ulcers the breakdown starts inside the body instead of on the skin. Note that this is only
interesting when working with the body load.

2. The material values are dependent on the age and the health of the patient. The effect of this depen-
dence can be considered by plotting the maximum shear stress of different patients (with different
values of the Young’s modulus) in one figure.
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4.2. RESULTS WITH THE BASIC MODEL
In this section some results obtained with the basic models will be given. In the basic model the following
two steps are taken.

1. In the first step the body undergoes a downward motion caused by a either a body force or prescribed
boundary condition of which the last is applied on the inner sphere.

2. In the second step the body moves across the bed, modeled using a prescribed boundary condition.
The condition is applied to the same surface as the prescribed boundary condition in step 1.

In the model the Young’s modulus of the skin and the coefficient of friction remain constant.

Different cases will be discussed, using the different contact interfaces (sliding with gaps and facet-to-
facet sliding (see Section 2.4.1)) and using different downward motion techniques (body force and prescribed
boundary conditions (see Section 2.4.1)). We only consider the prescribed boundary conditions applied to
the inner sphere of the model. This is done since this is closest to reality.

4.2.1. THE SMALL MODEL (MODEL A) WITH PRESCRIBED BOUNDARY CONDITIONS
Working with the small basic model using prescribed boundary conditions, three cases are considered. The
first case uses the sliding with gaps contact interface while the second case uses the facet-to-facet interface
in which there is no friction. The two cases are summarized in Table 4.1. In both cases the standard values
for the materials are used, which are given in Section 2.4.1. The third case is used to compare the results for
different patients, i.e. different values of the Young’s modulus.

Table 4.1: Three cases for the small basic model with prescribed boundary conditions.

The downward movement The sidewards movement The contact interface Friction coefficient

Case 1 1 mm 1 mm sliding with gaps 0.2

Case 2 1 mm 1 mm facet-to-facet no friction

Case 3 1 mm 0.9 mm facet-to-facet no friction

CASE 1
In the first case the sliding with gaps interface is used with a friction coefficient of 0.2. The deformation results
of this case are given in Figure 4.2.

(a) The undeformed basic model. (b) The deformed basic model.

Figure 4.2: Deformation results of the small basic model with prescribed boundary conditions.

It is clear that for the most part the body deforms, whereas the mattress only deforms a little. In Figure 4.3
the statistics of the maximum shear stress of the skin elements is plotted. The red line denotes the maximum
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value of the maximum shear stress at each time step taken from the values of all the elements. The green line
denotes the minimum value and the blue line denotes the average value. An observation that can be made

Figure 4.3: The maximum shear stress of the skin elements in the small basic model with prescribed boundary conditions.

from this figure is the fact that the maximum shear stress decreases in the second time step when the patient
is moved across the bed. Figure 4.4 shows the maximum values of the maximum shear stress (denoted by
the red line) and the shear strength of the skin (denoted by the blue line). The shear strength of the skin is
calculated using equation (4.1), where the accumulation of perspiration is described in Section 1.2.1.

Figure 4.4: The maximum shear stress of the skin compared with the shear strength for the small basic model with prescribed boundary
conditions.

From this figure it is clear that the maximum shear stress of the skin is much smaller than the strength of
the skin, which means that in this model the skin will not ’break’ and pressure ulcers will likely not develop.

CASE 2
In the second case the contact interface was changed to facet-to-facet. As this interface does not take friction
into account it is more likely to converge. Taking the same displacement values, the deformation of the model
(shown in Figure 4.5) is approximately the same as when modeled with the sliding with gaps contact interface.

Looking at the maximum shear stress though, some differences with respect to the other contact interface
can be seen. Looking at Figure 4.6 it can be seen that instead of simply decreasing the maximum shear stress
slightly varies when the patient is being moved. It can also be seen that the maximum shear stress is smaller
in this case than in case 1. Figure 4.7 shows the plot with both the maximum values of the maximum shear
stress and the shear strength of the skin. Similar to in case 1 the lines do not intersect, hence there will be no
skin failure.
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(a) The undeformed basic model. (b) The deformed basic model.

Figure 4.5: Deformation results of the small basic model with prescribed boundary conditions.

Figure 4.6: The maximum shear stress of the skin elements in the small basic model with prescribed boundary conditions.

Figure 4.7: The maximum shear stress of the skin compared with the shear strength for the small basic model with prescribed boundary
conditions.

CASE 3
In this last case the same model is solved three times, only changing the Young’s modulus of the skin. The
contact interface that is used here is the facet-to-facet interface, as this converges better. It can be seen that,
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(a) The deformed basic model with Young’s
modulus 15.2 kPa.

(b) The deformed basic model with
Young’s modulus 50 kPa.

(c) The deformed basic model with Young’s
modulus 100 kPa.

Figure 4.8: Deformation results of the small basic model with prescribed boundary conditions for different values of the Young’s modulus.

although small, there are differences in the amount of deformation. More interesting however, is the result
shown in Figure 4.9. Here the maximum shear stress is plotted for the three different values of the Young’s
modulus. It is clear that when the Young’s modulus is larger, that is, the skin is stiffer, the maximum shear
stress is higher. It can be noted however, that there is still no skin failure as the values of the stress remain far
below 70 kPa.

Figure 4.9: The maximum shear stress of the skin for different values of the Young’s modulus.

4.2.2. THE SMALL MODEL (MODEL A) WITH A BODY LOAD

Having considered the small model with prescribed boundary conditions, we will now turn to the small model
where the body load is applied. Before giving the results it must be noted that the model does not converge
as well when working with a body load. The first thing that is done to improve the convergence is the use a
coarser mesh. Secondly, instead of using multiple materials such as subcutaneous tissue and skin, only skin
is used in this model.

As the convergence is an issue here only one case will be considered.

Table 4.2: A single case for the small basic model with a body load.

The applied acceleration The sidewards movement The contact interface Friction coefficient

Case 1 9.81·103 mN/kg 1 mm sliding with gaps 0.2
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CASE 1
The first characteristic that needs to be noted is the fact that the convergence of this simulation does not
go very smooth. In the first few steps of the solution, the body ’twitches’ from side to side, as shown in the
snapshots in Figure 4.10. When looking closely it can be seen that the sphere has moved to the right in the
second snapshot, and has moved back in the fourth. In the final snapshot (at t = 0.01686), the sphere is in the
correct position and the convergence continues smoothly.

Figure 4.10: Twitches in the first few steps of the solution

In the first case the sliding with gaps interface is used with a friction coefficient of 0.2. The deformation
results of this case when using the body load are given in Figure 4.11.

(a) The undeformed basic model. (b) The deformed basic model.

Figure 4.11: Deformation results of the small basic model with a body load.

It can be seen that the body hardly deforms. To see the movement in more detail, FEBio’s post processor
PostView is used. Figure 4.12 shows the displacement of the body in the z-direction at t = 1 when the down-
ward movement is complete. It can be seen that the maximum downward displacement is around 0.4 mm,
which is very small. It does however seem close to reality as the model only consists of a hollow sphere with
a 6mm radius. Comparing this to a human body is similar to considering a fingertip. As the weight of such a
fingertip is very small, it will hardly deform.

Looking at the maximum shear stress values (Figure 4.13), it can be seen that they are always less than
0.5kPa, which, when considering it’s the size of a fingertip might even be a lot.

Figure 4.14 shows the maximum values of the maximum shear stress (denoted by the red line) and the
shear strength of the skin (denoted by the blue line), and as expected, the skin will not break.
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Figure 4.12: Downward displacement due to gravity for the small basic model.

Figure 4.13: The maximum shear stress of the skin elements in the small basic model with a body load.

Figure 4.14: The maximum shear stress of the skin compared with the shear strength for the small basic model with a body load.

Another interesting result from this simulation is the location of the shear stress. Right from the beginning
of the contact the shear stress goes all the way to the center of the sphere. Figure 4.15 shows the maximum
shear stress indicated by color for two different time steps. Note that the stress in the center of the sphere
could result in deep tissue injury.
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(a) t ≈ 1 (b) t ≈ 2

Figure 4.15: The maximum shear stress in the small basic body.

4.2.3. THE BIG MODEL (MODEL B) WITH PRESCRIBED BOUNDARY CONDITIONS
The results of the big model will be discussed using only one case. This is done as the convergence of the big
model is rather bad. This case will use the facet-to-facet contact interface. The case is summarized in Table
4.3.

Table 4.3: A single case for the big basic model with prescribed boundary conditions.

The downward movement The sidewards movement The contact interface Friction coefficient

Case 1 5 mm 5 mm facet-to-facet no friction

CASE 1
This case considers the facet-to-facet contact interface, which does not include friction. The deformations
of the model are shown in Figure 4.16. It can be seen that the deformations are very small. Looking at the

(a) The undeformed basic model. (b) The deformed basic model.

Figure 4.16: Deformation results of the big basic model with prescribed boundary conditions.

maximum shear stress in Figure 4.17, one immediately notices the sudden change around t = 1. At this time
the body is ordered to move sidewards, which in this model is very difficult for the body. For this reason the
body moves upwards just a little, which causes the stress to decrease. The body then moves sidewards, which
causes the stress levels to slightly increase again. Figure 4.18 shows the plot with both the maximum values
of the maximum shear stress and the shear strength of the skin. It can be seen that the lines do not intersect,
hence there will be no skin failure.
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Figure 4.17: The maximum shear stress of the skin elements in the big basic model with prescribed boundary conditions.

Figure 4.18: The maximum shear stress of the skin compared with the shear strength for the big basic model with prescribed boundary
conditions.

4.2.4. RESULTS OF THE BASIC MODEL
Considering all the results obtained using the basic model, several things can be noted.

1. The maximum value of the maximum shear stress does not come close to the value of the shear strength
of the skin, which means that when working with this model there will be no skin failure. This is most
likely due to the absence of weight in the model. As the model exists of a hollow sphere, it does not
really represent the human body in a realistic way.

2. Using the facet-to-facet contact interface results in lower stresses than those obtained with the sliding
with gaps interface. This makes sense, as the friction makes the contact and especially the movement
across the bed more difficult.

3. Increasing the Young’s modulus will lead to an increase in the maximum shear stress values. Again this
is to be expected since a higher Young’s modulus corresponds to a stiffer skin, which will deform less
easily.
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4.3. RESULTS OF THE MODEL INCLUDING MICROCLIMATE FACTORS
In this section the results obtained with the model including microclimate factors will be given. The following
three steps are taken:

1. In the first step the body undergoes a downward motion caused by a either a body force or prescribed
boundary condition of which the last is either applied on the inner sphere or the outer sphere.

2. The body does not move. In this step the coefficient of friction changes according to

µ= 0.5
∆V (t )

V
+0.4. (4.2)

For the skin temperature given as Ts = 30◦C the coefficient of friction is shown in Figure 4.19.

Figure 4.19: The coefficient of friction for a skin temperature of Ts = 30◦C.

3. In the third step the body moves across the bed, modeled using a prescribed boundary condition. The
condition is applied to the same surface as the prescribed boundary condition in step 1.

Similar to the basic model, different cases will be discussed. For this model it should be noted though
that the facet-to-facet contact interface will not be used, as this interface does not include friction. Since this
model is specifically created to change the coefficient of friction in time, friction needs to be a part of the
solving method.
From this section on, we will only consider the small model with the body load. This because using gravity
gives more realistic results, and the small problem converges a lot better than the big model.
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4.3.1. THE SMALL MODEL WITH MICROCLIMATE FACTORS

When using the body load to simulate gravity a coarser mesh is used as before, and also the body will be made
up out of skin. Only one case will be considered:

Table 4.4: A single case for the small model including microclimate factors with a body load.

The applied acceleration The sidewards movement The contact interface Friction coefficient

Case 1 9.81·103 mN/kg 1 mm sliding with gaps µ= 0.5∆V (t )
V +0.4.

CASE 1

Similar to the basic model, using a body load for the downward motion makes the problem harder to solve.
In the first few steps of the solution, the body ’twitches’ again from side to side, but after 0.01 time step the
problem converges normally. The deformation due to the gravity is shown in Figure 4.20.

(a) The undeformed model. (b) The deformed model.

Figure 4.20: Deformation results of the small model including microclimate factors with a body load.

Looking at the maximum shear stress values (Figure 4.21), it can be noted that also in the case of gravity,
the shear stress does not increase when the coefficient of friction changes. This is in contradiction with the
idea presented in the article on microclimate factors written by Amit Gefen [1].

Figure 4.21: The maximum shear stress of the skin elements in the small model including microclimate factors with a body load.
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Figure 4.22 shows the maximum values of the maximum shear stress (denoted by the red line) and the
shear strength of the skin (denoted by the blue line). Note that the changing coefficient of friction hardly
affects the shear stress values, and hence the skin will still not break.

Figure 4.22: The maximum shear stress of the skin compared with the shear strength for the small model including microclimate factors
with a body load.
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4.4. RESULTS OF FINAL MODEL
In chapter 2.4.3, three different improvements have been discussed. In this chapter, these improvements
are added to the model one by one, starting with the changing Young’s modulus. Once this improvement
is included, additional weight will be added to the model. Finally, the results of the model with a different
temperature will be shown. The results of each improvement is shown using the small model with a body
load.

4.4.1. CHANGING THE YOUNG’S MODULUS
The first change in the model is making the Young’s modulus dependent of the time. This was done using
the loadcurve

[
0 15.2; 1 15.2; 1.5 50; 2 100; 3 100

]
. The sidewards movement is taken to be

1mm. The deformations of the small model in which the Young’s modulus is changed in time are shown
in Figure 4.23. It can be seen that the downward deformation at the final time step is close to zero. The

(a) The undeformed model. (b) The deformed model.

