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Abstract

Calibration and model prediction is always affected by uncertainty in the forcing data, response data
and structural error in the model. The storm-dependent parameters are believed to be able to capture these
errors and improve model prediction. The goal of this research will be to further investigate and develop
the storm-based approach and compare it to more traditional approaches, including the use of static (time-
invariant) parameters and the use of GLUE to capture model errors. The hypothesis in this paper is the ran-
dom variation of storm-dependent parameters can capture the model error and improve the prediction. The
storm-based method will apply a sensitivity analysis to identify the storm-dependent parameters that are
most likely to vary by storms. The variation of storm-dependent parameters will give large changes in model
performance which is measured by Nash–Sutcliffe efficiency. In the storm-based method, parameters will
be calibrated storm by storm in the calibration period. Then in the validation period, streamflow will still be
predicted storm by storm through picking each parameter set from the calibrated parameter sets. Besides,
the effect of dryness and the optimal threshold for identifying the storm epochs on the model performance
will also be explored in the storm-based method. The results obtained by the storm-based method will be
compared with the method using static parameters and GLUE method. Six case studies calibrating a con-
ceptual rainfall-runoff model with for parameters with daily data illustrate the improvement of prediction
obtained by the storm-based method for dry basins. The extent of variation of storm-dependent parameters
is very random in each case which indicates there is error in the model. Moreover, the extent of variation
of storm-dependent parameters has no relation with initial water storage, rainfall characteristic and basin
characteristics. Although the parameters cannot be predicted deterministically, they can be predicted prob-
abilistically with the histogram or fitted distribution for the calibrated parameter sets in the future work.
By making storm-dependent parameters vary with storms and other parameters constant, the storm-based
method performs better for drier basins while worse for wetter basins compared to GLUE method and tradi-
tional method. The logscore value obtained in storm-based method(e.g. -0.68 for one of the dry basin A) is
larger than those obtained in the traditional method (e.g. -1.23 for basin A) and GLUE method (e.g. -0.67 for
basin A). Additionally, the RMSE values for total flow obtained in the storm-based method are all smaller than
those obtained in the traditional method, and GLUE method for dry basins. This suggests the storm-based
method is more applicable for dry basins and this method should be better developed for wet basins. What
is more, the extent of variation of storm-dependent parameters has no relation with basin characteristics but
the mean and variation of the storm-dependent parameters can be obtained. Hence the extent of variation
of parameters can be described probabilistically.
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1
Introduction

Hydrological models are important tools to simulate the hydrological processes and forecast streamflow
given rainfall and evaporation. They play an essential role to help to (1) understand the hydrological pro-
cesses in basins; (2) to predict water quantity for multiple uses (e.g. hydroelectric production, water supply
for domestic, recreational, agricultural, tourism, and industrial activities); (3)to predict the likely flood risks
that relate to social safety and property; and (4) to assess the effects of human activities on water resources
(e.g., land cover and climate changes)(Bouda et al. [2012]). Conceptual rainfall runoff models(CRR) are one
type of the critical hydrological models. These models simplify complicated hydrological processes and re-
sponses in the real world by using spatially lumped parametric relations to describe water flow processes in a
watershed. However, parameters of most hydrological models cannot represent some measurable catchment
characteristics directly and have to be calibrated. Model calibration is an indispensable part of hydrological
analyses to simulate and forecast streamflow better. During calibration, the best parameter values are deter-
mined according to some predetermined criteria so that the simulations match as closely as possible one or
several observed system outputs(Schaefli and Zehe [2009]). The calibrated parameters can be used to pre-
dict the discharge which is meaningful for designing canals, water management and planning, flood control,
predicting soil erosion and so on. Hence, hydrologists continuously aim to improve the performance of hy-
drological models.
However, the calibration and prediction of CRR models have always been affected by model uncertainty(Kuczera
et al. [2006]). This uncertainty has three sources in previous studies: input error, response error and model
error. For example, in this research, daily rainfall, potential evaporation and parameters are used as input
data, which can be affected by measurement error and sampling uncertainty arising from the randomly dis-
tributed field in spatial and temporal scale. The response data like discharge at different locations is subject
to measurement as well as rating curve error. At last, due to the simplification of the real hydrological process,
even with accurate input data and response data, CRR models can not give a correct response. This error is
termed structural or model error. Figure(1.1) summarizes the current understanding of model uncertainty.
There is also some other literature that illustrates the value of model uncertainty analysis(Beven [2006],Beven
et al. [2007],Todini and Mantovan [2007]). It is always significant to consider the uncertainties in hydrological
models which are most often associated with input data, model parameters, model structure(Saltelli et al.
[1999]).
In CRR models, an assumption will lead to a structural error: we think the parameters are static during time
series. However, this is just an ideal case that dynamic components of the catchment process are oversim-
plified. Assuming the parameters are time-invariant is inappropriate because a set of optimized parameters
are only able to represent an average process during the analyzed time series(Lan et al. [2019]). Besides,
forcing data like rainfall and potential evaporation are spatial and temporal averages from random fields.
The number of spatially and temporal distributed fields yielding the same average discharge can be huge.
Although these distinct fields produce the same average rainfall they can cause a different hydrological re-
sponse. In models, the relation between runoff and soil wetness is typically conceptualized based on spatial
heterogeneity in topography and soil properties. While in reality, the relation also depends on the small-
scale(unresolved) spatial heterogeneity of climate controls like precipitation. For example, if the primary
source of rainfall takes place over a saturated part of the catchment, the soil store will be recharged quickly,
and there will be quickflow generated. However, if the primary source of rainfall takes place over an unsat-
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Figure 1.1: Schematic of error propagation in CRR models(sources of errors are shaded grey and ’input errors’ indicates any errors in
the model input, including forcing data and parameters)(taken from Kavetski et al. [2003])

urated part of the field, soil store would be firstly recharged, and there would be no quickflow generated.
This yields multi-valued(dynamic) rather than single-valued (static) storage-flow relations like shown in Fig-
ure(1.2). Models with input data that are temporally and spatially averaged neglect this dynamic dimension
and usually can not give correct responses(Kuczera et al. [2006]. This dynamic dimension should be consid-
ered to improve model calibration.This results in non-constant parameters that depend on the rainfall event,
initial conditions, etc.

Figure 1.2: The dynamic sub-grid variability. Averaging of rainfall is a significant source of model error because it gives a single-valued
relation between storage and runoff. Multi-valued, non-unique storage-flow relations at the catchment scale are not considered in

current models which would result in incorrect parameter estimations.

Using parameters that vary with time is believed to be able to significantly improve the accuracy and robust-
ness of conventional models. In a previous study(Kuczera et al. [2006]), a hypothesis is demonstrated plausi-
ble that the input and model uncertainty can be adequately described by storm-dependent parameters that
are randomly variable. Before Kuczera et al. doing this study, critical issue that needed to be addressed is the
temporal variation of the random perturbations of the model fluxes. It is vital to use an appropriate time step
for CRR models to do the computation because if the time step is significantly less than the response time of
the store to receive the flux, each store would respond only to the average component of the input(Kuczera
et al. [2006]). Kuczera et al. and Kuczera solved this issue by randomly perturbing the model parameters at
the beginning of each storm. This method makes sense because the primary forcing(the most spatially and
temporally heterogeneous) of the catchment water balance is coming from rainfall so that the flux variation
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is expected to persist over storm event time series. Another reason that causes structure error is the approxi-
mation in determining parameters(Yang et al. [2008]). Parameter uncertainty is unavoidable but comparably
easy to control by an appropriate calibration. There are several methods to determine the values of the pa-
rameters in the calibration process. Directly measuring the parameters is one of the ways to determine the
parameter values, however,it is actually impossible to directly measure the parameters in the field. Besides,
some conceptual parameters that obtained by empirical equations and literature references can also bring
the uncertainty into the model(Gong et al. [2011],Shen et al. [2012],Xue et al. [2014]). In addition, the inter-
actions and correlations between parameters can also cause uncertainties. Different parameter sets might
give similar prediction results, and this is a phenomenon called equifinality that describes a kind of inher-
ent property of inverse modelling(Beven and Binley [1992],Abbaspour et al. [2007],Abbaspour et al. [2011]).
Sometimes, ignoring or underestimation of uncertainty may lead to unexpected losses and overestimation
of uncertainty may cause a waste of resources(Shen et al. [2012]). Therefore, analysis of uncertainty is es-
sential and needed to guarantee the relatively good performance of hydrological models(Beven and Binley
[1992],Vrugt et al. [2003],Yang et al. [2007],Yang et al. [2007]).
Kuczera et al. [2006] introduced a robust framework named BATEA framework. In this framework, storm-
dependent parameters are varying by storms, and this framework shows that it is able to describe hydrologi-
cal process and characterise the inherent uncertainty. Kuczera et al. also discussed the differences between
GLUE and BATEA framework. The generalized likelihood uncertainty estimation (GLUE) method is a method
that widely applied and studied in researches about the uncertainty in hydrological modelling(e.g.Aronica
et al. [2002], Cameron et al. [1999], Blazkova and Beven [2002], Freer et al. [1996],Heidari et al. [2006],Kucz-
era et al. [2006] ). This method is usually utilized for investigating the uncertainties in water resources and
environmental modelling( Beven and Binley [1992]). GLUE considers the equifinality phenomenon in hydro-
logical modelling and produce the prediction limits for the future streamflow given a certain required cer-
tainty level and a set of previously identified behavioural parameter sets ( Xiong and O’Connor [2008]) BATEA
framework and GLUE reached a consensus that model error is vital and hard to characterise. However, they
are basically different in their conceptual structures. For one thing, BATEA applies the error propagation and
considers the input error, response error and model error, respectively. While in GLUE, all sources of errors
are represented by nothing but parameter uncertainty. For another, they are different in using static or non-
static parameters. GLUE is still based on the deterministic parameters from a series of behavioural parameter
sets. In sharp contrast, parameters vary stochastically by storms in BATEA framework.
In summary, CRR models simplify complex rainfall-runoff process which may lead to poor performance of
hydrological models. Storm-dependent parameters are believed to represent the dynamic process better and
great emphasis will be placed on improving rainfall-runoff modeling by using storm-based parameters in
this research. In previous studies, this method of using storm-dependent parameters is believed to be able to
capture the model error in CRR models with great emphasis on the analysis of uncertainty. The goal of this
research will be to further investigate and develop the storm-based approach, and compare it to more tra-
ditional approaches, including the use of static (time-invariant) parameters and the use of GLUE to capture
model errors.
In this research, the focus is on analyzing the variation of storm-dependent parameters to capture model er-
rors to find a systematic framework to predict these variations based on rainfall events and initial conditions
in order to improve model performance. Specifically, four questions will be investigated:

1 To what extent do model parameters vary by storm/event? First of all, Nash-Sutcliffe sensitivity analysis
will figure out which parameters are likely to vary by storm. Then a storm-based calibration needs to
be done to actually answer this first research question. The hypothesis is that most model errors can be
influenced by flux errors that arise from spatial and temporal averaging. We assume that these errors
can be well described by randomly sampling each parameter from a distribution.

2 To what extent is this variation random and can it be predicted from rainfall event characteristics and
initial conditions? The relation between the extent of variation and initial rainfall characteristics for
each storm will be explored. Setting up a framework to predict parameters from the initial rainfall
characteristics of each storm is possible.

3 To what extent does accounting for variation in model parameters capture model errors and improve
rainfall-runoff prediction? The results obtained from three different methods will be compared for six
case basins to illustrate the improvement of hydrological model performance. Several criteria will be
applied to assess the overall performance and high-flow as well as low-flow performance.
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4 Does the extent of variation of storm-dependent parameters depend on basin characteristics (e.g. dry
vs humid, small vs large)? The regression relation between the extent of variation of storm-dependent
parameters and basin characteristics will be explored for 392 basins to illustrate whether the sizes and
dryness of basins will influence the extent of storm-dependent parameters variations.

This research is organized as follows: first of all, the methodology applied in this research is intro-
duced in detail. In the methodology, firstly the applied hydrological model structure and function will
be introduced. It is then using the storm-based method to do the calibration and validation. Dur-
ing the storm-based method, storm-dependent parameters will be firstly identified by a Nash-Sutcliffe
sensitivity analysis. Then the hydrological model will be calibrated basing on storm events with storm-
dependent parameters variable and other parameters constant. The extent of variations of parameters
for each storm and the affecting factors are going to be explored. Next, comparing the results obtained
by alternative methods(traditional method and GLUE method) with those obtained by the storm-based
method. Six case studies with different characteristics illustrate how storm-dependent parameters im-
prove hydrological model performance. Validation results obtained by different methods will be com-
pared during case studies. Additionally, the calibrated storm-dependent parameters will show a vari-
ation for each storm epoch during the analyzed time series. The extent of variation of time-varying
parameters will be analyzed as well as its relation with basin characteristics for 392 basins. Most of the
results will be presented by taking one basin as an example, and other basins will be listed in the ap-
pendix. Future work about predicting the parameters, uncertainty in the forcing data and comparison
between this research and other studies are then discussed. Moreover, finally are the summary of what
has been done in this research and the main conclusions obtained from this research.



2
Methodology

2.1. Model
The conceptual rainfall-runoff model GR4J with four parameters was chosen because it was empiri-

cally developed to provide a relative satisfying performance across catchments with different ranges of cli-
matic and hydrological regimes (Perrin et al., 2003) and has been tested in more than 240 Australian catch-
ments(Wang et al. [2010]). GR4J model is proposed by Edijatno et al. [1999] and Nascimento [1995], which
is a successfully improved version of GR3J. Figure(2.1) illustrates the structure of the GR4J model and the
function of GR4J model is detailed introduced below.

Figure 2.1: GR4J model

( https://webgr.inrae.fr/en/models/daily-hydrological-model-gr4j/)
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Table 2.1: the definition of parameters and state variables in the GR4J rainfall-runoff model

Property Range Range Description
X1 Parameter (20, 2000) (mm) maximum capacity of the production store
X2 Parameter (-5, 3) (mm/day) the catchment water exchange coefficient
X3 Parameter (20, 300) (mm/day) the maximum capacity of the routing reservoir
X4 Parameter (1, 5) (days) time peak ordinate of unit hydrograph UH1
S State variable mm production store level
R State variable mm Routing store level

The definition of parameters and state variables are presented in Table(2.1). X 1 is the maximum capacity
of production store which can be affected by soil types in the river basins. With less porosity, the production
store will be smaller because the soil can not hold too much water. X 2 is the catchment exchange coefficient
which quantifies groundwater exchange between catchments and can easily affect the routing store. If the
catchment exchange coefficient is negative, it means groundwater enters into the deeper aquifer. If the coef-
ficient is positive, it indicates more water enters into the routing store from deep aquifer (Harlan et al. [2010]).
Routing store is easily affected by X 2. X 3 is the maximum capacity of routing reservoir in one day. This ca-
pacity is also affected by soil type and humidity. X 4 is the time when the ordinate peak of flood hydrograph is
created on GR4J modeling. The hydrograph ordinates are calculated from the S curves (the accumulation of
the proportion of unit rainfall treated by the hydrograph in function of time). 90% runoff is slow flow and will
reach to the routing reservoir. The slow flow that infiltrates into the ground will be routed by unit hydrograph
HU1 and create ordinate of the unit hydrograph HU1. 10% runoff is fast flow and will flow on the ground
surface(Harlan et al. [2010]). The fast flow will be routed by a unique unit hydrograph HU2.

P (mm/day) represents rainfall amount and E (mm/day) represents the potential evapotranspiration (PET).
First of all, P is neutralized by E to determine the net rainfall Pn and net evapotranspiration En , calculated by:

If P > E then Pn = P − E and En = 0
If P < E then Pn = 0 and En = E-P

If Pn is different from zero, a fraction of Ps of Pn goes into the production reservoir and is calculated by:

Ps =
X 1

(
1− ( S

X 1

)2
)
· tan

(
Pn
X 1

)
1+ S

X 1 · tanh
(

Pn
X 1

) (2.1)

Where X1 (mm) and S are, respectively, the maximum capacity and the production store level. Otherwise,
when En is different from zero, a part of evaporation Es is removed from the production store which is given
by:

Es =
S

(
2− S

X 1

)
tanh

(
En
X 1

)
1+ (

1− S
X 1

)
tanh

(
En
X 1

) (2.2)

Then the production store level is updated through: S = S −Es +Ps . A percolation called Perc coming from
the production store is then calculated:

Per c = S ·
1−

[
1+

(
4

9

S

X 1

)4]− 1
4

 (2.3)

The production store level is then again updated: S = S – Perc. The water quantity Pr that finally reaches the
routing part of the model is:

Pr = Per c + (Pn–Ps ) (2.4)
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Pr is divided into two flow components, 90% being routed by a unit hydrograph HU1 and a routing store, and
10% by a unique unit hydrograph HU2. The generation of flow from HU1 and HU2 is the routing process over
time(2 times of X4). HU1 and HU2 depend on the same parameter X4 (the time when the ordinate peak of
flood hydrograph is created). The hydrographs ordinates are calculated from the S curves (the accumulation
of the proportion of unit rainfall treated by the hydrogram in function of time), respectively named SH1 and
SH2. SH1 is defined in function of time by:

SH1(t ) =



0 t = 0,

( t
X 4

) 5
2 0< t < X4,

1 t > X4.

