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ABSTRACT

Urban areas are rapidly expanding in developing countries. One of goals of the United Nations Hu-
man Settlement Programme (UN-Habitat) is to understand and guide urban development for some
developing regions. Currently, the approaches that UN-Habitat is using cost plenty of workforce,
material, and time. Therefore, UN-Habitat is interested in exploring new approaches on how to
drive down costs and time, which would not only allow for faster responses but expanding their
analysis. Since UN-Habit is already using satellite imagery for urban mapping, our research ques-
tion is formulated as: Can we develop an automated system that provides valuable information
about urban development for the UN-Habitat from satellite image data (e.g. building detection)?

After examining the satellite imagery provided by UN-Habitat and those available publicly (crowd AI
and Inria Areial datasets), we define the main task as a building segmentation task. In this research,
we study deep learning techniques for building segmentation on satellite image data. Duo to the
fact that the number of images and the quality available for the region of interest (Middle East) for
UN-Habitat are insufficient to solely rely on for training. Therefore, we use some public datasets
(crowd AI and Inria Areial datasets) for training and evaluation, whose regions and construction
practice are different. Starting with testing several classic segmentation algorithms (FCN8S, Seg-
Net, Deep_Lab and U-Net), from the experiment results, we find that the performance can still be
improved. Then, we propose two novel data reweighing methods, named border weight and inter-
building distance weight, to improve the detection performance. By increasing the weights of the
pixels outside but close to the border of the buildings, the model is encouraged to learn those in-
formation and thus performs better. Inspired by the idea of reweighing the non-building pixels,
we investigate whether modifying building pixels can achieve further improvement. We propose
a new label representation – multi-level boundary label that does help to improve the segmenta-
tion results. Based on the distance to the building boundary, we can divide building pixels into
multiple classes, as their pixel values can be affected by some factors such as trees and shadows.
From the experiment result, we can see that the performance is improved since the model captures
more information about the buildings. Next, we propose a new neural network architecture that
utilizes the two pixel weights, and the multi-level boundary label explained above. Our proposed
model achieves state-of-the-art building segmentation performance compared with several classic
segmentation methods. For example, the proposed model’s mean intersection of union on the test
dataset is 3% higher than that of FCN8S. Our model also uses fewer number of parameters ( 16 mil-
lion in total) because we only use the first 13 layers of the VGG16 as the encoder and we do not use
any convolutional layers in the decoder part.

The results using the publicly available datasets show that with enough good quality input the build-
ing segmentation is possible, hence should be possible in other regions as well. To see the perfor-
mance of our proposed model on the UN-Habitat dataset, we train our model with public datasets
(crowd AI and Inria Areial datasets) and then use transfer learning to fit the UN-Habitat dataset. The
building detection performance is reduced still good results are obtained. For achieving compara-
ble performance in the region of interest for UN-Habitat more labelled data is needed. Based on
the results using the publicly available datasets, we are confident that a comparable performance is
attainable.

Regarding the research question, our answer is definitely yes. We not only show that it is possible
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to obtain information about urban development from satellite image but also propose a new model
with great performance in our work.
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1
INTRODUCTION

1.1. MOTIVATION

Urban areas are rapidly expanding which is well illustrated by the increasing number of city dwellers:
about half million each week [16]. Figure 1.3 illustrates that this growth is uneven: it is the most
pronounced in developing countries. Understanding the scale and speed of urban developments,
as well as the type of dwellings associated with these developments is instrumental for addressing
urban sprawl with evidence-based planning.

In many regions, such as in some parts of Africa and the Middle East, urban developments take
place in an uncoordinated, unmonitored, and unrecorded manner. Among other goals the United
Nations Human Settlement Programme (UN-Habitat) was established as a response to these chal-
lenges and it plays a crucial role in understanding and in a later stage guiding urban development
in these regions. The prerequisite of understanding is a diagnosis, i.e., mapping the current urban
conditions. This is a formidable task which involves recording the geographical location of each
building (detection), identifying the building type, and in some cases also assessing the structural
conditions, e.g., severely damaged, moderately damaged, or sound. In this thesis we focus solely on
the challenge of building detection.

Figure 1.1: Year 2018. Figure 1.2: Year 2030.

Figure 1.3: Illustration of the growth of urban areas and urban agglomerations [1]

1.2. CURRENT UN-HABITAT APPROACH

The ultimate goal of UN-Habitat is to provide adequate shelter for all. Therefore it is vital to under-
stand the speed and scale of urban developments, in regions where these developments take place
without coordination, monitoring, and recording. In these situations, especially when the given
data is satellite imagery, the number of buildings and their sizes can be useful data as with them we

1
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can estimate the population number and the quality of people’s life. In this thesis, we focus on one
challenge, which is the building detection.

Currently, UN-Habitat uses two approaches and their combination to map urban areas in regions
with uncoordinated and unmonitored urban development:

1. On the ground: visual inspection and mapping of buildings.

2. In the office: satellite imagery-based mapping by humans: visual inspection of images and
manual identification.

To provide further insight, we compare the two approaches in respect of requirements, costs, and
results. For the first approach, many people are required to check the buildings one by one. It
usually costs a substantial amount of money and time. Inspectors need to travel to every building,
inspect them, and then record what they see. For a city like Mosul whose area is 180 km2̂, it may
require two or three months to collect these data. The results of this approach are accurate and
complete because the inspectors can clearly see the details of each building, and they can even talk
with local people to confirm their findings.

Concerning the second approach: satellite images are required, and their quality such as resolution
is very important since it directly affects the accuracy of the result. Compared to the first approach,
it can save time and money as people can sit in front of their computer to finish the task. It takes
about 10 to 15 seconds to annotate an outline of a building. Therefore, the task can be finished
within a month with the same number of people as for the first approach. But the result may not be
so good as the information of the satellite imagery is not complete (top-down view), especially for
the damage assessment.

Both of these approaches require people to collect data manually, and they take some time to finish.
There are some differences between the results: for example, for the second approach, we may
underestimate the number of buildings when they are too close and can be mistaken as a single
building. In this case, the total floor area of them can make more sense as the final goal is to estimate
urban development. The working hypothesis of this study is that we can improve the current UN-
Habitat approaches with an automated approach that does not require human labor.

1.3. PROBLEM STATEMENT

Both current UN-Habitat urban mapping approaches are so labor-intensive that it prohibits the
mapping of large urban areas, let alone the continuous monitoring of their development in time.
Hence the main challenge for UN-Habitat and in general in urban mapping is:

How to extend urban mapping in space and time in a formidable way, i.e., using the currently
available capacities?

Current mapping approaches cost plenty of workforce, material, and time. Therefore, if we can build
an automated system that can monitor the urban developments, we can save a lot and greatly ben-
efit from it. In this case, satellite imagery can be used as a powerful source which contains rich and
structured information. Compared to traditional images, satellite images started to attract atten-
tion recently from many researchers for map composition, population analysis, effective precision
agriculture, and autonomous driving tasks [17]. From top-down view images we can estimate the
number of buildings and their size in a city. From this we can gain multiple insights: (i) we can know
the building density so that we can estimate the population density; (ii) we can also learn how cities
sprawl and the number of informal dwellings; (iii) what is more, obtaining the building maps in
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these areas can greatly improve the response of emergency preparedness actors when natural, and
civil disasters occur.

This raises to the following main research question:

• Can we develop an automated system that provides valuable information about urban de-
velopment for the UN-Habitat from satellite image data (e.g. building detection)?

To address this challenging question, we define the main task as a building segmentation task after
examining the satellite imagery provided by UN-Habitat. With the development of computer vision
and deep learning techniques, especially convolutional neural networks (CNN), the limits of what
we can achieve have been pushed in recent years. In this thesis, we study deep learning algorithms
for image semantic segmentation. It is an interesting topic to achieve a building detection system
based on satellite images, during which we can see the impact of bridging modern computer vision
with remote sensing data analysis on our understanding of environment such as urban growth.

Our main contributions of this thesis:

• Investigate whether a combination of different pixel weights could lead to better performance
in the building segmentation task.

• Investigate whether a multi-class label is a feasible annotation type to improve the perfor-
mance of building segmentation task.

• Propose a model1that achieves state-of-the-art building segmentation performance on pub-
licly available datasets.

• Apply two post-processing steps on the segmentation results and demonstrate that we can
obtain information about urban development from segmentation results.

1.4. STRUCTURE OF THE REPORT

The remainder of this thesis is organized as follows. Background and literature overview are pre-
sented in chapter 2. Chapter 3 describes the datasets that are used for the following experiments
and the processing steps, as well as the evaluation metrics. We test some classic image segmen-
tation models in chapter 4. The experiment settings are introduced and the results of the initial
experiment are used as baseline for the comparisons in the following chapters. Next, motivated
by the initial experiments, two methods to reweigh the data are proposed and tested in chapter 5.
Chapter 6 introduces a multi-class label representation and investigates if the performance of the
segmentation methods can be improved. Based on these (numerical) experiment results, in chap-
ter 7, we propose a new model to utilize the two pixel weights and the multi-level boundary label
explained in chapter 5 and 6. Chapter 8 introduces the post-processing steps to obtain urban de-
velopment information from the output of the model. Finally, Section 9 summarizes our work and
provides some discussion points and future work.

1In this thesis, the term ’model’ refers to a deep learning model.





2
BACKGROUND AND LITERATURE OVERVIEW

To have a clear understanding of the rest of the thesis, it is essential to know some basic concepts
and prior research results. An overview of relevant theoretical information and terms that will be
used in the rest of the thesis is presented. We also introduce some related work in this chapter.

2.1. MACHINE LEARNING

In computer science field, artificial intelligence (AI), sometimes called machine intelligence, is the
intelligence that machines display, in other words, the simulation of human intelligence processes
by machines, especially computer systems. As a subset of AI, the main research goal of machine
learning is to achieve AI, especially to allow the computers learn automatically without human in-
tervention or assistance and adjust actions accordingly [18]. The name of machine learning was
coined by Arthur Samuel, with the definition "a field of study that gives computers the ability to
learn without being explicitly programmed [19]." In 1998, another well regarded machine learning
researcher proposed a more precise definition "a computer program is said to learn from experi-
ence E with respect to some task T and some performance measure P, if its performance on T, as
measured by P, improves with experience E [20]."