Figure 4.23: Deformation results of the small model with a changing Young’s modulus with a body load.

downward displacement of the model is shown in more detail in Figure 4.24.

Figure 4.24: The downward of the small model with a changing Young’s modulus.

It can be seen that during the first time step the body moves downwards, but during the second step
this movement is reversed. This reversed movement is due to the changing stiffness of the skin. As the skin
gets stiffer, it cannot handle the deformation, and hence will move upwards to try to return to its original
geometry.
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Looking at the maximum shear stress of the skin it can be seen that the stress now slightly changes during the
second time step. This is probably due to the movement caused by the changing Young’s modulus.

Figure 4.25: The maximum shear stress of the skin elements in the small model with a changing Young’s modulus with a body load.

Comparing the maximum shear stress of the skin with the shear strength of the skin, Figure 4.26 is ob-
tained. Still the lines do not intersect, and hence there is no skin-failure.

Figure 4.26: The maximum shear stress of the skin compared with the shear strength for the small model with a changing Young’s
modulus with a body load.
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4.4.2. ADDING WEIGHT
The second change in the model is adding more weight to the model. This is done by decreasing the size
of the hollow sphere in the center. Instead of a radius of 2mm the inner sphere now has a radius of 0.5
mm. The results of this change are shown below. First of all we will look at the deformation of this heavier
model (Figure 4.27). Looking at the downward displacement against the time (Figure 4.28) it can be seen

(a) The undeformed model. (b) The deformed model.

Figure 4.27: Deformation results of the small model with additional weight modeled with a body load.

Figure 4.28: The downward of the small model with additional weight.

that, compared to the model without additional weight, the downward displacement of both models is quite
similar. Again it can be seen that the body moves upwards while the Young’s modulus changes.
Looking at the maximum shear stresses it can be seen that the additional weight results in slightly higher
values. However, as Figure 4.30 shows, the lines do not yet intersect, and hence there will be no skin failure.
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Figure 4.29: The maximum shear stress of the skin elements in the small model with additional weight modeled with a body load.

Figure 4.30: The maximum shear stress of the skin compared with the shear strength for the small model with additional weight modeled
with a body load.

4.4.3. CHANGING THE TEMPERATURE
When changing the temperature of the skin from 30◦C to 35◦C one must note that all parts of the microcli-
mate factors will change. Figures 4.31, 4.32 and 4.33 show respectively the change in the accumulation of
perspiration, the coefficient of friction and the shear strength of the skin caused by the change in tempera-
ture.

time (s)
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Figure 4.31: The accumulation of perspiration for different skin temperatures.

To see the effects of the changing temperature the small model is solved for a skin temperature of 35◦C.
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Figure 4.32: The coefficient of friction for different skin temperatures.

Figure 4.33: The shear strength of the skin for different skin temperatures.

The model that is used is the model with changing Young’s modulus and additional weight (inner radius is
1mm instead of 2mm).

(a) The undeformed model. (b) The deformed model.

Figure 4.34: Deformation results of the small model with Ts = 35◦C modeled with a body load.

Looking at the results shown in figures 4.35 and 4.36 it can be seen that the maximum shear stress does
not become higher than the shear strength.
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Figure 4.35: The maximum shear stress of the skin elements in the small model with Ts = 35◦C modeled with a body load.

Figure 4.36: The maximum shear stress of the skin compared with the shear strength for the small model with Ts = 35◦C modeled with a
body load.
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4.5. OVERALL RESULTS
For all models the first time step is the step in which the shear stress increases the most. In the second step
the shear stress only changes when the Young’s modulus is changed.

Having looked at all the models the results of the different simulations can be compared. To get a clear
idea of the differences in the maximum shear stress values, all the models have been solved for the same
displacements using the body load. For the small models all cases were solved for a sidewards displacement
of 1 mm. The resulting maximum shear stresses is shown in Figure 4.37.

Figure 4.37: The maximum shear stress of the skin for all different models.

It can be seen that every element that was added to the model results in an increase of the values of the
maximum shear stress. Especially adding additional weight and increasing the skin temperature show higher
values. Though the value increases, the values always remain far below the value of the shear strength of the
skin.

We have also seen that when using the body load the shear stress is also present inside the model, not
only on the skin.
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DISCUSSIONS AND CONCLUSIONS

5.1. CONCLUSIONS
The main goal of this thesis was to combine the two models described in the articles written by Amit Gefen
([1] and [2]), which means that the effect of microclimate factors should be included in the contact model
between a human body and a hospital bed. The main conclusion is that this goal was accomplished, and a
model now exists in which the contact between the human body and a hospital bed changes due to the ac-
cumulation of sweat. In the model the body experiences gravity which creates a downwards motion towards
the bed, after which the body is moved across the bed as part of the repositioning.

Starting with a small basic model of a body on a bed and enhancing this model with different steps, sev-
eral conclusions can be drawn.
First of all the Young’s modulus has a substantial influence on the stress levels measured in the body. Stiffer
skins, that is, higher values of the modulus, result in higher stress levels while experiencing the same move-
ments. This is to be expected, as the body will have more trouble deforming. This result is similar to the
results given in [2], in which it is stated that older people (with stiffer skins) have a higher chance of develop-
ing pressure ulcers.
When adding the microclimate factors as described in [1] only the coefficient of friction is changed. This is
done while the body is at rest on the bed. In the article written by Gefen it is assumed that the shear stress is
dependent on the friction coefficient, and hence the stress will increase when the coefficient increases. How-
ever, this is not seen in our results. While the coefficient of friction changes, the maximum shear stress of the
skin remains constant, which makes sense as the body is at rest.
Though not specifically mentioned in the article on microclimate factors, we assumed that the stiffness of the
skin changes when exposed to fluids as sweat. This was modeled by changing the Young’s modulus simul-
taneously with the coefficient of friction. What was not expected beforehand is that increasing the Young’s
modulus would result in an upwards motion of the body. It does however make sense that this happens, as
the body cannot handle the deformation that is created in the first step.
A significant influence on the maximum shear stress levels is given by the weight of the model. Though the
model shown here is still very small (a sphere of 12mm diameter corresponds maybe to a single finger) it can
be seen that a small increase of weight leads to an increase of the stress levels.
The final addition to the model was using a different temperature of the skin. It is seen that when a higher
temperature is used, higher stress levels occur and also the strength of the skin decreases slower but more
profoundly. From this it can be noted that patients with a fever will have a higher chance of developing a
pressure ulcer.

Regarding the solution method it can be concluded that, though FEBio gives the user many options, the
convergence of the solution remains a problem. Solving the small model using a body load takes about a
minute, but it does not always converge. The problem has to run several times before it converges. The
bigger, more realistic problem has even more problems converging, which is why it is not included in this
thesis.

While the small model works the same as the bigger model, the stress levels will be higher for the bigger
model. Using only the small model we have not experienced an intersection between the strength of the skin
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and the stress levels of the skin, which is why we cannot give any conclusions regarding the time it takes to
develop a pressure ulcer.

5.2. DISCUSSION
Though a model was created in which the microclimate factors are included in the contact between a body
and a bed, several improvements can still be made. Some of these improvements and remarks will be dis-
cussed in this chapter.

The first big remark that can be made is the model that is most discussed in this thesis is the small model
with a diameter of 12mm. When looking at the human body this might represent a toe. Drawing results from
this model regarding the actual development of pressure ulcers is not very realistic. Though the mechanics
of this model and a bigger model will be the same, the stress levels will differ, which will lead to actual usable
results.

Secondly, the reason why the small model is used is the issue of convergence. The fact that contact prob-
lems are hard to solve directly shows in the convergence of the model. Though the small model is solved, it
took multiple runs for each problem to find a solution. For the big model a solution was not always found.
Specifically when also using a body load to act as gravity, the convergence gets very slow.

Another remark concerns the material used in the model. The small model that is used most often in
this thesis only exists of skin, while of course a human body contains a lot more. Also the human body is
now modeled as a sphere, which for now is a proper geometry, but when this research is continued the body
should eventually be modeled more realistic.

It should be noted that in the solved models not all steps described in the article on microclimate fac-
tors ([1]) have been included. First of all the sidewards motion is not as big as the movement described in
the article, and secondly, the additional downward movement caused by the weight of the caretaker is not
included. This was omitted because of the additional difficulty it would bring along in the model, but in the
future should be taken into account.

It is currently assumed in the model that the temperatures of the skin and the room are constant. In reality
this is not the case though.
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5.3. RECOMMENDATIONS FOR FUTURE WORK
From the remarks given above some recommendations can be formulated for future work.

• The model should be increased in order to obtain more realistic and useful results. The most important
part in this is finding a mesh and proper values for the solving variables. Different element types could
be used, and with this some research could be done concerning the convergence. Different solving
methods could be used to find an optimal solving method.

• The geometry of human body should be improved, as well as the materials used in the body. One
could for example model a human body as an ellipsoid, with at the center a rigid cylinder to model the
bone, around that some muscle tissue, followed by subcutaneous tissue and skin. Even more advanced
would be to use an actual model of the human skin including all its organs, as is already being used
in the research done in certain hospitals. As those models are not available to the public I have not
managed to obtain one.

• It should be noted that the different body parts of the patient are connected. This means that consider-
ing only a foot is not realistic, as the effects of the attached leg are omitted. A possible solution for this
could be to include additional loading to the sphere.

• As mentioned above, the temperatures are assumed to be constant during this case. In real life however
the temperature of the room can change as well as the temperature of the skin. It would be interesting
to change the temperature of the skin during the simulation to see for example the effects of a patient
developing a fever.

• As FEBio has the option of solving heat equations the temperature of the skin could be calculated dur-
ing the simulation, which could lead to better results. Combined with the previous idea this would
allow the user to model more realistic circumstances regarding the temperature.

• In the current model three steps have been used to model all actions. It could however be interesting
to see what would happen if the patient were to remain at rest for a longer period of time. This could
be modeled by simply adding a few steps between the lying down and the repositioning.

• In changing the Young’s modulus it was now assumed that the skin ’ages’ when exposed to fluids. The
values used here were not based on any literature, only on the values used by Gefen ([2]). It would be
interesting to find information on the actual changing of the skin in the literature. Even better would
be to make the Young’s modulus dependent on the stress values and accumulated perspiration. This
could for instance be done by using the shear modulus (see Appendix A) which can be expressed in
terms of the stress.

• As a final recommendation the current model can be used to investigate specific cases of the develop-
ment of pressure ulcers. An interesting case for example is the situation in which a tube (or something
similar) is stuck between a baby or other patient who is not able to move himself and the bed. This
additional deformation could be modeled by simply adding a small geometry between the body and
the bed and would probably lead to higher stress values around the tube.





A
ELASTICITY, STRESS AND STRAIN

In contact between solids the concepts of elasticity, stress and strain are very important. In the subject of
pressure ulcers, especially stress and strain are of importance. This section will therefore provide some addi-
tional information regarding these topics. The knowledge used in this section and its subsections is acquired
a.o. from the books Theory of Elasticity, by S. Timoshenko and J.N. Goodier [16], and Introduction to Finite
Element Analysis Using MATLAB rand Abaqus by Amar Khennane, chapter 5 [18].

A.1. ELASTICITY
The property of elasticity is something that all structural materials possess to a certain extent. It means that
when external forces cause an object to deform up to a certain limit, the deformation will disappear when the
external forces are removed. An object is said to be perfectly elastic when it resumes its initial form completely
after the removal of all external forces.
Often when modeling elastic bodies it will be assumed that the matter of the body is homogeneous. This
means that when taking a very small element of the body the same specific physical properties as for the en-
tire body will apply. Another assumption that is often made is that the body is isotropic. This means that the
elastic properties are the same in all directions.
Even though many structural materials do not satisfy these assumptions, experience has shown that the so-
lutions of the theory of elasticity using these assumptions give very good results for these materials. When
the elastic properties however are not the same in all directions, and also cannot be assumed to be the same,
the condition of anistropy must be considered.

A.2. STRESS AND STRAIN
Stress and strain are the words most commonly used when talking about applying pressure on an object or
when objects are deformed due to external forces. The topic of stress is discussed in detail in Section 2.1.3. In
this Appendix we will therefore focus on strain.

STRAIN

When one applies pressure or other external forces on the outside of an object while this object is being re-
strained against rigid body movement, one not only induces internal forces, but may also cause material
points inside the body to be displaced. When this displacement causes the distance between two points in
the body to change one speaks of straining.
Similar to stress the strain in a certain point exists of different components. These components are again
denoted using the subscripts x, y and z. Same as stress the strain is also divided into two parts; the unit
elongations and the shearing strains. These are respectively denoted as εi and γi j or as εi i and εi j , where
γi j = εi j +ε j i . Here the unit elongation means that the distance between two points in the body only changes
in one direction. In the shearing stresses the distance between the points will change in two different coordi-
nates.
The displacements in the Euclidean space are denoted using the letters u, v and w for respectively displace-
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ments in the x-plane, y-plane and z-plane. The strain components are then given by

εx = ∂u
∂x εy = ∂v

∂y εz = ∂w
∂z

εx y = 1
2

(
∂u
∂y + ∂v

∂x

)
εxz = 1

2

(
∂u
∂z + ∂w

∂x

)
εy z = 1

2

(
∂v
∂z + ∂w

∂y

)
γx y = ∂u

∂y + ∂v
∂x γxz = ∂u

∂z + ∂w
∂x γy z = ∂v

∂z + ∂w
∂y

. (A.1)

It can be easily seen that
γx y = γy x γxz = γzx γy z = γz y

εx y = εy x εxz = εzx εy z = εz y
. (A.2)

Also the strain can be given in matrix form. One obtains the following matrix

ε=
 εx γx y γxz

γy x εy γy z

γzx γz y εz

 .