(2.5)

SH2 is defined in function of time by:

SH2(t ) =



0 t = 0,

1
2

( t
X 4

) 5
2 0< t < X4,

1− 1
2

(
2− t

X 4

) 5
2 X4 < t < 2X4

(2.6)

The ordinates of HU1 and HU2 are then obtained from:

U H1( j ) = SH1( j ) −SH1( j −1) (2.7)

U H2( j ) = SH2( j ) −SH2( j −1) (2.8)

where j is an integer. For each time step i, the outputs Q9 and Q1 of the two hydrograms are calculated with:

Q9(i ) = 0.9 ·
l∑

k=1
U H1(k) ·Pr(i−k+1) (2.9)

Q1(i ) = 0.1
m∑

k=1
U H2(k) ·Pr(i−k+1) (2.10)

with l = int(X4)+1 and m = int(2X4)+1. A groundwater exchange term (loss or gain) is calculated with:

F = X 2

(
R

X 3

)7/2

(2.11)

with R the routing store level, X3 the one-day maximal capacity of the store and X2 the water exchange coef-
ficient, which is positive in case of a gain, and negative in case of a loss, or zero. The level in the routing store
is updated by adding the Q9 output of the hydrogram HU1 and F: R = max (0 ; R + Q9 + F). Then, it empties in
an output Qr given by:
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Qr = R ·
1−

[
1+

(
R

X 3

)4]− 1
4

 (2.12)

The level in the store becomes:
R = R–Qr (2.13)

The output Q1 of the hydrogram HU2 goes through the same exchanges to give the flow component Qd:

Qd = max(0;Q1+F ) (2.14)

The total streamflow Q is finally given by:
Q =Qr +Qd (2.15)

2.2. Data and Study area
2.2.1. Data

The MOPEX dataset (https://hydrology.nws.noaa.gov/pub/gcip/mopex/US_Data/) containing data
from basins of United States covering a range in climate, land cover, soil type and topography are used in this
research. Precipitation, potential evaporation and streamflow in the MOPEX data sets will be used as forc-
ing data to model. The precipitation is processed in NWS Hydrology Laboratory. The Potential Evaporation
is based on NOAA Evaporation Atlas (Farnsworth and Thompson [1982]). The streamflow is obtained from
USGS National Water Information System (NWIS) (available athttp://water.usgs.gov/nwis). A spatial
map of the MOPEX basins is shown below.

Figure 2.2: Locations of the MOPEX basins used in this study

Basins that are going to be explored should have their water balance closed for a long period (at least
ten years). The water balance is checked by Budyko Framework. Budyko framework describes the long-term
water and energy balances of catchments through a curvilinear relationship between Evaporative Index (Ac-
tual evaporation / Precipitation ) and the Dryness Index (Potential evaporation/ Precipitation ). The actual
evaporation is calculated by Equation (2.16) and potential evaporation is given in the data sets.

E A = P −Q (2.16)

E A < Ep (2.17)

 https://hydrology.nws.noaa.gov/pub/gcip/mopex/US_Data/
 http://water.usgs.gov/nwis
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P −Ep −Q < 0 (2.18)

E A

P
=

[
EP

P
tanh

(
1

EP
P

)(
1−e−

Er
P

)] 1
2

(2.19)

where: E A is actual evaporation, P̄ is average precipitation, Q̄ is average discharge, Ep is potential evapora-
tion.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Ep/p

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
a/

p

qualified basins
unqualified basins 
water limit
budyko
energy limit

Figure 2.3: Budyko Framework for checking water balance

In the Figure(2.3), the red line represents the water limit which means the actual evaporation should
always be less than the precipitation; the blue line represents the energy limit which means the actual evap-
oration should always be less than the potential evaporation. After checking the water balance, 392 basins
(green dots under the red line and blue line) are selected out of 438 basins and qualify to be included in this
study. 392 basins are included because they have their water balance closed for a long time while other basins
are excluded for their water balance are not closed over the analysed period.

2.2.2. Selection of case study basins
Catchments with streamflow/rainfall ratios of about 0.2 or less are referred to as dry catchments (Gan

et al. [1997]). Usually, the hydrological process of dry basins is more complex and variable than that of wet
basins with relatively higher streamflow/ rainfall ratios. Six basins with different sizes and dryness are cho-
sen to be case study basins to analyze the relationship with the variation of storm-dependent parameters.
Necessary information about the selected areas is shown in the table below.

Table 2.2: Selected basins

Gauge ID Basin Name used in this study
7068000 Current river at Doniphan, MO A
1664000 Rappahannock river at Remington,VA B
3164000 South fork new fiver near Jefferson,NC C
3161000 New river near Galax,VA D
12027500 Chehalis river near grand mound, WA E
11532500 Smith River near Crescent city, CA F

Information is taken from https://waterwatch.usgs.gov

https://waterwatch.usgs.gov
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Table 2.3: Characteristics of selected basins

Basin Q/P Dryness index Area (km2) Vegetation Dominant soil

extrue

A 0.35 0.87 2038 mixed forest closed shrublands Silty clay loam

B 0.35 0.85 620 mixed forest, closed shrublands Clay loam

C 0.49 0.64 1131 mixed forest, closed shrublands Loam

D 0.50 0.57 205 mixed forest, closed shrublands Loam

E 0.73 0.38 895 evergreen broadleaf forest Clay loam

F 0.73 0.22 609 evergreen broadleaf forest Clay loam

Information is taken from Mopex data base
(https://hydrology.nws.noaa.gov/pub/gcip/mopex/US_Data/). In this table, Q/P means annual

runoff/annual precipitation ratio.

2.3. Model calibration and validation
Automatic calibration via computer codes is an optimisation problem, that is to find the set of model pa-

rameters based on which the model output matches the observed system response with the highest degree of
similarity. Objective functions are utilised as mathematical tools to represent the model performance, which
aggregate model residuals into a single value. An optimisation algorithm will be applied to find the maxi-
mum value of the objective function. After calibration, model validation is used to evaluate the prediction
performance of the model. In this research, for model validation, we applied the split sample test, that is to
test model performance using the same parameter sets as the calibration process but over independent time
series (Winsemius et al. [2009]). However, it is limited to only focus on the optimal parameter set, which will
possibly misrepresent the real-world systematic dynamics. That can be reflected by the equifinality prob-
lem: different parameter sets yield equally good results. Hence it makes more sense to report uncertainty
intervals, within which the parameter sets and model responses are relatively feasible and close to the reality.
Uncertainty intervals will be computed using methods described in the following sections.

2.3.1. Storm-based method
Several assumptions are made before doing the research of storm-based method: because of spatial

and temporal averaging, the flux errors primarily affect model performance. Besides, these errors can be
described by sampling one or two parameters from a probability distribution at the beginning of each storm.
The main characteristic of the storm-based method is that storm-based parameters are varying by storm
instead of being kept constant during the analysed time series. For the storm-based method, the objective
function is defined as Equation(2.20) to express the model performance. Qo,i is the time series of observed
discharge, Qs,i is the time series of simulated discharge by model and n is the length of each storm period.

N SE = 1−
∑n

i=1

(
Qs,i −Qo,i

)2∑n
i=1

(
Qo,i −Q̄o,i

)2 (2.20)

The basic methodology of finding storm-dependent parameters can be illustrated as the following steps:

• Step 1: Dividing a time series of daily observations into distinct storm events. The storm events are
defined by inter-storm dry spells of 1 or more days, followed by a day with rainfall exceeding a specific
threshold
Before calibration, storm-dependent parameters and storm epochs are needed to be identified from a
rainfall time-series for a given basin. Before identifying the storm-dependent parameters, the storm
epochs are defined by inter-storm dry spells of one or more days, followed by a day with rainfall ex-
ceeding a specific threshold.

• Step 2: Pre-screening model parameters that are likely to vary by storm (this is the sensitivity analysis)
In step 2, a daily runoff time series Qo and calibrated parameter set Po will be obtained by fitting the

 https://hydrology.nws.noaa.gov/pub/gcip/mopex/US_Data/
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hydrological model to observed data assuming all the parameters are time-invariant. Another runoff
time series Qi will be generated by changing the selected ith hydrological parameter stochastically and
keeping the other parameters constant given the same observed data series. Each time only one pa-
rameter is selected to be stochastical. The selected parameter will be sampled from the assumed distri-
bution at the beginning of each storm. Finally, the Nash-Sutcliffe statistic N S(i ) will then be evaluated
for the runoff time series Qo (treated as traditional ’observed’ data)and Qi (treated as the ’simulated’
time series). Then it can be observed that in which parameter the model predictions are sensitive to
storm-dependent variation.

• Step 3: Estimating storm-dependent values for the model parameter(s) selected in step 2 (this is the
calibration step)

• step 4: Testing model performance using the parameter sets calibrated in the calibration process over
independent time series (this is the validation step)

During the calibration period, parameters are calibrated by storms with storm-dependent parameters vary-
ing by storms and other parameters constant. Values of the constant parameter are set as the same value
from Po obtained in the calibration period. Additionally, the end stage of the storm will be the initial condi-
tion(include water storage from conceptual production reservoir and routing reservoir in the model) of next
storm. This means if the calibrated period is divided into m storms, there will be m sets of parameters, a
series of initial water storage PS(i ) (i=1, 2, ... (m −1)) from production reservoir and a series of initial water
storage RS(i ) (i=1, 2, ... (m −1)) from routing reservoir.
The basic methodology of calibration in storm-based method can be explained as following steps:

• Step 3a: Run the model for entire period without dividing it into storms to obtain the values for con-
stant parameters Pc (Xc1, Xc2, Xc3, Xc4)

• Step 3b: Set the values for constant parameters and bounds for storm-dependent parameters

• Step 3c: Calibrate the parameters for the first storm and save the water storage values at the end day of
the storm from two reservoirs from the model

• Step 3d: Apply each water storage values at the end day of the former storm as initial conditions for the
next storm until finishing the calibration of all the storms.

Here is a small example of around 200 days of time series to briefly illustrate the calibration process. During
this period, 31 storms are obtained and the calibrated parameter set for theses storms are P1(X 11, X 21, X 31, X 41),
P2(X 12, X 22, X 32, X 42), ... and P30(X 130, X 230, X 330, X 430). The sub-periods between red dashed lines are
every single storm epoch. The blue line is the simulated discharge Qi from storm i computed by its corre-
sponding parameter set Pi .
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Figure 2.4: an example of storm-based calibration

During the step 4 (validation period), the analysed time series will be again divided into M storms(M
may be different from m). The discharge will be predicted for each storm by randomly sampling a parameter
set from m calibrated parameter sets. During the sampling, the water storage at the end of each storm will be
used as the initial conditions of its next storm. After an entire run of sampling for all the storms in the entire
validation period, this sampling process will be repeated for M times so that M series of predicted streamflow
will be obtained.
For the sampling part, there are two methods to do the sampling. One is to sample the parameter set for each
storm directly from the m parameter sets from the calibration period. The other one to obtain the parameter
set for each storm is firstly fitting a distribution to calibrated storm-dependent parameters and then sam-
pling from the fitted distributions. A comparison will be made between the performance obtained by these
two sampling methods.
At each time step, mean predicted value and standard deviation of predicted values will be calculated so that
5% (Q5si m) and 95% (Q95si m) quantiles will be calculated for each time step. The area between Q5si m series
and Q95si m series is the obtained 90% uncertainty band.
The basic methodology of validation in the storm-based method can be illustrated as the following steps:

• Step 4a: Divide the validation period into storm epochs like what is done in the calibration period. M
storms will be obtained during this period.

• Step 4b: For the first storm, randomly pick a parameter set from the calibrated parameter sets and us-
ing the end state of the calibration period as the initial condition of the first storm.

• Step 4c: Move to the next storm. Each time using the end condition of the former storm as the initial
condition for the next storm and randomly pick a parameter set from the calibrated results.

• Step 4d: After finish the predicting the discharge for all the storms, one run is finished.

• Step 4e: The run ( step 4b, step 4c and step 4d) will be repeated for M times.

• Step 4f: m discharge values will be obtained at each time step. 5% and 95% quantile value will be com-
puted as the boundary lines of the uncertainty band.

Here is a small example of around 120 days time series following the example calibration period mentioned
before to illustrate the validation process briefly. A shorter length of a period is selected so that the num-
ber of storms identified in this period will be less and the illustration can be brief and plain. This period
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Figure 2.5: an example of storm-based validation

is a time series following the example period mentioned before. During this period, five storms are identi-
fied. For the first run, the first storm is predicted by using the end state of the example calibration period
and randomly picked parameter set from Pi (X 1i , X 2i , X 3i , X 4i )(i = 1,2,3, ....31). When moving to the next
storm, it is predicted by using the end state of the first storm and randomly picking a parameter set from
Pi (X 1i , X 2i , X 3i , X 4i )(i = 1,2,3, ....31). For the third storm, it is predicted by using the end state of the second
storm and again randomly picking a parameter set from Pi (X 1i , X 2i , X 3i , X 4i )(i = 1,2,3, ....31). For the fourth
storm, it is predicted by using the end state of the second storm and again randomly picked parameter set
from Pi (X 1i , X 2i , X 3i , X 4i )(i = 1,2,3, ....31). For the last storm, it is predicted by using the end state of the
second storm and again randomly picked parameter set from Pi (X 1i , X 2i , X 3i , X 4i )(i = 1,2,3, ....31). Then
one run is finished.This run will be repeated for as many times as possible. Usually we make the repeated
times equal to the number of storms identified in the validation period (M). At each day, 5% and 95% per-
centile discharge will be calculated. In the example validation period below, the blue line represents the 95%
percentile discharge, and the red line represents the 5% percentile discharge. It can be seen that the uncer-
tainty band has a good match with observed discharge.

2.3.2. Existing methods

• Traditional method with constant parameters

The traditional method assumes all the parameters are deterministic in the calibration and validation
period. For the traditional method, Nash-Sutcliffe Efficiency or NSE is commonly used in conceptual
rainfall-runoff modelling as an objective function (Equation (2.21)) to express model performance. Qo,i

is the time series of observed discharge, Qs,i is the time series of simulated discharge by model and Q̄o,i

is the mean of observed discharge.

N SE = 1−
∑n

i=1

(
Qs,i −Qo,i

)2∑n
i=1

(
Qo,i −Q̄o,i

)2 (2.21)

This Objective function with larger NSE values indicates a better fit with the data. In the computer
codes of the objective function, a parameter set will be taken to compute the simulated discharge. Then
the resulting simulated discharge will be used to compute the NSE values. After defining the objective
function in computer codes, differential evolution available as a python function is chosen as an opti-
mization algorithm which is a global optimization algorithm suitable for rainfall-runoff models. Global
optimization algorithms will look for the global minimum of the objective function and the parameter
set that give this minimum value. The objective function to be minimized (for the traditional method
in this research, negative NSE) and bounds for the model parameters will be required as inputs for the
differential evolution algorithm. Parameter bounds should make sure some parameters be positive,
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which make parameters physically reasonable and also consider past experience when researchers ap-
plied models in other basins.

Optimal parameter set PO(X 1O , X 2O , X 3O , X 4O) that minimizes the negative NSE obtained from the
calibration period will be used to predict the discharge during the validation period. Variances between
observed values and simulated values is expressed by σ (Equation(2.22)). By taking σ as standard devi-
ations and predicted values Qsi m as mean values, 5% (Q5si m) and 95% (Q95si m) quantiles are calculated
at each time step. The area between Q5si m and Q95si m is the obtained 90% uncertainty band.

σ=
√

1

N

n∑
i=1

(
Qs,i −Qo,i

)2 (2.22)

The necessary steps of traditional method are:

– Step 1: Define objective function.

– Step 2: Choose an optimization algorithm for the objective function and obtain the optimized
parameter set. calculate the standard deviationσ between simulated discharge and observed dis-
charge at the same time.

– Step 3: Apply this optimized parameter set to predict the discharge in the validation period.

– Step 4: Use the σ obtained before and the predicted discharge to compute 5% and 95% value at
each time step. The uncertainty band is computed by using 5% and 95% values as upper and lower
limits.

For the traditional method, parameter X 1, X 2, X 3 and X 4 in parameter set PO are constant during the
entire calibration and validation period.

• GLUE(Generalized Likelihood Uncertainty Estimation) method

Unlike the traditional method, the GLUE method (Beven and Binley, 1992) rejects the idea of one single
optimal solution and adopts the concept of equifinality of models and parameters. Before calibration,
the objective function is also defined by Equation(2.23) but a threshold (>0.6 or 0.7) is defined for dis-
tinguishing good (behavioral) from bad (non-behavioral) models. Qo,i is the time series of observed
discharge, Qs,i is the time series of simulated discharge by model and Q̄o,i is the mean observed dis-
charge.

NN SE = 1−
∑n

i=1

(
Qs,i −Qo,i

)2∑n
i=1

(
Qo,i −Q̄o,i

)2 > 0.6 (2.23)

A large number of parameter sets are then generated by Monte Carlo sampling, and each param-
eter set that gives the value of the objective function larger than the threshold will be retained as
behavioral models and all others will be discarded (like shown in Figure8). Behaved parameter sets
Pi (X 1i , X 2i , X 3i , X 4i )(i=1,2,...n) will be used to predict the runoff during validation period. If n be-
haved models are obtained, n behaved parameter sets will be obtained. Theses behaved parameter
sets will be used to compute n series predicted streamflow Qm(i ) (i=1,2,...n) and rescaled to a cumu-
lative sum of 1 in the validation period. For each time step, the cumulative distribution of simulated
discharges is constructed using the rescaled weights. At each time step, mean predicted value and stan-
dard deviation of predicted values are calculated as well as 5% (Q5si m) and 95% (Q95si m) quantiles are
calculated for each time step. The area between Q5si m series and Q95si m series is the obtained 90% un-
certainty band. Each parameter is still constant during the analysed period in each behavioral model.
However, in the GLUE method, multiple solutions are adopted.
The necessary steps of GLUE method are:
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Figure 2.6: Behavioural models and rescaled cumulative distribution for each time step

– Step 1: Define the objective function and set the threshold to retain the behaviour models.