Instead of designing a specific algorithm for a specific task or setting up strict rules to make a pre-
diction, machine learning algorithms are a class of algorithms that automatically analyze and learn
rules from data, then use these rules to make predictions on unseen (not used for training) data.
Therefore, the quantity and quality of the input data is of paramount importance. Machine learning
has been widely used in various fields, such as machine translation, recommendation systems, and
data mining [21].

According to the type of input and output data, and the type of task or problem to solve, different
types of machine learning algorithms can be distinguished as follows:

• Supervised learning: Models that can predict labels of unseen data based on labeled training
data.

• Unsupervised learning: Models that can identify structures in unlabeled data.

• Semi-supervised learning: Models that often are used when labels of training data are in-
complete. Semi-supervised learning can be regarded as a class of methods that falls between
supervised learning and unsupervised learning.

5



2

6 2. BACKGROUND AND LITERATURE OVERVIEW

• Reinforcement learning: Rewarded-based models that learn to maximize the reward by inter-
acting with the environment.

Figure 2.1: Types of machine learning [2]

2.1.1. SUPERVISED LEARNING

The majority of machine learning approaches are supervised learning algorithms. In a supervised
learning setting, an algorithm is trained with a training dataset whose label or the desired outcome
is known. The algorithm can learn and adjust to yield better results by minimizing an error between
the output and the ground truth. When having sufficiently large training data and an appropriate
learning algorithm, we can get a model with enough generalization capacity to function on real-
world data. It is expected to perform good with excellent performance.

Typically, supervised learning problems are subdivided into classification tasks and regression tasks.
In classification, the labels are discrete categories, while in regression, the labels are continuous
quantities. Some popular examples of supervised machine learning algorithms are Linear Discrim-
inant Analysis [22], Support Vector Machines [23], and Random Forest [24].

2.1.2. UNSUPERVISED LEARNING

Unsupervised learning involves modeling the features of a dataset without labels. It is also known
as self-organization and allows modeling probability densities of given inputs [25]. Algorithms are
left to their own to discover and present the interesting structures in the data. The goal of unsu-
pervised learning is to learn more about the underlying processes and mechanism by modeling the
underlying structure or distribution in the data.

Unsupervised learning problems can be further grouped into clustering tasks and dimensionality
reduction tasks. Clustering algorithms identify distinct groups of data in a way that objects in the
same group are more similar in some sense to each other than to those in other groups, while di-
mensionality reduction algorithms search for more succinct representations of the data which leads
to only a small loss of accuracy. Several classic unsupervised machine learning algorithms are K-
means Clustering algorithm [26], Principal Component Analysis [27], and Manifold Learning [28].

Given the data and the research goals, we will only consider supervised learning approaches further
in this study.
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2.2. DEEP LEARNING

Deep learning is a particular type of machine learning technique that uses neural networks, which
learns data representations with multiple levels of abstraction. The relationship between AI, ma-
chine learning and deep learning is shown in figure 2.2 Inspired by the information processing and
communication way of biological nervous systems, deep learning uses complex neural networks
with many hidden layers. We discuss the details of the neural network in section 2.3.

Figure 2.2: Relationship between AI, machine learning and deep learning [3]

Deep learning methods have dramatically improved the state-of-the-art performance in speech
recognition, visual object recognition, object detection, and many other domains such as drug dis-
covery and genomics [29].

One of the advantages of deep learning is that it can capture intricate structures of high-dimensional
data which are hard to be discovered. Therefore, deep learning has a wide range of applications,
such as image classification, speech recognition, and natural language understanding. However,
deep learning comes at a high cost: it is hard to explain why and how the prediction is made. Deep
learning methods usually have high accuracy while are not being interpretable.

2.3. NEURAL NETWORK

A neural network or artificial neural network(ANN) is based on a collection of connected units called
"neurons". The units are combined and form a network. A unit is shown in figure 2.3 and formulated
as follows:

To explain how it works, let us say N is the input dimension and N can be different for differ-
ent neurons. Each unit has an N dimensional input vector A = [a1a2...aN ]T and corresponding
N dimensional learnable weight vector W = [w1w2...wN ] and bias value b. Firstly, weighed sum
z = ∑N

i=1 ai wi + b is computed then z is passed through an activation function f to get the final
output aout . Mostly, the activation function is a nonlinear function to add the non-linearity and
allow for learning complicated mappings between inputs and outputs, such as Linear Rectified
Units(ReLu) [30] and Sigmoid function. The type of activation function is important as it can be
used to determine whether and to what extent that signal should progress further through the net-
work to affect the final outcome.

Units are aggregated into layers, and layers are aggregated into a neural network. Different types of
operations and transformations are performed by different layers. The output of each layer is the
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Figure 2.3: A single unit [4]

input of the subsequent layer, starting from an input layer receiving the input data. Figure 2.4 shows
a network with two hidden layers.

Figure 2.4: A neural network with 2 hidden layers [5]]

2.3.1. CONVOLUTIONAL NEURAL NETWORK

As the provided data are satellite imagery, we decide to use a class of networks that are most com-
monly applied to analyzing imagery data. Convolutional neural networks(CNNs) are a specialized
kind of neural network for processing data that has a known, grid-like topology, inspired by the or-
ganization of the animal visual cortex. CNNs are neural networks that use convolution operation
instead of general matrix multiplication [31]. The term convolution is a mathematical operation
derived from two given functions by integration to express how the shape of one is modified by the
other. In case of CNN, convolution is performed on the input data with the use of a filter or ker-
nel to produce a feature map. Convolution is executed by sliding the filter over the input. At every
location, a matrix multiplication is performed on the input and filter and sums the result onto the
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feature map. A CNN consists of one or more convolutional layers, followed by activation functions
and pooling layers. Figure 2.5 shows a typical CNN architecture.

Figure 2.5: A CNN architecture [5]

Each convolutional layer has a group of convolution kernels or can be called learned filters whose
receptive fields are small and spatial such as 3×3 or 5×5. The output of these kernels is collected by
convolving each kernel on the input features, whose number is analogous to the number of kernels.
Then non-linearity is added in an element-wise way by the activation function, and the pooling
layer is applied whose function is to progressively reduce the spatial size of the representation to
reduce the number of parameters and computation in the network, and hence to also control over-
fitting. [cite] The weight values of each kernel are learnable during the training steps. Normally, a
deep CNN contains more than one convolution layer to capture different levels of feature represen-
tation step by step. For example, a simple feature can be an edge or orientation. Within an image,
each pixel value has a higher correlation with near neighbors’ than far neighbors’. Therefore, using
a convolution operation makes sense because convolution can make good use of the local connec-
tivity of each pixel. Moreover, the number of the parameters can be dramatically reduced compared
to fully connected layer because the weights of each kernel are shared by all pixels of the input. The
way a convolutional layer works is visualized in figure 2.6.

Figure 2.6: Visualization of how a convolutional layer works [cite]

2.4. SEMANTIC SEGMENTATION

Image classification refers to a classic problem in the computer vision area: classifying an image
based on its visual content where the output to an image is a single class label. It is a natural step in
the progression from coarse to fine inference, to make dense predictions inferring labels for every
pixel. To recognize and understand what is in the image on a pixel level, image semantic segmen-
tation is the process of assigning a label to every pixel in an image such that pixels with the same
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label belong to the same object or region. The goal of segmentation is to simplify or change an
image into a representation that is easier to understand and analyze. Specifically, we can obtain
the objects’ locations and boundaries in an image through semantic segmentation. So far, seman-
tic segmentation is a widely used application in many fields, such as autonomous driving, object
detection, face recognition and so on. Figure 2.7 shows an example of semantic segmentation.

Figure 2.7: Image semantic segmentation

In the following sections, several popular methods in deep learning techniques are described.

2.4.1. FULLY CONVOLUTIONAL NETWORKS

Fully Convolutional Networks (FCNs) [32] were proposed by Jonathan et al. in 2015. Their paper is
a pioneering work that applies the CNN structure to the field of image semantic segmentation and
achieves outstanding results. They successfully transformed existing and well-known classification
models into fully convolution ones to output spatial maps rather than classification scores.

FCN is an end-to-end, pixel-to-pixel network, in other words, the input is the original raw data, and
the output is the final result.

Instead of using fully connected layers as the last several layers, FCN uses convolution layers in the
end, which enables a classification net to output a heatmap [32], which is more suitable for image
segmentation. With the help of deconvolution, such that convolution with factor f and a fractional
input stride of 1/ f , the image can be upsampled to the original size. In this case, a pixel-wise loss
can be easily computed and can be learned through backpropagation. Figure 2.8 shows an example
structure of FCN.

Figure 2.8: An example of fully convolutional network [CITE]

FCN allows input of arbitrary size rather than a fixed dimension and produces correspondingly sized
output, and it achieves a better performance than prior work [32].

2.4.2. U-NET

Olaf et al. modified and extended the FCN architecture such that it works with fewer training images
and performs better [6]. An important modification is that in the upsampling part, there are lots
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of feature channels that allow the network to propagate context information to higher resolution
layers. As a result, the architecture is symmetric and has a u-shape.

The architecture of U-Net [6] is showed in figure 2.9. The left part is the contracting path, consisting
of a usual convolutional network where convolution layers are alternated with max-pooling layers
to downsample the input. The size of the input is decreased, but the number of feature channels is
doubled at each downsampling step. The right part is the upsampling path where deconvolution is
applied to upsample the feature maps, which halves the number of feature channels in every step.
To enhance the high-resolution, features from the contracting path are copied and concatenated
with upsampled features. Based on the concatenation of coarse and fine features, a successive con-
volution layer can learn to assemble a more precise output.

Figure 2.9: The architecture of U-Net [6]

U-Net is proposed for different biomedical segmentation applications [6]. To address the challenge
in many cell segmentation tasks which is the separation of touching objects of the same class, the
authors also proposed a weighted loss map, where the separating background labels between touch-
ing cells obtain a large weight in the loss function.

One weight map for each ground truth segmentation is computed to compensate for the different
frequency of pixels from a certain class. Then to force the network to learn the small separation
borders, another weight map related to the distances to the nearest cell is introduced. The final
weight map is the sum of these two weight map, which is computed as:

w(x) = wc (x)+w0 ∗exp(− (d1(x)+d2(x))2

2σ2 ) (2.1)

Where x is the pixel value of the training sample, wc (x) is the weight map to balance the class fre-
quencies, d1(x) and d2(x) denote the Euclidean distances to the border of the nearest and second
nearest, respectively. Also, w0 and σ are two hyperparameters.