Using equations (A.2) it can be seen that ε is symmetric. Since the strain matrix consists of only six in-
dependent components, some engineers prefer to use a vector notation to represent the strain components.
The following vector notations are commonly used in the literature:

~ε=



εx

εy

εz

γx y

γy z

γxz


=



εxx

εy y

εzz

γx y

γy z

γxz


=



εxx

εy y

εzz

εx y +εy x

εy z +εz y

εxz +εzx


=



εxx

εy y

εzz

2εx y

2εy z

2εxz


,

or

~ε=



εxx

εy y

εzz

εx y

εy z

εxz


=



ε11

ε22

ε33

ε12

ε23

ε13


=



ε1

ε2

ε3

ε4

ε5

ε6


.

A.3. HOOKE’S LAW
In the previous section the different components for stress and strain are given. The relation between these
components are given in Hooke’s law. This law says the following.

~σ= D~ε (A.3)

Here the matrix D is called the stiffness tensor.
Using the vectors~σ and~ε, which both contain only six elements due to symmetry, one can see that the matrix
D has size 6 by 6. These elements contain information regarding the materials of the solids. This information
is given using the coefficients of Elasticity. In total there are five different coefficients which are all related to
one another. The coefficients are called the Lamé’s constants (Lamé’s first constant and the shear modules),
Young’s modulus, the Poisson’s ratio and the Bulk modulus.
Of these parameters, three are moduli of elasticity. These are the shear modulus, Young’s modulus and the
Bulk modulus. All three describe the ratio of the stress to the strain, hence they are equal to the slope of a
stress-strain curve. The elasticity modulus is the mathematical description of an objects tendency to deform
elastically when forces are applied to it.

LAMÉ CONSTANTS
The Lamé constants are two constants described by the French mathematician Gabriel Lamé; Lamé’s first
parameter λ and the shear modulus denoted by µ or G .
The first parameter, λ, is an elastic modulus, but is often said to have no physical interpretation.
The second parameter, denoted as µ or G , is mostly referred to as the shear modulus. Other names for this
elastic modulus are rigidity or the modulus of rigidity. This parameter is defined to be the ratio of the shear
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stress to the shear strain. The modulus measures the stiffness of the material. It can be considered as mea-
suring the response of a material to shear stress, for example when cutting it with dull scissors. The SI unit of
the shear modulus is Pascal (Pa = N/m2).
Where the shear modulus always has to be positive, the first Lamé constant can be negative. For most mate-
rials however, the constant will be positive.

YOUNG’S MODULUS
Young’s modulus is the most common elastic modulus, named after the British scientist Thomas Young. The
modulus is also known as the modulus of elasticity, the elastic modulus or the Tensile modulus. This pa-
rameter measures the stiffness of an elastic isotropic material, and is therefore specific for the material. The
modulus is defined as the ratio between the stress and the strain along a specific axis. It can be considered as
the material’s response to linear stress. Examples of such stress are pulling the ends of a wire and putting a
weight on top of a column.
Since the elastic modulus is defined as the ratio between stress and strain, it’s SI unit is the same as the SI unit
of the stress, Pascal (Pa).
In anisotropic materials the Young’s modulus can have different values for the different directions of the ap-
plied force with respect to the material’s structure. The value of the Young’s modulus can be seen as a measure
for the rigidness of the material. When the material has a high modulus, it is very rigid.

POISSON’S RATIO
One of the other elastic parameters is called the Poisson’s ratio and is denoted using the Greek letter nu (ν).
This parameter is defined as the ratio of the transverse strain to the longitudinal strain. Since strain has no
dimension, the Poisson’s ratio is also dimensionless. The ratio describes the material’s response to when the
object is squeezed (i.e. how much the material expands outwards) and the response to when the object is
stretched (i.e. how much the material contracts).
The value of the ratio hence depends on the material of the object. When the material is incompressible,
the ratio will have a value of approximately 0.5. A value equal to 0 means that the material does not expand
radially when it is compressed. When the value of the ratio is negative it means that the material has an
opposite response to compression, i.e. the material gets thinner when compressed. These materials are
called auxetic.

BULK MODULUS
The third elasticity modulus is called the Bulk modulus and is denoted by K or B . It measures the material’s
response to uniform pressure. An example of such uniform pressure is the pressure at the bottom of the ocean
or a deep swimming pool. It can be defined as the ratio of the volume stress to the volume strain. In other
words it can be described as "the ratio of the infinitesimal pressure increase to the resulting relative decrease
of the volume". The modulus is measured in Pascal (Pa).

In working with elasticity usually two of the above mentioned coefficients are used. In this thesis Young’s
modulus and the Poisson’s ratio (E , ν) are used. In Table A.1 the relations between the different coefficients
are given.

Table A.1: Relationships between the Coefficients of Elasticity
From [18]

(λ, µ) (E , ν) (E , G)

λ λ Eν
(1+ν)(1−2ν)

G(E−2G)
3G−E

µ µ E
2(1+ν) G

E µ(3λ+2µ)
λ+µ E E

ν λ
2(λ+µ) ν E−2G

2G

K λ+ 2
3µ

E
3(1−2ν)

GE
3(3G−E)
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Equation (A.3) gives Hooke’s law as ~σ = D~ε. For several situations the matrix D is actually known. (Note
that the elements of this matrix will consist of factors of E and ν.) Writing Hooke’s Law in index notation, one
obtains

σi j = Di j kl εkl . (A.4)

Here Di j kl is called the stiffness tensor, which is a fourth order tensor with a total of 81 components. Equation
(A.4) can also be written as a system of nine equations.

σ11 = D1111ε11 +D1112ε12 +D1113ε13 +D1121ε21 +D1122ε22 +D1123ε23

+D1131ε13 +D1132ε32 +D1133ε33

σ12 = D1211ε11 +D1212ε12 +D1213ε13 +D1221ε21 +D1222ε22 +D1223ε23

+D1231ε13 +D1232ε32 +D1233ε33

σ13 = D1311ε11 +D1312ε12 +D1313ε13 +D1321ε21 +D1322ε22 +D1323ε23

+D1331ε13 +D1332ε32 +D1333ε33

σ21 = D2111ε11 +D2112ε12 +D2113ε13 +D2121ε21 +D2122ε22 +D2123ε23

+D2131ε13 +D2132ε32 +D2133ε33

σ22 = D2211ε11 +D2212ε12 +D2213ε13 +D2221ε21 +D2222ε22 +D2223ε23

+D2231ε13 +D2232ε32 +D2233ε33

σ23 = D2311ε11 +D2312ε12 +D2313ε13 +D2321ε21 +D2322ε22 +D2323ε23

+D2331ε13 +D2332ε32 +D2333ε33

σ31 = D3111ε11 +D3112ε12 +D3113ε13 +D3121ε21 +D3122ε22 +D3123ε23

+D3131ε13 +D3132ε32 +D3133ε33

σ32 = D3211ε11 +D3212ε12 +D3213ε13 +D3221ε21 +D3222ε22 +D3223ε23

+D3231ε13 +D3232ε32 +D3233ε33

σ33 = D3311ε11 +D3312ε12 +D3313ε13 +D3321ε21 +D3322ε22 +D3323ε23

+D3331ε13 +D3332ε32 +D3333ε33

(A.5)

Using the symmetry ofσ and ε it follows that the above equations can be simplified as the stiffness tensor
is also symmetric, i.e.

Di j kl = Di j lk = D j i kl = D j i l k .

This means that instead of 81 different elements, the stiffness tensor only has 36 independent elastic coeffi-
cients. Using more simplifications the number of coefficients can even be reduced to 21.

A.3.1. ISOTROPIC MATERIALS

In this thesis the skin and subcutaneous will be modeled as isotropic materials. Here isotropy means unifor-
mity in all orientations, or in other words, the elastic properties of the material are the same in any direction
and therefore do not depend on the choice of the coordinates system ([18]). Since none of the properties of
the material depend on the orientation, the material is perfectly rotational and symmetric with respect to
three orthogonal planes. Using this assumption the matrix D can be simplified to exist of only two indepen-
dent coefficients, E and ν, obtaining the following stress-strain relationship for the elastic matrix



σxx

σy y

σzz

σx y

σy z

σxz


= E

(1+ν)(1−2ν)



1−ν ν ν 0 0 0
ν 1−ν ν 0 0 0

ν ν 1−ν 0 0 0

0 0 0 1−2ν
2 0 0

0 0 0 0 1−2ν
2 0

0 0 0 0 0 1−2ν
2





εx

εy

εz

γx y

γy z

γxz


. (A.6)

In equation (A.6) the relation between stress and strain is given for an isotropic material, with the stress
as a function of the strain. Here the stiffness tensor is called the elasticity matrix D.

It is also possible to write Hooke’s Law differently, i.e. with the strain as a function of the stress. The
equation will then become~ε = C~σ. In this case instead of the elastic matrix one speaks of the compliance
matrix, denoted by C . Equation (A.7) shows the relation between stress and strain using this compliance
matrix.
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

εx

εy

εz

γx y

γy z

γxz


= 1

E



1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0

−ν −ν 1 0 0 0

0 0 0 2(1+ν) 0 0

0 0 0 0 2(1+ν) 0

0 0 0 0 0 2(1+ν)





σxx

σy y

σzz

σx y

σy z

σxz


(A.7)

A.4. PLANE STRESS AND PLANE STRAIN
Working with solids, hence in three dimensions, the vectors describing the stress and strain both contain six
elements, and the stiffness tensor is six by six. This causes most problems to be quite large. Fortunately it is
often possible to make some assumptions that lead to simplifications.

PLANE STRESS
An example of a situation in which simplifying assumptions can be made is when working with a solid with
one dimension relatively small compared to the two others and loaded in its plane. In such a situation the
problem can be analyzed using the plane stress approach. This approach means that the stress on the small
dimension is assumed to be zero throughout the entire solid. The only forces applied to the object will be
parallel to the plate of this dimension. In other words, the stress vector is zero across a particular surface.
This approach is usually taken when working with thin plates and beams. Look for example at Figure A.1.

Figure A.1: In plane stress one of the dimensions is very small compared to the others. In this thin body, the z-component is small.

In this figure one can see that the thickness of the beam (z-component) is small compared to the other two
dimensions. It is also clear that the surfaces of the beam are free of forces. This leads to the stress components
σxz , σy z and σzz being equal to zero. If the beam is thin, as it is shown in the figure, it can be assumed that
these stress components are equal to zero throughout the entire thickness of the beam. Furthermore, it is
reasonable to assume that the other stress components, σxx , σy y and σx y remain constant.
We find that in the case of plane stress the stress vector will only exist of three non-zero components, and
using this the stress-strain relation using the elastic matrix shown in equation (A.6) will simplify to σxx

σy y

σx y

= E

1−ν2

 1 ν 0
ν 1 0

0 0 1−ν
2


 εxx

εy y

γx y

 . (A.8)

Note that instead of a three dimensional problem, a two dimensional problem will now be solved.
Furthermore, since σzz is equal to zero, and using that

σzz = E

(1+ν)(1−2ν)

(
νεxx +νεy y + (1−ν)εzz

)
(A.9)

(from equation (A.6)), εzz can be determined. To do this, take

A = E

(1+ν)(1−2ν)
.
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Substituting σzz = 0 into (A.9) one obtains a result for εzz .

0 = Aν(εxx +εy y )+ A(1−ν)εzz

A(1−ν)εzz = −Aν(εxx +εy y )

εzz = −ν
1−ν (εxx +εy y ) (A.10)

This expression can be rewritten further using equation (A.8). From Hooke’s Law for plane stress it follows
that

σxx = E

1−ν2 (εxx +νεy y ),

σy y = E

1−ν2 (νεxx +εy y ),

σxx +σy y = E

1−ν2 (1+ν)(εxx +εy y ),

σxx +σy y = E

1−ν (εxx +εy y ). (A.11)

Multiplying equation (A.11) by −ν
E and comparing this with equation (A.10), equation (A.12) can be de-

rived as

εzz = −ν
E

(σxx +σy y ). (A.12)

As before, Hooke’s Law can also be given using the compliance matrix. This relation is given by εxx

εy y

γx y

= 1

E

 1 −ν 0
−ν 1 0

0 0 2(1+ν)


 σxx

σy y

σx y

 . (A.13)

PLANE STRAIN
Another example in which certain assumptions can simplify the problem is called plane strain. In this case
one of the dimensions of an object will be very large compared to the other two dimensions. In this case the
loads are uniformly distributed with respect to the large dimension and act perpendicular to it. An example
of this situation is shown in Figure A.2.

Figure A.2: In plane strain one of the dimensions is very large compared to the others. In this thick body, the z-component is large.

Instead of the z-component being very small compared to the other two dimension as in plane stress, here
the z-component is very large compared to the other two. In this case the strain components γxz , γy z and εzz

are equal to zero. This holds throughout the beam because the displacements of all faces in the z-direction
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are kept equal to zero.
The strain components that are nonzero are εxx , εy y and γx y .