– Step 2: Using Monte Carlo sampling to randomly generate a large number of parameter sets be-
tween the parameter bounds.

– Step 3: Screen out the parameter sets that can simulate the discharge satisfying the function
(Equation(2.23)).

– Step 4: Apply the screened out parameter sets to predict the discharge in the validation period. If
n parameter sets are retained, there will be n discharge values at each time step.

– Step 5: Calculate the standard deviation and mean value of predicted discharge at each time step
to compute 5% and 95% value. The uncertainty band is computed by using 5% and 95% values as
upper and lower limits of the uncertainty band.

• Brief summary

Table(2.4) is a summary of the main differences or calibrated parameters between three different meth-
ods. The ways to compute the uncertainty band is also different in the three methods, as described
above.

Table 2.4: Differences for calibrated parameters between three methods

Traditional

method
Parameters are constant in time PO(X 1O , X 2O , X 3O , X 4O)

GLUE

method
Parameters are constant in time

Pi (X 1i , X 2i , X 3i , X 4i )(i = 1,2, ...n)

n is the number of behavioral models

Storm-based

method
Parameters are variable in time

P j (X 1 j , X 2 j , X 3 j , X 4 j )( j = 1,2, ...m)

m is the number of storm epochs
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2.4. Assessment of predictive performance
There is a greater necessity for hydrologists to have realistic prediction intervals and other representa-
tions of uncertainty that describe the possible difference between actual flows and their forecasted val-
ues because hydrological models become more widely practised. Uncertainty analysis has now become
a regular study in the application of conceptual rainfall-runoff modelsStedinger et al. [2008]. General
uncertainty of prediction performance is evaluated by mean of l og scor e(i ) and RMSE (Root Mean
Square Error). Additionally, RMSE can also be applied for the evaluation of highflow and lowflow per-
formance, respectively. RMSE is used to assess the general performance and highflow and lowflow
performance. Logscore (Equation2.25 ) gives a good overall measure of how good the uncertainty band
is. When we calculate the RMSE, we only look at the mean of the predicted discharge, so we do not take
the uncertainty of the predicted discharge into account. While the logscore also looks into the distribu-
tions of the predicted discharge, which is a complete measurement of the model performance.

RMSE =
√

1

N

∑(
mobs(i ) −mpr edi ct (i )

)2 (2.24)

log scor e(i ) =−1

2
log2π− 1

2
log

(
vobs(i ) + vPr edi ct (i )

)− (
mobs(i ) −mPr edi ct (i )

)2

2
(
vobs(i ) + vpr edi ct (i )

) (2.25)

log scor e = 1

N

∑
(log scor e(i )) (2.26)

where RMSE is the root mean square error for entire flow, highflow or lowflow, N is the number of days
for entire flow, highflow or lowflow, mobs(i ) is the mean of the observed discharge at each time step,
mpr edi ct (i ) is the mean of the predicted discharge at each time step, vobs(i ) is the variation of observed
discharge at each time, vpr edi ct (i ) is the variation of predicted discharge at each time step, log scor e(i )

is the logscore value at each time step and log scor e is the mean of log scor e(i ) for entire flow. A good
uncertainty band should be close to the observation (accuracy), and it should be narrow (precision).
Nevertheless, these two are related: if the mean prediction is further away from the observation, then a
wider uncertainty band that covers the observation is better.

Figure 2.7: Comparison between different predictions with a noisy observation.(cite from Tajiki et al. [2020])

This figure (Tajiki et al. [2020]) helps understand this better. The RLS in the figure means the extent of
a probabilistic prediction approaching to the best prediction which has the maximum logscore value.
When the mean of the uncertainty band is the observed discharge( a) in the Figure(2.7)), the narrower
the uncertainty band is, the better the prediction performance is. However, when the mean prediction
is further away from the observed discharge( b) in the Figure(2.7)), a wider uncertainty band would be
better.
Table(2.5) lists the values that are going to be used for measuring the model prediction performance by
different methods. For GLUE method, if there are n sets of behavioural models, there are n predicted
Qi for each time step. For the storm-based method, if there are m storm epochs during the calibration
period, there are m predicted Qi for each time step. Calculation of RMSE for highflow and lowflow is
similar to the calculation of RMSE for the entire series.
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Table 2.5: Values used for evaluating model performance obtained by different methods

For each time step (i)

Traditional method GLUE method Storm-based method

mobs(i) observed Qi observed Qi observed Qi

mPredict(i) Predicted Qi mean of predicted Qi mean predicted Qi

vobs(i) 0 0 0

vpredict(i) σ obtained in calibration period Variance of predicted Qi Variance of predicted Qi



3
Results

In this Chapter, the first two research questions( to what extent do model parameters vary by storm/
event & to what extent is this variation random and can it be predicted from rainfall event characteristic and
initial conditions) will be answered in the section3.1.1 . The third question (to what extent does accounting for
variation in model parameters capture model errors and improve rainfall-runoff prediction) will be answered
in section 3.2. The last research question (whether the extent of variation depends on basin characteristics)
will be answered in section 3.3.

3.1. Results obtained by storm-based method
Six basins with different dryness index(table(2.3)) will be researched by using the storm-based method.

Basin A, which is driest, will be used as an example to illustrate the detailed procedure of calibration and
validation based on the storm-dependent parameters. Besides, further explorations about thresholds for
determining the storm-epoch will be proceeded. Additionally, the research on basin A will give some ap-
plicable methods (e.g.the choice of thresholds for identifying the storm epochs and sampling methods) for
other basins. Moreover, the effect of basin dryness on the parameter sensitivity will be analysed to improve
the storm-based method.

3.1.1. Case study of Basin A
Basin A with the highest dryness index in six selected case basins is chosen as an example to explore

to what extent does storm-based parameters vary by storms (research question 1) and whether this extent
can be predicted from event characteristics and conditions (research question 2). Results obtained by this
method later will be compared with those obtained by the traditional method and GLUE method to answer
the research question 3.

• Storm epochs and sensitivity analysis

First of all, the analysed time series needs to be divided into distinct storm events because the cal-
ibration and validation will be researched by storms and how storm-dependent parameters vary by
storms will be analysed. Storm epochs are defined by inter-storm with dry spells of one or more days,
followed by a rainfall exceeding a specific threshold. The specific threshold here in basin A is related
to the median value of runoff series. If the median value of the entire rainfall series is larger than 0.3
(mm/day), the threshold will be set as 0.1 (mm/day), and if the median value of the entire rainfall series
is smaller than 0.15 (mm/day), the threshold will be set as 0.15 (mm/day). Otherwise, the threshold will
be set as the median value of the rainfall series. For this basin, the median value of the rainfall series is
larger than 0.15 (mm/day) and smaller than 0.3 (mm/day) so the threshold is set as the median value
of the entire rainfall series. 99 and 103 storm epochs are identified respectively in five-year calibration
and five-year validation period respectively. Figure(3.1) shows how many storm epochs are identified
in the calibration period.

18
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Figure 3.1: Storm epochs during analysed calibration period for basin A

After identifying the storms in the analysed period, the effects of storm-dependent parameter stochas-
ticity were explored using a synthetic daily runoff time series Q0 derived from five-year daily rainfall
record for basin A. The series Q0 is generated by the parameter set Po when the model is calibrated for
the entire 5-year period with all the parameters in-variant. Another runoff time series Qpi were gen-
erated with pi (the ith parameter) selected as be stochastic (its distribution is assumed to be normal
distribution with the ith parameter value from Po that generates Q0 and a given coefficient of variation
CV), while keeping the remaining parameters constant (values are the same that generate Q0). A new
value of pi was sampled from assumed normal distribution at the beginning of each storm. The Nash-
Sutcliffe statistic N S(i ) was then evaluated like shown in the equation Equation(3.1): the runoff series
Q0 and Qi , where the Qi was treated as ’simulated’ time series Qpi and Q0 as the traditional ’observed’
time series.

N Si = 1−
∑n

i=1

(
Qpi ,i −Q0,i

)2∑n
i=1

(
Q0,i −Q̄0,i

)2 (3.1)
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Figure 3.2: Nash-Sutcliffe efficiency sensitivity analysis

Figure(3,2) presents a plot of N S(i )(i=1,2,3,4) for a range of CVs. Several important observations can be
made from this plot:
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1. The model predictions, and hence the NS statistic, are most sensitive to storm-dependent vari-
ation in the parameter X4( the HU1 unit hydrograph time base). This parameter represents how
many days of the routing process. A CV of 50% reduces the NS statistic to values as low as 50-65%.

2. The second most sensitive parameter is X1(maximum capacity of production reservoir). This pa-
rameter relates to soil moisture and generating runoff. If X1 is small, there will be more discharge
given the same forcing.

From these two observations, the parameter X1 and X4 will be chosen as storm-dependent parameters,
and other parameters will be kept constant during the calibration and validation period. The values
of X2 and X3 are constant and the same as those in Po , which is obtained by running the model for
the entire period without dividing the 5-year calibration period into storms. The calibration will be
proceeded for each storm and apply the end condition of the former storm as the initial condition of the
next storm. Figure(3.3) is the calibration results by making X1 and X4 varying by storms and the other
two parameters constant using the objective function Equation(2.5) for each storm as introduced in
section 2.3.1. 99 calibrated parameter sets respectively for 99 storms are obtained after this procedure,
and we can see from the calibration results, most peak flows and low regression flows are captured well.
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Figure 3.3: calibration result for storm-based method for Basin A

Figure(3.4) and Figure(3.5) are the plots of the calibrated values of storm-based parameters X1 and X4
from each storm. In this figure, the blue dots represent the X1 or X4 values from each storm, and the red
lines are the X1 and X4 values in the Po (obtained by running the model for the entire period without di-
viding the 5-year calibration period into storms). We can see there are some variations for both X1 and
X4, which means there is structure error in the model. Parameter X1 and X4 represent the maximum
capacity of the production reservoir and routing days respectively. Usually, the maximum capacity of
the production reservoir should be constant during the analysed time series while parameter X1 shows
variations by storms. Additionally, routing days is assumed in-variant in the model while parameter X4
also shows variations by storms. The coefficient of variation for X1 and and the X4 are 0.17 and 0.47 re-
spectively. The extent of variation of X4 is more significant than x1, which agrees with the observations
in the former subsection that X4 is more sensitive to the storms in the sensitivity analysis in Figure(3.2).
It is worth noting that in the scatter plot of X1, the red line which represents the X1 value from Po is
totally below the scatters. This means when doing the calibration for the entire period without dividing
the 5-year calibration period into storms, parameter X1 is underestimated. A larger calibrated X1 for
each storm( maximum capacity of the production reservoir will give a larger water storage at the end
of this storm. The next storm will apply this water storage at the end of the former storm as the initial
water storage. When the initial water storage is larger, it is easier to generate the runoff. That is why
the peaks are captured well in the storm-based calibration. These two scatter plots illustrate that using
storm-dependent parameters can capture the model error and answered the research question 1.
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Figure 3.4: calibrated x1 values for storm-based method for Basin A
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Figure 3.5: calibrated x4 values for storm-based method for Basin A

• Validation results obtained by storm-based methods

During the validation period, discharge is predicted by storms as well with 99 parameter sets obtained
from the calibration period. When predicting the discharge for each storm, one parameter set will be
randomly picked from the 99 parameter sets obtained in the calibration period. Two different sampling
method and different combinations of variable parameters are explored for basin A. Prediction results
obtained by different sampling methods will be compared to give the instructions of choosing sampling
methods for other basins. Sampling methods that can give relative good performance will be identified
and apply for basin B, C, D, E and F.
The sampling methods are generally divided into two kinds. The first one is sampling each parameter
set from the 99 calibrated parameter sets for each storm directly. After distributing the parameter set
randomly for each storm, an entire time series of predicted discharge for 5 years will be obtained. This
process of randomly distributing the parameter set for each storm will be repeated for 99 times to make
sure the process of distributing the parameter sets for each storm is random enough. The repeating
process will give 99 predicted discharge at each time step so that the variances and mean value of the
predicted discharge at each time step can be calculated. Hence, 5% (Q5si m) and 95% (Q95si m) quantiles
of predicted discharge is computed at each time step. Average logscore value and root mean square
error for the entire time series and the root mean square error for highflow and lowflow are computed
respectively at the same time. Validation result obtained by randomly sampling the parameter set for
each storm respectively is shown below in figure (3.5). The area between Q5si m and Q95si m is the ob-
tained 90% uncertainty band.
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Figure 3.6: validation result by storm-based method for basin A

The second sampling method is firstly fitting a distribution to the calibrated parameter values for X1
or X4 and then sampling the parameter values of X1 and X4 from their distributions. This sampling
method is mainly different from the first sampling method in including boundary values or excluding
boundary values.
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Figure 3.7: histograms and distributions to parameter X1 & X4

When fit the distributions to calibrated parameter X1 and X4, histograms for calibrated values of storm-
dependent parameters X1 and X4 are plotted in Figure(3.7). Beta distributions are fitted to the his-
tograms. To fit better distributions, all the X1 and X4 values are normalized and then boundary values
are excluded. This is because boundary values usually give unreasonable beta fit as it can be seen from
the difference between blue and red distributions. In Figure(3.7), the blue lines are the distributions to
grey histograms which include the boundary values of storm-dependent parameters, and the red lines
are the distributions to yellow histograms which exclude the boundary values.
Moreover, within the second sampling method, three different combinations are tried. Three trials are
proceeded by sampling values from red distributions (exclude the boundary values) with both X1 and
X4 variable, with only X1 variable and with only X4 variable respectively. The computation of the uncer-
tainty band and the calculation of logscore and RMSE (Root Mean Square Error) are the same as before.
Three figures below show the validation results by different combinations using the second sampling
method. When X1 and X4 are both variable (Figure(3.8)), values of parameter X1 and X4 are sampled
from the red beta distributions. It gives better general performance than that obtained by the first sam-
pling method because it gives relative higher logscore value and lower Root Mean Square Error. When
X 1 is fixed (Figure(3.9))and only x4 variable, although the uncertainty band looks very narrow, it can
not capture some peaks and lowflow in the regression part as good as the uncertainty band obtained in
the first sampling method. When X 4 is fixed (Figure(3.10)), and X 1 is variable, although the uncertainty
band captures more peaks and covers almost all the observed discharge, it looks too peaky because it
usually overestimates some lowflow.
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Figure 3.8: validation result by storm-based method for basin A with both x1, x4 variable
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Figure 3.9: validation result by storm-based method for basin A with x1 fixed
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Figure 3.10: validation result by storm-based method for basin A with x4 fixed

Table(3.1) lists the RMSE (root mean square error) value for highflow, lowflow and entire series of pre-
dicted discharge and logscore value for entire time series. It compares the performance obtained by
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directly sampling the parameters from calibrated results and sampling the parameters from distribu-
tions. When X 1 is fixed, although it gives the highest value of logscore and lower values for lowflow and
entire flow, the uncertainty band is too narrow to cover the observed discharge, the uncertainty band
of some parts missed the observed discharge as can be seen from the figure. When X 4 is fixed, it gives
the poorest general performance for it gives the smallest logscore value and largest RMSE value. The
performance is worst for highflow and lowflow as well.

Table 3.1: Comparison between two sampling methods

highfow lowflow total flow

basin A RMSE RMSE Logscore RMSE

Directly sampling Both X1 and X4 1.48 0.91 -0.87 1.03

Sampling from the fitted distributions Both variable 1.23 0.86 -0.79 0.95

X1 fitted 1.26 0.84 -0.65 0.93

X4 fitted 2.66 1.09 -1.43 1.48

From this table and figures above, it is recommended that sampling both X1 and X4 randomly from the
grey histograms (calibrated results) directly and red distributions (boundary values are excluded). They
are considered as good trials of storm-based validation. These two sampling methods will be applied
to the other five basins for the storm-based validation.