From figure 2.10, we can see the value of the final weight map. If we find out some characteris-
tics of a particular dataset, we can also come up with a way to reweigh each pixel to improve the
performance.
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Figure 2.10: HeLa cells on glass recorded with DIC (differential interference contrast) microscopy. (a) raw image. (b)
overlay with ground truth segmentation. Different colors indicate different instances of the HeLa cells. (c) generated
segmentation mask (white: foreground, black: background). (d) map with a pixel-wise loss weight to force the network to
learn the border pixels. [6]

2.4.3. SEGNET

FCN-based architectures are popular and successful, and many segmentation architectures share
the same encoder network as FCN, which produces low-resolution feature maps. The form of their
decoder that maps the low-resolution feature maps to full resolution feature maps varies. SegNet
[7] is a clear example of this divergence – the architecture of its decoder is different.

Instead of using deconvolution to upsample the features, SegNet upsamples its feature maps using
the memorized max-pooling indices from their corresponding feature maps in the encoder phase.
The decoder of SegNet is composed of a set of upsampling and trainable convolution layers to pro-
duce dense feature maps. Figure 2.11 shows the difference of upsampling between SegNet and FCN.

Figure 2.11: Comparison of SegNet (left) and FCN (right) decoders [7]

FCN does not reuse the max-pooling indices but instead transfer the entire feature map to the corre-
sponding decoders. Reusing the max-pooling indices in the decoding process reduces the number
of parameters enabling end-to-end training. The number of trainable parameters is also reduced
compared with using deconvolution to upsample the feature maps. The architecture of SegNet is
shown in figure 2.12

Figure 2.12: The architecture of SegNet [7]
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2.4.4. DEEP_LAB

It is important to integrate local and global information for semantic segmentation. Local informa-
tion is crucial to achieving good pixel-level accuracy. To resolve local ambiguities, the integration of
information from the global context of the image is also necessary. Motivated by this idea, Deep_Lab
[9] was proposed. We explain some concepts that are applied in Deep_Lab.

Dilated convolution [8] is a generalization of Kronecker-factored convolutional filters [33] that sup-
ports expanding receptive fields without losing resolution.

l is the dilated rate and illustrated in figure 2.13, we can see the relationship between the size of the
receptive field and dilated rate. Imagine that when we build up a network out of multiple layers of
dilated convolutions, the size of the receptive field grows exponentially with layer depth while the
number of the parameter only keeps a linear growth.

Figure 2.13: Dilated convolution filters with various dilation rates: (a) 1-dilated convolutions in which each unit has a 3
× 3 receptive fields, (b) 2-dilated ones with 7 × 7 receptive fields, and (c) 3-dilated convolutions with 15 × 15 receptive
fields. [8]

To capture multi-scale features, multiple parallel filters are exploited, the author also proposed
Atrous Spatial Pyramid Pooling (ASPP) _Lab[_Lab? ] based on the idea of spatial pyramid pool-
ing [34] [35]. Figure 2.14 shows an example of ASPP. When using dilated convolution with different
kernel size and different dilated rates, we can obtain information from various scale. Then this local
and global information can be integrated to produce better outputs.

Figure 2.14: An example of Atrous Spatial Pyramid Pooling (ASPP) [9]

Deep_Lab [9] uses dilated convolution with upsampled filters for dense feature extraction. ASPP is
applied to encode objects as well as image context at multiple scales.
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2.5. RELATED WORK

In the field of remote sensing applications, the extraction of building footprints has been extensively
studied over the past decade. This problem has been addressed by traditional computer vision tech-
niques and was solved by traditional machine learning classifiers combined with hand-crafted fea-
tures such as texture, color features [36] and vegetation indices [37] [38]. With the development of
convolutional neural networks, semantic segmentation becomes one of the core challenges in com-
puter vision, as the breakthroughs of deep learning in image classification tasks can be easily trans-
ferred to the semantic segmentation tasks. Researchers have made efforts to apply deep learning
techniques for satellite images to detect buildings. Also, over the past few years, several challenges
and competitions are focusing on building segmentation tasks, such as SpaceNet Off-Nadir Building
Detection Challenge [39], DeepGlobe[17], and crowdAI Mapping Challenge [40].

Although the provided datasets of these contests are different from the dataset used in this project,
the top solutions of these contests are good references from which we can learn.

A multi-layer perceptron approach is proposed in the paper [10] that can balance the trade-off be-
tween localization and classification for building labeling with the help of skip networks. Multiple
intermediate features at different resolutions are extracted. In such a scheme, the high-resolution
features have a small receptive field, while the low-resolution ones have a wider receptive field. Fig-
ure 2.15 shows the architecture.

Figure 2.15: MLP network: intermediate CNN features are concatenated, to create a pool of features. Another network
learns how to combine them to produce the final classification [10]

The segmentation of building footprints can be improved with a multi-task network. Specifically,
semantic segmentation boundaries in high-resolution satellite images can be preserved by using
a cascaded multi-task loss [41]. The classification loss function for the prediction of the distance-
classes and the loss function for the segmentation mask were combined to get the total loss. Another
multi-class land segmentation algorithm using feature pyramid network [42] was proposed by Se-
lim et al. [43]. A new cascaded multi-task loss was introduced to preserve semantic segmentation
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boundaries in high-resolution satellite imagery. Jaccard index and a discrete object classification
loss function were added together with two hyperparameters to obtain the generalized loss func-
tion.

Building size can be considered as research target since prior works treat all buildings as a single
class. Buildings with different sizes may have different features. A multi-task model [11] is proposed
based on the specific size of buildings. Figure 2.16 shows the architecture. The model is based on
U-Net [6] and consists of a shared feature extractor F and successive detectors. At lower levels, the
detectors can share general features, and they can learn high-level features for the specific size of
the building, as the size of each building has been categorized in the ground truth. It is interesting
to consider the building size, and the experiment results show that this model improves building
detection accuracy.

Figure 2.16: Architecture of the multi-task U-Net (centre) model. [11]

Based on a segmentation algorithm Mask R-CNN [44], building polygons can be obtained but have
irregular shapes that are far different from real building footprint boundaries. A method combin-
ing Mask R-CNN with building boundary regularization is proposed by Kang et al. [45]. Polygons
generated by Mask R-CNN can be converted into the regularized polygons with almost equivalent
performance in terms of accuracy and completeness. Regularized polygons are directly applicable
to numerous cartographic and engineering applications.

Besides the algorithms, some reweighing methods are proposed to address the properties of satellite
imagery for semantic segmentation. The reweighing method of U-Net [6] has mentioned in section
2.4.2.

Another method proposed from [] modifies the binary annotation into three categories: border,
pixels inside a building, and the background. The modified annotation is shown in figure 2.17 Then
the weight maps are computed based on the relative frequency of each category.

Distance between objects can also be considered. In a solution, distances to the two closest objects
are calculated, creating the distance map that is used for weighing. Figure 2.18 shows the distance
weights. Pixels between buildings have high values, and the darker the color, the higher the value.

The representation of the ground truth label can also be modified. Figure 2.17 shows a way that the
binary label is modified by adding the border as the third class [12]. In paper [13], a novel represen-
tation of object segments that is robust to errors in the bounding box proposals was proposed to go
beyond the limitation of the bounding box. It is displayed in figure 2.19.
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Figure 2.17: Modified label in 3 categories [12]

Figure 2.18: Visualization of distance weight

Figure 2.19: Multi-valued map label [13]
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DATA UNDER STUDY

Ideally, we would train and evaluate a model based on the data relevant to UN-Habitat. However,
during the completion of the thesis it became clear that the number of images and the quality of the
annotations provided by UN-Habitat are insufficient to solely rely on for training. Therefore, we use
some public datasets for training and evaluation. In this chapter, all the datasets that will be used
for the following experiments are presented. We also explain the processing steps to transform the
dataset into a unified format that can be directly applied to train the model, as we use the default
format of the dataset we will use is a bit different. In the end, the evaluation metrics for our model
are described, too.

3.1. DATASETS

3.1.1. UN-HABITAT DATASET

UN-Habitat dataset is the satellite images provided by UN-Habitat. Specifically, a set of high-resolution
satellite images of Basra, Iraq. These images are owned by the United Nations. Therefore, corre-
sponding annotations are not equipped. We are grateful for the support provided by UN-Habitat
that they provide some labels that were extracted manually. But unfortunately, these labels are too
rough to use. Figure 3.1 shows some examples of UN-Habitat dataset.

3.1.2. CROWDAI BUILDING DATASET

The CrowdAI building dataset is a dataset provided by Crowd AI for a building mapping challenge
[40]. The data are individual tiles of satellite images in the type of RGB images, and their corre-
sponding annotations that show the positions of buildings in a pixel-wise way. Specifically, the size
of each image is in a resolution of 300*300, and the annotations are in MS-COCO format [46], in-
cluding the bounding boxes and polygons for all objects. The training set and validation set consist
of 280741 tiles and 60317 satellite images, respectively.

Figure 3.2 shows some examples of CrowdAI building dataset after preprocessing.

3.1.3. INRIA AERIAL IMAGE LABELING DATASET

The Inria Aerial Image Labeling Dataset [10] is created as a benchmark database to evaluate classifi-
cation techniques and their generalization capabilities. The dataset consists of labeled imagery that

17
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Figure 3.1: UN-Habitat dataset examples

Figure 3.2: CrowdAI building dataset examples

covers varied urban landscapes, such as metropolitan financial districts and alpine resorts. The an-
notations are binary image masks assigning each pixel in an image into building and non-building
classes. Specifically, the training set contains 180 colored image tiles of size 5000×5000 in GeoTiff
format, covering a surface of 1500 m×1500 m each.

Figure 3.3 shows some examples of CrowdAI building dataset after preprocessing.

3.2. DATA PREPROCESSING

As we use multiple different datasets – listed in section 3.1 – whose formats are a bit different, we
need to do some preprocessing to obtain the training data and ground truth labels that can be di-
rectly used to train and evaluate models and methods. All the preprocessing steps are introduced in
this section.