As in the case of plane stress we find that Hooke’s law will be smaller, since the strain vector exists of
only three nonzero components. The stress-strain relation using the elastic matrix shown in equation (A.6)
becomes  σxx

σy y

σx y

= E

(1+ν)(1−2ν)

 1−ν ν 0
ν 1−ν 0

0 0 1−2ν
2


 εxx

εy y

γx y

 . (A.14)

Hooke’s Law can also be given the other way around, using the compliance matrix. This relation is given
by equation (A.15):  εxx

εy y

γx y

= 1+ν
E

 1−ν −ν 0
−ν 1−ν 0

0 0 2


 σxx

σy y

σx y

 . (A.15)

Furthermore, εzz is equal to zero, but σzz is not. Looking at Hooke’s Law in equation (A.6) and writing
zero for γxz , γy z and εzz the following equation is obtained.

σxx

σy y

σzz

σx y

σy z

σxz


= E

(1+ν)(1−2ν)



1−ν ν ν 0 0 0
ν 1−ν ν 0 0 0

ν ν 1−ν 0 0 0

0 0 0 1−2ν
2 0 0

0 0 0 0 1−2ν
2 0

0 0 0 0 0 1−2ν
2





εx x
εy y

0

γx y

0

0


(A.16)

Equation (A.17) follows directly from this relation:

σzz = ν(εxx +εy y ). (A.17)
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REVIEW PLANE STRESS AND PLANE STRAIN
In Figure A.3 the two states plane stress and plane strain are quickly compared.

Figure A.3: Comparison between plane stress and plane strain.
Source: http://classes.mst.edu/civeng110/concepts/13/strain/plane_stress_vs_strain.gif



B
CONTACT MECHANICS

Contact mechanics is the area that involves situations in which multiple solids are in contact with one an-
other. This area is very big, since there are many different options when looking at contacting solids. The
solids themselves for example can be rigid or elastic, they can deform or stay the same as an effect of the con-
tact, and the contact between the solids can be conforming or non-conforming. These latter options mean
that without applying pressure the bodies either touch at multiple points (i.e. they "fit together") or they only
touch at one point or one line (i.e. the shapes do not "fit together"). In the case of non-conforming contact,
the contact area is very small compared to the sizes of the bodies, which causes the stresses to be high in this
area. In this case the contact will also be called concentrated. In the case of a larger contact area the stresses
will be more spread out and the contact will be called diversified.

In the general contact problem there are three components that can be of importance.

1. Due to the load that presses the bodies together, deformation of the separate bodies will occur. The
deformation depends on the material and structure of the body.

2. Secondly the bodies have an overall motion relative to each other. Possibilities are the bodies being at
rest, approaching each other (after which impact follows), sliding and rolling over each other.

3. Thirdly there are the processes at the contact area: compression and adhesion in the direction perpen-
dicular to the area, and friction and micro-slip in the tangential directions.

This last component can be described using conditions called the contact conditions.

• First of all the gap between the two bodies should always be greater than or equal to zero: en ≥ 0, where
equality holds in case of contact and inequality when the bodies are separated.

• Secondly, the normal stress acting on each body should also be greater than or equal to zero: pn ≥ 0,
where equality means the bodies are separated and inequality holds when the bodies are in contact. In
this latter case the normal stress is compressive.

Note that:

– The functions en and pn depend on the location of the body surfaces.

– The product of en with pn will always be equal to zero: en pn = 0.

The first important component of contact problems is, as given above, the deformation of the solids in
contact. Researchers have been investigating this deformation for a long time. In 1882, Hertz published
an article called "On the contact of elastic solids". This article was one of the first steps in the research of
contact mechanics. After this, many more models were created, such as the JKR model (Johnson, Kendall
and Roberts), and the Bradley model.

There are many different models regarding contact between two solids. Some of these models are useable
for contact problems of solids that are only pressed together (normal contact problems), while other models
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can be used when either one or both solids are being moved with respect to the other (tangential contact
problems). Four common models regarding normal contact problems are described in Section B.1. The
contact problems with tangential movement are described in Section B.2.

B.1. NORMAL CONTACT MECHANICS
The information described in this subsection is mostly obtained from the books Contact Mechanics by John-
son [27] and Contact Mechanics and Friction by Popov [4] and the website Wikipedia [28].

The following models will be described in this section. A more elaborate description of these models is
given in respectively Section B.1.1 and B.1.2.

Hertz fully elastic model.

JKR fully elastic model considering adhesion in the contact zone.

Bradley purely van der Waals model with rigid spheres.

DMT fully elastic, adhesive and van der Waals model.

B.1.1. THE HERTZIAN THEORY OF ELASTIC DEFORMATIONS
The Hertzian Theory of Elastic Deformations is one of the first models regarding the geometrical effects on
local elastic deformation properties. It was created around 1882 when Hertz solved the problem of contact
between two elastic bodies with curved surfaces. The result described in the model forms a basis for contact
mechanics today. The most common problem is called the normal contact problem. This problem revolves
around two bodies which are brought into contact with another by forces perpendicular to their surfaces [4],
or in other words, are being pressed together. The Hertzian Theory of Elastic Deformations considers such a
normal contact problem between a rigid sphere and an elastic half-space. In the theory all adhesive forces are
neglected. The information in this section closely follows the information from the book Contact Mechanics
and Friction by V.L. Popov [4].

Figures B.1 and B.2 shows the contact between the elastic half-space and the rigid sphere schematically.

Figure B.1: Contact with no force acting upon the contact.
Figure B.2: Contact with a normal force acting upon the contact.
Source: [4]

The original theory of Heinrich Hertz has three results:

• the contact radius was determined,

• the maximum pressure was determined and

• the normal force of the contact was determined.

To obtain these results Hertz used the displacement of the points on the surface in the contact area between
an originally even surface and a rigid sphere of radius R. This displacement is equal to1

uz = d − r 2

2R
, (B.1)

1Only the z-component of the displacement is of interest within the framework of the half-space approximation in contact problems
without friction [4].
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where uz denotes the surface displacement, d the indentation depth, r =
√

x2 + y2 and R the radius of the
sphere. The relation between the before mentioned parameters is shown in Figure B.2.

In solving the contact problem to obtain the three results a pressure distribution has to be assumed. The
pressure distribution that is assumed in the theory of Hertz is p = p0(1−r 2/a2)n , with n = 1/2. In this pressure
distribution p0 is the maximum pressure. This Hertzian Pressure Distribution

p = p0

(
1− r 2

a2

) 1
2

, r 2 = x2 + y2, (B.2)

leads to a vertical displacement equal to

uz = πp0

4E∗a
(2a2 − r 2), r ≤ a. (B.3)

Equation (B.3) can be obtained as follows.2 When working with a continuous distribution of the normal
pressure p(x, y), the displacement of the surface is calculated as

uz = 1

πE∗

∫ ∫
p(x ′, y ′)

d x ′d y ′

r
with r =

√
(x −x ′)2 + (y − y ′)2 and E∗ = E

1−ν2 . (B.4)

Using a change of coordinates, taking α= a2−r 2, β= r cos(φ) and substituting equation (B.2), equation (B.4)
becomes

uz = 1

πE∗
p0

a

∫ 2π

0

∫ s1

0

(
α2 −2β− s2) 1

2 d s︸ ︷︷ ︸
∗

dφ. (B.5)

The expression (*) can be calculated as

(∗) =
∫ s1

0

(
α2 −2β− s2) 1

2 d s

= 1

2
αβ+ 1

2
(α2 +β2) ·

(π
2
−arctan(β/α)

)
.

Integrating the above over φ from 0 to 2π, the terms αβ and arctan(β/α) vanish since β= r cos(φ). This leads
to the following result:

uz = 1

πE∗
p0

a

∫ 2π

0

(∫ s1

0

(
α2 −2β− s2) 1

2 d s

)
dφ

= 1

πE∗
p0

a

2π∫
0

π

4
(α2 +β2)dφ

= 1

4E∗
p0

a

2π∫
0

a2 − r 2 + r 2 cos(φ)dφ

= πp0

4E∗a
(2a2 − r 2),

which gives equation (B.3).

The total force of the contact is

F =
a∫

0

p(r )2πr dr = 2

3
p0πa2. (B.6)

To solve the contact problem, one can now use the fact that both equation (B.1) and equation (B.3) de-
scribe the same vertical displacement and hence should be equal:

πp0

4E∗a
(2a2 − r 2) = d − r 2

2R
.

2This derivation is explained in Appendix A of [4].
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From this equality the variables a and d can be derived. One obtains

a = πp0R

2E∗ and d = πap0

2E∗ . (B.7)

Equation (B.7) leads to the first result of Hertz theory, the contact radius between the rigid sphere and the
elastic half-space:

1. a2 = Rd . (B.8)

Using equations (B.7) and (B.8) the second result can also be obtained, which is the maximum pressure:

2. p0 = 2E∗

π

(
d

R

) 1
2

. (B.9)

Substituting both equations (B.8) and (B.9) into the equation of total force (B.6), the third result is ob-
tained; the normal force

3. F = 4

3
E∗

(
d 3

R

) 1
2

. (B.10)

From this last result, the potential energy of the elastic deformation U can be determined using −F =
∂U∂d :

U = 8

15
E∗(Rd 5)

1
2 .

The above results are explicitly for the contact between a rigid sphere and an elastic half space. The results
can be used to obtain results for other scenarios, such as the contact between two elastic bodies, the contact
between two spheres, the contact between two elastic cylinders, and more.

If the contact is for instance between two elastic bodies, the only difference with the previous result is that
the expression of E∗ must be changed into

1

E∗ = 1−ν2
1

E1
+ 1−ν2

2

E2
, (B.11)

where E1 and E2 are the moduli of elasticity of the two bodies, and ν1 and ν2 the respective Poisson’s ratios.

B.1.2. BRADLEY ’S VAN DER WAALS MODEL, THE JKR-THEORY AND THE DMT-THEORY
Fifty years after Hertz solved the normal contact problem without adhesion between elastic bodies in 1882,
Bradley presented the solution for the normal contact problem with adhesion between a rigid sphere and a
rigid plane.

In 1971 an article was written by K.L. Johnson, K. Kendall and A.D. Roberts. In this article a new contact
mechanics model called the JKR-theory is described in which the contact adhesive interactions are taken
into account. The JKR-theory is often referred of as the classical theory of adhesive contact. The JKR-theory is
based on the Hertzian theory. However, as has been noted before, Hertz did not include any adhesive forces
in his model. It was found by Roberts and Kendall [29] that these contact forces are of little significance when
two spheres are pressed together by a high load, but become more important when this load reduces. This
means that for low loads the model of Hertz will be less accurate.

The DMT-theory is yet another theory that includes adhesive forces. This theory is created as a combina-
tion of the Hertzian theory and Bradleys model. When the two bodies are separated and significantly apart,
the DMT-theory will simplify to Bradleys’s Van der Waals model.

All three models describe the adhesive normal contact problem, only between different types of bodies.

Bradley solved the adhesive normal contact problem between a rigid sphere and a rigid plane. The resulting
adhesive force was found to be FA = 4πγR, with γ the surface energy and R the radius of the sphere.

JKR solved the adhesive contact problem between elastic bodies. They found the adhesive force to be equal
to FA = 3πγR.

DMT described a different adhesive theory while they considered the case of deformable bodies by adding
the adhesive force of Bradleys model to the theory of Hertz.
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In 1976 Tabor realized that the above mentioned models were all valid for different scenarios. The DMT-
Theory and JKR-Theory are both special cases of the general problem. He stated that the theories had only
very small differences, but that ([4])

Bradleys model is correct for absolutely rigid bodies,

The JKR-Theory is valid for large, flexible spheres, and

The DMT-Theory is valid for small, rigid spheres.

B.2. TANGENTIAL CONTACT PROBLEMS
In the previous models, the two solids were only pressed together and both had absolutely smooth and fric-
tionless surfaces. In these cases the shear forces in the contact area are equal to zero.
In this section contacts are examined in which the point of contact is also loaded in the tangential direction.
Now static and kinetic frictional forces will become interesting, and the shear forces will thus be nonzero.
These Tangential Contact Problems belong to the field of Frictional contact mechanics, which is the study of
the deformation of bodies in the presence of frictional effects.

In case of tangential contact problems there are additional contact conditions, coming from the fact that
the shear stress should always be smaller than or equal to the so-called traction bound which depends on the
position. This is called the local friction law. The friction law that is most commonly used is called Coulomb’s
law (see Section B.2.4), which states that Fx ≤µFN . Here Fx is the tangential force, FN is the normal force and
µ is the coefficient of friction.
In this law equality holds in case of sliding and inequality holds in case of sticking.

Generally the contact area and the sticking and sliding parts are unknown in advance. If these were
known, then the elastic fields in the two bodies could be solved independently from each other and the prob-
lem would not be a contact problem anymore.

B.2.1. CATTANEO PROBLEM
A commonly known tangential contact problem is called the Cattaneo problem. This contact problem is
between an elastic sphere with radius R and an elastic plane (half space). The sphere is pressed onto the
plane and then shifted over the plane’s surface by a tangential force Fx .
When starting with only the normal force FN the sphere will be pressed onto the plane. The contact point
will turn into a contact area as both bodies deform and the center of the sphere moves down by a distance
of δn called the approach (see Figure B.3). The contact area will be circular and a Hertzian normal pressure
distribution arises.