• Relation between thresholds and performance

When defining the storm epochs, the threshold is set as a value relative with the median value of rainfall
series. However, the threshold is believed to be another factor that affects the model performance of
storm-based method. The reason is the threshold determines the number of storms identified. In prin-
ciple, if the threshold for defining the storm epochs is large enough, then there will be only one storm
event identified which makes the storm-based method to traditional method with constant parame-
ters during the entire analysed period. If the threshold is lower enough, there will be large amounts
of storm events identified which means the analysed period will be calibrated almost day by day. The
model should give the most precise result when it is calibrated day by day. Hence, a further research of
the effect of thresholds for identifying storm epochs on performance is explored in basin A by changing
thresholds to a series of values (Table(3.2)) to see whether a lower threshold gives better prediction per-
formance and whether using the threshold relative with the median value of the entire rainfall series is
reasonable.

total flow highfow lowflow

threshold

(mm/day)
storms logscore RMSE RMSE RMSE

6 16 -0.77 0.95 1.24 0.88

5 17 -0.79 0.91 1.06 0.88

4 22 -0.80 0.90 1.24 0.82

3 26 -0.68 0.85 0.97 0.83
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2 35 -0.72 0.93 1.26 0.84

1 47 -0.82 0.96 1.20 0.90

0.9 50 -0.79 0.95 1.23 0.88

0.8 52 -0.82 0.98 1.33 0.90

0.7 59 -0.82 0.96 1.30 0.87

0.6 65 -0.83 0.98 1.31 0.89

0.5 72 -0.83 0.98 1.36 0.88

0.4 76 -0.87 1.01 1.39 0.91

0.3 88 -0.86 1.03 1.48 0.91

0.2 105 -0.86 1.06 1.58 0.92

0.1 134 -0.89 1.10 1.71 0.92

0.05 158 -0.90 1.12 1.79 0.93
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Figure 3.11: relation between thresholds and performance

From the plots in the Figure(3.11), when threshold is smaller than 3 mm/day, larger thresholds that
give more storm events will result in relatively better performance in highflow, low flow and entire time
series. What is more, the thresholds that is around 2 mm/day give higher value of logscore for entire
series and lower value of RMSE (Root Mean Square Error) for highflow, lowflow and entire period. This
discovery suggests that it is recommended that when setting the threshold for other basins, thresh-
olds that are going to be used for identifying the storm epochs should be chosen manually. A series of
threshold values should be tested so that the optimized threshold for identifying the storm epochs that
gives the best performance can be recognized.
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• Relation between storm-dependent parameters with initial water storage and average rainfall dur-
ing storm

This subsection will keep on exploring basin A and answer the research question 2. The relation be-
tween storm-dependent parameters and rainfall event characteristics and initial conditions are ex-
plored. The threshold is set as 3 mm/day which is derived from the former subsection. When pro-
ceeding calibration for each storm, the water level in production store at the end of each storm will
be exported at the same time to explore its regression relation with X1 values. Regression relations are
hoped to be seen between the values of storm-dependent parameters and rainfall event characteristics
or initial conditions so that a framework can be set up based on the regression relations and rainfall
event characteristics or initial conditions. In this subsection, the regression relations are explored by
utilizing the optimized threshold (3 mm/day) and sampling method(sampling X1 and X4 directly from
the calibrated results) derived from the subsection before. Initial condition of each storm is plotted
against the parameter X1 and X4, respectively. Additionally, the average rainfall of each storm is plotted
against the parameter X1 and X4 respectively as well. However,from Figure(3.12), it can be seen that the
scatters are very random which means there is no relation between storm-dependent parameter values
and initial water storage as well as average rainfall during each storm. Hence the framework can not be
set based on these plots to predict the parameter values according to the initial conditions and rainfall
characteristics.
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Figure 3.12: relation between storm-dependent parameters with initial water storage and average rainfall during storm
(threshold=3mm/d)

3.1.2. Case study of other 5 basins
• Effect of changing thresholds on improving prediction performance of storm-based method for 6

basins

In the former part of section 3.1.1, when the effect of the threshold is analysed, we derived the con-
clusion that the optimized thresholds should be identified manually to obtain a relative better per-
formance. Additionally, directly sampling X 1 and X 4 values from the calibrated results and sampling
both X 1 and X 4 values from their distributions are recommended as relative good ways to sample the
storm-dependent parameters for the validation period. The table below lists the assessment results by
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using two different thresholds. The second thresholds for each basin are defined by the way introduced
in the methodology section: It relates with the median value of the entire rainfall series. If the median
value is larger than 0.3 mm/day, the threshold will be set as 0.1 mm/day. If the median value is smaller
than 0.15 mm/day, the threshold will be set as 0.15 mm/day. If the median value is smaller than 0.3
mm/day and larger than 0.15 mm/day, the threshold will be set as the median value. The first row of
thresholds in yellow for each basin are set as its optimized thresholds identified manually. The optimal
thresholds are picked by trying a series of thresholds and selecting the threshold that gives the largest
logscore value and smallest RMSE value for total flow. Two storm-based method trials with two differ-
ent thresholds will be done for each basin by directly sampling storm-dependent parameter X1 and X4
values from their calibrated results.

Table 3.3: performance improvement after increasing thresholds

highflow lowflow total flow

Dryness index Threshold
Number of

storms
RMSE RMSE logscore RMSE

A 0.87 3 26 0.97 0.83 -0.68 0.85

0.21 99 1.48 0.91 -0.87 1.03

B 0.85 6 37 2.03 1.35 -1.17 1.50

0.16 159 2.05 1.72 -2.61 1.79

C 0.64 5 22 1.82 0.63 -0.79 1.00

0.1 115 2.21 0.80 -1.23 123

D 0.57 4 41 2.89 0.63 -0.93 1.44

0.25 111 2.83 0.65 -1.03 1.42

E 0.38 1 21 3.61 2.31 -10.06 2.76

0.1 65 4.15 2.65 -26.03 3.17

F 0.22 3 26 13.46 3.20 -12.28 7.55

0.19 105 14.47 3.37 -37.31 8.10

It can be seen from the Table(3.3), the model performance for the entire time series is improved with the
optimized thresholds for all basins and the performance of lowflow and highflow for almost all basins
are also improved. This improvement indicates the threshold for identifying the storm epochs is an-
other important parameter in storm-based method and it is necessary to pick the optimized threshold
for identifying the storm epochs before calibration and validation. From this table, we can also observe
that the drier the basin is, the better performance of the storm-based method gives. The reason behind
this is, for wet basins, parameter X3(one-day maximum capacity of routing reservoir) and X4 are ac-
tually the storm-dependent parameters instead X1 and X4 in basin A. This observation will be further
explored in next subsection.
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• Additional exploration about the wet basins

In the Table(3.3), the storm-based method for six basins are proceeded by making X1 and X4 variable
by storms. However, different basins have different dryness characteristics, and this may affect the sen-
sitivity of parameters to storms. For drier basins, the parameter X1 and parameter X4 are identified as
storm-sensitive parameters which are reasonable. While for wetter basins, the parameter X3 and pa-
rameter X4 should be sensitive parameters because, for wetter basins, the capacity of the routing store
is more significant according to the empirical finding and the definition of parameters. This argument
corresponds to the sensitivity plots (Figure(3.13)) for wet basin E and F.
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Figure 3.13: sensitivity plot for basin E and F

This means for wetter basins, if still set parameter X1 and X4 as storm-dependent parameters and set
parameter X3 constant which is sensitive to storms, worse prediction performance will can be obtained.
Hence, the exploration of wet basins by making parameter X3 and X4 variable by storms are proceeded
to see whether the performance of the storm-based method for Basin E and F is improved. Here, a
wet basin F will be taken as an example to show the performance improvement with the optimized
threshold (3 mm/day) after making X3 and X4 variable instead of X1 and X4.
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Figure 3.14: comparison between the calibration results by using different storm-dependent parameters for basin F

In the Figure(3.14), the green line represents the calibration result by using X3 and X4 as storm-dependent
parameters and the blue line represents the calibration result by using X1 and X4 as storm-dependent
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parameters. It can be seen that in the calibration period when X3 and X4 are variable with storms, the
simulated flow can also capture the peaks well and performs better especially in the last storm.
In the Figure(3.15), the green band represents the validation result by using X3 and X4 as storm-dependent
parameters and the grey band represents the validation result by using X1 and X4 as storm-dependent
parameters. It is obvious that the green band(with X3 and X4 variable) covers the observed flow better
especially around the date between 0 and 200 as well as the date between 1700 and 1828. And the uncer-
tainty band is much narrower around the date between 300 and 500, 800 and 1000 and 1250 and 1400.
Additionally, the logscore value of the green band is higher than that of the grey band, and the RMSE
value for the entire flow of the green band is lower than that of the grey band. Furthermore, the RMSE
value for the highflow and lowflow of the green band are both lower than those of the grey band. The im-
provement for the uncertainty band and evaluation indexes means by changing the storm-dependent
parameter X1 to X3 improves the performance of the storm-based method for basin F.
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Figure 3.15: comparison between the validation results by making different storm-dependent parameters variable by storms for basin F

The similar improvement is obtained for basin E as well which is shown in the Figure(3.16) and Ta-
ble(3.4). It is also obvious that the green band(X3 and X4) covers the observed flow better especially
around the date between 0 and 200, 300 and 450 and 1700 and 1828.
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Figure 3.16: comparison between the validation results by making different storm-dependent parameters variable by storms for basin E

Additionally, the logscore value of the green band is also higher than that of the grey band, and the
RMSE value for the entire flow, highflow and lowflow of the green band is lower than that of the grey
band. This means by changing the storm-dependent parameter X1 to X3 improves the performance
of the storm-based method for wet basin E as well. Table(3.4) lists the different assessment results for
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highflow, lowflow and entire flow obtained by using different storm-depedent parameters. It can be
seen from the table, when using X3 and X4 as storm-dependent parameters, the performance improves
a lot for highflow, lowflow and entire flow because they have a higher logscore value for entire flow and
lower RMSE value foe highflow, lowflow and entire flow. This result indicates that storm-dependent pa-
rameters are different for the basins with different dryness characteristics. Besides, choosing parameter
X3 and X4 as storm-dependent parameters for wet basins makes more sense according to the sensitiv-
ity plot and performance improvement after changing storm-dependent parameters from X1 and X4 to
X3 and X4.

Table 3.4: performance improvement after changing the storm-dependent parameters for wet basin E and F

basin Storm-dependent parameters highflow lowflow Total flow

RMSE RMSE logscore RMSE

E X3 &X4 1.77 1.30 -1.96 1.46

X1 &X4 3.61 2.31 -10.06 2.76

F X3 &X4 7.47 1.87 -4.14 4.22

X1 &X4 13.46 3.20 -12.28 7.55

3.2. Comparison with existing methods
Traditional method and GLUE method are proceeded as alternative methods to explore the how the

model performance improves by using storm-dependent parameters. Results obtained by traditional meth-
ods will also be presented by taking basin A as an example. Results of traditional method and GLUE method
for other basins will be listed in the table in subsection 3.2.3, which will answer the research question 3.

3.2.1. Results obtained by traditional method
In traditional method, model will be run for the entire period without dividing the 5-year calibration

period into any periods. NSE is the objective function and the negative NSE is minimized by a global op-
timization algorithm named differential evolution. Except for the objective function, bounds for the model
parameters are set the same as storm-based method and they are utilized as inputs for the differential evolu-
tion algorithm.
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Figure 3.17: calibration result by traditional method for basin A

Figure(3.17) is the traditonal calibration results for basin A and the Table(3.5) lists the values of obtained
optimal parameter set Po(X 1o , X 2o , X 3o , X 4o). The traditional method is actually one of the steps in storm-
based method. From the calibrated results, it can be seen that some lowflow regression is not simulated well,
and several peaks are not caught well. Po(X 1o , X 2o , X 3o , X 4o) is also used to predict the discharge during the
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validation period. Variances between observed values and simulated values are expressed by σ obtained by
(Equation(2.22)).

Table 3.5: The obtained optimal parameter set by traditional method

Parameter description optimized value Po

X 1o the production store maximal capacity (mm) 824.36

X 2o the catchment water exchange coefficient (mm/day) 1.24

X 3o the one-day maximal capacity of the routing reservoir (mm) 36.27

X 4o the HU1 unit hydrograph time base (days) 2.57

By taking σ as stand deviations and predicted values Qsi m as mean values, 5% (Q5si m) and 95% (Q95si m)
quantiles is calculated at each time step. The grey area between Q5si m and Q95si m is the obtained 90% un-
certainty band. Average logscore value and RMSE (root mean square error) for the entire time series and the
RMSE (root mean square error) for highflow and lowflow are computed respectively at the same time. The
uncertainty band missed most peaks and the covered area too wide as it can be seen from the Figure(3.18).
For traditional method, parameter X 1, X 2, X 3 and X 4 in parameter set Po are constant during the entire
calibration and validation period.
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Figure 3.18: validation result by traditional method for basin A

3.2.2. Results obtained by GLUE method
In this method, the bounds for parameters are the same as those in the storm-based method and the

traditional method. A Monte Carlo sampling is run for 105 times to generate 105 parameter sets randomly
between the parameter bounds. When separating behavioural models from non-behavioural models with
these parameter sets, the standard to define the behavioural models is the value of the objective function
should be larger than 0.6. Figure(3.19) presents the calibration result obtained by the parameter set that has
the largest value of NSE (which is the same in traditional method). From this figure, it can be seen that lots of
peak vales are missed, and some regression parts are not simulated well like in the storm-based method.
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Figure 3.19: calibration result by GLUE method for basin A

Behaved parameter sets Pi (X 1i , X 2i , X 3i , X 4i )(i=1,2,...n) (with objective function that is larger than 0.6)
retained from calibration period are used to predict the runoff during validation period. 199 behaved models
are retained which means 199 behaved parameter sets are obtained from the calibration period and will be
applied for streamflow prediction in validation period.
Theses behaved parameter sets are used to compute 199 time series of predicted streamflow Qm(i j ) (i=j=1,2,...199,
j=1,2,...last day of examined period). This means, there will be 199 predicted discharge at each time step after
running each parameter set Pi . At each time step, mean predicted value and standard deviation of predicted
values will be calculated so that 5% (Q5si m(i )) and 95% (Q95si m(i )) quantiles can be calculated for each time
step. The area between Q5si m series and Q95si m series is the obtained 90% uncertainty band. Average logscore
value and RMSE (root mean square error) for the entire time series and RMSE (the root mean square error)
for highflow and lowflow are computed respectively at the same time. Figure(3.20) is the validation result
obtained by GLUE method, it can be seen that although it gives a high logscore value and low RMSE, the
uncertainty band totally missed some observed flows around the date between 50 and 1450.

0 250 500 750 1000 1250 1500 1750
time (d)

0
5

10
15
20
25
30

di
sc

ha
rg

e 
(m

m
/d

)

GLUE validation with logscore= -0.67 RMSE= 0.83

observed flow
90% uncertainty

Figure 3.20: validation result by GLUE method for basin A

3.2.3. Assessment of prediction performance for six basins derived by 3 different meth-
ods

This section will answer the research question 3. Firstly, the function in the model that generates the
runoff will be extracted out to illustrate the difference between the storm-based method and alternative
methods( traditional method and GLUE method). Then the table that lists the evaluation results obtained
by three methods for six basins will compare the performance of three methods. The effect of dryness on the
storm-based method performance will also be discussed in this section.

• Different responses by using fixed and storm-dependent parameters
The function Equation(3.2) represents the runoff and storage relation in the model. In Figure (3.21), the
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left figure represents the difference between modelled response and actual response in the real world.
In the model, the spatial and temporal heterogeneity is ignored; hence X 1 is constant, which gives a sin-
gle relation between runoff and water storage. However, when X 1 is variable, the multi-valued relation
will be found between runoff and water storage. This difference is proved by exploring the basin A with
variable X 1 and constant X1. As shown in the left picture in the Figure (3.21), the red line represents the
single value relation between runoff and storage when X 1 is fixed. However, when storm-dependent
parameter X 1 is variable, it gives multi-valued relations (grey lines) between runoff and storage. In the
traditional and GLUE method, parameters are constant so the runoff- storage relation is a single value
relation. However, parameter X1 is variable by storms, so the runoff-storage relation is a multi-valued
relation which agrees with the reality more. Figure (3.21) suggests storm-dependent parameter fits the
reality better, which means using storm-dependent parameters are reasonable and necessary.
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Figure 3.21: runoff versus water storage

• Evaluation of the performance obtained by three methods

Performance of highflow and lowflow and general performance obtained by different methods are
listed in Table(3.6).

Table 3.6: different performance obtained by three methods for 7 basins

Traditional method GLUE method Storm-based method

highfow lowflow total flow highfow lowflow total flow highfow lowflow total flow

RMSE RMSE logscore RMSE RMSE RMSE logscore RMSE RMSE RMSE logscore RMSE

A 0.94 0.80 -1.23 0.82 1.08 0.77 -0.67 0.83 0.97 0.83 -0.68 0.85

B 1.96 1.34 -2.23 1.47 1.80 1.36 -1.55 1.45 2.04 1.35 -1.17 1.50

C 1.77 0.64 -1.43 0.98 2.12 0.66 -0.93 1.13 1.82 0.63 -0.79 1.00

D 3.02 0.58 -2.22 1.48 3.53 0.58 -1.11 1.70 2.89 0.63 -0.93 1.44

E 1.61 1.19 -1.73 1.32 2.08 1.45 -1.27 1.66 1.77 1.30 -1.96 1.46

F 6.85 2.32 -4.22 4.09 6.91 1.59 -2.39 3.87 7.47 1.87 -4.14 4.22
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Figure 3.22: histograms of logscore and RMSE value obtained by 3 different methods for six basins

Two histograms following the table illustrate the difference more obvious. The storm-based method
gives lower logscore vale and higher RMSE (Root Mean Square Error) value when the basin is wetter (e.g.
basin E and F) and gives higher logscore vale and lower Root Mean Square Error value when the basin
is drier (e.g. basin A, B, C and D). This means the storm-based method performs better for drier basins
while worse for wetter basins. GLUE method gives better performance for wetter basins than storm-
based method and traditional method gives, which means GLUE method is more applicable for wetter
basins than the storm-based method and traditional method. Dry basins are usually hard to predict
while storm-based method gives relative better performance than other two methods give. This section
answered the research question 3: To what extent does accounting for variation in model parameters
capture model errors and improve rainfall-runoff prediction? Storm-based method captured the model
error and improved the rainfall-runoff prediction for drier basins.