3.2. DATA PREPROCESSING

3

19

Figure 3.3: Inria Aerial Image Labeling Dataset examples

3.2.1. DATA FORMAT TRANSFORMATION

First, we need to obtain the ground truth annotations, as we have mentioned in section 3.1, the
formats of the annotations in the dataset we use are different. What we will use for the training and
evaluation of models or methods are RGB images and the corresponding binary labels, which are
shown in figures 3.2 and 3.3. Fortunately, Inria Aerial Image Labeling Dataset provides binary labels
such that we do not need to obtain the labels by ourselves. But for the CrowdAI Building Dataset, its
labels are in MS-COCO format [46] which mark the positions of the bounding boxes and polygons
for all objects. To obtain the annotations, we first need to read the coordinates of all objects and
then use them to create binary images such that the pixel values of the background are 0 and the
pixel values of the buildings are 1. After the transformation, we have both the RGB images and their
binary label images with the same size. During the following experiments, we would chip images
into disjoint smaller images when necessary to fit the appropriate size.

3.2.2. TFRECORD FILE TRANSFORMATION

Due to the large amount of data that we will use, we need to find a better way to deal with them
such that we can make better use of memory and move, read and store these data quickly and con-
veniently. We decided to use TensorFlow [47] as the main framework which allows to transform the
data into TFRecord File format. TFRecord File is a binary file format optimized for use with Tensor-
Flow in multiple ways. Binary data takes up less space on disk, takes less time to copy and can be
read much more efficiently. A TFRecord file contains a sequence of records, and the file can only
be read sequentially. One of the main advantages is that we are able to specify the structure of our
data before writing it to the file, which means that we can store the image data and corresponding
binary labels in a unified manner, especially for the new ideas of modifying the binary labels in the
following chapters. Specifically: each image can be encoded as a byte list, and its size can be stored
as an integer list. When loading the data, we can obtain the image size directly and then decode the
image back to the corresponding size.

3.2.3. DATA AUGMENTATION

Recent advances in deep learning models have been largely attributed to the quantity and diversity
of data gathered in recent years [48]. Data augmentation is a strategy that enables practitioners to
significantly increase the diversity of data available for training models, without actually collect-
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ing new data. We provide an option of data augmentation during the training time such that the
training data can be augmented if this option is selected. Specifically, we do the data augmentation
in the following way: for each training sample, there is an assigned probability that is used to de-
cide whether the sample is augmented. If so, there are four different operations: flipping left, and
right(horizontally), flipping up and down(vertically), rotating 90 degrees and rescaling, which are il-
lustrated in figure 3.4. One to four operations would be randomly applied to generate a new sample.
Figure 3.5 shows some possible generated examples from data augmentations.

Figure 3.4: Data augmentation operations. (a) original image; (b) flip left and right; (c) flip up and down; (d) rotation(90
degrees); (e) rescale

Figure 3.5: Several data augmentation examples. (a) original image; (b) (c) (d) (e) possible augmented samples

3.3. EVALUATION METRICS

To evaluate and compare the performance of different methods or models, standard metrics must
be used to ensure fair comparisons. Here we pick up several well-known evaluation metrics that are
commonly used for semantic segmentation tasks.

3.3.1. PIXEL ACCURACY

In terms of the evaluation metrics that are frequently used for semantic segmentation, pixel ac-
curacy(PA) and mean pixel accuracy(MPA) can directly measure the pixel-wise accuracy. Before
presenting the corresponding formulae, we need to introduce a notation:

Assume that there are a total of k classes and pi j represents the number of pixels of class i inferred
to belong to class j . When i = j , pi i is the number of pixels that is correctly inferred to belong to
class i , in other words, the number of true positives. When i 6= j , pi j and p j i are the number of false
positives and false negatives, respectively. With the help of this notation, we can easily formulate
the evaluation metrics.

As the most straightforward metric, pixel accuracy is the ratio of the total number of true positives
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to the total number of pixels:

PA =
∑k

i=1 pi i∑k
i=1

∑k
j=1 pi j

. (3.1)

3.3.2. MEAN PIXEL ACCURACY

In some cases, the data are unbalanced such that the numbers of pixels belonging to different
classes are significantly different. To deal with this, an improved version of pixel accuracy, mean
pixel accuracy was proposed by considering the accuracy in a per-class basis. The sum of the pixel
accuracy of each class is computed, then it is averaged over the total number of classes.

MPA = 1

k

k∑
i=1

pi i∑k
j=1 pi j

(3.2)

3.3.3. MEAN INTERSECTION OF UNION

Slightly different from the pixel accuracy described above, which straightforwardly measures the
ratio of correctly classified pixels, the mean intersection of union, a.k.a MIoU, is another popular
criterion for segmentation. In a segmentation task, we are more concerned about whether the target
instances are correctly segmented. Intersection over union can be interpreted as the ratio of the
intersection area of the ground truth and inferred segmentation to their union area.

[Add a figure here for better explaining]

Figure 3.6: A nice visualization to explain MIoU [14]

We can compute MIoU similar to MPA, such that computing the IoU on a per-class basis then aver-
aging the sum. Specifically, computing the MIoU is as simple as dividing the area of overlap between
the bounding boxes by the area of the union, which is explained in figure 3.6. Based on the nota-
tions, MIoU can be formulated as follows:
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M I oU = 1

k

k∑
i=1

pi i∑k
j=1 pi j +∑k

j=1 p j i −pi i
(3.3)

For semantic segmentation, MIoU is more important than PA and MPA. Because PA and MPA treat
each pixel as an independent unit. But for MiOU, region is the main factor that is considered.



4
INITIAL EXPERIMENT

Before delving into the building segmentation of satellite imagery, we would like to see the perfor-
mance of the classic semantic segmentation algorithms on the datasets we choose, as these meth-
ods are proposed based on other scenarios (e.g. biomedical segmentation, road and vehicle seg-
mentation, indoor object segmentation). We call this step as the initial experiment. In this chapter,
we present the process of how the initial experiment is completed and the performance of the se-
lected methods.

4.1. CLASSIC METHODS TO TEST

From previous works [15] [49] , we know that currently there are several ways in which semantic
segmentation algorithms are designed, such as transforming from a classification network into a
segmentation network and integrating local and global context information. In our case, as our goal
is to obtain building segmentation on satellite imagery, firstly, we select several methods of different
types to see how they perform on the selected dataset. Specifically, as shown below in figure 4.1, we
choose these methods of different types.

Figure 4.1: Selected segmentation methods used to test. Figure extracted and modified from paper [15]

As some source codes are available from their authors [50] and using some open source repositories
[51] [52], we modify or even implement the selected methods withing a unified framework to make
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Table 4.1: Result of the initial experiment

Method Pre-train weights from
CrowdAI dataset Inria Aerial dataset

PA MPA MIoU PA MPA MIoU
FCN8S VGG16 0.9414 0.9128 0.8479 0.9018 0.8735 0.7818

Deep_ab ResNet-50 0.9266 0.8866 0.8241 0.8883 0.8565 0.7616
SegNet VGG16 0.9356 0.9096 0.8481 0.8999 0.8676 0.7830

Multi-scale_aj - 0.9158 0.8956 0.8142 0.8912 0.8601 0.7711
U-Net - 0.9204 0.9111 0.8206 0.8978 0.8651 0.7819

sure that their building setup and training setup are identical and the only difference is their network
architectures.

4.2. EXPERIMENT SETTING

To obtain fair results, we use the same training set and test set which consist 3000 images and 300
images, respectively. The size of all images are 256 × 256 pixels and the number of each training
batch is 25. All methods are trained with Adam [53] using a fixed learning rate and the loss is com-
puted by pixel-wise softmax with cross entropy. We use two settings to train the different methods.
For methods using pre-trained weights, we use the fixed learning rate of 0.0001 and weight decay
of 0.0002 and train them with 1000 epochs. During training, we allow all weights to be updated.
For methods training from scratch, we first use the fixed learning rate of 0.05 and weight decay of
0.0005 to train them for 100 epochs and then reduce the learning rate to 0.005 and train them for
1000 epochs. We also apply our data augmentation method during the whole training process with
probability 0.5.

4.3. EXPERIMENT RESULT

The following table 4.1 shows the performance of different methods on the test set.

The following observations can be made from the table: Overall, the performances are acceptable,
as the numerical values are good. We can notice that models using pre-trained weights have bet-
ter performances than those trained from scratch. This is easy to understand, as the pre-trained
weights already have involved lots of information. But after checking the output segmentation re-
sults (showed in figures 5.8, 6.3, 7.2), we realize that there are still some problems existing and the
results can still be improved. For example, the boundaries of buildings are failed to be captured.

We will use these results as the baseline results in the following chapters.
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REWEIGHING METHODS

As can be seen from the results of the initial experiment (4.1), there is still room for further enhance-
ment on accurate segmentation. In this chapter, two methods to reweigh the data are investigated
and used to test if they can improve the performance of the building segmentation. First, we present
the motivation of our proposal in section 5.1. Then we describe our proposed weight maps and how
to compute them in section 5.2 and section 5.3. Finally, the experiments and the result are described
in section 5.4.

5.1. MOTIVATION

From the initial experiment, we can see that the performance of classic methods on building seg-
mentation tasks on satellite imagery is acceptable. However, when we check the segmentation re-
sults, we observe some problems. We not only hope to achieve excellent segmentation performance
but also wish to obtain information on urban development. Therefore, we need to do some further
research based on our data and task. Using different pixel weights can force or encourage the deep
neural network model to learn accordingly, as the weights adjust the training losses. More specif-
ically: from the training imagery, we can see that the pixels outside but near the building border
could be affected or be ’covered’ by other factors such as trees and shadows. However, the value
of each pixel of label mask is merely binary, either building or non-building, which adds a lot of
difficulty to the segmentation. Figure 5.1 shows some examples.