Figure B.3: The center of the sphere moves down by a distance of d = δn . Source: [4]

When both the sphere and the plane are from the same material (same elastic properties), the Hertzian
solution reads

pn(x, y) = p0

√
1− r 2/a2 r =

√
x2 + y2 ≤ a a =

√
Rδn ,

p0 = 2

pi
E∗(δn/R)1/2 FN = 4

3 E∗R1/2δ3/2
n E∗ = E

2(1−ν2)
,

where E and ν are respectively the Young’s modulus and the Poisson’s ratio. This is the same as was shown
earlier in Section B.1.1.
When the sphere and the plane are made of different materials, the same solution holds, only now using

1

E∗ = 1−ν2
1

E1
+ 1−ν2

2

E2
. (B.12)
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Assumed before is that after the normal pressure is applied, a tangential force Fx will be applied that
’pushes’ against the sphere.
When this force is lower than the Coulomb friction bound (Fx < µFN ) the center of the sphere will move
sideways for a small distance δx , which is called the shift. An equilibrium will be obtained in which the
bodies are deformed and frictional shear stresses occur. When the tangential force is removed the sphere will
(mostly) shift back.

This problem was solved analytically by Cattaneo. In his solution he combined two Hertzian distributions
which showed that partial sliding occurs during the tangential loading (see Section B.2.3).
Before this combination of distributions is shown, some information regarding working with half-spaces, the
deformations that will occur in these and the stress distributions causing these deformations are given.

B.2.2. HALF-SPACE APPROACHES
It is often useful to work with half-spaces instead of fixed and bounded planes. We will therefore look into the
deformations that will occur when a tangential stress distribution acts upon an elastic half-space.
As is done in the book of Valentin L. Popov [4] the problems will be considered using a half-space approxi-
mation. This means that "the gradient of the surface of the contacting bodies should be small in the vicinity
relevant to the contact problem" ([4]).

A point is taken on the surface of this elastic half-space which is chosen to be the origin. A concentrated
force acts on this origin, which for simplicity only has a component in the x-direction. When considering the
surface z = 0 the following equations describe the displacements ([30]3)

ux = Fx
1

4πG

{
2(1−ν)+ 2νx2

r 2

}
1

r
,

uy = Fx
1

4πG
· 2ν

r 3 x y, (B.13)

uz = Fx
1

4πG
· (1−2ν)

r 2 x.

In these equations G is the shear modulus also denoted by µ, described further in Section A.3 and Table A.1.
To make the problem more realistic one can look at a tangential force distribution acting upon the dis-

placement of the surface. Assuming this force acts in the x-direction it can be denoted by

σzx (x, y) = τ(x, y).

Using this distribution, the displacement in the x-direction can be calculated using the integral

ux = 1

4πG
·2

Ï
A

{
1−ν

s
+ν (x −x ′)2

s3

}
τ(x ′, y ′)d x ′d y ′, (B.14)

where
s2 = (x −x ′)2 + (y − y ′)2.

It is obvious that a different force distribution will lead to a different displacement in the x-direction. The
following possibilities are given in Chapter 8 of Contact Mechanics and Friction, by V.L. Popov [4].

• For example, a constant value of the displacement will be found if the following force distribution is
taken

τ(x, y) = τ0(1− r 2/a2)−1/2 with r 2 = x2 + y2 ≤ a2.

Substituting this into equation (B.14) and integrating, the displacement inside the loaded area (r ≤ a)
is found to be

ux = π(2−ν)

4G
τ0a = constant. (B.15)

Due to symmetry, in this case uy = 0. The z-component of the displacement however is not equal to
zero and can be calculated using equation (B.13). The total force Fx that acts on the contact area can
be calculated as

Fx =
a∫

0

τ(r )2πr dr = 2πτ0a2. (B.16)

3referred to by [4]
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• Another possible force distribution is the distribution

τ(x, y) = τ0
(
1− r 2/a2)1/2

. (B.17)

Substituting this into equation (B.14) the x-displacement of the surface points in the loaded area (r ≤ a)
is obtained as

ux = τ0π

32Ga

[
4(2−ν)a2 − (4−3ν)x2 − (4−ν)y2] , (B.18)

with the total force equal to

Fx
2

3
πτ0a2. (B.19)

• A third possibility would be that the force distribution acting in the x- direction upon an elastic body
within a strip of width 2a is given by

τ(x, y) = τ0(1−x2/a2)1/2. (B.20)

In this the displacement of the surface points is given by [4]

ux = constant−τ0
x2

aE∗ . (B.21)

• The last case that is given in [4] is a special case. Now the tangential loading is presented as torsion.
This phenomena occurs when working in a round contact area (radius a) and the tangential forces are
directed perpendicular to the respective polar radius r . The stresses in this situation are give by

σzx = τ(r )sin(φ) and σz y = τ(r )cos(φ). (B.22)

Here the force distribution τ is given as

τ(r ) = τ0
r

a

(
1−

( r

a

)2
)−1/2

. (B.23)

According to Johnson in his book Contact Mechanics ([27]), the displacement of the surface is given by
(in polar components)

uφ = πτ0r

4G
,

ur = 0, (B.24)

uz = 0.

Looking at these displacement components it is clear that the surface area turns, which happens if the
chosen torsion is in fact the torsion of the rigid cylindrical indenter sticking to the surface. In this case
the torsional moment is equal to [4]

Mz = 4

3
πa3τ0. (B.25)

Now that some information is available regarding the deformations that occur due to different force dis-
tributions, the cases of sticking and sliding will be examined.

COMPLETE STICKING - A CONTACT PROBLEM WITHOUT SLIP

In the case of complete sticking, no sliding exists in the contact. These type of problems are also called
tangential contact problems without slip. Here the coefficient of friction (COF) between the two bodies is
very high (tends to infinity), or the bodies are "glued together".
In most cases, however, the no-slip condition will not hold near the boundary, which means that relative
sliding will occur. The fact that the no-slip condition often does not hold is due to the fact that in these cases
the shear stress approaches infinity in these areas, while the normal stress tends to zero [4].
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A CONTACT PROBLEM ACCOUNTING FOR SLIP

An example of a contact problem accounting for slip is the Cattaneo problem described earlier. Many other
examples can be considered as well. As said above, in most cases there will be slip in the boundary of the
contact area. When sliding occurs in (part of) the contact area, the contact problem accounts for slip. In
these problems one could deal with both sliding and sticking, or only sliding.
To get an idea of a contact problem accounting for slip, consider two bodies in contact where normal and
tangential forces act simultaneously. As an example [4] two spheres are being pressed together with a normal
force FN while also being pulled in the tangential direction with force Fx . The friction between the two bodies
is assumed to be according to Coulomb’s law of friction; the maximum static friction stress τmax is equal to
the kinetic friction stress τk . Both are equal to the normal stress p multiplied with a constant coefficient of
friction (COF) µ:

τmax =µp and τk =µp. (B.26)

Now in the area where sticking occurs, the stress τ will have to be smaller than or equal to the normal
stress multiplied with this coefficient of friction, i.e.

τ≤µp. (B.27)

When one assumes the bodies completely adhere in the contact area, the following equations for the
distributions of the normal and tangential stresses are obtained according to Valentin L. Popov [4]:

Normal stress p = p0
(
1− (r /a)2) 1

2 , FN = 2

3
p0πa2, (B.28)

Tangential stress τ= τ0
(
1− (r /a)2)− 1

2 , Fx = 2πτ0a2. (B.29)

Looking at these distributions it is clear that at the boundary of the area the normal stress p approaches
zero, while the tangential stress τ tends to infinity. This means that here the sticking condition (B.27) will
always be invalid and hence there will always be slip near the boundary of the contact area. Sticking will occur
however inside of the area, when the tangential forces are sufficiently small (see Figure B.4). The sticking and
sliding domains are separated by the boundary circle on which holds that τ=µp.

It can be shown that the shear stress distribution given in equation (B.29) is only valid for contact without
sliding. However, using this distribution one can prove that there will always be sliding at the boundary, which
is a contradiction to the assumption.
A new distribution needs to be constructed, which is correct for a situation with both sliding and sticking.
Such a distribution can be constructed as a combination of the known distributions. This need for a new and
better stress distribution is the same as the need in the Cattaneo problem.

B.2.3. FORMING A NEW STRESS DISTRIBUTION
In Contact mechanics and Friction [4] it is described that in the case of sliding and sticking (such as in the
Cattaneo problem) a distribution can be formed using two "Hertzian" stress distributions, obtaining

τ = τ(1) +τ(2)

= τ1(1− r 2/a2)1/2 −τ2(1− r 2/c2)1/2, (B.30)

where a is the contact radius and c is the radius of the sticking domain as is shown in Figure B.4.
Since this stress distribution is of the form given in equation (B.17) the displacement will be similar to the

one shown in equation (B.18). The following displacement can be obtained.

ux = τ0π

32Ga

[
4(2−ν)a2 − (4−3ν)x2 − (4−ν)y2] (B.31)

− τ0π

32Gc

[
4(2−ν)c2 − (4−3ν)x2 − (4−ν)y2]

Now combining this displacement with the fact that sticking occurs within the circle with radius c it is
clear that the displacement in this area should be constant:

ux (r ) = constant if r < c.
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Figure B.4: Sticking and sliding domains in a round tangential contact. Source: [4, Ch. 8].

The fact that sliding occurs in the rest of the domain means that in that area Coulomb’s law of friction is met:

τ(r ) =µp(r ), if c < r < a.

Using these conditions, the following stress distribution can be found:

τ(r ) = µp0(1− r 2/a2)1/2 −µp0
c

a
(1− r 2/c2)1/2 if 0 ≤ r ≤ c, (B.32)

τ(r ) = µp(r ) if c ≤ r ≤ a. (B.33)

The displacement for the points in the sticking area and the sliding area can be determined. From these
displacements, the tangential force can be given in terms of the normal force, using that FN = 2

3 p0πa2. One
obtains

Fx =µFN

(
1−

( c

a

)3
)

. (B.34)

Rewriting this equation, a radius for the static area is found as

c

a
=

(
1− Fx

µFN

)1/3

. (B.35)

From this relationship it can be seen that complete sliding occurs when

Fx =µFN ,

where µ is the coefficient of friction from Coulomb’s Law of Friction.

B.2.4. COULOMB’S LAW OF FRICTION
Coulomb’s Law of Friction is a very simple model to describe the extremely complicated phenomenon of
friction in case of dry friction (or Coulomb friction). Despite the simplicity of the law it is shown to be very
widely applicable [4].
The law is given by the following inequality

F f ≤µFN , (B.36)

where F f is the frictional force, FN the normal force and µ the coefficient of friction.
The coefficient of friction is a constant which can depend on a.o.

• the contact time,

• the normal force,

• the sliding speed,

• the surface roughness and

• the temperature.



114 B. CONTACT MECHANICS

In the article of Gefen on microclimate factors [1], the effect of the temperature of the room, the temper-
ature of the patient and the production of sweat on the risk for pressure ulcers is being examined. It could
therefore be important to include these factors in the contact model. A change in the temperature could for
instance change the elastic properties of the materials (i.e. the skin, subcutaneous tissue and the mattress)
and when sweat is produced it might be necessary to include the presence of fluid in the model.

B.2.5. THE CONTACT MECHANICS MODEL FOR CONTACT BETWEEN HUMAN AND BED
In the previous sections, several contact mechanics models have been described. In this section they will
briefly be compared to see which contact model is most applicable for the problem in this thesis.

In this thesis the contact is between a human body, which is elastic, and a hospital mattress which also
is elastic. The human body is pressed against the mattress, but is simultaneously moved along the mattress.
The body is not glued to the mattress, and the coefficient of friction between the patient and the bed does not
tend to infinity, which means that sliding will occur during the movement.
These factors lead to the conclusion that the problem is in fact a tangential contact problem accounting for
slip. For this reason, the contact models describing the normal contact problem (see Section B.1) can be
discarded. The information given in Section B.2, such as the solving process of the Cataneo problem, can be
used to solve the problem described in this thesis. However, since other factors are of interest too the model
needs to be expended. For instance, this thesis will also include the effect of moisture on the risk of pressure
ulcers. This means that the presence of fluids might have to be included in the contact model. Also, the
effect of the temperature on the risk of pressure ulcers is being examined. Therefore it might be important to
include the temperature changes in the contact model.

Very important is that the contact is between a human body and a hospital mattress. This means that
the exact contact area is not known as opposed to all examples shown above. This in turn means that the
integrals used in the models above, in which is integrated over the contact area, can not be calculated as
simple as shown. This is similar to the Signorini problem which is explained in Section B.3. We will have to
determine the contact area using a sort of trial and error system in which the contact area is estimated and
improved until it is obtained right.

B.3. THE SIGNORINI PROBLEM
The Signorini problem is a problem posed in 1959 regarding the equilibrium configuration of an elastic body
resting on a rigid surface. In this contact only the mass forces on the body were taken into account.
The problem is to find the elastic equilibrium configuration of this elastic body subject to only its mass forces.
In other words, the problem is to find the deformation of the body, only subject to its body forces. The dif-
ficulty in the problem is that the contact area between the elastic body and the sphere is not known prior to
solving the problem. Due to this the problem originally was named the problem with ambiguous boundary
conditions. These ambiguous boundary conditions consist of both equalities and inequalities and represent
the difference between contact and separation. Every point in the body has to satisfy one of the two sets of
boundary conditions, i.e. it will either be in the contact area or in the separation.

Antonio Signorini posed the problem asking his students whether the problem is well-posed or not in a
physical sense, i.e. if its solution exists and is unique or not. This eventually was solved by one of his students,
Gaetano Fichera, who named the problem after his teacher.