3.3. Results for 392 basins
3.3.1. Extent of variation and relation between the extent of variation and basin charac-

teristics
For this part, the number of basins is extended to 392 to explore the extent of variation and relation be-

tween the extent of variation of storm-dependent parameters and basin characteristics in order to answer
the research question 4. For each basin, they are calibrated by making one of the four parameters varying
by storms respectively and the other three parameters constant. In this section, each parameter has one
chance to be the storm-dependent parameter for one basin. The reason behind this is it is not clear that
which parameters should be the storm-sensitive parameters. Doing a sensitivity analysis for each basin and
selecting the storm-dependent parameters manually for each basin is too time-consuming, which is unre-
alistic. Hence, each parameter will be considered as the storm-dependent parameter, and the other three
parameters are set constant for one time. Storms are identified by the threshold relative with their median
value of the rainfall series like introduced in the methodology part. The standard deviation of the calibrated
parameter from each basin is calculated. And the standard deviation of each basin is plotted against their
size, rainfall/ runoff ratio and dryness index. Additionally, if the number of storms for one basin is under 20,
it means there are not enough sample size of calibrated storm-dependent parameters. Hence the calculated
result for this basin can be discarded for its result is not reliable. In the Figure(3.23), each scatter represent
a basin (with the number of storms larger than 20) with different size, dryness index, or rainfall/runoff ratio.
From the scatters, it can be seen that the scatters are also very random here, which means the extent of vari-
ation does not depend on basin characteristics like dryness or sizes. In the plots below, the scatters are very
random, and no patterns can be found, which means the extent of parameters variation does not depend on
the basin size and basin dryness.
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Figure 3.23: standard deviation of x3 versus dryness index and sizes basins

For six case basins, they all have parameter X4 as storm-dependent parameters. In average, basin A has a
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standard deviation of 0.89 for X4; basin B has a standard deviation of 1.59 for X4; basin C has a standard devi-
ation of 1.47 for X4; basin D has a standard deviation of 1.13 for X4; basin E has a standard deviation of 2.63 for
X4; basin F has a standard deviation of 3.46 for X4. With the dryness index decreases, the standard deviation
increases, which means the wetter basin (i.g. basin F) has a larger standard deviation of storm-dependent pa-
rameters. The time series(Figure(3.24), (3.25), (3.26), (3.27), (3.28), (3.29) of the storm-dependent parameter
X4 in six basins are present below to show how storm-dependent parameter X4 is varying with time within
each basin.
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Figure 3.24: time series of storm-dependent parameter X4 for basin A
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Figure 3.25: time series of storm-dependent parameter X4 for basin B
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Figure 3.26: time series of storm-dependent parameter X4 for basin C
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Figure 3.27: time series of storm-dependent parameter X4 for basin D
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Figure 3.28: time series of storm-dependent parameter X4 for basin E
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Figure 3.29: time series of storm-dependent parameter X4 for basin F
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Discussion

• The effect of thresholds for identifying the storm epochs in the storm-based method

It was found that the thresholds for identifying the storm epochs have a considerable effect on the
prediction performance. The threshold to identify the first rainfall in a storm determines how many
storms will be obtained during the analysed time series. In principle, the threshold that gives more
storms will give better prediction performance because the calibration and validation are more precise,
given a shorter period. However, it turns out the prediction performances are relatively better when the
thresholds is optimized manually. The effect of the threshold is only explored in six case basins and
all the prediction performance are all improved with an optimized threshold. Hence in a subsequent
study, the threshold for identifying the storm epochs should be considered as an essential parameter in
the storm-based method.

• The effect of basin dryness on identifying the storm-sensitive parameters

It is found that the storm-sensitive parameters are different for the basins with different dryness index.
For the wet basins, parameter X3(one-day maximum capacity of the routing reservoir) and X4 (rout-
ing days) are more sensitive to the storms instead of X1(maximum capacity of the production store)
and X4. The reason for this could be in the dry basins, the water storage is low and dry basins are het-
erogeneous, so the parameter X1 which controls runoff generation is more sensitive compared to the
parameter X3. While in the wet basins, water storage in the upper layer is stable and wet basins are
more homogeneous, so the capacity of the routing reservoir affects more on the discharge. In future
studies, the effect of dryness on identifying the storms-dependent parameters should be researched
based on a larger number of basins.

• No patterns in the plots of storm-dependent parameter values versus rainfall characteristics and
initial condition

When exploring the relations between the storm-dependent parameters and rainfall characteristics
and initial conditions, a regression relation was hoped to be identified so that the value of the storm-
dependent parameters can be predicted from the rainfall characteristics or initial conditions. However,
there are no patterns found in the plots which means rainfall characteristics or initial conditions can
not be utilized to set up a framework to predict the values of storm-dependent parameters. Even though
the parameters cannot be predicted deterministically, they can be predicted probabilistically, using the
histogram or fitted distribution for the calibrated parameter sets. The parameters sampled from the
histogram or fitted distribution are then can be used for predicting discharge in validation period. Ad-
ditionally, in the future, other factors can be explored to identify whether there is a relation between
the variation of storm-based parameters and these factors.
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• Assumptions

In this research, several assumptions were made in storm-based method: because of spatial and tem-
poral averaging, the flux errors primarily affect model performance. Besides, these errors can be de-
scribed by sampling one or two parameters from a probability distribution at the beginning of each
storm. These two assumptions are proved to be reasonable because the storm-based methods which
based on these two assumptions show a better performance than traditional method and GLUE method.
Based on these two assumption, the entire time series are divided into storms in the storm-based
method to capture the model error. Besides, after finishing the case study of Basin A, the choosing
of storm-dependent parameters is assumed to be same for other basins. This assumption leads to poor
performance for some basins like basin E and basin F. This unreasonable assumption indicates the im-
portance of doing sensitivity analysis for each basin individually.
However, the assumptions made in GLUE method differ from those in storm-based method. The GLUE
method assumes that all parameter sets have an equal likelihood of being acceptable. All the accepted
parameters are retained in the GLUE method. The assumption in this method does not consider the
input data error and capture the structure error like that in the storm-based method. The reason is
that although multiple parameter sets are accepted in the GLUE method, all the parameters are still
constant in time.

• Comparing with other literature

There is no literature on the difference between the prediction performance obtained by storm-based
method, traditional method and GLUE method. In this research, results are compared obtained by
three different methods to explore whether the storm-based method gives better prediction perfor-
mance considering the model error. Storm-based method has better performance than other two
methods for drier basins. The reason of good performance of storm-based method in dry basins may be
drier basins are more heterogeneous so that they will lead to more model errors while storm-dependent
parameters accounts for these errors better than other two methods. In future work, more comparison
and explorations should be done to research why storm-based methods perform better than GLUE
method in drier basins while perform worse than GLUE method in wet basins.

• Uncertainty in input data

In this research, storm-dependent parameters are used to capture the structure error while there are
some other uncertainties in the model, e.g. input error. Input error is due to the measurement error
and averaging in temporal and spatial scale. Using storm-dependent parameters can compensate for
the error from the temporally and spatially averaging while the measurement error can not be cor-
rected. Hence in the subsequent researches, a robust framework needs to be set up to account for the
data uncertainty.

• Distinguish the error captured in the research

The variation of storm-dependent parameters can be found during storm events, which means there
are errors in the model. However, the error can be structure and input error. An oversimplification of
the hydrological process in the real world can lead to this error. Additionally, the measurement error
of data could also lead to the variation of storm-dependent parameters because the input data is not
correct. In future work, a framework can be set up to distinguish which error it is and deal with these
errors, respectively.

• Future work about the relation between variation of storm-dependent parameters and basin size
and characteristics

According to the results in section 3.3, the scatters in the plots of sigma of storm-dependent param-
eters against basin dryness and sizes and rainfall/runoff ratio are very random. However, the variation
and mean of the mean and standard deviation of storm-dependent parameters from 392 basins can
be derived so that distributions can be fitted to the mean and sigma of storm-dependent parameters
from 392 basins. In future research, the distributions for the extent of variation of storm-dependent pa-
rameters can be explored. The extent of variation of parameters can not be predicted deterministically,
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but it can be described probabilistically. When predict the discharge for a new basin, e.g. an ungauged
basin, the extent of variation of parameters can be picked from the distributions for extent of variation
of parameters from observed basins.

• Future work about variation of storm-dependent parameters in the spatial pattern

In the storm-based method of this research, the model errors are influenced by the flux errors arising
from spatial and temporal averaging. These errors are assumed can be captured by making storm-
dependent parameters vary with time. However, in future work, the errors arising from the spatial
averaging can be described by dividing the catchment into different parts and randomly sampling each
parameter for the subbasins. Besides, the variation of parameters in spatial patterns could play a role in
finding the relation between storm-dependent parameters and rainfall characteristics and initial con-
dition.

• Future work about using storm type or categories

The definition of storm epoch in the storm-based method of this research is inter-storm dry spells of
one or more days, followed by a day with rainfall exceeding a specific threshold. The threshold is deter-
mined by finding an optimum threshold that gives the best model performance. At the same time, it is
also recommended to use different storm type or categories to divide the storm epochs. For example, a
small storm epoch can be defined by an inter-storm dry spell of one or more days, followed by one or
more days of rainfall that have an average rainfall less than 2mm/day. A median storm epoch can be
defined by an inter-storm dry spell of one or more days, followed by one or more days of rainfall that
have an average rainfall less than 10 mm/day and larger than 2 mm/day. A large storm epoch can be
defined by an inter-storm dry spell of one or more days, followed by one or more days of rainfall that
have an average rainfall that is larger than 10 mm/day. Different types of storms will also influence the
model calibration. In the subsequent research, the analysed time series can be divided into different
types of storm epochs to develop the storm-based method better.

• Future work about the selection of case basin

In this research, six representative basins with different basin size and dryness index are selected as
case basins. In future work, it is recommended to use a systematic approach to select basins, e.g. three
categories for dryness and two for size. A basin with the streamflow/rainfall ratio less than 0.2 can be
defined as dry basins and larger than 0.5 can be identified as wet basins. Besides, a basin with the
size smaller than 700 km2 can be identified as a small basin and larger than 1500 km2 is a large basin.
Other basins with the size larger than 700 km2 and smaller than 1500 km2 can be identified as a median
basin. The relation between basin size and dryness and the extent of variation of storm-dependent
parameters is likely to be better explored.

• The implication of the finding that GLUE performs better than storm based for wet basins

For wet basins, GLUE method performs better than the storm-based method indicates that the storm-
based method needs to be improved to better applicable for wetter basins. Several approaches can
be investigated to develop the storm-based method. Firstly, the definition of storm epoch. It can be
noticed that the numbers of identified storm epochs for wet basin E and F are smaller than those iden-
tified for dry basins. Secondly, a small number of calibrated parameter sets can not give very reasonable
distributions. Hence, a different definition of storm epoch can be utilised to divide the storms, e.g. the
storm type or categories. Thirdly, the effect of spatial heterogeneity can be analysed in the wet basins.
Besides, the change in land cover can also be another reason. Due to the urbanism, some land cover
like forest and grass can be changed into a residential area for ten years.
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Conclusions

The goal of this research is to further investigate and develop the storm-based approach, and compare
it to traditional approaches using static (time-invariant) parameters and GLUE (method) to capture model
errors. In this research, 392 basins from the MOPEX data set are applied for research after checking the long-
time water balance. Rainfall-runoff model GR4J is applied to simulate the discharge with the input data from
the MOPEX data set. Firstly, steps of storm-based methods, as well as alternative methods(traditional method
and GLUE method) and the differences between these methods, are introduced.
Six typical basins with different dryness index and rainfall-runoff ratio are researched as case basins to an-
swer the first three research questions. The first two questions(to what extent do model parameters vary
by storm/event, to what extent is this variation random and can it be predicted from rainfall event charac-
teristics and initial conditions) are answered by using storm-based methods. Then storm-based methods
proceed as the steps introduced before. Basin A is researched as an example to find an applicable standard
of setting threshold for storm epochs identifying and sampling methods of picking parameter sets for other
basins. After the calibration in the storm-based method, storm-dependent parameters showed variations by
storms. Besides, the initial water storage and average rainfall during each storm are plotted against the storm-
dependent parameters X1 and X4(time peak ordinate of unit hydrograph UH1) to explore how randomness
this variation is and the relation between the variation and rainfall characteristics or initial conditions. How-
ever, the scatter plots are very random, and no pattern can be found in the plots. Hence, although the cali-
brated storm-dependent parameters show variations by storms, the random of the variations have no relation
with the initial conditions and rainfall characteristics. Before validation, the two sampling methods are used
to sample the parameter sets. One method is directly sampling the storm-dependent parameters from the
calibrated results, and another one is sampling the storm-dependent parameters from the fitted distribu-
tions. The validation results obtained by two sampling methods are compared to derive the relative better
sampling methods that can be applied for other basins. According to the comparison, directly sampling from
the calibrated results and sampling both X1(maximum capacity of the production store) and X4 from the fit-
ted distributions are considered as good sampling methods. After determining the sampling methods in the
validation period of the storm-based method, the effects of the threshold for identifying the storm epochs on
the performance are explored. According to the evaluations for total flow, highflow and lowflow of 6 basins
by trying different threshold values, it can be derived that the thresholds that can identify 20 to 60 storms give
relative good validation results and the optimized threshold should be chosen manually. The calibration and
validation processes proceed again for the basin A, B, C, D, E and F using the picked optimized thresholds. It
can be seen that the performances for six basins are all improved after using the optimized thresholds picked
manually for they all have a higher logscore value for total flow and lower RMSE for total flow, highflow and
lowflow. This exploration indicates the set of the threshold for identifying the storm epochs matters a lot, and
it can be seen as another parameter of the storm-based method.

Except for the storm-based method, two other methods are also applied to do the model calibration and
validation. Comparisons are proceeded between the different results obtained by three methods so that the
research question 3 ( to what extent does accounting for variation in model parameters capture model errors
and improve rainfall-runoff prediction) can be answered. By making storm-sensitive parameters varying by
storms in storm-based method, the model performance for total flow, lowflow and highflow are all improved
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compared with that of traditional method with constant parameters during the analysed time series. Addi-
tionally, although the total flow, highflow and lowflow performances of the GLUE method is better than that
of storm based method, the GLUE method can miss some lowflow regression part and can not capture lots
of peak flows. GLUE method also assumes the parameters are constant in time like the traditional method so
that it can not capture the structure error compared with the storm-based method. What’s more, we found
that if the basin is wetter, the storm-based method performance will be poorer than GLUE method. There-
fore, another exploration of the wet basins are proceeded. A new sensitivity analysis is done for basin F, and
it turns out the parameter X3(the maximum capacity of the routing reservoir) and X4 are storm-sensitive pa-
rameters instead of X1 and X4 that identified in basin A. Then new calibration and validation are performed
for wet basins E and F with X3 and X4 as storm-dependent parameters variable by storms. And we found the
performance for wet basins are improved especially for the RMSE of total flow, highflow and lowflow.

The last research question ( does the extent of variation of storm-dependent parameters depend on basin
characteristics (e.g. dry vs humid, small vs large))is answered by exploring the 392 basins with each basin
calibrated by making one of the parameters variable by storms each time. From the results, it can be derived
that there is no relation between the extent of variation and basin characteristics.

Main conclusions obtained for each research questions are listed below:

1 To what extent do model parameters vary by storm/event?

The scatter plots of storm-dependent parameters showed the variations by storms. These variations
indicate there is the structure error or input error in the model.

2 To what extent is this variation random and can it be predicted from rainfall event characteristics and
initial conditions?

The scatters in the plots of storm-dependent parameters values against rainfall characteristics and ini-
tial conditions are very random which means the extent of variations of storm-dependent parameters
can not be predicted from rainfall event characteristics and initial conditions. However, even though
the parameters cannot be predicted deterministically, they can be predicted probabilistically with the
histogram or fitted distribution for the calibrated parameter sets.

3 To what extent does accounting for variation in model parameters capture model errors and improve
rainfall-runoff prediction?

Storm-based method performs better for drier basins while worse for wetter basins compared to GLUE
method and traditional method. The logscore value obtained in storm-based method(e.g. -0.68 for
basin A, -1.17 for basin B, -0.79 for basin C, -0.93 for basin D) is larger than those obtained in the tra-
ditional method (e.g. -1.23 for basin A, -2.23 for basin B, -1.43 for basin C, -2.22 for basin D) and GLUE
method (e.g. -0.67 for basin A, -1.55 for basin B, -0.93 for basin C, -1.11 for basin D) respectively for
each basin. Additionally, the RMSE values for total flow obtained in the storm-based method are all
smaller than those obtained in the traditional method and GLUE method for these dry basins. GLUE
method gives better performance for wetter basins than storm-based method and traditional method
gives, which means GLUE method is more applicable for wetter basins than the storm-based method
and traditional method. Dry basins are usually hard to predict while storm-based method gives relative
better performance than other two methods give.

4 Does the extent of variation of storm-dependent parameters depend on basin characteristics (e.g. dry
vs humid, small vs large)?