Figure 5.1: Some training image examples

Inspired by the related works that has been mentioned in the previous section 2.5, we propose two
types of pixel weights and test them with different methods and datasets. We explain the details in
the following sections.
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5.2. BORDER WEIGHT

To encourage the model to learn more about the pixels outside but close to the border of the build-
ings, a straightforward way is to increase the weights of these pixels. The annotation labels represent
pixels within the buildings. However, no matter how far from the building, pixels outside the build-
ings are represented as the same type, which is called non-building pixels. Taking the distance to
the buildings into consideration, we can construct a pixel-wise weight map by relying on the trans-
formation of distance. In other words, the weight of every pixel belonging to the background is
computed according to the Euclidean distance to the building boundary. According to [13], we use
the set of pixels on the object boundary and outside the object as the reference pixels. We called it
"border weight," as it depends only on the distance to the border. Specifically, the boundary weight
value is greatest at the boundary of the building, moving outward from the boundary of the build-
ing and decreasing with distance. We can compute the border weight of each pixel p outside the
buildings as

Bw (p) = w0 ∗exp
−(d1+d2)

2σ0 (5.1)

where d1, d2 denote the nearest and second nearest Euclidean distances to the reference pixels. w0

and σ0 are two parameters that control the value of the border weight. Specifically, the value of
w0 decides the maximum value of the border weight. The value of σ0 controls the decrease of the
equation. Figure 5.2 shows an example surface of the border weight value equation when w0=10
and σ0=0.5.

Figure 5.2: A example of the border weight value when w0=10 and σ0=0.5

Using an image as an example, figure 5.3 shows the steps to obtain the border weight. From the
binary annotation label, we can receive the reference labels by comparing the value of each pixel
with adjacent pixels. For each non-building pixel, first, we compute and obtain the nearest and
second nearest Euclidean distances to the reference pixels. Then we can calculate its border weight
with equation 5.1.

When w0 and σ0 hold different values, the results of border weight are different. Figure 5.4 shows
different border weights of one image with different values of parameters.

5.3. INTER-BUILDING DISTANCE WEIGHT

Border weight encourages the model to learn more about the non-building pixels near buildings.
However, from the predicted images of the initial experiment, another problem occurs that when
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Figure 5.3: Steps to obtain the border weight map (a)original image, (b) binary annotation label, (c) reference pixels
(building boundary), (d) pixel-wise border weight.

Figure 5.4: Border weight maps when using fixed w0 = 10 and different σ0 values: (a) σ0 = 0.2, (b) σ0 = 0.5, (c) σ0 = 0.8

.

two buildings are too close, the non-building pixels are often inferred as building pixels. As the
building count is one of the information that we hope to obtain, border weight cannot address this
issue. To improve the performance, we introduce the inter-building distance weight.

The reweighing method used in U-Net [6] inspires us, which considers the distances to the nearest
cell. From figure 2.10, we can see that mostly the interval between two cells is too small, which is
different from our building segmentation task.

In our scenario, the interval sizes between buildings are various. To emphasize the pixels laid in be-
tween the buildings, we can reweigh them based on the distances to the nearest and second near-
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est buildings. We call it "inter-building distance weight" to reflect this idea, and the weight value
should highly depend on the distance to the nearest building than the second nearest building. We
can compute the inter-building distance weight of each pixel p outside the buildings as

Iw (p) = w1 ∗exp
−(d2

1+d2)

2σ2
1 (5.2)

where d1, d2 denote the Euclidean distances to the nearest and second nearest buildings. To empha-
size the importance of the distance to the nearest building, here we use d 2

1 and only use d2 as a dif-
ference. w1 and σ1 are two parameters that control the value of the inter-building distance weight.
Specifically, the value of w1 decides the maximum value of the inter-building distance weight. The
value of σ1 controls the decrease of the equation. Figure 5.5 shows an example surface of the inter-
building distance weight value equation when w1=10 and σ1=5.

Figure 5.5: A example of the inter-building distance weight value when w1=10 and σ1=5

Figure 5.6 shows an example of the steps to obtain the inter-building distance weight. From the
binary annotation label, we can get the coordinates of the pixels belonging to the buildings. Then
we aggregate pixels belonging to the same building into a group. For each non-building pixel, first,
we compute and obtain the Euclidean distances to the nearest and second nearest buildings. Then
we can calculate its inter-building distance weight with equation 5.2.

When w1 and σ1 hold different values, the results of inter-building distance weight are different.
Figure 5.7 shows different border weight of one image with different values of parameters.

5.4. EXPERIMENT

To test if the border weight and inter-building distance weight are helpful to improve the building
performance and see how their parameters affect the performance, we do the following experiment.

According to the experiment result table 4.1 of the initial experiment, here we choose three segmen-
tation methods FCN8S [32], SegNet [7] and Deep_Lab [? ] to test the performance. The baseline is
the performance when training the data without border weight or inter-building distance weight.
To evaluate the border weight, we set up different values for the parameters w0 and σ0, such that
w0 ∈ [2,5,10,20] and σ0 ∈ [0.2,0.5,0.8]. To assess the inter-building distance weight, we set up dif-
ferent values for the parameters w1 and σ1, such that w1 ∈ [2,5,10,20] and σ1 ∈ [2,5,10]. Therefore,
for each weight, we train the models with 12 different settings.

We use a similar experiment setting as the initial experiment. At this time, pre-trained weights are
used for all methods, and we use the fixed learning rate of 0.0001 and weight decay of 0.0002 and
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Figure 5.6: An example of different representation of an image. (a)original image, (b) binary annotation label, (c) different
building groups, (d) pixel-wise inter-building distance weight.

Figure 5.7: Border weight maps when using a fixed w1 and different σ1 values: (a) σ1 = 3, (b) σ1 = 5, (c) σ1 = 8

train them with 1000 epochs. During training, we allow all weights to be updated. Data augmenta-
tion is applied during the whole training process with probability 0.5.

The following tables 5.1 and 5.2 show the performance of the baseline and the best performance of
the border weight.

The full results are presented in the appendix 9.2

From the results, we can notice that with the help of border weight, the performances can be im-
proved on the selected methods. When setting the parameters w0 and σ0 properly, We can see a
small performance improvement. Here we only apply a simple grid search on the parameters to see
how the methods perform when using border weight. For different datasets, the optimal parame-
ter values can be different. It is quite hard to obtain a group of value that can be applied to every
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Table 5.1: Border weight results on Crowded AI dataset

Methods
Baseline Best Performance

Best parameter values
PA MPA MIoU PA MPA MIoU

FCN8s 0.9414 0.9128 0.8479 0.9515 0.9228 0.8609 w0 = 20, σ0 = 0.2
SegNet 0.9356 0.9096 0.8481 0.9467 0.9178 0.8600 w0 = 2, σ0 = 0.2

Deep_Lab 0.9266 0.8866 0.8241 0.9370 0.9032 0.8370 w0 = 2, σ0 = 0.2

Table 5.2: Border weight results on Inria Aerial dataset

Methods
Baseline Best Performance

Best parameter values
PA MPA MIoU PA MPA MIoU

FCN8s 0.9018 0.8735 0.7818 0.9122 0.8841 0.7988 w0 = 10, σ0 = 0.5
SegNet 0.8999 0.8676 0.7830 0.9156 0.8948 0.8076 w0 = 5, σ0 = 0.8

Deep_ab 0.8883 0.8565 0.7616 0.9009 0.8804 0.7803 w0 = 2, σ0 = 0.2

dataset. But we can notice that for Crowded AI dataset, the best parameter values for all methods
are close, especially the values of σ0 are the same. Also, there is no significant increase in running
time due to the use of border weight. Another advantage is that we do not need to modify the ex-
isted method but only need to compute the border weight map for the training data. Calculating
the border weight maps is pretty quick, and as we mentioned in section 3.2.2, we can compute and
save the weight maps during the data preprocessing step.

The following tables 5.3 and 5.4 show the performance of the baseline and the best performance of
the border weight.

The full results are presented in the appendix 9.2

From the results, we can notice that the performances can be improved when using inter-building
distance weight.

Similarly, the enhancement is dependent on the values of the parameters w1 and σ1, and obtain-
ing a group of value that can be applied to every dataset is infeasible. The running time is almost
unchanged, and we can just run the existed methods without modifying. However, calculating the
inter-building distance weight maps is not that quick, and the data preprocessing step takes some
time.

From the evaluation metrics, we notice that the improvement is slight, and it is hard to explain the
differences between these two proposed reweighing methods. Let us look at the output images. Fig-
ure 5.8 shows two examples of the results. Obviously, the result looks better when using reweighing
methods. The border of buildings can be classified more correctly than the baseline. However, we
also can notice some errors in the corner of the result examples. Listing the difference between bor-
der weight and inter-building distance weight is not accessible from the results. One possible reason
is that the border pixels of the building are also highlighted to some extent in the inter-building dis-

Table 5.3: Inter-building distance weight results on Crowded AI dataset

Methods
Baseline Best Performance

Best parameter values
PA MPA MIoU PA MPA MIoU

FCN8s 0.9414 0.9128 0.8479 0.9448 0.9154 0.8556 w1 = 2, σ1 = 2
SegNet 0.9356 0.9096 0.8481 0.9477 0.9218 0.8629 w1 = 5, σ1 = 5

Deep_ab 0.9266 0.8866 0.8241 0.9353 0.9021 0.8332 w1 = 2, σ1 = 10
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Table 5.4: Inter-building distance weight results on Inria Aerial dataset

Methods
Baseline Best Performance

Best parameter values
PA MPA MIoU PA MPA MIoU

FCN8s 0.9018 0.8735 0.7818 0.9061 0.8856 0.7898 w1 = 5, σ1 = 5
SegNet 0.8999 0.8676 0.7830 0.9153 0.8787 0.8021 w1 = 10, σ1 = 5

Deep_ab 0.8883 0.8565 0.7616 0.9015 0.8701 0.7769 w1 = 20, σ1 = 5

tance weight map. Therefore their performances are similar.

Figure 5.8: Two image examples: (a)original image, (b) ground truth, (c) baseline result, (d)border weight result, (e)inter-
building distance weight result
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MULTI-LEVEL BOUNDARY LABEL

From chapter 5, we learned that we can reweigh the non-building pixels to improve the segmen-
tation performance. The conclusion inspires us: can we come up with an idea using the pixels
belonging to the buildings? In this chapter, we propose a new label representation based on binary
labels. First, the motivation of our proposal is presented in section 6.1. Then we describe our pro-
posal and how to compute it in section 6.2. Last, we evaluate the performance when applying our
proposal in section 6.3.

6.1. MOTIVATION

In the previous chapter we devoted some time to further improve the initial experiment, and we
showed that the the performance can improve without modifying the network architectures by ap-
plying reweighing methods to the pixels belonging to the background. This raises a new question:
can we improve the performance by considering the building pixels? We can notice that the building
pixels near the building border can also be affected by trees and shadows, showed in figure 5.1.