Fichera, as opposed to Signorini, did not consider only incompressible bodies and a plane rest surface,
which made the problem more general.
The goal of the problem is to [31] "find the displacement vector from the natural configuration
~u(~x) = (u1(~x),u2(~x),u3(~x)) of an anisotropic non-homogeneous elastic body that lies in a subset A of the three
dimensional euclidean space, whose boundary δA and whose interior normal is the vector ~n, resting on a
rigid frictionless surface whose contact surface (or contact set) is Σ and subject only to its body forces~f(~x) =
( f1(~x), f2(~x), f3(~x)), and surface forces~g(~x) = (g1(~x), g2(~x), g3(~x)) applied on the free surface δA\Σ: the set A and
the contact surface Σ characterize the natural configuration of the body and are known a priori. Therefore
the body has to satisfy the general equilibrium equations:

δσi k

δxk
− fi = 0 for i = 1,2,3, (B.37)
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the ordinary boundary conditions on δA\Σ

σi k nk − gi = 0 for i = 1,2,3, (B.38)

and the following two sets of boundary conditions on Σ, where~σ=~σ(~u) is the Cauchy stress tensor."

As said before, each point has to satisfy one of two sets of ambiguous boundary conditions. These sets are
the following: 

ui ni = 0
σi k ni nk ≥ 0
σi k niτk = 0

or


ui ni > 0
σi k ni nk = 0
σi k niτk = 0

, (B.39)

where τ= (τ1,τ2,τ3) is a tangent vector to the contact set Σ.
Looking at these sets of boundary conditions it can be seen ([31]) that points which satisfy the first set of

conditions are the points which do not leave the contact set Σ in the equilibrium configuration. This area is
called the area of support. The points which satisfy the second set of conditions are those which do leave this
contact set, and are referred to as the area of separation.





C
MATLAB CODES

C.1. EFFECT OF MICROCLIMATE FACTORS ON THE PATIENTS RISK OF PRESSURE

ULCERS - MATLAB CODE

% This Matlab code repeats the calculation which are done in the article by
% Gefen .

3 clear all;

taus = 70;
P = 7;
alpha = 2;

8 beta = 1;
gamma = 0.1;
RH = 0.5;
Ts = 30:0.5:33;

13 % Start with the subplot (2 ,2 ,1) , which plots different values of the
% ambient temperature Ta
x = zeros (1 ,6);
matrix = zeros (6 ,7);
for Ta = 35:40;

18 counter = taus -0.4* P;
nD1 = (0.5* P +0.8* taus);
nD2 = alpha * ((Ta -30) /10);
nD3 = beta * ((Ta -Ts)/10) *(1 - RH);
nD4 = gamma ;

23 tX = counter ./ (nD1 .*( nD2 - nD3 - nD4));
matrix (Ta -34 ,:) = tX;
x(Ta -34) = tX (1);

end;
matrix = matrix ./ max(x);

28 subplot (2 ,2 ,1);
plot (Ts , matrix );
axis ([30 ,33 ,0.4 ,1]);
xlabel (’T_s [^ oC]’);
ylabel (’Dimensionless time for skin breakdown ’);

33 hold on;

% Continue with the second subplot , which takes Ta =35 and plots for
% different values of RH.
x = zeros (1 ,5);

38 matrix = zeros (5 ,7);
Ta = 35;

clear RH;
for RH = 0:0.25:1;

counter = taus -0.4* P;
43 nD1 = (0.5* P +0.8* taus);

nD2 = alpha * ((Ta -30) /10);
nD3 = beta * ((Ta -Ts)/10) *(1 - RH);
nD4 = gamma ;

117
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tX = counter ./ (nD1 .*( nD2 - nD3 - nD4));
48 matrix (RH *4+1 ,:) = tX;

x(RH *4+1) = tX (1);
end;
matrix = matrix ./ max(x);
subplot (2 ,2 ,2);

53 plot (Ts , matrix );
axis ([30 ,33 ,0.4 ,1]);
xlabel (’T_s [^ oC]’);
ylabel (’Dimensionless time for skin breakdown ’);
hold on;

58
% In the third subplot , RH is taken to be 0.5 , and different values of P
% are plotted .

x = zeros (1 ,8);
matrix = zeros (8 ,7);

63 RH =0.5;
clear P;
for P = 3:10;

counter = taus -0.4.* P;
nD1 = (0.5.* P +0.8* taus);

68 nD2 = alpha * ((Ta -30) /10);
nD3 = beta * ((Ta -Ts)/10) *(1 - RH);
nD4 = gamma ;
tX = counter ./ (nD1 .*( nD2 - nD3 - nD4));
matrix (P -2 ,:) = tX;

73 x(P -2) = tX (1);
end;
matrix = matrix ./ max(x);
subplot (2 ,2 ,3);
plot (Ts , matrix );

78 axis ([30 ,33 ,0.7 ,1]);
xlabel (’T_s [^ oC]’);
ylabel (’Dimensionless time for skin breakdown ’);
hold on;

83 % In the final subbplot P=7 and gamma is being changed .
x = zeros (1 ,5);
matrix = zeros (5 ,7);
P=7;

clear gamma ;
88 for gamma = 0:0.05:0.2;

counter = taus -0.4.* P;
nD1 = (0.5.* P +0.8* taus);
nD2 = alpha * ((Ta -30) /10);
nD3 = beta * ((Ta -Ts)/10) *(1 - RH);

93 nD4 = gamma ;
tX = counter ./ (nD1 .*( nD2 - nD3 - nD4));
matrix ( gamma *20+1 ,:) = tX;
x( gamma *20+1) = tX (1);

end;
98 matrix = matrix ./ max(x);

subplot (2 ,2 ,4);
plot (Ts , matrix );
axis ([30 ,33 ,0.6 ,1]);
xlabel (’T_s [^ oC]’);

103 ylabel (’Dimensionless time for skin breakdown ’);
hold on;
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C.2. MATLAB CODE OF THE FINAL MODEL

1 %% Small Final model with Gravity
% We consider a body and a bed that will be in contact . In the first time
% step the gravity is applied , which will cause the body to move down
% towards the bed . In the second step ( gravity is still applied ), the body
% is at rest and the effects of the microclimate factors are applied

6 % ( changing COF and changing Youngs Modulus ). In the third step the body
% is repositioned by moving it across the bed .

% In this final model the coefficient of friction and the Young ’s modulus
% change in time . Also the model has extra weight and the temperature is

11 % set to 35 degrees .
%%
clear ; close all; clc;
% Since the convergence of the problems with gravity is not very good ,
% the problem will run until solved . Usually takes about 5 minutes .

16 x=0;
clearvars -except x; clc;
while x==0
close all; clc;
Ts = 35;% Skin temperature

21 Ta = 35; % Ambient temperature
% Calculate the perspiration as given in the article on microclimate factors by Amit

Gefen .
% This function calculates for three time steps , in which the first time
% step is constant , as well as the third time step .
[time , deltaV ] = perspiration (Ta ,Ts);

26
%% Plot settings
figColor =’w’; figColorDef =’white ’;
fontSize =15;
faceAlpha1 =0.5;

31 faceAlpha2 =1;
edgeColor =0.25* ones (1 ,3);
edgeWidth =1.5;
markerSize =25;
lineWidth =3;

36
%% Control parameters : Some basic information is saved here
% path names
filePath = mfilename (’fullpath ’);
savePath = fullfile ( fileparts ( filePath ),’data ’,’temp ’);

41 modelName = fullfile (savePath ,’CBGravitySmallFullTemp ’);

% Specifying dimensions and number of elements
sampleWidth =12;
sampleThickness =12;

46 sampleHeight =6;
pointSpacing =4.3;
initialArea = sampleWidth * sampleThickness ;

numElementsWidth = round ( sampleWidth / pointSpacing );
51 numElementsThickness = round ( sampleThickness / pointSpacing );

numElementsHeight = round ( sampleHeight / pointSpacing );

contactInitialOffset =0;% 0.2
sphereRadius =6;

56 sphereRadiusInner =0.5;

%% CREATING MESHED BOX
% Create box 1 using Gibbon Toolbox
boxDim =[ sampleWidth sampleThickness sampleHeight ]; % Dimensions

61 boxEl =[ numElementsWidth numElementsThickness numElementsHeight ]; % Number of elements
[box1 ]= hexMeshBox (boxDim , boxEl );
E1=box1.E;
V1=box1.V;
F1=box1.F;

66 Fb1=box1.Fb;
faceBoundaryMarker =box1. faceBoundaryMarker ;
V1 (: ,3)=V1 (: ,3) -( sampleHeight /2); % The top of the bed is now at z=0
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%% CREATING MESHED SPHERE
71 % Control settings

cPar. sphereRadius = sphereRadius ;
cPar. coreRadius = sphereRadiusInner ;
cPar. numElementsMantel =4;
cPar. numElementsCore =4;

76 cPar. makeHollow =1; %1 means the sphere is hollow
% Creating sphere using Gibbon Toolbox
[ meshStruct ]= hexMeshSphere (cPar);

% Access ouput
81 E2= meshStruct .E; % The elements

V2= meshStruct .V; % The vertices
Fb2= meshStruct .Fb; % The boundary faces
faceBoundaryMarker2 = meshStruct . faceBoundaryMarker ;

86 % Offset sphere
V2 (: ,3)=V2 (: ,3)+ sphereRadius + contactInitialOffset ; % The bottom of the body is now at z

=0.

%% Plotting surface models
hf= figuremax (figColor , figColorDef );

91 title (’Model surfaces ’,’FontSize ’,fontSize );
xlabel (’X’,’FontSize ’,fontSize ); ylabel (’Y’,’FontSize ’,fontSize ); zlabel (’Z’,’FontSize ’

,fontSize );
hold on;
patch (’Faces ’,Fb1 ,’Vertices ’,V1 ,’FaceColor ’,’flat ’,’CData ’,faceBoundaryMarker ,’

FaceAlpha ’,faceAlpha1 ,’lineWidth ’,edgeWidth ,’edgeColor ’,edgeColor );
patch (’Faces ’,Fb2 ,’Vertices ’,V2 ,’FaceColor ’,’r’,’FaceAlpha ’,faceAlpha1 ,’lineWidth ’,

edgeWidth ,’edgeColor ’,edgeColor );
96 colormap (jet (6)); colorbar ;

set(gca ,’FontSize ’,fontSize );
view (3); axis tight ; axis equal ; grid on;
drawnow ;

101 %% MERGING NODE SETS
% For simplicity we need all the nodes to be in one set.
V=[ V1;V2 ;]; % Nodes
E2=E2+ size (V1 ,1);
Fb2=Fb2+ size (V1 ,1);

106
%% Plotting surface models using the merged sets
hf= figuremax (figColor , figColorDef );
title (’Merged node sets ’,’FontSize ’,fontSize );
xlabel (’X’,’FontSize ’,fontSize ); ylabel (’Y’,’FontSize ’,fontSize ); zlabel (’Z’,’FontSize ’

,fontSize );
111 hold on;

patch (’Faces ’,Fb1 ,’Vertices ’,V,’FaceColor ’,’b’,’FaceAlpha ’,faceAlpha1 ,’lineWidth ’,
edgeWidth ,’edgeColor ’,edgeColor );

patch (’Faces ’,Fb2 ,’Vertices ’,V,’FaceColor ’,’r’,’FaceAlpha ’,faceAlpha1 ,’lineWidth ’,
edgeWidth ,’edgeColor ’,edgeColor );

set(gca ,’FontSize ’,fontSize );
view (3); axis tight ; axis equal ; grid on;

116 drawnow ;

%% Define contact surfaces
% Here the surfaces need to be defined which will be in contact
Fc1=Fb2( faceBoundaryMarker2 ==1 ,:); % The outer surface of the sphere

121
logicContactSurf1 = faceBoundaryMarker ==6;
Fc2=Fb1( logicContactSurf1 ,:);% The top surface of the bed

% Plotting surface models of the contact surfaces
126 hf= figuremax (figColor , figColorDef );

title (’Contact sets ’,’FontSize ’,fontSize );
xlabel (’X’,’FontSize ’,fontSize ); ylabel (’Y’,’FontSize ’,fontSize ); zlabel (’Z’,’FontSize ’

,fontSize );
hold on;
patch (’Faces ’,Fb1 ,’Vertices ’,V,’FaceColor ’,’b’,’FaceAlpha ’ ,0.2,’edgeColor ’,’none ’);

131 patch (’Faces ’,Fc1 ,’Vertices ’,V,’FaceColor ’,’g’,’FaceAlpha ’ ,1,’lineWidth ’,edgeWidth ,’
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edgeColor ’,edgeColor );
[hp ]= patchNormPlot (Fc1 ,V ,1);
patch (’Faces ’,Fc2 ,’Vertices ’,V,’FaceColor ’,’g’,’FaceAlpha ’ ,1,’lineWidth ’,edgeWidth ,’

edgeColor ’,edgeColor );
[hp ]= patchNormPlot (Fc2 ,V ,1);
set(gca ,’FontSize ’,fontSize );

136 view (3); axis tight ; axis equal ; grid on;
drawnow ;

%% DEFINE BC ’s
% Here the surface for the boundary conditions are defined

141 % The bottom of the bed is the first surface , as this will be constricted
% later on.
logicRigid = faceBoundaryMarker ==5;
Fr=Fb1( logicRigid ,:);
bcRigidList = unique (Fr (:));

146
% The Inner surface of the sphere is used to apply the prescribed boundary
% conditions
Fr=Fb2( faceBoundaryMarker2 ==2 ,:); % Inner sphere
bcPrescribeList = unique (Fr (:));

151
% The magnitude of the prescribed boundary condition is defined to be 1mm in the x

direction .
displacementMagnitude2 =[1 0 0];
bcPrescribeMagnitudes2 = displacementMagnitude2 (ones (1, numel ( bcPrescribeList )) ,:);