The extent of variation of storm-dependent parameters has no relation with basin characteristics but
the mean and variation of the storm-dependent parameters can be obtained. Hence the extent of vari-
ation of parameters can be described probabilistically.
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storm-based calibration and validation for basin A
with the threshold relative with the median value of rainfall series (in this case, threshod=0.21) to divide the
storm epochs

In [1]:

#%% 0
import numpy as np
import matplotlib.pyplot as plt
from gr4j import gr4j#the rainfall-runoff model
from scipy.optimize import differential_evolution#the calibratio2an algorithm
import pandas as pd
import scipy.stats as st
from scipy.stats import beta
import warnings
warnings.filterwarnings('ignore')
A='07068000.dly' 
def forcingdata(A): #read forcing data
    data = np.loadtxt(A,dtype=str,delimiter='\t')
    data = [data[ii][0:4] + ' ' + data[ii][4:6] + ' '  + data[ii][6:8] + data[ii][8:
            for ii in np.arange(len(data))]
    data = [data[ii].split() for ii in np.arange(len(data))]
    data = pd.DataFrame(data,columns =['y','m','d','r','ep','s','t1','t2'])
    discharge=np.array(data['s'][14610:16438],dtype=float)
    rainfall=np.array(data['r'][14610:16438],dtype=float)
    ep=np.array(data['ep'][14610:16438],dtype=float)
    data.head()
    return discharge,rainfall,ep
d_o=forcingdata(A)[0]
r_o=forcingdata(A)[1]
p_o=forcingdata(A)[2]
def G(r,ep,p):   #define the G function for first storm  (storm 0)
    params={ 'X1': p[0], 'X2': p[1], 'X3': p[2], 'X4': p[3] }
    states= { 'production_store': 0.60 * params['X1'], 'routing_store': 0.70 * param
    Qm= gr4j(r, ep, params, states)
    s=gr4j(r, ep, params, states,return_state=True)[1] # return the states at the en
    return Qm,s

def obj(B):  #run for the whole period to find the value of constant parameter X2,X3
        Qm=np.array(G(r_o,p_o,B))[0]
        Qo=d_o
        QM=Qm
        # RMS=np.sum(((Qo-QM)**2) )/len(Qo)
        
        ErrUp=np.sum((QM-Qo)**2)
        ErrDo = np.sum((Qo-np.mean(Qo))**2)
        NSE = 1- ErrUp / ErrDo
        return -NSE                                                                 
Bounds= [(20 ,2000),(-5,3),(20,300),(1,5)]
result= differential_evolution(obj, Bounds)
if np.median(r_o)>0.3:
    threshold_o=0.1
elif np.median(r_o)<0.15:
    threshold_o=0.15
else:
    threshold_o=np.median(r_o)



In [2]:

In [3]:

#%% 1 
def stormepoch():  # define storm epoch
    ind_o=[]
    ind_o.append(0)
    for i in range(1,len(r_o)-1):
        if (r_o[i]>threshold_o)&(r_o[i-1]==0):
            ind_o.append(i)
    ind_o.append(len(r_o))
    storm_o=[]
    
    for i in range(len(ind_o)-1):
        storm_o.append((ind_o[i],ind_o[i+1]-1))
    return ind_o,storm_o
ind_o=stormepoch()[0]
storm_o=stormepoch()[1]

def obj1(B): #run for the first storm (storm 0), use the initial condition: 0.6*X1, 
        i=ind_o[0] #index of fisrt day of storm 0
        j=ind_o[1] #index of end day of storm 0
        Qm=np.array(G(r_o[i:j],p_o[i:j],B)[0])
        Qo=d_o[i:j]
        QM=Qm
        ErrUp=np.sum((QM-Qo)**2)
        ErrDo = np.sum((Qo-np.mean(Qo))**2)
        NSE = 1- ErrUp / ErrDo
        return -NSE                                                                 
Bounds= [(20 ,2000),(result.x[1],result.x[1]),(result.x[2],result.x[2]),(1,5)]
result1= differential_evolution(obj1, Bounds)

m=ind_o[0] # index of fisrt day of storm 0
M=ind_o[1] # index of end day of storm 0
q=[]       # a list for simulated discharge
par=[]     # a list for calibrated parameter sets

q=q+G(r_o[m:M],p_o[m:M],result1.x)[0]
par.append(result1.x)    
states= np.array(G(r_o[m:M],p_o[m:M],result1.x))[1]
production_store = states['production_store']  # production_store at the end of stor
routing_store= states['routing_store']         # routing_store at the end of storm 0

#%% 2 change initial state from second storm
p_s=np.zeros(len(storm_o)) # an array for all the END production store for each stor
r_s=np.zeros(len(storm_o)) # an array for all the END routing store for each storm
p_s[0]=production_store  
r_s[0]=routing_store 



In [4]:

#%% 3
for t in range(1,len(storm_o)):    
    i=ind_o[t]    #index of first day of each storm
    j=ind_o[t+1]  #index of end day of each storm
    
    def G2(r,ep,p):   # other storms use the the state at end of former storm as the
    
        params={ 'X1': p[0], 'X2': p[1], 'X3': p[2], 'X4': p[3] }
        states= { 'production_store': p_s[t-1], 'routing_store':r_s[t-1] }
        
        
        Qm,s= gr4j(r, ep, params, states, return_state=True)
        return Qm,s

    def obj2(B): #calculate the objective value 
        
        Qm=np.array(G2(r_o[i:j],p_o[i:j],B)[0])
        Qo=d_o[i:j]
        QM=Qm
        ErrUp=np.sum((QM-Qo)**2)
        ErrDo = np.sum((Qo-np.mean(Qo))**2)
        NSE = 1- ErrUp / ErrDo
        return -NSE                              
                                                                                    
    Bounds2=[(20 ,2000),(result1.x[1],result1.x[1]),(result1.x[2],result1.x[2]),(1,5
    resultn=differential_evolution(obj2, Bounds2)
    statesn= G2(r_o[i:j],p_o[i:j],resultn.x)[1]
    p_s[t]=statesn['production_store']
    r_s[t]= statesn['routing_store']
    q=q+G2(r_o[i:j],p_o[i:j],resultn.x)[0]
    par.append(resultn.x)
font1 = {'family' : 'Arial',
    'weight' : 'normal',
    'size' : 20,}   
font2 = {'family' : 'Arial',
    'weight' : 'normal',
    'size' : 22,}
num1=1.02
num2=1.02
num3=4
num4=2



In [5]:

In [6]:

#%%4 plt calibration result
plt.figure(figsize=(18,4))
plt.title('storm-based calibration',fontsize=22) 
plt.xlabel('days',font2)
plt.ylabel('discharge mm/d',font2)
plt.plot(q,'-',markersize=2,label='simulated flow')
l=len(q)
plt.plot(d_o[0:l],'r.',markersize=2,label='observed flow')

plt.xticks(fontsize=20)
plt.yticks(fontsize=20)  
plt.legend(bbox_to_anchor=(num1, num2), loc=num3, borderaxespad=num4,prop=font1)
plt.savefig('A_s_c.pdf', bbox_inches='tight')
np.savetxt('par',par)

#%%5
def validationdata(A):
        data = np.loadtxt(A,dtype=str,delimiter='\t')
        data = [data[ii][0:4] + ' ' + data[ii][4:6] + ' '+ data[ii][6:8]+data[ii][8:
                for ii in np.arange(len(data))]
        data = [data[ii].split() for ii in np.arange(len(data))]
        data = pd.DataFrame(data,columns =['y','m','d','r','ep','s','t1','t2'])
        discharge=np.array(data['s'][16438:18263],dtype=float)
        rainfall=np.array(data['r'][16438:18263],dtype=float)
        ep=np.array(data['ep'][16438:18263],dtype=float)
        data.head()
        return discharge,rainfall,ep  
discharge=validationdata(A)[0]
rainfall=validationdata(A)[1]
potential_evap=validationdata(A)[2]
if np.median(rainfall)>0.3:
    threshold=0.1
elif np.median(rainfall)<0.15:
    threshold=0.15
else:
    threshold=np.median(rainfall)



In [7]:

#%%6
def stormevent():
    ind=[]
    ind.append(0)
    for i in range(1,len(rainfall)-1):
        if (rainfall[i]>threshold)&(rainfall[i-1]==0):
            ind.append(i)
    ind.append(len(rainfall))
    storm=[]  
    for i in range(len(ind)-1):
        storm.append((ind[i],ind[i+1]-1))
    return ind,storm
ind=stormevent()[0]
storm=stormevent()[1]
QS=np.zeros( (len(storm),len(discharge)))
QS_o=np.zeros((len(discharge)))
q=np.array(q)
p_s_v=np.zeros(len(storm))
r_s_v=np.zeros(len(storm))
for k in range (len(storm)):
    for n in range(len(storm)):
        if n==0:
            i=ind[0]
            j=ind[1]  
            m=int(np.random.choice(np.linspace(1,len(par)-1,len(par)-1),1)) #randoml
            if p_s[-1]>par[m][0]:
                    par[m][0]=p_s[-1]/0.6
            # if r_s[-1]>par[m][2]:
            #         par[m][2]=r_s[-1]/0.7
            def G3(r,ep,p): 
                    params={ 'X1': p[0], 'X2': p[1], 'X3': p[2], 'X4': p[3] }
                    states= { 'production_store': p_s[-1], 'routing_store':r_s[-1] }
                    Qm_v,s_v= gr4j(r, ep, params, states, return_state=True)
                    return Qm_v,s_v
            QS[k,i:j]=G3(rainfall[i:j], potential_evap[i:j], par[m])[0] 
            states_v=G3(rainfall[i:j], potential_evap[i:j], par[m])[1]
            p_s_v[n]=states_v['production_store']
            r_s_v[n]= states_v['routing_store']
           
        else:
            for n in range(1,len(storm)):
                i=ind[n]
                j=ind[n+1]  
                m=int(np.random.choice(np.linspace(1,len(par)-1,len(par)-1),1)) #ran
                if p_s_v[n-1]>par[m][0]:
                    par[m][0]=p_s_v[n-1]/0.6
                # if r_s_v[n-1]>par[m][2]:
                #     par[m][2]=r_s_v[n-1]/0.7  
                def G4(r,ep,p): 
                    params={ 'X1': p[0], 'X2': p[1], 'X3': p[2], 'X4': p[3] }
                    states= { 'production_store': p_s_v[n-1], 'routing_store':r_s_v[
                    Qm_v,s_v= gr4j(r, ep, params, states, return_state=True)
                    return Qm_v,s_v
                QS[k,i:j]=G4(rainfall[i:j], potential_evap[i:j], par[m])[0] 
                states_v=G4(rainfall[i:j], potential_evap[i:j], par[m])[1]
                p_s_v[n]=states_v['production_store']
                r_s_v[n]= states_v['routing_store']
#     print('validation process:',k+1,'/',len(storm))



directly sampling X1 and X4 from the calibrated
results
In [8]:

#%% 7           
Qm_5_k=np.zeros(len(discharge))
Qm_95_k=np.zeros(len(discharge)) 
logscore1=np.zeros(len(discharge))
RMSE1=np.zeros(len(discharge))  
for i in range(len(discharge)):    
    Vobs=0
    Mobs=discharge[i]
    Mpredict=np.mean(QS[:,i])
    Vpredict=(np.sum(  (QS[:,i]-Mpredict) **2  ) / len(storm) ) **0.5
    RMSE1[i]= (Mobs-Mpredict)**2
    logscore1[i]=-1/2*np.log(2*np.pi)-1/2*np.log(Vobs+Vpredict)-(Mobs-Mpredict)**2/(
    Qm_5_k[i] = norm.ppf(0.05,Mpredict,Vpredict) # use the  simulated discharge as m
    Qm_95_k[i] =norm.ppf(0.95,Mpredict,Vpredict) # 
    Qm_5_k[Qm_5_k<0]=0  
logscore_av1=(np.mean(logscore1))
RMSE_av1=(np.sum(RMSE1)/len(discharge))**0.5
plt.figure(figsize=(18,4))
plt.fill_between(np.linspace(1,len(discharge),len(discharge)),Qm_5_k,Qm_95_k,alpha=0
plt.plot(discharge,'r.',markersize=2,label='observed flow')
plt.title('storm-based validation with logscore = ' +str(format(logscore_av1, '.2f')
plt.ylim(-4.9,np.max(discharge)*1.2)
plt.xlabel('time (d)',font2)
plt.ylabel('discharge (mm/d)',font2)
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)  
plt.legend(bbox_to_anchor=(num1, num2), loc=num3, borderaxespad=num4,prop=font1)
plt.savefig('A_s_v.pdf', bbox_inches='tight')



In [9]:

#%%8_1 plot the scatters
#%% 7.2
hflow=[]
hindex=[]
lflow=[]
lindex=[]
for m in range(len(rainfall)):
    if rainfall[m]<5:
        lindex.append(m)
        lflow.append(discharge[m])
    else:
        hindex.append(m)
        hflow.append(discharge[m])
hflow=np.array(hflow)   
lflow=np.array(lflow)
hindex=np.array(hindex)
lindex=np.array(lindex)
hrmse=np.zeros(len(hindex))
lrmse=np.zeros(len(lindex))
for i in range(len(hindex)):
    n=hindex[i]
    hrmse[i]=(hflow[i]-np.mean(QS[:,n]))**2 
Hrmse1=(np.sum(hrmse)/len(hflow) )**(1/2)
for i in range(len(lindex)):
    n=lindex[i]
    lrmse[i]=(lflow[i]-np.mean(QS[:,n]))**2 
Lrmse1=(np.sum(lrmse)/len(lflow) )**(1/2)    
par=np.array(np.loadtxt('par'))
p1=par[:,0]
p4=par[:,3]
plt.figure(figsize=(18,3))
plt.title('x1 values for each storm',fontsize=22)
plt.plot(p1,'o-',label='x1 value')
plt.hlines(result.x[0],0,len(par[:,0]),'r',label='original x1 value')
plt.ylabel('mm/d',font2)
plt.xlabel('n of storm epoch',font2)
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)  
plt.legend(bbox_to_anchor=(num1, num2), loc=num3, borderaxespad=num4,prop=font1)
plt.savefig('A_s_x1.pdf', bbox_inches='tight')

plt.figure(figsize=(18,3))
plt.title('x4 values for each storm',fontsize=22)
plt.plot(p4,'o-',label='x4 value')
plt.xlabel('n of storm epoch',font2)
plt.ylabel('days',font2)
plt.hlines(result.x[3],0,len(par[:,3]),'r',label='original x4 value')
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)  
plt.legend(bbox_to_anchor=(num1, num2), loc=num3, borderaxespad=num4,prop=font1)
plt.savefig('A_s_x4.pdf', bbox_inches='tight')





Sampling x1 and x4 from their distributions

In [10]:

#%% 8 #fit distribution
p1=np.loadtxt('par')[:,0]
p4=np.loadtxt('par')[:,3]
plt.figure(figsize=(8,5))
dividedby1=np.max(p1)-np.min(p1)
num_bins1 = 20
pp1=(p1-np.min(p1))/dividedby1
n1, bins1, patches1 = plt.hist(pp1, num_bins1,density=1, facecolor='grey', alpha=0.5
# x1=np.linspace(0.025,0.975,1000)
x1 = np.linspace(np.min(p1-np.min(p1))/dividedby1,np.max(p1-np.min(p1))/dividedby1,1
a,b,c,d= beta.fit(pp1, floc=0)
d1=st.beta(a,b,c,d).rvs(1000)
y1 = beta.pdf(x1, a,b,c,d)
plt.title('Fitted X1',fontsize=22)
plt.plot(x1, y1,'blue',label='with boundary')
dividedby1=np.max(p1)-np.min(p1)
n1, bins1, patches1 = plt.hist(pp1[(pp1<0.95)&(pp1>0.05)], num_bins1,density=1, face
x1 = np.linspace(np.min(p1-np.min(p1))/dividedby1,np.max(p1-np.min(p1))/dividedby1,1
a,b,c,d= beta.fit(pp1[(pp1<0.95)&(pp1>0.05)], floc=0)
d1=st.beta(a,b,c,d).rvs(1000)
y1 = beta.pdf(x1, a,b,c,d)
plt.plot(x1, y1,'r--',label='without boundary')
plt.xticks(fontsize=18)
plt.yticks(fontsize=18)  
plt.legend(fontsize=16)
plt.ylim(0,3)
plt.savefig('A_s_x1_beta.pdf', bbox_inches='tight')



In [11]:

#%%9
plt.figure(figsize=(8,5))
dividedby4=np.max(p4)-np.min(p4)
num_bins4 = 5
pp4=(p4-np.min(p4))/dividedby4

n4, bins4, patches4 = plt.hist(pp4, num_bins4,density=1, facecolor='grey', alpha=0.5
# x4=np.linspace(0.05,0.95,1000)
x4 = np.linspace(np.min(p4-np.min(p4))/dividedby4,np.max(p4-np.min(p4))/dividedby4,1

a,b,c,d= beta.fit(pp4, floc=0)
d4=st.beta(a,b,c,d).rvs(1000)
y4 = beta.pdf(x4, a,b,c,d)
plt.title('Fitted X4')
plt.plot(x4, y4,'blue',label='with boundary')
plt.ylim(0,3)
plt.legend()

dividedby4=np.max(p4)-np.min(p4)
num_bins4 = 5
pp4=(p4-np.min(p4))/dividedby4

n4, bins4, patches4 = plt.hist(pp4[(pp4<0.95)&(pp4>0.03)], num_bins4,density=1, face
# x4=np.linspace(0.05,0.95,1000)
x4 = np.linspace(np.min(p4-np.min(p4))/dividedby4,np.max(p4-np.min(p4))/dividedby4,1
a,b,c,d= beta.fit(pp4[(pp4<0.95)&(pp4>0.03)], floc=0)
d4=st.beta(a,b,c,d).rvs(1000)
y4 = beta.pdf(x4, a,b,c,d)
plt.title('Fitted X4',fontsize=22)
plt.plot(x4, y4,'red',label='without boundary')
plt.xticks(fontsize=18)
plt.yticks(fontsize=18)  
plt.legend(fontsize=16)
plt.savefig('A_s_x4_beta.pdf', bbox_inches='tight')