The analyses presented in this chapter is inspired by the paper [13], in which a new object segment
representation was proposed. This representation was robust to errors in the bounding box propos-
als. In our case, we do not have the bounding boxes in our dataset. We can present the boundary
of buildings better without the limitation of the bounding box. Next, we explain the details of our
proposal.

6.2. MULTI-LEVEL BOUNDARY LABEL

In chapter 5, we reweighed each non-building pixel near to building boundaries to encourage the
model to learn more about them. Here we focus on the building pixels. The probability that a build-
ing pixel near the boundary is misclassified is relatively high. To address this issue, we introduce the
multi-level boundary label to highlight the building pixel according to its distance to the boundary.
We modify the binary label into multi-level boundary label in the following way:

A set of building boundary B is the set of closest non-building pixels around the buildings. Then we
can compute the distance from every pixel p representing the building to the building boundary as:

D(p) = min
∀b∈B

⌈
d(p,b)

⌉
(6.1)
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where dxe is the ceiling function that maps x to the least integer greater than or equal to x, and
d(p,b) is the Euclidean distance between pixel p and b. To focus on the pixels near the boundary,
a threshold T is used to represent the largest distance. Therefore, the truncated distance pixel-wise
map can be computed as:

D(p) = min(min
∀b∈B

⌈
d(p,b)

⌉
,T ) (6.2)

From figure 6.1 we can see that the values of the truncated distance map are continuous and the
number of pixels with a truncated distance between 0 and threshold T is small. To further facili-
tate the truncated distance map, we quantize the distance values into L levels such that we cluster
the pixels into L classes according to their distance values. We call this quantized map as multi-
level boundary label. Compared to the binary mask, We can see that the multi-level boundary label
captures not only the buildings but also their shapes and boundaries.

Figure 6.1 shows the steps to get the multi-level boundary label. The threshold T and the number
of level L are two parameters that can be set and figure 6.2 shows three different settings.

Figure 6.1: Steps to obtain the multi-level boundary label. (a) Satellite image, (b) Binary label, (c) Building boundaries,
(d) Truncated distance map, (e) Multi-level boundary label.

Figure 6.2: Multi-level boundary labels with different parameter values: (a) T =10 and L=3, (b) T =20 and L=3, (c) T =20 and
L=5.

In case of using multi-level boundary labels as training labels, we are facing a multi-class segmen-
tation task. Since the number of pixels of each class is imbalanced, we use median frequency
weights[54] to reweigh each class in the loss function. Specifically, the weight of each class c is
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computed as:
wc = medi an_ f r eq/ f r eq(c) (6.3)

where f r eq(c) is the relative frequency of class c which is the number of pixels of class c divided by
the total number of pixels and medi an_ f r eq is the median frequency of all classes.

6.3. EXPERIMENT

To test if the multi-level boundary label is useful to improve the performance of the segmentation
methods and see how its parameters affect the performance, we do the following experiment.

Similarly, we we choose FCN8S [32], SegNet [7] and Deep_Lab [? ] as the methods for comparison.
The baseline is the performance of the initial experiment. For the experiment, we first use the same
training images with the multi-level boundary label to train the model. Here we use a simple post-
processing step such that if the pixel is inferred as belonging to the non-background class, we will
regard it as a pixel representing the building. After that, we obtain binary segmentation results, and
we can use the evaluation metrics to assess the performances.

Before experimenting, we have used grid search to check the reasonable range of the parameters on
our datasets. As it takes a long time to obtain the multi-level boundary label on a big dataset, here
we present the results of the following three groups of parameter values: (i) T = 10, L = 3; (ii) T = 20,
L = 3, (iii) T = 20, L = 5.

At this time, pre-trained weights are used for all methods, and we use the fixed learning rate of
0.0001 and weight decay of 0.0002 and train them with 1000 epochs. Data augmentation is applied
during the whole training process with probability 0.5.

The following tables 6.1 and 6.2 show the results on both datasets. Compared with the baseline, we
can see that the performance is dependent on the parameter values. However, when using inappro-
priate parameter values, methods could perform even worse. If we can find the appropriate param-
eter values and use them, the performances can be improved when applying multi-level boundary
label. The running time is almost equal, although we transform the binary segmentation task into a
multi-class segmentation task. But compared with the reweighing methods in chapter 5, obtaining
the multi-level boundary label takes much longer time. It is a bit annoying but worthwhile.

Table 6.1: Multi-level boundary label results on CrowdAI dataset

Method
Baseline T=10, L=3

PA MPA MIoU PA MPA MIoU
FCN8S 0.9414 0.9128 0.8479 0.9360 0.9057 0.8377
Deep_Lab 0.9266 0.8866 0.8241 0.9218 0.8824 0.8049
SegNet 0.9356 0.9096 0.8481 0.9402 0.9023 0.8449

T=20, L=3 T=20, L=5
FCN8S 0.9431 0.9141 0.8537 0.9423 0.9017 0.8489
Deep_Lab 0.9223 0.8790 0.8047 0.9192 0.8745 0.7980
SegNet 0.9442 0.9115 0.8553 0.9422 0.9080 0.8504

Let us have a look at the inferred images. Figure 6.3 shows three examples of the results. The multi-
class segmentation results are good because the boundaries or the outlines of the buildings can
be captured correctly, which means that the model does learn the multi-level feature during the
training steps. But we can still notice that the shape of the building influences the result. The seg-
mentation result is good when the building shape is regular and is relatively bad for an irregular
building shape.
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Table 6.2: Multi-level boundary label results on Inria Aerial dataset

Method
Baseline T=10, L=3

PA MPA MIoU PA MPA MIoU
FCN8S 0.9018 0.8735 0.7818 0.9238 0.8564 0.7875
Deep_Lab 0.8883 0.8565 0.7616 0.9071 0.8481 0.7556
SegNet 0.8999 0.8676 0.7830 0.9281 0.8584 0.7961

T=20, L=3 T=20, L=5
FCN8S 0.9195 0.8591 0.7807 0.9282 0.8748 0.8022
Deep_Lab 0.9071 0.8651 0.7621 0.9084 0.8535 0.7598
SegNet 0.9283 0.8784 0.8036 0.9263 0.8730 0.7980

Figure 6.3: Three image examples: (a) original image, (b) binary label (ground truth), (c) multi-level boundary label, (d)
baseline, (e) multi-class segmentation result (f) post-processing result

The reason why the evaluation metrics do not improve as much as expected could be the post-
processing step we are using. Here we simply transform the multi-class result into a binary segmen-
tation result. Compared with the ground truth, we can see that some non-building pixels around the
building borders are misclassified as building pixels. When applying other post-processing meth-
ods, for example, a pixel is classified as building pixel only if its probability higher than a threshold.
The segmentation results look better. Figure 6.4 shows the difference between these two different
post-processing steps. Therefore, a great post-processing step is helpful to the segmentation task
in this case. We will not further dig into the post-processing step here, as we aim to focus on the
building segmentation.

In conclusion, when using multi-level boundary label, the model can learn more information about
the buildings. However, appropriate parameter values are not that easy to find, and it takes some
time to obtain the multi-level boundary label.
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Figure 6.4: Three image examples when using different post-processing steps: (a) ground truth, (b) multi-class segmen-
tation result, (c) simply transform the multi-class result into a binary segmentation result, (d) Using a threshold to do the
transformation
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PROPOSED MODEL

According to the experimental results of the previous chapters, we can see that the multi-level
boundary label, border weight, and inter-building distance weight do help to improve the perfor-
mance. Based on the previous experiment results, we propose a model that can make good use of
these properties. In this chapter, we will explain the details of our proposed model and compare its
performance with other segmentation methods.

7.1. DETAILS OF OUR PROPOSED MODEL

We have verified that a model can learn more information from the multi-level boundary label. But
pixels near the building borders are misclassified with a higher probability. Therefore, we also use
border weight and inter-building distance weight to encourage the model to perform better. In
our approach, we use two branches to make our model learn from both multi-level boundary label
and binary label. The idea of using two branches is to encourage the model to learn from both:
the ground truth binary label and also the multi-level boundary label that captures the detailed
information about the buildings.

The architecture of our proposed model is shown in figure 7.1.

To extract abstract feature representations from the inputs, the decoder consists of a series of CNN
layers. In practice, we use the first 13 convolutional layers of the VGG16 [55] architecture trained on
ImageNet [56] as the encoder to utilize their pre-trained weights. Following the shared encoder, the
decoder consists of two branches. We upsample the feature maps as follows: we use deconvolution
to upsample the feature maps from the previous layer, then we concatenate the upsampled feature
maps with the features in the corresponding size, either from the encoder or the branch using multi-
level boundary label. The first branch ( marked as ’Branch1’ in figure 7.1) can learn some high-level
features representing the buildings, with the help of the multi-level boundary label and some low-
level features from the decoder. We can use these high-level features for the second branch ( marked
as ’Branch2’ in figure 7.1) to obtain the final binary segmentation output.

The output of the first branch is a multi-class segmentation result, and a binary segmentation result
is the output of the second branch. We can compute the losses with the corresponding type of label.

We use the pixel-wise cross-entropy as the loss function for each branch. For the first branch, we ap-
ply the median frequency weights [54] to reweigh each level of the label, and for the second branch,
we use the border weight and inter-building distance weight to reweigh the non-building pixels. We
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Figure 7.1: The architecture of our proposed model.

use a joint loss function which combines the losses from two branches.

7.2. EXPERIMENT

We do the following experiments to see how our model performs and compare it with other meth-
ods.

First, we compare the performance of our model with the initial experiment. We use the same train-
ing set and test set that are used for the initial experiment. According to the results in previous
chapters, we choose the values of parameters that produce an excellent performance for obtaining
the border weight, inter-building distance weight, and multi-level boundary label. As our proposed
model uses pre-trained weights, we use weight decay of 0.002 and train them with 1000 epochs. For
the learning rate, we choose the initial learning rate of 0.0001 and reduce the learning rate to half for
every 1000 iterations. We also apply our data augmentation method during the whole training pro-
cess with probability 0.5. To analyze the effect brought by border weight or inter-building distance
weight, we also test the performance of our model when not using both of the proposed reweighing
methods.

To analyze the effect casued by border weight or inter-building distance weight, we test the perfor-
mance of our model when not using both of the proposed reweighing methods.

The following tables 7.1 shows the performances on both datasets.