156 %% Visualize BC ’s
hf= figuremax (figColor , figColorDef );
title (’Complete model ’,’FontSize ’,fontSize );
xlabel (’X’,’FontSize ’,fontSize ); ylabel (’Y’,’FontSize ’,fontSize ); zlabel (’Z’,’FontSize ’

,fontSize );
hold on;

161 patch (’Faces ’,Fb1 ,’Vertices ’,V,’FaceColor ’,’b’,’FaceAlpha ’,faceAlpha1 ,’lineWidth ’,
edgeWidth ,’edgeColor ’,edgeColor );

patch (’Faces ’,Fb2 ,’Vertices ’,V,’FaceColor ’,’r’,’FaceAlpha ’,faceAlpha1 ,’lineWidth ’,
edgeWidth ,’edgeColor ’,edgeColor );

plotV (V( bcRigidList ,:) ,’k.’,’MarkerSize ’,markerSize );
plotV (V( bcPrescribeList ,:) ,’k.’,’MarkerSize ’,markerSize );
set(gca ,’FontSize ’,fontSize );

166 view (3); axis tight ; axis equal ; grid on;
drawnow ;

%% Visualize the Inside of the model
hf1= figuremax (figColor , figColorDef );

171 title (’Cut -view of the undeformed model ’,’FontSize ’,fontSize );
xlabel (’X (mm)’,’FontSize ’,fontSize ); ylabel (’Y (mm)’,’FontSize ’,fontSize ); zlabel (’Z (

mm)’,’FontSize ’,fontSize ); hold on;
% Create cut view
Y=V(: ,2); YE= mean (Y(E1) ,2);
L=YE > mean (Y);

176 [Fs ,~]= element2patch (E1(L ,:) ,[],’hex8 ’);
patch (’Faces ’,Fs ,’Vertices ’,V,’FaceColor ’,’b’,’FaceAlpha ’,faceAlpha1 ,’lineWidth ’,

edgeWidth ,’edgeColor ’,edgeColor );
% Create cut view
Y=V(: ,2); YE= mean (Y(E2) ,2);
L=YE > mean (Y);

181 [Fs ,~]= element2patch (E2(L ,:) ,[],’hex8 ’);
patch (’Faces ’,Fs ,’Vertices ’,V,’FaceColor ’,’r’,’FaceAlpha ’,faceAlpha1 ,’lineWidth ’,

edgeWidth ,’edgeColor ’,edgeColor );
view (3); axis tight ; axis equal ; grid on;
colormap jet; colorbar ;
% camlight headlight ;

186 set(gca ,’FontSize ’,fontSize );
legend (’Bed ’,’Skin ’,’Location ’,’southoutside ’);
drawnow ;

%% CONSTRUCTING FEB MODEL
191 % Setting some basic information

FEB_struct . febio_spec . version =’2.0 ’;
FEB_struct . Module .Type=’solid ’;
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% Defining file names
196 FEB_struct . run_filename =[ modelName ,’.feb ’]; % FEB file name

FEB_struct . run_logname =[ modelName ,’.txt ’]; % FEBio log file name

% Creating FEB_struct
FEB_struct . Geometry . Nodes =V; % The node set

201 FEB_struct . Geometry . Elements ={ E1 E2 }; % The element sets
FEB_struct . Geometry . ElementType ={ ’hex8 ’,’hex8 ’}; % The element types
% The materials are assigned as follows : All elements in E1 are material 1,
% all elements in E2 are material 2 FEB_struct . Geometry . ElementMat ={[1* ones (1, size (E1 ,1) )

]; [2* ones (1, size (E2 ,1) )]; };
FEB_struct . Geometry . ElementsPartName ={ ’Bed ’,’Body ’};

206
% DEFINING MATERIALS
% Material 1: Mattress
density =30e -9;
E=10;

211 v =0.3;
FEB_struct . Materials {1}. Type=’isotropic elastic ’;
FEB_struct . Materials {1}. Properties ={ ’density ’,’E’,’v’};
FEB_struct . Materials {1}. Values ={ density ,E,v};

216 % Material 2: Skin
density =1100e -9;
E=1;
v =0.49;
FEB_struct . Materials {2}. Type=’isotropic elastic ’;

221 FEB_struct . Materials {2}. Properties ={ ’density ’,’E’,’v’};
FEB_struct . Materials {2}. Values ={ density ,E,v};
FEB_struct . Materials {2}. lc ={0 ,5 ,0}; %A load curve is connected to the Youngs modulus

% Control sections
226 % here the information regarding the solution method are defined .

FEB_struct . Control . AnalysisType =’static ’;
FEB_struct . Control . Properties ={ ’time_steps ’,’step_size ’ ,...

’max_refs ’,’max_ups ’ ,...
’dtol ’,’etol ’,’rtol ’,’lstol ’};

231 FEB_struct . Control . Values ={25 ,0.04 ,...
25 ,10 ,...
0.001 ,0.01 ,0 ,0.9};

FEB_struct . Control . TimeStepperProperties ={ ’dtmin ’,’dtmax ’,’max_retries ’,’opt_iter ’,’
aggressiveness ’};

FEB_struct . Control . TimeStepperValues ={1e -4 ,0.04 ,5 ,5 ,1};
236

FEB_struct .Step {2}. Control = FEB_struct . Control ;% The second step is defined the same as
the first step

FEB_struct .Step {3}. Control = FEB_struct . Control ;% The third step is defined the same as
the first step

241 % Defining surfaces
% The earlier defined contact surfaces are now called the master and slave
% surfaces .
FEB_struct . Geometry . Surface {1}. Set=Fc1;
FEB_struct . Geometry . Surface {1}. Type=’quad4 ’;

246 FEB_struct . Geometry . Surface {1}. Name=’Contact_master ’;

FEB_struct . Geometry . Surface {2}. Set=Fc2;
FEB_struct . Geometry . Surface {2}. Type=’quad4 ’;
FEB_struct . Geometry . Surface {2}. Name=’Contact_slave ’;

251
% Defining node sets
FEB_struct . Geometry . NodeSet {1}. Set= bcRigidList ;
FEB_struct . Geometry . NodeSet {1}. Name=’bcRigidList ’;
FEB_struct . Geometry . NodeSet {2}. Set= bcPrescribeList ;

256 FEB_struct . Geometry . NodeSet {2}. Name=’bcPrescribeList ’;

% Adding fixed BC ’s
% The bottom of the bed is restricyed from all movements (in x,y and z directions )
FEB_struct . Boundary .Fix {1}. bc=’x’;
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261 FEB_struct . Boundary .Fix {1}. SetName = FEB_struct . Geometry . NodeSet {1}. Name;
FEB_struct . Boundary .Fix {2}. bc=’y’;
FEB_struct . Boundary .Fix {2}. SetName = FEB_struct . Geometry . NodeSet {1}. Name;
FEB_struct . Boundary .Fix {3}. bc=’z’;
FEB_struct . Boundary .Fix {3}. SetName = FEB_struct . Geometry . NodeSet {1}. Name;

266 % The inner sphere is only restricted in the y- direction
FEB_struct . Boundary .Fix {4}. bc=’y’;
FEB_struct . Boundary .Fix {4}. SetName = FEB_struct . Geometry . NodeSet {2}. Name;

%In the third step a prescribed boundary condition is used to move the
271 % inner sphere 1 mm in the x- direction .

FEB_struct .Step {3}. Boundary . Prescribe {1}. Set= bcPrescribeList ;
FEB_struct .Step {3}. Boundary . Prescribe {1}. bc=’x’;
FEB_struct .Step {3}. Boundary . Prescribe {1}. lc =2;
FEB_struct .Step {3}. Boundary . Prescribe {1}. nodeScale = bcPrescribeMagnitudes2 (: ,1);

276
% Adding Loads
% Here the body load is defined .
FEB_struct . Loads . Body_force {1}. Directions ={ ’z’};
FEB_struct . Loads . Body_force {1}. Values ={1}; % Value 1 will be multiplied by the values in

the loadcurve .
281 FEB_struct . Loads . Body_force {1}. lc ={3}; % the loadcurve wil have a final value of 9810 mN/

kg = 9.81 N/kg = gravity acceleration
FEB_struct . Loads . Body_force {1}. Type=’const ’;

% Adding contact information
% The contact method is defined . First the master and slave are defined ,

286 % then the contact interface with the details .
FEB_struct . Contact {1}. Surface {1}. SetName = FEB_struct . Geometry . Surface {1}. Name;
FEB_struct . Contact {1}. Surface {1}. Type=’master ’;

FEB_struct . Contact {1}. Surface {2}. SetName = FEB_struct . Geometry . Surface {2}. Name;
291 FEB_struct . Contact {1}. Surface {2}. Type=’slave ’;

FEB_struct . Contact {1}. Type=’sliding_with_gaps ’;
FEB_struct . Contact {1}. Properties ={ ’penalty ’,’auto_penalty ’,’two_pass ’ ,...

’laugon ’,’tolerance ’ ,...
296 ’gaptol ’,’minaug ’,’maxaug ’ ,...

’fric_coeff ’,’fric_penalty ’ ,...
’seg_up ’ ,...
’search_tol ’};

FEB_struct . Contact {1}. Values ={100 ,1 ,1 ,...
301 0 ,0.1 ,...

0 ,0 ,10 ,...
0.2 ,1 ,...
0 ,...
0.01};

306 FEB_struct . Contact {1}. lc ={0 ,0 ,0 ,...
0 ,0 ,...
0 ,0 ,0 ,...
7 ,0 ,... %A loadcurve is applied to the COF
0 ,...

311 0};

% Adding output requests
FEB_struct . Output . VarTypes ={ ’displacement ’,’stress ’,’relative volume ’,’shell thickness ’

};

316 % Specify log file output
% The outputs that are saved in logfiles are specified here . The current
% outputs are the displacements , the forces , the Cauchy stresses and the
% eigenvalues .
run_disp_output_name =[ FEB_struct . run_filename (1: end -4) ,’_node_out .txt ’];

321 run_force_output_name =[ FEB_struct . run_filename (1: end -4) ,’_force_out .txt ’];
run_stress_output_name =[ FEB_struct . run_filename (1: end -4) ,’_stress .txt ’];
run_eigenvalues_output_name =[ FEB_struct . run_filename (1: end -4) ,’_eigenval .txt ’];
FEB_struct . run_output_names ={ run_disp_output_name , run_force_output_name ,

run_stress_output_name , run_eigenvalues_output_name };
FEB_struct . output_types ={ ’node_data ’,’node_data ’,’element_data ’,’element_data ’};

326 FEB_struct . data_types ={ ’ux;uy;uz ’,’Rx;Ry;Rz ’,’sx;sy;sz;sxy;syz;sxz ’,’s1;s2;s3 ’};
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% Load curves
taus = 70; % strength of dry skin is 70 kPa
COF = 0.5* deltaV +0.4; % The COF is calculated using the perspiration

331
FEB_struct . LoadData . LoadCurves .id =[1 2 3 4 5 6 7];
FEB_struct . LoadData . LoadCurves . type ={ ’linear ’,’linear ’, ’linear ’,’linear ’,’linear ’,’

linear ’,’smooth ’};
FEB_struct . LoadData . LoadCurves . loadPoints ={[0 0;1 1];[0 0;1 0;2 0;3 1];[0 0; 1 9810; 2

9810; 3 9810];[0 1; 1 1];[0 15.2; 1 15.2;1.5 50; 2 100];[0 0.2; 1 0.2; 2 0.8];[ time
’ COF ’]};

336 %% SAVING . FEB FILE
FEB_struct . disp_opt =0; % Display waitbars option
febStruct2febFile ( FEB_struct ); % This function uses the abpve informaton to create a .

feb file ( from Gibbon Toolbox )

%% RUNNING FEBIO JOB
341 FEBioRunStruct . FEBioPath =’C:\ Users \ Thyrza \ FEBio2p0 \bin\ Febio2x64 .exe ’;

FEBioRunStruct . run_filename = FEB_struct . run_filename ;
FEBioRunStruct . run_logname = FEB_struct . run_logname ;
FEBioRunStruct . disp_on =1;
FEBioRunStruct . disp_log_on =1;

346 FEBioRunStruct . runMode =’external ’;%’internal ’; % External uses the febio interface ,
internal shows all calculations in matlab .

FEBioRunStruct . t_check =0.25; % Time for checking log file ( dont set too small )
FEBioRunStruct . maxtpi =1 e99; % Max analysis time
FEBioRunStruct . maxLogCheckTime =3; % Max log file checking time

351 [ runFlag ]= runMonitorFEBio ( FEBioRunStruct );% START FEBio NOW !