In [12]:

#%%10
import math
QS=np.zeros( (len(storm),len(discharge)))
QS_o=np.zeros((len(discharge)))
q=np.array(q)
p_s_v=np.zeros(len(storm))
r_s_v=np.zeros(len(storm))
for i in range(len(storm_o)):
    par[i][0]=dividedby1*np.random.choice(d1)+np.min(p1)   #result1.x[0]#
    par[i][3]=np.random.choice(d4)*dividedby4+np.min(p4)   #result1.x[3]   #
for k in range (len(storm)):
    for n in range(len(storm)):
        if n==0:
            i=ind[0]
            j=ind[1]  
            m=int(np.random.choice(np.linspace(1,len(par)-1,len(par)-1),1)) #randoml
            if p_s[-1]>par[m][0]:
                    par[m][0]=p_s[-1]/0.6
            
            def G3(r,ep,p): 
                    params={ 'X1': p[0], 'X2': p[1], 'X3': p[2], 'X4': p[3] }
                    states= { 'production_store': p_s[-1], 'routing_store':r_s[-1] }
                    Qm_v,s_v= gr4j(r, ep, params, states, return_state=True)
                    return Qm_v,s_v
            QS[k,i:j]=G3(rainfall[i:j], potential_evap[i:j], par[m])[0] 
            states_v=G3(rainfall[i:j], potential_evap[i:j], par[m])[1]
            p_s_v[n]=states_v['production_store']
            r_s_v[n]= states_v['routing_store']    
        else:
            for n in range(1,len(storm)):
                i=ind[n]
                j=ind[n+1]  
                m=int(np.random.choice(np.linspace(1,len(par)-1,len(par)-1),1)) #ran
                if p_s_v[n-1]>par[m][0]:
                    par[m][0]=p_s_v[n-1]/0.6
                def G4(r,ep,p): 
                    params={ 'X1': p[0], 'X2': p[1], 'X3': p[2], 'X4': p[3] }
                    states= { 'production_store': p_s_v[n-1], 'routing_store':r_s_v[
                    Qm_v,s_v= gr4j(r, ep, params, states, return_state=True)
                    return Qm_v,s_v
       
                QS[k,i:j]=G4(rainfall[i:j], potential_evap[i:j], par[m])[0] 
                states_v=G4(rainfall[i:j], potential_evap[i:j], par[m])[1]
                p_s_v[n]=states_v['production_store']
                r_s_v[n]= states_v['routing_store']
#     print('validation process using variable x1 and x4: ',k+1,'/',len(storm))



In [13]:

#%%  11          
Qm_5_k=np.zeros(len(discharge))
Qm_95_k=np.zeros(len(discharge)) 
logscore2=np.zeros(len(discharge))
RMSE2= np.zeros(len(discharge))  
for i in range(len(discharge)):    
    Vobs=0
    Mobs=discharge[i]
    Mpredict=np.mean(QS[:,i])
    Vpredict=(np.sum(  (QS[:,i]-Mpredict) **2  ) / len(storm) ) **0.5
    RMSE2[i]=(Mobs-Mpredict)**2
    logscore2[i]=-1/2*np.log(2*np.pi)-1/2*np.log(Vobs+Vpredict)-(Mobs-Mpredict)**2/(
    Qm_5_k[i] = norm.ppf(0.05,Mpredict,Vpredict) # use the  simulated discharge as m
    Qm_95_k[i] =norm.ppf(0.95,Mpredict,Vpredict) # 
    Qm_5_k[Qm_5_k<0]=0  
logscore_av2=(np.mean(logscore2))
RMSE_av2=(np.sum(RMSE2)/len(discharge))**0.5
plt.figure(figsize=(18,4))
plt.fill_between(np.linspace(1,len(discharge),len(discharge)),Qm_5_k,Qm_95_k,alpha=0
plt.plot(discharge,'r.',markersize=2,label='observed flow')
plt.title('storm-based validation with logscore = ' +str(format(logscore_av2, '.2f')
plt.ylim(-4.9,np.max(discharge)*1.2)
plt.xlabel('time (d)',font2)
plt.ylabel('discharge (mm/d)',font2)
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)  
plt.legend(bbox_to_anchor=(num1, num2), loc=num3, borderaxespad=num4,prop=font1)
plt.savefig('A_s_v_x1x4variable.pdf', bbox_inches='tight')



make x1 fixed and sample x4 from its distribution

In [17]:

#%%10
par=np.array(np.loadtxt('par'))
p4=par[:,3]
dividedby4=np.max(p4)-np.min(p4)
pp4=(p4-np.min(p4))/dividedby4
x4 = np.linspace(np.min(p4-np.min(p4))/dividedby4,np.max(p4-np.min(p4))/dividedby4,1
a,b,c,d= beta.fit(pp4[(pp4<0.95)&(pp4>0.03)], floc=0)
d4=st.beta(a,b,c,d).rvs(1000)
QS=np.zeros( (len(storm),len(discharge)))
QS_o=np.zeros((len(discharge)))
q=np.array(q)
p_s_v=np.zeros(len(storm))
r_s_v=np.zeros(len(storm))
for i in range(len(storm_o)):
    par[i][0]=result1.x[0]#dividedby1*np.random.choice(d1)+np.min(p1)   #
    par[i][3]=np.random.choice(d4)*dividedby4+np.min(p4)   #result1.x[3]   #
for k in range (len(storm)):
    for n in range(len(storm)):
        if n==0:
            i=ind[0]
            j=ind[1]  
            m=int(np.random.choice(np.linspace(1,len(par)-1,len(par)-1),1)) #randoml
            if p_s[-1]>par[m][0]:
                    par[m][0]=p_s[-1]/0.6
            
            def G3(r,ep,p): 
                    params={ 'X1': p[0], 'X2': p[1], 'X3': p[2], 'X4': p[3] }
                    states= { 'production_store': p_s[-1], 'routing_store':r_s[-1] }
                    Qm_v,s_v= gr4j(r, ep, params, states, return_state=True)
                    return Qm_v,s_v
            QS[k,i:j]=G3(rainfall[i:j], potential_evap[i:j], par[m])[0] 
            states_v=G3(rainfall[i:j], potential_evap[i:j], par[m])[1]
            p_s_v[n]=states_v['production_store']
            r_s_v[n]= states_v['routing_store']    
        else:
            for n in range(1,len(storm)):
                i=ind[n]
                j=ind[n+1]  
                m=int(np.random.choice(np.linspace(1,len(par)-1,len(par)-1),1)) #ran
                if p_s_v[n-1]>par[m][0]:
                    par[m][0]=p_s_v[n-1]/0.6
                def G4(r,ep,p): 
                    params={ 'X1': p[0], 'X2': p[1], 'X3': p[2], 'X4': p[3] }
                    states= { 'production_store': p_s_v[n-1], 'routing_store':r_s_v[
                    Qm_v,s_v= gr4j(r, ep, params, states, return_state=True)
                    return Qm_v,s_v
       
                QS[k,i:j]=G4(rainfall[i:j], potential_evap[i:j], par[m])[0] 
                states_v=G4(rainfall[i:j], potential_evap[i:j], par[m])[1]
                p_s_v[n]=states_v['production_store']
                r_s_v[n]= states_v['routing_store']
#     print('validation process using fitted x1 and variable x4: ',k+1,'/',len(storm



In [18]:

Qm_5_k=np.zeros(len(discharge))
Qm_95_k=np.zeros(len(discharge)) 
logscore3=np.zeros(len(discharge))
RMSE3= np.zeros(len(discharge))  
for i in range(len(discharge)):    
    Vobs=0
    Mobs=discharge[i]
    Mpredict=np.mean(QS[:,i])
    Vpredict=(np.sum(  (QS[:,i]-Mpredict) **2  ) / len(storm) ) **0.5
    RMSE3[i]=(Mobs-Mpredict)**2
    logscore3[i]=-1/2*np.log(2*np.pi)-1/2*np.log(Vobs+Vpredict)-(Mobs-Mpredict)**2/(
    Qm_5_k[i] = norm.ppf(0.05,Mpredict,Vpredict) # use the  simulated discharge as m
    Qm_95_k[i] =norm.ppf(0.95,Mpredict,Vpredict) # 
    Qm_5_k[Qm_5_k<0]=0  
logscore_av3=(np.mean(logscore3))
RMSE_av3=(np.sum(RMSE3)/len(discharge))**0.5
plt.figure(figsize=(18,4))
plt.fill_between(np.linspace(1,len(discharge),len(discharge)),Qm_5_k,Qm_95_k,alpha=0
plt.plot(discharge,'r.',markersize=2,label='observed flow')
plt.title('storm-based validation with logscore = ' +str(format(logscore_av3, '.2f')
plt.ylim(-4.9,np.max(discharge)*1.2)
plt.xlabel('time (d)',font2)
plt.ylabel('discharge (mm/d)',font2)
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)  
plt.legend(bbox_to_anchor=(num1, num2), loc=num3, borderaxespad=num4,prop=font1)
plt.savefig('A_s_v_x1fixedx4variable.pdf', bbox_inches='tight')



sample x1 from its distribution and make x4 fixed

In [22]:

#%% 8 #fit distribution
par=np.array(np.loadtxt('par'))
p1=par[:,0]
p4=par[:,3]
dividedby1=np.max(p1)-np.min(p1)
pp1=(p1-np.min(p1))/dividedby1
x1 = np.linspace(np.min(p1-np.min(p1))/dividedby1,np.max(p1-np.min(p1))/dividedby1,1
a,b,c,d= beta.fit(pp1[(pp1<0.95)&(pp1>0.05)], floc=0)
d1=st.beta(a,b,c,d).rvs(1000)
#%%10
QS=np.zeros( (len(storm),len(discharge)))
QS_o=np.zeros((len(discharge)))
q=np.array(q)
p_s_v=np.zeros(len(storm))
r_s_v=np.zeros(len(storm))
for i in range(len(storm_o)):
    par[i][0]=dividedby1*np.random.choice(d1)+np.min(p1)   #result1.x[0]#
    par[i][3]=result1.x[3]   #np.random.choice(d4)*dividedby4+np.min(p4)   #
for k in range (len(storm)):
    for n in range(len(storm)):
        if n==0:
            i=ind[0]
            j=ind[1]  
            m=int(np.random.choice(np.linspace(1,len(par)-1,len(par)-1),1)) #randoml
            if p_s[-1]>par[m][0]:
                    par[m][0]=p_s[-1]/0.6
            
            def G3(r,ep,p): 
                    params={ 'X1': p[0], 'X2': p[1], 'X3': p[2], 'X4': p[3] }
                    states= { 'production_store': p_s[-1], 'routing_store':r_s[-1] }
                    Qm_v,s_v= gr4j(r, ep, params, states, return_state=True)
                    return Qm_v,s_v
            QS[k,i:j]=G3(rainfall[i:j], potential_evap[i:j], par[m])[0] 
            states_v=G3(rainfall[i:j], potential_evap[i:j], par[m])[1]
            p_s_v[n]=states_v['production_store']
            r_s_v[n]= states_v['routing_store']    
        else:
            for n in range(1,len(storm)):
                i=ind[n]
                j=ind[n+1]  
                m=int(np.random.choice(np.linspace(1,len(par)-1,len(par)-1),1)) #ran
                if p_s_v[n-1]>par[m][0]:
                    par[m][0]=p_s_v[n-1]/0.6
                def G4(r,ep,p): 
                    params={ 'X1': p[0], 'X2': p[1], 'X3': p[2], 'X4': p[3] }
                    states= { 'production_store': p_s_v[n-1], 'routing_store':r_s_v[
                    Qm_v,s_v= gr4j(r, ep, params, states, return_state=True)
                    return Qm_v,s_v
       
                QS[k,i:j]=G4(rainfall[i:j], potential_evap[i:j], par[m])[0] 
                states_v=G4(rainfall[i:j], potential_evap[i:j], par[m])[1]
                p_s_v[n]=states_v['production_store']
                r_s_v[n]= states_v['routing_store']
#     print('validation process using variable x1 and fixed x4: ',k+1,'/',len(storm)



In [23]:

#%%  11          
Qm_5_k=np.zeros(len(discharge))
Qm_95_k=np.zeros(len(discharge)) 
logscore4=np.zeros(len(discharge))
RMSE4= np.zeros(len(discharge))  
for i in range(len(discharge)):    
    Vobs=0
    Mobs=discharge[i]
    Mpredict=np.mean(QS[:,i])
    Vpredict=(np.sum(  (QS[:,i]-Mpredict) **2  ) / len(storm) ) **0.5
    RMSE4[i]=(Mobs-Mpredict)**2
    logscore4[i]=-1/2*np.log(2*np.pi)-1/2*np.log(Vobs+Vpredict)-(Mobs-Mpredict)**2/(
    Qm_5_k[i] = norm.ppf(0.05,Mpredict,Vpredict) # use the  simulated discharge as m
    Qm_95_k[i] =norm.ppf(0.95,Mpredict,Vpredict) # 
    Qm_5_k[Qm_5_k<0]=0  
logscore_av4=(np.mean(logscore4))
RMSE_av4=(np.sum(RMSE4)/len(discharge))**0.5
plt.figure(figsize=(18,4))
plt.fill_between(np.linspace(1,len(discharge),len(discharge)),Qm_5_k,Qm_95_k,alpha=0
plt.plot(discharge,'r.',markersize=2,label='observed flow')
plt.title('storm-based validation with logscore = ' +str(format(logscore_av4, '.2f')
plt.ylim(-4.9,np.max(discharge)*1.2)
plt.xlabel('time (d)',font2)
plt.ylabel('discharge (mm/d)',font2)
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)  
plt.legend(bbox_to_anchor=(num1, num2), loc=num3, borderaxespad=num4,prop=font1)
plt.savefig('A_s_v_x1variablex4fixed.pdf', bbox_inches='tight')



In [24]:

threshold:  0.21 
n of storms:  103 
 
VALIDATION results: 

#%%  12 
hflow=[]
hindex=[]
lflow=[]
lindex=[]
for m in range(len(rainfall)):
    if rainfall[m]<5:
        lindex.append(m)
        lflow.append(discharge[m])
    else:
        hindex.append(m)
        hflow.append(discharge[m])            
            
hflow=np.array(hflow)   
lflow=np.array(lflow)
hindex=np.array(hindex)
lindex=np.array(lindex)
hrmse4=np.zeros(len(hindex))
lrmse4=np.zeros(len(lindex))
for i in range(len(hindex)):
    n=hindex[i]
    hrmse4[i]=(hflow[i]-np.mean(QS[:,n]))**2 
Hrmse4=(np.sum(hrmse4)/len(hflow) )**(1/2)
for i in range(len(lindex)):
    n=lindex[i]
    lrmse4[i]=(lflow[i]-np.mean(QS[:,n]))**2 
Lrmse4=(np.sum(lrmse4)/len(lflow) )**(1/2)
print('threshold: ',threshold)
print('n of storms: ', len(storm))
print('')
print('VALIDATION results:')
print('RMSE for highflow= ',format(Hrmse1, '.2f'))
print('RMSE for lowflow= ',format(Lrmse1, '.2f'))
print('Logscore for totalflow= ',format(logscore_av1, '.2f'))
print('RMSE for totalflow= ',format(RMSE_av1, '.2f'))
print('')
print('VALIDATION results with variable x1 and x4:')
print('RMSE for highflow= ',format(Hrmse2, '.2f'))
print('RMSE for lowflow= ',format(Lrmse2, '.2f'))
print('Logscore for totalflow= ',format(logscore_av2, '.2f'))
print('RMSE for totalflow= ',format(RMSE_av2, '.2f'))
print('')
print('VALIDATION results with fitted x1 and variable x4:')
print('RMSE for highflow= ',format(Hrmse3, '.2f'))
print('RMSE for lowflow= ',format(Lrmse3, '.2f'))
print('Logscore for totalflow= ',format(logscore_av3, '.2f'))
print('RMSE for totalflow= ',format(RMSE_av3, '.2f'))
print('')
print('VALIDATION results with variable x1 and fixed x4:')
print('RMSE for highflow= ',format(Hrmse4, '.2f'))
print('RMSE for lowflow= ',format(Lrmse4, '.2f'))
print('Logscore for totalflow= ',format(logscore_av4, '.2f'))
print('RMSE for totalflow= ',format(RMSE_av4, '.2f'))



RMSE for highflow=  1.54 
RMSE for lowflow=  0.92 
Logscore for totalflow=  -0.86 
RMSE for totalflow=  1.05 
 
VALIDATION results with variable x1 and x4: 
RMSE for highflow=  1.30 
RMSE for lowflow=  0.87 
Logscore for totalflow=  -0.80 
RMSE for totalflow=  0.96 
 