We can see that our proposed model has a better performance than the baseline, even when not
using both of the reweighing methods. Our model can perform better when getting the optimal
parameter values of the reweighing methods and multi-level boundary label. Regarding the impact
of the reweighing methods on the performance, we can notice that our proposed model performs
better when using both reweighing methods. This is another evidence showing that our proposed
reweighing methods can improve segmentation performance.
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Table 7.1: Performances of segmentation methods on both datasets

Method
CrowdAI dataset Inria Aerial dataset

PA MPA MIoU PA MPA MIoU
FCN8S 0.9414 0.9128 0.8479 0.9018 0.8735 0.7818

Deep_Lab 0.9266 0.8866 0.8241 0.8883 0.8565 0.7616
SegNet 0.9356 0.9096 0.8481 0.8999 0.8676 0.7830

Multi-scale_Raj 0.9158 0.8956 0.8142 0.8912 0.8601 0.7711
U-Net 0.9204 0.9111 0.8206 0.8978 0.8651 0.7819

P_model_NoB a 0.9454 0.9137 0.8523 0.9236 0.8887 0.8133
P_model_NoI b 0.9469 0.9128 0.8488 0.9221 0.8909 0.8069

P_model_NoBoI c 0.9361 0.9108 0.8433 0.9180 0.8831 0.8043
P_model d 0.9543 0.9273 0.8743 0.9419 0.9054 0.8434

a Performance of our proposed model without using border weight
b Performance of our proposed model without using inter-building distance
weight
c Performance of our proposed model without using inter-building distance
weight or border weight
d Performance of our proposed model

Let us have a look at some examples of the segmentation results. In figure 7.2, we can see differences
between the results of our proposed model and the baseline.

Figure 7.2: Selected examples of the segmentation result: (a) original images, (b) ground gruth, (c) baseline result, (d)
proposed model result.

For building pixels, most of them can be detected. However, in some situations such as the building
size is too small, our model fails to detect them. Non-building pixels, particularly the pixels laid
in between the buildings, are classified more correctly. The boundaries of the buildings are more
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clearly reflected, although some misclassifications still exist. As a result, the building segmentation
result looks better such as the similarity of the building shapes between the result and the ground
truth.

Then let us compare the number of parameter of our proposed model with other segmentation
methods, which represents the complexity of the model and memory usage during training to some
extents.

The details are listed in table 7.2. Although it is hard to interpret how the prediction is made from
a deep learning model, we can explain why our proposed model uses fewer number of parameter
than the other models.

Table 7.2: The number of parameter of different models

Method Number of parameter
FCN8S 133M
SegNet 29M

Deep_Lab 27M
U-Net 7M

P_model 16M

Our testing Deep_Lab [? ] is built up based on the backbone ResNet-50 [57] and its number of
parameter is heavily influenced by ResNet-50. FCN8S [32], SegNet [7] and our model all use the
pre-train weights from VGG16[55]. However, FCN8S uses all pre-trained weights of VGG16, as it
transforms the fully connected layers into convolution layers. SegNet and our model only use the
pre-trained weights from the first 13 convolution layers. As we know, normally the parameter num-
ber of fully connected layer is much larger than the convolutional layer. That’s why FCN8S has
such a large number of parameter. In the decoder part, SegNet uses the max-pooling indices to
upsample the feature maps, which reduces the number of parameters compared with using decon-
volution. However, the upsampled feature maps are sparse, illustrated in figure 2.11. To produce
dense feature maps, a set of convolutional layers are added following every upsampling layer. For
our proposed model, we do not need to use any convolutional layer in both decoder branches.

Even though our model looks complex as we have two branches and use a joint loss function, the
number of parameters is not that large.

We also need to know the additional requirement of our model: (i) border weight maps; (ii) inter-
building distance weight maps, (iii) multi-level boundary label. The computation time and extra
space to store them should be considered, especially for large dataset.

7.3. CONCLUSION

In conclusion, we proposed a model that achieves state-of-the-art building segmentation perfor-
mance. We apply the multi-level boundary label and two reweighing methods on our model and
build up the model with a less number of parameter, compared with several classic segmentation
methods.

However, the performance of our model depends on the hyperparameters of the multi-class label
and the reweighing functions. Currently, we do not have a great way to obtain the optimal value of
them. Also, the time of computing the multi-class label and the weight maps and the extra space to
store them should be noticed.
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URBAN INFORMATION

The goal of UN-Habitat is to learn about urban development from satellite images, specifically,
building counts and built-in areas of regions like the Middle East. This means that some post-
processing steps are needed to obtain the information from the segmentation results. In this chap-
ter, we will explain the post-processing steps for obtaining the building counts and building areas
from the building segmentation results. We hope to see whether our proposed model works well
on the satellite images provided by the UN-Habitat. We will use transfer learning to see the perfor-
mance of our proposed model on a new dataset.

8.1. POST-PROCESSING

We can see that the outputs of our proposed model are binary images representing the building
and non-building information of the input images. Before describing the way to obtain the building
counts and building areas, let us have a look at their definitions. Building count: the number of
the building within an image. A single building is formed by connecting adjacent building pixels
horizontally and vertically. Building size: the number of pixels forming a building.

It is straightforward to obtain the building counts and building sizes. We collect all coordinates of
pixels representing buildings and aggregate pixels belonging to the same building according to their
connectivities. Then we can know the size of each building, which is the number of pixel of each
group, and also the total number of buildings, which is the number of aggregated groups.

As an example, from figure 8.1, we list the extracted information in table 8.1.

Table 8.1: Urban development information from a example segmentation result

Buidling number Building size (pixels)
1 754
2 6355
3 5567
4 649
5 4565
6 5162
7 1935
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Figure 8.1: An example to get the information on urban development: (a)segmentation result, (b) post-processing result
(building numbers and colors are added manually for a better understanding)

8.2. TRANSFER LEARNING EXPERIMENT

To see the performance of our proposed model on the UN-Habitat dataset, we train our model with
public datasets and then use transfer learning to fit the UN-Habitat dataset. At this time, we com-
bine the CrowdAI building dataset and Inria Aerial image labeling dataset together to train our pro-
posed model. Specifically, we use the 6000 images (3000 for each dataset) as the training data to
train our proposed model using the same settings as the previously experiments. We use the values
of parameters that produce an excellent performance based on the results in previous chapters, for
obtaining the border weight, inter-building distance weight, and multi-level boundary label. As we
only have 170 images with rough label, here we use 150 images provided by UN-Habitat to fine-tune
the model, using a learning rate of 0.0001. We allow all weights to be updated during training, and
we run the model for 100 epochs. The resting 20 images are used as a test set to check the results.

Some example results are shown in figure 8.2.

We can clearly see the differences between the labels and the segmentation results. However, it does
not mean that the segmentation results are really bad. If we look at these results carefully, we can
notice that the quality of the labels is very low and the segmentation results are much better. In this
case, we can say that our proposed model performs well on a new dataset and we can imagine if we
have a sufficient amount of satellite images with good quality labels, the segmentation results will
be much better.
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Figure 8.2: Three image examples: (a)original image, (b)provided label from UN-Habatit, (c) segmentation result





9
CONCLUSIONS AND DISCUSSION

In this research, we study deep learning techniques for building segmentation on satellite image
data. Starting with testing several classic segmentation algorithms, from the experiment results,
we find out that the performance can still be improved. Then, we propose two data reweighing
methods, named border weight and inter-building distance weight, to improve the performance.
By increasing the weights of the pixels outside but close to the border of the buildings, the model is
encouraged to learn those information and thus performs better. Inspired by the idea of reweighing
the non-building pixels, we investigate whether modifying building pixels can achieve further im-
provement. We propose a new label representation – multi-level boundary label that does help to
improve the segmentation results. Based on the distance to the building boundary, we can divide
building pixels into multiple classes, as their pixel values can be affected by some factors such as
trees and shadows. From the experiment result, we can see the performance is improved since the
model captures more information about the buildings. Next, we propose a new model to utilize
the two pixel weights, and the multi-level boundary label explained above. Our proposed model
achieves state-of-the-art building segmentation performance compared with several classic seg-
mentation methods. Our model also uses fewer number of parameter because we only use the first
13 layers of the VGG16 as the encoder and we do not use any convolutional layers in the decoder
part.

To get the information about urban development (building counts and building size), we apply two
post-processing steps on the segmentation results and show that we can obtain information about
urban development from segmentation results. Specifically, we collect all coordinates of pixels rep-
resenting buildings and aggregate pixels belonging to the same building according to their con-
nectivities. The size of each building is the number of pixel of each group, and the total number
of buildings is the number of aggregated groups. Also, to see whether our proposed model works
well on the satellite images provided by UN-Habitat, we train our model with public datasets and
use transfer learning to fine-tune the model. From the result we can see that our proposed model
performs well on a new dataset. Based on these conclusion, we demonstrate that we can obtain
information about urban development from segmentation results.

Regarding the main research question:

• Can we develop an automated system that provides valuable information about urban de-
velopment for the UN-Habitat from satellite image data (e.g. building detection)?

Our answer is a definitive YES!. We not only show that it is possible to obtain information about
urban development from satellite image but also propose a new model with great performance in
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our work.

9.1. DISCUSSION

In this thesis, we address some problems from the building segmentation results testing on classic
methods, such as the pixels close to the building borders could be affected by trees and shadows. In-
stead of focusing on building a new model or modifying some well-known architecture, we examine
our task and the datasets we need to use. Then we find out that we can improve the performance by
modifying the data rather than modifying the model. If you do not have a great understanding of the
model, it is so hard to modify it correctly and get the result as you expect. Focusing on the data can
be a good idea because in many cases, we can find out some characteristics of the data. As I have
mentioned above, an excellent outcome is obtained by both a good method and high-quality data.
For our work, we cannot promise that our reweighing methods and multi-class label representation
work well on tasks other than building segmentation. But we are confident that they do improve the
building segmentation results.

Regarding our proposed model, one novel point about the architecture is that we transform the
original label into another representation and then use two branches to let the model learn from
different information. The data label may include more information than we expect. It is good to
pay attention to data.

From the UN-Habitat’s perspective, an important question they hope to know the answer is whether
satellite images can be used in combination with some automated processes to obtain information
about urban development. According to our work, we can say the answer is yes, and we can also
tell how to achieve it. Obtaining the building count and building size can be defined as a building
segmentation task. The performance and results are shown in the experiment results in this thesis,
they are deemed to be good enough. However, as different datasets are so different, to produce
great results, we need to have high-quality labels to let the model learn the data. If UN-Habitat is
interested in the approach explored in this thesis, we suggest UN-Habitat to generate some high-
quality labels and then try our model or related methods.