%%
if runFlag ==1 %i.e. a succesful run the following results will be shown

x=1;
356 %% The NODAL DISPLACEMENT RESULTS

% Importing nodal displacements from a log file
[~, N_disp_mat ,~]= importFEBio_logfile ( FEB_struct . run_output_names {1}); % Nodal

displacements

DN= N_disp_mat (: ,2: end ,end); % Final nodal displacements
361

% CREATING NODE SET IN DEFORMED STATE
V_def =V+DN;
DN_magnitude = sqrt (sum(DN .^2 ,2));

366 % Plotting the displacements
hf1= figuremax (figColor , figColorDef );
title ([ ’The deformed model ’],’FontSize ’,fontSize );
xlabel (’X (mm)’,’FontSize ’,fontSize ); ylabel (’Y (mm)’,’FontSize ’,fontSize ); zlabel (

’Z (mm)’,’FontSize ’,fontSize ); hold on;
% Create cut view

371 Y=V(: ,2); YE= mean (Y(E1) ,2);
L=YE > mean (Y);
[Fs ,~]= element2patch (E1(L ,:) ,[],’hex8 ’);
%[Fs ,~]= element2patch (E1 (: ,:) ,[],’hex8 ’);
patch (’Faces ’,Fs ,’Vertices ’,V_def ,’FaceColor ’,’flat ’,’CData ’,DN_magnitude ,’

FaceAlpha ’ ,1,’lineWidth ’,edgeWidth ,’edgeColor ’,edgeColor );
376 % Create cut view

Y=V(: ,2); YE= mean (Y(E2) ,2);
L=YE > mean (Y);
[Fs ,~]= element2patch (E2(L ,:) ,[],’hex8 ’);
patch (’Faces ’,Fs ,’Vertices ’,V_def ,’FaceColor ’,’flat ’,’CData ’,DN_magnitude ,’

FaceAlpha ’ ,1,’lineWidth ’,edgeWidth ,’edgeColor ’,edgeColor );
381 view (3); axis tight ; axis equal ; grid on;

colormap jet; colorbar ;
% camlight headlight ;
set(gca ,’FontSize ’,fontSize );
drawnow ;

386 hold on;

%% The Elemental STRESS RESULTS
% Importing elemental STRESS from a log file
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[time_mat , N_stress_mat ,~]= importFEBio_logfile ( FEB_struct . run_output_names {3}); %
elemental stresses

391
%% Calculating the maximum shear stress
SNtime = squeeze ( N_stress_mat (1,end ,:));
[~, N_eigenvalues_mat ,~]= importFEBio_logfile ( FEB_struct . run_output_names {4}); %

Elemental eigenvalues
principalstress = principalStress ( N_stress_mat , N_eigenvalues_mat );

396 [ maxshearstress , maxmaxshearstress , minmaxshearstress , avgmaxshearstress ]=
maxShearStress ( principalstress ); % matrix : nr elements x nr timesteps .

maxmaxshearstressSkin = max( maxshearstress (end - size (E2 ,1) +1: end ,:));
minmaxshearstressSkin = min( maxshearstress (end - size (E2 ,1) +1: end ,:));
avgmaxshearstressSkin = mean ( maxshearstress (end - size (E2 ,1) +1: end ,:));
shearStrength = (1 -0.8* deltaV )*taus;

401
% Plotting the maximum shear stress
hf2= figuremax (figColor , figColorDef );
title (’The maximum , minimum and average maxshearstress for the skin elements

against the time ’,’FontSize ’ ,11);
xlabel (’time (s)’); ylabel (’maximum shear stress Skin (kPa)’); hold on;

406 plot (time_mat , maxmaxshearstressSkin , ’r’,’LineWidth ’ ,2);
hold on;
plot (time_mat , minmaxshearstressSkin , ’g’,’LineWidth ’ ,2);
hold on;
plot (time_mat , avgmaxshearstressSkin , ’b’,’LineWidth ’ ,2);

411 h_legend = legend (’maximum ’,’minimum ’,’average ’);
set(gca ,’fontsize ’ ,14)
set(h_legend ,’FontSize ’ ,14);

% Plotting the shear strength and the maximum shear stress
416 hf3= figuremax (figColor , figColorDef );

title (’The maximum shear stress and the shear strength of skin ’);
xlabel (’time (s)’); ylabel (’Stress (kPa)’); hold on;
plot (time_mat , maxmaxshearstressSkin , ’r’,’LineWidth ’ ,2);
hold on;

421 plot (time , shearStrength , ’b’,’LineWidth ’ ,2);
legend (’maximum shear stress ’,’shear strength ’);

set(gca ,’fontsize ’ ,14)
set(h_legend ,’FontSize ’ ,14);
end

426 end
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FEBIO FILES

D.1. FEBIO FILE OF THE FINAL MODEL

<?xml version ="1.0" encoding ="utf -8"?>
<! -- Created using GIBBON , 12-Mar -2015 21 :14:35 -->
<febio_spec version ="2.0">

4 <Module type=" solid "/>
<Control >

<time_steps >25.000000 </ time_steps >
<step_size >0.040000 </ step_size >
<max_refs >25.000000 </ max_refs >

9 <max_ups >10.000000 </ max_ups >
<dtol >0.001000 </dtol >
<etol >0.010000 </etol >
<rtol >0.000000 </rtol >
<lstol >0.900000 </ lstol >

14 <analysis type=" static "/>
<time_stepper >

<dtmin >0.000100 </ dtmin >
<dtmax >0.040000 </ dtmax >
<max_retries >5.000000 </ max_retries >

19 <opt_iter >5.000000 </ opt_iter >
<aggressiveness >1.000000 </ aggressiveness >

</ time_stepper >
</ Control >
<Material >

24 <material id="1" name=" mat_1 " type=" isotropic elastic ">
<density >3.0000000e -08 </ density >
<E>1.0000000 e+01 </E>
<v>3.0000000e -01 </v>

</ material >
29 <material id="2" name=" mat_2 " type=" isotropic elastic ">

<density >1.1000000e -06 </ density >
<E lc="5">1.0000000 e+00 </E>
<v>4.9000000e -01 </v>

</ material >
34 </ Material >

<Geometry >
<Nodes >

<node id="1"> -6.0000000 e+00 , -6.0000000 e+00 , -6.0000000 e+00 </node >
.........

39 <node id="522">3.4641016 e+00 , 3.4641016 e+00 , 9.4641016 e+00 </node >
</ Nodes >
<Elements mat="1" name="Bed" type="hex8">

<elem id="1"> 1, 5, 6, 2, 17, 21, 22, 18 </elem >
.........

44 <elem id="9"> 11, 15, 16, 12, 27, 31, 32, 28 </elem >
</ Elements >
<Elements mat="2" name="Body" type="hex8">

<elem id="10"> 34, 39, 38, 33, 132 , 137 , 136 , 131 </elem >
.........

127
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49 <elem id="393"> 418 , 423 , 424 , 419 , 516 , 521 , 522 , 517 </elem >
</ Elements >
<Surface name=" Contact_master ">

<quad4 id="1"> 426 , 431 , 430 , 425 </ quad4 >
.........

54 <quad4 id="96"> 516 , 521 , 522 , 517 </ quad4 >
</ Surface >
<Surface name=" Contact_slave ">

<quad4 id="1"> 17, 21, 22, 18 </ quad4 >
.........

59 <quad4 id="9"> 27, 31, 32, 28 </ quad4 >
</ Surface >
<NodeSet name=" bcRigidList "> 1, 2, 3, 4, .., 13, 14, 15, 16 </ NodeSet >
<NodeSet name=" bcPrescribeList "> 33, 34, 35, 36, 37, 38, 39, 40, 41,

.........
64 117 , 118 , 119 , 120 , 121 , 122 , 123 , 124 , 125 , 126 , 127 , 128 , 129 , 130 </ NodeSet >

</ Geometry >
<Boundary >

<fix bc="x" set=" bcRigidList "/>
<fix bc="y" set=" bcRigidList "/>

69 <fix bc="z" set=" bcRigidList "/>
<fix bc="y" set=" bcPrescribeList "/>

</ Boundary >
<Loads >

<body_load type=" const ">
74 <z lc="3">1.0000000 e+00 </z>

</ body_load >
</ Loads >
<Contact >

<contact type=" sliding_with_gaps ">
79 <penalty >1.000000 e+02 </ penalty >

<auto_penalty >1.000000 e+00 </ auto_penalty >
<two_pass >1.000000 e+00 </ two_pass >
<laugon >0.000000 e+00 </ laugon >
<tolerance >1.000000e -01 </ tolerance >

84 <gaptol >0.000000 e+00 </ gaptol >
<minaug >0.000000 e+00 </ minaug >
<maxaug >1.000000 e+01 </ maxaug >
<fric_coeff lc="7">2.000000e -01 </ fric_coeff >
<fric_penalty >1.000000 e+00 </ fric_penalty >

89 <seg_up >0.000000 e+00 </ seg_up >
<search_tol >1.000000e -02 </ search_tol >
<surface set=" Contact_master " type=" master "/>
<surface set=" Contact_slave " type=" slave "/>

</ contact >
94 </ Contact >

<LoadData >
<loadcurve id="1" type=" linear ">

<loadpoint >0.000000 , 0.000000 </ loadpoint >
<loadpoint >1.000000 , 1.000000 </ loadpoint >

99 </ loadcurve >
<loadcurve id="2" type=" linear ">

<loadpoint >0.000000 , 0.000000 </ loadpoint >
<loadpoint >1.000000 , 0.000000 </ loadpoint >
<loadpoint >2.000000 , 0.000000 </ loadpoint >

104 <loadpoint >3.000000 , 1.000000 </ loadpoint >
</ loadcurve >
<loadcurve id="3" type=" linear ">

<loadpoint >0.000000 , 0.000000 </ loadpoint >
<loadpoint >1.000000 , 9810.000000 </ loadpoint >

109 <loadpoint >2.000000 , 9810.000000 </ loadpoint >
<loadpoint >3.000000 , 9810.000000 </ loadpoint >

</ loadcurve >
<loadcurve id="4" type=" linear ">

<loadpoint >0.000000 , 1.000000 </ loadpoint >
114 <loadpoint >1.000000 , 1.000000 </ loadpoint >

</ loadcurve >
<loadcurve id="5" type=" linear ">

<loadpoint >0.000000 , 15.200000 </ loadpoint >
<loadpoint >1.000000 , 15.200000 </ loadpoint >

119 <loadpoint >1.500000 , 50.000000 </ loadpoint >
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<loadpoint >2.000000 , 100.000000 </ loadpoint >
</ loadcurve >
<loadcurve id="6" type=" linear ">

<loadpoint >0.000000 , 0.200000 </ loadpoint >
124 <loadpoint >1.000000 , 0.200000 </ loadpoint >

<loadpoint >2.000000 , 0.800000 </ loadpoint >
</ loadcurve >
<loadcurve id="7" type=" smooth ">

<loadpoint >0.000000 , 0.400000 </ loadpoint >
129 <loadpoint >1.000000 , 0.400000 </ loadpoint >

<loadpoint >1.100000 , 0.455000 </ loadpoint >
<loadpoint >1.200000 , 0.510000 </ loadpoint >
<loadpoint >1.300000 , 0.565000 </ loadpoint >
<loadpoint >1.400000 , 0.620000 </ loadpoint >

134 <loadpoint >1.500000 , 0.675000 </ loadpoint >
<loadpoint >1.600000 , 0.730000 </ loadpoint >
<loadpoint >1.700000 , 0.785000 </ loadpoint >
<loadpoint >1.800000 , 0.840000 </ loadpoint >
<loadpoint >1.900000 , 0.895000 </ loadpoint >

139 <loadpoint >2.000000 , 0.895000 </ loadpoint >
<loadpoint >3.000000 , 0.895000 </ loadpoint >

</ loadcurve >
</ LoadData >
<Step name=" Step_1 ">

144 <Module type=" solid "/>
</Step >
<Step name=" Step_2 ">

<Module type=" solid "/>
<Control >

149 <time_steps >25.000000 </ time_steps >
<step_size >0.040000 </ step_size >
<max_refs >25.000000 </ max_refs >
<max_ups >10.000000 </ max_ups >
<dtol >0.001000 </dtol >

154 <etol >0.010000 </etol >
<rtol >0.000000 </rtol >
<lstol >0.900000 </ lstol >
<analysis type=" static "/>
<time_stepper >

159 <dtmin >0.000100 </ dtmin >
<dtmax >0.040000 </ dtmax >
<max_retries >5.000000 </ max_retries >
<opt_iter >5.000000 </ opt_iter >
<aggressiveness >1.000000 </ aggressiveness >

164 </ time_stepper >
</ Control >

</Step >
<Step name=" Step_3 ">

<Module type=" solid "/>
169 <Boundary >

<prescribe bc="x" lc="2">
<node id="33">1.0000000 e+00 </node >

.........
<node id="130">1.0000000 e+00 </node >

174 </ prescribe >
</ Boundary >
<Control >

<time_steps >25.000000 </ time_steps >
<step_size >0.040000 </ step_size >

179 <max_refs >25.000000 </ max_refs >
<max_ups >10.000000 </ max_ups >
<dtol >0.001000 </dtol >
<etol >0.010000 </etol >
<rtol >0.000000 </rtol >

184 <lstol >0.900000 </ lstol >
<analysis type=" static "/>
<time_stepper >

<dtmin >0.000100 </ dtmin >
<dtmax >0.040000 </ dtmax >

189 <max_retries >5.000000 </ max_retries >
<opt_iter >5.000000 </ opt_iter >
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<aggressiveness >1.000000 </ aggressiveness >
</ time_stepper >

</ Control >
194 </Step >

<Output >
<plotfile type=" febio ">

<var type=" displacement "/>
<var type=" stress "/>

199 </ plotfile >
<logfile >

<node_data data="ux;uy;uz" delim =", " file="C: \..\ CBGrFullT_node_out .txt"/>
<node_data data="Rx;Ry;Rz" delim =", " file="C: \..\ CBGrFullT_force_out .txt"/>
<element_data data="sx;sy;sz;sxy;syz;sxz" delim ="," file="C: \..\

CBGrFullT_stress .txt"/>
204 <element_data data="s1;s2;s3" delim =", " file="C: \..\ CBGrFullT_eigval .txt"/>

</ logfile >
</ Output >

</ febio_spec >
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