VALIDATION results with fitted x1 and variable x4: 
RMSE for highflow=  1.17 
RMSE for lowflow=  0.83 
Logscore for totalflow=  -0.59 
RMSE for totalflow=  0.90 
 
VALIDATION results with variable x1 and fixed x4: 
RMSE for highflow=  2.73 
RMSE for lowflow=  1.08 
Logscore for totalflow=  -1.40 
RMSE for totalflow=  1.50 



 

storm-based calibration & validation results for basin B 
• with the threshold relative with the median value of rainfall series (in this case, 

threshod=0.16) to divide the storm epochs 
 

• with variable X1 and X4 

 
 
 

 
 
 
 

 
 
 
 



 
   
 

                
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



storm-based calibration & validation results for basin C 
• with the threshold relative with the median value of rainfall series (in this case, 

threshod=0.1) to divide the storm epochs 
 

• with variable X1 and X4 
 

 
 

 
 
 

 
 



 
 
 
 
 

              
 
 
 

 
 
 
 
 
 
 
 
 
 
 



storm-based calibration & validation results for basin D 
• with the threshold relative with the median value of rainfall series (in this case, 

threshod=0.25) to divide the storm epochs 
 

• with variable X1 and X4 
 
 

 
 

 
 

 
 
 
 



 
 
 
 

             
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 



storm-based calibration & validation results for basin E 
• with the threshold relative with the median value of rainfall series (in this case, 

threshod=0.1) to divide the storm epochs 
 

• with variable X1 and X4 

 
 
 

 
 
 

 
 



 
 
 
 

                
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



storm-based calibration & validation results for basin F 
• with the threshold relative with the median value of rainfall series (in this case, 

threshod=0.19) to divide the storm epochs 
 

• with variable X1 and X4 
 

 
 

 
 
 

 
 



 
 
 
  

             
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



Calibration and validation resutls for GLUE method
Codes below are for basin A

In [1]:

In [ ]:

import numpy as np
import matplotlib.pyplot as plt
from gr4j import gr4j#the rainfall-runoff model
from scipy.optimize import differential_evolution#the calibratio2an algorithm
from scipy.stats import norm#the normal distribution
import pandas as pd
def G(r,ep,p):
    params={ 'X1': p[0], 'X2': p[1], 'X3': p[2], 'X4': p[3] }
    states= { 'production_store': 0.60 * params['X1'], 'routing_store': 0.70 * param
    Qm = gr4j(r, ep, params,states)
    return Qm
font1 = {'family' : 'Arial',
        'weight' : 'normal',
        'size' : 20,}   
font2 = {'family' : 'Arial',
        'weight' : 'normal',
        'size' : 22,}
num1=1.02
num2=1.02
num3=4
num4=2

 
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    



In [2]:

def calibration_validation_MC(N):  
    A=N
    def forcingdata(A):
        data = np.loadtxt(A,dtype=str,delimiter='\t')
        data = [data[ii][0:4] + ' ' + data[ii][4:6] + ' '  + data[ii][6:8] + data[ii
                for ii in np.arange(len(data))]
        data = [data[ii].split() for ii in np.arange(len(data))]
        data = pd.DataFrame(data,columns =['y','m','d','r','ep','s','t1','t2'])
        discharge=np.array(data['s'][14610:16438],dtype=float)
        rainfall=np.array(data['r'][14610:16438],dtype=float)
        ep=np.array(data['ep'][14610:16438],dtype=float)
        data.head()
        return discharge,rainfall,ep
    d_o=forcingdata(A)[0]
    r_o=forcingdata(A)[1]
    p_o=forcingdata(A)[2]
    def validationdata(A):
        data = np.loadtxt(A,dtype=str,delimiter='\t')
        data = [data[ii][0:4] + ' ' + data[ii][4:6] + ' '  + data[ii][6:8] + data[ii
                for ii in np.arange(len(data))]
        data = [data[ii].split() for ii in np.arange(len(data))]
        data = pd.DataFrame(data,columns =['y','m','d','r','ep','s','t1','t2'])
        discharge=np.array(data['s'][16438:18263],dtype=float)
        rainfall=np.array(data['r'][16438:18263],dtype=float)
        ep=np.array(data['ep'][16438:18263],dtype=float)
        data.head()
        return discharge,rainfall,ep
    discharge=validationdata(A)[0]
    rainfall=validationdata(A)[1]
    potential_evap=validationdata(A)[2]
    Par_min=np.array([  20, -5 , 20 , 1 ])
    Par_max=np.array([  2000, 3 , 300 , 5])
    def MC(Par_min,Par_max):
        nmax=10000
        A=np.zeros((nmax,5))
        n_feasible=0
        for i in range(1,nmax):
            Rnum=np.random.rand(4)
            Par =Par_min +(Par_max-Par_min)*Rnum
            Qm=np.array(G(r_o, p_o,Par))
            if np.isreal(Qm.all()):
                Qe=d_o
                QeAv=np.mean(Qe)
                ErrUp=np.sum((Qm-Qe)**2)
                ErrDo = np.sum((Qe-QeAv)**2)
                Obj = 1- ErrUp / ErrDo
            if Obj>0.6:
                A[n_feasible,0:4]=Par
                A[n_feasible,4]=Obj
                n_feasible=n_feasible+1
        return n_feasible,A
    n_feasible,A=MC(Par_min,Par_max)     
    ind=np.argmax(A[:,4])
    Qsim=np.array(G(r_o, p_o, A[ind,0:4]))
    #%%
    plt.figure(figsize=(18,4))  
    plt.plot(Qsim,'b-',markersize=2,label='simulated flow')
    plt.plot(d_o,'r.',markersize=2,label='observed flow')
    plt.title('GLUE calbration',fontsize=22)



    plt.xlabel('time (d)',font2)
    plt.ylabel('discharge (mm/d)',font2)
    plt.xticks(fontsize=20)
    plt.yticks(fontsize=20)  
    plt.legend(bbox_to_anchor=(num1, num2), loc=num3, borderaxespad=num4,prop=font1)
    plt.savefig('A_G_c.pdf', bbox_inches='tight')
    B=np.zeros((n_feasible,5))
    QM=np.zeros((len(B),len(discharge)))
    sigma=np.zeros(len(discharge))
    QM_5=np.zeros(len(discharge))
    QM_95=np.zeros(len(discharge))
    logscore1=np.zeros(len((discharge)))
    RMSE1=np.zeros(len(discharge))  
    miu=np.zeros(len(discharge))
    sig=np.zeros(len(discharge))
    for i in range(n_feasible):
        B[i,:]=A[i,:]  
    for i in range(n_feasible):
        QM[i,:]=np.array(G(rainfall, potential_evap,B[i,0:4]))
    for j in range(len(discharge)):
        sigma[j]=( np.sum( ( QM[:,j]-np.mean(QM[:,j])) **2)/len(B) ) **(1/2)
    for i in range(len(discharge)):
        miu[i],sig[i]=norm.fit(QM[:,i])
        QM_5[i] = norm.ppf(0.05,miu[i],sig[i]) 
        QM_95[i] =norm.ppf(0.95,miu[i],sig[i]) 
    QM_5[QM_5<0]=0
    for i in range(len(discharge)):
        Vobs=0
        Vpredict1= sig[i]
        Mobs1=discharge[i]
        Mpredict1=np.mean(QM[:,i])
        RMSE1[i]= (Mobs1-Mpredict1)**2
        logscore1[i]=-1/2*np.log(2*np.pi)-1/2*np.log(Vobs+Vpredict1) -(Mobs1-Mpredic
    logscore1_av=(np.mean(logscore1))
    RMSE_av1=(np.sum(RMSE1)/len(discharge))**0.5
    plt.figure(figsize=(18,4))
    plt.fill_between(np.linspace(1,len(discharge),len(discharge)),QM_5,QM_95,alpha=0
    plt.plot(discharge,'r.',markersize=1.3,label='observed flow')
    plt.title('GLUE validation with logscore= '+str(format(logscore1_av,'.2f'))+' RM
    plt.xlabel('time (d)',font2)
    plt.ylabel('discharge (mm/d)',font2)
    plt.xticks(fontsize=20)
    plt.yticks(fontsize=20)  
    plt.legend(bbox_to_anchor=(num1, num2), loc=num3, borderaxespad=num4,prop=font1)
    plt.savefig('A_G_v.pdf', bbox_inches='tight')
    plt.ylim(-4,np.max(discharge)*1.2)
    hflow=[]
    hindex=[]
    lflow=[]
    lindex=[]
    for m in range(len(rainfall)):
        if rainfall[m]<5:
            lindex.append(m)
            lflow.append(discharge[m])
        else:
            hindex.append(m)
            hflow.append(discharge[m])
    hflow=np.array(hflow)   
    lflow=np.array(lflow)
    hindex=np.array(hindex)
    lindex=np.array(lindex)



In [3]:

In [4]:

In [5]:

In [6]:

for basin A: 1.0755484333691538 0.7658080626628302 

    hrmse=np.zeros(len(hindex))
    lrmse=np.zeros(len(lindex))
    for i in range(len(hindex)):
        n=hindex[i]
        hrmse[i]=(hflow[i]-np.mean(QM[:,n]))**2 
    Hrmse1=(np.sum(hrmse)/len(hflow) )**(1/2)
    for i in range(len(lindex)):
        n=lindex[i]
        lrmse[i]=(lflow[i]-np.mean(QM[:,n]))**2 
    Lrmse1=(np.sum(lrmse)/len(lflow) )**(1/2)         
    print('for basin A:',Hrmse1,Lrmse1)
    return 

calibration_validation_MC('07068000.dly') #A

#calibration_validation_MC('1664000.dly') #B

#calibration_validation_MC('3164000.dly') #C

#calibration_validation_MC('3161000.dly') #D



In [7]:

In [8]:

#calibration_validation_MC('12027500.dly') #E

#calibration_validation_MC('11532500.dly') #F



GLUE calibration & validation results for basin B 
 

 
 
 
 
GLUE calibration & validation results for basin C 
 

 



 
 
 
 
GLUE calibration & validation results for basin D 
 

 
 
 



GLUE calibration & validation results for basin E 
 

 
 
 
 
GLUE calibration & validation results for basin F 
 

 



 
 



Calibration and validation results obtained by traditiional
method.
the codes beblow are for basin A

In [1]:

In [ ]:

import numpy as np
import matplotlib.pyplot as plt
from gr4j import gr4j#the rainfall-runoff model
from scipy.optimize import differential_evolution#the calibratio2an algorithm
from scipy.stats import norm#the normal distribution
import pandas as pd
font1 = {'family' : 'Arial',
    'weight' : 'normal',
    'size' : 20,}   
font2 = {'family' : 'Arial',
    'weight' : 'normal',
    'size' : 22,}
num1=1.02
num2=1.02
num3=4
num4=2

        
    
    
    
    
    
    



In [2]:

def tra_method(N):
    A=N
    def G(r,ep,p):
        params={ 'X1': p[0], 'X2': p[1], 'X3': p[2], 'X4': p[3] }
        states= { 'production_store': 0.60 * params['X1'], 'routing_store': 0.70 * p
        Qm = gr4j(r, ep, params,states)
        return Qm
    def forcingdata(A):
        data = np.loadtxt(A,dtype=str,delimiter='\t')
        data = [data[ii][0:4] + ' ' + data[ii][4:6] + ' '  + data[ii][6:8] + data[ii
                for ii in np.arange(len(data))]
        data = [data[ii].split() for ii in np.arange(len(data))]
        data = pd.DataFrame(data,columns =['y','m','d','r','ep','s','t1','t2'])
        discharge=np.array(data['s'][14610:16438],dtype=float)
        rainfall=np.array(data['r'][14610:16438],dtype=float)
        ep=np.array(data['ep'][14610:16438],dtype=float)
        data.head()
        return discharge,rainfall,ep
    d_o=forcingdata(A)[0]
    r_o=forcingdata(A)[1]
    p_o=forcingdata(A)[2]
    def validationdata(A):
        data = np.loadtxt(A,dtype=str,delimiter='\t')
        data = [data[ii][0:4] + ' ' + data[ii][4:6] + ' '  + data[ii][6:8] + data[ii
                for ii in np.arange(len(data))]
        data = [data[ii].split() for ii in np.arange(len(data))]
        data = pd.DataFrame(data,columns =['y','m','d','r','ep','s','t1','t2'])
        discharge=np.array(data['s'][16438:18263],dtype=float)
        rainfall=np.array(data['r'][16438:18263],dtype=float)
        ep=np.array(data['ep'][16438:18263],dtype=float)
        data.head()
        return discharge,rainfall,ep
    discharge=validationdata(A)[0]
    rainfall=validationdata(A)[1]
    potential_evap=validationdata(A)[2]
    def obj(B):  #run for the whole period to find the value of constant parameter X
        Qsim=np.array(G(r_o,p_o,B))
        Qobs=d_o
        QM=Qsim
        ErrUp=np.sum((QM-Qobs)**2)
        ErrDo = np.sum((Qobs-np.mean(Qobs))**2)
        NSE = 1- ErrUp / ErrDo
        return -NSE                                                                 
    Bounds= [(20 ,2000),(-5,3),(20,300),(1,5)]
    result1= differential_evolution(obj, Bounds)
    Qm=np.array(G(r_o, p_o, result1.x[0:4]))
    plt.figure(figsize=(18,4)) 
    plt.plot(Qm,'b-',markersize=2,label='simulated flow')
    plt.plot(d_o,'r.',markersize=2,label='observed flow')
    plt.title('traditional calbration',fontsize=22)
    plt.xlabel('time (d)',font2)
    plt.ylabel('discharge (mm/d)',font2)
    plt.xticks(fontsize=20)
    plt.yticks(fontsize=20)  
    plt.legend(bbox_to_anchor=(num1, num2), loc=num3, borderaxespad=num4,prop=font1)
    plt.savefig('A_t_c.pdf', bbox_inches='tight')
    hflow=[]
    hindex=[]
    lflow=[]



    lindex=[]
    for m in range(len(rainfall)):
        if rainfall[m]<5:
            lindex.append(m)
            lflow.append(discharge[m])
        else:
            hindex.append(m)
            hflow.append(discharge[m])
    hflow=np.array(hflow)   
    lflow=np.array(lflow)
    hindex=np.array(hindex)
    lindex=np.array(lindex)
    hrmse=np.zeros(len(hindex))
    lrmse=np.zeros(len(lindex))
    Qsim=np.array(G(rainfall, potential_evap, result1.x[0:4]))
    sigma=(np.sum((Qm-d_o)**2)/len(d_o))**(1/2)
    Qm1_5=np.zeros(len(discharge))
    Qm1_95=np.zeros(len(discharge))
    logscore1=np.zeros(len((discharge)))
    RMSE=np.zeros(len(discharge))
    for i in range(len(discharge)):
        Qm1_5[i] = norm.ppf(0.05,Qsim[i],sigma) 
        Qm1_95[i] =norm.ppf(0.95,Qsim[i],sigma) 
    Qm1_5[Qm1_5<0]=0
    Qm1_95[Qm1_95<0]=0
    for i in range(len(discharge)):   
        Vobs=0
        Vpredict1= sigma
        Mobs1=discharge[i]
        Mpredict1=Qsim[i]
        RMSE[i]= (Mobs1-Mpredict1)**2
        logscore1[i]=-1/2*np.log(2*np.pi)-1/2*np.log(Vobs+Vpredict1) -(Mobs1-Mpredic
    logscore1_av=(np.mean(logscore1))
    RMSE_av1=(np.sum(RMSE)/len(discharge))**0.5
    for i in range(len(hindex)):
        n=hindex[i]
        hrmse[i]=(hflow[i]-Qsim[n])**2 
    Hrmse1=(np.sum(hrmse)/len(hflow) )**(1/2)
    for i in range(len(lindex)):
        n=lindex[i]
        lrmse[i]=(lflow[i]-Qsim[n])**2 
    Lrmse1=(np.sum(lrmse)/len(lflow) )**(1/2)         
    print('for basin A',Hrmse1,Lrmse1)
    plt.figure(figsize=(18,4))
    plt.fill_between(np.linspace(1,len(discharge),len(discharge)),Qm1_5,Qm1_95,alpha
    plt.plot(discharge,'r.',markersize=1,label='observed flow')
    plt.title('traditional validation with average logscore = '+str(format(logscore1
    plt.xlabel('time (d)',font2)
    plt.ylabel('discharge (mm/d)',font2)
    plt.xticks(fontsize=20)
    plt.yticks(fontsize=20)  
    plt.legend(bbox_to_anchor=(num1, num2), loc=num3, borderaxespad=num4,prop=font1)
    plt.savefig('A_t_v.pdf', bbox_inches='tight')
    plt.ylim(-4.9,np.max(discharge)*1.2)
    return
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In [10]:

for basin A 0.9394200940416538 0.7978684692326611 

tra_method('07068000.dly') #basin A

#tra_method('1664000.dly') #basin B

#tra_method('3164000.dly') #basin C

#tra_method('3161000.dly') #basin D

#tra_method('12027500.dly') #basin E



In [9]:

#tra_method('11532500.dly') #basin F



traditional calibration & validation results for basin B 

 
 
 
 
traditional calibration & validation results for basin C

 
 
 



 
 
 
 
 
traditional calibration & validation results for basin D 
 

  

 



traditional calibration & validation results for basin E 
 

 
 
 
 
traditional calibration & validation results for basin F 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