9.2. FUTURE WORK

Hyper-parameters Tuning

In our research, we propose two methods to reweigh the data, named border weight and inter-
building distance weight, and a new label representation, named multi-level boundary label. Their
values are dependent on their parameters’ values and the optimal parameters’ values are dependent
on the algorithm and the dataset that would be used. In our thesis, we use grid search to find the
reasonable ranges. It will be compelling if we can develop a better matching strategy to obtain the
values of these parameters, especially for new datasets.

Generalization Ability of our Proposed Model

In this thesis, the architecture of our model is proposed to follow and match our task – binary build-
ing segmentation and the datasets we use – satellite images with a top-down view. From the experi-
ment results, we know that our model performs well on building segmentation task. However, does
our model still has a good performance on other segmentation tasks (e.g. road and vehicle segmen-
tation for automated driving) ? Also, for other cases, will our multi-level boundary label, our border
weight and our inter-building distance weight still help our model to achieve a improvement? Fur-
ther experiments are needed to the get the answers.
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Table 9.1: Full experiment results of border weight of method FCN8S

FCN8S
Crowd AI dataset Inria Aerial dataset

PA MPA MIoU PA MPA MIoU
Baseline 0.9414 0.9128 0.8479 0.9018 0.8735 0.7818
w0=2,σ0=0.2 0.9455 0.9140 0.8567 0.9080 0.8776 0.7902
w0=2,σ0=0.5 0.9417 0.9140 0.8491 0.9074 0.8793 0.7898
w0=2,σ0=0.8 0.9440 0.9230 0.8566 0.9068 0.8835 0.7902
w0=5,σ0=0.2 0.9415 0.9116 0.8480 0.9034 0.8650 0.7886
w0=5,σ0=0.5 0.9445 0.9192 0.8562 0.9076 0.8806 0.7905
w0=5,σ0=0.8 0.9421 0.9128 0.8483 0.9031 0.8731 0.7811
w0=10,σ0=0.2 0.9449 0.9167 0.8561 0.9025 0.8610 0.7857
w0=10,σ0=0.5 0.9419 0.9133 0.8481 0.9122 0.8841 0.7988
w0=10,σ0=0.8 0.9439 0.9129 0.8531 0.9071 0.8805 0.7897
w0=20,σ0=0.2 0.9515 0.9228 0.8609 0.9050 0.8679 0.7821
w0=20,σ0=0.5 0.9416 0.9217 0.8508 0.9041 0.8649 0.7796
w0=20,σ0=0.8 0.9425 0.9115 0.8499 0.9067 0.8808 0.7891

Table 9.2: Full experiment results of border weight of method SegNet

SegNet
Crowd AI dataset Inria Aerial dataset

PA MPA MIoU PA MPA MIoU
Baseline 0.9356 0.9096 0.8481 0.8999 0.8676 0.7830
w0=2,σ0=0.2 0.9456 0.9154 0.8571 0.9156 0.8948 0.8076
w0=2,σ0=0.5 0.9408 0.9199 0.8487 0.9082 0.8894 0.7943
w0=2,σ0=0.8 0.9413 0.9172 0.8499 0.9087 0.8760 0.7906
w0=5,σ0=0.2 0.9439 0.9249 0.8560 0.9065 0.8796 0.7885
w0=5,σ0=0.5 0.9445 0.9132 0.8543 0.9099 0.8809 0.7942
w0=5,σ0=0.8 0.9467 0.9178 0.8600 0.9044 0.8830 0.7864
w0=10,σ0=0.2 0.9418 0.9062 0.8470 0.9084 0.8903 0.7948
w0=10,σ0=0.5 0.9458 0.9177 0.8582 0.9120 0.8815 0.7977
w0=10,σ0=0.8 0.9434 0.9139 0.8522 0.9063 0.8722 0.7856
w0=20,σ0=0.2 0.9457 0.9180 0.8579 0.9096 0.8722 0.7907
w0=20,σ0=0.5 0.9471 0.9169 0.8605 0.9062 0.8766 0.7869
w0=20,σ0=0.8 0.9430 0.9177 0.8524 0.9108 0.8866 0.7974
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Table 9.3: Full experiment results of border weight of method Deep_Lab

Deeplab
Crowd AI dataset Inria Aerial dataset

PA MPA MIoU PA MPA MIoU
Baseline 0.9266 0.8866 0.8241 0.8883 0.8565 0.7616
w0=2,σ0=0.2 0.9354 0.9060 0.8347 0.9009 0.8804 0.7803
w0=2,σ0=0.5 0.9351 0.8929 0.8302 0.8995 0.8557 0.7693
w0=2,σ0=0.8 0.9339 0.9022 0.8307 0.8986 0.8693 0.7730
w0=5,σ0=0.2 0.9355 0.9014 0.8334 0.8984 0.8707 0.7731
w0=5,σ0=0.5 0.9333 0.9028 0.8298 0.8581 0.8629 0.7158
w0=5,σ0=0.8 0.9352 0.8977 0.8319 0.8986 0.8678 0.7725
w0=10,σ0=0.2 0.9364 0.9031 0.8356 0.8901 0.8576 0.7663
w0=10,σ0=0.5 0.9344 0.9001 0.8310 0.8977 0.8546 0.7662
w0=10,σ0=0.8 0.9357 0.9022 0.8341 0.8994 0.8772 0.7770
w0=20,σ0=0.2 0.9370 0.9032 0.8370 0.8994 0.8632 0.7720
w0=20,σ0=0.5 0.9352 0.8977 0.8319 0.8923 0.8533 0.7579
w0=20,σ0=0.8 0.9370 0.9019 0.8366 0.9014 0.8700 0.7774

Table 9.4: Full experiment results of inter-building distance weight of method FCN8S

FCN8S
Crowd AI dataset Inria Aerial dataset

PA MPA MIoU PA MPA MIoU
Baseline 0.9340 0.9059 0.8440 0.8966 0.8647 0.7770
w0=2,σ0=2 0.9448 0.9154 0.8556 0.9047 0.8758 0.7844
w0=2,σ0=5 0.9422 0.9103 0.8489 0.9064 0.8796 0.7884
w0=2,σ0=10 0.9416 0.9095 0.8476 0.9006 0.8764 0.7784
w0=5,σ0=2 0.9421 0.9179 0.8507 0.9067 0.8778 0.7882
w0=5,σ0=5 0.9447 0.9108 0.8540 0.9061 0.8856 0.7898
w0=5,σ0=10 0.9321 0.8986 0.8262 0.9097 0.8842 0.7950
w0=10,σ0=2 0.9448 0.9127 0.8548 0.9091 0.8777 0.7919
w0=10,σ0=5 0.9411 0.9062 0.8457 0.9052 0.8703 0.7833
w0=10,σ0=10 0.9409 0.9046 0.8448 0.9025 0.8766 0.7813
w0=20,σ0=2 0.9443 0.9099 0.8530 0.9076 0.8750 0.7886
w0=20,σ0=5 0.9417 0.9136 0.8489 0.9109 0.8799 0.7955
w0=20,σ0=10 0.9408 0.9059 0.8451 0.9083 0.8781 0.7907
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Table 9.5: Full experiment results of inter-building distance weight of method SegNet

SegNet
Crowd AI dataset Inria Aerial dataset

PA MPA MIoU PA MPA MIoU
Baseline 0.9323 0.8981 0.8385 0.8992 0.8767 0.7850
w0=2,σ0=2 0.9434 0.9143 0.8525 0.9088 0.8844 0.7936
w0=2,σ0=5 0.9415 0.9083 0.8470 0.9090 0.8792 0.7922
w0=2,σ0=10 0.9479 0.9213 0.8632 0.9052 0.8817 0.7871
w0=5,σ0=2 0.9444 0.9113 0.8536 0.9082 0.8778 0.7905
w0=5,σ0=5 0.9477 0.9218 0.8629 0.9112 0.8944 0.8005
w0=5,σ0=10 0.9443 0.9135 0.8539 0.9071 0.8775 0.7887
w0=10,σ0=2 0.9424 0.9103 0.8495 0.9096 0.8898 0.7966
w0=10,σ0=5 0.9402 0.9119 0.8455 0.9153 0.8787 0.8021
w0=10,σ0=10 0.9436 0.9158 0.8531 0.9096 0.8930 0.7976
w0=20,σ0=2 0.9454 0.9142 0.8564 0.9108 0.8850 0.7969
w0=20,σ0=5 0.9451 0.9109 0.8549 0.9108 0.8864 0.7974
w0=20,σ0=10 0.9442 0.9148 0.8541 0.9089 0.8777 0.7915

Table 9.6: Full experiment results of inter-building distance weight of method Deep_Lab

Deeplab
Crowd AI dataset Inria Aerial dataset

PA MPA MIoU PA MPA MIoU
Baseline 0.9254 0.8871 0.8221 0.8841 0.8598 0.7566
w0=2,σ0=2 0.9348 0.8976 0.8311 0.9017 0.8649 0.7760
w0=2,σ0=5 0.9348 0.8989 0.8314 0.8986 0.8688 0.7728
w0=2,σ0=10 0.9353 0.9021 0.8332 0.8880 0.8644 0.7560
w0=5,σ0=2 0.9353 0.8972 0.8320 0.8978 0.8722 0.7727
w0=5,σ0=5 0.9312 0.8921 0.8263 0.8957 0.8662 0.7676
w0=5,σ0=10 0.9348 0.8986 0.8314 0.8979 0.8665 0.7710
w0=10,σ0=2 0.9344 0.9034 0.8320 0.8985 0.8611 0.7699
w0=10,σ0=5 0.9290 0.9047 0.8225 0.8989 0.8663 0.7724
w0=10,σ0=10 0.9368 0.9012 0.8359 0.8983 0.87837 0.7742
w0=20,σ0=2 0.9346 0.9037 0.8325 0.8956 0.8681 0.7682
w0=20,σ0=5 0.9331 0.8974 0.8346 0.9015 0.8701 0.7769
w0=20,σ0=10 0.9357 0.8987 0.8331 0.8982 0.8613 0.7695
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